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Introduction

This thesis deals with the extension of the laws of thermodynamics to a non-equilibrium setting
and in a regime where quantum effects cannot be neglected.

Thermodynamics is a phenomenological theory born in the nineteenth century which studies
transformations between equilibrium states of macroscopic systems. This kind of investigation
was initially motivated by the necessity to build efficient heat engines, namely machines capable
of transforming thermal energy into useful mechanical work, with the result of fostering the
second industrial revolution. On top of that, it rapidly became one of the most appreciated
physical theories for its generality and still is considered one of the pillars of our understanding
of nature.

The fundamental assumption of thermodynamics is that any macroscopic physical system
eventually relaxes to an equilibrium state, which is completely characterized by a set of few state-
variables, like volume, temperature, energy, pressure, that are related by means of the so-called
thermodynamic potentials. While this set of variables depends on the system of interest and is
fixed experimentally, the mathematical structure of the theory is nevertheless very general. Aim
of thermodynamics is then to predict which equilibrium state a physical system will reach after
removing external/internal constraints. This is done according to some physical laws, notably
the first and second law of thermodynamics.

The first law regards the conservation of energy that can be exchanged in a transformation
between two equilibrium states in the form of heat or in the form of work. The distinction be-
tween these two forms of energy exchange can be operatively provided assuming the existence of
adiabatic walls, namely assuming that is possible to thermally isolate a physical system. Indeed,
heat can be defined comparing two different processes, one of them performed adiabatically,
relating the same initial and final equilibrium states. Since it is possible to measure the amount
of work exchanged by mechanical tools, and in the adiabatic process work corresponds to the
whole energy variation depending only on the initial and final equilibrium states, one obtains the
heat exchanged in the second process by difference.

The second law can be expressed in different formulations. The traditional ones are at-
tributed to Kelvin and Clausius and are easily proven to be equivalent. The Kelvin formulation
states that it is not possible to extract work from a single heat source at a fixed temperature in
a cyclic process, while the Clausius statement is about the impossibility of spontaneous flow of
heat from a cold source to a hot source. These statements imply the existence of a state function
called entropy that cannot decrease for an isolated system during a thermodynamic transforma-
tion. One has to stress that the whole formalism gives information on the final equilibrium state
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only, depending on the initial equilibrium state and a set of constraints. In particular, nothing can
be concluded for the intermediate steps of the process, unless considering the ideal case of quasi-
static transformations, where the system undergoing the thermodynamic process is assumed to
be in equilibrium at each instant of time. In this respect, the name thermodynamics is quite
misleading, because there is no dynamics (the parameter time does not enter in the description
of actual processes).

The theoretical structure of equilibrium thermodynamics, which is very well summarized
in [1], was considered completely settled in the first half of the twentieth century, notable ex-
ceptions being [2, 3], when the focus of research shifted to possible generalizations in non-
equilibrium scenarios.

The first possible generalization of thermodynamics, nowadays known as the theory of Clas-
sical Irreversible Thermodynamics [4], has been pioneered by Lars Onsager [5, 6] and further
developed by Ilya Prigogine. Global equilibrium is dismissed as a fundamental ingredient of the
theory in favor of the less demanding local equilibrium. In other words, thermodynamic vari-
ables become functions of the spatial coordinates and of time, maintaining the same relations
among themselves through the thermodynamic potentials. The time-evolution is described by
means of the so-called constitutive equations, relating the fluxes with the thermodynamic forces
or affinities, which are assumed to be the gradients of the thermodynamic variables.

In Classical Irreversible Thermodynamics the constitutive equations are assumed to be lin-
ear, thus implicitly restricting to close-to-equilibrium situations. However, such a feature is
general enough to include a lot of previous empirical laws used in the description of different
physical systems, e.g. the Fourier’s law for the heat conduction, the Ohm’s law for the electrical
current and the Fick’s law for the matter diffusion. In this framework, very important results
as the Onsager relations, describing the interplay between coupled thermodynamic fluxes, can
be proved using linear response theory. Linear response thus made it possible to theoretically
explain known empirical facts such as, for instance, the phenomenological relations between the
Peltier effect (heat flow caused by a voltage difference) and the Seebeck effect (electrical current
due to a temperature gradient).

More recently, other phenomenological approaches to the thermodynamics of systems out
of equilibrium have been proposed, in situations when Classical irreversible Thermodynamics
cannot be applied. For instance, Extended Irreversible Thermodynamics [7] has provided new
insight into the physics of systems far from equilibrium, explicitly including the fluxes as in-
dependent thermodynamic variables. A paradigmatic example of the phenomenology captured
by this theory is the finite speed of heat conduction described by the Cattaneo heat equation
[8]. It is worth mentioning also the approach of GENERIC [9-11] (General Equation for Non-
Equilibrium Reversible-Irreversible Coupling), that is a further option to study thermodynamics
in a non-standard scenario by postulating a certain structure for the evolution equation while
maintaining freedom in the choice of thermodynamic variables. Interestingly, GENERIC can
be used to connect different levels of description of the same physical system, thus providing a
unified picture of many non-equilibrium phenomena [12-14].

Another field of research which generalizes equilibrium thermodynamics deals with the re-
laxation of the thermodynamic limit. The thermodynamics of small systems, or nanothermo-
dynamics, initiated by Terrell Hill [15] aims at extending the thermodynamic formalism to en-
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sembles of systems far from the macroscopic limit. At this level the equivalence of statistical
ensembles is lost and the external constraints become essential in the description of physical
properties. This theory has wide applications in biochemistry and molecular biology, because it
is particularly suited to study the behavior of polymers and colloidal particles [16, 17].

Concerning the statistical justification of the thermodynamic behaviour, the approach called
Stochastic Thermodynamics relies on associating definite thermodynamic quantities like heat or
work to single trajectories in phase space; then, the probability distribution of these stochastic
variables is obtained considering all the possible realizations of the same process (corresponding
to different trajectories). Standard thermodynamics arises in this picture through looking at the
averages of thermodynamic quantities with respect to their probability distributions, while in
principle all statistical moments are accessible as well. Such a theory generalizes equilibrium
statistical mechanics because it is well suited for non-equilibrium situations and small sized
systems and is currently the subject of intense research. In this framework, Jarzynski and Crooks
proved very general and important results known as work fluctuation theorems [18, 19], relating
the full non-linear response to an external perturbation of a closed system with an equilibrium
thermodynamic quantity, the free energy. These and many other results are summarized in [20].

Apparently, there are many different approaches to generalize the thermodynamics and sta-
tistical mechanics of classical systems, namely by considering systems out of equilibrium, or
far from the thermodynamic limit or both [21, 22]. However, a unified picture is still lacking
because none of them is free from drawbacks and one has to decide what is the most suitable
approach depending on the system in question. As a result, part of the scientific community is
currently working on such issues.

None of the previously mentioned theories make use of quantum mechanics. However,
below a certain size and at very low temperatures quantum effects are expected to become im-
portant and in the last decades many efforts have been devoted to extend the theory of non-
equilibrium thermodynamics in the quantum domain [23-26]. From a theoretical point of view,
it is interesting to understand how the laws of standard thermodynamics emerge from the un-
derlying quantum dynamics. On the other hand, generalizing the laws of thermodynamics for
small scale quantum devices could allow to develop a new generation of efficient heat engines
operating in the quantum realm.

The renewed interest in the foundations of thermodynamics has been fostered by the high
level of accuracy and control in many experimental setups, like ultracold atoms [27], trapped ions
[28], optomechanical systems [29] just to mention a few, that allow to investigate the tradeoff
between dynamics and thermodynamics in unexplored regimes.

One of the core issues in quantum thermodynamics is the description of equilibration and
thermalization in closed quantum systems. Despite being still an open problem, in the last years
many important results started to emerge [30-37]. In particular, it has been shown that under
very general conditions and for a large class of observables the quantum averages of a physical
system become stationary after a certain equilibration time and remain close to the equilibrium
value for almost all the time. The main open question in this direction remains the estimate of
the equilibration time.

Another interesting problem is the formulation of the first and second law of thermodynam-
ics for small quantum systems out of equilibrium. In this respect, a complete framework was
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developed in the late seventies for Markovian open quantum systems evolving in time through
master equations in Lindblad form [38, 39]. An open quantum system is a system interacting
with another quantum system usually called environment or reservoir, such that its time evolu-
tion is essentially different from the Schrédinger one, and non-standard effects like dissipation
and decoherence appear. Under suitable assumptions like system and environment being weakly
coupled and absence of memory effects (Markov approximation) the dynamics is well described
by a master equation in Lindblad form that has a particular mathematical structure [40, 41]. The
solution is a one-parameter (time) semigroup of completely positive and trace preserving maps,
a so-called quantum dynamical semigroup [42].

The aim of this thesis is the investigation of the non-equilibrium thermodynamics of quan-
tum systems in more general situations, for instance when the Markov approximation is not
justified and the evolution is described by non-Markovian dynamical maps. The study of these
more general dynamics for an open quantum system has been the subject of intensive research
in the last decade [43—45]. Since the behavior in time of most condensed matter quantum de-
vices is described by non-Markovian dynamics, a thorough investigation of the relation between
thermodynamics and non-Markovianity is certainly not only of theoretical interest.

Concerning the first law, we propose a way to distinguish heat and work contributions to the
variation of energy in a generic bipartite quantum system, namely when the environment is not
treated in the thermodynamic limit and remains of finite size so that, in principle, one need deal
with both systems without tracing out any of them. This is done using an effective Hamiltonian
for both subsystems that contains correction terms due to the interaction between the two of
them.

Concerning the second law, we analyze the entropy production, defined as in the standard
formalism, in the context of non-Markovian dynamical maps. We show that in general this quan-
tity can be negative for physically legitimate dynamics. However, we argue that in these cases a
proper formulation of the second law of thermodynamics requires to consider both system and
environment explicitly in the entropy balance. Indeed, one can prove that if the system and en-
vironment are initially uncorrelated, the sum of the finite entropy variations in both subsystems
is always nonnegative.

Moreover, we comment on the quantum version of the fluctuation theorems, proposing a
way to test experimentally the Jarzynski equality. These results generalize the thermodynamic
formalism to study fluctuations of arbitrary order, thus containing the full non-equilibrium in-
formation about the system.

In all the thesis we adopt the usual perspective taken in the theory of open quantum systems,
namely, system and environment together form a closed quantum system evolving according
to the Schrédinger equation and the reduced dynamics of each subsystem is dissipative due to
the averaging of the degrees of freedom pertaining to the other one. It is worth to mention
a different perspective, that is to consider quantum dynamics more general than Schrodinger
for closed quantum systems, in such a way that thermodynamics is not derived from quantum
mechanics but instead complements it. This is the formulation known as IQT (Intrinsic Quantum
Thermodynamics) pushed forward by G. P. Beretta and M. R. von Spakovsky [46-50]. Another
interesting point of view deserving to be mentioned is the so-called resource theory of quantum
thermodynamics [51-54]. A comprehensive review of the topic, that is complementary to the
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present work, can be found in [55].

The thesis is structured as follows. In Chapter 1 we give a brief introduction to the theory of
open quantum systems, in particular to the Markovian description by means of quantum dynam-
ical semigroups. We comment on the importance of the property of complete positivity and the
possibility to consider time-dependent generators leading to two-parameter semigroups. Then
we present the standard description of the non-equilibrium thermodynamics of open quantum
systems, as formulated in the seventies in analogy with Classical Irreversible Thermodynamics,
with emphasis on the concept of entropy production and on the proof of its positivity. After that,
two examples are discussed in which the entropy production is found to be negative, analyzing
in what respect these models do not fulfill the requirements of the theory.

More general dynamics of open quantum systems are discussed in Chapter 2. In particular,
we review and compare some different options to define non-Markovianity in the quantum do-
main. The study of thermodynamics in these kind of systems is still at the beginning and aim
of the present thesis is to contribute a possible new perspective in addressing the problem. The
lack of Markovianity can lead to a transient negative entropy production, as explicitly shown in
an example. Moreover, it is known that an asymptotic state for the dynamics is not invariant at
finite times when the semigroup property does not hold. This fact is used in another example to
show that even the integrated entropy production can become negative. It is then argued that in
order to properly describe the thermodynamics of a non-Markovian open quantum system one
should explicitly consider the environment in the balance of energy and entropy.

In Chapter 3 we address the question of how to properly formulate the laws of thermody-
namics for a generic bipartite quantum system. This can allow to understand what is the more
general scenario in which thermodynamics makes sense and then to reduce to the known theory
in particular limits. The first issue to solve is a meaningful definition of heat and work in pres-
ence of strong coupling between the subsystems. This is done by means of a suitable effective
Hamiltonian motivated by physical criteria. It is found that part of the energy is stored in the
correlations between the subsystems that can be exchanged between the two parts in the form of
heat. Concerning the second law, a very general statement can be proven if the initial state is un-
correlated, namely that the sum of the finite variations of the entropy in system and environment
is always nonnegative. This of course does not mean that this quantity is monotonically increas-
ing; indeed it is well known that in quantum systems with finite degrees of freedom recurrences
happen [56]. Moreover, this statement does not relate entropy with heat and temperature, the
latter not being even defined. We then try to elaborate on a possible definition of temperature in
this more general scenario, analyzing two different proposals.

The previous formalism, which contains great part of the original material of this thesis, is
then illustrated by means of two examples. Part of the Chapter is also dedicated to the compari-
son with other proposed formulations in the quantum domain and to the classical counterpart of
our theory.

In Chapter 4 we discuss quantum fluctuation theorems, that extend the thermodynamic anal-
ysis beyond the study of average values. We distinguish between closed and open quantum
systems. In the first case, the theoretical framework is fully settled [S7] and we propose a way to
test experimentally the quantum Jarzynski equality. In the case of open systems the situation is
more complicated. We present the existing results for transient fluctuation theorems in the case
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of unital time-evolutions and we comment on the possibility to study the statistics of work and
heat considering system and bath explicitly.

The thesis is concluded in Chapter 5 summarizing the key points of the present work. A
perspective for possible future work is given, mainly regarding the problem of heat transport in
composite quantum systems and the formulation of a unified framework for the fluctuations of
heat and work in driven open quantum systems.



Chapter 1

Markovian master equations

In this Chapter the standard formulation of the non-equilibrium thermodynamics of quantum
systems, based on the theory of open quantum systems, is reviewed.

An open quantum system is a quantum system S interacting with an external environment
or bath B. Even though the dynamics of system and environment together is described by the
Schrodinger equation, the system S alone exhibits a richer phenomenology and experiences
non-standard effects like dissipation and loss of quantum coherence. Among the many different
approaches used to study the dynamics of an open quantum system the most appealing one is to
solve the dynamics of system and environment together first, and then compute the exact dynam-
ics of the system alone by averaging over the environmental degrees of freedom. This solution,
however, is often impractical and some approximations are required in order to get a theoretical
model for the time-evolution of S alone. Another possibility is to assume from the beginning
an effective evolution equation based on physically motivated mathematical constraints. This
approach is commonly used in the framework of open quantum systems and it will be discussed
in Section 1.1.

The usual formulation of non-equilibrium thermodynamics for open quantum systems, which
dates back to the late seventies, is based on Markovian master equations, namely evolution equa-
tions with no memory effects. This description will be presented in Section 1.2. Particular em-
phasis will be put on the inequality related to the second law of thermodynamics and on the
features of the dynamics that allow to prove such a result. Indeed, the discussion is preparatory
for the next Chapter, where more general effective dynamics will be considered, challenging the
validity of the inequality.

1.1 Open system dynamics

The dynamics of an open quantum system is essentially different from that of a closed sys-
tem. Indeed, even though system and environment together evolve unitarily according to the
Schrodinger equation, the time-evolution of the system alone experiences non-standard effects
like decoherence and dissipation. As a consequence, pure states can be transformed into statis-
tical mixtures during the time-evolution so that the description of quantum states as normalized
vectors in a suitable Hilbert space H is not sufficient and the density matrix formalism must be

9
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adopted. A density matrix g is a convex combination of projectors onto Hilbert space vectors
;)
0= _Nlb)yl, 0< A <1 Y N =1 (1.1)
J J

If the vectors are orthogonal, thus distinguishable, the weights \; can be interpreted as probabil-
ities of being in the pure state |1);). Equivalently, the density matrix is represented by a linear,
positive, trace-class operator ¢ € T (#H) (7 () is the set of operators acting on H with finite
trace) with Tr(p) = 1.

The average value of an observable O, described by a bounded (O € B(H)) self-adjoint
(O = O) operator, is computed given the state o of the system as follows

(0) = Tr (00) = Z Aj (¥;10[;). (1.2)

Therefore, the average (O) is the weighted average in each pure state |¢);) with weights \;.

Consider the dynamics of the compound quantum system which consists of the open system
of interest S and its environment. Its Hilbert space is Hiot = H ® H p and its state is a density
matrix ¢ € Hiot. Given the Hamiltonian, the dynamics of this system is described by the
Liouville-von Neumann equation,

Oror = —iH, o], (1.3)

which is the equivalent expression of the Schrodinger equation in the formalism of density ma-
trices, as it is easily seen from the equations below

Ol () = —iH[y;(t)), O (W ()| = ie; (1) H, (1.4)

using linearity. The solution of equation (1.3), is the density matrix at time ¢ which is related
to the density matrix at the initial time through a one-parameter group of linear maps ; :
B(Hiot) — B(Hsot)

o1 = UsJoo] = UraoU;, (1.5)

where U; = e is a unitary operator. As a consequence, it is easy to check that the time-
evolution U; preserves the purity of quantum states

—iHt

Trlo?] = Tr[UrooU UrooU)] = Te[Up03U,] = Tr[od]. (1.6)

In order to extract the relevant information for the system of interest one can use the partial
trace over the environmental degrees of freedom Trp(-). Indeed, the average of any observable
pertaining only to the system .S, namely of the form Og ® 1 g, can be computed as follows

(Os) = Tr[oOs ® 1] = Trg[OsTrp[o]] = Trs[Osos], (1.7

where pg = Trplo] is the reduced density matrix of the system which contains all necessary
information relative to the system of interest.
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Assuming an initially factorized state between system and environment,

00 = 05(0) ® 05(0), (1.8)

the dynamics of S can be described by a one-parameter family of linear maps A;

05(0) = Trp [Us[os(0) ® 0p(0)]] = Z ij(t)QS(O)W;k(t) =: A¢fos(0)], (1.9)
7.k

where W, (t) = VA (E;|Ui|Ex) € B(Hs), and Ag,|Ey) are the eigenvalues and eigenvectors
of o5(0). The dynamics A; no longer preserves the purity of quantum states and does not obey
a group composition law. In general, it is very difficult to derive the exact dynamics A; starting
from the global Scrédinger evolution of SB, so that either some approximations are made or a
phenomenological model is introduced from the beginning.

A typical approach to study the dynamics of an open quantum system is to provide a phe-
nomenological master equation that effectively accounts for the interaction with the environ-
ment, without explicitly considering the latter. This master equation is written in the form

Oror = Loy, (1.10)

where the generator £ : M,,(C) — M,,(C) is a linear map satisfying a number of mathematical
requirements that correspond to physical constraints. In particular, the solution of the master
equation has to preserve the positivity of the density matrix and its trace in order to be consistent
with the probabilistic interpretation of the density matrix eigenvalues. Therefore, necessary
conditions for the generator are

o (LA)" = LA* VA € M,(C) (hermiticity preservation),
o Tr(LA) =0,VA € M,(C) (trace preservation).
The following important Lemma has been proved in [40]

Lemma 1.1.1. Let (Fj)j = 1,..n* be an orthonormal basis in M, (C) with respect to the
Hilbert-Schmidt scalar product (A, B) = Tr (ATB), with F,2 = 1/\/n, and let L : M, (C) —
M,,(C) be a linear map such that (LA)* = LA* and Tr(LA) = 0,VA € M, (C). Then L can

be uniquely written in the form

n2—1
. 1
LA=—i[H A+ Ek 1hjk (FjAF,I -5 {F,ij,A}> , (1.11)
J,k=

where H = H*, Tr(H) = 0 and h;; = h;.

Therefore, the solution of (1.10) with a generator in the form (1.11) is a semigroup of trace-
preserving and hermiticity-preserving maps A; = e*“. Still, this is not sufficient for a physically
meaningful dynamics, which has to preserve the positivity of density matrices.
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1.1.1 Positivity and Complete Positivity

In order to preserve positivity further constraints are needed on the matrix » = (h;,). Up to now,
no general condition is available for the characterization of the generator of positive dynamics.
However, the problem is solved if one argues that a stronger condition has to be fulfilled for the
physical consistency of the dynamics, namely complete positivity [58].

Definition 1.1. A linear map A : M, (C) — M, (C) is called completely positive if A & id,,,
where id,, is the identity map on M,,(C), is positive on M,,(C) & M,,(C) for all m > 1.

The physical interpretation of this property goes as follows. Suppose that the system is
initially entangled with an inert m-dimensional ancilla, so that, given the dynamics of the system
Ay, the time-evolution of the compound system and ancilla is A; ® id,,. The positivity of the
compound dynamics is ensured by the complete positivity of A;. The following example clarifies
the difference between complete positivity and simple positivity.

Example 1.1. Consider the transposition map Ty in Ms(C) defined as follows

a b a c
Ty : <c d> — (b d> , (1.12)

that preserves the spectrum of matrices, thus being positive. Let |0) = <(1)> and |1) = ((1)> be

an orthonormal basis in C? and define the vector

1
V) =7

The corresponding projector P = |1) (1| has eigenvalues 0,1 and is transformed by Ty ® ids
into

(10) ©10) + 1) ® 1))

—_

T> ©ida[P) = 5 (1000 @ [0) (0] + [1){1] @ 1)1+

1]+ 10} 1] @ [1)(0])

2
+11

)(0] © |0)

+
10 0
0
0
1

)
o O O
S = O
SO = O @~

that has eigenvalues % and —%. The negative eigenvalue implies that the transposition Ty is not
completely positive despite being positive.

