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Abstract Many recent works show that copulas turn out to

be useful in a variety of different applications, especially in

environmental sciences. Here the variables of interest are

usually continuous, being times, lengths, weights, and so

on. Unfortunately, the corresponding observations may

suffer from (instrumental) adjustments and truncations, and

eventually may show several repeated values (i.e., ties). In

turn, on the one hand, a tricky issue of identifiability of the

model arises, and, on the other hand, the assessment of the

risk may be adversely affected. A possible remedy is to

adopt suitable randomization procedures: here three dif-

ferent strategies are outlined. The goal of the work is to

carry out a simulation study in order to evaluate the effects

of the randomization of multivariate observations when ties

are present. In particular, it is investigated whether, how,

and to what extent, the randomization may change the

estimation of the structural risk: for this purpose, a coastal

engineering example will be used, as archetypical of a

broad class of models and problems in engineering appli-

cations. Practical advices and warnings about the use of

randomization techniques are hence given.

Keywords Copula � Risk management � Randomization �
Jittering � Structural risk

1 Introduction

Copulas have proved to be useful in a variety of different

applications, especially in environmental sciences (see,

e.g., Genest and Favre 2007; Salvadori et al. 2007; Genest

and Nešlehová 2012a, b; AghaKouchak et al. 2013), where

they contribute to quantify the risk in a suitable way. In

fact, it is well known that the description of the joint

probability law of a vector of random variables can be

conveniently represented via Sklar’s theorem (Sklar 1959)

as the composition of a copula and one-dimensional mar-

ginals governing the phenomenon of interest. In particular,

both the copula and the marginal laws are chosen and fitted

on a set of available data, considered as an i.i.d. sample

from an unknown continuous joint distribution.

The emphasis on the adjective ‘‘continuous’’ is extre-

mely important in the present context. In fact, if the mar-

ginals are continuous, then

– the observations assume (with probability 1) distinct

values ranging in the support of the underlying

distribution, and no ties (i.e., repeated observations)

occur in the dataset;

– the copula associated with the underlying random

vector can be uniquely determined.
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On the contrary, when the marginals are not continuous,

the data typically contain ties, and a tricky issue of iden-

tifiability of the model arises. For an overview about pos-

sible problems using copulas with non-continuous data, see

the excellent survey by Genest and Nešlehová (2007) (and

also Marshall 1996).

In many applications of environmental sciences, how-

ever, the situation is somehow mixed. While it is not

questionable (for physical reasons) that the random vari-

ables of interest can be viewed as continuous, the available

measurements may suffer from adjustments and truncations

(due, e.g., to instrumental limitations or sampling proce-

dures), so that they may show several repeated observa-

tions. Now, as documented e.g. in Genest et al. (2011) and

Bücher and Kojadinovic (2016), the presence of such

repetitions may have a non-negligible impact on the rank-

based inference of copulas: for instance, the performances

of popular Goodness-of-Fit tests for copulas cannot be

guaranteed anymore.

As stressed in Bücher and Kojadinovic (2016), when ties

are present, the ‘‘copula-oriented’’ practitioner has (at least)

two possibilities—excluding the limiting case of stopping

any further statistical analysis: (i) discard the ties; (ii)

randomize the data, by adding a suitable continuous noise

to all observations. This paper focuses on the latter

methodology which is known in literature as randomiza-

tion, sometimes also called jittering. Note that the former

case has been discussed in Genest et al. (2011). The goal of

this note is to carry out a simulation study in order to

evaluate the effects of the randomization of multivariate

observations when ties are present. In particular, it will be

investigated whether, how, and to what extent, the ran-

domization may change the estimation of the structural

risk, using a coastal engineering example representing an

archetype of a broad class of models and problems in

engineering practice. To this end, a practical illustration,

involving a realistic simulation study tailored to a dataset

previously investigated in other works, will be used. The

results shown may provide practical advices and warnings

about the adoption of randomization techniques.

2 The illustration

In the following, a coastal engineering application, related

to the design of a rubble mound breakwater described in

Salvadori et al. (2014) (see also Salvadori et al. 2015;

Pappadà et al. 2016), is used. The target is to compute the

quantiles associated with the weight W of a concrete cube

element forming the breakwater structure, assuming that

the environmental load is given by the pair of non-inde-

pendent random variables (H, D), where H represents the

significant wave height (in meters), and D the sea storm

duration (in hours). For this purpose, a structural model W
is used, expressing W as a function of (H, D) by means of

the formula

W ¼WðH;DÞ

¼qS � H
2pH
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The values of the structural parameters g, qW , qS, Nd in

Eq. (1) are calibrated for the buoy of Alghero (Sardinia,

Italy), previously investigated in Salvadori et al.

(2015, Table 1).

Following a copula approach to the structural risk (see,

for instance, Straub 2014), in order to estimate the quan-

tiles associated with W, it is possible to proceed as follows.

– First, fit suitable univariate distribution functions for

H and D, respectively.

– Then, fit a suitable copula for (H, D).

– Finally, calculate the quantile of W either analytically

(if possible), or by resampling from the joint distribu-

tion of (H, D) previously obtained via Sklar’s Theorem.

It is important to realize that, in principle, both H and

D describe continuous phenomena (viz., a length and a

time). Unfortunately, due to a limited (buoy) instrumental

resolution and the particular sampling procedures adopted

in coastal engineering practice, the available measurements

may be a discretized version of the actual continuous val-

ues of these variables: for instance, this is the case of the

sea storm data presented in Salvadori et al. (2014). Thus,

ties may occur, and adversely affect the statistical analysis

of the data both at the marginal level and at the copula

level—see also De Michele et al. (2013, Sect. 3; Fig. 2) for

another hydrological case study. Concerning this latter

aspect, the situation is particularly problematic, since

copula-based procedures generally require the possibility

of uniquely determining the ranks of the observations.

