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This paper proposes a numerical model capable of predicting the mechanical behaviour and the failure me-
chanism of typical wall-to-floor connections for Cross-Laminated Timber structures. Such systems are assembled
with angle brackets and hold-downs, anchored to the wall and floor panels with profiled nails and bolts. The
metal connector and the elements to which it is fastened are modelled using 3D solid bodies, while the steel-to-
timber joints are simulated as non-linear hysteretic springs. Shear and tension tests are reproduced on two
connection systems and results are compared to the test data obtained from similar configurations. Simulations
lead to accurate predictions of the mechanical behaviour (i.e. elastic stiffness, maximum load-carrying capacity,
and shape of the hysteresis cycles) and energy dissipation. Finally, the performance when lateral and axial loads
are applied simultaneously is investigated. Analyses are carried out by varying the inclination of the load, with
respect to the axis of the connector, between 0° and 90°. Results exhibit a quadratic interaction relationship
between shear and tension loads, and prove that their coupled effect influences the stiffness and the maximum

load-carrying capacity.

1. Introduction

As a structural product, Cross-Laminated Timber (CLT) exhibits a
high in-plane stiffness and a linear-elastic behaviour with tendency to
fail with brittle mechanisms (except for compressive stresses).
Therefore, mechanical connections between CLT walls and floor panels
represent the ductile zones of CLT structures, supplying the strength,
stiffness, and energy dissipation under seismic conditions [1].

The mechanical behaviour of wall-to-floor connection systems for
CLT structures has been the focus of several research projects. Shear
and tension tests have been carried out on different types of angle
brackets and hold-downs, varying the geometry of the connectors and
the number of nails [2-6]. Recently, tests have been performed under
the simultaneous application of lateral and axial loads, highlighting
that the coupled shear-tension action affects the stiffness, the load-
carrying capacity and the energy dissipation [7,8].

The increasing use of CLT for the construction of mid- and high-rise
structures (the so-called ‘tall buildings’) requires connections with ex-
cellent mechanical properties and large ductility ratios. However, the
outcomes of past test programmes highlighted some inappropriate
failure mechanisms that might limit the application of the metal

connectors currently available on the market. In particular (Fig. 1): in
connections with angle brackets, (a) withdrawal of the nails connected
to the floor panel or (b) pull-through of the anchoring bolts; (c) in
connections with hold-downs, tensile failure in the net cross-section of
the metal flange. Such failure mechanisms might be associated to an
incorrect design of the steel-to-timber joints and could be prevented by
over-strengthening those parts of the connections [9].

Improving the mechanical performance of the connection systems
currently available on the market and developing new solutions is an
expensive and time-consuming procedure, requiring consideration of
several factors (e.g. thickness of the metal member, nails number and
position, anchoring) and loading cases. Therefore, to limit the need of
experimental tests to a minimum, great effort should be devoted to
develop advanced numerical models capable of extending the data
available to other situations of interest.

This paper proposes a numerical model capable of predicting the
mechanical behaviour and the failure mechanism of typical wall-to-
floor connections with angle brackets and hold-downs. The metal
connector and the panels where it is anchored are modelled as 3D solid
bodies, while the nailed steel-to-timber joints are simulated as non-
linear hysteretic springs with a UEL (User Element Subroutine) taken
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Fig. 2. Annular-ringed shank nails (reproduced from Izzi et al. [9]).
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Fig. 1. Inappropriate failure mechanisms at the connection level: (a) withdrawal of the
nails connected to the floor panel; (b) pull-through of the anchoring bolt, and (c) tensile |
failure in the net cross-section of the metal flange (courtesy of CNR IVALSA and d C.

University of Trento, Italy).

Fig. 3. Failure mechanisms of a nailed steel-to-timber joint with a thick metal plate
from Rinaldin et al. [10]. Shear and tension tests are reproduced on two (adapted from Flatscher [40] and Hilson [13]).
connection systems and results are compared to the experimental data
obtained from similar configurations. Finally, the mechanical

Table 1
Material parameters for Norway spruce (Picea abies), taken from Fortino et al. [12].

