
 
 

 

  



 
 

  



 
 

Sommario 

Questa tesi raccoglie i risultati del mio dottorato di ricerca che ha riguardato lo 

studio teorico di processi di fotoionizzazione. In particolare, nel corso dei tre anni, 

sono stati implementati diversi algoritmi, basati sull’uso di funzioni note con il 

nome di B-spline, allo scopo di aumentare il numero di casi trattabili in questo 

tipo di processi, come gli effetti di correlazione elettronica e i fenomeni non-

perturbativi associati alla fotoionizzazione.   

La prima parte di questa tesi è dedicata agli effetti di correlazione che interessano 

gli stati legati. Poiché il metodo Density Functional Theory (DFT) non permette 

di studiare alcun effetto di correlazione, è stato usato un approccio a canale 

singolo che sfrutta la così detta Configurazione di Interazione (CI) per descrivere 

sia lo stato iniziale che lo stato finale. In particolare, al fine di trattare tali effetti di 

correlazione, è stato utilizzato un approccio basato sul metodo Complete Active 

Space Self-Consistent Field (CASSCF), accoppiato a un approccio n-electron 

Valence State Perturbation Theory (NEVPT2) per ottenere valori più accurati di 

potenziale di ionizzazione. In questo contesto, sono stati usati i così detti orbitali 

di Dyson con cui sono stati poi calcolati i momenti di dipolo di transizione. La più 

comune manifestazione della correlazione elettronica è la comparsa di bande 

addizionali, chiamate bande satelliti, negli spettri di fotoelettrone. La struttura e la 

posizione delle bande satelliti è stata studiata nel caso di alcune molecole 

biatomiche. Sono state quindi calcolate le osservabili dinamiche di 

fotoionizzazione dei primi stati ionici di tutte le molecole considerate, 

confrontando tra loro i risultati ottenuti con i diversi approcci (Dyson, DFT e 

Hartree-Fock). In collaborazione con altri gruppi di ricerca, questo studio è stato 

applicato anche alla molecola di ozono, allo scopo di ottenere lo spettro di 

fotoelettrone risolto nel tempo.         

Al fine di trattare tutti gli effetti multi-elettronici, nella seconda parte di questa 

tesi viene illustrata l’implementazione di un algoritmo per il calcolo degli integrali 

bielettronici nella base Linear Combination of Atomic Orbitals (LCAO) B-splines 



 
 

usata. L’obiettivo è quello di esprimere la funzione d’onda dello stato finale 

mediante un formalismo Close-Coupling che, potenzialmente, permette di 

descrivere tutti gli effetti di correlazione, compresi quelli che coinvolgono gli stati 

del continuo. Gli integrali bielettronici sono stati calcolati risolvendo l’equazione 

di Poisson relativa alla prima particella e integrando il potenziale risultante dalla 

seconda particella. I risultati sono stati poi confrontati con quelli ottenuti dal 

programma di chimica quantistica MOLPRO.   

La terza parte della tesi si occupa della trattazione di fenomeni non perturbativi 

sulla base della risoluzione dell’equazione di Schrödinger dipendente dal tempo 

(TDSE). Nel metodo presentato, l’evoluzione temporale è discretizzata in sotto-

intervalli sufficientemente piccoli da poter considerare l’Hamiltoniano 

indipendente dal tempo. Il pacchetto d’onda ottenuto dalla propagazione 

temporale viene proiettato sugli stati del continuo ottenuti con il metodo DFT. Gli 

spettri di fotoelettrone e i Molecular Frame Photoelectron Angular Distributions 

(MFPADs) sono stati calcolati per diversi sistemi, quali 𝐻2
+, 𝑁𝐻3 and 𝐻2𝑂.   

 

 

  



 
 

Abstract 

Photoionization processes have been examined from a theoretical perspective with 

the aim of increasing the number of the describable phenomena involved in such 

processes. This aim has been achieved by the implementation of several 

algorithms based on the use of B-splines as basis functions to treat both 

correlation effects and non-perturbative photoionization regime. 

The first part of the thesis is dedicated to correlation effects within the bound 

states. Since a standard DFT method does not permit to study any correlation 

effect, we present a single channel approach that uses Configuration Interaction 

(CI) to describe both the neutral initial state and ionic final state. More 

specifically, this method applies a Complete Active Space Self-Consistent Field 

(CASSCF) procedure to treat such correlation effects. Ionization potentials are 

further improved by n-electron valence state perturbation theory (NEVPT2). 

Dyson orbitals are used in this context to calculate the dipole transition moments. 

The most frequent evidence of electron correlation is the presence of additional 

bands, called satellite bands, in the photoelectron spectra. The structure and the 

position of satellite bands in some diatomic molecules has been studied. For all 

the considered molecules, dynamical photoionization observables have been 

calculated for the first ionization states, by comparing the results so obtained to 

those ones got by standard DFT method, Dyson orbital approach and HF method. 

The formalism has been also applied to the 𝑂3 molecule within a collaboration 

that aimed to obtain the time-resolved photoelectron spectrum of this molecule.   

In the second part of the thesis, the implementation of an algorithm to calculate 

two-electron integrals in the LCAO B-spline basis with the aim to treat all the 

many-electron effects is illustrated. This has been done to fully express the final 

wavefunction within the so called Close-Coupling (CC) formalism that permits to 

also describe correlation effects involving continuum states. In particular, two-

electron integrals have been calculated by solving the Poisson equation relative to 

the first charge density and integrating the resulting potential with the second 



 
 

charge density. The results are compared to the corresponding integrals obtained 

by using MOLPRO quantum chemistry package.  

The third part of the thesis presents a method to treat the non-perturbative 

phenomena by solving Time-Dependent Schrödinger Equation (TDSE). In this 

method, time-evolution is discretized in subintervals sufficiently small so that the 

Hamiltonian approximately becomes time-independent. The final wavepacket, 

derived by time propagation, is then projected onto the continuum states 

calculated with the DFT method. Photoelectron spectra and MFPADs are obtained 

for several systems, such as hydrogen atom, 𝐻2
+, 𝑁𝐻3 and 𝐻2𝑂.
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1. Introduction  

1.1. Photoionization Spectroscopy  

Interaction between light and matter can lead to electron excitation and ionization 

processes. The present thesis is focused on the study of the physical process, 

known as photoionization, due to the interaction between electromagnetic 

radiation and atoms or molecules where one or more electrons can be ejected. 

Although photoionization generally occurs from excitation of valence electrons to 

the continuum, inner-shell electrons can be also excited in case the photon energy 

is sufficiently high. 

Photoionization is exploited by Photoelectron spectroscopy (PE) to measure the 

kinetic energies of ejected electrons and to collect, from the study of the 

corresponding spectra, complex and detailed information on the target systems. 

Unlike traditional forms of spectroscopy based on the measure of absorbance or 

transmittance of photons, PE spectroscopy employs electrons as primary source of 

information. 

Studying molecules in gas phase through PE spectroscopy has permitted to shed 

light on electronic structures of molecular systems together with the possibility to 

examine the nature of chemical bonding and mechanism of chemical reactions. 

PE spectroscopy, at the beginning of its development, was limited to the study of 

simple systems and only spectral main lines in a very narrow energy range. As a 

result, a spectrum which can be interpreted by using molecular orbitals is 

obtained. Indeed, associating a spectral band to an electronic state of the 

molecular ion and individuating orbitals from which electrons are ejected 

constitute the analysis of a spectrum. 

We are now able to examine a wide variety of systems and complex phenomena 

such as appearing of further lines in the spectra, multiple-electron ejections and 

ionization of excited states. 
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Such as analysis highlights the fact that a spectrum, where the position of a line is 

associated to energy differences between the levels of a neutral and ionic systems, 

represents a signature of the examined molecule. 

It also a very deep probe into electron correlation, both in the bound states and the 

final continuum. Much more information can be gained by the study of the 

associated cross section, angular distribution and there energy dependence. The 

development of new laser sources, including free electron lasers, opens a window 

on new processes beyond the single one-photon absorption, and in the ultrafast 

domain, down to few femtosecond or even in the attosecond regime. 

All these experimental advances pose a renewed challenge to the theoretical 

description, to match and interpret the experimental results.  

Thus far we have highlighted the reasons that make PE spectroscopy a 

fundamental technique in physical chemistry. This work is focused on the 

photoionization process applied to samples in gas phase and on the specific effects 

related to this process. Theoretical predictions are crucial to understand and 

interpret results of experimental investigations. 

1.2. Experimental aspects 

In PE spectroscopy, the target system is exposed to an incident radiation with a 

suitable energy hν, and the resulting emission of photoelectrons is observed. The 

physical quantities that can be measured following a photoemission experiment 

are, for each photoelectron emitted, kinetic energy, intensity as a function of 

photon energy and angular distributions. These quantities allows insight into the 

electronic structure of the target molecules. 

The main components of a photoelectron spectrometer are the source of 

electromagnetic radiation, a sample chamber, an energy analyzer, a photoelectron 

detector and a recorder. Different sources of radiation can be chosen, depending 

on the properties that are to be measured; for example, light-matter interaction 

leads to two different kind of ionization: perturbative and non-perturbative. The 

perturbative regime occurs when the intensity of the light radiation is low and the 

mechanism is governed by a multiphoton (or few-photon) absorption that ionizes 
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the system. The non-perturbative regime occurs with high intensity and ultra-short 

pulses and one electron can be ejected by tunnelling effect. 

The most common types of radiation used in PES are vacuum UV radiation and 

X-rays that allow, respectively, to probe valence levels with high resolution and to 

eject electrons from both valence and inner orbitals. The VUV (Vacuum Ultra 

Violet) usually corresponds to the He(I) emission line [1] at 21.2 eV or the He(II) 

line [2] at 40.8 eV. These are generated by means of induced discharges through 

helium gas. In the case of the monochromatic X-rays, some of the most common 

sources used are the Mg Kα radiation, as well as the Al Kα radiation, generated in 

an X-ray anode (upon which some incident electron generated in a tungsten 

filament collide, provoking the emission of radiation), with energies of, 

respectively, 1253.6 eV and 1486.6 eV. These traditional light sources can reach 

high intensity, although just at certain characteristic energies, but they cannot be 

used to study the photon energy dependence of PE spectra. Synchrotron radiation 

(SR), observed for the first time in 1947 in the General Electric Research 

Laboratory in Schenectady, New York, has offered the possibility to extend the 

knowledge of the electronic structure of atomic and molecular systems, by filling 

the gap between the low energy (VUV) and high-energy (X-ray) sources. SR 

represents a challenging tool to probe outer and inner-shell excitations and 

ionization processes in the molecules. 

In particular, the new generation of synchrotron radiation sources (such as 

ELETTRA in Italy) exploit ondulators that force the electrons through sinusoidal 

or spiral trajectories. 

SR turns out to be a very useful source of incident radiation for the PE 

spectroscopy technique. Its usefulness is due to its versatility, since its spectrum is 

a smooth continuum, and therefore the wavelength of interest can be tuned. Thus, 

by definition, the SR is radiation emitted by charged particles moving at 

relativistic speed forced by magnetic fields to follow curved trajectories. These 

trajectories are covered by the electrons within a storage ring where the generated 

electrons are injected. The magnetic fields are perpendicular with respect to the 

direction of the electron motion in order to centripetally accelerate the electrons, 
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rendering them sources of electromagnetic radiation which is conveyed in suitable 

ramifications (called beamlines) that run off tangentially to the storage ring [3]. 

The resulting emitted radiation possesses particular features that make SR a 

unique tool for PE spectroscopy, such as: (1) wide hν spectral distribution from 

infrared to X-rays, which provides the tunability of monochromatized photons in a 

wide hν region, that enables the user to select a wavelength appropriate for the 

experiment, (2) linear polarization in the orbital plane and elliptical polarization 

slightly above or below this plane, (3) divergence of the radiation is 1/γ radian 

[where the Lorentz factor γ is equal to 1957E, when the energy of the electrons 

accelerated in the storage ring is E(GeV)]. Therefore the divergence is of the order 

of 6.49 x 10
-5

 radian in the case of 8 GeV storage ring (SPring-8), (4) not a 

continuous wave (cw) light source but a pulsed light source with a quite accurate 

repetition (pulses typically 10 to 100 picoseconds in length separated by 10 to 100 

nanoseconds) [4]. 

Furthermore, nowadays there are lasers with sub-femtosecond pulses [5], which 

can be used to study time-resolved physical and chemical processes. Several 

articles and reviews focussed on the ionization processes have been published. 

Pump-probe approaches are really suitable to study the time evolution [6]
 
of the 

examined processes. Time-resolved studies are based on chains of snapshots 

which are already available within subfemtosecond resolution [7]. Most of the 

attosecond pump-probe experiments use pulses within two regions: NIR (near-

infrared) and UV (ultraviolet). The first one employs strong-field pulses in the 

femtosecond time scale. It usually provides non-perturbative tunnel ionization. 

The second one leads to perturbative multiphoton ionization. However, there are 

further pump-probe methods, which allow us to study several proprieties in the 

ultrafast time scale. 

 

Regarding the components of a PE spectrometer, the energy analyzer (also called 

electron density analyzer) accomplishes the task of dispersing the photoelectrons 

as a function of their kinetic energies and counting them in order to obtain an 

intensity distribution which represents the PE spectrum with a high resolution and 
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sensitivity. The electron density analyzer uses either electric or magnetic fields to 

deflect electrons having different kinetic energies. 

 

Following the analysis of the different kinetic energies of the electrons, these 

come out from the energy analyzer and reach an electron multiplier, which is a 

special kind of detector for the electron flux that operates on the basis of a cascade 

effect, namely secondary electrons are produced by the primary ejected electrons 

which strike the surface of the multiplier. A current pulse produced during this 

process is detected and registered, thus providing the PE spectroscopy signal. 

Spectrometers can be classified according to the number of electrons that are 

detected simultaneously: in a differential spectrometer, electrons of only one 

energy at a time are able to reach the detector; instead, in an integral 

spectrometer, the whole set of photoelectrons having more than one energy value 

are able to reach the spectrometer at the same time. 

 

  

Figure 1.1: PES spectrometer setup. 
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1.3. Photoelectron Spectra 

A photoelectron spectrum is the result of a PE spectroscopy experiment, and 

contains information about the energy distribution of the emitted photoelectrons. 

It is represented by the number of emitted electrons detected at each energy. The 

characterization of a PE spectrum relies on three main sources of information 

regarding the energy distribution of the photoelectrons, namely the line energies, 

their corresponding intensities and the lineshape of each spectral signal 

(particularly its width). During the photoexcitation process, electrons coming 

from different energy levels could be ejected, giving rise to different molecular 

ionic states. The observable quantity that is measured when the photoelectrons are 

detected is the ionization energy of the electron of interest, which is given by the 

energy difference between the electronic state of the molecular ion and the ground 

state (GS) of the molecule under study. 

The previously described photoexcitation phenomenon corresponds to purely 

electronic transitions, nevertheless in practice the PE spectrum reports several 

vibrational lines for each type of electron ionized, thus several vibronic transitions 

are associated with a single electron photoionization and widen the signal that 

would derive from a purely electronic transition in the PE spectrum. The 

collection of lines that are associated with the ionization of a specific electron 

constitute a band, and the corresponding energies describe the energy differences 

between the molecular GS and the ionic state as described above. 

As a starting point for the characterization of a PE spectrum, each spectral band is 

assigned to a specific electronic state of the molecular ion, identifying the orbital 

from which the electron has been ejected. The first approach that could be used 

for characterizing the number and type of ionic states accessible during the 

ionization process is considering an N-electronic state described by Molecular 

Orbitals (MOs), each of which is occupied by at most two electrons. The binding 

energy of each electron occupying a specific MO can be associated with its 

ionization energy by means of the Koopmans’ theorem (KT), which states that the 
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negative of the binding energy of an electron in the N-electron wave function that 

describes the molecular GS equals the vertical ionization energy necessary for 

removing the electron from that MO. Within this approximation, the PE spectrum 

could be interpreted as a direct molecular orbital energy diagram. 

The Koopmans’ theorem along with these two approximations works well when 

using them as a first approach towards the characterization of a PE spectrum, 

nevertheless their inadequacy becomes evident when a spectrum shows a larger 

number of bands with respect to the number of valence orbitals in the electronic 

configuration of the molecule. This fact is due to the presence of several 

mechanisms that give rise to additional bands, some of which stem from the 

ionization of one electron with simultaneous excitation of a second electron 

towards an unoccupied virtual orbital. This phenomenon is referred to as a two-

electron process. 

As described above, PE band intensities provide information regarding the 

electronic structure of the molecules studied. SR sources, which provide tunable 

radiation energies, nowadays allow for obtaining high resolution spectra and thus 

permit to carry out more extensive studies of PE band intensities. In a PES 

experiment, the relative intensities of the spectral bands are of higher importance 

with respect to the absolute band intensities. Indeed, on the one hand, the latter are 

very difficult to obtain because they depend on several experimental parameters 

(e.g. the intensity of incident radiation, the type of analyzer, the sensitivity of the 

detector and so on); on the other hand, the relative intensities represent the 

probabilities of photoionization towards different states of the ion, which are also 

known as partial ionization cross sections. PE relative band intensities depend on 

the nature of the molecular orbitals as well, thus information regarding the 

variations in the geometry of the molecule following the photoionization event 

can be extracted from a detailed analysis of the shape of the bands. The geometry 

changes provide information about the nature of the molecular orbitals, such as 

whether they are of bonding, anti-bonding or non-bonding character. 
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The physical quantity measured during a PE spectroscopy experiment is the 

ionization energy, also known as Ionization Potential (IP). The IP is defined as the 

energy required for extracting an electron from the electronic configuration of an 

atom or molecule in its ground electronic state in free space. As stated at the 

beginning of this section, the IP is associated with the energy difference between 

the ionized molecule and the molecule in its GS. For an accurate description of 

the experimental spectrum, a prior knowledge of the electronic structure of the 

molecule and the ionization energies, obtained by means of theoretical 

calculations, is necessary. The IPs are obtained, as a first approximation, by 

calculating total energies within the Hartree-Fock framework [8] [9] [10], or 

employing more accurate methods such as the Configuration-Interaction scheme 

[11]. 

1.4. Basic Observables 

In a PE experiment, some of the main physical quantities that can be obtained 

from each ionized state generated, and which can also be determined theoretically, 

are the cross sections, the asymmetry parameters and the Molecular Frame 

Photoelectron Angular Distributions (MFPADs). 

Partial cross section [12] is a measure of the probability of photoionization to an 

ionic state [13] and gives information on the electronic structure of the considered 

system. It is expressed by the following formula: 

 
𝜎𝑖𝑓(ℎ𝜈) =

4𝜋2𝛼𝑎0
2

3
ℎ𝜈∑|�̅�𝑖𝑓𝑙𝑚|

2

𝑙𝑚

 (1.1) 

where 𝛼 is the fine-structure constant, 𝑎0 is the Bohr radius, and �̅�𝑖𝑓𝑙𝑚 is the 

dipole transition between the initial state and the final state. 

In general, the emission pattern of photoelectrons is not isotropic in space, but 

possesses a characteristic angular distribution. Indeed, if the spectrometer is set at 

different positions in space, the detection of electrons emitted towards the 

entrance slit of the spectrometer gives an angle-resolved signal and yields 
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information regarding the spatial distribution of the photoelectrons. Thus, by 

studying the angular distribution, which is characteristic of the sample under study 

being the pattern of photoelectrons not isotropic, a more detailed knowledge of 

the photoionization process and the nature of the states involved in 

photoexcitation can be attained. One of the main physical quantities that can be 

determined from these measurements over a wide range of energies is the angular 

distribution asymmetry parameter 𝛽, which represents the angular distribution of 

photoelectrons. It appears in the expression of the differential partial cross section, 

which for linearly polarized light is [14] 

 𝑑𝜎𝑖𝑓(ℎ𝜈)

𝑑𝛺
=
𝜎𝑖𝑓(ℎ𝜈)

4𝜋
[1 + 𝛽𝑖𝑓(ℎ𝜈)𝑃2(𝑐𝑜𝑠𝜗)] (1.2) 

where 𝜗represents the angle between the electric field vector of the photon beam 

and the direction of the outgoing electron, and 𝑃2(𝑐𝑜𝑠𝜗) resents a Legendre 

polynomial of second degree. Assuming a 100% linear polarization, the 

differential partial cross section becomes proportional to the integral partial cross 

section at the so called “magic angle” 𝜗 = 54.7°. The numerical value of 𝛽 

actually determines the shape of the angular distribution pattern; for example, in 

the case of photoionization of an electron from an s orbital and for negligible spin-

orbit coupling, the 𝛽 parameter has the energy-independent value of 2. In the 

general case, the 𝛽 parameter varies between -1 and 2, since different amplitudes 

contribute to the photoexcitation process. 

This anisotropy parameter is useful for achieving an accurate description of the 

photoelectron distribution when considering the measurement of PE spectra of 

gas-phase free molecules, which are randomly oriented in space, in the laboratory 

frame of reference. Nevertheless, from a theoretical point of view, the most 

natural reference frame for considering molecular photoionization is the molecular 

frame itself. Molecular frame photoelectron angular distributions (MFPADs) are 

the richest observables of the photoionization. These three observables will be 

described in more detail in Chapter 2. 



10 
 

1.5. Aim and outline 

Aim of this thesis is to improve the theoretical description of photoionization 

processes. In particular, the project consists in applying already available methods 

[15] [16] [17] [18] and in implementing new algorithms in order to include more 

complexes many-electron effects and to treat non-perturbative phenomena. 

Chapter 2 introduces the underlying theory of photoionization processes, with a 

particular attention to the main observables involved in this process, such as cross 

sections and asymmetry parameters, together with the expression of the 

wavefunctions and the quantum chemistry approaches used in the calculations. A 

special attention will be given to the correlation effects and to the perturbative or 

non-perturbative nature of the photoionization. Chapter 3 will present a correlated 

single channel approach based on a CASSCF procedure coupled with Dyson 

orbitals to describe the correlation effects within the bound states. In order to 

describe all the correlation effects, including those involving continuum states, 

and interaction among different channels, Chapter 4 will present an 

implementation of the calculation of two-electron integrals, which are needed to 

expand the solution in the Close-Coupling form. Finally, in Chapter 5, non-

perturbative phenomena with the numerical solution of the Time-Dependent 

Schrödinger Equation (TDSE) will be treated. 
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1.6. Computational tools 

Fortran90 is used to implement the algorithms. All the calculations performed for 

this thesis have been executed on supercomputers at CINECA (Casalecchio di 

Reno, Bologna, Italy). The one most used in this project is Marconi, which is one 

of the fastest supercomputers available today within the community of Italian 

industrial and public researchers. It is ranked at the 14th position in the top500 (as 

june 2017), the list of the most powerful supercomputers in the world. Specifically 

we worked on A1 partition, some technical references are reported below: 

Model: Lenovo NeXtScale. 

Architecture: Intel OmniPath Cluster 

Nodes: 1512 

Processors: 2 x 18-cores Intel Xeon E5-2697 v4 (Broadwell) at 2.30 GHz 

Cores: 36 cores/node, 54432 cores in total 

RAM: 128 GB/node, 3.5 GB/core 

Internal Network: Intel OmniPath 

Disk Space: 17 PB (raw) of local storage 

Peak Performance: 2 PFlop/s 

Available compilers: Fortran F90, C, C++  

Parallel libraries: IntelMPI and OpenMPI 
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2. Theory 

 

 

2.1. Photoionization processes 

The process known as photoionization is based on the interaction between 

electromagnetic radiation and an atomic or molecular system. As result of this 

interaction, one or more electrons are ejected and the final state lies in the 

electronic continuum of the system, made by the collection of all the states of the 

system in which one electron is free and the residual system is in a state of 

definite energy. Scattering theory can be used to treat the structure and the 

properties of continuum states [19].  

With low intensity radiation, typical of most sources except lasers, the ionization 

probability is dominated by a single photon absorption, provided its energy 

exceeds the ionization potential, and it is accurately described by first order time 

dependent perturbation theory.  

Figure 2.1: illustration of the photoionization process 
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In this regime, within scattering theory, the probability that a collision event 

occurs is measured by an observable called cross section (𝜎). Cross section can be 

viewed as the number of ejected electrons detected in a given solid angle ∆𝛺 

divided by the number of incoming photons. By taking into account a small solid 

angle 𝑑𝛺, one can express 𝜎 as:  

 
𝜎(𝑑𝛺) =

𝑑𝜎(𝛺)

𝑑𝛺
𝑑𝛺 (2.1) 

where 
𝑑𝜎(𝛺)

𝑑𝛺
 is the differential cross section which represents the observable in 

scattering experiments. 