A practical way to circumvent the problem could consist

in adding random components to the coordinates of each

observed pair ðXi; YiÞ—here, the pair (H, D)—by setting

eXi ¼ Xi þ DX Ui and eYi ¼ Yi þ DY Vi; i ¼ 1; . . .;N;

ð2Þ

where N is the available sample size, DX and DY are the

data resolutions, and U1; . . .;UN and V1; . . .;VN are suit-

able random samples from the uniform distribution on

[0, 1]. Clearly, X (respectively, Y) takes value on a discrete

set, with points equi-spaced by a distance DX (respectively,
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DY ). For instance, ðDX ¼ 1m3=s;DY ¼ 1 dayÞ in De

Michele et al. (2013), and ðDX ¼ 10 cm;DY ¼ 3 hÞ in Sal-

vadori et al. (2014).

In the following, only the bivariate case (i.e., d ¼ 2) will

be investigated: however, the approach proposed can easily

be generalized to the case d[ 2. Here, three different

randomization strategies will be considered, as outlined

below.

– The independent randomization, which assumes that,

for every index i, Ui and Vi are independent, viz. are

coupled via the product (independence) copula

P2ðu; vÞ ¼ uv.

– The co-monotone randomization, which assumes that,

for every index i, Ui and Vi are coupled by the Fréchet–

Hoeffding upper bound copula M2ðu; vÞ ¼ minfu; vg.
– The mixed randomization, which assumes that, for

every index i, Ui and Vi are coupled by a mixture Ck of

M2 and P2, viz.

Ckðu; vÞ ¼ kM2ðu; vÞ þ ð1� kÞP2ðu; vÞ; ð3Þ

with k 2 ð0; 1Þ. Note that the mixing coefficient k
coincides with the Kendall’s s associated with the

mixing copula Ck. Here, k is related to degree of

association of the observations ðXi; YiÞ’s, and can be

computed via the available data simply by estimating

the corresponding Kendall’s s—see below.

It is worth noting that Ck is simply a member of the well

known family of Fréchet copulas (Nelsen 2006). In the

present case, such a mixture is used since it represents an

‘‘intermediate’’ case between the independence and the Co-

monotone ones. Clearly, should it be appropriate, any other

copula could be used instead.

Remark 1 At a formal level, if ties are present, a pair of

random variables is uniquely associated with a sub-copula,

not with a copula (see, for instance, Durante and Sempi

2016). Thus, every type of randomization can be thought of

as a specific way to extend a sub-copula to a copula (see,

e.g., de Amo et al. 2012). In particular, the independent

randomization is related to the multilinear extension of

Genest et al. (2014) (see also Durante et al. 2015), while

the co-monotone and mixed ones are associated with

extensions that distribute the probability mass according to,

respectively, M2 and Ck.

Since the sample ðeXi; eYiÞ’s is generated via a random-

ization process, it is crucial to perform a large number of

independent randomizations in order to carry out a sensible

statistical assessment. In particular, a suitable distribu-

tional analysis of the outcomes of the simulations should

be carried out—see below, and Kojadinovic and Yan

(2011) and Bücher and Kojadinovic (2016): in fact, aver-

aging the results does not seem to mitigate the

inconveniences produced by the randomization, as shown

in Genest and Nešlehová (2007) and Genest et al. (2011).

As mentioned in the Introduction, while it is arguable

that the randomization procedures may provide indications

for statistical inference for copulas (like parameter esti-

mation, Goodness-of-Fit test, etc.), it is unclear whether,

and to what extent, the risk quantification (in a given sit-

uation) can be affected by randomizing as well. In the

present study, starting with the practical application

described above, an attempt to shed light on this latter

aspect is made.

In order to focus on those features that characterize the

practical problem addressed here, the following assump-

tions are made.

– Both H and D follow the generalized Weibull distri-

butions FH and FD, with the same parameters as those

estimated in Salvadori et al. (2014, Table 1) for a

specific dataset. Such a ‘‘realistic’’ setting gives the

possibility to draw sensible conclusions about the

structural risk from a practical perspective (at least

concerning the archetypical case study considered

here).

– The dependence structure of the pair (H, D) is modeled

via different families of copulas with a specified

parameter: namely, the Frank, the Gumbel, and the

Clayton—these will be denoted by, respectively, CFrk,

CGmb, and CCly. A number of practical reasons suggest

the adoption of such families. On the one hand, they are

often used in hydrological studies (see, e.g., many of

the papers listed at the site www.stahy.org, section

/Topics/CopulaFunction). On the other hand,

they are able to express different types of tail depen-

dence (Salvadori et al. 2007, Sects. 3.4, 5.3): in

particular, Frank copulas have both tail dependence

coefficients equal to zero, whereas Gumbel ones only

model non-zero upper tail dependence coefficient, and

Clayton ones only show non-zero lower tail depen-

dence coefficient. In addition, the Gumbel copula is

Extreme Value, and the Clayton one is truncation

invariant with respect to both variables (see, e.g.,

Nelsen 2006; Salvadori et al. 2007; Di Lascio et al.

2016).

3 The simulation study

The simulation study proposed in the following will

reproduce the main features outlined above. For the sake of

brevity and clarity, the procedure is explained assuming

that the Frank copula is the ‘‘true’’ one (i.e., the one

modeling the dependence structure of the data, from which

suitable random samples are eventually extracted). The

same steps can then be performed substituting,

Stoch Environ Res Risk Assess (2017) 31:2483–2497 2485
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respectively, the Gumbel and the Clayton families for the

Frank one.

3.1 Discretization and randomization

In order to generate samples of discretized (truncated)

observations, and to test the performance of the random-

ization strategies mentioned above, the following steps are

carried out.

1. A set of N i.i.d. observations of the random pair (H, D)

is generated, according to the continuous joint distri-

bution function FFrk ¼ CFrkðFH ;FDÞ constructed via

Sklar’s Theorem.