Er [MPa] Er [MPa] E;, [MPa] vrr [-] vre, [-] v, [-] Ggrr [MPa] Gg;, [MPa] Gr. [MPa]

600 600 12,000 0.558 0.038 0.015 40 700 700

Symbols: E for elastic modulus, v for Poisson’s ratio and G for shear modulus. Subscripts: ‘R’ for radial, ‘T’ for tangential and ‘L’ for longitudinal to the fibres direction.
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Fig. 4. Load-displacement response of a nailed steel-to-timber joint according to (a)
Method I, (b) Method II, and (c) Method III.

performance when shear and tension loads are applied simultaneously
is investigated. Analyses are carried out by varying the inclination of
the load, with respect to the axis of the connector, between 0° (i.e. only
tension) and 90° (i.e. only shear). All the simulations are performed
using ABAQUS software package [11].

2. Model description

The metal connector and the elements where it is anchored are
modelled as 3D solid bodies, meshed with cubic elements with reduced
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integration (C3D8R [11]). The CLT wall and the floor panel are in-
troduced into the analysis to account for the surface-to-surface contact
interaction and do not influence the behaviour of the metal connector.
Therefore, to limit the computational effort required by the simulations,
only the top 10 mm thickness of those elements are modelled.

The anchoring device has an elasto-plastic isotropic behaviour with
Young’s modulus equal to 210 GPa and Poisson’s ratio set to 0.3. The
proof and ultimate strength of the steel material depend on the con-
nector being analysed and cannot be set a priori. In this study, those
strength properties are defined based on the information given in the
European Technical Assessments (ETAs) of the devices considered in
the simulations. Further details are given in Section 5.

The CLT wall is modelled as orthotropic elastic, with material
parameters taken from Fortino et al. [12] (Picea abies, see Table 1). The
floor element can be either a rigid foundation (a steel profile or a
concrete basement over which the ground floor is assembled) or an-
other CLT panel (an intermediate floor). In the first situation, an elastic
isotropic material is used with Young’s modulus equal to 210 GPa and
Poisson’s ratio set to 0.3, while in the second situation the same ma-
terial parameters of the CLT wall are adopted (Table 1).

The nailed steel-to-timber joints are simulated as two-node non-
linear hysteretic springs with three degrees of freedom. Two displace-
ment components simulate the shear response in parallel and in per-
pendicular to the face lamination of the panel. The third one represents
the withdrawal behaviour of the nail under axial actions. Each spring is
pinned onto the metal connector (at the nail cap location) and onto the
external surface of the timber element (at the nail point location),
where the boundary conditions of the model are applied.

The displacement components that simulate the shear response of a
nailed joint are coupled by means of the force-based strength domain
with quadratic interaction given in Eq. (1).

2 2
Foei + Fooe
g g

In the expression above, F is the yield load of the joint, while Fy;
and Fy,°,i are the shear loads in parallel and perpendicular to the face
lamination of the panel at the i-th analysis step. Further information on
this quadratic interaction relationship and how it affects the response of
the non-linear springs are given in Rinaldin et al. [10].

VA

@

3. Mechanical properties of nailed joints

Nailed joints in CLT structures are assembled using annular-ringed
shank nails (see Fig. 2). Compared to traditional nails with smooth
shank, the threaded shank increases the withdrawal capacity, while the
conical-shaped cap enhances the clamping to the metal plate and en-
forces a ductile failure mechanism with two plastic hinges (see Fig. 3c).

In this study, the mechanical properties of the nailed joints are
determined according to the calculation models published in literature
[13-16]. Furthermore, results are combined with the prescriptions in-
cluded in the ETAs of nails currently available on the market [17,18].

3.1. Shear capacity

The shear capacity of laterally loaded joints with annular-ringed
shank nails (F,) is the sum of two contributions. According to Eq. (2),
the first term denotes the lateral dowel capacity of the nailed joint (Fy),
while the second term represents the ‘rope effect’ and is equal to 50% of
the withdrawal capacity of the nail (Fy).