 

2.1.1. Nature of the photoionization 

More generally, other processes become allowed with high intensity radiation. 

Increasing intensity, light-matter interaction leads generally to two different kind 

of ionization: perturbative and non-perturbative. Let us introduce the Keldysh 

parameter 𝛾 to distinguish the two type of ionization [20]:  

 

𝛾 = √
𝐼𝑝

2𝑈𝑝
 (2.2) 

where 𝐼𝑝 represents the ionization potential of the considered electronic state and 

𝑈𝑝 is the ponderomotive force, which is the energy that a free electron acquires in 

the field, averaged over a cycle. It is related both to the amplitude 𝐸 and to the 

frequency (or photon energy) ω of the electric field by 

 
𝑈𝑝 = (

𝐸

2𝜔
)
2

 (2.3) 

The Keldysh parameter characterizes the regime of the ionization: if 𝛾 ≫ 1 the 

ionization is perturbative, otherwise, if 𝛾 ≪ 1, it occurs a non-perturbative 

multiphoton ionization.  
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Alternatively a more accurate criterion for the validity of the perturbation theory 

is that 𝑈𝑝 is much smaller than the photon energy, i.e. 

 
𝑍 =

𝑈𝑝

𝜔
≪ 1 (2.4) 

In Figure 2.2 [21], the differences between the two regimes are shown: 

 

Of course there is a continuous transition between the two behaviours around 

𝛾 = 1. Actually Keldysh parameter is not always a perfect index of the nature of 

the ionization, in fact for 𝛾 < 1 with 𝜔 > ~ 𝐼𝑝 the ionization acquires perturbative 

nature [22].  

The perturbative regime is governed by a multiphoton (or few-photon) absorption 

that ionizes the system. Therefore the final state is a consequence of a discrete 

number 𝑛 of interaction between light and the considered system (Fig 2.2a). This 

process can be accurately described by the lowest order in perturbation theory 

(LOPT) in which the process is allowed.  

In the non-perturbative (or tunnelling) regime the Coulomb potential is seen as the 

perturbation. Thus, the interaction between light and matter can be described by a 

Figure 2.2: physical illustration of multiphoton regimes: perturbative (a) and non-perturbative (b) 
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local potential that highly affect the Coulomb potential building a potential 

barrier. In this way, the electron motion is dominated by the field-induced 

potential (Fig 2.2b) and can escape the potential barrier by tunnelling through it 

and lies in the continuum (tunnelling regime), or directly if the barrier is lowered 

below its energy (over the barrier regime). In this regime one also refers to strong 

field (SF) processes.  

Once the electron is far from the ion, the Coulomb potential become negligible. 

The non-perturbative ionization makes not possible to exactly define the number 

of photon absorbed. 

An observable that helps to distinguish the two regimes is the photoelectron 

spectrum. A perturbative ionization furnishes a discrete photoelectron spectrum 

where the peak positions are related to the number of photons absorbed; whereas 

in non-perturbative ionization no characteristic peaks can be observed.  

 

2.1.2. Perturbative Few-Photon Ionization 

If allowed, the one-photon ionization is the most probable photoionization event, 

but, increasing the intensity, one can observe an absorption of more photons. For 

example, recently has been illustrated how in x-ray regime neon atom can absorb 

up to 8 photons furnishing Ne
8+

 [23]. Using x-ray, in fact, the ionization is 

governed by sequential absorption of one photon at time. This is explained by the 

high value of Keldysh parameter (Equation 2.2): x-ray correspond to high energy, 

thus, to very small ponderomotive potentials. These kind of processes are named 

multiple one-photon ionizations. 

The simplest multiphoton process is the absorption of two photon at the same 

time. Generally, the simultaneous absorption of more than one photon is call non-

sequential multiphoton ionization. These kind of processes are favoured by value 

of photon energy near to the resonance. For example, a non-sequential 

multiphoton process has been showed in an experiment, also performed on Ne, 
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that produces Ne
9+

. Which can be obtained only by combining sequential and non-

sequential two-photon ionization [24]. 

 

2.1.3. Non-Perturbative (Tunnel) Ionization 

Let us consider a system under a high field strengths. The investigation of this 

system using the perturbative approach for describing multiphoton ionization 

could provide bad result. Using UV or X-ray current light sources, the non-

perturbative regime is difficult to achieve (very high intensities are needed). 

Seeing Equation (2.2), the non-perturbative regime is easier to reach using optical 

frequencies.  

As already mentioned, the multiphoton non-perturbative ionization can be seen as 

the distortion of the electronic system that deform enough the Coulomb potential 

to cause a tunnel out of an electron. This process is also named as tunnel 

ionization. 

A typical current source is the Titanium sapphire laser, which provides pulses at 

the fundamental wavelength of 800 nm (𝜔 = 1.57 𝑒𝑉), and its lowest harmonics. 

Ultrashort pulses of few femtosecond or even attosecond length are provided by 

the so called high harmonic generation (HHG) obtained by focussing the high 

energy pulse on noble gases. HHG is extensively used either as a tool to 

investigate ultrafast molecular process, or as a secondary source of ultrashort 

pulses in the XUV region. 
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2.2. Photoionization cross section 

Photoionization is characterized by two states: an initial bound state of 𝑁 particles 

𝛹0
𝑁, and a final state, that is a combination of an ionic bound state of 𝑁 − 1 

particles 𝛹𝐼
𝑁−1 and a continuum state relative to a photoelectron with an 

asymptotic momentum 𝒌, 𝜑𝒌
(−)

. Let us call the final state as 𝛹𝐼𝒌
(−)

, where 𝐼 is the 

quantum number that identifies the ionization channel, and (−) indicates the 

boundary conditions of the incoming wave (see Chapter 2.3.1). Dipole transition 

between initial and final states controls photoionization process. Time Dependent 

Perturbation Theory (TDPT) provides us an expression where the differential 

cross section, in the weak field limit, can be computed through dipole momentum: 

 𝑑𝜎𝐼
𝑑𝒌

= 4𝜋2𝛼ω |⟨𝛹𝐼𝒌
(−)
|𝐷|𝛹0

𝑁⟩|
2

 (2.5) 

In this expression ω represents the photon energy and α is the fine-structure 

constant. This expression can be generalized to the multiphoton or strong field 

case. In any case the light pulse creates a final wavepacket 𝛹𝐷 (𝛹𝐷 = 𝐷𝛹0
𝑁 in the 

one-photon absorption) which is then projected over the continuum state, giving 

an ionization amplitude: 

 𝑃𝐼�⃗� = ⟨𝛹𝐼𝒌
(−)|𝛹𝐷⟩ (2.6) 

So that the following analysis generalizes with little modification to different 

regimes. 

Thus, our goal is to calculate the dipole matrix elements: 

 
𝐷𝐼𝒌
(−)
= |⟨𝛹𝐼𝒌

(−)
|𝐷|𝛹0

𝑁⟩|
2

 (2.7) 

In order to do this, one has to compute both the initial state 𝛹0
𝑁 and the final state 

wavefunctions 𝛹𝐼𝒌
(−)

. Final state wavefunction is much more complicated to be 
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evaluated with respect to the initial state wavefunction and has to satisfy definite 

boundary conditions. 

Before describing wavefunctions associated to the initial and final states, let us 

consider how the cross section can be calculated. From the experimental point of 

view, there are two frames regarding the orientation of a molecule: molecules can 

be randomly oriented within the sample (gas phase experiment) or can be all 

oriented in a specific direction. The first case is treated by averaging over all the 

possible orientations, while the second case provides cross sections related to a 

single orientation. In the latter case the angular distribution of the emitted 

electrons is much richer, and is called MPFAD (Molecular Frame Photoelectron 

Angular Distribution). 

To compare theory and experiment, the reference system has to be the same. In 

fact, experimental results are commonly reported in Laboratory Frame (LF) with 

coordinates (x’, y’, z’). Coordinates are usually set up so that z’ axes corresponds 

to the polarization or the direction of the incident radiation. Theoretical results are 

reported in molecular frame (MF) with coordinates (x, y, z), where z is assumed to 

be the main axes of the molecule. In order to transform one frame into the other 

one, one can introduce the Euler angles 𝛺 = (𝛼, 𝛽, 𝛾), where 𝛼 and 𝛽 are the polar 

angles that describe the incident radiation in the molecular frame.  

The differential cross section can be expanded in terms of angular momentum 

eigenfunctions 𝑌𝐿𝑀(휃, 𝜑) with coefficients 𝐴𝐿𝑀(𝑘, 𝛺) which depend on the 

orientation of the electromagnetic radiation in the molecular frame: 

 𝑑𝜎𝐼

𝑑�̂�
=∑𝐴𝐿𝑀𝑌𝐿𝑀

𝐿𝑀

 (2.8) 

At this point, the cross section can be expressed in terms of MF and LF. 
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2.2.1. Cross section in the molecular frame (MF) 

Actually continuum calculations are generally performed in the basis of angular 

momentum eigenstates 𝛹𝐸𝐼𝐿
(−)

, 𝐿 ≡ (𝑙,𝑚) are angular momentum indices of the 

continuum electron. A standard transformation then leads to linear momentum 

eigenstates 𝛹𝐼𝒌
(−)

, in terms of which the cross section is defined 

 𝛹𝐼𝒌
(−)
=∑𝑖−𝑙𝑒𝑖𝜎𝑙𝑌𝐿

∗𝛹𝐸𝐼𝐿
(−)

𝐿

 (2.9) 

As already mentioned, cross section is given by the dipole transition between the 

initial and final states. The final states expansion will be treated in Chapter (2.3). 

The dipole matrix elements can be expressed as follows: 

 𝐷𝐸𝐼𝐿𝛾
(−)

= ⟨𝛹𝐸𝐼𝐿
(−)
|𝐷1𝛾|𝛹0⟩ (2.10) 

where 𝛾 is the dipole component. To proceed to the final form of the cross section, 

it is convenient to add the factor 
1

√𝑚
𝑖𝑙𝑒−𝑖𝜎𝑙  to the definition of the dipole matrix 

elements (the conjugation is due to 𝛹𝐸𝐼𝐿
(−)

 being in the bra): 

 
𝒟𝐸𝐼𝐿𝛾
(−)

=
1

√𝑚
𝑖𝑙𝑒−𝑖𝜎𝑙𝐷𝐸𝐼𝐿𝛾

(−)
 (2.11) 

After a few mathematical steps, one can obtain the expression of the differential 

cross section in the molecular frame: 

 𝑑𝜎𝐼(ω)

𝑑𝒌𝑑𝛺
= 4𝜋2𝛼ω(−1)𝑚𝑟∑𝐴𝐿𝑀𝑌𝐿𝑀

𝐿𝑀

(𝑘) (2.12) 

where 𝑚𝑟 is a parameter dependent on the light polarization; in particular, 𝑚𝑟 = 0 

for linearly polarized light (LP), 𝑚𝑟 = ±1 for left and right circularly polarized 

light (LCP and RCP) respectively. The 𝐴𝐿𝑀 coefficients are defined as 
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 𝐴𝐿𝑀

= ∑ (−1)𝑚+𝛾
′
𝑙𝑙′�̂� (

𝑙′ 𝑙 𝐿
𝑚′ −𝑚 𝑀

)(
𝑙′ 𝑙 𝐿
0 0 0

)𝒟𝑙𝑚𝛾
(−)𝒟

𝑙′𝑚′𝛾′
(−) ∗

∙

𝑙𝑚𝛾,𝑙′𝑚′𝛾′

 

∙∑𝐽 (
1 1 𝐽
𝛾′ −𝛾 𝛾 − 𝛾′

) (
1 1 𝐽
𝑚𝑟 −𝑚𝑟 0

) 𝑌𝐽𝛾′−𝛾(𝛽, 𝛼)

𝐽

 

(2.13) 

with 𝑙 = √2𝑙 + 1 and J an index of sum that goes from 0 to 2. 

Thus, we have now defined an experiment with oriented molecules on the MF by 

considering both direction of the emitted electrons and polarization of the incident 

light. The angle-integrated cross section is obtained by: 

 
∫𝑌𝐿𝑀(�̂�)𝑑�̂� = 𝛿𝐿0𝛿𝑀0√4𝜋 (2.14) 

In this way, all the emission directions �̂� are taken into account. Finally, total 

cross section in the MF is given by:  

 
𝜎(𝛺) = ∫

𝑑𝜎𝐼
𝑑𝒌
𝑑𝒌 = 4𝜋2𝛼ω(−1)𝑚𝑟√4𝜋𝐴00 (2.15) 

 

2.2.2. Cross section in the laboratory frame 

In order to obtain an expression for the cross section in the laboratory frame, let us 

start from Equation (2.12) calculated for the molecular frame. For this purpose, 

rotation matrices are used to transform vector �̂� into the new coordinates. After a 

few mathematical steps, one can obtain the equation for the differential cross 

section in the laboratory frame, by averaging over all the molecular orientations: 

 𝑑𝜎

𝑑𝒌
= 𝜋𝛼ω(−1)𝑚𝑟∑𝐴𝐿𝑃𝐿

𝐿

(𝑐𝑜𝑠휃′) (2.16) 

where 휃 is the angle between 𝒌 and 𝑧 (light polarization or propagation axes) in 

LF. In this case, the coefficients 𝐴𝐿 are: 
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 𝐴𝐿(𝑘) = (2𝐿 + 1) (
1 1 𝐿
𝑚𝑟 −𝑚𝑟 0

) ∙ 

∙ ∑ (−1)𝑚+𝛾
′
√(2𝑙 + 1)(2𝑙′ + 1) (

𝑙′ 𝑙 𝐿
0 0 0

) (
𝑙′ 𝑙 𝐿
−𝑚 𝑚′ 𝑚 −𝑚′

)

𝑙𝑚𝛾,𝑙′𝑚′𝛾′

 

∙ (
1 1 𝐿
𝛾′ −𝛾 𝛾 − 𝛾′

) (
1 1 𝐿
𝑚𝑟 −𝑚𝑟 0

)𝒟𝑙𝑚𝛾
(−) 𝒟

𝑙′𝑚′𝛾′
(−) ∗

 

(2.17) 

and 𝑃𝐿(𝑐𝑜𝑠휃
′) are the Legendre polynomials. 

 

𝑌𝑙0(휃, 𝜑) = √
2𝑙 + 1

4𝜋
𝑃𝐿(𝑐𝑜𝑠휃

′) (2.18) 

Here 𝐴𝐿 ≠ 0 only for 𝐿 = 0,1,2, and moreover 𝐴1 ≠ 0 only for chiral molecules 

and circular polarized light. In this way one recovers the well-known formula 

 𝑑𝜎

𝑑𝒌
=
𝜎0
4𝜋
[1 + 𝛽𝑃2(𝑐𝑜𝑠휃

′)] (2.19) 

for ionization of unoriented molecules with linearly polarized light.  

  



22 
 

2.3. Final state wavefunction 

2.3.1. Boundary conditions for ionization processes 

In order to define the wavefunction for the final state, let us treat, first of all, the 

boundary conditions that control the ejected electron. We will start by taking into 

account different kinds of potentials, ranging from a spherically symmetric 

potential to a non-spherically symmetric potential. 

Spherically symmetric potential 

In photodetachment process (where an electron is ejected from an anion), electron 

is under the action of a short-range potential due to the neutral final system. This 

situation can be described by an asymptotic behaviour with a spherically 

symmetric potential. Using scattering theory, one can express the boundary 

conditions that affect the wavefunction of the final state in the following form:  

 
𝜑𝒌
(−)(𝒓)  

𝑟→∞
→   

1

(2𝜋)
3
2

[𝑒𝑖𝒌∙𝒓 + 𝑓(−)(𝑘, �̂�, �̂�)
𝑒−𝑖𝑘𝑟

𝑟
] (2.20) 

where 𝑓(−)(𝑘, �̂�, �̂�) is the scattering amplitude. This expression satisfies the 

asymptotic behaviour of the final state by considering as open only one ionic state 

and a photoelectron with energy 

 
𝐸𝑘 =

𝑘2

2
 (2.21) 

Thus, the wavefunction is assumed to be a plane wave far from the origin of the 

initial state, in addition to incoming spherical waves. This asymptotic form 

corresponds to the physical situation when an electron with momentum 𝒌 is 

detected at long distance. 

In order to express the wavefunction 𝜑𝒌
(−)(𝒓), let us introduce the representation 

of a general function in polar coordinates, where it is expanded in partial waves: 
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 𝛹(𝑥, 𝑦, 𝑧) ≡  𝛹(𝑟, 휃, 𝜑) ≡∑𝑅𝑙𝑚(𝑟)𝑌𝑙𝑚(휃, 𝜑)

𝑙𝑚

 (2.22) 

In this expression spherical harmonics 𝑌𝑙𝑚 are used.  

The exact solution of the wavefunction associated to an electron in a spherically 

symmetric short-range potential can be expressed in terms of partial waves 

𝑅𝑙𝑚(𝑟)𝑌𝑙𝑚(휃, 𝜑): 

 𝜑𝒌
(−)(𝒓) =∑𝐶𝑙𝑚𝑅𝐸𝑙(𝑟)𝑌𝑙𝑚(휃, 𝜑)

𝑙𝑚

 (2.23) 

where 𝑅𝐸𝑙(𝑟) (now independent on 𝑚) is obtained from the solution of the 

Schrödinger equation in the continuum: 

 𝐻𝜑𝐸𝑙𝑚 = 𝐸𝜑𝐸𝑙𝑚 (2.24) 

 
𝐸 =

𝑘2

2𝑚
 

(2.25) 

and can be expressed asymptotically as a linear combination of normalized 𝑓𝑙(𝑘𝑟) 

regular and irregular 𝑔𝑙(𝑘𝑟) Bessel functions.  

 𝑅𝐸𝑙(𝑟) = 𝐴𝑙𝑓𝑙(𝑘𝑟) + 𝐵𝑙𝑔𝑙(𝑘𝑟) (2.26) 

Let us divide by the coefficient 𝐴𝑙 to obtain the final form of the radial part 

𝑅𝐸𝑙(𝑟), which is called “K-matrix normalized”:  

 𝑅𝐸𝑙(𝑟) = 𝑓𝑙(𝑘𝑟) + 𝐾𝑙𝑔𝑙(𝑘𝑟) (2.27) 

where  

 𝐾𝑙 = 𝐵𝑙𝐴𝑙
−1 (2.28) 

It can be further transformed to so called incoming wave, or 𝑆+ matrix 

normalization, as  
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 𝑅𝐸𝑙
(−) = 𝑅𝐸𝑙(1 + 𝑖𝐾𝑙)

−1 (2.29) 

from which a standard transformation leads to the required asymptotic form 

describing the free electron in this potential:  

 
𝜑𝒌
(−)(𝒓) =

1

√𝑚
∑𝑖𝑙𝑅𝐸𝑙

(−)(𝑟)𝑌𝑙𝑚
∗ (�̂�)𝑌𝑙𝑚(�̂�)

𝑙𝑚

 (2.30) 

expressed in partial waves. where 𝑅𝐸𝑙
(−)

 is the radial function to which the 

asymptotic behaviour has been applied.  

Regarding this wavefunction form, some considerations can be done. First, 

product 𝑅𝐸𝑙
(−)(𝑟)𝑌𝑙𝑚(�̂�) is a partial wave describing the single-electron 

wavefunction in a state with angular momentum (𝑙,𝑚). The probability to find an 

electron with direction �̂� in this state is given by 𝑌𝑙𝑚
∗ (�̂�). 

Coulomb potential 

Photoionization process from an anionic state has been considered so far. Our 

goal is now to generalize the previous considerations for treating photoionization 

process which starts from a neutral or a cationic state. In this case, Coulomb 

potential has to be considered: 

 
𝑉(𝑟)

𝑟→∞
→  −

𝑍𝑖𝑜𝑛
𝑟

 (2.31) 

The previous development remains unaltered except that now 𝑓𝑙(𝑘𝑟) and 𝑔𝑙(𝑘𝑟) 

are the regular and irregular Coulomb functions, well known analytically.  

After a few steps, one can obtain the equation of the photoelectron wavefunction 

(solution of the scattering Schrödinger equation) in a Coulomb potential:  

 
𝜑𝒌
(−)(𝒓) =

1

√𝑚
∑𝑖𝑙𝑒−𝑖𝜎𝑙𝑅𝑬𝒍

(−)(𝑟)𝑌𝑙𝑚
∗ (�̂�)𝑌𝑙𝑚(�̂�)

𝑙,𝑚

 (2.32) 
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This equation is similar to that one calculated by not considering a Coulomb 

potential (see Equation 2.30). The main difference lies in the form of the radial 

function. A further difference is represented by the presence, in the normalization 

factor, of the Coulomb phase-shift, 𝜎𝑙, which is equal to zero in the case of 

spherically-symmetric potential. 

Non-spherically symmetric potential 

In order to further generalize the approach described so far, let us consider a non-

spherically symmetric potential. Under the action of this potential, the 

wavefunction can be expressed in terms of partial waves as follows: 

 𝜑𝐸𝑙𝑚 = ∑ 𝑅𝐸𝑙′𝑚′𝑙𝑚𝑌𝑙′𝑚′

𝑙′𝑚′

 (2.33) 

By applying boundary conditions (K-matrix normalization) to this wavefunction, 

one obtains a wavefunction indicated by 𝜑𝐸𝐿
(𝐾)

, where 𝐿 ≡ (𝑙, 𝑚). After a few 

steps, equation describing the free electron in the considered potential is obtained: 

 𝜑𝐿𝑀
(−) =∑𝜑

𝐿′′
(𝐾)
(1 + 𝑖𝐾)𝐿′′𝐿

−1

𝐿′′

 (2.34) 

𝐾 is the K-matrix (see Equation 2.28). Although from the computational point of 

view, it is generally more convenient to express wavefunctions on the basis of 

angular momentum, it is sometimes useful to express them in terms of asymptotic 

momentum 𝑘. Thus, this wavefunction can be transformed as follows: 

 𝜑𝒌
(−) =∑𝐶𝐿𝜑𝐸𝐿

(−)

𝐿

 (2.35) 

where 

 
𝐶𝐿 =

1

√𝑚
𝑖𝑙𝑒−𝑖𝜎𝑙𝑌𝐿

∗(�̂�) (2.36) 

𝜑𝒌
(−)

 satisfies both asymptotic boundary conditions and normalization, and 

represents a suitable wavefunction for computing photoionization cross sections.  
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Moreover, molecular symmetry can be exploited within the wavefunction 

expansion. In fact, Hamiltonian matrix is diagonal over different symmetry 

irreducible representations (𝜆, 𝜇). Thus, implementation of a symmetry adapted 

angular basis is really useful. This can be done by transforming the spherical 

harmonic basis 

 𝑋𝑙ℎ𝜆𝜇 =∑𝑌𝑙𝑚𝑏𝑚𝑙ℎ𝜆𝜇
𝑚

 (2.37) 

where ℎ counts each 𝑋𝑙ℎ𝜆𝜇 for each 𝑙. The coefficients satisfy the relation 

𝑏+ = 𝑏−1, therefore 

 𝑌𝑙𝑚 =∑𝑋𝑙ℎ𝜆𝜇𝑏𝑚𝑙ℎ𝜆𝜇
∗

ℎ𝜆𝜇

 (2.38) 

Use of the symmetry reduces the size of the Hamiltonian and overlap matrices, 

which are block-diagonal in the symmetry indexes, so that the computational cost 

dramatically decreases.  