2. The simulated observations are truncated according to

a predefined resolution. More specifically,

– the measurements of H may have a basic resolution

equal to DH 2 f0:01; 0:1; 0:5g meters;

– the measurements of D may have a basic resolution

equal to DD 2 f0:5; 1; 3g hours.

Note that the discretization levels given above roughly

correspond to the actual ones for real buoy data. For

instance, taking DH ¼ 0:1 and DD ¼ 1, the (continu-

ous) observation ðH ¼ p;D ¼ pÞ would be turned into

(3.1, 3), i.e. it would be truncated. The resulting

dataset generally presents several ties, and may con-

veniently reproduce some features observed in

practice.

3. The randomization procedures previously described

are applied to the discretized dataset, in order to carry

out the ‘‘jittering’’.

Given the randomized data, two questions will be

considered.

– Is a Goodness-of-Fit test able to correctly identify the

copula CFrk that generates the sample? Viz., is it able to

reject the assumption that the dependence structure of

the data belongs to another family such as the Gumbel,

the Clayton, etc.?

– If the dependence structure is correctly identified, does the

copula estimatedusing the randomizeddata help to provide

valuable information concerning the structural risk asso-

ciated with the random variableW defined via Eq. (1)?

The answer to these questions will depend on the following

three aspects.

1. The sample size N, which is set equal to 150 or 300—

as in Kojadinovic et al. (2011).

2. The degree of association between H and D, which is

expressed in terms of the Kendall’s s, and takes on

values in f0:25; 0:5; 0:75g—as in Kojadinovic et al.

(2011).

3. The jittering strategy, viz. the independent, co-mono-

tone, or mixed randomization, where in the latter case

the mixing coefficient k is set equal to the sample

Kendall’s s estimated by using the discretized pairs

(H, D)’s.

3.2 Model identification

The first analysis of the present study concerns the inves-

tigation of how the presence of ties may affect the per-

formance of the rank-invariant procedures typically used

for the identification of the copula of (H, D). For

i 2 f1; . . .;Bg, the following steps are repeated.

1. Simulate N pairs (H, D) from the model described

above (based on Frank copulas), with three levels of

dependence as given by s 2 f0:25; 0:5; 0:75g.
2. Apply the truncation with resolutions

ðDH ;DDÞ 2 fð0:01; 0:5Þ; ð0:1; 1Þ; ð0:5; 3Þg.
3. Randomize the discretized dataset (which typically

contains ties) according to the three randomization

strategies previously outlined.

4. Carry out a Crámer–von Mises Goodness-of-Fit test—

here at a 5% significance level, using the multiplier

variant proposed in Kojadinovic et al. (2011) and

Kojadinovic and Yan (2011)—of the Null hypothesis

H0 that the copula of the randomized data belongs to a

given family F against the alternative that it does not

belong to F . Here, five families of dependence

structures are considered: viz., the Frank, the Gumbel,

the Clayton, the Normal, and the Student (with m ¼ 4

degrees of freedom).

The results are discussed in Sect. 4 and Tables 1, 2, 3, 4, 5

and 6.

In case the Goodness-of-Fit test does not reject the Null

hypothesis that the copula belongs to the ‘‘true’’ family (at

the given significance level), it could also be convenient to

check how the parameter estimation varies with respect to

the true value. The results are discussed in Sect. 4 and

Figs. 1, 3 and 5.

3.3 Structural risk

As a further step, it is also useful to investigate how, and to

what extent, the randomization procedures may affect the

estimation of the structural risk, as represented by a suit-

able quantile of the random variable W: this task can be

carried out via Monte Carlo simulations, by using the

formula W ¼ wðH;DÞ given by Eq. 1. The quantiles of

order q ¼ 0:9; 0:95; 0:99 of W—the ones usually of interest

in applications—with fixed marginals for H and D, are

2486 Stoch Environ Res Risk Assess (2017) 31:2483–2497
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calculated, under different parameters as estimated from

the ‘‘true’’ copula when properly identified. The results are

discussed in Sect. 4 and Figs. 2, 4 and 6.