F, = Fiat + 0.5F (2)

Nailed joints subjected to shear loads exhibit the so-called ‘rope
effect’ due to the withdrawal of the deformed fasteners from the timber
panels [19]; as discussed by Izzi et al. [20], this effect is usually acti-
vated once a joint attains its lateral dowel capacity Fp. In such
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Fig. 5. Hysteretic behaviour of a nailed steel-to-timber joint (adapted from Flatscher [40]).

situation, higher lateral displacements cause the shank to slip over the
crushed timber; consequently, the axial displacement of the fastener
generates a force in the direction of the shank axis, which increases the
shear capacity of the joint.

In Eq. (2), the contribution due to the rope effect is determined
according to the design provisions included in the ETAs of Rothoblaas
[17] and Simpson Strong-Tie [18] nails. It must be noted that the cal-
culation model prescribed in Eurocode 5 [21] for joints with smooth
nails is similar to Eq. (2). However, the standard sets the rope effect to
0.25F,, and some limiting factors are introduced to avoid relying on the
withdrawal of the fastener. In particular, the rope effect for smooth
nails is limited to 0.15F,; while for other nails it is increased up to
0.5F .

The lateral dowel capacity of the joint (F},) is defined based on the
European Yield Model, originally proposed by Johansen [22]. The
analytical model adopted in this study (Eq. (3)) was developed by
Hilson [13] considering a nailed steel-to-timber joint with a thick metal
plate. According to Eurocode 5 [21] the situation of ‘thick plate’ is at-
tained when the thickness of the metal plate is greater than or equal to
the diameter of the nail. However, as discussed by Izzi et al. [9], the
conical-shaped cap enforces a ductile failure mechanism with two
plastic hinges also with thinner plates and Eq. (3) is used regardless the
thickness of the metal sheet.

futd (a)
Fiu = min | 2+ 251
20 M fd © 3

In the expressions above, d is the diameter of the fastener, f; the
pointside penetration depth, while My and f, represent the yield mo-
ment of the nail and the embedding strength of timber. The equation
giving the lowest lateral dowel capacity identifies the failure me-
chanism (Fig. 3). Eq. (3a) is associated to a mechanism where there is
only embedding of timber and the fastener behaves as a rigid element.
Egs. (3b)—(3c) describe two failure mechanisms in which the yield
moment of the fastener is attained (with one and two plastic hinges)

together with the embedding of the timber around it.

The yield moment of the nail is defined as the plastic moment ca-
pacity of the circular cross-section (Eq. (4)); in the expression below,
the symbol f, denotes the yield strength of the nail, determined ac-
cording to Eq. (5) [16].

1
My = g’ @

f, = 11504703 5)

The embedding strength of timber is calculated as shown in Eq. (6),
where p stands for the average density of timber [15]. Generally, the
embedment behaviour of timber depends on the relative orientation
between applied load and grain direction [23-26]; however, differences
can be disregarded if d is smaller than 8 mm [27,28].

= 0.10pd=03 6)

Finally, the withdrawal capacity of a nail F, is determined ac-
cording to Eq. (7), where Iy, is the threaded length of the nail shank
[14].

Eyx = 0.155008d06]y @

3.2. Slip modulus

The slip modulus of laterally loaded nailed joints is predicted based
on the calculation model included in Eurocode 5 [21]; such model was
originally developed by Ehlbeck and Larsen [29] for a nailed timber-to-
timber joint. Based on mechanical relationships (see, e.g., Flatscher
[30]), the standard suggests that the slip modulus of a similar steel-to-
timber joint may be doubled up, leading to Eq. (8). It should be noted
that tests carried out by Izzi et al. [9] on single fastener joints proved
that Eq. (8) overestimates the experimental slip moduli and suggested
that the assumption of rigid plate, which is the basis for doubling the
stiffness, might not be valid at low load levels.

o1-5d08
30

Kger =2
(8
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Fig. 6. Comparison between experimental and numerical results of a nailed steel-to-
timber joint loaded (a) in parallel and (b) in perpendicular to the face lamination of a CLT
panel (with close-up on the history of total energy).

Table 2
Experimental setups of the connection systems tested by Casagrande et al. [6].