 

2.3.2. The multichannel continuum wavefunction 

Up to here we have considered a single electron in a given potential. In a many-

electron system, once the electron is ejected, there are several final ionic states 

that the system may reach by considering a photon energy ω, those whose 

ionization potential is lower than ω. They are called open channels, 𝛹𝐼
𝑁−1, and 

𝐸𝐼
𝑁−1 are the corresponding energies: 

 𝐼𝑃𝐼 = 𝐸𝐼
𝑁−1 − 𝐸0

𝑁 <  ħ𝜔,               𝐸 = 𝐸0
𝑁 +  ħ𝜔 

𝑘𝐼 = √2(𝐸 − 𝐸𝐼
𝑁−1) = √2(𝜔 − 𝐼𝑃𝐼 

(2.39) 

and 𝑘𝐼 are the corresponding electron kinetic energy. We have considered only 

one open channel so far; however, our goal is to include all the open channels to 
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the previous wavefunction approach. To do this, the final state wavefunction, 

including both photoelectron and ionic states, is expanded in terms of partial 

waves: 

 𝛹𝐸𝐼𝐿 =∑𝛹𝐼′
𝑁−1𝑅𝐸𝐼′𝐿′𝐼𝐿(𝑟)𝑌𝐿′(�̂�)

𝐼′𝐿′

 (2.40) 

where 𝐼 counts the open channels. The boundary conditions are 

 𝑅𝐸𝐼′𝐿′𝐼𝐿(𝑟) 𝑟→∞
→  𝑓𝑙′(𝑘𝐼𝑟)𝐴𝐼′𝐿′𝐼𝐿 + 𝑔𝑙′(𝑘𝐼𝑟)𝐵𝐼′𝐿′𝐼𝐿 (2.41) 

They can be normalized by multiplying for 𝑨−1, providing the expansion with K-

matrix normalization 

 𝛹𝐸𝐼𝐿
(𝐾)
=∑𝛹𝐸𝐼′𝐿′𝐴𝐼′𝐿′𝐼𝐿

−1

𝐼′𝐿′

 (2.42) 

 𝑲 = 𝑩𝑨−1 (2.43) 

and applying the boundary condition of the incoming wave 

 𝛹𝐸𝐼𝐿
(−)
=∑𝛹𝐸𝐼𝐿

(𝐾)
(1 + 𝑖𝐾)𝐼′𝐿′𝐼𝐿

−1

𝐼′𝐿′

 (2.44) 

As already mentioned, it can be useful to express the wavefunction in terms of 

linear momentum: 

 𝛹𝐼𝒌
(−)
=∑𝐶𝐿𝑘𝛹𝐸𝐼𝐿

(−)

𝐿

 (2.45) 

where 

 
𝐶𝐿𝑘 =

1

√𝑚
𝑖𝑙𝑒−𝑖𝜎𝑙𝑌𝐿

∗(�̂�) (2.46) 
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2.3.3 Convergence of the partial wave expansion 

The expansion in terms of partial waves can be considered as exact if an infinite 

number of them is used. However, even with a truncated series, convergence of 

this expansion is fast at low energies and becomes slower at high energies. This 

can be explained by classical scattering, which provides us a hint about the 

maximum value of 𝑙 to be used; in fact: 

 𝐿 = 𝑎𝑘 ~ 𝑙 (2.47) 

where 𝑎 is the maximum impact parameter. Thus, the value of 𝑙 to be used is 

proportional to the value of the electron momentum 𝑘. Increasing the value of 

𝑙𝑚𝑎𝑥 implicates to increase the computational cost as well; therefore, the study at 

high energies implicates a huge computational cost. 
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2.4. The basis set 

Results of any quantum chemistry calculation dramatically depend on the choice 

of the basis set. The present method works by using spherical coordinates, and 

with a symmetry adapted basis which is a product of radial and angular functions: 

 𝜒𝑛𝑙ℎ𝜆𝜇(𝑟, 휃, 𝜙) = 𝑅𝑛(𝑟) ∙ 𝑋𝑙ℎ𝜆𝜇(휃, 𝜙) (2.48) 

The angular part 𝑋𝑙ℎ𝜆𝜇(휃, 𝜙) is expanded in terms of real spherical harmonics 

[15] which will be described in more detail in Chapter (2.4.3).  

 𝑋𝑙ℎ𝜆𝜇(휃, 𝜙) =∑𝑌𝑙𝑚
𝑅 (휃, 𝜙)𝑏𝑙𝑚ℎ𝜆𝜇

𝑚

 (2.49) 

where 𝑛 is the index of the radial part; 𝑙 and 𝑚 are the angular momentum 

quantum numbers; 𝜆 is the index that represents the irreducible representation (IR) 

of the molecular point group; 𝜇 indicates the subspecies in case of degenerate IR; 

finally, ℎ distinguishes between different elements with the same {𝑙, 𝜆, 𝜇} set. Note 

that the transformation from spherical harmonics to the symmetry adapted angular 

functions is unitary. 

The radial part is expanded in terms of B-splines, which will be illustrated in the 

following Chapter. 

 
𝑅𝑛(𝑟) =

1

𝑟
𝐵𝑛(𝑟) (2.50) 

2.4.1. B-splines 

B-splines [25] (B stands for basis) are functions designed for generalizing 

polynomials in order to approximate arbitrary functions. Although they were 

introduced by Schoenberg in 1946 [26], it was only with De Boor [27] that their 

application to atomic physics started to be relevant. Indeed, De Boor published 

FORTRAN subroutines that make it possible to define and manipulate B-splines 

of arbitrary order and knot point distribution. It has been in the 1990s, with the 
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advent of powerful computers, that the number of applications has exponentially 

grown up. Indeed, they have had one of the most significant development in the 

field of computational atomic and molecular physics for the calculation of atomic 

and molecular structure and dynamics. Different types of splines have been used, 

particularly for fitting purposes; in addition to their application in numerical 

analysis, they represent a standard part of fitting routines in commercial program 

packages. 

B-splines have the property of becoming rapidly complete with a relatively small 

number of basis functions; this allows one to obtain an arbitrary large part of the 

spectrum of the Schrödinger equation, including the continuum with a low 

computational cost. This approach transforms the solution of a differential 

equation into an algebraic eigenvalue problem and, together with the introduction 

of electronic computers, it has become popular since linear algebra is one of the 

best developed branches of numerical computation. Indeed, thanks to the 

computational growth, large matrices can be routinely diagonalized with high 

accuracy in short times. 

To solve the single-particle equation, it is needed to briefly describe the 

mathematical properties of B-splines; as previously highlighted, they are 

piecewise polynomial positive functions used to approximate functions and 

calculate the associated derivatives and integrals.  

A complete B-splines set in the interval [0,5] is shown in Figure 2.3. 

To better understand this concept, let us introduce some definitions:  

 a polynomial of order k has maximum degree k – 1: 

 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑘−1𝑥

𝑘−1 (2.51) 
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A function which is continuous on a given interval is said to be of class 𝐶𝑛, if its 

derivatives are continuous up to the order n.  

 An interval 𝐼 = [𝑎, 𝑏] can be divided into 𝑙 sub-intervals 𝐼𝑗 = [휀𝑗, 휀𝑗+1] 

by a sequence of 𝐼𝑗 = [휀𝑗, 휀𝑗+1] points {휀𝑗} called breakpoints such 

that: 

 𝑎 = 휀1 < 휀2 < ⋯ < 휀𝑙+1 = 𝑏 (2.52) 

In Figure 2.3, the interval is divided in five sub-intervals by breakpoints 

{0,1,2,3,4,5}. For example 𝐵3(𝑥) (𝑘 = 3) can be written in the following way 

(even if this representation is rarely used): 

 휀 = {0,1,2,3,4,5} (2.53) 

Figure 2.3: The full set of B-splines of order k = 3 relative to the knot sequence {0, 0, 0, 1, 2, 3, 

4, 5, 5, 5}. 
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𝐵3(𝑥) =

{
  
 

  
 
1

2
𝑥2                       0 ≤ 𝑥 < 1

𝑥2 + 3𝑥 −
3

2
       1 ≤ 𝑥 < 2

1

2
𝑥2 − 3𝑥 +

9

2
    2 ≤ 𝑥 < 3

0                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.54) 

It is possible to associate a sequence of non-negative integer numbers 𝑣𝑗 , 𝑗 =

2, 3, … , 𝑙 to the breakpoints. The boundary breakpoints 휀1 and 휀𝑙+1 have 𝑣1 =

𝑣𝑙+1 = 0 because, at these points, no continuity is required. Thus, by considering 

the example in Figure 2.3, one has: 

 {𝑣𝑗} = {0, 2, 2, 2, 2, 0} (2.55) 

It is needed to introduce a further sequence of points, called knots {𝑡𝑖}, in 

ascending order associated to {휀𝑗} and {𝑣𝑗}: 

 𝑡1 = 𝑡2 = ⋯ = 𝑡µ1 = 휀1 

𝑡µ1+1 = 𝑡µ1+2 = ⋯ = 𝑡µ1+µ2 = 휀2 

… 

𝑡𝑛+1 = ⋯ = 𝑡𝑛+𝑘 = 휀𝑙+1 

𝑛 = µ1 + µ2 +⋯+ µ𝑙 

𝑘 = µ𝑙+1 

(2.56) 

where µ𝑗 is the multiplicity of the knots 𝑡𝑖 at 휀𝑗 and is given by: 

 µ𝑗 = 𝑘 − 𝑣𝑗 (2.57) 

By applying all this to the example in Figure (2.3), one has 

{𝑡𝑖} = {0, 0, 0, 1, 2, 3, 4, 5, 5, 5} and {µ𝑗} = {3, 1, 1, 1, 1, 3}. 

The most common choice for knot multiplicity at the inner breakpoints is the 

unity, corresponding to the maximum continuity, that is 𝐶𝑘−2; with this choice, 

the number of B-spline functions is: 
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 𝑛 = 𝑙 + 𝑘 − 1 (2.58) 

In the case of Figure 2.3, n = 7. Now, a generic function can be written as a linear 

combination of B-splines over [a, b]: 

 
𝑓 =∑𝑐𝑖𝐵𝑖

𝑛

𝑖=1

 (2.59) 

Thus, 𝑓 is a function made by 𝑙 polynomial pieces of order 𝑘: one for each sub-

interval 𝐼𝑗 joined to the inner breakpoints with continuity 𝐶𝑣𝑗−1. Any function so 

expressed will be called a piecewise polynomial function (pp-function). 

To summarize, a single B-spline B(x) is defined by the order k > 0, and a set of k 

+ 1 knots {ti, …, ti+1} such that 𝑡𝑖 ≤ 𝑡𝑖+1. However, it is convenient to highlight 

some important properties: 

 B(x) is a pp-function of order k over [𝑡𝑖, 𝑡𝑖+𝑘]  

 B(x)>0 for 𝑥 ∈ ]𝑡𝑖 , 𝑡𝑖+𝑘[ 

 B(x)=0 per 𝑥 ∉ [𝑡𝑖 , 𝑡𝑖+𝑘]  

 For 𝑥 = 휀𝑗, 𝐵(𝑥) ∈  𝐶
𝑘−1−µ𝑗, k is the maximum multiplicity, giving 

discontinuous functions, the minimum is one, giving 𝐵(𝑥) ∈  𝐶𝑘−2; 

within a sub-interval 𝐵(𝑥) ∈ 𝐶∞ 

 It is not needed the knots to be equidistant between themselves.  

Therefore, a family of B-splines, 𝐵𝑖(𝑥), 𝑖 = 1,… , 𝑛 is completely defined given 

k > 0, n > 0 and a sequence of knots 𝑡 = {𝑡}𝑖=1,…,𝑛+𝑘. Since k and t are usually 

fixed, one can write 𝐵𝑡,𝑖
𝑘 = 𝐵𝑖 where 𝐵𝑖 is defined over [𝑡𝑖 , 𝑡𝑖+𝑘], which contains k 

+ 1 consecutive knots, and it is indexed by the knot where it starts: so 𝐵𝑖 starts 

exactly at each knot 𝑡𝑖 and ends k knots later (see Figure 2.3). In the example, 𝐵3 

starts at 𝑡3 = 0 and ends at 𝑡6 = 3. Some general properties of B-splines are 

illustrated in the following list: 
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 Into interval ]𝑡𝑖, 𝑡𝑖+𝑘[ there are exactly k nonzero B-splines 

 𝐵𝑗(𝑥) ≠ 0  𝑓𝑜𝑟  𝑗 = 𝑖 − 𝑘 + 1,… , 𝑖 (2.60) 

 
𝐵𝑖(𝑥) ∙ 𝐵𝑗(𝑥) = 0    𝑓𝑜𝑟   |𝑖 − 𝑗| ≥ 𝑘 (2.61) 

So, if |𝑖 − 𝑗| ≥ 𝑘: 

 
∫ 𝐵𝑖(𝑥)𝐵𝑗(𝑥)𝑓(𝑥)𝑑𝑥 = 0
𝑥𝑚𝑎𝑥

0

 (2.62) 

 the expansion of an arbitrary function becomes: 

 

𝑓(𝑥) =  ∑𝑐𝑗𝐵𝑗(𝑥) = ∑ 𝑐𝑗𝐵𝑗(𝑥)   𝑓𝑜𝑟  𝑥 ∈ [𝑡𝑖 , 𝑡𝑖+𝑘]

𝑖

𝑗=𝑖−𝑘+1

𝑛

𝑗=1

 (2.63) 

 B-splines are normalized so that: 

 ∑𝐵𝑖(𝑥)
𝑖

= 1      in [𝑡𝑘, 𝑡𝑛] (2.64) 

They satisfy the recursion relation 

 
𝐵𝑖
𝑘(𝑥) =

𝑥 − 𝑡𝑖
𝑡𝑖+𝑘−1 − 𝑡𝑖

𝐵𝑖
𝑘−1(𝑥) −

𝑡𝑖+𝑘 − 𝑥

𝑡𝑖+𝑘 − 𝑡𝑖+1
𝐵𝑖+1
𝑘−1(𝑥) (2.65) 

also giving an equation for the derivative: 

 
𝐷𝐵𝑖

𝑘(𝑥) =
𝑘 − 1

𝑡𝑖+𝑘−1 − 𝑡𝑖
𝐵𝑖
𝑘−1(𝑥) −

𝑘 − 1

𝑡𝑖+𝑘 − 𝑡𝑖+1
𝐵𝑖+1
𝑘−1(𝑥) (2.66) 

A knot sequence has to be defined within a given interval; this has to be done to 

ensure that the knots sequence suits the particular problem. This represents a 

further important advantage of the use of B-splines. Because of the ease of 

implementing boundary conditions at the endpoints, the standard choice 𝑡1 = ⋯ =

𝑡𝑘 = 휀1 and 𝑡𝑛+1 = ⋯ = 𝑡𝑛+𝑘 = 휀𝑙+1 is particularly convenient. For instance, 

𝑓(𝑎) = 0 is satisfied by deleting 𝐵1 from the set (it is the only one that is 

discontinuous in 𝑎), while 𝑓(𝑏) = 0 is satisfied by deleting the last B-spline. In 
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general, when analytic functions have to be approximated, the best choice is 

employing splines of high-order, compatible with the numerical stability and 

round off errors, typically in the range k = 7 – 10. Note that the error will be close 

to: 

 
휀~
ℎ𝑗
𝑘

𝑘!
|𝐷𝑘𝑓(휂𝑗)| (2.67) 

where ℎ𝑗  is the width of the interval 𝐼𝑗 and 휂𝑗 ∈ 𝐼𝑗 . This is the main advantage of 

B-splines basis with respect to global basis, where the error can be controlled by 

step size, in the same way as in the finite-difference approaches, but keeping all 

the advantages of a basis set expansion. 

2.4.2. Application of B-splines 

From a computational point of view, value of the splines is given by an algorithm, 

more precisely by a specific subroutine that implements the Formula 2.65. The 

subroutine needs spline’s degree, knots sequence, abscissa value and left knot 

index 𝑡𝑖 (that gives the index of 𝐵𝑖) as input data; it returns the values of k non 

zero B-splines: 

 𝐵𝑖−𝑘+1(𝑥),… , 𝐵𝑖(𝑥) (2.68) 

In case that also the derivatives are needed, these can be obtained by the 

combination of B-splines of lower order through the Expression 2.66. Figure 2.4 

shows how the subroutine works to generate the B-splines. 

Gauss-Legendre integration [28] of suitable order over each interval is used to 

compute integrals. Suitable order means order N (N points), it is exact for 

polynomial of order 2N. 
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Thus, an integration with N slightly larger than k over subsequent intervals gives 

very accurate values for the integrals involving the product:  

 
∫𝐵𝑖(𝑥) ∙ 𝑓(𝑥) ∙ 𝐵𝑗(𝑥) (2.69) 

Gauss-Legendre integration is a numerical integration; this means that the value 

of the integral is given as a sum of the value of the function over several points 

(𝑥𝑖), multiplied by weights opportunely defined (𝑤𝑖). Points and corresponding 

weights are chosen so that the calculated value is exact for a given polynomial 

class (Gauss-Legendre quadrature). These integrations can be written as: 

Figure 2.4: Recursive evaluation of B-splines up to the order k = 3, relative to the knot sequence 

{0, 1, 2, 3, 4, 5}, which are not zero at 2 < x < 3. Each set is obtained from the previous one by 

applying the recursion formula. Notice that, at each x interval, one obtains k nonzero B-spline 

values, which add up to unity. 
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∫ 𝑓(𝑥)𝑑𝑥 ≅∑𝑤𝑖𝑓(𝑥𝑖)

𝑁

𝑖=1

1

−1

 (2.70) 

To convert the integration interval from [-1, 1] to [a, b], a change of variables is 

done: 

 
𝑥 = [

𝑏 − 𝑎

2
𝑡 +

𝑏 + 𝑎

2
] (2.71) 

 
∫ 𝑓(𝑥)𝑑𝑥 =

𝑏 − 𝑎

2
∫ 𝑓 [

𝑏 − 𝑎

2
𝑡 +

𝑏 + 𝑎

2
] 𝑑𝑡

1

−1

𝑏

𝑎

≅
𝑏 − 𝑎

2
∑𝑤𝑖𝑓 [

𝑏 − 𝑎

2
𝑡𝑖 +

𝑏 + 𝑎

2
]

𝑁

𝑖=1

 

(2.72) 

Thus, to calculate the exact integral value of an N order polynomial, one only has 

to calculate the values of the functions at N/2 points. All the needed parameters 

are calculated through the subroutine GAULEG [29]. By considering the B-

splines, the following integral has to be solved: 

 
∫ 𝐵𝑖(𝑥)𝑓(𝑥)𝐵𝑗(𝑥)𝑑𝑥
𝑏

𝑎

 (2.73) 

By assuming that the product 𝐵𝑖(𝑥) ∙ 𝐵𝑗(𝑥) is nonzero over k intervals, the 

calculation of this product over each interval is easy:  

 
∫ 𝐵𝑖(𝑥)𝑓(𝑥)𝐵𝑗(𝑥)𝑑𝑥
𝑏

𝑎

=∑∫ 𝐵𝑖(𝑥)𝑓(𝑥)𝐵𝑗(𝑥)𝑑𝑥
𝑥𝑚+1

𝑥𝑚𝑚

 (2.74) 

thereby only the intervals between adjacent knots are considered and the 

discontinuity at knots is avoided. 
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2.4.3 Complex and real spherical harmonics 

Using the following phase convention for the spherical harmonics 

 

𝑌𝑙𝑚(휃, 𝜙) = (−)
(
𝑚+|𝑚|
2

)
√
2𝑙 + 1

4𝜋
 
(𝑙 − |𝑚|)!

(𝑙 + |𝑚|)!
𝑃𝑙
|𝑚|(𝑐𝑜𝑠휃)𝑒𝑖𝑚𝜙. (2.75) 

we define real spherical Harmonics (for |𝑚| > 0) in the following way: 

 
𝑌𝑙|𝑚|
𝑅 (휃, 𝜙) =

(−)|𝑚|𝑌𝑙|𝑚|(휃, 𝜙) + 𝑌𝑙−|𝑚|(휃, 𝜙)

√2
 (2.76) 

 

𝑌𝑙−|𝑚|
𝑅 (휃, 𝜙) =

(−)|𝑚|𝑌𝑙|𝑚|(휃, 𝜙) − 𝑌𝑙−|𝑚|(휃, 𝜙)

𝑖√2
 

(2.77) 

For 𝑚 = 0 we have 𝑌𝑙0
𝑅(휃, 𝜙) = 𝑌𝑙0(휃, 𝜙). In general we have: 

 

𝑌𝑙𝑚
𝑅 = √

2𝑙 + 1

4𝜋
 
(𝑙 − |𝑚|)!

(𝑙 + |𝑚|)!
𝑃𝑙
|𝑚|(𝑐𝑜𝑠휃)

{
  
 

  
 
1

√𝜋
𝑐𝑜𝑠 𝑚𝜙     𝑚 > 0

1

√2𝜋
                 𝑚 = 0

1

√𝜋
𝑠𝑖𝑛 𝑚𝜙     𝑚 < 0

 

= Θ𝑙|𝑚|(휃)Φ𝑚(𝜙). 

(2.78) 
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2.4.4. Construction of the LCAO basis set 

As mentioned before, our method expands the wavefunction in a symmetry 

adapted basis set composed by B-splines radial functions [27] and a linear 

combination of real spherical harmonics. The whole basis set is made up of two 

parts: the first one composed of functions centred on the origin of the molecular 

frame, called One Centre Expansion (OCE); the second one characterized by 

functions centred on the coordinates of the nuclei, called Linear Combination of 

Atomic Orbitals (LCAO) since this basis has many centres. This multicentre 

approach allows to dramatically improve the convergence of the calculation for 

large molecules [15]. One of the advantages of using spherical B-spline functions 

lies on the fact that their local nature allows not only to control the overlap 

between functions but also to avoid numerical linear dependence problems [25], 

which become unavoidable with global basis functions, such as STOs or GTOs 

when enlarging the basis. Implementation of the LCAO basis set, in addition to 

that one of the OCE, permits us to accurately treat both bound and continuum 

states. From now on, the subscript 𝑂 indicates the OCE basis, whereas the 

subscript 𝑞 indicates the basis relative to the non-equivalent centres considered.  

The OCE basis is expressed as a product by B-splines radial functions and a 

symmetry adapted linear combination of real spherical harmonics: 

 
𝜒𝑛𝑙ℎ𝜆𝜇
𝑂 (𝑟0, 휃0, 𝜙0) =

1

𝑟0
𝐵𝑛(𝑟0)∑𝑏𝑙𝑚ℎ𝜆𝜇𝑌𝑙𝑚

𝑅 (휃0, 𝜙0)

𝑚

 (2.79) 

It is usually centred on the origin of the axes with large both radial (𝑅𝑚𝑎𝑥
𝑂 ) and 

angular grids (𝐿𝑚𝑎𝑥). This allows to describe the long range behaviour of the 

continuum wavefunctions.  

The LCAO part is expressed as a product of B-splines radial functions and a 

symmetry adapted linear combination of real spherical harmonics as well. Each 

LCAO subset, which refers to the 𝑝-th set of equivalent nuclei, can be written in 

the form  
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 𝜒𝑖𝑗𝜆𝜇
𝑝 (𝒓) =∑휂𝑖𝑗𝜆𝜇

𝑞

𝑞∈𝑝

 (2.80) 

where  

 
휂𝑖𝑗𝜆𝜇
𝑞 =

1

𝑟𝑞
𝐵𝑖(𝑟𝑞)∑𝑏𝑚𝑗𝜆𝜇,𝑞𝑌𝑙(𝑗)𝑚

𝑅 (휃𝑞 , 𝜙𝑞)

𝑚

 (2.81) 

and 𝑞 is any center of the equivalent set. Any molecular orbital, 𝜑𝑖𝜆𝜇(𝒓), is 

expanded in this basis as follows: 

 𝜑𝑖𝜆𝜇(𝒓) =∑𝑐𝑖𝑗𝜆 𝜒𝑖𝑗𝜆𝜇
𝑂 (𝒓)

𝑖𝑗⏟          
𝑂𝐶𝐸 𝑝𝑎𝑟𝑡

+∑𝑑𝑝𝑖𝑗𝜆,𝑘 𝜒𝑖𝑗𝜆𝜇
𝑝 (𝒓)

𝑝𝑖𝑗⏟            
𝐿𝐶𝐴𝑂 𝑝𝑎𝑟𝑡

 
(2.82) 

The LCAO basis just outlined above will be called symmetry-adapted, and it is 

obtained (through the projection-operator method) by the symmetry adaptation of 

the LCAO primitive basis 

 
{휂𝑖𝑙𝑚 ≡

1

𝑟
𝐵𝑖(𝑟)𝑌𝑙𝑚

𝑅 (휃, 𝜙)} ∪ {휂𝑖𝑙𝑚
𝑞 ≡

1

𝑟𝑞
𝐵𝑖(𝑟𝑞)𝑌𝑙𝑚

𝑅 (휃𝑞 , 𝜙𝑞)} (2.83) 

centred on the 𝑞-th off-centre sphere. The LCAO radial grid is usually small 

(𝑅𝑚𝑎𝑥
𝑝 ≈ 1 𝑎. 𝑢. ) so as to avoid overlap with expansion performed on 

neighbouring centres, and maintain good linear independence.  

The complete basis set (illustrated in Figure 2.5) is completely defined by:  

 point group of the considered molecule. 

 OCE B-spline radial grid: 𝑅𝑚𝑎𝑥
𝑂 , knots set, splines order (usually 10).  

 OCE maximum angular momentum 𝐿𝑚𝑎𝑥. 