Contrary to simple positivity, a number of elegant mathematical results are related to com-
plete positivity. In particular, a well-known and celebrated theorem, due to Gorini, Kossakowski
and Sudarshan [40], states that
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Theorem 1.1.2. A linear map L : M, (C) — M,(C) is the generator of a completely positive
dynamical semigroup of M, (C) if and only if it can be expressed in the form

nZ2—1
. 1
Lo=—ilH, o+ Y hy, <Fng,j -5 {F,ij, g}> ., 0€ M,(C) (1.13)
Ji:k=1

where H = H*, Tr[H] = 0, Tr[F;], Tr[F} F] = 0 and (h;j;) is a complex positive matrix. For a
given L, the so-called Kossakowski matrix (h;j) is uniquely determined by the choice of the F;’s
and the operator H is uniquely determined by the condition Tr[H| = 0.

Remark 1. A related theorem has been published independently by Lindblad in [41] dealing
with the case of a generic separable Hilbert space and a bounded generator. In particular, it
is proved that the most general bounded generator of completely positive semigroups has the
form (1.13). As a matter of fact, many generators of completely positive semigroups used in
literature are written in this form but with unbounded operators. In this case, however, there is
no guarantee that this is the only possibility. For a recent discussion on this issue see [59].

Using the previous theorem, one can postulate an effective evolution equation for the open
quantum system of interest which respects all the mathematical requirements necessary for the
physical consistency of the model. However, sometimes it is useful to complement this approach
with a suitable approximation scheme of the global dynamics of SB if a model of the latter is
available. In the following we discuss one of these techniques.

1.1.2 Nakajima-Zwanzig method

A possible way to derive approximate master equations for open quantum systems is the so-
called Nakajima-Zwanzig projection operator technique [60—62]. Consider a bipartite quantum
system with Hamiltonian H = Hg+ H g+ Hgp whose initial state is factorized o(ty) = 0s®0B.
First of all, define the projectors P and () as follows:

Po(t) = Trp(o(t)) ®ep, @=1-P, (1.14)

where pp is a reference state for the bath. For later convenience one chooses the initial state of
the environment as reference state, i.e. o5 = op. Consider then the Liouville-von Neumann
equation

dro(t) = Lo(t), (1.15)

where L[-] = —i[H, -], that induces the two equations
9Qo(t) = QLQo(t) + QLPo(t), (1.16)
8:Po(t) = PLPo(t) + PLQo(t). (1.17)

One can solve formally the first one (1.16)

t
Qo(t) = eQL(t_tO)QQ(to) + eQLt/ dse ®FQLPo(s), (1.18)

to
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and substitute the result in (1.17)

t
A, Po(t) = PLPo(t) + PLeQ %) Qo(ty) + PLeR / e QLsQLPo(s)ds.  (1.19)

to

Since the initial state is factorized, the second term PLe®@ (t=t0)Qp(t,) vanishes and the equa-
tion becomes

t
Dy Po(t) = PLPo(t) + PLe®™ / e QLsQLPo(s)ds. (1.20)
to

It turns out that the previous equation is of the form
t

dro(t) = PLPo(t)+ | K(t— s)o(s)ds, (1.21)
to

where the memory kernel K (¢ — s) has been defined as follows
K(t—s):= PLeFL=5)QLP. (1.22)
Using the fact that L = Lg + L + AL’ where
Ls]| = —i[Hs,"|, Lgl|=—ilHp,], L'[]=—ilH'"], (1.23)

and H' = > j S; ® Ej, one can always rewrite the interaction term with centered bath operators

B; = Bj — Tr[opBj] by means of a correction to Hg

H3 =Hs+ )\ SiTe[opB)), H' =Y 8;®B;, TilopBj]=0. (1.24)
J J

Assuming also that the initial state of the bath is stationary with respect to the free evolution

[Hp, op], it turns out that P, ) commute with both Lg and Lp, and, as a consequence of (1.24),

one has
PoL'oP=0, QolL'[ps®oB]=L'os® op] (1.25)

Finally, using all these properties and taking the partial trace over the environmental degrees of
freedom, the master equation (1.20) can be rewritten as

t
dros(t) = Lalos(t)] + A / dsTrp (L0 eI 0 Llog(s) @ 05]) . (126)
to

This equation is still exact and its solution is often inaccessible. Therefore different approxima-
tion schemes have been developed. In the following for sake of simplicity, we consider ¢y = 0.
The first approach is to formally integrate Eq. (1.26)

t v
os(t) = ells 0s(0) — )\2/ dv/ duelt=0)Ls x
0 0

x Trp ([H’ LYY TH bo(u) ® QB]D . (1.27)
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Then, by changing the integration order

t v ¢ ¢
/ dv/ du—/ du/ dov (1.28)
0 0 0 u

and with a suitable change of variable v — w = v — u one obtains

t u
gs(t) = e(t)Lé QS(O) _ /\2 / du e(t—u)Lé / dw e(_“’)Lé »
0 0

x Trp ([ H', e [H, 05(u) @ o8] ] ) (1.29)

The approximation consists in substituting 7/A? for ¢ and then take the limit A — 0 in the
integral

t 00
0s(t) = elLs 0s(0) — /\2/ du e(t“)Lé/ dw e~ Ls y
0 0

« Trg ([H’,ew(LS+LB) [H', 05(u) ® QB]D . (1.30)

The previous expression is the solution of the following master equation, known as Redfield
equation,

Br0s(t) = —i[Hs + AHY 05(1)] + A2 Drealos (1)), (1.31)
where ~
Drealo] = — / dwel s T (|1, e 00 [ 0@ op] ). (132)
0

As shown in [63] Redfield master equations generate dynamics which fail to be completely
positive, and they are often not even positive.

A better approximation scheme has been suggested by Davies [64-66]. One formally inte-
grates the Redfield equation

t
os(t) = oL 0s(0) + )\2/ du e(t_“)LéDRed [os(u)] (1.33)
0

and then switch to the interaction picture

t
eftLget(L§+)\2DRed)QS(0) _ QS(O) + /\2/ du efuLgDRedeuLgefuLgeu(L§+)\2DRed)QS(O).
0

(1.34)
Davies showed that the term e*“LéDRede“Lg can be substituted by its ergodic average
: 1 T —sL sL
Dpayvlo] = lim — dse™%%s Drege® 5. (1.35)
T—o0 T

Therefore, coming back to the Schrodinger picture, the following master equation emerges

dr0s(t) = (Ls + A Dpay)0s(t), (1.36)

where the generator can be proved to be in the GKSL form. The difference between the genera-
tors DRreq and Dp,y has some important consequences when discussing the thermodynamics of
open quantum systems as we will see in the next Section.
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Remark 2. In the derivation of the weak-coupling-limit generators from the Hamiltonian model
of system and bath one could also consider a renormalized (physical) Hamiltonian for the sys-
tem, containing corrections in A, instead of the bare one. This allows to recover the correct
Gibbs state (with respect to the physical Hamiltonian) asymptotically in time as mentioned for
instance in [67].

1.1.3 Time-dependent generator

For a master equation involving a time-dependent generator the previous characterization given
in Lemma 1.1.1 can be used at any time with the same basis of orthonormal matrices F;. As a
consequence, the time-dependence is completely encoded in the matrix h(t) = (h;x)(t) and in
the Hamiltonian H;, while the overall structure is preserved. In particular, when the matrix is
time-dependent and positive semi-definite at any time a corollary of Theorem 1.1.2 states that the
solution of Eq. (1.11) is a two-parameter family of trace-preserving completely positive maps
satisfying the generalized semigroup composition law [42]

t
Voo = VesVs0n s = Tels MW 1> 5> 0. (1.37)

In the following, in order to present the standard framework for the thermodynamics of open
quantum systems this kind of dynamics is considered.

One has to mention that in some cases time-dependent generators of two-parameter semi-
groups can be derived from microscopic models using a procedure similar to the one discussed
before [68]. Indeed, all the approximations remain physically justified for slowly varying exter-
nal fields; more precisely, they are consistent when the external driving is slow with respect to
the bath relaxation time [39].

The situation is more complicated for fast external driving. However, a possible treatment is
provided in the case of fast periodic driving by means of the so-called Markov-Floquet formalism
[67, 69]. This is a combination of the well-known Floquet theory for periodic Hamiltonians and
the theory of quantum Markov semigroups that has been discussed before. In particular, it is
assumed that the physical system Hamiltonian is periodic Hg(t) = Hg(t + T') and one defines
a constant effective Hamiltonian Hg using the spectrum of the propagator at time 7', U(T,0),
as follows:

U(t,0) := Te i JodsHs()  (T,0) = > e s k) (k| = e sT o — > enlk)(kl.
k k
(1.38)
The Floquet theory allows to split the propagator U (t, 0) into a periodic unitary Up(t) = Up(t+

~

T') and a term related to the constant Hamiltonian Hg
U(t,0) = Up(t)e st Up(0) = 1; (1.39)

this fact in turn simplifies the derivation of the approximate generator, that can be achieved
proceeding in a similar fashion as in the time-independent case. As a result, the master equation
in Schrodinger picture reads

Oros(t) = —i[Hs(t), 0s(t)] + L(t)[0s(t)], (1.40)
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where the time-dependent dissipator £(¢) is obtained as a composition of unitaries with a time-
independent one

LE)=LE+T)=UEL0)LU(L,0), Ut 0)[]=U(0) U'(t0). (1.41)
Therefore, the solution can be conveniently written as
0s(t) = U(t,0)e" 05(0) (1.42)

and it is easy to see that any state pg such that £[pg] = 0 defines a periodic steady state og(t) =
U(t,0)[os] = os(t + T). Typically, in the long-time limit the dissipator £ forces the system to
one of these states gg producing a so-called limit-cycle.

1.2 Standard thermodynamic description

The thermodynamics of open quantum systems, that is the study of the exchange in time of
energy and entropy between the system and its environment, has been studied since the late
seventies by means of the theory of quantum dynamical semigroups. In the following, the basic
features of this standard description are summarized.

Consider a (possibly driven) open quantum system with (a possibly time-dependent) Hamil-
tonian H; described by a finite-dimensional Hilbert space H, whose state at time ¢ (where ¢ > 0)
is given by g;. The internal energy is given by

Uy = Tr[o:Hy], (1.43)

and one can distinguish the heat and work contributions to its time variation (0;U;) as follows
[39]:

8tWt =Tr [Qt 6th] s (144)
81‘,@1‘, = Tr [atgt Ht] . (145)

This is a reasonable choice since the work power vanishes if the Hamiltonian is time-independent,
namely if there is no external driving; whereas the heat flux is zero when the system is isolated
from any kind of environment and thus evolves according to the Schrodinger time evolution
generated by Hy. In the following, we concentrate for the moment on undriven open quantum
systems (where H; = H) exchanging heat with their environment, which is taken to be a heat
bath at inverse temperature (3.

Concerning the entropy balance, one can use the von Neumann entropy $ to describe the
total entropy of the system out of equilibrium and define the entropy production o; in analogy
with classical irreversible thermodynamics [4], as the difference between the total variation of
entropy and the heat flux (1.45) multiplied by the inverse temperature

8t := —Tr[otlog o] , (1.46)
Ot .= atSt — ﬁ&tQt. (147)
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Throughout the thesis the convention kg = A = 1 is assumed. A straightforward calcula-
tion shows that, for a time-independent Hamiltonian H, o; can be conveniently rewritten in
terms of the derivative of the relative entropy between the state o; and the Gibbs state o(%) =
e PH ITr[e=PH], ie.,

or = —9S(or]| o), (1.48)

where $(o||¢") := Tr[olog 0 — olog ¢]. Indeed, it is sufficient to notice that
B0Qu = OTx [oBH] = —O/Tr |orlog (1) | = —0Tx [o1log @], (149)
where the last equality follows from 9;Tr [o;] = 0, and using the definition (1.47) one obtains
oy = —0/Tr [0t log o¢] + O/Tx [Qt log Q(ﬁ)} =-0/Tr [Qt log o+ — ot log Q(m] : (1.50)

Equation (1.48) holds provided that the Hamiltonian is time-independent and that the environ-
ment is a heat bath in thermal equilibrium, without other dynamical assumptions.

If the reduced dynamics of the open quantum system is described by a master equation in
the Lindblad form with a unique asymptotic state which is a Gibbs thermal state at the heat bath
temperature,

@ _ e
Zs '

1
Lled = Y- (Voo Vi = 5{ViVe 01}, (1.52)
k

Ovor = —i[H, o] + L[ o], tlgglo 0t =0 (1.51)

one can consistently express the second law of thermodynamics through the nonnegativity of
the entropy production o; > 0 [39]. The proof is based on the fact that any asymptotic state
is necessarily also an invariant state for the dynamics due to the semigroup property (given
ot = A¢[oo], one has Ay s = AyAs) and that the relative entropy is decreasing under CP maps
(701,

38 (Adfoo]l0?) = auS (Adloo] | Ae[eP]) = (1.53)
BN — (8)
_ 511%1+ S (AsA¢loo]| AsAelo ]5) S (Asloo]|A:[0!7)]) <o. (1.54)

If instead the Hamiltonian is explicitly time-dependent the entropy production can be again
related to relative entropy through a more complex formula

or = —Tr [Liled (og(er) — log(el™)) | = —0.8(e“ [erllef”)| _ . (1.55)

where ggﬁ ) = o~ BH: /Zy. As a consequence, the entropy production can be proved to be positive

assuming the property
o1 =0, (1.56)

that allows to substitute o, with e in (1.55). This assumption means that the Gibbs
state with respect to the Hamiltonian H; is stationary for the instantaneous generator £; and is
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a generalization of the stationarity condition in the time-independent case E[Q(ﬁ)] = 0. If the
generator is of time-dependent Lindblad form, it turns out that o; > 0 because, for any fixed £,
the maps e*“* are completely positive and form a one-parameter semigroup with respect to the
parameter s.

Moreover, the picture above can be further generalized to more thermal baths at different
temperatures, provided that the action of each of them is modelled by a time-dependent generator
in Lindblad form £\*” such that

£ = 0. (1.57)

As pointed out in [71], the possibility to write the total generator as the sum of terms unam-
bigously associated to a single bath is not warranted in general; however, this is a good ap-
proximation when correlations between different baths can be neglected. In this case, the heat
exchanged between the system and each bath can be computed as

Q) = Tr [£1" o] 1], (1.58)
and consequently the entropy production is defined as

o =05~ Y BioQy. (1.59)

Again, the expression above (1.59) for the entropy production can be conveniently rewritten in
terms of relative entropy

_ sclPi) (Bi)
oy =— Z 0:S(e*%" [04]] o} )L:O. (1.60)

: : (Bi) iehy wsLP) 1 (B
Moreover, by means of assumption (1.57) one can substitute g, "’ with e*~t " [g,”"]. Since the
right-hand side of the previous equation is the sum of nonnegative elements that cannot vanish
together, because the i-th term is zero when g, = ggﬁ i), in this case the entropy production
is strictly positive, i.e. oy > 0. The table 1.1 summarizes the relation between the entropy
production defined on physical grounds, namely as the difference of the total variation of entropy
and the entropy exchanged with the bath due to a heat flux, and the relative entropy.

For completeness one has to mention that a similar formulation of quantum thermodynamics
has been given recently for periodically driven open quantum systems whose dynamics is derived
using the Markov-Floquet theory. For all the details see e.g. [67].

In the above approach the dynamics of the open quantum system is dissipative due to the
presence of a suitable environment. However, its presence is not explicitly taken into account
in the two definitions (1.44) and (1.45). A different perspective is taken in Chapter 3 whereby
a formulation is considered of the thermodynamics of two interacting quantum systems none
of which can be neglected [72]. In this case, the heat balance relation strongly depends on the
correlations between the two parties built up through the interactions.

Despite being a very natural framework for the study of non-equilibrium thermodynamics
in Markovian open quantum systems, many physical models commonly used in literature do
not satisfy the previously mentioned requirements, thus failing in the description of the right
phenomenology. In the following, we present two of these examples, together with the solutions
that are already known and allow to describe the correct thermodynamics.
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£, 1 bath o = —9,S(0t] o)

L,Nbaths | oy =—) ", &S(egﬁwi)[@t]||es£(ﬂi> [Q(ﬁi)]) 0
Lolbath | o= -0,8(c[g]fe [of])]
Ct, N baths or = — ZZ 85$ (esﬁiﬁi) [Qt] ||65£§6i> [Qi(gﬁl)]) Y

Table 1.1: Relation between entropy production and relative entropy in different physical situa-
tions, i.e. time-independent vs time-dependent generator, single vs multiple baths.

1.2.1 Markovian non-CP dynamics

The property of complete positivity has been often challenged as nonnecessary for the physical
consistency of the dynamics. Therefore, master equations in Lindblad form are sometimes dis-
missed in favor of the most easily obtained Redfield dynamics (see Section 1.1). In a couple of
recent papers [73, 74] however, it is argued that for a completely positive dynamics a consistent
formulation of the second law of thermodynamics can be given while, in general, Redfield dy-
namics, as obtained in (1.31) can lead to violations of the second law. As an example, the authors
critically revise the study of an open quantum micro-circuit previously presented in [75], where
the time-evolution was indeed modelled as the solution of a Redfield master equation.

The solution of equation (1.31) is a semigroup of trace-preserving but non completely posi-
tive maps. The semigroup property derives from the time independence of the generator, while
the trace is conserved by the structure of the generator. The lack of complete positivity is a
consequence of the Kossakowski matrix not being positive semidefinite and this fact produces a
negative entropy production as it is shown in [74]. In order to fix the problem a master equation
in Lindblad form has been derived for the same system following the procedure proposed in [64]
and presented in the previous section (see (1.36)). Such a master equation generates by construc-
tion a time-evolution that is a semigroup of completely positive maps and implies a nonnegative
entropy production as shown in (1.53). This example is important because such a system could
be experimentally implemented and the discrepancy between different models investigated.

In the next Chapter instead, we will encounter completely positive evolutions producing a
negative entropy production, due to the lack of the semigroup property.

1.2.2 Local versus global generator

The previous framework is very effective in describing the thermodynamics of open quantum
systems, still one has to be careful in coping with some subtleties. When considering open
quantum systems composed of subunits interacting locally with different environments one usu-
ally models the dynamics through dissipative generators written using local operators. It has
been pointed out in a recent paper [76] that this approach is not correct and thermodynamic
inconsistencies arise. In the following we discuss this issue in more detail.

Consider a system composed of two harmonic oscillators with Hamiltonians H4 = wpala
and Hp = w.b'b, each one interacting with a thermal bath at a certain temperature. The inter-
action between the oscillators is taken of the form Hap = ¢(a'b + ab'). The two thermal baths
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are modelled through the following local generators in Lindblad form

Ln(:) =73 <a cat — % {aTa, } + e Pnwn (aT ca— % {aaT, })) , (1.61)

Le()) =1 <b bt — % {bTb, } e Bewe <bT b % {bbT, })) : (1.62)

These generators are chosen because each of them guarantees the thermalization of a harmonic
oscillator, at an inverse temperature 3;, and (. respectively. However, the two oscillators are
interacting, and the asymptotic state of the overall dynamics is not a thermal state. This is
nothing new, since for a system locally interacting with two baths at different temperatures a
nonequilibrium steady state is expected to set in. The key point is that, at stationarity, the heat
flux from the system to the hot bath can be calculated, as well as the heat flux to the cold bath,
using our previously mentioned formulas (1.58). Of course it turns out that the sum of all heat
fluxes is vanishing

(a@n(t) + Q)| =0 (1.63)

because the is no energy variation in the system in the stationary state. The entropy production
according to (1.59) is then

O = _/BhatQh(t”t:oo - Bcath(tMt:oo = (Bc - /Bh)atQh(t”t:om (164)

and has to be positive for the Clausius statement of the second law of thermodynamics to be
fulfilled, namely heat should flow from the hot to the cold bath:

0:Qu (1) o0 > 0. (1.65)

However, it is shown in [76] that this is not the case. A more careful analysis reveals that, though
very reasonable, the dynamics considered does not satisfy all the requirements used in the proof

of the second law. In particular, the condition (1.57)
Ln(0P) =0, L(%)=0, (1.66)
where b H o
. S (1.67)
Trle—AnH]’ Tr[e—FBeH]

are the thermal states of the compound open system (the two oscillators together) with respect to
the Hamiltonian H = H 4+ Hp+ H 4, is not verified. Indeed each generator would thermalize
a single noninteracting oscillator, but fails in thermalizing the whole open system.

The solution is presented in the same paper where the generators describing the correct
phenomenology are provided

1 _ 1
L () =~ cos®(0) <d+ dl — 5 {did% } +e s (dl Ay =5 {d#ﬂh })) +

+ 7, sin?(6) <d— dl - % {d*_d_, } + e Pne- (d*_ d_ — % {d_d*_, })) :
(1.68)
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. 1 i 1
Lo(-) = ~F sin?(0) <d+ dl -5 {dldy, }+ePoos (di -5 {dpdl, })) +
1
2

+ 77 cos?(6) <d =S {ald, e (d*_ - % {a-d, })) :

(1.69)
where
dy = acos(f) + bsin(f), d_ =bcos(f) — asin(h), (1.70)
2 1
Wy — W 2 2

These global generators effectively couple the two oscillators such that each of them alone would
thermalize the open system at the proper inverse temperature. This situation perfectly fits into
the framework described by Spohn and Lebowitz and is consistent with thermodynamics. It
can be proved that the rigorous treatment of weak-coupling limit between system and bath (see
Davies [64]) always produces generators of the form (1.69) and (1.68), therefore dynamics that
describe correctly the heat exchange between the system and the reservoirs.