Metal Wall element Floor element Wall Floor
connector anchoring anchoring
TTF200 CLT panel CLT panel 30 nails 30 nails
(p = 480kg/m®)  (p = 480kg/m®) (4 x 60) (4 x 60)
WHT620 GLT panel Steel foundation 52 nails 1 bolt (@20)
(p = 420kg/m>)  (rigid) (4 x 60)

4. Load-displacement response of nailed joints

This section describes the mechanical relationships used to sche-
matize the shear response of a nailed joint. Because tests of single and
groups of nailed joints showed slightly different load-displacement re-
sponses, such behaviour is schematized according to three methods
(Fig. 4). The first one (labelled ‘Method I’) uses a bilinear relationship
with a plastic plateau. The second method (labelled ‘Method II’) em-
ploys a bilinear relationship with a hardening branch. Finally, the third
method (labelled ‘Method III’) adopts a trilinear elasto-plastic re-
lationship.

As discussed in Section 2, the third displacement component of the
hysteretic springs models the withdrawal behaviour of the nail. Because
the rope effect has been already accounted into the shear components

Engineering Structures 162 (2018) 270-282
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Fig. 7. Schematics of the connection systems reproduced in the simulations: (a) shear test
of the TTF200 and (b) tension test of the WHT620.

(see Eq. (2)), this contribution is activated only under pure axial loads.
Consequently, for the sake of simplicity, it is taken into account in the
simulations as an elastic spring with a brittle failure mechanism after
the attainment of the maximum load. The stiffness of the withdrawal
component is set to 1250 N/mm based on the test results published by
Izzi et al. [9], while the maximum load-carrying capacity is determined
as shown in Eq. (7).

4.1. Method I

The first method schematizes the shear response of a nailed joint
with a bilinear elasto-plastic relationship (Fig. 4a). The elastic stiffness
is equal to the slip modulus of the joint K, while the shear capacity F,
identifies the loads at the transition point between the elastic branch
and the plastic plateau, and at the ultimate displacement V;, (where V is
conventionally set to 20mm). In Fig. 4a, V; denotes the yield
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Table 3
Mechanical properties of a nailed steel-to-timber joint, according to Egs. (2)-(8).

Engineering Structures 162 (2018) 270-282

Joint type M, [KNmm] fn [MPa] Fax [kN] Fiae [kN] F, [kN] Kser [KN/mm]
Nailed joint in CLT (for the TTF200) 8.09 31.67 2.19 2.03 3.12 2.13
Nailed joint in GLT (for the WHT620) 8.09 27.71 1.97 1.89 2.88 1.74

Table 4
Typical input parameters of a nailed steel-to-timber joint, when the load-displacement
response is defined according to Method 1.

Input parameters for Method I

Connection with TTF200 Connection with WHT620

Kger [KN/mm] 2.13 1.74

F, [kN] 2.22% 1.94°
Slope #1 Kger Keer

Slope #3 5 X Kger 5 X Kger
Slope #4 2.5 X Kger 2.5 X Kger
Separation #1-#2 F, F,
Separation #3-#5 5% X Fy 5% X Fy
Separation #50-#4 16% x F, 16% X F,

@ Effective strength property, obtained by multiplying the shear capacity F, given in
Table 3 by the effective factor kg defined in Equation (12); kegr = 0.71 for the TTF200 (30
nails) and keg = 0.67 for the WHT620 (52 nails).
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Fig. 8. Comparison between experimental and numerical results of (a) the TTF200 loaded
in shear and (b) the WHT620 loaded in tension, when the actual mechanical properties of
the nailed joints are used.
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displacement and V;,,x the displacement at which F, is attained, being
Vy = Viax = E//Kser-

The assumption of elastic behaviour until the attainment of the
shear capacity is acceptable since shear tests of single nailed joints
showed a linear fashion until 90% of the shear capacity F, [9]. How-
ever, the displacement at which F, is attained in the tests is higher
compared to the values obtained with this bilinear method, possibly
leading to incorrect predictions of V; (and V,) in the analyses.