 LCAO B-spline radial grid: 𝑅𝑚𝑎𝑥
𝑝

, knots set, splines order (usually 10). 

 OCE maximum angular momentum 𝐿𝑚𝑎𝑥
𝑝

. 
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Figure 2.5: illustration of the B-spline basis set. In green is schematized the OCE part, with 

functions centred on the origin of the molecular frame. In orange is schematized the LCAO 

part, with functions centred on the coordinates of the nuclei 
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2.5. Expression of the wavefunction: different 

approximations 

In order to obtain the cross section of the considered system, dipole transition 

between initial and final states has to be computed (see Equation 2.5). To do this, 

one has to accurately express both the wavefunctions of the initial and final states. 

Calculating the wavefunctions relative to the initial state is not a complicated 

issue, whereas the calculation of the wavefunction associated to the final state is a 

really complex task. In this work, wavefunction of the final state is expressed 

through some approximations that will be discussed later. Each approximation is 

able to treat different properties. One of the main features of the photoionization 

processes that we want to study is represented by the correlation effects and by the 

perturbative and non-perturbative nature of the photoionization.  

2.5.1. Correlation effects 

The main problem to solve the Schrödinger Equation (SE) with a complete 

Hamiltonian operator consists in describing the interaction between different 

electrons given by the Coulomb potential, which makes the problem not 

separable. Several approximations can be applied; among these, the most common 

is the mean-field approximation where the considered particle is affected by the 

mean field created by the other particles. Correlation effects are all the effects not 

included in this approximation.  

The mean-field approximation provides a first solution of the ionic states obtained 

by photoionization process. One-particle method applied on a closed shell atom 

furnishes an univocal correspondence between one orbital and a definite line of 

the photoelectron spectrum. By taking into account a molecule, there are 

rotational and vibrational excitations that provides more complex bands. Thus, 

peaks in the PE spectra are associated to definite ionic states which, within this 

approximation, can only be described by single hole configurations (1h) in the 

case of a closed shell ground state.  
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By taking into account correlation between electrons, it is possible to describe 

other peaks in a photoelectron spectrum. Additional peaks can also be due to the 

relaxation effects, which derive from the modification of the orbitals caused by 

the creation of a hole. These extra structures are called shake-up or satellite bands 

and, in photoionization, are related to excitation during the ionization process. The 

bands relative to these processes usually present lower intensities with respect to 

the one relative to single photoionization. The experimental evidence of these 

structures has been named as the breakdown of the independent-particle picture of 

electronic structure [30].  

From the theoretical point of view, these observed extra peaks are related to the 

strong interaction between single-hole configurations and two-hole, one-particle 

configurations. In addition to this, a redistribution of the intensity between states 

of the same symmetry can be observed even for peaks relative to the main primary 

ionization. This makes it really important to include the correlation effects in a 

theoretical description.  

There are three kind of correlation effects in photoionization processes [31]. One 

describes correlation in bound initial state, called ISCI (initial state configuration 

interaction) and refers to 𝑁 electrons. The other one is related to the correlation 

within bound final states, called FISCI (final ionic state configuration interaction) 

and refers to 𝑁 − 1 electrons. The third one is more complicated to be described 

since it includes two classes of interaction in the continuum: correlation between 

two continuum states (interchannel coupling, IC) and correlation between a 

continuum state and a discrete state (autoionization resonances, also resonant 

Auger). The interaction within bound states is responsible for most of the extra 

structures that one can find in a PE spectrum; it can be described by several 

methods, such as Configuration Interaction (CI), Perturbation Theory (PT) and 

Green’s function (GF) [32]. 
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2.5.2. General expression of the wavefunction 

As already mentioned, in photoionization processes the final state can lie in 

several possible states 𝛹𝐼, called open channels:  

 𝐼𝑃𝐼 = 𝐸𝐼
𝑁−1 − 𝐸0

𝑁 <  ℎ𝜈 (2.84) 

Therefore, the final system is composed by an ionic bound state of 𝑁 − 1 particles 

and a continuum state of one particle. Continuum eigenstates have to be the 

solution of the following Schrödinger equation: 

 𝐻𝑁𝛹𝐸𝛼
𝑁 = 𝐸𝛹𝐸𝛼

𝑁  (2.85) 

where 𝛼 ≡ 𝐼𝑙𝑚 considers all the indeces that uniquely describe the wavefunction 

(neglecting the symmetry of the system), which can be formally expressed using 

the Close-Coupling form 

 𝛹𝐸𝛼
𝑁 =∑𝛹𝐼′

𝑁−1

𝛼′

𝜑𝐸𝛼′𝛼 +∑𝛹𝐾
𝑁𝐶𝐸𝛼𝐾

𝐾

 (2.86) 

The first part of this equation is, for each angular momentum and open channel, 

the (antisymmetrized) product between the bound states of the ionic state 𝛹𝐼′
𝑁−1 

and the continuum state of the photoelectron with the proper boundary conditions 

𝜑𝐸𝛼′𝛼 (Equation 2.20). This part accurately describes the function at long range 

for all the considered open channels 𝐼′. 

 𝛹𝐸𝛼
𝑁

𝑟→∞
→  ∑𝛹𝐼′

𝑁−1

𝐼′

𝜑𝐸𝛼𝐼′  (2.87) 

The second part of Equation (2.86) describes all the effects that are not taken into 

account by the first sum. In particular, it involves the effects that are degenerate 

with the ionization, such as correlation effect in the bound states. These effects are 

expanded in terms of the bound state function 𝛹𝐾
𝑁 that decays at long range.  
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 ∑𝛹𝐾
𝑁𝐶𝐸𝛼𝐾

𝐾
𝑟→∞
→  0 (2.88) 

The expansion above is square integrable and it is analogous to the expansion 

used in the Configuration Interaction (CI) method. In fact, functions 𝛹𝐾
𝑁 can be 

obtained through the common Quantum Chemistry approaches. 

Close Coupling wavefunction ensures the asymptotic condition and, in principle, 

it is correct if the second sum goes to infinity. Computationally speaking, since 

this condition is impossible to be implemented, a truncation of the sum is needed. 

Implementing the fully Close Coupling form is a demanding task. In fact, two-

electron integrals are needed to build each part of the equation (2.86). One can 

apply some approximations for avoiding the calculation of two-electron integrals. 

Although these approximations properly work and are able to describe the major 

part of the observables, implementation of the two-electron integrals is of great 

interest. This implementation allows the complete expansion of the wavefunction 

through Equation (2.86), permitting us to fully describe the photoionization 

process. 

 

2.5.3. Single particle approximation 

The simplest approximation is to consider only one open channel, so that the 

Equation (2.86) becomes the antisymmetrized product between the wavefunctions 

related to the final ionic state relative to open channel 𝐼 and that one describing 

the photoelectron in the continuum state with energy 휀: 

 𝛹𝐸𝐼𝐿
𝑁 = 𝐴𝛹𝐼

𝑁−1𝜑𝜀𝐼𝐿 (2.89) 

where the continuum wavefunction satisfies the K-matrix boundary conditions. 

Within this approximation, the initial state is defined as a single Slater 

determinant: 
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 𝛹0
𝑁 = |𝜑1… 𝜑𝑖 … 𝜑𝑁⟩. (2.90) 

The final ionic state is described by a Slater determinant without an orbital: 

 𝛹𝑖
𝑁−1 = |𝜑1… 𝜑𝑖−1, 𝜑𝑖+1… 𝜑𝑁⟩ (2.91) 

This is the independent particle approximation (IPA), which gives the 

wavefunction of the final state as the wavefunction of the initial state by 

substituing the i-th orbital with that one describing the photoelectron in the 

continuum:  

 𝛹𝐸𝐼𝐿
𝑁 = |𝜑1… 𝜑𝜀… 𝜑𝑁⟩ (2.92) 

Once the initial and final wavefunctions are defined, dipole transition matrix 

elements have to be evaluated to compute the differential cross section. The only 

difference between the initial and the final states is the presence of the 

photoelectron continuum orbital. Thus, the N-particle problem becomes a one-

particle problem (the integral between the rest of the electrons is equal to unity): 

 ⟨𝛹𝐸𝐼|𝐷|𝛹0⟩ = ⟨𝜑𝜀|𝑑|𝜑𝑖⟩ (2.93) 

The only permitted transition is the ionization of the orbital 𝜑𝑖 that leads to the 

state of the photoelectron 𝜑𝜀.  

This sort of wavefunction can be described by both Hartree-Fock (HF) method 

and Kohn-Sham Density Functional Theory (KS DFT). Within these 

approximations, the Koopmans’ theorem is valid. In fact, if HF determinants are 

considered, the Koopmans’ frozen state can be used as ionic state once the 

electron is taken away from the initial orbital.  

Although this approximation seems rough, it can accurately describe a lot of 

observables and effects which are listed in Table 2.1, together with the ones that 

cannot be described. Many-electrons processes and non-perturbative absorption 

can be studied by other levels of approximations.  
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Describable effects Non-describable effects 

 Cross section and asymmetry 

parameter for the main 

ionizations 

 Dichroism in chiral molecules 

 Direct photoionization from 

fixed in space molecules 

 Non-dipolar effects 

 Vibrationally resolved cross 

sections 

 Shape resonances and Cooper 

minima [33] 

 Any correlation effects such 

as final state two holes one 

particle  

 Interchannel coupling and 

autoionization resonances 

 Non-perturbative phenomena 

 

 

2.5.4. Coupling of single excitation (TDDFT)  

The second level of approximation consists in including the coupling effects due 

to single particle excitation. This can be done by expressing the continuum 

wavefunction as a mixing of the previous independent particle determinants: 

 𝛹𝐸𝑗
𝑁 =∑𝐶𝑖𝑗

𝑖

|𝜑1… ,𝜑𝐸𝑖 , … 𝜑𝑁⟩ =∑𝛹𝑖
𝑁−1𝜑𝐸𝑖𝑗

𝑖

 (2.94) 

where 𝑖 counts the excitations and 𝑗 the possible solutions. 

To apply this approximation, Time-dependent density functional theory (TDDFT) 

can be used. Indeed, this method permits to accurately treat the correlation 

between different open channels and some single excitation transitions. 

Correlation between open channels can be observed by intensity transfer between 

different channels and the presence of sharp structures in the cross sections with 

energies relative to coupled single-excitations.  

  

Table 2.1: describable and non-describable effects within the single-channel approximation 
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Describable effects Non-describable effects 

 Those describable by 

Single-particle 

approximation 

 Interchannel coupling 

effects 

 Autoionization resonances 

due to discrete single 

excitations 

 Correlations due to multiple 

excitations 

 Autoionizations due to 

doubly excited states 

 Description of satellite 

states 

 Non-perturbative phenomena 

 

 

2.5.5. Correlated single channel approach (Dyson 

orbitals) 

A further approximation consists in considering the correlation within the bound 

states both in the initial and final states. This can be applied by a simple 

generalization in the single channel approximation 

 𝛹𝐸𝐼𝐿
𝑁 = 𝐴𝛹𝐼

𝑁−1𝜑𝜀𝐼𝐿 (2.95) 

by employing a highly correlated description of the bound states. By using HF or 

DFT approaches within the single channel approximation, the N-particle dipole 

transition becomes a one-particle dipole transition ⟨𝜑𝜀|𝑑|𝜑𝑖⟩, where the only 

permitted transition is the ionization of the orbital 𝜑𝑖 that leads to the 

photoelectron state 𝜑𝜀. Strong correlation in the bound states can be included in 

this approach by using Dyson orbitals. They are defined as the superposition 

between the initial neutral state wavefunction (N-electron system), 𝛹𝐼
𝑁, and the 

final ionic state wavefunction (N-1 electrons system), 𝛹𝐹
𝑁−1: 

 
𝜙𝐼𝐹
𝑑 (1) = √𝑁∫𝛹𝐼

𝑁(1, … ,𝑁)𝛹𝐹
𝑁−1(2,… ,𝑁)𝑑2…𝑑𝑁 (2.96) 

Table 2.2: describable and non-describable effects within the TDDFT approximation 



49 
 

Correlation effects relative to the bound states are fully described by Dyson 

orbitals. Since this is not a HF approach, the ionization probability cannot be 

calculated by Koopmans’ theorem but as the energy difference between the 

considered ionic state and the ground state: 

 𝐼𝑃𝐼 = 𝐸𝐼
𝑁−1 − 𝐸0

𝑁 (2.97) 

This represents a breakdown of the one-particle approximation and allows to 

describe bands in the photoelectron spectra due to important correlation effects in 

the bound states. Such bands are called satellite bands. Finally, one obtains that, 

even in this case, the N-particles problem is reduced to a one-particle problem. In 

fact, as will be demonstrated in Chapter (3.2), one can assume that the dipole 

transition between initial and final states is equal to the one-particle dipole 

transition between the Dyson orbital and the wavefunction describing the 

photoelectron in the continuum.  

 ⟨𝛹𝐼𝒌
(−)
|𝐷|𝛹0

𝑁⟩ ≅ ⟨𝜑𝜀|𝑑|𝜙𝐼𝐹
𝑑 ⟩ (2.98) 

In Table (2.3), describable and non-describable effects by this level of 

approximation are reported.  

Describable effects No-describable effects 

 Those that are describable 

by Single-Channel 

approximation 

 Correlation within bound 

states 

 Ionization from open shell 

or excited states 

 Multi-electron excitations 

in the final states, satellite 

states  

 Correlations effects between 

continuum states 

 Non-perturbative phenomena 

 

 

 

Table 2.3: describable and non-describable effects within the TDDFT approximation 
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2.5.6. Complete Close-Coupling wavefunction 

(Two-electron integrals in the B-spline basis) 

The previous methods drastically approximate the Close Coupling wavefunction; 

in fact, they do not consider the second sum of Equation (2.86). Furthermore, the 

continuum wavefunction is calculated by a one-particle DFT approach and then it 

is added to the N-1 particles (calculated with ab-inito method). These 

approximations are really distant from the complete expansion in the Close 

Coupling form, and they are not able to describe all the correlation effects, as 

those ones involving also continuum states. In case one wants to treat all the 

correlation effects, one has to expand the solution in CC form. In order to do this, 

two-electron integrals are needed to be computed. In fact, the complete ab-initio 

Hamiltonian includes two-electron operator: 

 𝐻𝛹 = 𝐸𝛹 (2.99) 

 

𝐻 =  ∑ℎ(𝑖)

𝑖

+  ∑ 
1

𝑟𝑖𝑗
𝑖<𝑗

 (2.100) 

and matrix elements between basis functions: 

 ⟨𝜒𝜇𝜒𝜈|𝑟𝑖𝑗
−1|𝜒𝜌𝜒𝜎⟩ (2.101) 

are required to compute the full N-particle matrix elements of the Hamiltonian.  

The method used to solve these integrals is illustrated in details in Chapter 4. 

Although implementing two-electron integrals is a demanding task, it permits to 

completely build all the coefficients and matrices necessary to build the CC 

wavefunction. In principle this allows the description of all the correlation effects 

both in the bound and continuum states, and all couplings.  
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Describable effects Non-describable effects 

 Those that are describable by 

Single-Channel 

approximation 

 Those that are describable by 

TDDFT 

 Those describable by the use 

of Dyson orbitals.  

 A better description of 

correlation effects in the 

bound states 

 All the correlation effects not 

included in the previous 

approximations  

 Non-perturbative phenomena 

 

 

2.5.7. Non-perturbative phenomena (TDSE) 

As already mentioned in Chapter (2.1.1), there are two photoionization regimes: 

perturbative and non-perturbative regimes. In the non-perturbative regime, the 

system is subjected to a strong field and a really short pulse. Methods described so 

far treat perturbative phenomena, while our intent is to treat also non-perturbative 

phenomena. There are several methods to describe these phenomena. One is the 

ADK model [13] where the electron is described by a pure tunnelling model. The 

electron, in this model, is in a classically forbidden region below the barrier while 

is in an allowed classically region outside the barrier. Another method is the SFA 

[34] (Strong field approximation) model, which is based on path integral 

techniques [35]. In this model, the potential of the field is the only one considered 

(the atomic potential is neglected). The motion of the electron is time-resolved: it 

starts in an initial state and at one certain time it goes in a continuum state where 

it stays until final time. This approach uses analytical expressions, which are 

Table 2.4: describable and non-describable effects within the theoretical use of the Close-

Coupling wavefunction  
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obtained applying several approximation that limits its applicability. Although it 

is commonly employed to describe current experiments with success.  

One of the best method to describe non-perturbative multiphoton ionization is the 

numerical solution of the time-dependent Schrödinger equation (TDSE) as will be 

discussed in Chapter 5. This requires a discretization capable to describe a large 

part of the spectrum of the Hamiltonian, up to rather high energies and angular 

momenta. For large systems, several approximations are needed to limit the 

computational cost, but a wide range of continuum state is necessary to furnish 

good results. Another really important parameter is the length grid because a too 

short grid can provide artificial reflection of the emitted electron. Long enough 

grids often lead huge computational costs, which are, in some case, unsustainable. 

For this reason one can implement a complex absorbing potential (CAP) [36] 

which has the task to absorb the electron at the end of the grid. 

As will be illustrated in Chapter 5, although the solution of the time-dependent 

Schrödinger equation allows to describe also the perturbative region, it is an 

expensive computational method to be used for this purpose. We have 

implemented TDSE in the spectral basis given by the full spectrum of the Khon-

Sham Hamiltonian obtained from the B-spline basis. 

Since this method uses DFT, it is not able to treat any correlation effects.  

Describable effects Non-describable effects 

 Those that are describable by 

Single-Channel 

approximation 

 Perturbative regime 

 Non-perturbative regime  

 Any Correlation effects 

 

 

  

Table 2.5: describable and non-describable effects within the TDSE approximation 
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 2.6. DFT calculation 

Using Density Functional Theory (DFT) in many-body problems provides an 

enormous simplification because the basic variational object is represented by the 

electron density instead of a many-particle wavefunction. Indeed, the many-body 

wavefunction is a very complex function in a 3N-dimensional space, on the 

contrary the density is a simple function that depends solely on 3 variables, x, y 

and z. 

The many-body Hamiltonian operator within the Born-Oppenheimer 

approximation [37] is given by: 

 

�̂� = �̂� + �̂� + �̂� = [−
1

2
∑∇𝑖

2

𝑖

+∑𝑉𝑖(𝒓𝑖)

𝑖

+
1

2
∑𝑈(𝒓𝑖𝒓𝑗)

𝑖<𝑗

] (2.102) 

where �̂� , �̂� and �̂� are, respectively, the kinetic energy, the external potential, i.e. 

the attraction potential created by the nuclei, and the electron-electron interaction 

operators. The solution of this 3N-dimensional differential equation is 

complicated by the presence of the interelectronic potential in the Hamiltonian. 

The expectation value of the energy can be reformulate as function of the electron 

density 𝜌(𝒓): 

 𝐸 = ⟨𝛹|�̂�|𝛹⟩ = ⟨𝛹|�̂� + �̂� + �̂�|𝛹⟩

= −
1

2
∫𝑑𝒓𝑑𝒓′∇2𝜌(𝒓, 𝒓′) + ∫𝑑𝒓𝑣(𝒓)𝜌(𝒓)

+∬𝑑𝒓1𝑑𝒓2
𝜌(𝒓1, 𝒓2)

𝑟12
 

(2.103) 

where 

 
𝜌(𝒓, 𝒓′) = 𝑁∫𝑑𝒓2…𝑑𝒓𝑁𝛹

∗(𝒓,… , 𝒓𝑁)𝛹(𝒓′,… , 𝒓𝑁) (2.104) 

is the reduced one-particle density matrix, and the density is 
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 𝜌(𝒓) = 𝜌(𝒓, 𝒓) (2.105) 

and 𝜌(𝒓1, 𝒓2) is the two-particle density function given by 

 
𝜌(𝒓1, 𝒓2) = 𝑁(𝑁 − 1)∫𝑑𝒓3…𝑑𝒓𝑁𝛹

∗(𝒓1, … , 𝒓𝑁)𝛹(𝒓1, … , 𝒓𝑁) (2.106) 

Let us introduce a pair correlation function ℎ𝑥𝑐(𝒓1, 𝒓2) that includes non-classical 

effects. The expectation value of �̂� then becomes: 

 
⟨𝛹|�̂�|𝛹⟩ = 𝐽[𝜌] +

1

2
∬𝑑𝒓1𝑑𝒓2𝜌(𝒓1)𝜌(𝒓2)

ℎ𝑥𝑐(𝒓1, 𝒓2)

𝑟12

= 𝐽[𝜌] +
1

2
∫𝑑𝒓1𝜌(𝒓1)𝑣𝑥𝑐(𝒓1) 

(2.107) 

where 𝐽[𝜌] is the classical Coulombian selfinteraction of a charge distribution and 

𝑣𝑥𝑐(𝒓1) is a local potential that takes into account correlation and exchange 

effects, defined as 

 
𝑣𝑥𝑐(𝒓1) = ∫𝑑𝒓2𝜌(𝒓𝟐)

ℎ𝑥𝑐(𝒓1, 𝒓2)

𝑟12
 (2.108) 

The foundation for the use of DFT methods in computational chemistry is the 

introduction of orbitals as suggested by Kohn and Sham. They made use of a 

fictitious non-interacting system where its ground-state density was exactly the 

same as that of some interacting system of interest. 

The ground-state wavefunction associated with this non-interacting system can be 

represented with a single Slater determinant of orthonormal orbitals, 𝜓𝑖. Thus, the 

expression of the electronic density becomes 

 𝜌(𝒓) =∑|𝜓𝑖(𝒓)|
2

𝑖

 (2.109) 

Separating the kinetic energy contribution as  
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𝑇 = −

1

2
∑∫𝑑𝒓𝜓𝑖

∗(𝒓)∇2𝜓𝑖(𝒓)

𝑖

+ 𝑇𝑋𝐶(𝜌) (2.110) 

and including the XC contribution to the kinetic energy in the 𝑣𝑋𝐶  potential, 

finally, one obtains the Khon-Sham differential equation [38]: 

 
−
1

2
𝛻2𝜓𝑖 + 𝑣𝐾𝑆𝜓𝑖 = 휀𝑖𝜓𝑖 (2.111) 

where 𝑣𝐾𝑆 is given by: 

 𝑣𝐾𝑆 = 𝑣𝑒𝑥𝑡 + 𝑣𝑒𝑒 + 𝑣𝑥𝑐 (2.112) 

The accuracy of DFT is determined by the accuracy of the description of 𝑣𝑥𝑐(𝒓1). 

In order to implement the Kohn-Sham approach the exchange-correlation 

functional must to be approximated. There exist different classes of functionals, 

depending on the kind of the approximation. The two most important classes of 

these functionals are LDA (Local Density approximantion) and GGA 

(Generalized Gradient Approximation). The first one is based on the assumption 

that the exchange-correlation potential depends only on the value of the charge 

density at the same point. The second one includes the dependence also on 

gradients of the density. 
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2.6.1. Computational detail 

Let us introduce a typical DFT calculation based on B-spline functions associated 

to a particularly simple least-squares formulation for the determination of 

eigenvectors in the continuum spectrum. The computational procedure is made by 

three steps: 

I. Calculation of the ground state DFT electron energy with ADF program 

[39] 

II. Construction of the Hamiltonian matrix and its diagonalization in the 

OCE-LCAO B-splines basis set. Bound states and continuum states are 

obtained in this step.  

III. Calculation of the dipole transition moment. This provides photoionization 

cross sections, asymmetry parameters and further observables. 

2.6.2. Initial guess  

Calculation of the molecular ground state electron density represents the starting 

point of the present method. There are several quantum chemistry programs able 

to compute electronic density. Among these, we use ADF (Amsterdam Density 

Functional [39]). For all the calculations in this work, a DZP (double zeta plus 

polarization) basis set and a LB94 or LDA functional have been chosen. The 

program expands the ground state Kohn-Sham atomic orbitals in terms of Slater-

type Orbitals (STOs): 

 𝜙𝑛𝑙𝑚𝜁
𝑆𝑇𝑂 (𝒓) = 𝑅𝑛𝜁

𝑆𝑇𝑂(𝑟)𝑌𝑙𝑚(휃, 𝜙) (2.113) 

where 𝑌𝑙𝑚
𝑆𝑇𝑂(휃, 𝜙) are the spherical harmonics. The radial part is expressed as 

follows: 

 𝑅𝑛𝜁
𝑆𝑇𝑂(𝑟) = 𝑁𝑟𝑛−1𝑒−𝜁𝑟 (2.114) 

where 𝑛 indicates the principal quantum number, 𝑙 and 𝑚 define the angular 

momentum and 휁 is the nuclear effective charge. 
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Thus, Kohn-Sham molecular orbitals can be expressed as a linear combination of 

atomic orbitals: 

 

𝜑𝑖(𝒓) = ∑ ∑𝑎𝑗,𝑛𝑙𝑚𝜙𝑗,𝑛𝑙𝑚𝜁
𝑆𝑇𝑂 (𝒓𝑗)

𝑛𝑙𝑚

𝑁 𝑎𝑡𝑜𝑚𝑠

𝑗

 (2.115) 

Obtained by the usual SCF algorithm. This permits to compute the ground state 

electron density 𝜌0(𝒓) that will used to to construct the Hamiltonian matrix. 