It should be said, however, that finding the global generator in many-body quantum systems
is usually a hard task, so that in many applications the local generator is anyhow preferred. For
this reason, a consistent perturbative scheme has been developed in [77] providing corrections
to the local generator such that it satisfies the second law at any order. Moreover, it has been
recently argued that the local generator can work better than the global one in some parameter
regimes [78, 79], thus implying that this topic deserves further investigation.

In this Chapter we analyzed examples of Markovian open quantum systems with a negative
entropy production. We will see in the next Chapter that other mechanisms can lead to a violation
of the inequality for the entropy production when more general dynamics are considered.



Chapter 2

Non-Markovian master equations

In this Chapter we study the non-equilibrium thermodynamics of open quantum systems evolv-
ing in time through master equations more general than those of time-dependent Lindblad form.
In particular, we focus on non-Markovian dynamics and the relation between memory effects
and the sign of the entropy production defined in analogy with the Markovian case.

Few results are known for the dynamics of open quantum systems when the Born-Markov
approximation is not justified and the study of non-equilibrium thermodynamics in this regime is
still at the beginning. This kind of analysis is becoming quite important because many physical
systems, like photosynthetic complexes [80, 81], opto-mechanical resonators [82] and super-
conducting qubits [83], just to mention a few, experience non trivial memory effects and strong
correlations with their environment. Therefore, in order to exploit them in the realization of
efficient quantum technologies, the balance of energy and entropy is of high importance and has
to be thoroughly investigated.

In Section 2.1 the question of how to define non-Markovianity in the quantum domain is
addressed and many different proposals are presented and compared. The key point will be the
characterization of legitimate dynamical maps whose generator is not of a time-dependent Lind-
blad form. Using further conditions on the stationary and/or asymptotic state, i.e. to be a Gibbs
thermal state, one can give a reliable thermodynamic interpretation to these time-evolutions.
In this framework, the entropy production can be negative, as shown in Section 2.2 with two
different examples.

2.1 Quantum non-Markovianity

Recently, the study of non-Markovian quantum dynamical maps has received much attention
because of the high degree of control reached in many experimental setups that allows to ex-
ploit physical effects not describable by means of quantum dynamical semigroups. Although
various approaches exist in the literature, a general formulation of quantum non-Markovianity
is still under debate [43—45]. Some approaches are based on the distinguishability of quantum
states [84], others rely on the divisibility of dynamical maps [85-87], on the volume of accessi-
ble states [88], on the mutual information between system and environment [89], on the capacity
of quantum channels [90]. The relation among different definitions of non-Markovian dynamics

23
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is an open issue and some results in this direction can be found in [91, 92]. In the following,
some of the various proposals are discussed and compared.

2.1.1 Distinguishability of quantum states

The first proposal in order to quantify the non-Markovianity of a quantum process has been
provided in [84], where the authors associated the backflow of information from the environment
to the system with the distinguishability of quantum states. Explicitly, the distinguishability of
two quantum states o1 and g2 can be quantified by means of the trace distance

1 1
D(e1,02) = 5ller — e2llv = 5Trler — 2], o1, 2 €6, 2.1
where || - ||1 is the trace norm and |A| = V ATA, which is a metric on the space of density

matrices S satisfying the bounds 0 < D < 1.

A fundamental property of the trace distance is that it is contractive for positive maps ®,
namely D(®[o1], ®[02]) < D(p1, 02) for all pairs g1, 02 [93]. For a given dynamics A; and a
pair of initial density matrices 01 (0), 02(0), such that p1(t) = A¢[p1(0)] and p2(t) = A¢]02(0)],
one can define the rate of change of the trace distance as

7(t,01(0), 02(0)) = 0 D(01(t), 02(t)) (2.2)

and say that the dynamics A; is non-Markovian if there exists a pair of initial states o1 (0), 02(0)
such that r > 0 for some ¢. This is called the Breuer-Laine-Piilo (BLP) criterion.

The relation between (2.1) and the flow of information is usually justified as follows. Con-
sider an open quantum system S interacting with the environment £ and define the two quanti-
ties Iing (t) and Iex ()

Ling(t) := D(0g(t), 0%(t)), (2.3)

Iext (t) := D(05x(t), 05p(t) — D(0s(t), 05(t)). (2.4)

The distinguishability of two states of the system at time ¢ is given by Iin(¢), while Iex ()
describes the advantage of discriminating between two quantum states by performing measure-
ments on the global system SFE. In this sense, Iin(t) corresponds to the amount of information
inside the system and I« (¢) to the information outside the system. Since the compound system
SE evolves unitarily and the trace distance is invariant under the action of unitary maps, one has

D(Q}S’E(t)a Q%E(t)) = D(QéE(0)7 Q%’E(O)) = Iint<t) + Iext (t) = Itot (25)

and consequently
Opling(t) + Oplext(t) = 0. (2.6)

Therefore, if the first quantity decreases the second one automatically increases mimicking an
exchange of information between the system and its surrounding. In this framework a dynamics
is non-Markovian if a pair of density matrices exists such that the information contained in the
system I (t) increases over some time interval.
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However, one has to be careful with this kind of interpretation because it could lead to some
counterintuitive outcomes. It is argued that Iy (¢) quantifies the information not accessible
from the system only, namely either stored in the environment or in the correlations between
system and environment. Therefore, if one considers the amount of information stored in the
environment, by analogy with the definition given for the system, as

Ip(t) = D(ep(t), ok (1)), 2.7)
where ok (t) = Trs(oLz(t)) and 0% (t) = Trs (0% 5(t)), one would expect that it is always
Iint(t) + IE(t) < Lot (2.8)

the difference Ioxt(t) — Ig(t) being stored in the correlations. It is shown in [94] that (2.8) is
not satisfied in general.

Another counterintuitive outcome goes as follows. Consider two open quantum systems A
and B each one coupled to a different environment E 4 and F'g, respectively, and noninteracting
between themselves such that the evolution in time of the density matrix of the compound system
AB is in the form A; ® A;:

04B(t) = Ay ® At[oap(0)]. (2.9)
According to the previous discussion, the information content in the system AB is related to
the distinguishability of a pair of density matrices o' 5(¢) and 0% 5(¢). Analogously, one could
relate the information content of the single subsystems, say A, to the distinguishability of the
marginals oY (¢) and 0% (¢). Even if the initial state is factorized, so that it remains factorized at
any time ¢ due to the particular form of the time evolution, one finds that

D(0hp(t), 04p(t) = D(oh(t) ® op(t), 04(t) ® 05(t))
< D(h(t), 04(t)) + D(ep(t), 0h(1)), (2.10)

for the subadditivity of the trace distance with respect to tensor products, the equality being true
only in the case o5 (t) = 0%(t) (or the same for A). Therefore, the information content is not
additive for two uncorrelated systems and, in principle, from the inequality (2.10) one cannot
exclude of obtaining no backflow of information when the two systems are treated separately
and a backflow of information considering the two systems together:

{ 0eD(0}4(t), 04 (1)) < 0

9D(0p(t), 05(t)) < 0
This fact will be further discussed later when talking about the divisibility property of dynamical
maps.

Despite lacking a fully consistent physical interpretation in terms of information backflow,
the BLP criterion is the most widely used in literature as a non-Markovianity witness. For
completeness one has to mention that in [95] a generalized criterion has been proposed to define
non-Markovian dynamics in the same spirit of BLP. This is usually called biased BLP and,
according to that, a non-Markovian dynamics is such that one can find a pair of density matrices
01(t), 02(t) and a pair of real numbers p1, p2, with p; + po = 1, producing

I|lp1o1(t) — p202(t)|l1 > 0. (2.12)
The case p; = pa = 1/2 corresponds to the original BLP.

% 0 D(04p(t), 04p(1) < 0. 21D
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2.1.2 Memory kernel

Another possibility is to associate non-Markovianity with the presence of a memory kernel in
the master equation for the reduced density matrix. For instance, using the Nakajima-Zwanzig
projection operator technique [60, 61], as shown in the first Chapter, one obtains an equation in
the form .
Oro(t) = / Kt —u)o(u)du, o(to) = o, (2.13)
to
where for simplicity we have neglected the free evolution term. Equivalently, the two-parameter
family of linear maps A(t,tp) : 0 — o(t) = A(t, to)o satisfy the same integro-differential
equation:
t
8tA(t, to) = ]C(t - u)A(u, to)du, A(to, to) =id. (214)
to
According to this point of view, the Markovian limit is recovered when the kernel is singular

Kt —u)=2L5(t —u) (2.15)

and the master equation becomes local in time.
By recalling that equation (2.13) has been derived from the evolution of system and bath
together, tracing out the environmental degrees of freedom

A(t,tg)o = Trple 710 (o @ gp)e! =10, (2.16)

one should expect that A in fact depends on t — tg, i.e. A(t,t9) = A(t — tp), as noticed in [96].
This can be easily verified by formal integration of (2.13). Indeed one obtains

t s
o(t) =0+ / ds/ du K (s —u)o(u), (2.17)
to to

and, in order to get the map A(¢,to) such that o(t) = A(¢,to)o, one can recursively substitute
o(u) in (2.17) as follows

t s
g(t)zg+/ ds/ duK(s—u)o+.... (2.18)
to to

It suffices to change variable in the integral (the same applies to higher order terms) to show that
A(t, to) is time-homogeneous, i.e. A(t,ty) = A(t — to,0),

t—to s
g(t)zg—i—/ ds/ duK(s—u)o+ ... (2.19)
0 0

Therefore, whenever the time-evolution is described by an equation of the form (2.13), the dy-
namical map is time-homogeneous.

In [96] it is also shown that the previous equation (2.13) can be rewritten avoiding to use a
memory kernel, provided that the map A(7), 7 = t — to, is invertible. Indeed, it is possible to
recast the master equation using a time-dependent generator that remembers the initial time g

B (t, t0) = L(t — to)A(t,t0), Alto,to) = id, (2.20)
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where the generator is defined through the inverse map A~! as follows

L(r) = (aTA(T))A—l(T). 2.21)

The dependence on the initial time can be interpreted as the feature revealing non-Markovianity
(reminiscent of the memory kernel) and distinguishes equation (2.20) from the time-local master
equation commonly found in literature:

O A(t, to) = L(E)A(L, to), Alto,to) = id. (2.22)

In order to better understand the difference between the two equations it is convenient to compare
the solutions. The solution of (2.22) reads

¢
A(t,tg) = Texp < Cudu> , (2.23)

to

and satisfies the inhomogeneous composition law
At to) = A(t, 5)A(s,to), t>s > to, (2.24)

while the solution of (2.20) is
t—to
A(t —tg) = Texp < Eudu) , (2.25)
0

and does not satisfy the composition law (2.24). If we choose for simplicity the case g = 0 in
(2.25), it turns out that A(t) = V' (¢, s)A(s), fort > s > 0, where

V(t,s) = At)A"Y(s) # At — s). (2.26)

This is considered a manifestation of non-Markovianity in [96].

2.1.3 Divisibility of dynamical maps

A different, but somehow related, approach is presented in Ref. [87], where the non-Markovianity
is associated with the lack of CP-divisibility of a dynamical map. A (CP and trace-preserving)
dynamical map A(t) is called CP-divisible if one can write

A(t) =V (t,s)A(s), 0<s<t, (2.27)

such that the intertwining map V (¢, s) is CP for all ¢, s. With respect to the previous discussion,
tp = 0 is assumed here. The quantum dynamical semigroup generated by the Lindblad master
equation (1.52) obviously satisfies this property because there we have V (¢,s) = A(t — s).
Moreover, the two parameter family of maps satisfying the time-dependent Lindblad master
equation also fits with this requirement [96].

When V' (¢, s) is positive, the map A(t) is called P-divisible (which is weaker than CP-
divisibility). Following Ref. [97], one can call a dynamical map which is not even P-divisible an
essentially non-Markovian map.

One can show that the biased BLP measure is equivalent to P-divisibility [97], or, in other
words, that the definition of non-Markovianity given in [95] corresponds in this framework to
essential non-Markovianity. Indeed, the following Theorem is proven in [97]
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Theorem 2.1.1. Consider an invertible dynamical map A(t) : B(H) — B(H). A(t) is P-
divisible iff
A|IAB) X[ <0, (2.28)

for any hermitian operator X € B(H.), while it is CP-divisible iff
dll(id @ A1) X[l <0, (2.29)
for any hermitian operator X € B (H®H).

This important result has been recently generalized for any dynamical map, not necessarily
invertible [98].

Interestingly, in [99] it is shown that P-divisibility is not stable under tensor product. In par-
ticular, considering two non-interacting systems, each one coupled to an environment such that
the reduced dynamics of the two systems is of the form A(t) ® A(t), the following equivalence
has been proved

A(t) ® A(t) P-divisible < A(t) CP-divisible < A(t) ® A(t) CP-divisible,

namely, for a map of the form A(t) ® A(¢) P-divisibilty and CP-divisibility are equivalent and
in turn these properties correspond to the CP-divisibility of the map A(t). As a consequence,
A(t) ® A(t) fails to be P-divisible if the map A(t) is P-divisible but not CP-divisible, or, equiv-
alently, according to the BLP criterion the tensor product of two Markovian dynamics can be
non-Markovian. Recalling the previous discussion on the interpretation of the distinguishability
of quantum states as information content, one could say that, even if no information backflow
is present for each subsystem, nevertheless a nonvanishing information backflow might appear
when considering the compound system.

2.2 Entropy production

In this Section we describe the nonequilibrium thermodynamics of open quantum systems evolv-
ing in time under effective non-Markovian dynamics. Concerning the balance of energy there is
not much to say, because the distinction between heat and work can be done as in the Markovian
case according to the definitions (1.45) and (1.44) once the Hamiltonian of the system is known.
Therefore, we concentrate on the balance of entropy. In particular, we analyze the behavior
of the entropy production (1.47) in presence of non-Markovian dynamical maps [100], using
the characterization of non-Markovianity based on divisibility. In order to have a meaningful
thermodynamic interpretation of this kind of dynamics and to compare them with the situation
described in the previous Chapter, we restrict to those evolutions that have a Gibbs state o(%)
as their unique asymptotic state. In this case, one can use 3! as a reference equilibrium tem-
perature and the entropy production o; reads as in Eq. (1.48). For a non-Markovian evolution
the asymptotic state is not necessarily an invariant state of the dynamics [101], thus we can
distinguish two different situations,

(i) vt At[g(ﬁ)] - Q(ﬁ),
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(i) 3t suchthat A[o®)] # o).

In the first case, since A; is always taken to be CP, the integrated entropy production 3; :=
fg oy dt’ is always nonnegative. Indeed, by means of Eq. (1.48), one obtains

2 = S(a0)0®) = S(Aeleoll o) = S(eolle'®) = S(Acloo][A:[0*]) > 0, (2.30)

where we have used that the relative entropy monotonically decreases under completely positive
maps and property (i). Note, however, that the rate o, can become temporarily negative if the
dynamics is essentially non-Markovian (i.e., not P-divisible). Instead, it has been recently proved
that if A, is at least P-divisible, then 0,5 (A¢[p1][|At[o2]) < O, for any pair of density matrices
01 and g2 [102]; in which case o; > 0 V¢. Concerning the lack of P-divisibility, in Example 1,
we discuss a dynamics which fulfills property (i) but with o; < 0 in a certain time interval.

In case (ii) the above argument cannot be used to show that 3. > 0 because the necessary
substitution o(#) — AT[Q(B)] is not allowed. In fact, in Example 2, we show that the inequality
in Eq. (2.30) may be violated.

Remark 3. We argue that in a non-Markovian context a possible negative entropy production is
not directly associated with a violation of the second law of thermodynamics. Rather, it indicates
that the presence of the environment at the origin of the dissipative dynamics cannot be entirely
neglected. This point of view is also supported by the characterization of non-Markovianity
in terms of a backflow of information from the environment to the system. Indeed, lack of P-
divisibility can make the distinguishability of two states of the system increase in time [44].
One may then relate such a behavior to processes that cause the entropy of the environment to
increase. In fact, one of the messages of this thesis is that a proper formulation of the second
law of thermodynamics for a non-Markovian open quantum system cannot be based only on its
reduced dynamics. In this respect, it seems better to follow the approach of Refs. [72, 103] and
consider explicitly the reservoir in the entropy balance.

2.2.1 Example 1: Non-Markovian thermalizing qubit

As a first example we consider the following master equation [104]

] + M(n +1) (20—9t0+ —{o4o_, Qt})+

Tw
Oror = —1 [*Um Ot 9

2
+ %t) n(20+gta_ —{o_oy, Qt}), (2.31)
where n = (e — 1)1 and 7(t) is a time-dependent damping rate. By choosing a constant
damping, we can easily recover the usual Lindblad master equation for a qubit interacting with
a thermal bath at inverse temperature 5. One can show that Eq. (2.31) generates a completely
positive dynamical map A, iff fg v(s)ds > 0. This is a consequence of the GKSL Theorem
(see Theorem 3.1 in [105]) and can be deduced also from the CP conditions for a generic qubit
master equation derived in [106] (see Appendix A.2). Moreover, A; is both CP-divisible and
P-divisible iff v(t) > 0 [97].
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The solution of Eq. (2.31) in terms of the Bloch vector components reads

z(t) —iy(t) = e e TO (2(0) — iy(0)), (2.32)
z(t) + iy(t) = “te T (2(0) + iy(0)), (2.33)
2(t) = e 2'® (2(0) — 2(00)) + 2(c0), (2.34)

where ['(t) = M fo s)ds and z(oc0) = — tanh(Sw/2). Notice that the Gibbs state
is an invariant state of the dynamlcs and it is also the unique asymptotic state provided that
limy_, o ['(t) = co. Therefore, the integrated entropy production ¥; is nonnegative because of
(2.30). Nevertheless, we could expect the entropy production rate to become transiently negative
when the dynamics fails to be P-divisible, i.e. it is essentially non Markovian. This is indeed the
case as we show in the following.

The heat flux is easily found to be

0 Qr = %@z(t) = —gw(t) coth(Bw/2)e2'® (2(0) + tanh(Bw/2)), (2.35)

2

so that its sign depends both on the initial condition and on the instantaneous rate -y(¢). The
entropy variation is written by means of the eigenvalues (1 £ r(¢))/2 of the density matrix

1 1+ r(t)
oS = —210g(1 (¢ )> Oyr(t) =
~(t) coth(Bw/2) Io (1 +7(t)
Ar(t) 1 —r(t)

where 7(t) = \/22(t) + y2(t) + 22(t), and its sign again depends on the rate (¢) and on the
initial condltlon as we can see rewriting the term in the last bracket

22(t) + y2(t) + 222(t) 4 22(t) tanh(fw/2) =
e 20 [22(0) +57(0) + (2(0) — 2(00)) 2(00)] + 7T (2(0) — 2(00)).  (237)
The entropy production rate finally reads

o1 = (t) coth(Bw/2)e ™2 ® x
[(mQ(O) +92(0) + 26O (:(0) + [2(00))?) 7777 10w G h :Eg) T

+(2(0) + |2(c0)]) <52‘” = |;Ef§))| log G f:g))} . (2.38)

In the Appendix A.1 it is proved that the expression in square brackets is always positive, so that
the sign of o corresponds to the sign of v(t). Whenever the damping rate is negative, so that
the dynamics is essentially non-Markovian, the entropy production rate becomes negative too.

> (z2(t) + y2(t) + 22(t) + 22(t) tanh(Bw/2)) , (2.36)

Remark 4. We stress the fact that a physically legitimate dynamics, namely completely positive
and trace preserving, can lead to a negative entropy production rate. This property is associated
to the lack of P-divisibility, namely it arises in a class of dynamical maps called essentially non
Markovian.



2.2. ENTROPY PRODUCTION 31

2.2.2 Example 2: Generalized amplitude damping

This second example aims at highlighting the role of an asymptotic non-invariant state with
respect to the internal entropy production. Consider a generalized amplitude damping channel
O()=>", EZ()EZT described through the following Kraus operators

By = v (10)(0] + vI=~11)(1])
By = vpy0)(1],
By = /T=p (VI=710)(0] + [1)(1])
= V(T =p)711)0], (2.39)

where the parameters p,y € [0, 1]. Tuning the parameters p(t) and ~(¢) as suitable functions
of time we can construct a physically legitimate dynamics namely a one-parameter family of
completely positive and trace preserving maps ®;:

0= = 1+z0o,+yo, + z0,) —

l\.')\»—l

Z Ei(t)oEl (1) % (14 2(t)os + y(t)oy + 2(1)02) . (2.40)

Explicitly, the Bloch vector components of the density matrix at time ¢ read

x(t) —iy(t) = \/ = () (2(0) — iy(0)), (2.41)
2(t) +iy(t) = V1 = ~(t) (2(0) +iy(0)), (2.42)
2(t) = — () + 2p(t)v(t) 2(0)(1 = ~(2)- (2.43)

We can impose that a unique asymptotic state exists for this family of dynamical maps by means
of the condition y(c0) = 1; moreover, the asymptotic state becomes a Gibbs state

e_ﬁaz

Qﬁ = m (244)

if the further condition 2p(oc) — 1 = — tanh(/3) is fulfilled. The initial condition instead implies
that v(0) = 0. We can choose the time dependence of p and  such that it is compatible with all
these constraints. A possibility is to set

2p(t) — 1 = e “!sin®(et) — tanh(B3), ~(t) =1 —e 2\, (2.45)

so that a quantum dynamical semigroup is easily recovered for e = 0. This can be seen from the
time-dependent generator of ®;

£ = o (0-00s = g oso- ) 0 (o4lho- ~ oo d) . @40
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which has the following coefficients

REE ()
_ [ p®) (1)
by = {4(1 — y(t))aw(t) S 3&?@)] ; (2.48)

and becomes a time-independent Lindbladian in the limit € — 0.
The quantity of interest is the difference between the relative entropies (2.30)

%t = S(eolleg) — S(eotlles) =
1 1—1r3(t) r(t) 1+ 7(t)
—— 3% () - e ()

T(ZO) log G i :8;) + B(2(0) — 2(1)), (2.49)

_|_

where we used 7(t) = /22(t) + y2(t) + 22(¢) . Consider for simplicity the special case z(0) =

y(0) = z(0) = 0, implying also r(¢) = |z(t)], such that we can rewrite Eq. (2.49) as follows

142t
2

5, = log ((1 + |z(t)|)e’82(t)> - w log ((1 - |z(t)|)e’62(t)> . (2.50)

A plot of this quantity for 5 = 0.1 and e = A = 1 explicitly shows that 3; < 0 in a certain time
interval.
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Figure 2.1: Transient negativity of the integrated entropy production .