4.2. Method II

The second method schematizes the shear response of a nailed joint
based on an elasto-plastic relationship with a hardening branch
(Fig. 4b) and is derived taking as a reference the tests of Casagrande
et al. [6]. The elastic stiffness is equal to the slip modulus of the joint
Kier, while the shear capacity F, identifies both the maximum load and
the load at the ultimate displacement (Vi ,x = V;). The yield load is
equal to the lateral dowel capacity Fy;, as confirmed by an independent
numerical study carried out by Izzi et al. [20] on similar test data. Fi-
nally, the slope of the hardening branch is determined by assuming that
the shear capacity is attained at Vj,ox = V, = 6V;, being V;, = F/Ker.

4.3. Method III

The third method schematizes the shear response of a nailed joint
using a trilinear elasto-plastic relationship (Fig. 4c) and is derived based
on the tests of Ceccotti et al. [31]. The slope of the elastic branch is
equal to the slip modulus K, while its maximum load is equal to 40%
of F,. The first inelastic branch has a hardening behaviour and max-
imum load equal to F,. Its slope is given by the line drawn through the
points at 40% and 60% of the shear capacity F,; the first point lays on
the elastic branch, while the second point belongs to the line drawn
through the origin of the axis with stiffness equal to 2/3Kj,. The second
inelastic branch has a plastic behaviour until the ultimate displacement
V; (conventionally set to 20 mm) and is activated after the attainment of
the maximum load, i.e. at V. = 1.9F,/Kger

4.4. Hysteretic behaviour

Nailed joints subjected to cyclic loads exhibit the pinching effect
due to the reduction of stiffness at small displacement amplitudes, when
a cavity is formed around the fastener due to timber crushing. Stiffness
increases at higher displacement levels, when the nail comes again into
contact with the surrounding timber [32].

The hysteretic behaviour of a nailed joint is schematized according
to the piecewise-linear law of Fig. 5. The backbone curve (composed of
branches #1, #2, #10, and #20) is assembled based on the methods
discussed in Sections 4.1-4.3. If the joint is unloaded from a positive
displacement, branch #3 is followed; on the contrary, branch #40 is
followed if the unloading starts from a negative displacement. Branches
#5 and #50 model the gap between the nail shank and the surrounding
timber. Finally, branches #30 and #4 simulate the mechanical beha-
viour when the nail comes again into contact with timber.

The unloading (#3, #5, and #30) and reloading (#40, #50, and #4)
paths depend on the plastic deformed configuration of the joint. Since
typical nailed joints are too slender to attain a failure mechanism with
only embedding of timber (see Fig. 3a), this situation is disregarded in
the following discussion. In any case, this failure mechanism should be
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b.

Fig. 9. Stress distribution in the metal connectors at 15 mm of displacement for (a) the TTF200 loaded in shear and (b) the WHT620 loaded in tension (displayed as contour of Von Mises

stresses).

carefully avoided in seismic applications due to the slack effect (zero
strength and stiffness) and the sudden reduction of the load-carrying
capacity caused by timber crushing.

The slopes of branches #3 and #4 are defined based on the cyclic
tests carried out by Izzi et al. [9] and are set to 5 and 2.5 times K,
respectively. Similarly, the load at the transition point between bran-
ches #3 and #5 is assessed from the same test data and is set to 5% of
F, where F is the load attained on the backbone curve at the i-th
analysis step. Finally, the load at the transition point between branches
#5 and #30 is defined using an analytical procedure derived from
Hilson [13] and is equal to E;sx30/F, times F, being F:s/+30 (Eq. (9)) the
load taken by the deformed nail (in bending) at the hysteresis cycle
where the shear capacity F, is attained.
Eis/430 = My/by 9)

In the equation above, M, denotes the yield moment of the nail,
while b; represents the effective penetration depth of the joint, which

depends on its failure mechanism. In this study, b; is determined as in
Eq. (10) when failure occurs for embedding of timber and yielding of
the nail with one plastic hinge (Fig. 3b), while Eq. (11) is used when
two plastic hinges have formed (Fig. 3c).

b —t[ 2+ AMy —1]
e htid 10)
b=2 |

fud an

The hysteresis model discussed above is validated by comparison
with two cyclic shear tests of nailed joints loaded in parallel and per-
pendicular to the face lamination of a CLT panel. The experimental
results taken as a reference are obtained from Izzi et al. [9]. The
backbone curves used in the springs are assessed from the tests as
prescribed in EN 12512 [33]. Fig. 6 shows the outcomes of this
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Fig. 10. Comparison between experimental and numerical results of (a) the TTF200
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of the nailed joints is reduced to account for the group effect.

comparison. Analyses prove that the hysteresis model is capable of
identifying the cyclic response and the energy dissipation, leading to a
final difference lower than 10% between test data and numerical re-
sults.