4 Results

As already mentioned above, three families of copulas are

used as ‘‘true’’ models to study the effects of the ran-

domization strategies outlined in this work: viz., the Frank,

the Gumbel, and the Clayton. Briefly, random samples of

different sizes and degrees of association are simulated

Table 1 ‘‘Frank’’ case: N ¼ 150, B ¼ 10; 000

DH DD CFrk CCly CGmb CNrm Ct;4

Independent randomization

s ¼ 0:25

0.01 0.50 0.05124 0.79127 0.38351 0.13594 0.26872

0.10 1.00 0.04945 0.79477 0.39801 0.14384 0.27942

0.50 3.00 0.07014 0.85656 0.37201 0.21383 0.34402

s ¼ 0:5

0.01 0.50 0.05024 0.99835 0.79057 0.42781 0.70698

0.10 1.00 0.05244 0.99865 0.78977 0.45780 0.73238

0.50 3.00 0.13344 0.99985 0.78817 0.68108 0.88006

s ¼ 0:75

0.01 0.50 0.04695 0.99995 0.94936 0.87446 0.95415

0.10 1.00 0.05314 0.99995 0.95485 0.90776 0.96545

0.50 3.00 0.48510 0.99995 0.96105 0.98595 0.99805

Mixed randomization

s ¼ 0:25

0.01 0.50 0.05624 0.78357 0.40301 0.14954 0.28982

0.10 1.00 0.04865 0.78467 0.39181 0.14284 0.27142

0.50 3.00 0.06284 0.80867 0.36471 0.17653 0.28032

s ¼ 0:5

0.01 0.50 0.05134 0.99745 0.78987 0.43161 0.70758

0.10 1.00 0.05074 0.99705 0.79227 0.43841 0.70018

0.50 3.00 0.08604 0.99775 0.77617 0.53160 0.71798

s ¼ 0:75

0.01 0.50 0.04665 0.99995 0.95155 0.87826 0.95105

0.10 1.00 0.05044 0.99995 0.95225 0.87116 0.94086

0.50 3.00 0.26952 0.99995 0.96675 0.94256 0.97885

Co-monotone randomization

s ¼ 0:25

0.01 0.50 0.05414 0.78937 0.38831 0.14044 0.27842

0.10 1.00 0.05454 0.77127 0.39981 0.13644 0.26362

0.50 3.00 0.11154 0.65968 0.51110 0.17803 0.23263

s ¼ 0:5

0.01 0.50 0.05104 0.99755 0.79537 0.43281 0.71168

0.10 1.00 0.05124 0.99655 0.79307 0.43211 0.68258

0.50 3.00 0.14354 0.98635 0.86526 0.50110 0.63939

s ¼ 0:75

0.01 0.50 0.04485 0.99995 0.94456 0.87906 0.95015

0.10 1.00 0.04625 0.99965 0.95305 0.86916 0.93116

0.50 3.00 0.37711 0.99995 0.98645 0.94596 0.97625

Probability of rejection (nominal level 5%) of the Null hypothesis that

the copula belongs, respectively, to the Frank (CFrk), Clayton (CCly),

Gumbel (CGmb), Normal (CNrm), and Student-t (Ct;4, with m ¼ 4

degrees of freedom) family, for a random sample generated from a

Frank copula, with s ¼ 0:25; 0:5; 0:75 obtained from independent

repetitions of the discretization and randomization procedures—see text

Table 2 ‘‘Frank’’ case: N ¼ 300, B ¼ 10; 000

DH DD CFrk CCly CGmb CNrm Ct;4

Independent randomization

s ¼ 0:25

0.01 0.50 0.04465 0.96075 0.72028 0.25282 0.58729

0.10 1.00 0.04515 0.96545 0.72578 0.25852 0.58699

0.50 3.00 0.07664 0.98395 0.71198 0.40311 0.69888

s ¼ 0:50

0.01 0.50 0.04155 0.99995 0.98875 0.79937 0.96845

0.10 1.00 0.04305 0.99995 0.98985 0.82347 0.97525

0.50 3.00 0.19843 0.99995 0.99185 0.95615 0.99695

s ¼ 0:75

0.01 0.50 0.03545 0.99995 0.99995 0.99725 0.99965

0.10 1.00 0.04265 0.99995 0.99985 0.99835 0.99975

0.50 3.00 0.78647 0.99995 0.99985 0.99995 0.99995

Mixed randomization

s ¼ 0:25

0.01 0.50 0.04675 0.96225 0.72508 0.25832 0.58509

0.10 1.00 0.04595 0.95625 0.71688 0.26052 0.58359

0.50 3.00 0.06414 0.96565 0.69228 0.32792 0.59529

s ¼ 0:50

0.01 0.50 0.04275 0.99995 0.98915 0.80207 0.96975

0.10 1.00 0.04675 0.99995 0.99055 0.80187 0.96585

0.50 3.00 0.10064 0.99995 0.98765 0.87986 0.96985

s ¼ 0:75

0.01 0.50 0.03345 0.99995 0.99995 0.99535 0.99995

0.10 1.00 0.03945 0.99995 0.99965 0.99645 0.99935

0.50 3.00 0.46760 0.99995 0.99995 0.99955 0.99985

Co-monotone randomization

s ¼ 0:25

0.01 0.50 0.04485 0.96405 0.71368 0.25312 0.58819

0.10 1.00 0.04225 0.94796 0.71128 0.24493 0.55539

0.50 3.00 0.14684 0.87166 0.84107 0.31142 0.47770

s ¼ 0:50

0.01 0.50 0.04465 0.99995 0.98875 0.79737 0.96805

0.10 1.00 0.04775 0.99985 0.99025 0.78527 0.95415

0.50 3.00 0.24703 0.99995 0.99655 0.86776 0.93476

s ¼ 0:75

0.01 0.50 0.03445 0.99995 0.99985 0.99605 0.99985

0.10 1.00 0.04525 0.99995 0.99965 0.99475 0.99885

0.50 3.00 0.71128 0.99995 0.99995 0.99975 0.99995

Same as Table 1
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from either the FFrk, or the FGmb, or the FCly joint distri-