On the basis of these two examples, one concludes that either the second law of thermody-
namics can be violated by physically legitimate dynamical maps or that a more careful formu-
lation of the second law should be given. We choose the latter option, because a very general
result has been proven in refs.[72, 103, 107, 108] considering explicitly both system S and bath
B in the entropy balance, namely that

ASs(t) + ASp(t) > 0. (2.51)
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This inequality is true provided that the initial state of the composite system S + B is factorized,
without particular restrictions on the reduced dynamics of both S and B. In this respect, (2.51)
should be considered as the most general formulation of the second law.

Conversely, we have shown that the validity of o, > 0 is subject to further dynamical con-
straints. Heuristically, one can think of obtaining oy > 0 as a particular case of (2.51) in three
steps. First of all, one has to assume that (2.51) holds true also in a differential form, that is
0:Ss(t) + 0:Sp(t) > 0. Moreover, since the bath is ususally considered in thermal equilibrium
at inverse temperature 3 one can use the relation 9;S5(t) = $0,Qp(t). Finally, the heat flux
of the bath is simply related to the heat flux of the system 9;Qp(t) = —0;Qg(t). These hy-
potheses, though very reasonable, can be violated if system and bath are strongly coupled and
correlated, suggesting that one should not consider o; > 0 as an a priori valid formulation of the
second law. We will come back to this point in the next Chapter, analyzing an exactly solvable
model and showing how these three assumptions are violated.






Chapter 3

Thermodynamics of a bipartite
quantum system

In the previous Chapters the non-equilibrium thermodynamics of an open quantum system inter-
acting with a large thermal bath has been studied using effective master equations. For Marko-
vian time-evolutions there is a well-established theory which dates back to the seventies [38, 39]
whereby the positivity of the entropy production can be proved rigorously. Conversely, in the
non-Markovian framework the situation is not yet fully settled. We have shown by means of ex-
plicit examples that the entropy production can be transiently negative and we have argued that
this outcome should not be interpreted as something unphysical. In the following, we justify this
claim attacking the problem from a different perspective.

In order to understand the fate of the laws of thermodynamics when the open system is
strongly coupled to an environment consisting of another system, not in general infinite and
experiencing a non trivial time-evolution of its own, thus not addressable as an external heat bath
in equilibrium, it is necessary to consider explicitly the other system in a global balance of energy
and entropy. A possible approach, arguably the most general one, is to treat both systems on the
same footing, building a thermodynamic theory valid for a generic bipartite closed quantum
system. This would allow to investigate the emergence of the standard thermodynamics under
suitable conditions, thus clarifying its limits of validity. Many attempts have been made in this
direction in the last decade [23, 103, 109]. In this Thesis we follow the proposal presented in
[72] which highlights the role played by correlations between the subsystems.

In Section 3.1 we provide a general formulation of the first law of thermodynamics in a bipar-
tite quantum system. The definitions of heat and work that we use are similar to those presented
in Ref. [39]; however, unlike there, we show that, in general, nonequilibrium thermodynamic
processes affecting a system A involve work exchange with B without the need for an external
driving represented by a time-dependent parameter in the system Hamiltonian, but merely be-
cause of the interactions between A and B. Besides, we explicitly show that correlations play
an important role in heat transfer between A and B.

As a preliminary and necessary step towards investigating heat and work exchanges between
two interacting systems A and B, one needs to unambiguously assign to the two parties a per-
centage of the interaction energy depending on the state of the compound system. However, due

35
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to AB correlations, there will always be part of the interaction energy that belongs to both A and
B together. In thermodynamic terms, extracting this part of the energy would require accessi-
bility of the total system. Thus, we distinguish three contributions to the total internal energy of
AB: one accessible only through A, the other one only through B, and the last one only through
AB (as a whole) via the AB correlations. We call this latter contribution to the internal energy
the binding energy. Certainly, although (in the case of time-independent total Hamiltonian) the
total internal energy remains constant in time, that of either A or B varies because they interact
and thus exchange work and heat.

In Section 3.2 we discuss a general formulation of the second law of thermodynamics based
on the only assumption of a factorized initial state for AB. This formulation does not relate
entropy with heat or temperature, the latter not being even defined in general. Therefore, we
analyze two proposals for defining temperature-like quantities in physical systems out of equi-
librium, comparing them by means of two examples reported in Section 3.3. Moreover, we
comment on the relation between the general form of the second law and the results described
in Chapter 2 for the entropy production under non-Markovian dynamical maps.

The last part of this Chapter is devoted to the comparison with the other proposals in the liter-
ature that describe the thermodynamics of a generic bipartite quantum systems. It turns out that
our formulation is so far the only one able to pinpoint the thermodynamic role of correlations
between the subsystems. The reformulation of the whole machinery in a classical mechanics
scenario is also addressed, showing that there is no essential difference with respect to the quan-
tum setting.

3.1 First law of thermodynamics

We consider a closed quantum system AB composed of two interacting subsystems A and B.
The Hilbert space dimension of A and B is not constrained; in particular, they can be both finite
dimensional such that no proper reservoir is present. The total Hamiltonian is chosen to be
time-independent

Hyo :HA+HB+Hint; 3.1

and the composite system A B, initially described by a factorized density matrix p45(0), evolves
in time according to the Schrodinger equation

Oroap(t) = —i[Hyot, 04B(1)], 048(0) = 04(0) ® 0p(0). (3.2)

The states of each subsystem are obtained at any time by partial tracing o4 p(t) = Trp 4 [0aB(?)]:
thus from equation (3.2) we have

Oroa(t) = —i[Ha, 04(t)] — iTrg [Hint, 04B(t)] (3.3)
8th(t) = — i[HB, QB(t)] —13Try [Hint; QAB(t)] . 3.4

In general, systems A and B become correlated in time due to the interaction Hamiltonian,
even though they are initially uncorrelated. We can define the operator x(t) that describes the
correlations (both classical and quantum) between them

X(t) == 0aB(t) — 0a(t) ® 0B(1), (3.5)
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and replacing this expression into equations (3.3) and (3.4) we obtain

Oroa(t) = —i[H)(t), 0a(t)] — iTrp [Hine, x(8)] (3.6)
Orop(t) = — i[Hp(t), 0p(t)] — iTra [Hing, x(1)] , (3.7

where a sort of Lamb shift correction has been included in the Hamiltonians
H'y g(t) == Hap + Trp a (0B, (t)Hin] - (3.8)

Therefore, in the evolution equation of each subsystem (3.6),(3.7) we can recognize a Schrodinger-
like term, where the time-dependent Hamiltonian H 1’4 B(t) replaces the free Hamiltonian H 4 g,
and a second dissipative term arising from the correlations established between A and B.

3.1.1 Effective Hamiltonians

The internal energy of the total system is defined as the mean value of the total Hamiltonian with
respect to the time-evolving state, namely

Usor = Trloap(t)Hiotl, (3.9

and is constant in time since the dynamics is given by Eq.(3.2).

In order to state the first law of thermodynamics in this setting one has to associate a certain
amount of energy to system A and system B and, since they are interacting, it is reasonable to
include a contribution from the interaction Hamiltonian to this energy. Therefore, we need to
find an effective Hamiltonian for both A and B using physically motivated requirements, such
that the internal energy of each subsystem can be unambiguously quantified:

Ua(t) = Trloa() HS™ (2)], (3.10)
Us(t) = Tr[on(t) H ™V (1)]. 3.11)

The first condition is a dynamical one: the effective Hamiltonian should drive the unitary part of
the evolution equation. With this requirement we can fix Hiffg (t) up to a scalar time-dependent

term C4 p(t) that leaves the dynamical equations (3.6) and (3.7) unaffected

Hf(szg) (t) = Hj p(t) +Can(t). (3.12)

The second condition deals with the interaction Hamiltonian and the local accessibility of energy.
Indeed, according to (3.12), an effective interaction Hamiltonian remains defined
ff li§ iy
HD () = Hyy — D (1) — HED (1), (3.13)
that is a nonlocal operator acting on the Hilbert space of both systems A and B and it cannot be

assigned to one of the two. It seems worth rearranging its contribution to the total energy such
that it is not accessible by local measurements:

Traloa(t) HED ()] = Trplos(t)HED ()] = 0. (3.14)
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As a consequence of this second requirement the effective Hamiltonians can be rewritten as
follows

Hifﬂr) (t) = H)y(t) — aaTr [0a(t) ® 0p(t)Hint] , (.15)
HEY(6) = Hy(t) — apTr[0a(t) ® 0p(t)Hin (3.16)

where the real parameters o4 and a g are such that vy + ap = 1.

Remark 5. Note that one of the real parameters, say o, is still undetermined. In general,
there is no model-independent condition that fixes this value. This parameter seems like another
thermodynamic degree of freedom, whose role should be decided on the basis of the specific
physical conditions of the nonequilibrium thermodynamic systems in question.

Given the internal energies of the constituent systems Eq. (3.10) and the total conserved
energy Eq. (3.9), one finds that an energy contribution remains, called binding energy U, (t),

U, (1) := Uor — Ualt) — Up(t), (3.17)
which can be interpreted as energy stored in the correlations x(¢) since it turns out that

U, (1) = Te[x () HED (1)), (3.18)

int

From equation (3.17) it is evident that the internal energy is in general a non additive quantity.
Nevertheless, if the contribution stored in the correlations can be neglected, as one assumes in
standard statistical mechanics, the energy of the composite system is equal to the sum of the
subsystems energies.

3.1.2 Heat and work

In thermodynamics, one usually distinguishes the contributions to the variations of energy into
work W and heat Q. In a quantum system with time-dependent Hamiltonian H (¢) this is rea-
sonably done as mentioned in the first Chapter [39, 110]

2Q(t) = Tr [Oro(t) H(t)], (3.19)
AW (t) = Tr [o(t) B.H (¢)]. (3.20)

First of all, we note that with these definitions, the first law of thermodynamics for the internal
energy U(t) = Tr [H(t)o(t)] is identically satisfied:

8,5]U(t) = 8tQ(t) + 8t\W(t). 3.21)

Moreover, the work power is vanishing as expected in absence of an external field modelled by a
time-dependent potential, while the heat flux is zero for the unitary dynamics generated by H (),
namely in absence of an external interacting quantum system. In our framework we can define
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heat flux and work power for both A and B substituting the effective Hamiltonians (3.15),(3.16)
in Egs.(3.19) and (3.20) . As a result, one finds the following expressions

W () = apTr{oa(t) ® Orop(t)Hint] — aaTr [00a(t) ® op(t)Hint) =

— —OWp(1), (322)
0Qa(t) = —iTr [x(t)[H™ (1), Hin] | (3.23)
Q) = =T [x(t) [H5™ (1), Hin] | (3.24)

and two separated balances arise
8tWA(t) + 8tWB(t) =0, (3.25)
0:Qa(t) + 0, Qp(t) = =0, U, (). (3.26)

Therefore, correlations exchange energy with both subsystems only in the form of heat, because
it turns out that the time-dependence of the effective interaction Hamiltonian does not contribute
to the variation of the binding energy

UL (1) = Te[op (O HED 1), Telx@)o,HD (1)) = 0. (3.27)

This is an interesting result of ref.[72].

Remark 6. The previous balance equations (3.25) and (3.26) are not affected by the parameters
o, B. Moreover, it is shown in equations (3.22) and (3.23) that work depends on these parame-
ters but not heat. In this respect, the heat flux is fully determined while the work power must be
fixed depending on the specific model.

3.2 Second law of thermodynamics

According to the second law of thermodynamics, the entropy of a macroscopic closed system
which is thermally isolated (in thermodynamics terminology) can only remain constant or in-
crease in time [111, 112].

In the following we demonstrate the possible emergence of the second law of thermodynam-
ics and the important role of system-bath correlations in this microscopic context.

In the case of a compound system A B, the subadditivity of the von Neumann entropy [70]

S(t) = —Tr [o(t) log o(t)] . (3.28)
implies that the mutual information
Sy (t) =8a(t) +SB(t) — San(t) (3.29)

is always nonnegative. Mutual information characterizes the amount of total correlations (both
classical and quantum) shared by the two subsystems A and B [113, 114]. Intuitively, if the
correlations between A and B increases, S, becomes larger.
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Since we have assumed that the total system AB is closed, it evolves unitarily and its von
Neumann entropy $45(t) does not change in time (even if its Hamiltonian depends on time).
With the assumption that the initial state of AB is uncorrelated (i.e., $,(0) = 0), leads to

AS4(t) + ASp(t) = Sy (t) > 0, (3.30)

where AS4(t) = S4(t) —54(0) and ASp(t) = Sp(t) —$p(0), as obtained in Ref. [115]. This
relation states that, as long as one observes subsystems A and B locally and their initial state is
without any correlations, the sum of the total variations of the entropies of A and B is always
nonnegative. One can consider this property as a form of the second law of thermodynamics
for the compound system AB. Notice that such a statement does not rely on the concept of
temperature which is not clearly defined in the non-equilibrium setting. In the following, we try
to elaborate on that, analyzing two different temperature-like quantities.

3.2.1 Possible definitions of temperature

Unlike in equilibrium thermodynamics, in a general nonequilibrium system “temperature” is not
a well-defined quantity (see, e.g., Refs. [116, 117] for some recent discussions). However, given
the internal energy U(t) and the von Neumann entropy $(¢), one can introduce a time-dependent
pseudo-temperature through the following ratio

L 0S(t)

Tt~ 0,U(t)

(3.31)

which is somewhat reminiscent of the equilibrium definition 1/7" = (95/0U) n,v .

Remark 7. In generic quantum systems, it is not always clear how to define V and N (or other
relevant thermodynamic properties). Additionally, in thermodynamic equilibrium we deal with
the partial derivative (08 /0U) v rather than the ratio of two derivatives ((0:3)/(0;U)), which
can be different quantities. Noting equations 3.10 and 3.15, the free parameter a4 (and ap)
would also appear in the pseudo-temperature. In general then, one should not expect that the
pseudo-temperature necessarily have definite relation with the equilibrium temperature, unless
under certain conditions. Later in the examples we show explicitly how in special cases the
pseudo-temperature may relate to the equilibrium temperature by appropriately fixing the scalar
a4 through thermodynamic properties of the system in question.

Adopting the concept of pseudo-temperature, one can associate time-dependent pseudo-
temperatures 74 g(t) with subsystems A and B and try to construct an entropy production for
both subsystems from such a quantity. Using the first law and (3.31), it turns out that

0 Qapt)  Wap(t)
0:84,8(t) = ) Tan(t)

Therefore, formally, a quantity resembling the entropy production can be defined as follows

~ 9Qa,B(1) _ 0:W 4 B(t)
Ta,B(1) Tap(t)

(3.32)

&A7B(t) = 8t$A,B(t) (3.33)
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The quantity & is analogous to the entropy production as discussed in the previous Chapters,
where we have studied the case of an externally driven system A which is weakly coupled to a
conservative heat bath B inducing a dissipative dynamics [40, 41, 118, 119]. In that particular
context, however, the entropy production is related to the difference between the variation of the
entropy 3 4(t) and the entropy flux into or out of the system associated to the heat flux 9;Q 4(¢)
divided by the temperature of the bath 7" (rather than 7’4 (¢) as in equation (3.33)).

Notwithstanding these fundamental physical differences, it is still interesting to study to
which extent the thermodynamical inequalities oy > 0 and (3.30) can be related to the behavior
of g4 p(t) in equation (3.33). It is evident that o4 p(t) cannot be both strictly positive in
general. For example, in the case of the same instantaneous pseudo-temperatures, from (3.33)
we obtain 0,0 4(t) = —0;op(t) for W 4(t) = —0,W (t). Moreover, it is not true that the
finite variation

Sa(t) +2p(t) = /0 ds O;W A (s) ( TAI(S) - TBl(S)) (3.34)

becomes nonnegative in the absence of initial correlations between A and B, unlike the case for
the finite variations of the von Neumann entropies of the reduced states o4, g(%).

One can argue that the quantities o 4 g(t) do not generically behave as expected from true
thermodynamic quantities because the instantaneous pseudo-temperatures do not behave them-
selves as thermodynamic temperatures. This, however, does not exclude that, under certain
conditions, proper thermodynamic patterns might emerge.

To alleviate the above situation, we can discern a better motivated notion of temperature by
appealing to analogy with standard thermodynamics. In classical thermodynamics the relation

1
as = ~dQ (3.35)

holds for a system undergoing a quasistatic reversible transformation, whereas for a nonequilib-
rium process there is an extra term corresponding to the internal entropy production o,

1
ds = fdQ +o. (3.36)

In this case the “temperature” is fixed by the external environment (bath) which is supposed to
exchange heat always quasistatically (because of its short relaxation times), without changing
its temperature. In our formalism, however, we treat the system and bath similarly. Thus we
can extend equation (3.36) and identify an extended temperature and an entropy production for
both system and bath and see how they compare at long times with expected thermodynamic
temperatures. One way to do so is to explicitly compute 9;5(¢) and 9,Q(¢) and next compare
them to read an extended temperature 7 as

o8(t) = 2Q(t) + o(t). (3.37)

1
T(t)
Remark 8. Note that equation (3.37) defines both the extended temperature ‘I (t) and the gen-
eralized entropy production o (t). Moreover, unlike the pseudo-temperature T (t), T (t) is by
construction oy p-independent because neither heat nor entropy depends on oz . In the fol-
lowing examples, we discuss both nonequilibrium temperatures T(t) and ‘I (t) by comparing
them with the equilibrium temperature T (of the bath).
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3.3 Examples

Here we study in detail two examples, in one of which thermalization occurs, whereas the other
one does not exhibit this feature.

3.3.1 Example 3: Thermalizing qubit

Consider a two-state system (e.g., a spin-1/2 particle or a two-level atom) interacting with a
thermal environment, comprised of infinitely many modes at (initial) temperature 7' = 1/4,

through the Jaynes-Cummings total Hamiltonian H = Hy + H. ) where

int °

1 oo
Hy = w0 + > wralar, (3.38)
k=1
HY =\ > (fior ®ak+ fro- ®al). (3.39)
k

Here 0., 0, and 0, = diag(1, —1) are the Pauli operators, 01 = 0, +i0y, and ay, is the bosonic
annihilation operator for mode k. Although this model is not exactly solvable, we can find the
exact states of the system and bath up to any order in \; see Appendix B for details of O(\3)
calculations. In the following, we label the quantities related to the two-level system with S and
the quantities related to the oscillators with B.

In the weak-coupling, long-time, w-continuum, Markovian limit (where A — 0 and ¢t — oo
such that \*7 = const. and Y, — fooo dw), we can find the following Lindblad-type dynamical
equation:

8tQFgA) (t) =—i[Hs + Hus, Qng)(t)] +
+ 2 7w, B) (20408 (Mo — {01, 00 (1} +

2
+ 2 (Ao, ) +1) (2008 W+ — {00 00" M})  (3.40)
where
0o 2
Hig = QAQIF’/ dw L@ (27(w, B) + 1) o (3.41)
0 Wy — W
=: (1/2)Q(\?, wo, B) 0, (3.42)

is the Lamb-shift Hamiltonian, P denotes the Cauchy principal value, 3 is the inverse tempera-
ture of the bath,
Mi(wo, ) = (™0 — 1)~ (3.43)

is the Planck distribution or the mean quanta number in a mode with frequency wyg, and

v = 232 f(wo) (3.44)
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is the spontaneous emission rate (see Appendix B). This evolution agrees with the Markovian
master equation derived in Ref. [119]. The solution to equation (3.40) is given by

My o 1 1+2(t) =) —iy(t)
05" W=5| s)+igt) 1-=2(t) |’ (3.45)
2(t) — iy(t) = (2(0) — iy(0)) e w0t D=2 (3.46)
2 (t) +iy(t) = (x(0) 4 iy(0)) e'worH=7t/2 (3.47)
2(t) = 2(0)e~ 7 — tanh(Bwo/2) <e—% - 1) (3.48)
where 7 = 7 coth(SBwy/2). It is evident from this solution that system S eventually thermalizes,
lim 0§ (1) = of, (3.49)

where Qg = (1/Z5)e~P«072/2 js a thermal state in the Gibbs form, in which Z5 = Tr[e~#«07=/2]
is the partition function.
We can explicitly compute 8tS(S)‘) (t) as

1
9,857 (t) = —5log ) oM (1), (3.50)

where rg\)(t) is the norm of the Bloch vector I'L(g)\) = (z,y, z) associated with g(s’\)(t) as o5 =

1/2)({ +r - o) (here o0 = (04,0y,0:)), and from equation (3.40) we have
Yy q

V(1) + y* (0] = 292(1) — 292%(8)

Oyrs(t) = ‘ 3.51
tS() 2\/%2(t)+y2(t)+22(t) ( )
Additionally, in the Markovian limit, the energy of this system is obtained as
UG (1) = —%ve‘%(coth(ﬂwom)z(m +1). (3.52)
As a result, , ,
0 0 th 2
. o1 (+(0) + y*(0)) coth(Bwn/ )] 55
t=o0 7V (1) 2(2(0) + tanh(Bw/2))

This pseudo-temperature behaves well, i.e., exhibits thermalization, if there is no initial coher-
ence (019 = 0, or equivalently, z(0) = y(0) = 0).