4.5. Group effect

The presence of several nails connected to the same metal plate at a
very close distance requires consideration of the mutual interaction
among the fasteners, i.e. the so-called ‘group effect’. Eurocode 5 [21]
takes into account this interaction by considering the ‘effective number
of nails in a row’, which depends on their spacing along the grain di-
rection. Furthermore, the standard allows neglecting the group effect
when the nails are staggered perpendicular to the grain by at least one
diameter.

In this study, the mutual interaction among the nails is considered
by introducing the concept of ‘effective shear capacity’. In comparison
with the approach given in the standard, the number of nails connected
to the same metal plate is left unchanged. On the contrary, the shear
capacity F, is reduced by multiplying F,, and Fy by the effective factor

ket defined in Eq. (12).
Kegr = n%%/n = n—01 12)

In the equation above, n denotes the total number of nails connected
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Fig. 11. Comparison between experimental hysteresis and numerical results of the
TTF200, when the response of the nailed joints is defined according to (a) Method II and
(b) Method III (with close-up on the history of total energy).

to the same metal plate, while n%° is their effective number, defined as
prescribed in Eurocode 5 [21] when the spacing is in the range of 10d to
14d (which corresponds to the usual spacing on the metal connectors).
Finally, similarly to what is assumed in the standard, no reduction is
applied to the slip modulus of the nailed joints, which is calculated as in
Eq. (8).

To achieve the maximum load-carrying capacity in a group of joints,
all failure mechanisms of the CLT panels should be avoided. In parti-
cular, to prevent any group failure due to splitting or tear-out, the shear
capacity of the joints should be predicted considering the wood effec-
tive thickness rather than the actual penetration depth of the fasteners
[34,35]. According to Zarnani and Quenneville [36], such failure me-
chanisms occur when high loads are transferred to the timber panels
(e.g. if groups of metal rivets or screws are used). Therefore, increasing
the end-distance from the edge and the spacing between the fasteners
might be proper solutions to avoid such issues. However, since the
afore-mentioned failure mechanisms have never been observed in steel-
to-timber joints with threaded nails, they are disregarded in the fol-
lowing discussion.



M. Izzi et al.

125
100 r
75 _ /l/—/ﬂ\
= 2
— )
g 50 F “:D 1.5 d]
o 1
% 251 4 : 0.5 M
N < U, Ad
- / # // / S D il
0 ‘{/w 0 500 1000 1500
by Time [sec]
25+ —— Hysteresis test
Method II
-50 1 L L )
0 5 10 15 20
Displacement [mm] a.
125
100
75
— g
Z 50 5
9 B
g
[
0H 0 500 1000 1500
Time [sec]
-25 — Hysteresis test
Method 11T
50 ‘ . , ,
0 5 10 15 20
Displacement [mm] b.

Fig. 12. Comparison between experimental hysteresis and numerical results of the
WHT620, when the response of the nailed joints is defined according to (a) Method II and
(b) Method III (with close-up on the history of total energy).

5. Numerical analyses

Shear and tension tests are reproduced on two wall-to-floor con-
nections tested at the University of Trento (Italy) [6]. The first system is
assembled using a TTF200 angle bracket [37], anchored to two CLT
panels with 60 nails (30 in each element). The second connection is
assembled with a WHT620 hold-down [38], anchored to a Glue-Lami-
nated Timber (GLT) panel with 52 nails and to a steel foundation with a
bolt. In this second case, to prevent local buckling and to distribute the
load over a larger surface, the anchoring to the foundation is
strengthened with a thick washer plate. Both setups employ annular-
ringed shank nails [17] with diameter d = 4.0 mm, penetration depth
t = 54mm and threaded length [y, = 44 mm. Further details of these
connections are given in Table 2, while Fig. 7 schematizes the setups
used in the tests.