 

𝜌0(𝒓) = ∑ 𝜑𝑖
∗(𝒓)𝜑𝑖(𝒓)

𝑜𝑟𝑏𝑖𝑡𝑎𝑙𝑠

𝑖

 (2.116) 

 

2.6.3. Construction of the Hamiltonian matrix and 

its diagonalization 

The ADF program furnishes us the electron density of the ground state that can be 

used to obtain the one-electron orbitals in the B-spline basis through the Kohn-

Sham equation: 

 𝐻𝐾𝑆𝜑𝑖 = 휀𝑖𝜑𝑖              𝑖 = 1,… , 𝑛 (2.117) 

where the Hamiltonian is defined as: 

 
𝐻𝐾𝑆 = −

1

2
∇2 −∑

𝑍𝑁
|𝑟 − 𝑅𝑁|

𝑁

+∫
𝜌0(𝒓

′)𝑑𝒓′

|𝒓 − 𝒓′|
+ 𝑉𝑋𝐶[𝜌0(𝒓)] (2.118) 

This Hamiltonian can be divided in four terms. First term (kinetic energy) and 

second term (Coulomb attraction) are easily implemented in the algorithm.  

Third term represents the classical electrostatic Hartree potential 𝑉𝐻. It uses the 

electron density obtained by ADF and is obtained, expressed in the same B-spline 

basis, by the solution of the Poisson equation:  
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 ∇2𝑉𝐻 = −4𝜋𝜌0(𝒓) (2.119) 

Finally, fourth term is the exchange-correlation potential that can be chosen 

according to the considered system. LB94 and LDA(VWN) functionals usually 

produce accurate photoelectron spectra [40].  

The Hamiltonian matrix has to be built by the expansion in the OCE-LCAO basis 

set. Thus, each matrix element can be expressed as: 

 
𝑯𝑖𝑗𝑚𝑛ℎℎ′𝑙𝑙′
𝜆 = ∫𝐵𝑚

𝑖 (𝑟𝑖)𝑋𝑙ℎ𝜆𝜇
𝑖 (휃𝑖, 𝜙𝑖)ℎ̂𝐾𝑆𝐵𝑚

𝑗
(𝑟𝑗)𝑋𝑙ℎ𝜆𝜇

𝑗
(휃𝑗, 𝜙𝑗) (2.120) 

As already mentioned, this represents a symmetry adapted Hamiltonian. Thus, the 

Hamiltonian is block-diagonal in each quantum number 𝜆 and it is independent of 

𝜇. Within this DFT approximation, the problem is reduced to a one-particle 

problem controlled by the one-particle Hamiltonian ℎ̂𝐾𝑆. The superscripts 𝑖 and 𝑗 

define the nature of the OCE-LCAO basis set: “𝑂” indicates the OCE part and 

𝑗 ∈ 𝑄𝑖 indicates the specific non-equivalent shell (see Chapter 2.4.4). Therefore, 

the Hamiltonian matrix presents three kind of non-zero integrals: those combining 

two OCE functions 𝑯00, those combining one OCE function with a LCAO 

function 𝑯0𝑖, and, finally, those combining LCAO functions of the same set 𝑯𝑖𝑖. 

Overlap between functions of different LCAO set is avoided, so that 𝑯𝑖𝑗 = 0. In 

light of this, let us define the Hamiltonian matrix as follows: 
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�̂� = 

�̂�00 �̂�0𝑖 ⋯ �̂�0𝑘 

�̂�𝑖0 �̂�𝑖𝑖 0 0 

⋮ 0 ⋱ 0 

�̂�𝑘0 0 0 �̂�𝑘𝑘 

     
 

(2.121) 

Since integrals involving two centre LCAO basis functions are calculated fully 

numerically, the largest computational effort is due to the calculation of non-

diagonal blocks, which are symmetric: 

 �̂�𝑖0 = �̂�0𝑖
𝑇  (2.122) 

and this reduces the computational cost. The integrals can be solved through the 

three-dimensional numerical Gauss-Legendre integration in which the weights and 

points are distributed in spherical coordinates around the off-centre nucleus.  

Continuum states are obtained by a generalization of the Ritz-Galerkin method. 

This approach is based on the solution of the following eigenvalue problem for 

each photoelectron energy 휀: 

 𝑨(휀)𝒄 = 𝑎𝒄 (2.123) 

where the matrix: 

 𝑨(휀) = 𝑯 − 휀𝑺 (2.124) 

is not Hermitian. A more stable algorithm is obtained with Hermitian matrix by 

using: 

 𝑨𝑇𝑨𝒄 = 𝒂𝒄 (2.125) 
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Since the eigenvalues, very close to zero, relative to the full set of continuum 

eigenvectors, are very well separated from the rest, the solution can be easily 

obtained by block inverse iteration [41]. The eigenvectors so obtained constitute a 

complete and independent set of stationary solutions. From these states, one can 

build continuum states that are normalized and which satisfy suitable boundary 

conditions. 

Bound and continuum states are obtained by diagonalizing the fixed Kohn-Sham 

Hamiltonian matrix. This method is called static-exchange DFT.  

From the computational point of view, a dense knot grid around the nuclei is 

needed to accurately obtain both bound and continuum states. A detailed basis is 

needed to accurately describe both kind of states (continuum and bounds). A big 

box size is really important because provide better results both on high bound 

states and on the variation of the continuum states. The latter requires a larger 

box. A dense knot grid is also required far from the origin to describe higher 

continuum state. This is due to the asymptotic period of the radial oscillations of 

the continuum wavefunctions. 

In comparison with the typical AO basis employed in bound state calculations, the 

OCE-LCAO basis set is much bigger. This allows an accurate description of the 

continuum states, and a complete representation of the spectrum of the 

Hamiltonian within the spherical box defined by 𝑅𝑚𝑎𝑥, up to very large energies. 

As an example in 𝑂3 the DZP basis comprises 48 basis functions, while the OCE-

LCAO basis employed has 22844 functions.  

Once bound and continuum states are obtained, dipole transition moment can be 

calculated. This provides the photoionization observables, such as cross sections 

and asymmetry parameters.   
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3. Correlation within the bound 

states 

This section will present some results obtained by using both single channel 

approximation and Dyson orbitals (see sections 2.5.3 and 2.5.5). This is done with 

the aim to compare the results obtained without considering correlation effects 

(DFT and HF approaches) with those ones obtained by including highly 

correlation within the bound states (Dyson orbital). Before continuing with the 

description of the calculation, let us briefly summarize the main quantum 

chemistry methods used in these kind of calculations that include correlation 

effects.  

3.1. Methods 

3.1.1. Configuration Interaction 

Correlation effects can be calculated by using the variational method with a 

wavefunction that is a linear combination of Slater determinants. These 

determinants correspond to electronic configurations in which electrons are 

promoted into virtual orbitals. Hence, they represent excited states whose 

contribution to the total wavefunction of the ground state generally decreases with 

the order of excitation. This is the Configuration Interaction (CI) approach [11] 

and the corresponding wavefunction can be written as  

 𝛹𝐶𝐼 = 𝑎0𝛷𝐻𝐹 +∑𝑎𝑆𝛷𝑆
𝑆

+∑𝑎𝐷𝛷𝐷
𝐷

+∑𝑎𝑇𝛷𝑇
𝑇

+⋯ =∑𝑎𝑖𝛷𝑖
𝑖

 (3.1) 

where subscripts S, D, T, etc. indicate determinants that are singly, doubly, triply, 

etc., excited relative to the HF configuration. 

Exploiting the symmetry properties of the system, a basis of states with 

appropriate spatial and spin symmetry can be used to reduce the length of the CI 

vector. Such linear combinations of determinants are called Configurational State 
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Functions (CSFs). If the expansion includes all possible CSFs of the appropriate 

symmetry, it represents a full CI procedure which exactly solves the electronic 

Schrödinger equation in the given basis. 

3.1.2. MCSCF and CASSCF 

The Multi-Configuration Self-Consistent Field (MCSCF) methods represent a 

series of computational methods which include only a reduced number of 

determinants in Eq. 3.1. In this method both the coefficients and the MOs used for 

constructing the determinants are variationally optimized [42]. This is distinct 

from the regular CI case where only the coefficients are optimized. MCSCF 

treatments are generally designed to correct the HF energy by including the static 

part of the correlation. This contribution, known as the neardegeneracy effect, is 

mainly due to the existence of strongly interacting, quasi-degenerate 

configurations.  

The main problem in MCSCF methods is in choosing the most important 

configurations to describe the property of interest. There exist several 

implementations, one of these is the Complete Active Space Self-Consistent Field 

(CASSCF) [43]. In this approach, the initial molecular orbital space, which may 

be taken from a HF calculation, is partitioned into inactive and active spaces. The 

inactive space is composed of the doubly occupied orbitals in all CSFs that are 

used to build the multi-configurational wavefunction. Meanwhile, the active space 

includes both occupied and virtual orbitals. These orbitals will typically include 

some of the highest occupied and some of the lowest unoccupied MOs from a HF 

calculation. The choice of the correct active space represents the chief difficulty in 

the CASSCF method. In fact, the subdivision between active and inactive orbitals 

depends on the target system and on its properties of interest.  
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3.1.3. NEVPT2 

MCSCF and CASSCF consider the static part of the correlation, the remaining 

dynamical contribution is associated with the instantaneous correlation between 

electrons. Besides configuration interaction, typically single and double 

excitations from the MCSCF ones (MRCI) it can be included by a perturbative 

treatment, for example with CAS-PT2, or n-electron valence state perturbation 

theory (NEVPT), which has been used in the present study. This method can be 

applied to a multireference CASSCF wavefunction.  

Roughly, in the NEVPT2 method, the orbital space is divided into three orbital 

subspaces of inactive orbitals with occupations of 2, active orbitals with variable 

occupations, and virtual orbitals with zero occupation. A certain number of 

classes of spaces are generated by the action of excitation operators. These classes 

are characterized by a different number of electrons promoted to and from the 

CAS space. Different numbers of perturbing functions are chosen for these spaces 

by further subdividing them into various categories: strongly contracted spaces 

and partially contracted spaces [44] [45] [46].  

3.2. Transition moment from the Dyson 

orbitals 

As already mentioned, Dyson orbital is defined as: 

 
𝜙𝐼𝐹
𝑑 (1) = √𝑁∫𝛹𝐼

𝑁(1, … ,𝑁)𝛹𝐹
𝑁−1(2,… ,𝑁)𝑑2…𝑑𝑁 (3.2) 

namely, as the superposition between the initial neutral state 𝛹𝐼
𝑁 and the final 

ionic state 𝛹𝐹
𝑁−1.  

Dyson orbital can be expanded as: 

 𝜙𝑑 =∑𝛾𝑝𝜙𝑝
𝑝

 (3.3) 
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where 𝜙𝑝 is an orthonormal basis, and the amplitude 𝛾𝑝 is: 

 𝛾𝑝 = ⟨𝛹𝐹
𝑁−1|𝑎𝑝|𝛹𝐼

𝑁⟩ (3.4) 

with the annihilation operator 𝑎𝑝. 

After a few steps, dipole transition moment between initial and final states can be 

expressed as follows [32]: 

 𝐷𝐹𝐼 =∑⟨𝜙𝜀|𝑡|𝜙𝑝⟩𝛾𝑝
𝑝

+∑⟨𝜙𝜀|𝜙𝑝⟩휂𝑝
𝑝

 (3.5) 

where 𝜙𝜀 is the photoelectron wavefunction, 𝑡 is the one-particle dipole transition 

operator, and the amplitude 휂𝑝 is: 

 휂𝑝 = ⟨𝛹𝐹
𝑁−1|𝑇𝑎𝑝|𝛹𝐼

𝑁⟩ (3.6) 

where 𝑇 is the many particle dipole operator. 

The first and the second terms of Equation (3.5) are called direct term and 

conjugate term, respectively. Note that by considering the photoelectron 

wavefunction orthogonal to all the occupied orbitals, conjugate terms can be 

assumed equal to zero. This approximation is especially valid at high energies, 

where the conjugate term is negligible. In light of this, the Equation (3.5) can be 

expressed as follows: 

 𝐷𝐹𝐼 =∑⟨𝜙𝜀|𝑡|𝜙𝑝⟩𝛾𝑝
𝑝

= ⟨𝜙𝜀|𝑡|𝜙
𝑑⟩ (3.7) 

namely as the transition moment between Dyson orbital and photoelectron 

wavefunction. 

The spectral strength (or pole strength) of the considered final state 𝛹𝐹
𝑁−1 is 

defined by the norm of the Dyson orbital:  
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 ‖𝜙𝑑‖2 =∑|𝛾𝑝|
2

𝑝

= 𝑅𝐹 (3.8) 

As already mentioned, Dyson orbital permits to treat correlation in bound states. 

Correlation effects can be responsible for additional states and, as a consequence, 

additional bands in the spectra. A measure of the intensity of these additional 

bands is given by the pole strength. Furthermore, correlation produces a reduction 

of the pole strengths associated to primary ionic states.  

Thus, pole strength can give a hint of the nature of the final state: values included 

in the 0.8 – 1.0 range can be associated to an outer valence state. Correlation 

effects can be observed in particular in the inner valence region, where, for 

example, a mixing with 2h−1p configurations relative to outer excitations can 

occur. A further effect that can be observed is the mixing of the occupied 

molecular orbitals during the photoionization. 

 

3.3. Dyson orbital calculation 

In this work, the correlated single channel calculation is made by five steps: 

1. Calculation of ground and ionic states by using MOLPRO [47]. 

2. Evaluation of Dyson orbital coefficients. 

3. Projection of the Dyson orbitals on the OCE-LCAO B-splines basis set. 

4. Calculation of the continuum states. 

5. Calculation of the dipole transition moments to obtain photoionization 

observables. 
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3.3.1. Bound states and Dyson orbital calculation 

In such a calculation, bound states relative to the ground and the ionic final states 

are calculated by using the Molpro package [47]. In particular, both of them are 

calculated through a CASSCF procedure. In order to take into account part of the 

dynamic correlation, NEVPT2 treatment is also applied.  

Once both the wavefunctions are obtained, one can calculate the Dyson orbitals as 

the overlap between them. This is done by using a code built in collaboration with 

the theoretical chemistry group of the University of Ferrara. 

 

3.3.2. Projection onto the B-spline basis  

Most of the quantum chemistry programs, including Molpro, expand molecular 

orbitals 𝜙𝑘 as a linear combination of Contracted Gaussian Type Orbitals (CGTO) 

𝜑𝑗:  

 
𝜙𝑘 =∑𝑐𝑗𝑘𝜑𝑗

𝑛

𝑗=1

 (3.9) 

Dyson orbitals can be, in turn, expanded in terms of MOs: 

 𝜙𝑖,𝜆𝜇
𝑑 =∑𝜙𝑘,𝜆𝜇𝐶𝑘,𝑖,𝜆

𝑑

𝑘

 (3.10) 

which are symmetrized as indicated by the subscript 𝜆𝜇. The coefficients are: 

 𝐶𝑘,𝑖,𝜆
𝑑 = ⟨𝛹𝐼

𝑁|𝑎𝑘,𝜆𝜇
+ |𝛹𝐹

𝑁−1⟩ (3.11) 

that correspond to the amplitude 𝛾𝑝 (see Equation 3.4). Our aim is to express both 

MOs and Dyson orbital in terms of our OCE-LCAO basis set. In order to do this, 

one can apply the following projection  

 𝑏𝑛𝑘𝜆 = ⟨𝜒𝑛𝜆𝜇|𝜙𝑘,𝜆𝜇⟩ (3.12) 
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where 𝜒𝑛𝜆𝜇 is the OCE-LCAO B-spline basis set. The relative integrals are 

evaluated numerically with high accuracy. By solving the linear system 

 ∑𝑆𝑚𝑛
𝜆 𝑎𝑛𝑘𝜆

𝑛

= 𝑏𝑛𝑘𝜆 (3.13) 

one can obtain the expansion coefficients of the MOs in our basis set: 

 𝜙𝑘,𝜆𝜇 =∑𝑎𝑛𝑘𝜆𝜒𝑛𝜆𝜇
𝑛

 (3.14) 

From the computational point of view, molecular orbitals of both the ground and 

the ionic states are computed with a CASSCF calculation. The coefficients that 

express MOs as linear combination of CGTO can be written in a Molden file, that 

is a file used to display molecular density. This file is editable and can be used as 

input for the projection onto the B-spline basis.  

The same procedure is valid for Dyson orbitals, which are expressed in terms of 

CASSCF orbitals and then projected onto our basis. 

The accuracy of the projection is controlled by the norms of the projected orbitals, 

which have to be very close to the that of the initial orbitals.  

Once the Dyson orbitals are projected, one can calculate the continuum states and 

the dipole transition matrices to obtain the photoionization observables. Of course 

also projected MOs from HF or CASSCF calculations can be employed as initial 

orbitals 
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3.4. Correlation in the outer valence region  

(CO, CSe, SiO and CS) 

3.4.1. Introduction 

As already mentioned, the most frequent exhibition of the electron correlation is 

the presence of additional bands, called satellite bands, in the photoelectron 

spectra. Since these bands are due to many-electron excitations, they cannot be 

described through the mean-field approximation. The study of these phenomena is 

quite interesting from both theoretical and experimental point of view. 

The main effect that determines the appearance of satellite bands in the 

photoelectron spectra is the strong correlation between primary (1h) and (2h-1p) 

configurations in the final ionic states. This effect is usually particularly strong in 

the inner valence shell. Thus, ionization does not lead to the formation of a single 

band in the spectrum but to several bands with lower intensities. This effect is 

known as breakdown of the one particle approximation [30]. On the other hand, 

the presence of satellite bands can be described by an accurate calculation, 

coupled with the Dyson orbital approach, able to treat all the correlation effects in 

the bound states. 

Since the intensity of the satellite bands tends to be quite weak, the observation of 

these bands is demanding also for experimental measurements [48]. In addition to 

this, several satellite bands are often close together, making it even more difficult 

to observe individual states [49] [50]. 

In this thesis, the correlated dipole matrix elements are obtained by using Dyson 

orbitals, which are computed as an overlap between initial and final ionic states 

obtained with a CASSCF procedure. The dynamical contribution to the energies 

has been considered by the NEVPT2 multi-reference perturbation [44] [45] at the 

Partially Contracted (PC(2)) level.
 
The pole strength 𝑅𝐹 = ‖𝜙

𝑑‖2 can be used to 

estimate the intensity ratio between a satellite band and the corresponding primary 



69 
 

state, in the high energy limit (sudden approximation). A more accurate intensity 

is given by the cross section obtained in the subsequent continuum calculation. 

In the case of core ionization, it is common to observe single additional bands due 

to correlation effects, whereas, in the outer valence ionization, it is extremely rare 

to find a system that presents well-resolved satellite bands. One of these systems 

is the CS molecule, where the presence of an isolated satellite band in the valence 

region as third ionic state with a fully developed vibrational structure was 

discovered in the early times of photoelectron spectroscopy [51]. The 

experimental photoelectron spectrum of the CS is reported in Figure (3.1). 

Four bands are present in the photoelectron spectrum of CS, but only three of 

them can be described by the DFT model (i.e., 7𝜎, 2𝜋 and 6𝜎). The third band is 

relative to a satellite state due to a strong FISCI correlation. The high intensity of 

the satellite band makes this system really interesting. In a previous study [52], 

energy-dependent cross sections, asymmetry parameters, branching ratios and 

Molecular Frame Photoelectron Angular Distributions are calculated with the 

presented method for both the primary ionic states and the satellite state. 

. 

 

Figure 3.1: experimental photoelectron spectrum of CS. The band indicated by the red arrow is a 

satellite band, which cannot be described by DFT method. 
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A similar satellite is known to be present also in the spectrum of CO, but at higher 

energy, beyond the second Σ primary ionization, and with a reduced intensity. It is 

interesting to study the evolution of the satellite in isoelectronic molecules, and its 

relation to the primary ionizations, as probed by photoionization observables, to 

shed light on the changes in the electronic structure brought about by chemical 

substitution. With this aim the same study has been made on CO, CSe and SiO. 

3.4.2. Computational details 

HF, CASSCF and NEVPT2 calculations on CO, CSe and SiO have been 

performed using Molpro package with aug-cc-pVTZ as basis set. Ground state 

electronic densities are obtained by ADF program using the LB94 exchange-

correlation potential and a DZP basis set. The B-spline basis has been built by 

using a maximum value of the radial grid equal to 25 a.u. with a step equal to 0.2 

a.u. and maximum value of the angular momentum 𝑙𝑚𝑎𝑥 = 20. The LCAO part 

has been constructed using a maximum value of the radial grid for each off-centre 

atom equal to 0.5 a.u. with a 𝑙𝑚𝑎𝑥 = 2. The equilibrium distance between the 

atoms used are: 𝑅𝑒𝑞(𝐶𝑂) = 1.1228 Å [53], 𝑅𝑒𝑞(𝐶𝑆𝑒) = 1.6762 Å [54], 

𝑅𝑒𝑞(𝑆𝑖𝑂) = 1.5097 Å [55]. 

The active spaces in CASSCF calculations are chosen in order to consider 10 

electrons in 5 occupied orbitals (3𝜎, 1𝜋) and 3 virtual orbitals (2𝜎, 1𝜋). In 

particular: 

 Occupied Virtual 

CO 3𝜎, 4𝜎, 5𝜎, 1𝜋 6𝜎, 7𝜎, 2𝜋 

CSe 9𝜎, 10𝜎, 11𝜎, 4𝜋 12𝜎, 13𝜎, 5𝜋 

SiO 5𝜎, 6𝜎, 7𝜎, 2𝜋 8𝜎, 9𝜎, 3𝜋 

 

The same scheme has been employed in the previous study on the CS molecule; 

additional computational details can be found on ref 52.   

Table 3.1: active spaces in the CASSCF calculations for both the ground state and the ionic 

states for the CO, CSe and SiO molecules. 
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3.4.3. Results  

This study has been focused on the description of the first three primary 

ionizations (1Σ, 1Π, 2Σ) and the first satellite state of the four considered 

molecules. Ionization potentials (IPs) and relative pole strengths (𝑅𝐹) associated 

to these states are reported in Table 3.2. IPs are obtained at NEVPT2 level. Figure 

3.2 shows an illustration of the theoretical photoelectron spectra of the four 

considered molecules by taking into account the pole strength as intensity of the 

bands.  

In all the considered cases, the first ionization state in terms of 𝐼𝑃 is the first 

ionization of Σ nature. In all cases, this corresponds to the ionization where the 

electron is removed from the HOMO orbitals, which are the 5𝜎, 11𝜎 and the 7𝜎 

in CO, CSe and SiO, respectively. The second ionization state in terms of 𝐼𝑃 is 

the first ionization of Π symmetry. The main difference among the considered 

cases is the position of the satellite bands: in CS and CSe, it stays at lower 𝐼𝑃 

values than the second sigma ionization state 2Σ, whereas in CO and SiO, it stays 

at higher 𝐼𝑃 values with respect to the 2Σ band. Furthermore, the intensity of the 

satellite band of CS and CSe is greater than those ones of the other two molecules. 

 

  

 CO  CS [52]
 

 CSe  SiO  

 𝐼𝑃 (𝑒𝑉) 𝑅𝐹  𝐼𝑃 (𝑒𝑉) 𝑅𝐹  𝐼𝑃 (𝑒𝑉) 𝑅𝐹  𝐼𝑃 (𝑒𝑉) 𝑅𝐹  

1Σ 13.52 0.89  11.05 0.85  10.54 0.81  10.86 0.90  

1Π 16.65 0.87  12.72 0.82  11.88 0.91  11.54 0.80  

2Σ 𝟏𝟗. 𝟑𝟏 0.78  𝟏𝟕. 𝟖𝟑 0.53  𝟏𝟕. 𝟎𝟕 0.59  𝟏𝟒. 𝟏𝟕 0.76  

𝑆𝑎𝑡 𝟐𝟑. 𝟔𝟏 0.10  𝟏𝟓. 𝟖𝟎 0.26  𝟏𝟒. 𝟕𝟎 0.20  𝟏𝟕. 𝟗𝟗 0.08  

Table 3.2: ionization potential (IP) and relative pole strength (𝑅𝐹) of the first four ionization 

states. IPs are obtained at NEVPT2 level. 
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Figure 3.2: illustration of the theoretical photoelectron spectra of the four considered 

molecules. Pole strengths is used as intensity of the bands. 
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The comparison between our results with those ones present in literature is 

reported in Table 3.3. 