butions: in turn, these latter represent the ‘‘true’’ bivariate

model. Then, the data are discretized and randomized

according to the different strategies previously outlined,

and several analyses are carried out. For the sake of clarity,

the results will be discussed separately for each of these

three copulas. Note that the full illustration of the outcomes

requires six tables and 216 figures, which cannot all be

Table 3 ‘‘Gumbel’’ case: N ¼ 150, B ¼ 2500

DH DD CGmb CFrk CCly CNrm Ct;4

Independent randomization

s ¼ 0:25

0.01 0.5 0.03699 0.3469 0.9166 0.1949 0.2497

0.1 1 0.03699 0.3353 0.9086 0.1909 0.2381

0.5 3 0.04138 0.3828 0.9498 0.2821 0.3405

s ¼ 0:5

0.01 0.5 0.03659 0.6803 0.9998 0.378 0.41

0.1 1 0.03938 0.6771 0.9998 0.4044 0.4692

0.5 3 0.1098 0.7859 0.9998 0.7123 0.7691

s ¼ 0:75

0.01 0.5 0.03259 0.883 0.9998 0.4996 0.504

0.1 1 0.05858 0.8886 0.9998 0.6539 0.6551

0.5 3 0.5672 0.9806 0.9998 0.9842 0.987

Mixed randomization

s ¼ 0:25

0.01 0.5 0.03739 0.3373 0.913 0.2033 0.2533

0.1 1 0.03619 0.3445 0.909 0.1929 0.2437

0.5 3 0.04098 0.3457 0.919 0.2277 0.2769

s ¼ 0:5

0.01 0.5 0.03778 0.6851 0.9998 0.3884 0.4348

0.1 1 0.03739 0.6831 0.9998 0.3964 0.4392

0.5 3 0.05738 0.7395 0.9998 0.56 0.5684

s ¼ 0:75

0.01 0.5 0.03059 0.8914 0.9998 0.4744 0.4868

0.1 1 0.03778 0.897 0.9998 0.55 0.52

0.5 3 0.2497 0.9702 0.9998 0.9042 0.8858

Co-monotone randomization

s ¼ 0:25

0.01 0.5 0.03619 0.3149 0.901 0.1849 0.2325

0.1 1 0.04098 0.3165 0.8998 0.1781 0.2181

0.5 3 0.07937 0.3501 0.8531 0.1741 0.1793

s ¼ 0:5

0.01 0.5 0.03459 0.6847 0.9998 0.3585 0.398

0.1 1 0.03898 0.6747 0.9998 0.3796 0.4028

0.5 3 0.08217 0.7715 0.9998 0.4532 0.4228

s ¼ 0:75

0.01 0.5 0.02779 0.8946 0.9998 0.4948 0.4972

0.1 1 0.04138 0.8874 0.9998 0.5344 0.498

0.5 3 0.2613 0.981 0.9998 0.8747 0.8455

Probability of rejection (nominal level 5%) of the Null hypothesis that

the copula belongs, respectively, to the Gumbel (CGmb), Frank (CFrk),

Clayton (CCly), Normal (CNrm), and Student-t (Ct;4, with m ¼ 4 degrees

of freedom) family, for a random sample generated from a Gumbel

copula, with s ¼ 0:25; 0:5; 0:75 obtained from independent repetitions

of the discretization and randomization procedures—see text

Table 4 ‘‘Gumbel’’ case: N ¼ 300, B ¼ 2500

DH DD CGmb CFrk CCly CNrm Ct;4

Independent randomization

s ¼ 0:25

0.01 0.5 0.04218 0.5392 0.9906 0.3413 0.416

0.1 1 0.03739 0.5684 0.9958 0.3349 0.4288

0.5 3 0.04538 0.6188 0.9986 0.4808 0.6084

s ¼ 0:5

0.01 0.5 0.03898 0.9334 0.9998 0.6208 0.6779

0.1 1 0.05018 0.9262 0.9998 0.6683 0.7147

0.5 3 0.2181 0.9682 0.9998 0.9518 0.9718

s ¼ 0:75

0.01 0.5 0.03699 0.9966 0.9998 0.7347 0.7511

0.1 1 0.05218 0.993 0.9998 0.8966 0.8922

0.5 3 0.8858 0.9998 0.9998 0.9998 0.9998

Mixed randomization

s ¼ 0:25

0.01 0.5 0.03778 0.5688 0.9938 0.3361 0.4308

0.1 1 0.04298 0.5524 0.9934 0.3329 0.4148

0.5 3 0.04778 0.5752 0.997 0.4064 0.4972

s ¼ 0:5

0.01 0.5 0.03379 0.9346 0.9998 0.6567 0.6883

0.1 1 0.03579 0.9342 0.9998 0.6539 0.6719

0.5 3 0.09776 0.9574 0.9998 0.8367 0.8423

s ¼ 0:75

0.01 0.5 0.03419 0.9966 0.9998 0.7223 0.7307

0.1 1 0.04338 0.9946 0.9998 0.7963 0.7487

0.5 3 0.4468 0.9998 0.9998 0.9922 0.991

Co-monotone randomization

s ¼ 0:25

0.01 0.5 0.04138 0.5484 0.991 0.3361 0.4212

0.1 1 0.04338 0.532 0.9922 0.3081 0.3701

0.5 3 0.1034 0.5924 0.9806 0.2673 0.2749

s ¼ 0:5

0.01 0.5 0.03299 0.9326 0.9998 0.6224 0.6591

0.1 1 0.04418 0.9238 0.9998 0.61 0.6339

0.5 3 0.1246 0.9662 0.9998 0.7283 0.6555

s ¼ 0:75

0.01 0.5 0.03059 0.9946 0.9998 0.7347 0.7351

0.1 1 0.04178 0.9962 0.9998 0.7763 0.7183

0.5 3 0.48 0.9998 0.9998 0.9882 0.9794

Same as Table 3
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shown in the present paper. In turn, only six tables and

selected figures will be presented here: all the others are

made available in the ‘‘Supplementary Material’’ file.

4.1 Frank case

Here the data have been sampled from the Frank family.

Tables 1 and 2 report the probabilities of rejection of the

Null hypothesis that the copula belongs to several families.