Based on the requirements given in the ETAs of the connectors, the
angle bracket is made of S250GD steel with proof strength equal to
250 MPa and ultimate strength equal to 330 MPa. The hold-down is
made of S355 steel with proof and ultimate strength equal to 355 MPa
and 430 MPa, respectively. In both cases, the ultimate strength is at-
tained after a 20% plastic strain. The average density of timber, mea-
sured from the actual specimens, is 480 kg/m> for CLT and 420 kg/m>
for GLT. Table 3 summarizes the mechanical properties of the nailed
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Fig. 13. Load-displacement response of the TTF200 (a) with a = 90° and (b) with
a = 45°, when the number of nails varies from 30 + 30 (solid line) to 15 + 15 (dash-
dotted line).

joints, assessed as discussed in Section 3, while Table 4 shows the ty-
pical input parameters used in the analyses.

5.1. Simulations under monotonic loading conditions

The mechanical behaviour under monotonic conditions is in-
vestigated by considering the angle bracket loaded in shear and the
hold-down in tension. The analyses are carried out by applying a
monotonic displacement to the wall panel (up to 20 mm and 15 mm,
respectively), while the floor element is restrained to its original posi-
tion.

The first set of simulations does not consider the reduction of
strength due to the group effect. The load-displacement response of the
nailed joints is defined according to Method I, while the mechanical
properties are determined as discussed in Section 3. As pointed out in
Section 3.2, shear tests of single nailed steel-to-timber joints high-
lighted that Eq. (8) overestimates the experimental slip moduli; there-
fore, analyses are also carried out considering a factor 1 instead of the
factor 2 prescribed in Eurocode 5 [21].

Fig. 8 compares experimental results (solid grey line for the
monotonic test and solid black line for the hysteresis test) and numer-
ical predictions when K, is calculated using a factor 2 (dash-dotted
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blue line) and a factor 1 (dashed red line). Furthermore, Fig. 9 displays
the stress distribution in the metal connectors at 15mm of displace-
ment. The angle bracket shows local buckling, while the hold-down
exhibits a tensile failure in the metal flange (which justifies the soft-
ening behaviour in Fig. 8b). Results of the simulations point out that the
factor 1 provides accurate predictions of the elastic stiffness, while the
factor 2 leads to unrealistic stiff responses. Furthermore, in both con-
nections, the numerical predictions lead to higher load-carrying capa-
cities compared to the reference test results.

Simulations are subsequently repeated by considering also the other
two methods discussed in Section 4 and by including the reduction of
strength that accounts for the group effect; all the slip moduli are cal-
culated using a factor 1 instead of the factor 2 given in Eq. (8).

Fig. 10 compares experimental and numerical results when the
shear response is defined according to Method I (dashed red line), II
(solid orange line) and III (dash-dotted green line). Simulations show
that Method II and III provide reliable predictions of the global per-
formance; on the other hand, Method I exhibits similar load-carrying
capacities, although it leads to a less accurate identification of the
global behaviour.
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5.2. Simulations under cyclic loading conditions

Cyclic shear and tension tests are reproduced on the previous nu-
merical models, using the same input data of the monotonic analyses.
Figs. 11 and 12 compare experimental (black line) and numerical re-
sults when the shear response of the nailed joints is defined according to
Method II (orange line) and III (green line). Both methods provide re-
liable predictions of the hysteretic response and the energy dissipation.
Method I is not taken into account in this comparison since it provides
less accurate results and leads to higher energy dissipations (approxi-
mately 10% higher than in the experimental tests).

The plastic deformations in the metal connectors affect the perfor-
mance under cyclic loading conditions. As highlighted in Section 5.1,
the TTF200 angle bracket shows local buckling close to the bended
area; this reduces the global stiffness of the connection (which is lower
than the net stiffness resulting from the nailed joints) and increases its
ductility. Similarly, the WHT620 hold-down loaded in tension exhibits
some plastic deformations in the bottom part of the metal flange, which
reduce the stiffness at large displacement amplitudes and influence the
shape of the hysteresis cycles.