In the Markovian regime we consider the thermal bath always in equilibrium (namely,
op(T) = g%), and as a consequence the effective energy of S reduces to (see Appendix B)

Us(t) = Trlos(t)Hs], (3.54)
and the heat flux reads

0Qs () = Tr [Dros(t) Hs] = T 0=(0). (3.55)
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Comparing equations (3.50) and (3.55) yields
1 1 z(t) 1+ rg(t)
Tst)  wors() o L—rs(t)’
0= 3 BT
which are both ag g-independent. By substituting the Bloch vector components of the Gibbs

state Qg, (x =0,y =0,z = —tanh(Bwy/2)), in equation (3.56), we also see that

Jim Tg(t) =T,

(3.56)

(3.57)

which gives the expected equilibrium temperature. Moreover, the sign of Zg(t) is opposite to
the sign of z(t), so that a negative extended temperature points out a population inversion, as for
thermal equilibrium.

For the bath thermodynamics, after some algebra (see Appendix B) we find that when ¢ —
oo (up to O(A3))

0 (8) =4wor ([ (7w, B) + 1) 200 — (o, Blen] — lewol?). (3.58)

;U (t) =4ywo [((wo, B) + 1) 200 — Ti(wo, Ber1] , (3.59)

%9 (t) =4B~ywo[ ((wo, B) + 1) 000 — M(wo, B)o11 — |o10/*], (3.60)

whence
2

lim TV @) = L1 o1l , 3.61

oo B ®) B { * 7(wo, ) (000 — 011) + 000 — !QmP} ( )

a8y (t) = BaQY (1), (3.62)

Note that the limit (3.61) is independent of ap but it depends on the initial state of the system.
However, if 05(0) does not have any coherence, i.e., p19 = 0, one retrieves the expected value

1/ for the pseudo-temperature T](B’\). But regardless of the initial state of the system, from

equation (3.62), we see that the extended temperature behaves as expected, lim; o, 7, B(/\) (t) =
T. Besides, the internal entropy production of the bath up to O(A3) vanishes,

a5 =0. (3.63)

Remark 9. Following the discussion in Remark 7, the reason for the difference between the
pseudo-temperature and the standard thermodynamic temperature lies in the definition of the
former. The entropy of the qubit in this example can be computed using its eigenvalues, which in
general depend on the (x,y, z) components of the Bloch vector. From equation (3.54), we can
identify the z component with U (assuming wo/2 = 1 for simplicity). Thus we can say that S is
a function of (x,y, U), and we can compute the partial derivative of S with respect to U (while
keeping x and vy fixed),

2 2 2
(3S(w,y,U)> _ 1 U logl—i—\/x +y=+U _ (3.64)
ou oy 222 +y24+ U2 T 1—y/22+y2+ U2
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If we now consider x(t), y(t), and U(t) evolving according to the dissipative thermalizing dy-
namics (3.45), we obtain
o (08(x,y, U)\

which agrees with the standard definition of the equilibrium temperature. Rather, the inverse
pseudo-temperature 1/ Té)‘)(t) reads as

dS(z(t), y(t), 2(t))/dt
dU /d¢ ’

(3.66)

which corresponds to inverting the function U(t), finding t(U), and computing the total deriva-
tive with respect to U,

ds

au
11U+ +y(U)5 o LT V22(0) +3°(0) + U2
2 V72(U) +42(U) + U2 S1- VZ2(U) + y2(U) + U2

U),y(U),U) =

(3.67)

In the t — oo limit (or U — Uyyermal) this derivative is different from 3 because in general

202 4y - _r OO

dU dU 2(2(0) + tanh(ﬂ))

£0. (3.68)

The two derivatives coincide only if x and y are fixed during the dynamics, which is the case of
vanishing initial coherence.

3.3.2 Example 4: Dephasing qubit

We apply the formalism developed in this Chapter to the exactly solvable model of a qubit in
interaction with a thermal bosonic bath [120]. We present this example in order to clarify the
final remark in Chapter 2, focusing on the three hypothesis that relate the entropy production o
and Eq. (2.51). Consider a total Hamiltonian given by Hyot = Hg + Hp + Hint with

o0 oo
Do Hp=> walay, Huw=X0.0 (fiar+ fral),

Hg =
2 k=1 k=1

where ay, is the bosonic annihilation operator of mode k, satisfying the canonical commutation
relations [ak,aj] = 6y, and the complex parameters fj, are such that Y po; | fx]? < co. We
assume that the initial state of the total system can be written as psp(0) = 05(0) ® g’g, where

0s(0) is the initial state of the qubit and g% is the Gibbs state of the thermal bath at inverse
temperature [3,

1 —IBZ wkafak
e k k
05(0)= D owlt)(l|, o) =(=)10),  op=
£,0'=0

(3.69)

Tr e—B Zk Wkazak] ’
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In the interaction picture, the Hamiltonian becomes

7 (t) = UL HYUs() = Ao. @ (alfe) +al(£), (3.70)

where Up(t) = e~*Hot and f, is the vector with components f,je*"“kt. The time-ordered expo-

nentiation of A )( t) yields

int

l:j)\(t) _ Te—i)\az(@fg ds (a(fs)—i-af(fs)) _ efi)\Qgp(t)e—i)\oz@fO‘r ds (a(fs)"'_aT(fS))’

where the pure phase factor

o(t) = Z wkt — sin(wyt)) (3.71)

k

does not contribute to the evolution

0% () = Up(0) U () 0sp(0) UL (1)U (¢). (3.72)
One can see that
1
oin(t) = 3 owwe™ w200 @ Dy(gr) o D}y (g0), (3.73)
£0'=0

where (g = (—)¢ — (—)¥, g- is the vector with components

gi(t) = f (e —1) fu, (3.74)
and D, (g:) is the displacement operator

Dy(gt) = e(—)ek[aT(Qt)—a(gt)], (3.75)
whose action can be derived from the canonical commutation relations as

Dy(g¢) ax DZ(Qt) =a, — (=) Agr(t) (3.76)
— AR\ 1), 3.77)

From here the reduced density matrices of the two subsystems read as

05" (£) =00010)(0] + 011 |1) (1] + e~ TO (91060t [1)(0] + gore~ ™! 0)(1]),  (3.78)

1 1

o _ T

) £) :E :Q“De(gt) 053 DZ(Qt) — 2 :Zi;e B ok ALENE) AL (3.79)
=0 =0

where Tr[Dy(g¢) 0y Dby (g0)] = e 33T for ¢ # ¢/, with

k

T(t) =) ’{fj coth(Buwy/2) sin?(wit/2). (3.80)
k
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Further, denoting the qubit polarization at time ¢ = 0 by (o) ¢, the effective qubit Hamilto-
nian takes the form

HED (1) = (5 = 40%(02)s A) oz + 4N (02)3 A, (3.81)

where the explicit time dependence is provided by
1
AN\ (o,)s

2
= Z “:(’;J sin?(wyt/2). (3.82)
k

A(t) =

Tr [0 () (a(f) +a7(1)) ]

Similarly, the bath effective Hamiltonian reads as

HED (1) = Y wrafar + A (02)s (alf) +al(f) + Nap ()3 A1), (383)
k

where the time-dependent appears only in the scalar term. From the above relations, the ex-
changed works between system S and bath B are calculated by using equation (1.44),

aWWV(t) = 4X%ap (0.)2 0,A(1) = —0,W (1), (3.84)

where the last equality verifies equation (3.25). In addition, using equation (3.23) and the fact
that

[Hé'eff) (t)a Hint] = 07

(5" (1), Hin) = Aoz © > wn(fial — fion).
k

the heat exchanges are given by

2,05 (t) =0, (3.85)
8,Q% (1) = 402 (1 — (0:)%) BA(1). (3.86)

The binding energy also becomes
UWM(t) = —4X? (1 — (02)8 ) A1), (3.87)

whence &gQg‘) (t) = —GtTUg()‘) (t), in agreement with equation (3.26).

Equation (3.85) is physically expected because, with our specific system Hamiltonian (Hg
o) and the interaction Hamiltonian (Hiy; o o, ® (a + al)), we have [Hg, Hint] = 0. That s,
this interaction with the environment cannot excite or change the populations of p5(0); 0oo(t) =
000 [equation (3.78)]. Thus according to the definition of the heat exchange, we should have
ath” (t) = Tr[@tgfg)‘)(t)Héeﬂ) (t)] = Z%:o Oroue(t)q(t)o, ¢¢ = 0, where we have used the
fact that H éeff) (t) = q(t)o (for some appropriate ¢ read through equation (3.81)).
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Furthermore, using equations (3.84) and (3.86), and the fact that «g + ap = 1, it turns out
that, unlike the infinitesimal heat exchanges, the infinitesimal variation of the internal energy of
B depends on ag,

AU (1) = 4X2(1 — ag (02)%) BA(). (3.88)

One expects the final pseudo-temperature of Tg\)(oo), as defined by equation (3.31), to tend
to the (initial) bath temperature 7" = 1/ in the limit A — 0 of vanishing coupling between

S and B. Indeed, if A = 0, the thermal state is time-invariant. Since Tr[atgg‘) (t)] = 0, the
infinitesimal variation of the von Neumann entropy of B is given by

%85 (1) = —Tr [@gg) (t) log o}’ (t)] : (3.89)
By expanding equation (3.79) up to O(A?) one obtains (see Appendix C)
880 (1) = 4802 (1 — (0.)3) BA(1). (3.90)

Now if we use equations (3.84) and (3.86), together with the definition of the pseudo-temperature
(3.31), we obtain

(1 - as(0:)3)
(1— UZ)%)

It is evident from this expression that in order to make the pseudo-temperature Tg‘) to be equal
to 7' (in the weak-coupling limit) we need to set ag = 1.

Additionally, we note that by comparing equations (3.86) and (3.90), these quantities are
related as

(N gy
Jim T () = T. (3.91)

sV (t) = Ba,QYY (1) (3.92)

Hence, we have Tp(t) = T and the inverse temperature 3 = 1/T of the bath shows up as
the prefactor of the heat flux, as expected in the standard equilibrium thermodynamics (equa-
tion (3.36)). Thus up to O(\3) the internal entropy production in the bath vanishes,

7 (1) =0. (3.93)

This is consistent with the classical picture where the bath always exchanges heat quasistatically,
see our discussion in the second law of thermodynamics.

Remark 10. We have verified in two different models that the internal entropy production in a
thermal bath vanishes in the weak-coupling limit up to the leading order in \. This seems to be a
general result and is consistent with our expectation from standard, equilibrium thermodynam-
ics.

Now we consider the pseudo-temperature Tg‘) (t). We first note that, from equations (3.84)
and (3.85) and after setting g = 1, we have

2,05 (t) = W (1) = 0, (3.94)
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and thus
UM () =o. (3.95)

That is, despite interacting with bath B, system S does not exchange any heat or work (and thus

internal energy) with B. Hence, intuitively, we should not expect that its temperature Ty) to
change; it should remain constant. This is explicitly seen by calculating

(M)
7 (t) = %Ug (1) —0. (3.96)
s (M)

Note that if the system were initially prepared, e.g., in a thermal state with temperature Téo) #£0,
in principle its temperature should not change because this system does not thermalize [equa-
tion (3.78)]. This fact is captured by our pseudo-temperature as Té)‘) = 0. However, we note
that 7'(¢) is defined by the given dynamics of S and cannot therefore be related to an initial
(dynamics-independent) temperature such as an equilibrium temperature assigned by the prepa-
ration of the state.

Having calculated the heat and work exchanges by the system, it is also important to see
how the von Neumann entropy of the system behaves. Using equation (3.78), the entropy of S

can be explicitly calculated from the eigenvalues (1 =+ rgf\) (t))/2 of gg‘) (t), where

r§ (1) = \/ 1—4 (gooo11 — e 10T M |ggy|?) (3.97)

as well as its infinitesimal variation

()
1 1 t
98V () = — - log —s W) ©

&gr()\)(t) _ )\Zb()‘)(t)atf(t), (3.98)
2 1— rgA)(t) 5

where
2 (N
b (1) = 16]eo1|® 16321 log 1+rg () (3.99)
r () 1— ()

Note that the quantity b(") (t) is nonnegative and has a well-defined time-independent limit,

0
0 _ 16/ 001 o 1+Tf§)(0)

g 5 (3.100)
rP) T 1-rP(0)

when A — 0. In order to study the time-derivatives 0;A(t) and 0,I'(t), we consider an in-
finite thermal bath with a continuum w and a regularized Ohmic spectral density given by
fr = Jw' e we/2 (in which € > 0). Thus we substitute the discrete sums in equations (3.80)
and (3.82) with the following integrals:

42

At) = /O dw sin?(wt/2) e*ew:m, (3.101)

L(t) = /0 h dwicoth(ﬂw/Q} sin?(wt/2) e™. (3.102)
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Hence, O;A(t) = et/(t? + €)% as well as 9,I'(t) > 0, as one can check by changing the
variable wt = w and taking explicitly the derivative with respect to t. As a result, we see that
8t$g\) (t) > 0. Furthermore, as a consequence of equation (3.85), in this regime, the internal
entropy production relation (3.33) reduces to

as(t) = S (1) > 0. (3.103)

That is, the whole entropy change in the system is entirely due to the internal entropy production,
whence the extended temperature Z5(¢) remains undefined because of Remark 8.

Remark 11. [t is an appealing feature of this model that the qubit does not exchange any energy
with its environment (8tUg\)(t) = 0), whilst its (internal) entropy may change (8th\)(t) #£0)
because of its (varying) correlations with the environment (0;S,.(t) # 0).

It also may also be interesting to investigate the behavior of the various thermodynamic
quantities in the Markovian regime for system S. This is determined by the condition § < ¢
over the long timescale 1/A? when A\ — 0. Under these conditions and after removal of the
regularization parameter €, one obtains I'(t) ~ n7/(283). Thus, the dynamics of system S
[equation (3.78)] reads as

A — W —1iw
0§ () = 000/0}{0] + 011 1) (1] + ™" (01067 [1){0] + o100} (1)), (3.104)
in which v = 472 /. This state solves the Lindblad master equation
A 11 A A A
Q0§ (1) = —i 5400, 0% )(t)] + %(OZQ(S '(t)o. — 0§ (). (3.105)
Note that this dynamics has a one-dimensional manifold of fixed points as
Jim 0§ (£) = 000/0) (0] + 011 [1)1]. (3.106)

Thus if we start with the system initially with no coherence (i.e., vanishing off-diagonal ele-
ments, p19 = 0), it will not evolve in time.

Let us now concentrate on the relation between the entropy production and the general state-
ment of the second law (2.51). In particular, it is interesting to check whether the three hypothe-
ses mentioned at the end of Chapter 2 are satisfied or not. In doing that, we allow for a spectral
density more general than the Ohmic one.

Remember that 9;Qg(t) = 0 while the entropy of the qubit is given in equation (3.98).
Since the quantity b (¢) (3.99) is always positive, the sign of 9;$5(t) corresponds to the sign
of 9;I'(t), where

w?

T(t) = /OOO a ) coth(Bw/2) sin?(wt/2). (3.107)

In writing I'(¢), the continuum limit has been taken and the sum over the bath modes Y, | fx|?
has been recast into an integral fooo dw|f(w)|?. Concerning the bath quantities, one has

Qp(t) = 4N (1 - (0.)?) BA(1), (3.108)
FSp(t) = 48X2 (1 — (0.)?) BA(t) + o(\?), (3.109)
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where )
/ dw )| ( t/2). (3.110)

One immediately note that 0,55(t) = 0;Q B( ) up to leading order in the coupling con-
stant, so that the hypothesis of a thermal bath almost in equilibrium seems to be quite robust.
Instead, one finds that 9;Qgs(t) # 0,Qp(t) because the first one is identically vanishing while
the latter is not. This is possible due to the correlations between the subsystems that can store
and exchange energy, effectively acting as a third subsystem [72]. The third hypothesis can be
also violated. Indeed, one can show that the following sum

8,85(t) + 0,Sp(t), (3.111)

possibly becomes negative even though its integral is always positive. The sign of 0;$p(?) is
equal to the sign of 9;A(t) while the sign of 0;55(¢) depends on 0;I'(¢). One can find 0,I'(t) <
0, which corresponds to an essentially non Markovian dynamics for .S, by choosing a super-
Ohmic spectral density

wS
F@)f = —= e/, (3.112)

c

with s > s¢-(8) (w, is a cutoff frequency). The critical ohmicity parameter s., at zero tempera-
ture is 2, while it becomes 3 in the infinite temperature limit [121]. Indeed, for high temperature
one can expand the hyperbolic cotangent in I'(¢) and

1~ _sm1
O (t) ~ ﬁf(s —1) [T+ (wet)?)]” 2 sin[(s — 1) arctan(wet)], (3.113)
where T is the Euler gamma function. Moreover, one can find 9;A(¢) < 0 if s > 1 because

2 s+1

AA(t) = 5 (s +1) [1+ (wet)?] ™ * sin[(s + 1) arctan(wet)]. (3.114)

Therefore, for s = 4 and at sufficiently high temperature one can find 9;$5(t) < 0 and
0¢Sp(t) < 0 simultaneously. It happens when /3 < arctan(w.t) < 7/2.

Remark 12. This example explicitly shows that the statement (2.51) of the second law is not
equivalent to oy > 0 in general. Therefore, a violation of the latter inequality should not be
interpreted as something unphysical.

3.4 Comparison and summary

In this Section we firstly clarify the relation between our analysis of the non-equilibrium thermo-
dynamics of a bipartite quantum system [72] and other approaches adopted in literature. Then
we show how the whole formulation can be reproduced using classical mechanics, pointing out
that classical correlations in the initial state are sufficient to invalidate the inequality (3.30). In
the end we provide a summary of the main results in this Chapter, which is arguably the most
relevant part of this Thesis.
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3.4.1 Comparison with other formulations

Recently, other proposals appeared whose aim is to study the thermodynamics of a generic
bipartite system. In the following we compare these formulations with ours.

In Ref. [109] heat and work are defined for a generic bipartite quantum system using the
concept of “local effective measurement basis” (LEMBAS) [122]. More explicitly, they use a
procedure similar to ours, arriving at equations (3.6) and (3.7), but at this point they choose to
write the modified Hamiltonian H:g as the sum of two components H 5 and H g such that the
first one is commuting with the free Hamiltonian /¢ while the other one is not

Hy(t) = Hs(t) + Hs(t), [Hs,ﬁfs(t)} =0, [Hs, Hs(t)] #0. (3.115)

Then, only the commuting part is used to compute heat and work
O Ws(t) = Tr [gs(t) 8tfls(t)] : (3.116)
0iQs(t) = Tr [dros(t) Hs(t)] (3.117)

The idea behind this procedure is the following: when the energy is measured locally the basis is
fixed by the free Hamiltonian and the only detectable contribution of the interaction consists in a
shift of the energy levels. It is worth to say that the role of correlations has not been highlighted
in [109], nor the relation between the global balance and the local balances of energy has been
studied. In contrast, in our formalism the internal energy associated with each subsystem is
defined as the energy which is locally accessible in each individual subsystem by means of
arbitrary local measurements and the importance of correlations has been explicitly investigated
[72].

Concerning the balance of entropy, the reasoning of Ref. [109] is the same as in Ref. [103].
In particular, it is noticed that when the initial state of the reservoir is in thermal equilibrium
at a certain inverse temperature  the variation of von Neumann entropy in the system can be
rewritten as

AS(t) = AS() + AcS(E), (3.118)
where
AS(t) == S(o()es(t) @ 0f)),  AS(t) = "Tr |(en(t) — o) log e’ |.  (3.119)

The term A.S(t) is called reversible entropy flow because it can be recast into

AeS(t> = /BQB(t)v (3.120)

where Qp(t) = Tr[H ng)] — Tr[Hpop(t)], while A;$(t) is called irreversible entropy pro-
duction and is always nonnegative. The difference with respect to our treatment is that the free
Hamiltonian of system B is considered in the computation of heat, without corrections due to
the interaction.

A similar expression has been also derived in [103] and further discussed in [115]. In par-
ticular, the authors found that

AS(t) = BQa(t) + S(o(t)] 0s(t) ® on(t) + $(es(®)] %), (3.121)
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highlighting two different contributions to the irreversible entropy production, namely the vari-
ation in time of the state of the environment, pushed out of equilibrium, and the correlations
established between the systems.

3.4.2 Classical counterpart

The previously presented approach to defining work and heat exchanges has focused on bipartite
quantum systems. However, the very same formulation can be applied to classical bipartite
systems SB (where S; B has ng p degrees of freedom) by considering probability distributions
o(7) over the phase space

R2s*18) 5 7 = (g5, dp; Ps, PB)

of points with conjugate coordinates ¢ = (Gs, gg) and p = (ps, pB), their Gibbs entropy

$(0) = — / dr o(7) log o(7),
R2(ns+np)

and the total time evolution generated by the Poisson brackets with a Hamiltonian function
Hiot (7). In particular, we will show that the sum of the entropy variations can be negative if the
initial state is correlated.

Consider two coupled classical oscillators, S and B, with canonical coordinates ¢ = (gs, 4B),
P = (ps, pB), interacting according to the following Hamiltonian function:

2 2
N _DPs  pp Kk
H(r) =2+ 2+ (as —ap)”. (3.122)
2 2 2
As the initial state of system S B, we take a probability distribution of the form
_ \/1—’)/2 (2 —p2 02 g2 9 2
o(F) = o~ (Ps—Pp—45—95—2714598)/2 (3.123)
472

where the parameter —1 < v < 1 measures the amount of initial correlations between S and B.
The solution of the Liouville equation

ﬁtgt = 8q—H 8,7@ — ant (?ﬁH (3124)
is given by o.(7) = o(7(—t)), where 7(¢) solves the Hamilton equations of motion

s =ps, g =pp, Ps=—k(qgs—qB), pB=—k(aB —qs) (3.125)

The integration yields

— ~2 _ _
= Y10 am, (3.126)

o) ="z

where A; is a 4 x 4 covariance matrix with entries
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ASS+ASB

Figure 3.1: ASg(t) + ASp(t), for k = 1 and different values of ~.