For a sample size N ¼ 150, in the case of weak/moderate

Table 5 ‘‘Clayton’’ case: N ¼ 150, B ¼ 2500

DH DD CCly CFrk CGmb CNrm Ct;4

Independent randomization

s ¼ 0:25

0.01 0.5 0.07377 0.4364 0.8283 0.3049 0.3856

0.1 1 0.111 0.4092 0.8195 0.3037 0.3984

0.5 3 0.4704 0.1573 0.7327 0.2661 0.3988

s ¼ 0:5

0.01 0.5 0.09696 0.9058 0.9994 0.8171 0.8443

0.1 1 0.2829 0.8595 0.9978 0.8335 0.883

0.5 3 0.9638 0.2689 0.991 0.7511 0.921

s ¼ 0:75

0.01 0.5 0.1673 0.955 0.9998 0.9802 0.9654

0.1 1 0.7407 0.8111 0.9998 0.9798 0.9822

0.5 3 0.9998 0.1365 0.9946 0.9842 0.9962

Mixed randomization

s ¼ 0:25

0.01 0.5 0.07257 0.4336 0.8091 0.3029 0.38

0.1 1 0.09216 0.4176 0.8179 0.3137 0.3988

0.5 3 0.3836 0.1821 0.7307 0.2613 0.3609

s ¼ 0:5

0.01 0.5 0.09536 0.9146 0.9994 0.8215 0.8375

0.1 1 0.1881 0.8886 0.9982 0.8263 0.8651

0.5 3 0.8762 0.4188 0.9974 0.7499 0.8802

s ¼ 0:75

0.01 0.5 0.1549 0.9614 0.9998 0.9778 0.9578

0.1 1 0.4336 0.9138 0.9998 0.977 0.9726

0.5 3 0.997 0.2709 0.9994 0.975 0.993

Co-monotone randomization

s ¼ 0:25

0.01 0.5 0.06657 0.452 0.8343 0.3201 0.4092

0.1 1 0.08337 0.44 0.8343 0.3249 0.3996

0.5 3 0.2225 0.4792 0.8671 0.4524 0.4912

s ¼ 0:5

0.01 0.5 0.08816 0.9082 0.9982 0.8303 0.8419

0.1 1 0.1317 0.9114 0.999 0.8331 0.8531

0.5 3 0.6711 0.8087 0.9998 0.8834 0.9326

s ¼ 0:75

0.01 0.5 0.1429 0.9558 0.9998 0.9818 0.9614

0.1 1 0.3257 0.945 0.9998 0.983 0.975

0.5 3 0.9842 0.6291 0.9994 0.991 0.9974

Probability of rejection (nominal level 5%) of the Null hypothesis that

the copula belongs, respectively, to the Clayton (CCly), Frank (CFrk),

Gumbel (CGmb), Normal (CNrm), and Student-t (Ct;4, with m ¼ 4 degrees

of freedom) family, for a random sample generated from a Clayton

copula, with s ¼ 0:25; 0:5; 0:75 obtained from independent repetitions

of the discretization and randomization procedures—see text

Table 6 ‘‘Clayton’’ case: N ¼ 300, B ¼ 2500

DH DD CCly CFrk CGmb CNrm Ct;4

Independent randomization

s ¼ 0:25

0.01 0.5 0.05978 0.7875 0.9874 0.6387 0.7567

0.1 1 0.111 0.7659 0.9874 0.6547 0.7839

0.5 3 0.7395 0.3389 0.9646 0.5596 0.7959

s ¼ 0:5

0.01 0.5 0.09456 0.9982 0.9998 0.9954 0.997

0.1 1 0.4408 0.9982 0.9998 0.9946 0.9978

0.5 3 0.9998 0.6208 0.9998 0.9894 0.9994

s ¼ 0:75

0.01 0.5 0.2061 0.9998 0.9998 0.9994 0.9994

0.1 1 0.9638 0.9986 0.9998 0.9998 0.9998

0.5 3 0.9998 0.4144 0.9998 0.9998 0.9998

Mixed randomization

s ¼ 0:25

0.01 0.5 0.06897 0.7799 0.9882 0.6411 0.7439

0.1 1 0.1066 0.7603 0.9862 0.6275 0.7667

0.5 3 0.6124 0.3832 0.9646 0.5392 0.7331

s ¼ 0:5

0.01 0.5 0.101 0.999 0.9998 0.9934 0.9954

0.1 1 0.2721 0.9978 0.9998 0.995 0.9966

0.5 3 0.9822 0.8231 0.9998 0.9906 0.9966

s ¼ 0:75

0.01 0.5 0.1641 0.9998 0.9998 0.9998 0.9998

0.1 1 0.5924 0.9998 0.9998 0.9998 0.9998

0.5 3 0.9998 0.7571 0.9998 0.9998 0.9998

Co-monotone randomization

s ¼ 0:25

0.01 0.5 0.06457 0.7875 0.9866 0.6319 0.7515

0.1 1 0.08297 0.7803 0.993 0.6467 0.7627

0.5 3 0.3221 0.7931 0.995 0.7775 0.8383

s ¼ 0:5

0.01 0.5 0.08617 0.9994 0.9998 0.9978 0.9982

0.1 1 0.1517 0.9978 0.9998 0.9962 0.997

0.5 3 0.8902 0.9886 0.9998 0.9978 0.9994

s ¼ 0:75

0.01 0.5 0.1525 0.9998 0.9998 0.9998 0.9998

0.1 1 0.4464 0.9998 0.9998 0.9998 0.9998

0.5 3 0.9998 0.9886 0.9998 0.9998 0.9998

Same as Table 5
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discretization of the data, the Goodness-of-Fit test proce-

dures tend to attain the nominal level (5%) for the Null

hypothesis that the copula comes from the Frank family (in

particular, the results are comparable with the ones

obtained in Kojadinovic et al. (2011). Instead, in the case

of strong discretization, the test tends to reject the Null

hypothesis too often: apparently, in this latter case, the

mixed randomization seems to produce the least biased

results. Furthermore, in testing the Null hypothesis that the

data are extracted from another fixed copula family

different from the Frank one, the results seem overall quite

reasonable. It should be noticed that, in case of weak

dependence, the test does not seem to be fully able to

distinguish between the Frank copula and the Normal one:

the probabilities of rejection of the latter are sometimes of

the order of 14%, which may not be thoroughly satisfac-

tory. In all cases, the performance improves using larger

samples of size N ¼ 300. Concerning the estimate of the

‘‘true’’ parameter values, the results are illustrated in Fig. 1.