5.3. Simulations under bi-axial loading conditions

The mechanical performance under the simultaneous application of
shear and tension loads (bi-axial loading condition) is examined via a
parametric numerical study. Simulations are carried out by varying the
inclination of the load, with respect to the axis of the connector, be-
tween 0° (only axial load) and 90° (only shear load). Analyses are
subsequently repeated by reducing the number of nails used in the
connections. For each connector, three nails patterns are considered:
30 + 30 (original pattern), 25 + 25, and 15 + 15 nails for the angle
bracket; 52 (original pattern), 30 and 22 nails for the hold-down. An
ultimate displacement equal to 15mm [39] is considered in all cases;
furthermore, for the sake of simplicity, the load-displacement response
of the nailed joints is always defined according to Method II.

Fig. 13 shows the loading curves of the angle bracket when a = 90°
and a = 45°, while Fig. 14 presents similar results for the hold-down
when a = 0° and a = 45°. Finally, Fig. 15 displays the stress distribu-
tion in the connectors at the end of the simulations when a = 45°.
Results highlight that the loading direction influences both the stiffness
and the load-carrying capacity of the connections.

The maximum loads attained in the analyses (at « = 0°, 15°, 30°,
45°, 60°, 75°, and 90°) are used to create the strength domains shown in
Fig. 16 (black lines). Each point is determined as either the maximum of
the loading curve or the load at 15 mm of displacement, whichever
occurs first. Numerical results are subsequently compared to the ana-
lytical strength domains of the connections, defined as suggested in the
ETAs (Eq. (13), red dashed lines).

Fyoe

2 2
Fo (B ) <1
F0°,max F90°,max

In the equation above, Fyemax and Foge max represent the maximum
strength capacities in the axial and shear direction, while Fy and Fgygo
denote the actual loads applied to the connection. In Fig. 16, values of
Foemax and Fype max are set to numerical predictions attained under only
axial and shear loads, respectively. Based on the comparisons presented
in Fig. 16, numerical results validate the strength domains suggested in
the ETAs of the metal connectors, confirming a quadratic interaction
relationship between shear and tension loads.

13
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S, Mises

(Avg: 75%)
+3.300e+02
+3.025e¢+02
+2.750e+02
+2.475e+02
+2.200e+02
+1.925e+02
+1.650e+02
+1.375e+02
+1.100e+02
+8.250e+01
+5.500e+01
+2.750e+01
+2.624e-03

S, Mises

(Avg: 75%)
+4.300e+02
+3.942e+02
+3.583e+02
+3.225e+02
+2,867e+02
+2.508e+02
+2.150e+02
+1,792e+02
+1.433e+02
+1.075e+02
+7.167e+01
+3.583e+01
+3.386e-04

6. Conclusions

This paper proposes a numerical model capable of predicting the
mechanical behaviour and the failure mechanism of typical wall-to-
floor connections used in CLT structures. Great efforts have been de-
voted to develop a simplified hysteresis that simulates the response of a
nailed steel-to-timber joint in CLT. Shear and tension tests are re-
produced on connections with angle brackets and hold-downs; nu-
merical results are then compared to the experimental test data of si-
milar configurations, leading to limited differences.

Results of the monotonic analyses highlight that the analytical
model prescribed in Eurocode 5 [21] to predict the slip modulus of a
nailed steel-to-timber joint overestimates the stiffness at the connection

280
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Fig. 15. Stress distribution in the metal connectors at
15 mm of displacement when a = 45° (a) for the TTF200
and (b) for the WHT620 (displayed as contour of Von
Mises stresses).

level. Furthermore, simulations proved that it is necessary to consider
the group effect in nailed joints (and to reduce their load-carrying ca-
pacity) to obtain reliable predictions of the mechanical behaviour of the
connections.

Analyses carried out under cyclic conditions exhibit an excellent
match with the reference test results, in terms of hysteretic behaviour
and energy dissipation. Finally, the performance under bi-axial loading
conditions is investigated by varying the inclination of the load and the
nails pattern used to fasten the connectors to the wall and floor panels.
Simulations showed that the loading direction has a significant influ-
ence on the stiffness and load-carrying capacity, and a quadratic in-
teraction relationship is observed between shear and tension loads.
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