CO 
 Exp [56]  KT  Theo [57]  Present  

 𝐼𝑃 (𝑒𝑉)  𝐼𝑃 (𝑒𝑉)  𝐼𝑃 (𝑒𝑉) 𝑅𝐹  𝐼𝑃 (𝑒𝑉) 𝑅𝐹  

1Σ  14.0  15.10  13.90 0.87  13.52 0.89  

1Π  16.9  17.43  16.98 0.86  16.65 0.87  

2Σ  19.7  21.90  19.70 0.80  19.31 0.78  

𝑆𝑎𝑡  23.4  −  24.53 0.06  23.61 0.10  

 

CS 
 Exp [51]  KT  Theo [58]  Present  

 𝐼𝑃 (𝑒𝑉)  𝐼𝑃 (𝑒𝑉)  𝐼𝑃 (𝑒𝑉) 𝑅𝐹  𝐼𝑃 (𝑒𝑉) 𝑅𝐹  

1Σ  11.3  12.85  11.51 0.85  11.05 0.85  

1Π  12.8  12.64  12.74 0.90  12.72 0.82  

2Σ  18.0  18.89  18.02 0.69  17.83 0.53  

𝑆𝑎𝑡  15.8  −  15.54 0.18  15.80 0.26  

 

CSe 
  KT  Present  

  𝐼𝑃 (𝑒𝑉)  𝐼𝑃 (𝑒𝑉) 𝑅𝐹  

1Σ   12.29  10.54 0.81  

1Π   11.55  11.88 0.91  

2Σ   18.46  17.07 0.59  

𝑆𝑎𝑡   −  14.70 0.20  

 

SiO 
 Exp [59] [60]  KT  Present  

 𝐼𝑃 (𝑒𝑉)  𝐼𝑃 (𝑒𝑉)  𝐼𝑃 (𝑒𝑉) 𝑅𝐹  

1Σ  11.6  11.90  10.86 0.90  

1Π  12.2  12.91  11.54 0.80  

2Σ  14.8  16.59  14.17 0.76  

𝑆𝑎𝑡  17.8 (18.6)  −  17.99 0.08  

 

Table 3.3: Comparison between our results and results in literature for the  first four 

ionization states of the four considered molecules. 
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In order to understand this characteristic behaviour, it is useful to study the cross 

sections and the asymmetry parameters of the four considered ionic states. The 

comparison among observables obtained through three different methods, namely 

HF, DFT and Dyson, is reported. These three kind of calculations are obtained by 

following the methods described before. 

Cross sections (on the left) and asymmetry parameters (on the right) of the first 𝛴 

primary ionization of the four molecules considered are reported in figure 3.3. 

This ionization corresponds to the ionization that originates from the HOMO 

orbital: 1𝛴(𝐶𝑆) ≡ 7𝜎, 1𝛴(𝐶𝑂) ≡ 5𝜎, 1𝛴(𝐶𝑆𝑒) ≡ 11𝜎 and 1𝛴(𝑆𝑖𝑂) ≡ 7𝜎. In all 

the figures, the energy scale is the same for all the molecules, whereas the scale of 

the cross sections is different for each graph. 

The cross sections relative to CS and CSe have similar trends, showing a 

maximum at the threshold and smoothly going to zero. Both the cross sections of 

CO and SiO have a maximum shifted with respect to the threshold. The results of 

the three different calculations for the SiO cross sections are really different close 

to the threshold: Dyson calculation does not present a pronounced peaks close to 

the threshold with respect to both DFT and HF calculations. This can suggest the 

presence of some correlation effects also in this primary ionization. In the other 

cases, the three calculations give similar trends. The calculation based on Dyson 

orbitals is characterized by lower intensity than the other ones because of the 

reduced spectral strength. In all cases, one can note that DFT trend is more similar 

to Dyson one than HF, especially for the SiO cross section, where the hump at 20 

eV is described only by DFT and Dyson calculations.  

The trend of asymmetry parameters 𝛽 is much more sensitive to different 

approximations, and presents more structures. The asymmetry parameters are also 

quite different in the four molecules. Moreover, it appears much more sensitive to 

the different approximations, except in CO, where all the results are similar.  
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Figure 3.3: Cross sections (on the left) and asymmetry parameters (on the right) of the first 

𝛴 primary ionization for the four molecules considered. This ionization corresponds to the 

ionization that originates from the HOMO orbital: 1𝛴(𝐶𝑆) ≡ 7𝜎, 1𝛴(𝐶𝑂) ≡ 5𝜎, 1𝛴(𝐶𝑆𝑒) ≡

11𝜎 and 1𝛴(𝑆𝑖𝑂) ≡ 7𝜎. 
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This underlies the sensitivity of 𝛽 both to the electronic structure, that is the 

variation in orbital composition brought about by chemical change, and the 

amount of correlation effects, as evidenced by the change moving from the HF to 

CASSCF results. From this point of view, weak correlation effects seem to affect 

the HOMO ionization in CO, while they appear much more pronounced in the 

other molecules, attributed to the presence of a heavier (third or fourth row) atom.  

The second primary ionization of all the considered molecules is the first one of Π 

symmetry. Cross sections (on the left) and asymmetry parameters (on the right) of 

this ionization of the four molecules considered are reported in Figure 3.4. This 

ionization corresponds to the ionization that originates from the highest occupied 

𝜋-orbital: 1Π(𝐶𝑆) ≡ 2𝜋, 1Π(𝐶𝑂) ≡ 1𝜋, 1Π(𝐶𝑆𝑒) ≡ 4𝜋 and 1Π(𝑆𝑖𝑂) ≡ 2𝜋.  

All the cross sections decay pretty fast, but, even in this case, the trends of the 

cross sections of CS and CSe are similar. They present a maximum at the 

threshold and a monotonic decrease. In these two cases, the three calculations 

almost provide the same results, whereas in the CO and SiO cases, the differences 

among the three calculations are significant. Unlike the previous examined 

ionization state, cross section relative to the SiO obtained by the Dyson 

calculation is quite similar to that one calculated with the other two methods: this 

can suggest that correlation effects are less important in this state. Note that, also 

in this case, the DFT results are quite similar to those obtained with Dyson 

orbitals, especially for CO. 

Regarding the asymmetry parameters, even in this case, trends are really different 

for the considered molecules (except for CO and SiO that present a similar trend 

with a minimum close to the threshold). At low energies, the three kind of 

calculations provide similar results, with differences between each other 

increasing at higher energies. 
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Figure 3.4: Cross sections (on the left) and asymmetry parameters (on the right) of the second 

primary ionization (1𝛱) for all the considered molecules. This ionization corresponds to the 

ionization that originates from the highest occupied 𝜋-orbital: 1𝛱(𝐶𝑆) ≡ 2𝜋, 1𝛱(𝐶𝑂) ≡ 1𝜋, 

1𝛱(𝐶𝑆𝑒) ≡ 4𝜋 and 1𝛱(𝑆𝑖𝑂) ≡ 2𝜋.  
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The third primary ionization state is the second one of 𝛴 symmetry (see Figure 

3.2). Cross sections and asymmetry parameters associated to this state for the four 

considered molecules are reported in figure 3.5. This ionization corresponds to the 

ionization that originates from the next 𝜎-orbital: 2𝛴(𝐶𝑆) ≡ 6𝜎, 2𝛴(𝐶𝑂) ≡ 4𝜎, 

2𝛴(𝐶𝑆𝑒) ≡ 10𝜎 and 2𝛴(𝑆𝑖𝑂) ≡ 6𝜎. 

In this case, trends shown by the cross sections of the CS and CSe are not so 

similar, since in the CS there is a peak close to the threshold and in the CSe the 

maximum is at the threshold. CO cross section presents a well resolved peaks at 

about 10 eV. SiO case is really interesting because, once again, the trend of Dyson 

calculation is not reproduced by the other two calculations, especially at low 

energies. The difference among the results obtained by the three kind of 

calculation in the others three molecules (CS, CO, CSe) is not so evident. The 

asymmetry parameters 𝛽 present more structured trends and mainly discriminate 

between the different molecules. Except for the CO case, where only a minimum 

at about 7 eV is observed and the three methods give the same results, a 

significant variation in the results is obtained from the three approximations.  

The asymmetry parameters of SiO confirm what already inferred by the analysis 

of the cross sections. In fact, even in this case, Dyson calculation gives very 

different results with respect to both the DFT and HF calculations, especially 

close to the threshold. This behaviour has been observed in both first two primary 

ionization states with 𝛴 symmetry. This suggests that correlation effects are 

present in these states and they can be only described by the Dyson calculation. 



79 
 

 

Figure 3.5: Cross sections (on the left) and asymmetry parameters (on the right) of the second 

ionization state of 𝛴 symmetry for all the considered molecules. This ionization corresponds to 

the ionization that originates from the HOMO-1 𝜎-orbital: 2𝛴(𝐶𝑆) ≡ 6𝜎, 2𝛴(𝐶𝑂) ≡ 4𝜎, 

2𝛴(𝐶𝑆𝑒) ≡ 10𝜎 and 2𝛴(𝑆𝑖𝑂) ≡ 6𝜎. 
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The main feature of the photoionization of these four molecule is the presence of 

the well resolved satellite bands of 𝛴 symmetry. As already mentioned, these can 

be studied only by means of the Dyson approach. Cross sections (on the left) and 

asymmetry parameters (on the right) of the satellite bands of the four considered 

molecules are reported in Figure 3.6. 

Cross sections relative to CS and CSe are really similar: both of them present a 

maximum at the threshold and go to zero at higher energies. The trend of the cross 

section of the CO is also similar, but it more slowly goes to zero. The SiO cross 

section is more structured with the appearance of two bands: one close to the 

threshold and one at about 20 eV. The faster decay is associated (by Fourier 

transform) to the spatial extent of the ionized orbital. In this case, it indicates a 

strong contribution of the heavier atom AOs in the Dyson orbital relative to 

satellite ionization. 𝛽 parameters show a distinct individual behaviour for the four 

molecules, although a broad trend, characterized by a large dip at intermediate 

energy, is calculated for CS, CSe and SiO. The case of CO is remarkably 

different, with 𝛽 rapidly increasing from threshold, and quickly reaching a high 

asymptotic value, interrupted by a small dip around 10 eV (kinetic energy). 

The cross section profiles appear to be smooth with a maximum at the threshold 

and a trend going to zero. Further information can be achieved by considering 

individual cross section ratios, which can also be easily obtained from the 

experiment. From these ratios, it is possible to better characterize the satellite state 

by understanding if the intensity of the satellite is mainly borrowed by a primary 

state or is more complex due to contributions of several initial orbitals. The first 

situation is described by a constant ratio.  

On the left of Figure 3.7, ratios between satellite and first primary 𝛴 ionization of 

the four considered molecules are reported; on the right, ratios between satellite 

and second primary 𝛴 ionization are reported. 
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Figure 3.6: cross sections (on the left) and asymmetry parameters (on the right) of the satellite 

bands of the four considered molecules. 
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None of the reported ratio is constant at low energies, proving the inadequacy of 

the simple borrowing mechanism. At higher energies, some of the ratios approach 

a constant value. By considering CS, CO and CSe, the ratio between cross 

sections of satellite and first primary ionization state is not constant at all, so that 

one can affirm that the intensity of the satellite band is not due to the first primary 

ionization state. Indeed, the ratio between the cross sections of the satellite and the 

second primary ionization state become constant at higher energies. This can 

suggest that, at high energies, the second primary ionization state mainly 

contributes to the intensity of the satellite state. The two ratios relative to SiO are 

quite interesting since both of them approach constant value at higher energies. 

Thus, both the primary ionizations contribute to the intensity of the satellite states 

at higher energies.  

To conclude, this study has shown the sensitivity of photoionization observables, 

and, in particular, of the asymmetry parameter 𝛽, with respect to the changes in 

the electronic structure of isoelectronic molecules. Moreover, it gives evidence of 

strong correlation effects in the systems with a heavier atom. In particular, the 

satellite band reaches the maximum intensity in the case of CS, and slightly 

declines in the spectrum of CSe. On the contrary, it remains weak and positioned 

at higher energy above the second 𝛴 primary ionization for CO and SiO, despite 

of the different character it has in the two molecules, as can be seen from the 

photoionization observables.  

The comparison among the three kind of calculations has shown that the DFT 

results are much more similar to the Dyson results with respect to HF results. This 

is an indication that, even though the DFT method is a one-particle calculation, it 

is able to treat a small part of the correlation but remaining unfit to treat strong 

correlation effects. In fact, regarding SiO, the Dyson calculations for the first two 

primary ionization states of 𝛴 symmetry have provided different results with 

respect to the calculations performed with HF and DFT methods. This is a clear 

indication of the presence of strong correlation effects even in the primary 𝛴 

ionization states that are not visible in the primary Π ionization state. 



83 
 

   

 

Figure 3.7: ratios between satellite and first primary 𝛴 ionization of the four considered 

molecules are reported on the left. Ratios between satellite and first secondary 𝛴 ionization 

are reported on the right. 
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3.5. Time resolved photoelectron spectra of O3 

A calculation of the photoionization observables in 𝑂3 was performed as a part of 

a collaboration aimed to provide a simulation of a pump-probe experiment design 

to tracks attosecond electronic motion, and further nuclear motion on the 

femtosecond scale. An electric wavepacket comprising the ground state (X, 
1
A1) 

and the excited B-state (
1
B2), associated with the very strong Hartley band in the 

UV spectrum is created by a strong laser pump pulse (260 nm, 1013 𝑊/𝑐𝑚2, 3 

fs), and its evolution probed by a VUV subfemtosecond (500 as) pulse at 95 eV. 

Due to the bandwidth of the ultrashort pulse, we estimated a total width including 

the experimental broadening of 1.5 eV), it was uncertain whether a sufficiently 

clear signal could be observed. This was a preliminary study aimed to provide 

realistic estimates for a joint collaboration with an experimental team. Moreover a 

first estimate of angular distributions was required in order to design the 

experimental setting for maximum sensitivity.  

From a theoretical point of view it was interesting to set up a theoretical 

framework for a full quantum simulation of pump-probe experiments with time 

resolved photoelectron spectra (TRPES) as a probe, as there is much current 

activity in the field.  

Briefly, the time dependent Schrodinger equation is solved initially at the fixed 

GS geometry that was performed by our colleagues employing the Heidelberg 

MCTDH program, which is designed to describe coupled electron-nuclear 

dynamics on a few electronic surfaces. Basically a set of Born-Oppenheimer basis 

functions is employed to expand the time dependent solution 

 Ψ(𝑟 , �⃗� , 𝑡) = ∑ χ𝑖
𝑣

𝑖=𝑋,𝐵

(�⃗� , 𝑡)Φ𝑖
𝑒(𝑟 , �⃗� ) (3.15) 

where Φ𝑖
𝑒 are the adiabatic electronic B.O. states and  
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χ𝑖
𝑣(𝑄1, … , 𝑄𝑓 , 𝑡) =  ∑⋯∑𝐴𝑗1⋯𝑗𝑓𝜑𝑗1(𝑄1, 𝑡), … ,

𝑛𝑓

𝑗𝑓

𝑛1

𝑗1

𝜑𝑗𝑓(𝑄𝑓 , 𝑡) (3.16) 

products of 1-dimensional vibrational wavfunctions, 𝑓 is the number of 

vibrational coordinated (degrees of freedom). Both coefficients 𝐴(𝑡) and orbitals 

𝜑𝑖(𝑄𝑖, 𝑡) are separately optimized by multiconfigurational SCF procedure.  

For the simulation of the spectrum, ionization cross section have to be computed 

with both the GS and the B state as initial state, to a number of accessible cation 

states (19 in the present case). This is achieved via the Dyson approach previously 

outlined.  

Finally he TRPES spectrum is simulated convoluting the spectra with the time 

dependent populations of the two states: 

 𝐼(휀, 휃, 𝜏) =∑𝜌𝑘𝑘(𝜏)𝐼𝑘(휀, 휃)

𝑘

 (3.17) 

 𝐼𝑘(휀, 휃) =∑𝐺𝑗𝑘(휀𝑗𝑘)𝜎𝑗𝑘(휀𝑗𝑘 , 휃)

𝑗

 (3.18) 

 
𝜎𝑗𝑘(휀𝑗𝑘, 휃) =

𝜎𝑗𝑘(휀𝑗𝑘)

4𝜋
[1 + 𝛽𝑗𝑘(휀𝑗𝑘)𝑃2(𝑐𝑜𝑠휃)] (3.19) 

Where 𝑘 = 𝑋, 𝐵 runs over the two electronic states, 휀 is the electron kinetic 

energy and 휃 the emission angle with respect to the field polarization axis. 

휀𝑖𝑘 = ħ𝜔 − 𝐼𝑃𝑖𝑘 is the electron kinetic energy relative to ionization from initial 

state 𝑘 to final cationic state 𝑖, and 𝐺𝑖𝑘 is a phenomenological Gaussian bandwidth 

 
𝐺𝑗𝑘(휀) =

1

𝜎√2𝜋
𝑒
−
(𝜀−𝜀𝑗𝑘)

2𝜎2

2

 (3.20) 

𝜎𝑖𝑘 and 𝛽𝑖𝑘 are partial cross section and asymmetry parameters relative to 

ionization 𝑖 → 𝑘.  
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The ionization potential 𝐼𝑃𝑖𝑘 and Pole strength relative to initial 𝑋 and 𝐵 states, 

and the 19 lowest cation states are reported in Table 3.4. The stick bar 

corresponding spectrum is displayed in Figure 3.8. 

A simulation of the full spectrum as a function of the pump-probe time delay 𝜏 is 

reported in Figure 3.9, where cation states (see Table 3.4) are labelled according 

to the order given in ref. [61]; our calculations give E15 < E14 and E18 < E17, which 

is why B-18 is before B−17. 

. 

Table 3.4. Ab initio ionization potentials (MRCI-SD(Q) level of theory) and 𝐼𝑖𝑘 , the squares of 
the Dyson norms (CASSCF/aug-cc-pVQZ level of theory) with respect to either X or B at the FC 

point. The energy difference between the X and B states is 5.78 eV. 
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As the 𝛽𝑖𝑘 parameters at rather high photon energy of the probe pulse are similar 

and close to 2, the maximum emission is always at angle 0 (in the direction of 

field polarization) with very little angular discrimination. 

The time evolution of the full spectrum  is reported in the right panels, while the 

central one reports more detailed evolution of individual energy from 80 to 90 eV 

kinetic energy, and the left panels give another illustration of the time evolution of 

the intensities. They show clearly that although rather weak, the build-up and 

decay of a high kinetic energy feature associated with ionization from the B state 

can be clearly seen, with few weaker additional features.  

A more complete simulation is planned, including the full nuclear motion, and a 

more realistic molecular alignment induced by the pump-probe in conjugation 

with actual experiment. 

  

Figure 3.8: stick photoelectron spectra from X (blue) or B (red) as functions of the energy of 
the ejected electron for a probe photon at 95 eV.  
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Figure 3.9: angle resolved photoelectron spectrum (ARPES). 
First column: ARPES (logarithmic scale) as a function of the time delay (horizontal axis) and energy of the 
ejected electrons (vertical axis). The different panels correspond to different 휃 orientation angle ( 휃 is the 

angle between the direction of the electron momentum and the polarization of the electric field). The intensity 
of the ejected electrons are coded by colors according to the scale on the right side. 

Second column: One dimensional cuts for the intensity of the ejected electrons via time delay with fixed 휃 and 
𝜖. Third column: One dimensional cuts for the intensity of the ejected 

electrons via energy with fixed 휃 and 𝑡𝑑𝑒𝑙𝑎𝑦 . 
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4. Calculation of two-electron 

integrals using B-spline 

4.1 Introduction 

The DFT approach, described in Chapter (2.6), is extremely efficient but it has the 

intrinsic limits typical of a single-particle treatment. Indeed, multi-electron 

phenomena as well as subtle effects due to the electronic correlation cannot be 

described through this method.  

Our goal is implementing an algorithm that makes it possible to study all these 

phenomena. In order to do this, it is needed to solve the Schrödinger equation. Let 

us start by considering the complete Hamiltonian: 

 𝐻𝛹 = 𝐸𝛹 (4.1) 

 
𝐻 =  ∑ℎ(𝑖)

𝑖

+  ∑ 
1

𝑟𝑖𝑗
𝑖<𝑗

 (4.2) 

Since Hamiltonian contains both one-particle and two-particle operators, one-

electron and two-electrons integrals have to be solved. Calculation of two-

electrons integrals is particularly demanding. Let us also introduce the Chemist’s 

notation for the Coulomb integrals: 

 
∫𝑓𝑖(1)𝑓𝑗(2)

1

𝑟12
𝑓𝑘(1)𝑓𝑙(2)𝑑𝑟1𝑑𝑟2 = ⟨𝑓𝑖𝑓𝑗|𝑓𝑘𝑓𝑙⟩ = (𝑓𝑖𝑓𝑘|𝑓𝑗𝑓𝑙) (4.3) 

where, in the latter notation, with normal brackets, the left member is the charge 

distribution 𝑓𝑖(1)𝑓𝑘(1) relative to particle one, and the right member is the charge 

density relative to particle two. They can be further abbreviated as 

 ⟨𝑖𝑗|𝑘𝑙⟩ = (𝑖𝑘|𝑗𝑙) (4.4) 
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4.2. Calculation of 2-electron integrals via 

solution of the Poisson’s equation 

We consider a mixed-basis approach. A basis of molecular orbitals (MOs) which 

are obtained from a standard quantum chemistry package and expanded in a basis 

of gaussian functions,  {𝜑𝑖𝜆𝜇(𝒓)}, and a basis of B-spline functions, described in 

Chapter (2.4.1), {𝜒𝑖𝑗𝜆𝜇
𝑝 (𝒓)} which is actually used expand both the MOs basis and 

the photoelectron continuum orbital. 