ASS+ASB

o
)
N
.
N
o

Figure 3.2: ASg(t) + ASp(t), for v = 0.999 and different values of k.
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1
A = Asz = 1 (2+ (2]{,‘—1—’}/— l)Sil’l2(\/ th)) ,

Apg = Aoy = Azg = Ayz = 1 (Sln;%t)( +y—1)—t(1+ 7)) )
A13 = A31 = i (2’)’ — (2]€ —i—’y — 1) sin2(\/ﬁt)> N

sin(2v/2k t)

Ayyu=A A=A 2 —1)—1#(1
14 41 = Aos 32 = 4< W (2k+~v—1) —¢( +7)>,

1 in?(v/2kt
Agg = Ayg = 2+(1+7)t2—(2k+7—1)w 7

4 2k

1 in?(V2kt
A24—A42—4(('y+1)t2+(2k+ﬂy—1)sm(2k)>'
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(3.127)

(3.128)

(3.129)

(3.130)

(3.131)

(3.132)

The reduced (or marginal) state of S is then obtained by integrating o;(7) over the conjugate

coordinates 75 = (¢B,pp) of B,

S (o)
o7 (Ts) = / drp o4(7)
—0o0
It turns out that ¢°(¢s, ps) is a Gaussian of the form

07 (45 ps) = Z(t) e Yk +e(Ipsas

where Z, a, b, and c are the following time-dependent coefficients:

Z(t) f—\/4a (t)b(t) — (1),
1
) =T6kat) [1 7

+ (1+7)(2k +v — 1) cos(V8k )|,

2 2k(=3+v+273(y* - 1))+

b(t) =L 50 ) 4+ 2k — (2 + 5 — 1) cos(VEEY)].

8a(t)
o(t) 8(\1;7[ PAVEL = V2 2k +5 — 1) sin(VBET)|,
a(t) =1+ L2 . 2 ok +y—1) [SIHQ(Z% +

N (1+7) ((2kt2 B 1)8111 (Ft) sm(ﬁt))} '

4 2k V2

(3.133)

(3.134)

(3.135)

(3.136)

(3.137)

(3.138)

(3.139)
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Because of the S <+ B symmetry, o (75) has the same functional form in Eq. (3.134) with
g substituted by 7.

By means of the reduced states, we can now study the thermodynamic behavior of each
subsystem. The entropy of S can be computed as follows:

Ss(t) = / drs o (7s) log o5 (7s) = ~1o (2me)” (3.140)
S - e S Qt S ggt S) — 2 g 4a(t)b(t) _C(t)2 ) .
so that the difference of the latter with respect to the entropy at time ¢ = 0 is given by

4a(0)b(0) — ¢(0)2 1

Depending on the value of vy, ASg(¢) can become negative in certain time intervals as shown in
the figures 3.1 and 3.2. Since ASg(t) = ASp(t), we find §5(t) := ASg(t) + ASp(t) < 0,
namely a violation of the inequality expressed in (3.30) due to initial correlations. Indeed, Fig.
3.1 depicts 63(t) vs. t for three different values of ~ at fixed interaction strength k£ = 1, and
shows that the transient negativity is suppressed by weakening the initial correlations.

In Fig. 3.2, instead, the amount of initial correlations is fixed and the interaction strength
varied; then, the “violations of the second law of thermodynamics” are only delayed in time, but
not suppressed, by weakening the interactions. In the case of k = 0, A$g(t) = ASp(t) = 0 for
each value of —1 < 7 < 1; indeed, the correlations between S and B do not change if the two
subsystems do not interact.

1
ASg(t) = §log [

Remark 13. As pointed out in [108], the choice of a special class of initial states (uncorrelated
system-bath states in our case) is necessary to derive second law-like inequalities from a global
reversible unitary dynamics. In this respect, all the available explanations of the emergence of
the second law of thermodynamics from the underlying reversible Schrodinger evolution are not
completely satisfactory. We will see another example in the following Chapter when discussing
the so-called fluctuation theorems.

Concerning the heat and work exchanges between S and B, we observe that the effective
Hamiltonians of the two subsystems are time-independent. Indeed, the defining quantum ex-
pressions in Eq. (3.15), classically becomes

2 2
Héeff) (t) :% 4 kq?S + /1%2 de Qf(fB) Hint(f)

— ag /R4 A7 0% (75) 0P (Fp) Hing (F), (3.142)

with Hin (7) = —kqsqp. The two integrals vanish because Hiy is an odd function of the single
oscillator positions (while the probability distribution is Gaussian). It then follows that work
exchanges also vanish so that

Ps | 43
0 Us = 0:Qs = 0 [/ drs of (7s) (25 + k;)}
R2

_k (27__ (2k+~v—1) Sin(\/877)> ’ (3.143)

(1—7) V8k'
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and the same holds for system B too. As expected, if the coupling strength £ is zero there is no
heat flux in the system and the energy of each oscillator is conserved.

Observation 1. A comment is in order at this point. From the previous discussion one could
think that there is no essential difference between classical and quantum mechanics when deal-
ing with the laws of thermodynamics, in particular when dealing with the balance of entropy.
This is not completely true and the reason is the following. The complete knowledge of a clas-
sical system (the system is described by a single point in phase space) implies the complete
knowledge of any subsystem. On the contrary, if a quantum system is in a pure state so that
we have complete knowledge of it (zero entropy), its subsystems are in general described by
statistical mixtures, due to quantum correlations. Therefore, the inequality (3.30), which in the
classical case is due to the experimental uncertainty, in principle eliminable, emerges naturally
in quantum mechanics.

3.4.3 Summary and outlook

This Chapter highlights the role of correlations in the non-equilibrium thermodynamic behav-
ior of generic bipartite interacting quantum systems. In this formulation, interesting relations
emerge between correlations, on the one hand, and heat and work exchanges, on the other hand.
These relations may enable the extraction of desired thermodynamic properties by partially con-
trolling or manipulating the underlying dynamics of the system. A notion of binding energy
has been introduced which only depends on the interaction Hamiltonian and correlations of the
total system state, whose variation has been shown to be only of the heat type. In this sense,
correlations act as a resource or storage for heat.

Correlations play a fundamental role also in the balance of entropy, where a very general
second law-like inequality has been presented, which only depends on the assumption of ini-
tial factorized state. We have also defined two notions of nonequilibrium temperatures for the
subsystems and consequently two different generalized entropy productions. We have discussed
their behavior through two examples: a qubit in interaction with a thermalizing bath and a qubit
interacting with a dephasing environment. It turned out that neither of them is completely satis-
factory so that the only reliable quantity is the entropy production originally defined by Spohn,
Lebowitz and Alicki. Finally, we have shown that the positivity of such a quantity is not equiv-
alent to the positivity of the finite variations of entropy (3.30) and is indeed a much stronger
requirement.

Our methodology may provide techniques and tools for employing quantum resources, such
as many-body correlations and memory, to engineer thermodynamic processes, for example, to
build efficient quantum heat engines, or shed light on our understanding of the role of correla-
tions in biological processes in relation to, e.g., the efficiency of photosynthetic light-harvesting
complexes [123].






Chapter 4

Fluctuation theorems

In the previous Chapters a generalization of the standard non-equilibrium thermodynamics of
open quantum systems has been presented, dealing with non-Markovian dynamics, finite-size
environmental effects and strong coupling. Physical quantities like heat, work and entropy have
been consistently defined in this more general scenario and explicitly computed in a number of
examples. However, the whole formulation regards average quantities as in the initial formula-
tion of quantum thermodynamics [38, 39] and makes no prediction about fluctuations.

In the following, we discuss a different kind of generalization that has been put forward in
the last decade, namely, the study of thermodynamic fluctuations around average values. The
starting point was the formulation in 1997 of a very interesting relation, nowadays known as
Jarzynski equality [18], between the full non-equilibrium response of a system to an external
driving and the free energy difference, an equilibrium property. Such a result has been com-
plemented just one year later by G. Crooks with a so-called fluctuation theorem relating the
work done on a system according to some protocol and the work extracted in the time-reversed
protocol [19].

The original analysis of Jarzynski and Crooks uses classical mechanics. The quantum fluctu-
ation theorems first appeared in Refs. [124, 125] that boosted a lot of theoretical activity on this
issue. An exhaustive summary of the main results obtained up until the last decade is contained
in the two reviews [57, 126]. In this Thesis, we will discuss the basic features that are common
to all the known approaches to quantum fluctuation relations, analyzing separately the cases of
closed and open quantum systems.

In Section 4.1 the definition of work as a stochastic variable is presented and its quantum
fluctuation relations are discussed. We make also a proposal in order to test experimentally the
quantum Jarzynski equality using molecular vibrations driven by external electric fields. With
respect to other experimental tests of the quantum Jarzynski equality [127, 128], the proposal
provides a check of the equality in a rather different physical scenario whereby a direct mea-
surement of the free energy difference seems possible.

In Section 4.2 we present some results about fluctuation relations for open quantum systems.
In this framework, the situation is less established and still matter of research. A Jarzynski-like
equality for heat as a stochastic variable is proven to hold under unital reduced open dynamics
[129], namely those dynamics preserving the identity operator. A different approach consists

59



60 CHAPTER 4. FLUCTUATION THEOREMS

in describing explicitly the environment. In this scenario, the Jarzynski equality for work can
be proved, if the free energy difference is computed according to a modified Hamiltonian, the
so-called Hamiltonian of mean force [130]. Some proposals based on measuring the energy of
both system and bath at the beginning and at the end is also presented [131].

4.1 Closed quantum systems

In this section we discuss the fluctuation relations for the work performed on a closed quantum
system, namely the Jarzynski equality and the Crooks theorem, explaining how the relevant
physical quantities are defined and how one could test experimentally these theoretical results.

Consider a closed quantum system driven by an external field, so that the Hamiltonian of
the system is time-dependent and its energy is not conserved. The dynamics of a generic quan-
tum state is the unitary evolution determined by the Liouville-von Neumann equation and is
thus reversible. According to [132], in this framework, work can be defined by means of a
two-measurement protocol. Indeed, for any specific driving, one can measure the energy of
the system at the beginning and at the end of the protocol; the difference of the measurement
outcomes is a stochastic variable w associated to the work performed on the system. This is a
reasonable choice because the entire variation of energy in the system is due to the external driv-
ing, so that no heat is dissipated in the process and the energy difference can be safely associated
to work. Moreover, the two-measurements are necessary because work, as stated by standard
thermodynamics, is not an observable, in the sense that it is not a quantity related to the state but
to the process.

In principle, repeating many times this procedure, always with the same driving up to a same
final time 7, the full probability distribution P(w) can be accessed experimentally. Explicitly,
the probability distribution of work reads [132]

P(w) =Y pl(ELIUMIEN §(w — By, + E7), 4.1

n,m

where EQ, ET are the eigenvalues of H (0), H (7) respectively, p0 is the probability of obtaining
the outcome E? in the first measurement, and U (7) is the time-evolution operator

U(r) = Te 5 H(s)ds, 4.2)

This probability distribution, whose analytic computation is very difficult also for relatively
simple systems, has been investigated in the case of a quantum harmonic oscillator with time-
dependent frequency [133] and small anharmonicity [134], a driven Morse oscillator [135] and
a driven oscillator coupled in position/momentum [136].

Proposition 4.1.1. [f the system is initially prepared in a thermal state at inverse temperature
B, such that the quantities pg have the form of a Boltzmann factor

. o—BES

Pn = Tr [o PHO)] (4.3)
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the quantum Jarzynski equality holds true

(e7Pv) = e70AF, 4.4)
where the average (-) is computed with respect to the probability distribution P(w) and the
equilibrium free energy is defined as usual in terms of the partition function Z,
1
B

Proof. Given the explicit expression of p?l (4.3), the probability distribution of work (4.1) be-
comes

F(t):=——logZy, Zi=Tr [e—ﬁH“)}. 4.5)

0

_ﬁEn
Plw) = 37 "B |U () ED 8w — Bf, + EY). +6)

n,m

Therefore, a straightforward computation gives

<e_5w> = /dw P(w)e_ﬁw =

—BE)
= [ aw Y BB o — B, + B -

e Pl 0\(2 B(EO—ET,)
=> 7 WER|U(7)|Ep)|” 250 =5m) =
n,m 0

_ e_BE;L ET EO EO 'i‘ ET _ ZT _ 7,8AF
—; Ze ( m|U(T)Zn:| ) (B U (7)] m>—70—e

O

The Jarzynski equality is very important because it relates a quantity that in principle de-
pends on the whole information relative to the driving process, encoded in P(w), with an equi-
librium property as the free energy. An immediate consequence of (4.4) is the Kelvin statement
of the second law of thermodynamics, namely no work can be extracted in a cyclical process
from a system in equilibrium with a single thermal bath. Indeed, applying the Jensen’s inequal-
ity one finds

e AW < <e_ﬁw> = e PAF 4.7

that in turn implies
(w) > AF. (4.8)

For a cyclical process H(7) = H(0), the free energy difference is vanishing and the result is
(w) = 0, confirming that on average the driving performs work on the system instead of extract-
ing work. This does not mean of course that in a single realization of the protocol the variable
w 1s positive. In a generic process (not cyclic) one can instead say that the so-called irreversible
work W := (w) — AF is non negative. This quantity ¥V measures the difference between the
actual average work and the free energy difference, that, at least in standard thermodynamics,
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equals the work performed in a isothermal quasi-static process. In the following, we show that
this is true also in our setting.
Note that by computing explicitly the average stochastic work (w) one has

(w) = / duw P (w)w = Zp2|<E;|U<T>\E2>P<E; _EY) =

n,m

—ﬂWWMH Tr[H(0)o

0

where the last equality follows from the fact that

Tr[H(t) O0(t)] =

due to the Schrodinger unitary evolution. Therefore, in a closed quantum system, the definition
of work (1.44) given in the previous Chapters is compatible with the other one given in terms
of stochastic variables. Moreover, the irreversible work W (multiplied by a factor 3) can be
conveniently expressed in general as the difference between two relative entropies

BW = B ((w) — AF) = $(0.]0!”) — S(o0ll0}), (4.10)

(B)

where o7 = e PH(T) /Z.. This is a consequence of the well-known relation [137]

BTr[H(t)o(t)] = BF(t) + S(t) + S(ad 0™, 4.11)

valid for any ¢, and of the conservation of entropy in a unitary dynamics $(7) = $(0). The
irreversible work (4.10) further reduces to a single relative entropy in the case of an initial
thermal state, that is the assumption used to prove the Jarzynski equality

AW = $(0- [0 > (4.12)

This rewriting is also consistent with the interpretation of irreversible work: the farther away is
the final state from the Gibbs state corresponding to a quasi-static isothermal process, the greater
is W.

Another important result can be obtained in the same framework, by considering also the
reversed work protocol or backward protocol. The unitary time evolution U (7) from time 0 to
time 7 in this second protocol is related as follows with U (7)

Ur)=U"(r)=U'(7). (4.13)

Moreover, it is assumed that the initial state of the backward protocol is Q(ﬁ ), i.e. the thermal state
at inverse temperature /3 with respect to the Hamiltonian H (7). Therefore, a first measurement
of energy is performed projecting the state into an eigenstate |E},) of H(7) with probability
pl, = e PFn /7 . After that the system evolves with U(T) and a final measurement is performed
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at time 7 in the basis of H(0). As a consequence, the probability distribution of work in the
backward protocol is the following

T

ﬁ m
Pp(w) = Y —[EL|U ) EDP d(w — Ef + E}) (4.14)

n,m

and by using the properties of the Dirac delta one can find a relation between the backward and
the forward probability distributions:

Proposition 4.1.2. Given the forward probability distribution Pr(w) (4.6) and the backward
probability distribution Pg(w) (4.14), the Tasaki-Crooks fluctuation theorem holds true

Pr(w) — gu—am
7PB(—w) —e . (4.15)

Proof. The result can be proved by a straightforward calculation using the properties of the delta
distribution, in particular f(z)dé(x — a) = f(a)d(x — a) and §(z) = 6(—x):

_ B0

o—BEY
Pr(w) =) (ELIUTIED? 6(w — E], + E)) =

n,m ZO
7 e BEL,—w)
— Y BT MIE P S(w — B+ BY) =
n,m T

-

_BEm
= HAD ST B U(DIER) P 6w — EY + BT) =

O

In the particular case of a cyclic protocol, AF = 0, the theorem states that the probability of
performing a certain amount of work on the system is exponentially bigger than the probability
of extracting the same amount of work in a reversed protocol. Moreover, one immediately
derives the Jarzynski equality from the Crooks relation. This is done by conveniently rewriting
Eq. (4.15) as follows

Pr(w)e™PY = Pg(—w)e PAF,

and then integrating both sides in dw. One uses the fact that [ dwPg(—w) = 1. As a conse-
quence, the Crooks fluctuation theorem is usually referred to as a detailed fluctuation relation
while the Jarzynski equality as an integral fluctuation relation.

The natural question to be answered is which kind of protocol is described by U (1) =
Ut (7). Introducing the time-reversal operator 6, the following argument is presented in literature
[138]: the reversed protocol is related to the transition between the time reversed state 6| E7)
and the time reversed state #| £9) by means of the evolution operator Ug (1),

Up(r) = Tet 5 PHOB 001 dt, (4.16)



64 CHAPTER 4. FLUCTUATION THEOREMS

If the forward work protocol is characterized by a time-dependent parameter in the Hamiltonian
Ap(t), then the Hamiltonian of the backward protocol is driven in time by the parameter A (t) =
Ap(T —t). As a consequence, one finds the following relation between transition probabilities

(EQJ6TUR ()6 EL) 2 = [(EQU (1) B2 = (ELIUMIED PR, @17)
because the so-called microreversibility condition holds true
0TUR(T)0 =U(r)"t = U(r)". (4.18)
This can be seen as follows. Using the properties 891 = §79 = 1 and #i = —if one finds
0tUR (1) = Tei Js HOB®)L 4.19)

By looking explicitly at the second order term it turns out that
T t
[ at [ dumosme) -
0 0
T t
—/ dt/ du HAp(T —t)HAp(T —u)) =
O7' 07'
—/ dt/ du HAp(t))H(Ap(u)) =
0 t

T u
:/ du/ dt HAp(t))H(Ap(u)) (4.20)
0 0
The analogous treatment can be done on higher order terms so that
%ez‘ [T HOB@®)At _ ?ei ST HAR(®)dt _ U(T)T. 4.21)

The statistics of work satisfies other curious relations. In particular, in the following we
discuss a further relation with an information theoretic quantity.

4.1.1 Statistics of work

In order to describe the thermodynamics of the driven closed quantum system one could consider
equivalently the cumulant generating function

x(@) =log (e™*") =log </ P(w)e_o‘wdw> , (4.22)

which encodes the same information of P(w), namely the full statistics of work. Indeed, from
the cumulant generating function one can extract the n*”* order cumulant k(w),, as a derivative

k(w)n = (=1)"05x(a). (4.23)
In the following we will show that y («) is related to the quantum Renyi relative entropy S, (0|o),

aal—a]

Sa(0lo) =

log Tr[o , (4.24)

a—1
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between the thermal state gf = ¢ BH(7) /Z. and the true state of the system at time 7. Indeed,

after some algebraic manipulations

BB (BT U ()| ES(ES U (7) | B )

. (Z)gy A (; ) ' Bt | =
()] =
|

(Z)gTr ()3 U(r) () 0T

(%) Tl onguio) 25)
Zp
we get the interesting result
@) = ~abF () + (§ - 1) S5 (e2lelo), 20

where AF(1) = F(1) — F(0) = %(log Zy — log Z) is the free energy difference and o(7) =

U (T)Qg UT(7) is the state at time 7, just before the second measurement is performed. A similar
result has been obtained in [139]. As a consistency check, we note that the Jarzynski equality
immediately follows from Eq. (4.26) by choosing av = 3:

X(B) = <e*5W> — o PAF, 4.27)

Remark 14. Let be H = C" the Hilbert space of a quantum system and consider two density
matrices p,0 € B(H). The quantum Renyi relative entropy S, (o|o) is infinite if one of the
Jollowing statements hold true [140]:

e supp o ¢ suppo and o > 1,
e supp o L suppo.

Therefore, the cumulant generating function at finite temperature Eq. (4.26) is never divergent
because both ¢~ and o(T) are full rank matrices, i.e. supp o7 = supp o(7) = H.

A particular case of work protocol is the so-called quantum quench, where the Hamiltonian
of a system is changed instantaneously. Consider now a closed quantum system in its ground
state |E5)) subjected to a sudden quench H® — H'. By measuring the energy after the quench,
one finds the following probability distribution of work

P(W)=>_ [BY)EQ)|*6(W — E) + Ey), (4.28)

and, as a consequence, the cumulant generating function reads

x (@) :=log <e_°‘W> = log ((E’8|e_o‘H1 |E8>> + o, (4.29)
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The same results can be obtained directly from Egs. (4.1) and (4.26), using U(7) = e iH'T
and taking the zero temperature limit (3 — ©0), such that e~ PER /Zy — Opn . In this limit the
relation with the Renyi divergence is apparently lost.