In general, for a sample size N ¼ 150, these values are

1.
5

2.
0

2.
5

3.
0

3.
5

Parameter estimate

V
al

ue

1.
5

2.
0

2.
5

3.
0

3.
5

V
al

ue

1.
5

2.
0

2.
5

3.
0

V
al

ue

Π2 M2 Mix − M2Π2

Parameter estimate

Π2 M2 Mix − M2Π2

Parameter estimate

Π2 M2 Mix − M2Π2

Parameter estimate

Π2 M2 Mix − M2Π2

Parameter estimate

Π2 M2 Mix − M2Π2

Parameter estimate

Π2 M2 Mix − M2Π2

Parameter estimate

Π2 M2 Mix − M2Π2

Parameter estimate

Π2 M2 Mix − M2Π2

Parameter estimate

Π2 M2 Mix − M2Π2

V
al

ue
V

al
ue

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

V
al

ue

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

V
al

ue

4.
5

4.
0

5.
0

5.
5

6.
0

6.
5

7.
0

12
13

14
15

16

V
al

ue

12
13

14

V
al

ue 12
11

10
13

14

15
16

Fig. 1 ‘‘Frank’’ case: N ¼ 300, B ¼ 10; 000. Boxplots of the copula

parameter estimates: the horizontal thick lines indicate the ‘‘true’’

values—see text. From top to bottom, the rows correspond, respec-

tively, to the values of the Kendall’s s ¼ 0:25; 0:5; 0:75. From left to

right, the columns correspond, respectively, to the following pairs of

height and duration resolutions: ðDH ;DDÞ 2 fð0:01; 0:5Þ;
ð0:1; 1Þ; ð0:5; 3Þg. The labels ‘‘P2’’, ‘‘M2’’, and ‘‘mix-M2P2’’ denote

the use of an independent, a co-monotone, and a mixed randomiza-

tion, respectively
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10

roughly identified (on average) in all cases and for all the

randomization procedures, with the exception of a strong

discretization and large dependence. In this latter case, the

correct value of the parameter is generally underestimated

and, consequently, a weaker degree of dependence is

incorrectly perceived. Apparently, no improvements are

achieved using larger samples of size N ¼ 300.

The results concerning the estimate of the design

quantiles are presented in Fig. 2. In general, there are no

significant differences between the cases N ¼ 150 and

N ¼ 300. Overall, the approximations of the ‘‘true’’ values

are quite reasonable: the fluctuations around the correct

values are of the order of a few tons (or fractions of tons),

representing small percentages of the cube weight, even in
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Fig. 2 ‘‘Frank’’ case: N ¼ 300, B ¼ 10; 000, q ¼ 0:99. Boxplots of

the cube weight design quantiles estimates: the horizontal thick lines

indicate the ‘‘true’’ values—see text. From top to bottom, the rows

correspond, respectively, to the values of the Kendall’s

s ¼ 0:25; 0:5; 0:75. From left to right, the columns correspond,

respectively, to the following pairs of height and duration resolutions:

ðDH ;DDÞ 2 fð0:01; 0:5Þ; ð0:1; 1Þ; ð0:5; 3Þg. The labels ‘‘P2’’, ‘‘M2’’,

and ‘‘mix-M2P2’’ denote the use of an independent, a co-monotone,

and a mixed randomization, respectively
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case strong discretization and large dependence are

imposed.

4.2 Gumbel case

Here the data have been sampled from the Gumbel family.

Tables 3 and 4 report the probabilities of rejection of the

Null hypothesis that the copula belongs to several families.

For a sample size N ¼ 150, in almost all cases the Good-

ness-of-Fit test procedures tend to attain the nominal level

(5%) for the Null hypothesis that the copula comes from

the Gumbel family, independently of the degree of dis-

cretization, the value of s, and the randomization strategy.

The only exceptions are in case of strong discretization and

one of the following situations: (i) for s ¼ 0:5; 0:75 and the

independent procedure; (ii) for s ¼ 0:75 and the mixed
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Fig. 3 ‘‘Gumbel’’ case: N ¼ 300, B ¼ 2500. Boxplots of the copula

parameter estimates: the horizontal thick lines indicate the ‘‘true’’

values—see text. From top to bottom, the rows correspond, respec-

tively, to the values of the Kendall’s s ¼ 0:25; 0:5; 0:75. From left to

right, the columns correspond, respectively, to the following pairs of

height and duration resolutions: ðDH ;DDÞ 2 fð0:01; 0:5Þ;
ð0:1; 1Þ; ð0:5; 3Þg. The labels ‘‘P2’’, ‘‘M2’’, and ‘‘mix’’ denote the

use of an independent, a co-monotone, and a mixed randomization,

respectively
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procedure; (iii) for all s’s and the co-monotone procedure.

Furthermore, in testing the Null hypothesis that the data are

extracted from another fixed copula family different from

the Gumbel one, the results seem overall quite reasonable.

The performance is about the same using larger samples of

size N ¼ 300.

Concerning the estimate of the ‘‘true’’ parameter values,

the results are illustrated in Fig. 3. In general, for a sample

size N ¼ 150, these values are roughly identified (on

average) in all cases and for all the randomization proce-

dures, with the exception of a strong discretization and

large dependence. In this latter case, the correct value of

the parameter is generally underestimated and, conse-

quently, a weaker degree of dependence is incorrectly

perceived. Apparently, no significant improvements are

achieved using larger samples of size N ¼ 300, except that

the variability of the estimates slightly decreases.
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Fig. 4 ‘‘Gumbel’’ case: N ¼ 300, B ¼ 2500, q ¼ 0:99. Boxplots of

the cube weight design quantiles estimates: the horizontal thick lines

indicate the ‘‘true’’ values—see text. From top to bottom, the rows

correspond, respectively, to the values of the Kendall’s

s ¼ 0:25; 0:5; 0:75. From left to right, the columns correspond,

respectively, to the following pairs of height and duration resolutions:

ðDH ;DDÞ 2 fð0:01; 0:5Þ; ð0:1; 1Þ; ð0:5; 3Þg. The labels ‘‘P2’’, ‘‘M2’’,

and ‘‘mix’’ denote the use of an independent, a co-monotone, and a

mixed randomization, respectively
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The results concerning the estimate of the design

quantiles are presented in Fig. 4. In general, there are no

significant differences between the cases N ¼ 150 and

N ¼ 300, and/or adopting different randomization strate-

gies. Overall, the point approximations of the ‘‘true’’ values

are quite reasonable: the fluctuations around the correct

values are of the order of a few tons (or fractions of tons),

representing small percentages of the cube weight, even in

case strong discretization and large dependence are

imposed.