In principle, a general close-coupling program which uses a mixed gaussian/B-

spline basis and a single electron in the continuum, needs three different types of 

2-electron integrals. We use the Chemist's notation in the following, and denote a 

generic LCAO basis function as follows 𝜒𝑖𝑗𝜆𝜇
𝑝 (𝒓) ≡ 𝜒𝜈:  

1. (𝜑𝑖𝜑𝑗|𝜑𝑘𝜒𝜈) 

2. (𝜑𝑖𝜑𝑗|𝜒𝜇𝜒𝜈) 

3. (𝜑𝑖𝜒𝜇|𝜑𝑗𝜒𝜈) 

and clearly (𝜑𝑖𝜑𝑗|𝜑𝑘𝜒𝜈) can be readily obtained from either of the last two types 

of integrals by a simple matrix-vector multiplication with the MOs expansion 

coefficients in the LCAO basis. Alternatively, it can also be obtained from 

quantities that are used in the computation of the other two types of integrals. A 

sketch of the general procedure is given below while more details of the actual 

implementation will follow. 
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4.2.1. Calculation of (𝜑𝑖𝜒𝜇|𝜑𝑗𝜒𝜈) and 

(𝜑𝑖𝜑𝑗|𝜒𝜇𝜒𝜈) integrals 

Let us consider the integrals 

 
(𝜑𝑖𝜒𝜇|𝜑𝑗𝜒𝜈) = ∫𝜑𝑖

∗(1)𝜒𝜇(1)𝑟12
−1𝜑𝑗

∗(2)𝜒𝜈(2) (4.5) 

Defining the one-particle density  

 𝜌𝑗𝜈(𝒓) = 𝜑𝑗𝜒𝜈 (4.6) 

this generates a potential given by: 

 
𝑉𝑗𝜈(𝒓) = ∫

𝜌𝑗𝜈(𝒓′)

|𝒓′ − 𝒓|
𝑑𝒓′ (4.7) 

which is the solution of the Poisson's equation: 

 𝛻2𝑉𝑗𝜈(𝒓) = −4𝜋𝜌𝑗𝜈(𝒓) (4.8) 

Therefore: 

 
(𝜑𝑖𝜒𝜇|𝜑𝑗𝜒𝜈) = ∫𝜑𝑖(𝒓)𝜒𝜇(𝒓)𝑉𝑗𝜈(𝒓)𝑑𝒓 = ⟨𝜑𝑖|𝑉𝑗𝜈|𝜒𝜇⟩ = ⟨𝜌𝑖𝜇|𝑉𝑗𝜈⟩ (4.9) 

The Poisson's equation can be solved by representing both the Laplacian and the 

density  𝜌𝑗𝜈(𝒓) in the same LCAO basis. By writing 

 𝑉𝑗𝜈(𝒓) =∑𝑎𝜏𝑗𝜈𝜒𝜏(𝒓)

𝜏

 (4.10) 

and defining the scalar products 

 𝑏𝜎𝜈𝑗 = ⟨𝜒𝜎|𝜌𝑗𝜈⟩ (4.11) 

we have: 

 ∑𝛻𝜎𝜏
2 𝑎𝜏𝑗𝜈

𝜏

= −4𝜋𝑏𝜎𝜈𝑗 (4.12) 
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Once the expansion coefficients of the 𝑉𝑗𝜈(𝒓) potential, 𝑎𝜏𝑗𝜈, are obtained, it then 

follows that the (𝜑𝑖𝜒𝜇|𝜑𝑗𝜒𝜈) integrals can be simply obtained by: 

 (𝜑𝑖𝜒𝜇|𝜑𝑗𝜒𝜈) =∑𝑎𝜏𝑗𝜈
𝜏

𝑏𝜎𝜈𝑗 (4.13) 

i.e. as a product of two matrices. The calculation of the (𝜑𝑖𝜑𝑗|𝜒𝜇𝜒𝜈) integrals is 

best done by first solving the Poisson's equation relative to the  

𝜌𝑖𝑗(𝒓) = 𝜑𝑖(𝒓)𝜑𝑗(𝒓) one-particle density: 

 𝛻2𝑉𝑖𝑗(𝒓) = −4𝜋𝜌𝑖𝑗(𝒓), (4.14) 

and then by integrating the 𝑉𝑖𝑗(𝒓) over the product of two LCAO basis functions: 

 
(𝜑𝑖𝜑𝑗|𝜒𝜇𝜒𝜈) = ∫𝜒𝜇(𝒓)𝑉𝑖𝑗(𝒓)𝜒𝜈(𝒓)𝑑𝒓 (4.15) 

Finally, integrals are obtained as:  

 (𝜑𝑖𝜑𝑗|𝜑𝑘𝜒𝜈) =∑𝑎𝜏𝑖𝑗
𝜏

𝑏𝜏𝜈𝑘 (4.16) 

The core of the algorithm is therefore the computation of the matrix elements 𝑏𝜎𝜈𝑗 

and 𝑏𝜏𝜈𝑘 which are then used in the solution of the corresponding Poisson's 

equation, Eq.(4.14),  In more detail, these matrix elements read: 

 𝑏𝜎𝜈𝑗 = ⟨𝜒𝑖𝑗𝜆𝜇
𝑝 |𝜑𝑘𝜆𝑘𝜇𝑘𝜒𝑖′𝑗′𝜆′𝜇′

𝑝′
⟩ (4.17) 

and 

 𝑏𝜏𝜈𝑘 = ⟨𝜒𝑖𝑗𝜆𝜇
𝑝 |𝜑𝑘𝜆𝑘𝜇𝑘𝜑𝑙𝜆𝑙𝜇𝑙⟩ (4.18) 

At this point symmetry considerations can be invoked so that only non-zero 

matrices are calculated. Presently, only abelian symmetry has been implemented 

throughout, although some parts have been coded for all molecular point groups 

that have real representations. For abelian point groups, all IRs are 

monodimensional and therefore only matrices for which the direct products satisfy 
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the conditions 𝜆 ⊗ 𝜆𝑘 = 𝜆′ or 𝜆 ⊗ 𝜆𝑘 = 𝜆𝑙 need to be computed. We would also 

like to remark that the generalization to non-abelian point groups requires in 

principle only minor modifications to the algorithm outlined here. This issue is 

postponed to a future work. At the outset, well-known and trivial symmetry 

properties of the 2-electron integrals are used to lower the number of 𝑏 matrices 

that need to be computed and the number of times the solution of a Poisson's 

equation is required. Thus only 𝑏𝜎𝑖𝑗 matrices for which 𝑖 ≥ 𝑗 (or 𝑗 ≥ 𝑖) are 

calculated and stored on disk, while in the calculation of the (𝜑𝑖𝜒𝜇|𝜑𝑗𝜒𝜈) 

matrices only 𝑖 ≥ 𝑗 need to be considered. 

For the purpose of an outline of the algorithm, we spell out the steps that are 

required to integrate a totally-symmetric function, and only describe the 

modifications that are required in the general case. 

4.2.2. Testing the Poisson algorithm for two-

electron integrals 

In the development of a product density 

 𝜌𝑗𝜈 = 𝜑𝑗𝜒𝜈   𝑜𝑟    𝜌𝑖𝑗 = 𝜑𝑖𝜑𝑗 (4.19) 

as a linear combination of basis functions 

 𝜌𝑗𝜈 =∑𝜒𝜎𝑐𝜎𝑗𝜈
𝜎

 (4.20) 

by using the same {𝜒𝜇} basis, one can incur a truncation error, both in the radial 

expansion and in the angular expansion. Basically, the product of two splines of 

order 𝑖𝑜𝑟𝑑 gives polynomials of order 2 ∙ 𝑖𝑜𝑟𝑑 − 1, higher than the original basis. 

Moreover, the product of two spherical harmonics 𝑌𝑙1𝑚1 ∙ 𝑌𝑙2𝑚2 gives a linear 

combination of harmonics with maximum 𝐿 = 𝑙1 + 𝑙2, some of them missing in 

the original basis. In principle, to get an exact expansion (neglecting numerical 

errors), one should employ an auxiliary expansion basis with spline order 

2 ∙ 𝑖𝑜𝑟𝑑 − 1 and 𝐿𝑚𝑎𝑥1 = 2𝐿𝑚𝑎𝑥, where 𝑖𝑜𝑟𝑑 and 𝐿𝑚𝑎𝑥 refer to the original basis. 
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The situation with the LCAO basis is more complex and cannot be simply 

analysed. Thus, to avoid numerical inaccuracies, one should thoroughly test both 

spline order convergence and 𝐿𝑚𝑎𝑥 convergence.  

4.3. Testing the truncation errors 

As already mentioned, our method is based on defining the one-particle density as 

a product of two functions. By taking into account two types of functions, it 

follows that there are three possibilities to express the one-particle density: 

I. 𝑓(𝑟) = 𝐵𝑖𝐵𝑗  

(4.21) II. 𝑓(𝑟) = 𝐵𝑖𝜑𝑗  

III. 𝑓(𝑟) = 𝜑𝑖𝜑𝑗  

One condition which is required to be satisfied by 𝑓(𝑟) is that it can be accurately 

expanded in a B-spline basis: 

 𝑓(𝑟) =∑𝐵𝑘
′ 𝑐𝑘

𝑘

 (4.22) 

By using this expansion, truncation errors may occur [62]. Thus, three different 

situations can be analysed: i) product of two B-splines, ii) product of a B-spline 

and an orbital, iii) product of two orbitals. Note that orbitals are expanded in terms 

of B-splines as well, namely: 

 𝜑
𝑖
=∑𝑐𝛾,𝑖𝐵𝛾

𝛾

 (4.23) 

Let us now introduce two basis characterized by the same set of knots {𝐵𝑖} and 

{𝐵𝑘
′ }, with orders 𝑖𝑜𝑟𝑑 and 𝑖𝑜𝑟𝑑′, respectively. Once fixed the spline order, the 

degree of the basis functions under consideration are 𝑛 = 𝑖𝑜𝑟𝑑 − 1 and 𝑛′ =

𝑖𝑜𝑟𝑑′ − 1, so that the product 𝐵𝑖 ∙ 𝐵𝑗 has degree 2𝑛 corresponding to an order 

equal to 2𝑛 + 1 = 2𝑖𝑜𝑟𝑑 − 1. Therefore, the order of the B-splines basis {𝐵𝑘
′ } in 

the expansion 
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 𝐵𝑖𝐵𝑗 =∑𝐵𝑘
′ 𝑐𝑘
𝑖𝑗

𝑘

 (4.24) 

should be 𝑖𝑜𝑟𝑑′ = 2𝑖𝑜𝑟𝑑 − 1. In addition to this, the inner knots multiplicity 

(𝑚𝑢𝑙𝑡𝑖) of the fitting basis {𝐵𝑘
′ } should be equal to 𝑖𝑜𝑟𝑑 [63] (𝑚𝑢𝑙𝑡𝑖′ = 𝑖𝑜𝑟𝑑). 

The grid of the basis {𝐵𝑖} is sketched in Fig. (4.1a). This figure shows, as already 

mentioned in chapter 4.4.1, two grids with a number of knots equal to the B-spline 

order, 𝑖𝑜𝑟𝑑, on the borders and inner knots of single multiplicity in the inner 

breakpoints. The grid of the fitting basis is illustrated in Fig. (4.1b). In this case, 

the number of knots is equal to the order of the grid 𝑖𝑜𝑟𝑑′, on the borders, and the 

inner knots have multiplicity equal to the order of the {𝐵𝑖} basis, i.e. 𝑖𝑜𝑟𝑑.  

 

With these choices, one expects the expansion reported in Equation 4.24 to be 

exact (except for numerical errors). For the original basis, we usually use an order 

equal to 10, so that the grid of the fitting basis is characterized by knots of 

multiplicity 19 at the borders and inner knots of multiplicity 10. The 

computational cost associated with this choice of fitting basis is huge and, as such, 

this radial basis set cannot be used in real calculations.  

As a consequence, a convergence study about the order of the two basis, the 

multiplicity of the inner knots and the number of grid intervals has been 

performed with the aim of optimizing the computational cost. One can firstly test 

the accuracy of the three expansions in equation 4.21, with 

𝑖𝑜𝑟𝑑′ = 𝑖𝑜𝑟𝑑,… , 2𝑖𝑜𝑟𝑑 − 1 and with 𝑚𝑢𝑙𝑡𝑖′ = 1,… , 𝑖𝑜𝑟𝑑. The number of knots 

on the borders is fixed at 𝑖𝑜𝑟𝑑′.  

Figure 4.1. Simplification of the grid of the basis {𝐵𝑖} (a) and of the fitting basis {𝐵𝑘
′ } (b). 𝑖𝑜𝑟𝑑 

is the order of the original basis and 𝑖𝑜𝑟𝑑′ is the order of the fitting basis. 

a 

b 
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Once the two basis are defined, one has to compute the overlap matrix for the 

fitting basis in order to obtain the expansion coefficients 𝑐𝑘 in equation 4.22. The 

overlap matrix is defined as 

 
𝑆𝑘𝑙 = ∫𝐵𝑘

′ (𝑟)𝐵𝑙
′(𝑟)𝑑𝑟 (4.25) 

Furthermore, one has to solve the linear system 

 𝑆𝑐𝑘 = 𝑎𝑘 (4.26) 

where, by considering the three different cases examined, 𝑎𝑘 can be one of the 

following: 

I. 𝑎𝑘
𝑖𝑗
= ∫𝐵𝑘

′𝐵𝑖𝐵𝑗𝑑𝑟 

(4.27) II. 𝑎𝑘
𝑖 = ∫𝐵𝑘

′𝐵𝑖𝜑𝑗𝑑𝑟 = ∫𝐵𝑘
′∑𝑐𝛾𝐵𝛾𝐵𝑖
𝛾

𝑑𝑟 

III. 𝑎𝑘 = ∫𝐵𝑘
′𝜑𝑖𝜑𝑗𝑑𝑟 = ∫𝐵𝑘

′∑𝑐𝛾𝐵𝛾∑𝑐𝜁𝐵𝜁
𝜁𝛾

𝑑𝑟 

Moreover, the error of the expansions can be defined as the square norm of the 

difference between the original product and the new expansion. Let us consider 

cases I, II and III separately below. 

4.3.1. I case 𝑓(𝑟) = 𝐵𝑖𝐵𝑗:  

For 𝑓(𝑟) = 𝐵𝑖𝐵𝑗 the accuracy of the expansion 4.24 can be derived as follows: 

 

𝛥𝑖𝑗 = ∫|𝐵𝑖(𝑟)𝐵𝑗(𝑟) −  ∑𝐵𝑘
′ (𝑟)𝑐𝑘

𝑖𝑗

𝑘

|

2

𝑑𝑟 (4.28) 

Maximum values of 𝛥𝑖𝑗, max (𝛥𝑖𝑗), are plotted, in figure 4.2, in logarithmic scale, 

as a function of the inner knots multiplicity for different choices of 𝑖𝑜𝑟𝑑/𝑖𝑜𝑟𝑑′ 

which satisfy the relation 𝑖𝑜𝑟𝑑′ = 2𝑖𝑜𝑟𝑑 − 1. Several comments can be made at 

this stage. First of all, the expansion is clearly exact when the multiplicity of the 
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inner knots associated with the fitting basis is equal to the order of the original 

basis. Although 𝑖𝑜𝑟𝑑/𝑖𝑜𝑟𝑑′ pairs with low values of spline orders give rise to 

minor errors, the errors related to all the lower points of each curve are so small 

that they can be assumed to be null.  

 

Since this is obviously a pure test about the product of two splines, it has not the 

aim of describing a real system. Thus, by using for example the couple 𝑖𝑜𝑟𝑑 =

2/𝑖𝑜𝑟𝑑′ = 3, the computational cost is small, but one cannot describe with 

sufficient accuracy a real system. We have then established that an acceptable 

error is about 10−10, and this condition is verified for inner knots multiplicity 

equal to 6 for all the 𝑖𝑜𝑟𝑑/𝑖𝑜𝑟𝑑′ pairs considered. Regarding the {𝐵𝑖} basis, its 

order is usually set to a value of 10 in DFT calculations, providing always 

convergent results. Thus, an inspection of figure 4.2, suggests that there is no 

Figure 4.2. Maximum values of 𝛥𝑖𝑗  (calculated for the expansion in equation 4.28) in 

logarithmic scale as a function of the inner knots multiplicity for different couples of 

𝑖𝑜𝑟𝑑/𝑖𝑜𝑟𝑑′ which satisfy the relation 𝑖𝑜𝑟𝑑′ = 2𝑖𝑜𝑟𝑑 − 1. 
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valid reason to change this 𝑖𝑜𝑟𝑑 value. Note that for 𝑖𝑜𝑟𝑑 = 10/𝑖𝑜𝑟𝑑′ = 19 the 

error is about 10−10 with a inner knots multiplicity of 4.  

 

Once the order of the original basis is set to 10, the order of the fitting basis {𝐵𝑘
′ } 

has to be fixed. To this purpose, maximum values of 𝛥𝑖𝑗, max (𝛥𝑖𝑗), are plotted in 

logarithmic scale in Fig. 4.3 scale as a function of the order of fitting basis for 

different inner knots multiplicities. The same values are plotted in red by 

considering twice as many intervals. Fig 4.3 shows how increasing the value of 

𝑖𝑜𝑟𝑑′ up to 2𝑖𝑜𝑟𝑑 − 1 affects the error of the expansion; in particular, in the case 

of inner knots with low multiplicity, the error is too high, thus confirming the 

previous analysis. Doubling either the multiplicity of inner knots or the number of 

intervals (keeping the cut-off radius of the grid constant) has the same 

computational cost, so that it is interesting to determine how these two different 

elements can affect the error of the expansion. In order to do this, we can take into 

account, for example, the curves relative to 𝑚𝑢𝑙𝑡𝑖′ = 4 and 2𝑖𝑛𝑡,𝑚𝑢𝑙𝑡𝑖′ = 2. It is 

Figure 4.3. Maximum values of 𝛥𝑖𝑗  (calculated for the expansion in equation 4.28) plotted in 

logarithmic scale as a function of the order of the fitting basis for different inner knots 

multiplicities. 𝑖𝑜𝑟𝑑 has been fixed to 10. 
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easy to see how doubling the intervals provide better results at lower 𝑖𝑜𝑟𝑑′, but 

furnishes almost the same accuracy with a value of 𝑖𝑜𝑟𝑑′ = 19. This trend is 

observed for each pair (i.e., 𝑚𝑢𝑙𝑡𝑖′ = 6 and 2𝑖𝑛𝑡,𝑚𝑢𝑙𝑡𝑖′ = 3, 𝑚𝑢𝑙𝑡𝑖′ = 8 and 

2𝑖𝑛𝑡, 𝑚𝑢𝑙𝑡𝑖′ = 4,  or  𝑚𝑢𝑙𝑡𝑖′ = 10 and 2𝑖𝑛𝑡,𝑚𝑢𝑙𝑡𝑖′ = 5).  

From a computational point of view, increasing the order of {𝐵𝑘
′ } leads to an 

increase in the knots only on the borders of the grid (see Fig. 4.1). Thus, it is 

convenient to work such as the relation 𝑖𝑜𝑟𝑑′ = 2𝑖𝑜𝑟𝑑 − 1 is satisfied. In our 

case, this means setting 𝑖𝑜𝑟𝑑 = 10 and 𝑖𝑜𝑟𝑑′ = 19. From the analysis of the last 

points of the curves in Figure 4.3, we conclude that either doubling the intervals 

or the multiplicity provide similar accuracy. Furthermore, an increase of the inner 

knots multiplicity (or of the number of intervals) heavily affects the computational 

cost. In fact, by doubling the inner knots multiplicity, the computational cost  

doubles. An acceptable accuracy can be obtained with a inner knots multiplicity 

equal to 4, so that by using this value of multiplicity together with 𝑖𝑜𝑟𝑑′ = 19, the 

computational cost quadruples compared to the use of  basis {𝐵𝑖}. 
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4.3.2. II case: 𝑓(𝑟) = 𝐵𝑖𝜑𝑗 

The function to be expanded is a product of a B-spline function and an atomic 

orbital. In this case, the error in the expansion is a vector defined as 

 

𝛥𝑖 = ∫ |𝐵𝑖(𝑟)𝜑𝑗(𝑟) −  ∑𝐵𝑘
′ (𝑟)𝑐𝑘

𝑖

𝑘

|

2

𝑑𝑟

= ∫ |𝐵𝑖(𝑟)∑𝑐𝛾𝐵𝛾(𝑟)

𝛾

−  ∑𝐵𝑘
′ (𝑟)𝑐𝑘

𝑖

𝑘

|

2

𝑑𝑟 

(4.29) 

Thus, by considering all the error values for each spline index, 𝑖, one can get a 

trend of the error as a function of the distance from the origin. A test has been 

performed by taking into account the first six orbitals of Neon. On the left side of 

figure 4.4 and figure 4.5, the error 𝛥𝑖, is plotted, in a logarithmic scale, as a 

function of the related B-spline index for different values of inner knots 

multiplicity (in black for single multiplicity, in red for double multiplicity and in 

blue for triple multiplicity). On the right side of figure 4.4 and figure 4.5, the 

radial part of Ne AOs has been plotted. In figure 4.4, the errors calculated for the 

1𝑠, 2𝑠 and 3𝑠 orbitals of Ne are shown, while the corresponding for the 2𝑝, 3𝑝 

and 3𝑑 AOs are reported in figure 4.5. All the calculations have been carried out 

by using 𝑖𝑜𝑟𝑑 = 10 and 𝑖𝑜𝑟𝑑′ = 19. 

Note that the curve relative to single multiplicity is rarely below an error of 

10−10, so that, even in this case, although single multiplicity leads to a low 

computational cost, it does not ensure good accuracy. Double and triple 

multiplicity provide good results in almost every case. Only in the 1s and 2s cases, 

errors are greater than 10−10 near the origin. This suggests that a non-linear grid 

could be more suited for the case at hand. In fact, from the analysis of the shape of 

the reported orbitals, one can observe a greater amplitude near the origin, while 

the contribution decreases far from it.  
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   1s 

 

     2s 

 

      3s 

 

𝑚𝑢𝑙𝑡𝑖′ = 1  𝑚𝑢𝑙𝑡𝑖′ = 2  𝑚𝑢𝑙𝑡𝑖′ = 3 

 

Figure 4.4. Left panels: maximum values of 𝛥𝑖  in logarithmic scale as a function of the spline 

index for different inner knots multiplicities. Right panels: radial part of (1s, 2s, 3s) atomic 

orbitals of Neon used for testing the expansion. All the calculations use 𝑖𝑜𝑟𝑑 = 10 and 

𝑖𝑜𝑟𝑑′ = 19. 
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   2p 

 

     3p 

 

      3d 

 

𝑚𝑢𝑙𝑡𝑖′ = 1  𝑚𝑢𝑙𝑡𝑖′ = 2  𝑚𝑢𝑙𝑡𝑖′ = 3 

 

Figure 4.5. Left panels: maximum values of 𝛥𝑖,  in logarithmic scale as a function of the spline 

index for different inner knots multiplicities. Right panels: radial part of the (2p, 3p, 3d) orbitals 

of Neon. All the calculations use 𝑖𝑜𝑟𝑑 = 10 and 𝑖𝑜𝑟𝑑′ = 19. 
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In view of this, we can build a suitable grid with higher multiplicity (even greater 

than 4) at the knots near the origin, while knots with single multiplicity far from 

the origin. One more way to build the radial grid is in using many short intervals 

at the beginning of the grid and then proceeding with larger and larger intervals 

towards the end of the grid. In this way, small errors in addition to a limited 

computational cost are achieved. 

4.3.3. III case: 𝑓(𝑟) = 𝜑𝑖𝜑𝑗 

The expansion error in the case of the product of two orbitals is given by 

 

𝛥 = ∫ |𝜑𝑖(𝑟)𝜑𝑗(𝑟) −  ∑𝐵𝑘
′ (𝑟)𝑐𝑘

𝑖

𝑘

|

2

𝑑𝑟

= ∫ |∑𝑐𝜁𝐵𝜁
𝜁

(𝑟)∑𝑐𝛾𝐵𝛾(𝑟)

𝛾

−∑𝐵𝑘
′ (𝑟)𝑐𝑘

𝑖

𝑘

|

2

𝑑𝑟 

(4.30) 

Note that, in this case, 𝛥 is a number. In figure 4.6, the error of this expansion is 

reported, in logarithmic scale, (blue line) as a function of the inner knots 

multiplicity and it is compared to the maximum values of the expansion errors 

related to the previous cases (𝐵𝑖𝜑𝑗 in red line and 𝐵𝑖𝐵𝑗 in black line). Based on 

these considerations, 𝑖𝑜𝑟𝑑 = 10 and 𝑖𝑜𝑟𝑑′ = 19 are used. As already highlighted, 

increasing the multiplicity (as well as the number of intervals) provides lower 

errors. Except in the case of errors calculated with 𝑚𝑢𝑙𝑡𝑖′ = 10, the errors 

associated to the product of orbitals 𝜑𝑖𝜑𝑗 are always less than the others by 5 

order of magnitude.  