4.1.2 Isothermal quasi-static process

The opposite case with respect to a quench is a quasi-static process. Consider a driven quan-
tum system initially in equilibrium with an external bath at inverse temperature 3. Suppose
that the Hamiltonian H () changes so slowly that the system remains in equilibrium with the
environment at any time, namely its instantaneous state reads

e P10 4.30
) = ——+ .
where Z(t) = Tr [e_ﬂH (t)]. Such a process is isothermal and quasi-static.
Proposition 4.1.3. For a quasi-static isothermal evolution it turns out that
98(t) = BoQ(t), (4.31)
O (t) = O W(t), (4.32)
where the thermodynamic quantities are defined as usual
S(t) == —Tr[o(t) log o(t)], (4.33)
1
F(t) := 3 log Z(t), (4.34)
QW (t) := Tr [o(t) 0 H (t)] (4.35)
Q) == Tr [ H (). (4.36)

Proof. The proof of Eq. (4.31) is straightforward. Indeed, using the explicit expression of o(t)
(4.30) one finds

9y5(t) = —Tr[dse(t)log o(t)] = B Tr [Or0(t) H(t)] = BOQ(1).

In order to prove Eq. (4.32) we can use the following formula
_ — (=B)" . _
ae 10y =3 o (8tH(t)>e BH(),
n=0

where C% = id , C(-) = [H(t), -] and C™(-) involves n nested commutators, which implies
Tr [Gt(e_ﬁH(t))} — _BTr [OtH(t) e—ﬁH@)} :

due to the ciclicity of the trace. Then

(1) = 50k log Z(1) =~ Tr [arle#10)

32
=Tr[0H(t) o(t)] = W (2).
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Remark 15. Integrating Eq. (4.32) one shows that the free energy difference is related to the
work performed during a quasi-static isothermal process. This is consistent with classical ther-
modynamics.

Using the operative definition of work, given by the two-measurement protocol, we know
how to measure the left-hand side of Eq. (4.4). Thus, in order to verify the Jarzynski equal-
ity in experiments, we should estimate independently the right-hand side, that depends on the
free energy difference. We have shown that the free energy difference is related to the work
performed during a quasi-static isothermal process and this fact could be used in order to test
experimentally the equality. This is explained with a simple example.

4.1.3 Example 5: Molecular vibration

We consider a single vibrational mode of a molecule interacting with an external time-dependent
electric field. The Hamiltonian of this system is

2 2,..2
H(t) = % + w; +aE(t)s = 4.37)
1 aFE(t)
it L t
—w<aa+2>+m<a +a), (4.38)

where as usual

x:\/%@T—i—a), p:i\/g(cﬁ—a). 4.39)

An equivalent description is given in terms of the displaced ladder operators

aFE(t)

b(t) =a+ , 4.40
W=t (440
that allow to rewrite the Hamiltonian as
2 2
w  a*E4(t)
H(t) =wblb(t) + = — ———. 4.41
(1) = whlb(t) + 5 — (441)
From Eq. (4.41) the instantaneous spectrum is easily found to be {hf }°° , with
1 a?E2(t)
ht = =) - —=. 4.42
L=w <n - 2) 52 (4.42)

Let us study the energy balance in this system during a quasi-static isothermal process. The
work is computed as follows:

(6] i e_ﬁH(t)
8tW(t) = ﬁatE(t)Tr (CL -+ a) W =
_ @ (o  [2aB@m) e 0]
= e BT (b @+~ 5 = ) 20 |~

= fﬁE(t)atE(t) = fTBtEQ(t). (4.43)
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The internal energy is also easily computable

2E2(t)\ e PH®) w w  a?E%(t)
t)y =T bib(t w_a = Z_—_— 7 4.44
v r{(“ W+5 -5 ) Z(t) o1ty T T @A
and taking the time derivative we find

o U(t) = O W (1), (4.45)

which implies a vanishing heat flux. Let’s concentrate on this point which seems quite unex-
pected for a system interacting with the environment. Indeed, for a generic driven system, the
thermal states at different times have a different spectrum and, in order to evolve from one to the
other, a heat flux between system and bath is needed. In our case instead, it turns out that

e_ﬂh% o0 { e_IBUJ” }oo
Zm eiﬁhsn Zm e~ fwm n=0

n=0

Z(t)

o—BH(0)

7o) |’ (4.46)

Sp

due to the particular form of the Hamiltonian.

Using this model, the work performed during a quasi-static isothermal protocol can be re-
lated to the electric field experimentally tuned. This in turn gives an estimate of the free energy
difference needed in the right hand side of the Jarzynski equality. However, one has to say that
this outcome is very peculiar and unwarranted in more realistic systems such that the Jarzynski
equality is usually tested measuring the left-hand side and computing the free energy according
to a theoretical model [127, 128].

4.1.4 Testing Jarzynski equality with Self-Assembled Monolayers

In the following we describe a realistic experimental setting, different from the proposals ex-
isting in literature [141-145], in which the quantum Jarzynski equality could be tested. Our
approach is not based on interferometric schemes that allow to reconstruct the cuamulant gener-
ating function, as in [128], while it consists in a direct measurement of the transition probabilities
appearing in the work distribution P(w) and in this sense it is similar in spirit to [127]. However,
contrary to the work done in [127], we should be able to estimate independently the free energy
difference that is the right-hand side of the equality.

Our proposal strongly relies on Self-Assembled Monolayers (SAM) [146] that are structures
formed by adsorption of organic molecules on a surface by means of reactive head groups: a
paradigmatic example is the adsorption of thiols (carbon chains with a sulfhydryl functional
group) onto a gold surface. These organic molecules are also characterized by a tail group that
can be used to couple the SAM with other substances [147, 148]. A schematic picture is given
in Figure 4.1.

A possibility is to couple two SAMs by means of the tail groups, such that one can con-
struct two surfaces connected via organic chains and a dipole in between. By using the metallic
surfaces as the plates of a capacitor, one should be able to apply a varying electric field to the
central dipoles. Then, by changing the time-constant of the circuit, different protocols can be
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Head group

Substrate

Figure 4.1: Schematic representation of a SAM.

performed always with the same initial and final electric field. The readout of the vibrational
occupation at the beginning and at the end is then performed using infrared spectroscopy.

In order to access the transition probabilities one can proceed as follows. The first spectro-
scopic measurement determines the populations in the initial state. Selecting a sufficiently low
temperature all the populations except for the ground state will be negligible. Therefore, the
measurement of populations at the end of the protocol give access to the probabilities

(ERIU(T)IED) . (4.47)

Then, one can repeat the same experiment at a higher temperature, such that also the first excited
state | E9) be initially populated. The final populations then give access to

(ERIU(D)IED) P + (ER|U (7)) (4.48)

where the second term is already known, and so on, one can reconstruct all the transition prob-
abilities. An interesting feature that one should test experimentally is how many energy levels
are necessary in order to reproduce the Jarzynski equality, valid when considering the whole
spectrum.

Concerning the free energy, this quantity can be independently estimated using EXAFS
(extended X-ray absorption fine structure) techniques [149]. Indeed, one has for a generic para-
metric Hamiltonian H ()

A 1 A Z(N)
/0 dAOVF(N) = 3/ dA 00 =
1

A
-3 /0 ANTHAH(A) o). (4.49)

F(A) = F(0)




70 CHAPTER 4. FLUCTUATION THEOREMS

The EXAFS spectroscopy allows to estimate Tr[0) H () Qf] where \ is, for instance, the dis-
tance between atoms. Therefore, this experimental setup would allow to test the Jarzynski equal-
ity measuring independently the right-hand side and the left-hand side of the equality, namely
the work distribution and the free energy difference.

We are now planning to analyze more quantitatively this experimental scenario by means of
numerical simulations. In particular, the Schrédinger equation can be solved numerically for a
Morse potential perturbed by an external driving. Through this study one can understand how
many transitions are detectable for a certain combination of temperature and electric field and
to what extent the Jarzynski equality is satisfied in this non-ideal situation, when only a finite
amount of transitions is present.

4.2 Open quantum systems

In the previous section the quantum work fluctuation theorems have been presented in the context
of closed quantum systems. In the following, we address the problem of finding similar relations
for generic open quantum systems.

The first attempt is to find interesting relations relying on the reduced dynamics of the open
system only, exploiting its mathematical properties. It turns out that unital time-evolutions play
a special role in this setting and allow to derive a Jarzynski-like fluctuation relation where the
total energy difference replaces work. An alternative approach consists in deriving the Crooks
fluctuation theorem for the open system as a consequence of the theorem for system and bath
together by suitably redefining the free energy [130, 150]. Finally, we present the only way
proposed up to now to distinguish the statistics of work and heat, that consists in measuring both
the system and the environment at the beginning and at the end of the protocol.

4.2.1 Unital evolutions

The reduced dynamics of an open quantum system up to a certain time 7 can be described by a
completely positive and trace-preserving map. A particular case is represented by open quantum
systems undergoing unital time-evolutions. A quantum dynamical map A is called unital if it
preserves the identity operator A[1] = 1. Due to complete positivity the map A admits a Kraus
decomposition

AT =" A()AL (4.50)
l

and the condition of unitality reads ), AlAlT = 1. As in the case of closed quantum systems
one can access the thermodynamics of the open system by measuring the energy at the beginning
and at the end. In general, we can consider a driven open system so that we distinguish the final
Hamiltonian H (7) and the initial Hamiltonian H (0). The two-measurement protocol therefore
goes as follows: a value of the energy EY, which is an eigenvalue of H(0), is detected at the

beginning; then the projected state | E?)(E?| evolves according to the map A up to a certain time
7 when the eigenvalue E], of H(7) is measured. As in the previous Section we can define the
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probability distribution of the energy difference P(u)

= > P (B A ENESAEL,) 6(u — B, + EY). 451)

I,m,n

Proposition 4.2.1. Assuming that the initial state is the thermal state g(ﬁ ) one derives the fol-
lowing Jarzynski-like relation

(e P20 =y | 3™ 4,4] ol

l

4.52)

where the last equality is due to the unitality condition.

Proof. The proof is a matter of straightforward calculation.

<e Bu— AF)> /d’LLP( ) B(u—AF) _

Zy e BEn o
Z - (B | A|EQY(ES| Al B e PER—ER) —

e Pbm T T o7
Z 7 <Em‘AlAl|Em> =

Z AlAzrgs_ﬁ)

l

=Tr

O

Therefore, if the evolution is unital one has ), AZA;r = 1 and a Jarzynski-like equality
holds true for the open system, with the total energy difference replacing work. Indeed, when
the quantum system is both open and driven, one cannot safely distinguish between work and
heat with the two measurement protocol, as can be easily seen calculating (u)

(W) = [ duPluu= 3 o7 ANEDE AL (EF, ~ B2 =

l,m,mn

= Tr[H(7)o(7)] — Tr[H(0)0(0)] =
/ B, (1), (4.53)

Since the evolution is not unitary 9, U(t) # 0; W (t). On the contrary, if we consider the system
open but undriven, the energy change can be suitably interpreted as heat, i.e. 9;U(t) = 0, Q(t).

In order to derive a Crooks-like relation a sort of reversed protocol is needed. When dealing
with unital maps a natural choice is the dual map A

=Y Al()A, (4.54)
l
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whose trace-preservicity is guaranteed by the condition ), AlAgL. By defining the dual proba-
bility distribution Pp ()

Pp(u) = Y plL(EA] EF)EL|A|ES) 6(u — B + EJ,), (4.55)

l,m,n

where p], is the probability to find a value of energy E], in the first measurement of the reversed
protocol, and assuming p? = e #Fm /Z_ one can derive a Crooks-like relation following the
same steps as in the unitary case

Pu) — _gu-ar)
7PD(—u) =e . (4.56)

Fluctuation theorems for non-unitary dynamical maps were investigated in [151-157] and
the peculiarity of unital maps was pointed out in many of them.

4.2.2 System and Bath

An alternative approach is to consider explicitly system and bath and try to derive fluctuation
theorems for some thermodynamic quantities of interest.

This is for instance the approach followed in [130, 150] to argue that the Jarzynski relation
holds also for generic open driven quantum systems, by suitably redefining the free energy.
Indeed, if one considers a driven bipartite quantum system SB evolving in time through the
unitary propagator U (t) generated by the total Hamiltonian H (t) = Hg(t) + Hp + Hgp (notice
the time-dependence only in Hg(t)) the Jarzynski equality holds for SB

(e7Pv) = o7PA, (4.57)
where the free energy difference is the one of the total system

—BH(t)
o PAF _ Trle ]

= e 0 (4.58)

Since the driving acts only on S, the work performed on the whole system is actually performed
on S. This can be seen looking at the average (w)

(w) = / O W (t)dt = / Te[OLH (1) o(t)]dt = / Trg[O Ho(!) 05 (]l (4.59)
0 0 0

Moreover, using a reasoning from classical thermodynamics it is argued that the meaningful free
energy difference for the system S strongly coupled with Bis AFg = —1/8log (Zs(t)/Zs(0)),
where

Z(t)  Tr[e PHW)
ZB N TI‘B[Q_’@HB]'
Indeed, the thermodynamic properties derived from the partition function Zg do not contradict
any thermodynamic law [130]. Equivalently, one can say that the free energy of a strongly

Zs(t) = (4.60)
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coupled open system S is given by the difference between the total free energy F'(t) and the
bare bath free energy F'p (time-independent) [158]

Fs(t) = F(t) — Fg, Fp = —; log(Z). (“.61)

Since the free energy F'p is time-independent, one has AF'(t) = AFg(t) and the Jarzynski
equality for the system S is automatically satisfied as a consequence of (4.57)

(e7Pwy = ¢=FAFS, (4.62)

The free energy Fs(t) is also considered a reliable thermodynamic quantity because it corre-
sponds to the partition function with respect to the so-called Hamiltonian of mean force

e 1 Trple #H®)]

which is commonly used for thermodynamic calculations in the classical scenario, for instance
in reaction-rate theory [159] and in biomolecular simulations [160], and consists in a modified
Hamiltonian for the system of interest that reduces to the bare Hamiltonian in the weak-coupling
limit. The relation between this Hamiltonian and the effective Hamiltonian we have defined in
Chapter 3 can be matter for future work.

In the same framework, that is a bipartite quantum system SB evolving in time through
the unitary propagator U (t) generated by the total Hamiltonian H = Hg(t) + Hp + Hgp,
further investigations have been conducted in order to distinguish the statistics of work from the
statistics of heat. In order to do that, it is assumed to have a certain degree of control on the
bath. In particular, a double measurement of energy is performed at the beginning and at the
end of the process in both system .S and bath B. More explicitly, one measures the observable
Hg(0)+ Hp at the beginning, detecting a value E + EP and the observable Hg(t) + Hp at the
end, detecting the energy £ + EZB . The stochastic variable representing the variation of energy
in the system is u = ET, — E9, that can be associated to the variation of energy in the global
system (in the form of work) minus the stochastic variation of the energy in the bath in the form
of heat up = ElB — E,]f = —q. This approach is not valid in case of strong coupling, because
the contribution of the interaction Hamiltonian has been neglected in the balance of energy.
Following the same argument of the previous Section one can now define a joint probability
distribution for u and ¢, or for w = u — ¢ and ¢, and access the full statistics of work and
heat. This has been done in a series of papers [129, 131, 161-163]. Explicitly, the probability
distributions of work and heat read

P(w) = 3 phpl T (I, @ MU @ UEUH(7)| 6w — 7, + B — BE + EE), (4.64)
w

Plq) = S pPTr [15 @ IEU(r)05(0) & EUT(7)| 6(q — EE + EP) (4.65)

wv
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where IT], = |E7 )(EL |, I = |ES)(ES|, 1§ = |[EF)(EP| and the initial probabilities are
P9 = Tr[[1%05(0)] and pZ = Tr[I1Z 05(0)]. A useful concept developed in those works is the
so called modified Liouvillian. Indeed it is shown that the work generating function, defined as

Gu(s,7) = /de(w)eisw (4.66)
can be conveniently rewritten as
Gu(s,7) = Tr[e®Hs( o7, 5)], (4.67)
where
o(7,5) = Uyya(m)e(0,5)U" (1), Us(r) = U (r)e 02, (4.68)

and the initial condition reads (0, s) = e~*5(0) 5(0). On the other hand, the heat generating
function reads

Gq(S, T) = Tr[z)(Tv S)]v 5(7—7 3) = US/Q(T)Q(O)Uis/Q (T> (4.69)

These relations can be obtained from the definitions of Gy (s,7) and G4(s, ) after straight-
froward calculations. Note that the auxiliary matrices o(7, s) and o(7, s) are not proper density
matrices because they fail to be Hermitian. However, despite lacking a physical interpretation,
they are a suitable tool to describe the statistics of work and heat. In particular, it has been argued
that approximation techniques as the Davies weak-coupling limit can be applied to the dynamics
of the auxiliary matrices in order to reconstruct the full statistics of work and heat [131].

For completeness one has to say that a similar perspective, namely the double measurement
performed both on the system and on the bath at the beginning and at the end of a protocol, has
been recently considered to derive fluctuation theorems for the entropy production [164, 165]
under measurement of generic observables and generic processes [138].



Chapter 5

Conclusion and outlook

The nonequilibrium thermodynamics of quantum systems is the subject of current intensive
research, both from a theoretical and an applicative point of view. Indeed, on the one hand one
is interested in deriving the emergence of the laws of thermodynamics from the microscopic
dynamics of quantum systems, and on the other hand one would like to learn how to build
efficient quantum devices converting thermal energy into useful work. Moreover, the high degree
of control reached in experimental setups like ultracold atoms, optomechanical systems and
trapped ions, allows in principle to test the theoretical results in a laboratory.

A complete framework describing the nonequilibrium thermodynamics of open quantum
systems in the Markovian scenario, namely when there is a clear separation between the time-
scales of system and environment so that memory effects in the dynamics are negligible, was
developed in the late seventies by H. Spohn, J. Lebowitz and R. Alicki, in terms of quantum
dynamical semigroups. In this setting, a reasonable separation between the heat and work con-
tributions to the variation of energy was introduced. Moreover, the positivity of the entropy
production defined in analogy with the theory of Classical Irreversible Thermodynamics could
be proved. Aim of this Thesis has been to analyze situations that go beyond such a standard
framework.

First of all, we have considered effective dynamics for open quantum systems more general
than quantum dynamical semigroups. These dynamics are usually referred to as non-Markovian,
because they describe situations in which the system experiences memory effects, e.g. a back-
flow of information from the environment. We have discussed and compared different definitions
of non-Markovianity in the quantum domain because there is no consensus in the scientific com-
munity yet and we have studied the laws of thermodynamics, in particular the second law, in this
more general scenario. This kind of analysis in not only of theoretical interest because it turns
out that the time-evolution of many physical systems is not correctly described by Markovian
master equations and non-Markovian models are needed to explain an amount of empirical data.

We have shown that the entropy production, defined in analogy with the Markovian case, can
be negative for the class of dynamical maps where the particular property called P-divisibility
is not satisfied. Moreover, when the semigroup composition law does not hold, the asymptotic
state of the dynamics need not be stationary at finite time. In such a case we have shown that, by
choosing an open quantum system that eventually thermalizes at a certain temperature due to the

75
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action of the bath and defining the entropy production by means of this reference temperature,
not only this quantity can be negative but the integrated entropy production can be negative too.

We suggested that these outcomes should not be interpreted as a violation of the second
law of thermodynamics but as an evidence that in a non-Markovian scenario the contribution
of the environment to the balance of entropy must be explicitly taken into account. In order to
justify this position and to better understand the thermodynamics of non-Markovian quantum
systems we changed perspective and considered a generic bipartite quantum system, where the
two subsystems are interacting but initially uncorrelated.

The analysis of the thermodynamics of a generic bipartite quantum system has been per-
formed in order to highlight the role of a non-ideal environment, experiencing non-standard
effects due to the finite size and the correlations established between the systems. In this situa-
tion the reduced dynamics of the system is typically non-Markovian.

As a first step, we defined a suitable effective Hamiltonian for both systems using physically
reasonable requests. Then, by means of this effective Hamiltonian we distinguished between
heat and work according to the usual relations proposed already in the seventies, but this time
for both system and “bath” (second subsystem). A contribution to the balance of energy remains
defined that cannot be associated to a subsystem but can be accessed only by global measure-
ments. We called this contribution, that strongly depends on the correlations established between
the systems, binding energy.

Concerning the balance of entropy, we showed that the sum of the entropy variations at finite
time in both subsystems is always nonnegative. This could be interpreted as the most general
statement of the second law of thermodynamics because it holds provided that the initial state
is factorized. However, such a quantity is not monotonically increasing in time. Therefore, we
showed that this statement is in general not equivalent to the positivity of the entropy production
as defined in the seventies.

We also analyzed in detail two different possible definitions of nonequilibrium tempera-
ture. It turns out that none of them is completely satisfactory. The first one, called pseudo-
temperature, has been proved not to reduce to the standard equilibrium temperature in a simple
example. On the other hand, the so-called extended temperature reproduced correctly the ex-
pected phenomenology in the analyzed examples but suffers of an intrinsic arbitrariness in more
general situations.

In the last part of the Thesis we concentrated to generalization of the standard thermody-
namic description in a different sense. In particular, we have reviewed some results known as
fluctuation theorems that extend the analysis of thermodynamics beyond the average values of
observables, in principle to fluctuations of any order. They have been first derived using clas-
sical mechanics by C. Jarzynski and G. Crooks and then generalized to the quantum domain.
The study has been conducted analyzing separately closed quantum systems and open quantum
systems. In the first case the theoretical framework is almost settled while the situation is still
developing for open systems.

We sketched the proposal of a possible experimental test of the quantum Jarzynski equality in
closed quantum systems, specifically in ensembles of diatomic molecules where the vibrational
degree of freedom is coupled to an external electric field. In order to get a high degree of
control on this physical system we imagined to construct an ordered structure by means of
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self-assembled monolayers. We are currently planning to simulate the physical process solving
numerically the Schrodinger equation with the Morse potential modified by an external driving,
in order to get more precise expectations about the outcome of the experiment. Unlike other
experimental tests already performed in different physical systems, our setting should allow to
estimate independently both sides of the equality, namely the work distribution and the free
energy difference. In particular, the estimate of the free energy can be done using EXAFS
techniques.