4.3 Clayton case

Here the data have been sampled from the Clayton family.

Tables 5 and 6 report the probabilities of rejection of the

Null hypothesis that the copula belongs to several families.
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Fig. 5 ‘‘Clayton’’ case: N ¼ 300, B ¼ 2500. Boxplots of the copula

parameter estimates: the horizontal thick lines indicate the ‘‘true’’

values—see text. From top to bottom, the rows correspond, respec-

tively, to the values of the Kendall’s s ¼ 0:25; 0:5; 0:75. From left to

right, the columns correspond, respectively, to the following pairs of

height and duration resolutions: ðDH ;DDÞ 2 fð0:01; 0:5Þ;
ð0:1; 1Þ; ð0:5; 3Þg. The labels ‘‘P2’’, ‘‘M2’’, and ‘‘mix’’ denote the

use of an independent, a co-monotone, and a mixed randomization,

respectively
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In almost all cases, the Goodness-of-Fit test procedures

attain values (much) larger than the nominal level (5%) for

the Null hypothesis that the copula comes from the Clayton

family, independently of the degree of discretization, the

value of s, the randomization strategy, and the sample size.

In particular, the Clayton model is always rejected in case

of a strong discretization. Furthermore, in testing the Null

hypothesis that the data are extracted from another fixed

copula family different from the Clayton one, the results

are reasonable.

Concerning the estimate of the ‘‘true’’ parameter values,

the results are illustrated in Fig. 5. In general, these values

are under-estimated (on average), independently of the

degree of discretization, the value of s, and the random-

ization strategy: consequently, a weaker degree of depen-

dence is incorrectly perceived. The only exceptions are as
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Fig. 6 ‘‘Clayton’’ case: N ¼ 300, B ¼ 2500, q ¼ 0:99. Boxplots of

the cube weight design quantiles estimates: the horizontal thick lines

indicate the ‘‘true’’ values—see text. From top to bottom, the rows

correspond, respectively, to the values of the Kendall’s

s ¼ 0:25; 0:5; 0:75. From left to right, the columns correspond,

respectively, to the following pairs of height and duration resolutions:

ðDH ;DDÞ 2 fð0:01; 0:5Þ; ð0:1; 1Þ; ð0:5; 3Þg. The labels ‘‘P2’’, ‘‘M2’’,

and ‘‘mix’’ denote the use of an independent, a co-monotone, and a

mixed randomization, respectively
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follows: (i) for s ¼ 0:25 and weak/moderate discretization;

(ii) for s ¼ 0:5 and weak discretization. Apparently, no

improvements are achieved using larger samples of size

N ¼ 300. It is worth noting that some boxplots are

incomplete, since some data are missing: namely, for the

combinations fN ¼ 150; s ¼ 0:75; ðDH ;DDÞ ¼ ð0:5; 3Þg,
fN ¼ 300; s ¼ 0:5; ðDH ;DDÞ ¼ ð0:5; 3Þg, and

fN ¼ 300; s ¼ 0:75; ðDH ;DDÞ ¼ ð0:5; 3Þg. In these cases,

the Null hypothesis that the copula comes from the Clayton

family is always rejected over all the B tests (at a 5%

level): in turn, no meaningful estimates of the Clayton

copula parameter can be computed, as well as no corre-

sponding design quantiles.

The results concerning the estimate of the design

quantiles are presented in Fig. 6. In general, the behavior is

the same as the one of the estimates of the copula param-

eter: viz., an overall under-estimate of the ‘‘true’’ values,

with only a few exceptions.

5 Discussion and conclusions

The results presented in Sect. 4 may be read under two

alternative and complementary perspectives, one of more

theoretical nature (1), and the other of more practical rel-

evance (2), as discussed below.

1. On the one hand, apparently, the randomization

procedures may not help in identifying the ‘‘true’’

model once the data are made available in a discretized

form, e.g. due to (instrumental) adjustments and

truncations: in fact, the examples presented above

show that in some cases the jittering may provide a

valuable tool (i.e., the Gumbel case), whereas in some

other cases it may not work at all (i.e., the Clayton

case), or only partially (i.e., the Frank case). Roughly

speaking, in some cases the features of a copula family

which are usually detected by the Goodness-of-Fit

test—for instance, the Crámer–von Mises one used in

this experiment—are only weakly affected by the

discretization (e.g., in the Gumbel case), whereas some

other families may be strongly affected (e.g., in the

Clayton case). As a consequence, since the underlying

‘‘true’’ copula is unknown, in general it is not possible

to trust the randomization procedure as a tool for

identifying the original copula in discretized samples.

2. On the other hand, at least concerning the setting

adopted in this experiment, apparently, the point

estimates of the design values seem to be only weakly

affected and spoiled by the discretization mechanism.

Clearly, this may represent a good news for practi-

tioners, who generally are interested in the estimation

of approximate design values for assessing the risk.

However, in the present framework, the variability of

the estimates of the design quantiles introduced by the

discretization/randomization procedures is about of the

same order as the actual one between the ‘‘true’’ design

values computed using the three different copula

models.

As a summary, from the partial (yet realistic) simulation

results presented above, it seems sensible to conclude that,

concerning the identification problem, the randomization

procedures outlined in this work may be of little help when

discretized data are made available. However, and espe-

cially if the level of discretization of the data is weak or

moderate, apparently the same procedures may yield fair

approximations to the structural risk. In case a strong dis-

cretization is at play, underestimates of the true risk have to

be expected.

This paper may be of particular interest for coastal

engineers, since Weibull marginals like the ones used in

this work are widely adopted in practical applications for

modeling the main variables playing a significant role in

sea storms. Clearly, the results presented above should not

be over-generalized: for instance, by using heavy-tailed

marginals like Generalized Pareto or Generalized Extreme

Value laws.
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