In the open system scenario we reviewed some important results that could allow further
development in the future. In particular, a transient fluctuation theorem exists concerning the
fluctuations of heat and entropy under unital dynamics, that are dynamics preserving the iden-
tity operator. It is not clear whether similar results could be obtained with other dynamics or
for different thermodynamic observables. The experimental investigation of fluctuating ther-
modynamic quantities in open quantum systems should help in understanding if some more
general results can be expected or not. For instance, the protocol proposed in Chapter 4 with
self-assembled monolayers could be used to test the Jarzynski equality also in the open sys-
tem scenario. The hypothesis of performing work on isolated diatomic molecules is due to the
electric field varying on a faster time-scale than the typical relaxation time of molecular vibra-
tions. This characteristic time can be modified by increasing the concentration of thiolates in the
experimental setup.

Summarizing, in this Thesis the behavior in time of average thermodynamic quantities like
heat, work and entropy production has been analyzed in the non-Markovian setting. First of all,
we have taken a phenomenological approach, postulating non-Markovian dynamical maps for
the system of interest; then we changed perspective and considered explicitly the environment
in the balances of energy and entropy. Moreover, a review of the results known as quantum fluc-
tuation theorems has been presented, proposing an experimental test for the quantum Jarzynski
equality that, differently from the existing proposals, allows in principle to test both sides of the
equality independently. Despite these important achievements, many open questions remain for
future work.

A fundamental topic which deserves further investigation is the microscopic description of
heat conduction in a chain of interacting particles with boundaries at different temperatures. The
framework described in the first Chapter is able to reproduce the direction of heat fluxes from
the whole chain to the different baths, satisfying the second law of thermodynamics, but does
not account for the local equilibrium and the Fourier law along the chain. This issue is strictly
related to the discussion about the differences between the local and global generators that, as
already mentioned, is matter of current intensive research.

An open question is how much quantum mechanics enters in the description of thermody-
namics. Indeed, as shown in Chapter 3 the definitions of heat and work for a generic bipartite
system can be equivalently given in the classical and in the quantum domain. Therefore, a di-
rection for future work could be to understand what is the role of quantum correlations, e.g.
entanglement, in the thermodynamic balances. More in general one is interested in finding
purely quantum effects in quantum thermodynamics.

Another interesting theoretical issue is the description of equilibration and thermalization in
closed quantum systems. In particular, despite some recent important results, the estimate of the
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thermalization time-scales from the properties of the Hamiltonian is still very challenging. A
step forward in this analysis could complement and strengthen the statement of the second law
based on the finite variation of entropy in both system and bath.

Some useful hints could arrive from the experiments. Indeed, experimental setups such as
ultracold atoms and optomechanical systems can be used to test thermodynamic laws at the
microscale and possibly the connection between different scales. The realization of efficient
quantum thermal machines should be also based on these systems. An amount of important
theoretical results have already been found in this direction but the technological improvement
related to efficient quantum devices is still at the beginning. The realization of our proposed
experiment with self-assembled monolayers fits into this discussion. Indeed, it could allow
to test the Jarzynski fluctuation relation and understand how much the result is robust in the
open system scenario so that small quantum systems undergoing nonequilibrium work protocols
could be used, for instance, as thermometers. Numerical simulations of this experimental setting
would be the preliminary step in this direction.



Appendix A

Example 1

A.1 Sign of the entropy production rate

From Eq. (2.38) it seems that the sign of o; depends both on ~y(¢) and on the sign of the ex-
pression within square brackets. In this section we prove that the latter is always positive. Let’s
rewrite the entropy production rate in the convenient way

= ~(t) coth(Bw/2)e 'V [A + B 4 (], (A1)
where
) :xQ(OA)L;ZtZ)}Q(O) G ! :g ) (A2)
520 +2IZ(<>O)| <1 Lo ;) (A3)
o -0 +2|:((to)o)l)2(t) log G - :8) , (A4)

Notice that A is always nonnegative while B and C' can be either positive or negative. We show
in the following that A + B + C' is nevertheless positive, distinguishing different situations.

1. If 2(0) 4 |z(00)| < Othen z(t) < —|z(c0)| since z(t) + |z(c0)| = e 2L (2(0) + |2(c0)|)
and
r(@)| = [2(t)] = [2(00)] = r(0). (A.5)

Therefore, B + C > 0 since

o (250) o (20):
< r(0tog (15125 ) = rteeptog (1554 ) <0,

where the last inequality holds true because the function

) = 1o (152).

79




80 APPENDIX A. EXAMPLE 1

is monotonically increasing for 0 < =z < 1. This can be seen from the first derivative

1 2 1
F =z oo (152

that is always positive because

9 2z 2+ z2-—2 23
— |log(1 — |log(1 —z)| > -3 ) - 20
22 |log(1 + )| — | log( 33)’—1_3:2 214+ 21—-2 1—22"

where the following inequalities have been used [166]

2z r2+x 2z r2—x
— < |log(1 < — < llog(1l — < = .
2+gc_log( +~’v)|_21+x, 5 <lleg(l—2)[ < 57—

2. In the case z(0) + |z(o0)| > 0 we have to distinguish different situations.

e First of all, if z(¢) > 0 then B and C' are both positive.
< z(t) < 0and r(t) < r(co), then B + C is positive because

«(125)- S )

e Ifinstead —|z(o0)]

e The last possibility is —|z(c0)| < z(t) < 0 and r(t) > r(o0). In this case B is
positive and the following inequality holds true

22(0) + y*(0) > (|2(00)| — 2(£))(2(0) + |2(c0)[) > 0.
As a consequence, A + C > 0:

2%(0) +y(0) — 2|2(#)|(2(0) + |2(c0)]) >
> 2%(0) + y(0) = (|2(00)] + [2(H))(2(0) + [2(c0)]) = 0.

Summarizing, the expression in square brackets A + B + C' is always nonnegative and the sign
of the entropy production rate is only determined by (¢).

A.2 CP conditions

In a recent paper [106] the authors presented the necessary and sufficient conditions character-
izing complete positivity for a qubit dynamics of the form:

i0(t) = Lalott)) = —iwo(®)lo=, o))+ " £afo(e))+ 2D £ofot0))+ A £5f0(1), (a6)
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where the following dissipators £; are considered

Lalot)] = ovo(t)o- — o0 0(t)}, (AT)
Lolet)] = o-o(t)o — o0 0lt)}, (A8)
L3lo(t)] = o.0(t)o. — o(t). (A.9)
Explicitly they read
0<e WG +1]<1 (A.10)
0<e TG <1 (A11)
e TO-XO 2 1) < e TOGM)[1 — e TOG(t) + 1]] (A.12)
e TO—2L(®) g2 Qt) < e TOGE) +1][1 — e TOG(@)], (A.13)

where the quantities I'(£), ['(t), Q(t), G(t) are defined as follows

()= [ dsbi(s) + ()72 (A1)
f(t):/otdmg(s), (A.15)
Q(t)—/otds&u(s), (A.16)
G(t) —/Otdsef(s)w(s)/z (A.17)

In our example we consider v3 = 0 and 1 (t) = ¢ - y2(t) where c is a positive constant. As
a consequence it turns out that I'(¢) = 0 and

r(o = 5 [ dsnate),

— s 7dF — 7d () = = qo'® _q1.
G(t) /0 dse . (s) p 1/0 ds Se p 1[e 1]

Therefore, one can write

At) =e TOGH) +1] = ﬁ[l —e TO] 4T = Ce;j:)fl (A.18)
B(t) =eTWG(t) = 1_61_;“) (A.19)
C(t) = B(t)[1 — A(t)] = W (A.20)
D(t) = A1 — B(t)] =T 4 di-emop (A21)

(c+1)2 7
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and consequently

0<A(t) <1aD(t) >0, (A.22)
0<B(t)<1&T(t) >0, (A.23)
—eTWsin2Q(t) <0< (1), (A.24)
e T®Weos?Q(t) < e '® < D(t). (A.25)

This calculations show that in our example the necessary and sufficient conditions for complete
positivity correspond to I'(¢) > 0V¢.



Appendix B

Thermalizing qubit

B.1 State of the system

Here we obtain the exact state of the total system up to the second order in the interaction

coupling A. After calculating the interaction-picture Hamiltonian fli(n);)(r) U, T(t)H Ny Uo(t)

int

. . ~ it qe BN
and the corresponding evolution operator U)(t) = Te % Jo 45 Hiui () one can read the state of
the combined system from

as

o0 (t) = Uo(1)Tx (1) 055 (0)TL ()T (¢) (B.1)

o5 (1) =08 (1) + 3{ 70 (D)7 D 1fel? e, 7) 2 (e, B)+

k
+ o0 a+Z|fk\ In(wo, w, )| (7w, B) + 1)

_Z|fk| (Uk, )(§ (WO,Wk,Wk,t) Q‘(S')(t)OAFO',—i—

+ &(wo, Wk, Wk, t) 00— Qfg)(t))

= S el B) (€ (o, wo s 1) 0 (B0 +
k
+ € (o wh w00 0 (1)) |+ OONP), (B.2)
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and similarly for bath B,

o (1) =g, +iA(Trlos(0)o-] e sz *(wos wis t) [0, 2]
+ Tr[os(0)o wotzfm o, ok, ) [0, 2] )

+ A2 (TF[QS(O)U—U+] Z {fkfk/ 0" (wo, w, t)n(wo, wiv, £) ax. 0 al,
kK’

— fr € (wo, wir, Wy t) R w’“/)a akQ%

— f]:/fkf(wo, Wk, Wy t) e—i(wk—wk/)t B aT ak/}

+ Trlos(0)ors - 3 { fufio n(wo, wrs 0" (wo, i, £) af 0 an

kk!
— [ fu (w0, wir, wiy 1) €T gy al o)
- fk/fk§ (wo’wk’ Wk, t) e (W —wp )t Qﬁ akak/}) + O()\3) (B3)
where
t .
n(wo, Wk, t) —/ dse’(“’o_“’k)s, (B.4)
0
¢
§(wo, Wiy, Wi, 1) :/ dsy @O (o 1), (B.5)
0

7(w, B) shows the Planck distribution or the mean quanta number in a mode with frequency w
[equation (54) of the main text], and Q (t) = Ug(t)os(0 )Ug (t) is the unperturbed state of S,
in which Ug(t) = e~""Hs (with Hg = wyo. /2) is the free-system evolution.

In the continuum-w limit, Y, — [ dw, we can find the dynamical equation of Q( )( t). We
differentiate the continuum version of equation (B.2) in which we take ¢ — oo in the integrals
of the RHS (long-time limit). In the long-time, weak-coupling limit we have ¢ — oo and A — 0
such that A’ = const. This differentiation yields the Lindblad-type equation of the main text.

B.2 Calculating thermodynamic properties

Using the following notation for the states of the system and the bath:

o () = o (1) + A202 (1) + O(N3), (B.6)
o (1) = o + 2o (1) + X262 (1) + 0N, (B.7)

the effective Hamiltonians of S and B can be computed up to O(\3) as
int

HED(t) = Hs + ATeg o) (1) HGY| = dasTe [o () @ o) 0 B[, ®8)

HED (1) = Hp + Tes [0 (1) HYY| — dapTr [of) (1) @ o) () HY] (B.9)

int int



B.2. CALCULATING THERMODYNAMIC PROPERTIES 85

We obtain
¢
Trp [Qg)(t) Hi(rﬁ)} = QAZ | fe|? (igm O’/O ds ewrtgilwomwr)s | h.c.> :
k

TI‘S [Qg) (t) Hi(rf;)} =2 Z (f,;kgmei“’otak + h.C.) =i )\H(Bl)(t),
k
— cos[(wo — wi)t]

(wo — wr)

1
Tr 0§ (1) @ oy (6) Y| = 8N o1l D 1l
k

where “h.c.” denotes Hermitian conjugate. The energy of the bath then becomes up to the
leading order in A

Ul () = Tr o () HE (1)] =
~ U+ X (—apTr [of HY ()] + T [0 1) HY ()] + T [o (0 Hp] ), (B.10)
which gives
2,0 () = 8,Qp(t) + B, Wp(t)
~ 0% (Tr [dofy (8) Hp| +Tr 010 (6) H ()] +
+ Tr [9591)@) 3tH§)(t)} —apTr {g% o,HY (t)]) . (B.11)

After some straightforward algebra we can see that

Tr {atg;?) (t) HB} = 8 [(7(wr, B) + 1) 000 — Ti(w, B)on] x

x ; |fk|2w0°i—’“wk) sin(wo — wi )], (B.12)

Tr o (1) 9 H (1) = Sloro Y |fk|2(w0°j—0wk) sin(wo — wi )1, (B.13)
i k

Tr (9,01 (t) Hg)(t)} = —8lo10*> |f’“|2(wow%wk) sin[(wo — wi)t], (B.14)
i k

Tr :Q% 8tH1(32)(t)} = 8low[* Y _ |fl* sinl(wo — wi)t]- (B.15)

k

Hence

atUg)(t) ~ 8)* Z | fi|? sin(wo — wi,)1] {910|2(1 —ap)+
k
_ Wk
(wo — wk,)

[(7(wr, B) + 1) 000 — Tilwr, B) 011 } : (B.16)
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For the entropy we have
8,535;‘)(75) —Tr [&Q )(t) log QB] Tr [8 05 )(t) (log gg‘) (t) — log Q%)] , (B.17)

where the first term has already been computed up to leading order in ) as
—Tr [8,5@( )( t) log Q’BB] ~ \2BTr [@QB)(t) }

P80 (1 0) + 1) oo — s B)on | DD T s sinl(en — wi)r]. B18)
k

(wo

In order to evaluate the second term of equation (B.17) we only need to take care of the contri-
butions of order A\. We use the following integral form for the logarithm of an operator [167]:

logA:/Ooodm [14{95 —(a:I+A)_1], (B.19)
to obtain
logg( (t) — log 0%, :/Ooodx [(mIJrQ%) ! (JJI+Q()\)< )~ }
=)\ /OOO de (21 + o) " o (1) (I + o) T + O(N?),  (B.20)
where we have used the identity [167]
(A+B) ' =A"1-A"'BA' + A7'BAT'BA™! — O(B?) (B.21)
to write
(a1 + 09" ) " = (@I + ) "+ (2l + 0f) ! (o — 0} (1) (@ + o) T+ O

and equation (B.7).
To ease notation, we introduce O; = af(h;) — a(h¢), with

a(h) = 19102 fre"stn(wo, w, t) ar,

where we have followed the shorthand introduced in the main text to define the vector h; =
{hi(t)}, with hy(t) = —ig}, fre™“*tn*(wo, Wk, t). Thus we can rewrite gg)(t) as

0% () = [0r, o), (B.22)
whence

—Tr [8169( )( t) (10% QB)(t) — log Q%)} B

— 2 /0 da Tr [[&Ot, o5 (eI + 03) M [0, o) (I + g@)‘l} +O(\}).  (B23)
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Considering the spectral decomposition Q% =, n)(n

Tr [[@Ot, Q%] (= + Q%)_l[otv QBB] (] + Q%)_l] =
2

= — n m)(m|O¢|n (rn = 1m)
== " (n|0:0m) (m|O| ) eI (B.24)

n,m

which yields

/ da Tr [[atot, o) (zI + %) ' On, o) (=1 + @%)71} =

0
=> (1w — rn)log:—n (n]9,O4|m) (m|Oy|n) (B.25)

=Tr |:QB ([Ot, log QB] 0:0; + [@Ot, log QB] Ot)}
=28y wi Re [hy(t) 0ehi (1))
k

:85|910!2 ; |fk|2ﬁ sin|(wo — wg)t].

Thus, noting equation (B.17), we obtain up to order \?

Wi, Sin — wg)t
a0 = 8% S IS (k9 4 1n ek Bens ol
(B.26)
Now, combining equations (B.16) and (B.26), the pseudo-temperature T](;) (t) reads as
A
T AUR0)
B (t) - \)
dS5°(t)
N S 22l ) 200 (g, — wp) + wol ©27
g Dok |fk|2W [(n(wkm@) + 1) 000 — T(wg, B)o11 — |Q10\2}

If we go to the continuum-w limit, take the ¢ — oo limit, and use the identity

lim sin(zt)

t—o00 ™

= (), (B.28)

we obtain

[ (w0, B) + 1) 000 — w0, e

™| =

t—o00

[(ﬁ(wo,ﬁ) + 1) 000 — T(wo, B)o11 — |910|2}

|lo10]?

. B.29
n(wo, B) (000 — 011) + 000 — |010|2} ( )
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Let us now study system S. Since we are interested in thermalization we consider the solu-
tion to the Lindblad equation (3.40) in Chapter 3, which is given by

Mgy L 1+2(t) =) —iy(t)
'O=3| srint) 1-(0) } ! (B.30)

(t) —iy(t) = (2(0) — iy(0)) e~ woi=71/2 (B.31)
(t) +iy(t) = (z(0) + iy(0)) e™ot /2 (B.32)
2(t) = 2(0)e™ 7 — tanh(Bwo/2) (e—%— 1) (B.33)

where 7 = ~ coth(Bwo/2) and (z(0), y(0), 2(0)) are the initial components of the Bloch vec-
tor. We can explicitly compute 9;5¢ g (t) using the eigenvalues of g( )( t), that read (1/2)(1 +

VaR(t) + y2(t) + 22(t) ). as

Ny — o 14+ /22(t) + y2(t) + 22(t) " .
OSg"(t) = 21g<1—\/x2(t)+y2(t)+22(t ) (\/ 2(¢ )+ 2())

Ly (VPO PO 20 320 +20) — =) — 0
L= /2(0) + y?(0) + 22(5) VRO A0 20

(B.34)

2

The energy of this system up to order A2 is

U (1) = o (0 HE (1)

= 7Tr {gg‘) (t)az] +A(1—ag) (Tr [Qfg)\)(t)0+} Tr [Qg)(t)a(f)}) +

+A(1—-ag) (Tr {gg’\)(t)a,} Tr [Q%\)(t)aT(f)D =
w00 4202 (1 — ag) (22(0) + 2O S [ oMo Zenl] -y 5
k

(wo — wi)

where we used equations (B.31) for ng)\) (t) and Qg\)( t) = QB + /\Q (t) + O(\?). Recalling
equation (3.44) of the main text, the expression above can be differentiated as follows:

oS () = = e (coth(Bun/22(0) +1)+

+ Zr%( O;%)( 2(0) + 42(0)e 7Y | fil? sin[(wo — wi)t] =
k

w—continuum _ 776_%<C0th(,3a)0/2)2(0) + 1>' (B.36)
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As a result, the inverse pseudo-temperature becomes

LR T (1 +/72(t) + o2(t) + z2(t)) y
™M@ 2 1= /22(t) + y2(t) + 22(t)

§ coth(Buwo/2) (%(0) + y2(0) + 2(t)  coth(Bwn/2)2(0) +1)

x ‘ . (B37)

V(0 +y2(0) + 2(2) (wo/2) (coth(Buwo/2)2(0) +1)
which yields
. o (2%(0) + y*(0)) coth(Buwo/2)

A Té}\) (1) N [1 B 2(2(0) + tanh(Buwo/2)) } ' (8-38)

Thus, similarly to the case of lim; o TJ(B’\) (t), in this case too the pseudo-temperature Té’\)(t)
behaves as expected if there is no initial coherence (019 = 0, or equivalently, 2:(0) = y(0) = 0).






Appendix C

Dephasing qubit

If we expand Q( )( t) = QB + )\g(l)(t) + )\29592)(75) + O(\3), we obtain
o5 (1) =(02)s | Y (ge (D), - gi(Dan), 0] 1
k
o (1) =(1/2{ D (9e(t)a] - giar) (g1 (e, — g (Daw). o }

kk'

- Z ge(t)al, — gi(ar) o > (gw (), — g (tar). (C2)

k,/
Since we need to compute the entropy S ( ) = Tr[g B (t) log Q(’\)(t)], we shall need to
calculate log g( )( t) up to O(A3). In order to do so, we use the following identity [167]:

log(Ag + AA; + A2 Ay) = log Ag + A/ dz (Ag +xI) 1Ay (Ag + )™
0

— AQ/ dz [(Ao +al)PA (Ag + D) A (A + D)7t
0
— (Ao + a0) 7 Ay (Ao + 20) 1| + ON)
=: Lo+ AL1 + ALy + O(\3). (C.3)
Replacing the terms of Q (t) in equation (C.3) yields

= log QB, (C4)

Li(t) = B{ox)o > wi(ge(t)a) + gi(t)ar). (C.5)
k

$5)(0) = = Te[ (o + Aol (1) + A0l (1)) (Lo AL () + A Lo(1)) | + O(N)
— — Trlgf Lo — A(Trloh i ()] + Trlofy (1) Lo

— 22(Tuloh La(t)] + Tr[ggm)];l(t)] +Trlof (L)) + O (CO)

91



92 APPENDIX C. DEPHASING QUBIT

From this relation we obtain up to order \?
i85 (1) = — A(Tr[o} Ly (1) + Trldroy () Lol ) — A2(Tr(of} O La(0)
+ Te[0n0}) (8) L1 (1)) + Trloly) () O La(8)) + e[} (1) Lo] ). (€7)

This expression has some irrelevant (i.e., vanishing) terms. This can be seen through the identity
08(t) = —Tr[0;0log o], from whence

018 (£) = = XTr[droly (1) Lo] = A2(Trfdholy (1) Ly ()] + Tefdnelf (8) Lol ). (C8)

One can see from the identity Tr[[A4, B]f(B)]| = 0 (for any A, B, and function f) that here

(C.1), (C4) 0

Te[9;0% (1) Lo] (C.9)

Thus equation (C.8) reduces to

0SE)(t) = —N*(Txlnely (6) Ly (0] + Trldnofy (1) Lal ).
= 48BN (1 — (02)%) DA (). (C.10)
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