This study has permitted us to better understand the truncation errors that affect 

on basis set expansion (expression 4.21) as well as how to minimize them. In fact, 

this study shows how most of the contribution of the truncation error results from 

the B-spline expansion of 𝐵𝑖𝐵𝑗; however, as mentioned previously, we can use a 

suitable grid to minimize the errors.  
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Figure 4.6. Maximum values (logarithmic scale) of the errors related to the three possible 

expansions 4.21, as a function of the inner knots multiplicity of the fitting basis. All calculations 

are performed by using 𝑖𝑜𝑟𝑑 = 10 and 𝑖𝑜𝑟𝑑′ = 19. 
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4.4.  Potential from the Poisson equation 

Let us expand a charge density 𝜌(𝒓) and the corresponding potential 𝑉(𝒓) in 

spherical harmonics 

 
𝜌(𝒓) =∑𝜌𝐿𝑀(𝑟)𝑌𝐿𝑀(휃, 𝜙)

𝐿𝑀

         𝜌𝐿𝑀(𝑟) = ∫𝑌𝐿𝑀(𝜔)𝜌(𝒓)𝑑𝜔 (4.31) 

 

𝑉(𝒓) =∑𝑉𝐿𝑀(𝑟)𝑌𝐿𝑀(휃, 𝜙)

𝐿𝑀

 (4.32) 

and using the multipole expansion 

 1

𝑟12
=∑

4𝜋

2𝑙 + 1
𝑙𝑚

𝑟<
𝑙

𝑟>
𝑙+1 𝑌𝑙𝑚(𝜔1)𝑌𝑙𝑚(𝜔2) (4.33) 

the potential becomes 

 
𝑉(𝒓𝟐) = ∫

𝜌(𝒓𝟏)

𝑟12
𝑑𝒓𝟏 =∑

4𝜋

2𝑙 + 1
𝑙𝑚

∫
𝑟<
𝑙

𝑟>
𝑙+1 𝑌𝑙𝑚(𝜔1)𝜌(𝒓𝟏)𝑑𝒓𝟏 𝑌𝑙𝑚(𝜔2) 

=∑∑
4𝜋

2𝑙 + 1
∫
𝑟<
𝑙

𝑟>
𝑙+1 𝜌𝐿𝑀(𝑟1)𝑟1

2𝑑𝑟1∫𝑌𝑙𝑚(𝜔1) 𝑌𝐿𝑀(𝜔1)𝑑𝜔1 𝑌𝑙𝑚(𝜔2)

𝑙𝑚𝐿𝑀

=∑
4𝜋

2𝑙 + 1
∫
𝑟<
𝑙

𝑟>
𝑙+1 𝜌𝐿𝑀(𝑟1)𝑟1

2𝑑𝑟1 𝑌𝐿𝑀(𝜔2)

𝐿𝑀

 

(4.34) 

Now 

 
∫

𝑟<
𝑙

𝑟>
𝑙+1 𝜌𝐿𝑀(𝑟1)𝑟1

2𝑑𝑟1

∞

0

=
1

𝑟𝐿+1
∫ 𝑡𝐿+2
𝑟

0

𝜌𝐿𝑀(𝑡)𝑑𝑡 + 𝑟
𝐿∫ 𝑡−𝐿+1

∞

0

𝜌𝐿𝑀(𝑡)𝑑𝑡 

(4.35) 

and finally 

 
𝑉𝐿𝑀(𝑟) =

4𝜋

2𝑙 + 1
[
𝑄𝐿𝑀(𝑟)

𝑟𝐿+1
+ 𝑟𝐿𝐼𝐿𝑀(𝑟)] (4.36) 

where 
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𝑄𝐿𝑀(𝑟) = ∫ 𝑡𝐿+2

𝑟

0

𝜌𝐿𝑀(𝑡)𝑑𝑡        𝐼𝐿𝑀(𝑟) = ∫ 𝑡−𝐿+1
𝑅𝑚𝑎𝑥

𝑟

𝜌𝐿𝑀(𝑡)𝑑𝑡 (4.37) 

𝑅𝑚𝑎𝑥 is the range of 𝜌(𝒓), i.e. the minimum radius beyond which 𝜌 = 0 

identically. 

For 𝑟 ≥ 𝑅𝑚𝑎𝑥 

 
𝑄𝐿𝑀(𝑟) = 𝑄𝐿𝑀,          𝐼𝐿𝑀 = 0      𝑉𝐿𝑀(𝑟) =

4𝜋

2𝑙 + 1

𝑄𝐿𝑀
𝑟𝐿+1

 (4.38) 

For 𝜌(�̅�) finite at the origin,  

 𝑟 → 0        𝑄𝐿𝑀(𝑟)~ 𝑟
𝐿+3 → 0           𝐼𝐿𝑀(𝑟) →  𝐼𝐿𝑀   𝑐𝑜𝑛𝑠𝑡    (4.39) 

so that 

 𝑟 → 0        𝑉𝐿𝑀(𝑟) → 𝑐𝑜𝑛𝑠𝑡  (4.40) 

 
𝑟 → ∞         𝑉𝐿𝑀(𝑟) ~

4𝜋

2𝑙 + 1

𝑄𝐿𝑀
𝑟𝐿+1

→ 0 (4.41) 

One can get the potential relative to a charge density 𝜌 by solving the Poisson 

equation (see Equation 4.14). Let us recall the form of the Laplacian in spherical 

coordinates 

 
∇2=

1

𝑟

𝜕2

𝜕𝑟2
𝑟 +

𝐿2

𝑟2
 (4.42) 

Now defining �̃�𝐿𝑀(𝑟) = 𝑟𝑉𝐿𝑀(𝑟)  

 
�̃�𝐿𝑀(𝑟) =

4𝜋

2𝑙 + 1
[
𝑄𝐿𝑀(𝑟)

𝑟𝐿
+ 𝑟𝐿+1𝐼𝐿𝑀(𝑟)] (4.43) 

and substituting the Equation 4.32 in the Poisson equation one obtains: 

 
∑[

1

𝑟

𝑑2

𝑑𝑟2
�̃�𝐿𝑀 +

𝐿(𝐿 + 1)

𝑟2
�̃�𝐿𝑀
𝑟
] 𝑌𝐿𝑀

𝐿𝑀

= −4𝜋∑𝜌𝐿𝑀(𝑟)𝑌𝐿𝑀
𝐿𝑀

 (4.44) 

that reduces to the radial equation 
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 𝑑2

𝑑𝑟2
�̃�𝐿𝑀 +

𝐿(𝐿 + 1)

𝑟2
�̃�𝐿𝑀 = −4𝜋𝑟𝜌𝐿𝑀 (4.45) 

Expanding �̃�𝐿𝑀(𝑟) in the B-spline basis 

 �̃�𝐿𝑀 =∑𝐵𝑗𝑣𝑗𝐿𝑀
𝑗

 (4.46) 

and taking the scalar product with 𝐵𝑖 of the equation 

 
∑[⟨𝐵𝑖|

𝑑2

𝑑𝑟2
|𝐵𝑗⟩ − 𝐿(𝐿 + 1) ⟨𝐵𝑖|

1

𝑟2
|𝐵𝑗⟩]

𝑗

𝑣𝑗𝐿𝑀 = −4𝜋⟨𝐵𝑖|𝑟𝜌𝐿𝑀⟩ (4.47) 

4.4.1. Boundary Conditions 

For 𝑟 → 0: 

 𝑟𝑉(𝒓) → 0        �̃�𝐿𝑀(𝑟) → 0 (4.48) 

which is easily implemented as usual deleting the first spline. 

For 𝑟 → ∞ 

 
𝑉𝐿𝑀(𝑟) →

4𝜋

2𝑙 + 1

𝑄𝐿𝑀
𝑟𝐿+1

        �̃�𝐿𝑀(𝑟) →
4𝜋

2𝑙 + 1

𝑄𝐿𝑀
𝑟𝐿

 (4.49) 

Notably, for 𝑟 → 𝑅𝑚𝑎𝑥 

 
�̃�𝐿𝑀(𝑟) →

4𝜋

2𝑙 + 1

𝑄𝐿𝑀
𝑅𝑚𝑎𝑥𝐿

 (4.50) 

Alternatively one can consider the limit for 𝑟 → 𝑅𝑚𝑎𝑥 of the derivative �̃�𝐿𝑀
′ (𝑟). 

The derivative of the first part of Equation 4.43 becomes:  
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 𝑑

𝑑𝑟
[
𝑄𝐿𝑀(𝑟)

𝑟𝐿
] =

𝑑

𝑑𝑟

1

𝑟𝐿
∫ 𝑡𝐿+2𝜌𝐿𝑀(𝑡)𝑑𝑡
𝑟

0

= −𝐿
1

𝑟𝐿+1
 ∫ 𝑡𝐿+2𝜌𝐿𝑀(𝑡)𝑑𝑡 +

𝑟

0

1

𝑟𝐿
𝑟𝐿+2𝜌𝐿𝑀(𝑟)

= −𝐿
𝑄𝐿𝑀
𝑟𝐿+1

+ 𝑟2𝜌𝐿𝑀(𝑟) 

(4.51) 

the derivative of the second part of Equation 4.43 becomes: 

 

 

 

𝑑

𝑑𝑟
[𝑟𝐿+1𝐼𝐿𝑀(𝑟)] =

𝑑

𝑑𝑟
𝑟𝐿+1∫ 𝑡−𝐿+1𝜌𝐿𝑀(𝑡)𝑑𝑡

𝑅𝑚𝑎𝑥

𝑟

= (𝐿 + 1)𝑟𝐿∫ 𝑡−𝐿+1𝜌𝐿𝑀(𝑡)𝑑𝑡
𝑅𝑚𝑎𝑥

𝑟

+ 𝑟𝐿[𝑅𝑚𝑎𝑥
−𝐿+1𝜌𝐿𝑀(𝑅𝑚𝑎𝑥) − 𝑟

−𝐿+1𝜌𝐿𝑀(𝑟)] 

(4.52) 

for 𝑟 → 𝑅𝑚𝑎𝑥 the second part is 0, thus 

 
�̃�𝐿𝑀
′ (𝑟) =

4𝜋

2𝑙 + 1
[−𝐿

𝑄𝐿𝑀
𝑟𝐿+1

+ 𝑟2𝜌𝐿𝑀(𝑟)]

= −
𝐿

𝑟
�̃�𝐿𝑀(𝑟) +

4𝜋

2𝑙 + 1
𝑟2𝜌𝐿𝑀(𝑟) 

(4.53) 

for 𝑟 > 𝑅𝑚𝑎𝑥 

 
        

�̃�𝐿𝑀
′

�̃�𝐿𝑀
= −

𝐿

𝑟
 (4.54) 

since 𝜌𝐿𝑀(𝑟) = 0. 

If 𝜌(𝒓) = 0 for 𝑟 = 𝑅𝑚𝑎𝑥, then the homogeneous boundary condition 

 �̃�𝐿𝑀
′

�̃�𝐿𝑀
= −

𝐿

𝑅𝑚𝑎𝑥
 (4.55) 

can be implemented by substituting the last spline with the linear combination 

 �̂�𝑛−1 = 𝑎𝐵𝑛−1 + 𝐵𝑛 (4.56) 

with coefficients determined by the condition 
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�̂�𝑛−1
′ (𝑅𝑚𝑎𝑥) = −

𝐿

𝑅𝑚𝑎𝑥
�̂�𝑛−1(𝑅𝑚𝑎𝑥) (4.57) 

 
𝑎𝐵𝑛−1

′ (𝑅𝑚𝑎𝑥) + 𝐵𝑛
′ (𝑅𝑚𝑎𝑥) = −

𝐿

𝑅𝑚𝑎𝑥
[𝑎𝐵𝑛−1(𝑅𝑚𝑎𝑥) + 𝐵𝑛(𝑅𝑚𝑎𝑥)]

= −
𝐿

𝑅𝑚𝑎𝑥
 

(4.58) 

since 𝐵𝑛−1(𝑅𝑚𝑎𝑥) = 0 and 𝐵𝑛(𝑅𝑚𝑎𝑥) = 1, finally 

 

𝑎 = −

𝐿
𝑅𝑚𝑎𝑥

+ 𝐵𝑛
′ (𝑅𝑚𝑎𝑥)

𝐵𝑛−1
′ (𝑅𝑚𝑎𝑥)

 
(4.59) 

So it is advantageous to work with densities that vanish at the outer boundary, as 

is exactly verified when bound state orbitals are expanded with bound B-spline 

only (i.e. excluding the last one), and product densities always include a bound 

orbital factor. 
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4.5. LCAO algorithm for the calculation of 

(𝜒𝜇|𝑓(𝒓)|𝜒𝜈) type integrals 

We consider here the calculation of the following integral between LCAO basis 

functions: 

 
(𝜒𝜇|𝑓(𝒓)|𝜒𝜈) = ∫𝜒𝑖𝑗𝜆𝜇

𝑝 𝑓(𝒓)𝜒
𝑖′𝑗′𝜆′𝜇′
𝑝′

𝑑𝒓 (4.60) 

i.e. between two LCAO basis functions (OCE basis functions when 𝑝, 𝑝′ = 0) and 

a totally-symmetric function 𝑓(𝒓). It should be clear that this is an element of a 

matrix which is blocked, like the KS Hamiltonian matrix. In particular, there will 

be a 00 block, between OCE basis functions, blocks 0𝑝 and 𝑝0 between a OCE 

basis function and a function belonging to the 𝑝-th set of equivalent nuclei, and 

blocks 𝑝𝑝 between functions of the same set of equivalent nuclei. Each of these 

will be considered in the following.  

The general strategy adopted for computing matrix elements between one OCE 

and one off-center basis function relies on a rotation of both basis functions and 

frame of references such that the positive 𝑧-axis passes through the center of the 

particular off-center sphere (actually the first center belonging to the 𝑝-th set of 

equivalent nuclei), see Figure 4.7. In such a setting, one can conveniently avoid an 

expensive three-dimensional Gauss-Legendre quadrature scheme over 𝑟, 휃 and 𝜙 

variables and perform a one-dimensional quadrature over the 𝜙 angular variable 

(since the compound system now possesses cylindrical symmetry) and a bi-

dimensional quadrature over the 𝑟, 휃 variables. Moreover, the integrals are taken 

over the sphere centered around the 𝑞-th nucleous. These considerations follows 

trivially from the fact that if 𝒓𝟏 = (𝑥1, 𝑦1, 𝑧1) = (𝑟1, 휃1, 𝜙1) denotes cartesian and 

spherical coordinates of a point in the reference system centered in the 𝑞-th off-

center sphere, while (𝑅0, 휃0, 𝜙0) denotes its  spherical coordinates with respect to 

the rotated OCE frame of reference, the latter are related to the former through the 

relations: 
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{
 
 

 
 𝑅0 = √𝑅𝑞2 + 𝑟1(𝑟1 + 2𝑅𝑞𝑐𝑜𝑠휃1)

𝑐𝑜𝑠휃0 =
𝑟1𝑠𝑖𝑛휃1
𝑅𝑞 + 𝑧1

𝜙0 = 𝜙1

 (4.61) 

where 𝑅𝑞 = √𝑋𝑞2 + 𝑌𝑞2 + 𝑍𝑞2 denotes the module of the position vector of the 𝑞-th 

nucleus in the OCE frame of reference. 

 

 

The function 𝑓(𝒓) (assumed totalsymmetric) which is expanded over the 

symmetry adapted LCAO basis: 

 𝑓(𝒓) =∑𝑐𝑖𝑗 𝜒𝑖𝑗11
𝑂 (𝒓)

𝑖𝑗⏟        
𝑂𝐶𝐸 𝑝𝑎𝑟𝑡

+∑𝑑𝑝𝑖𝑗  𝜒𝑖𝑗11
𝑝 (𝒓)

𝑝𝑖𝑗⏟          
𝐿𝐶𝐴𝑂 𝑝𝑎𝑟𝑡

 
(4.62) 

where (11) denotes the totalsymmetric monodimensional irrep, can be written in 

the primitive LCAO basis as follows: 

Figure 4.7: Steps used in the calculation of the matrix elements between one OCE and one off-

center basis function. Integration is actually performed for the primitive LCAO functions, over 

the off-center sphere. 
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𝑓(𝒓) =∑𝑉𝑙𝑚𝑖

1

𝑟
𝐵𝑖(𝑟)𝑌𝑙𝑚

𝑅 (휃, 𝜙)

𝑙𝑚𝑖

+∑∑∑𝑉𝑙𝑚𝑖,𝑞
1

𝑟
𝐵𝑖(𝑟𝑞)𝑌𝑙𝑚

𝑅 (휃𝑞 , 𝜙𝑞)

𝑙𝑚𝑖𝑞∈𝑝𝑝

=∑𝑉𝑙𝑚𝑖휂𝑖𝑙𝑚 + 𝑉𝑙𝑚𝑖,𝑞휂𝑖𝑙𝑚
𝑞

𝑙𝑚𝑖

 

(4.63) 

which is a convenient form to express the potential function when integrals over 

equivalent nuclei are retrieved via rotation matrices, such that the actual numerical 

integration needs to be performed only for the first center of the set of equivalent 

nuclei, while symmetry properties of the integrand are used to retrieve 

contributions from the other set of equivalent nuclei, as required in the 

computation of integrals over the symmetry-adapted basis set (symmetrization 

procedure). 

4.5.1. Calculation of the 00 block 

To calculate the 00 block we first evaluate the radial functions: 

 
𝑓𝑗(𝑟) = ∫ ∫ 𝑋𝑗𝜆𝜇(�̂�)𝑉(𝒓)𝑑Ω

2𝜋

0

𝜋

0

 (4.64) 

which in turn can be written in the general form: 

 𝑓𝑗(𝑟) = 𝑓𝑗
0(𝑟) +∑∑𝑓𝑗

𝑞(𝑟)

𝑝∈𝑞⏟      
𝑓
𝑗
𝑝
(𝑟)

𝑝

 

(4.65) 

since the function 𝑓𝑗(𝑟) is decomposed in both OCE and off-center LCAO parts. 

The OCE part of the radial functions is easily computed by using the 

orthonormality properties of the real spherical harmonics: 

 
𝑓𝑗
0(𝑟) =∑𝑏𝑚𝑗𝜆𝜇∑𝑓𝑙𝑚𝑖

1

𝑟
𝐵𝑖(𝑟) 

𝑖𝑚

 (4.66) 
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while special care must be applied for computing the LCAO part. The geometry 

of the integration scheme used to compute the LCAO part is reported in Figure 

4.8: the circle centered on the origin corresponds to a specific value of the radial 

coordinate, and the circle centered on I corresponds to a generic off center sphere. 

We integrate over the spherical sector defined by the rotation of the arc ABC 

around the OI axis, employing a bidimensional numerical Gauss-Legendre 

quadrature along the polar 휃 angle BA and along the 2𝜋 complete azimuthal angle 

around the OI axis. For the LCAO part we therefore have: 

 
∫ ∫ 𝑌𝑙𝑚

𝑅 (휃, 𝜙)𝑓𝑞(𝒓)𝑑Ω
𝜋

0

2𝜋

0

=∑∫ ∫ 𝑌𝑙𝑚
𝑅 (휃, 𝜙)𝑓𝑞(𝒓)𝑑Ω

𝜋

0

2𝜋

0⏟                
𝐼
𝑙𝑚
𝑞

𝑝∈𝑞

 
(4.67) 

If the function is totalsymmetric, integrals on equivalent centers are simply related 

by: 

 𝐼𝑙𝑚
𝑞′ =∑𝐷

𝑚′𝑚

(𝑙) (𝜔)𝐼𝑙𝑚
𝑞

𝑚′

 (4.68) 

where 𝜔 is the appropriate set of Euler's angles. 

 
Figure 4.8: The geometrical scheme employed for the numerical integration described in the 

text  
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Once the angular decomposition over the OCE basis has been performed, the 00 

block can be calculated as: 

 ⟨𝜒𝑖𝑗𝜆𝜇
0 |𝑓(𝒓)|𝜒𝑖′𝑗′𝜆′𝜇′

0 ⟩

= ∑∫ 𝐵𝑖(𝑟)𝑓𝑗𝜅(𝑟)𝐵𝑖′(𝑟)𝑑𝑟 × ⟨𝑋𝑗𝜆𝜇|𝑋𝑗𝜅11|𝑋𝑗′𝜆′𝜇′⟩
𝑅𝑚𝑎𝑥

0𝑗𝜅

 

(4.69) 

i.e. as a sum of products of radial integrals times angular integrals that can be 

evaluated analytically. 

4.5.2. Calculation of the 0𝑝, 𝑝0, and 𝑝𝑝 blocks 

Integrals of this type are numerically evaluated in the primitive LCAO basis 

functions, while integrals over the symmetry-adapted basis are obtained with a 

simple symmetrization procedure. Coefficients 𝑓𝑙𝑚𝑖 and 𝑓𝑙𝑚𝑖,𝑞
′  of Eq. (4.63) refer 

to the original iso-oriented reference systems and are related to the 𝑓𝑙𝑚𝑖 and 𝑓𝑙𝑚𝑖,𝑞
′   

referred to the rotated reference systems: 

 𝑓𝑙𝑚𝑖,𝑞
′ =∑𝑉𝑙𝑚′𝑖𝐷𝑚𝑚′

(𝑙)
(𝑅)

𝑚′

 (4.70) 

 

𝑓𝑞𝑙𝑚𝑖
′ =∑𝑉𝑙𝑚′𝑖,𝑞𝐷𝑚𝑚′

(𝑙)
(𝑅)

𝑚′

 (4.71) 

where 𝑅 denotes the set of Euler angles that specify the rotation that brings the 

rotated reference systems into the original one. Then, on the sphere centered on 

the first atom of the equivalent set, the following integrals (in the rotated reference 

system) are numerically computed: 

 
{
⟨휂𝑖𝑙𝑚|𝑓(𝒓)|휂𝑖′𝑙′𝑚′

𝑞
⟩     01𝑏𝑙𝑜𝑐𝑘𝑠

⟨휂𝑖𝑙𝑚
𝑞 |𝑓(𝒓)|휂

𝑖′𝑙′𝑚′
𝑞

⟩     11𝑏𝑙𝑜𝑐𝑘𝑠
 (4.72) 

As mentioned above, the rotation of the coordinate systems permits to avoid an 

expensive three-dimensional Gauss-Legendre quadrature scheme over 𝑟, 휃 and 𝜙 



115 
 

variables and perform a one-dimensional quadrature over the 𝜙 angular variable 

and a bi-dimensional quadrature over the 𝑟, 휃 variables. 

In the computation of the matrix elements over the laplacian operators (∇2), as 

required in the solution of the Poisson's equation in the LCAO basis set, the 

integration over 𝜙 is analytical. Furthermore, the short-hand notation 01 and 11 is 

used to remind us that the integration is numerically done only for the first center 

of set of equivalent centers belonging to the 𝑝-th set. Integrals among LCAO 

primitive basis functions for the other (𝑞 ≠ 1) centers of the equivalent set are 

simply related by symmetry, by using the well-know rotational properties of the 

real spherical harmonics, and using the symmetry properties of 𝑓(𝒓) (numerically 

the same for a totalsymmetric function). Note that integrals over all primitive 

basis functions are needed in the subsequent symmetrization procedure which is 

performed to retrieve the integrals over the symmetry adapted LCAO basis. 

For the case of a non totalsymmetric potential, integrals over the LCAO primitive 

functions centered in the 𝑞 ≠ 1 sphere are related to those calculated in the first 

sphere as follows: suppose that the function to be integrated belongs to the 𝜇-th 

component of the 𝜆’s IR, i.e. 𝑉(𝒓) ≡ 𝑓𝑘𝜆𝑘𝜇𝑘(𝒓). Then we have: 

 𝑓𝑘𝜆𝑘𝜇𝑘(𝒓
′) = 𝑓𝑘𝜆𝑘𝜇𝑘(𝑅𝒓) = (𝑅

−1𝑓𝑘𝜆𝑘𝜇𝑘)(𝒓) (4.73) 

where 

 𝑅𝑓𝑘𝜆𝑘𝜇𝑘 =∑𝑓𝑘𝜆𝑘𝜇𝑘
′𝐷
𝜇𝑘𝜇𝑘

′
𝜆 (𝑅)  

𝜇𝑘
′

 
(4.74) 

In our case, the function 𝑓 can be either a MO (𝑓 = 𝜑𝑘𝜆𝑘𝜇𝑘) or a potential term, 

solution of the corresponding Poisson's equation. In the algorithm, the procedure 

outline above is used to evaluate the following integrals: 

 matrices 𝑏𝜎𝜈𝑗 = ⟨𝜒𝑖𝑗𝜆𝜇
𝑝 |𝜑𝑘𝜆𝑘𝜇𝑘𝜒𝑖′𝑗′𝜆′𝜇′

𝑝′
⟩ 

 integrals of the 𝑉𝑖𝑗potential terms over LCAO basis functions, i.e. 

⟨𝜒𝑖𝑗𝜆𝜇
𝑝 |𝑉𝑖𝑗𝜆𝑖𝑗𝜇𝑖𝑗|𝜒𝑖′𝑗′𝜆′𝜇′

𝑝′
⟩ 
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while integrals 𝑏𝜎𝑘𝑙 = ⟨𝜒𝑖𝑗𝜆𝜇
𝑝 |𝜑𝑘𝜆𝑘𝜇𝑘𝜑𝑙𝜆𝑙𝜇𝑙⟩ are evaluated with the same module 

used to project a given MO obtained from a quantum chemistry package on the 

LCAO basis. 

4.6. Preliminary checks 

So far the program has been tested in the following cases: integrals (𝜑𝑖𝜑𝑗|𝜒𝜇𝜒𝜈) 

and (𝜑𝑖𝜒𝜇|𝜑𝑗𝜒𝜈) calculated at the OCE level have been compared with the 

analogous calculated by using two-electron integrals over B-splines; (𝜑𝑖𝜑𝑗|𝜑𝑘𝜑𝑙) 

have been calculated and compared with those obtained by using a quantum-

chemistry package like MOLPRO [47]. We have verified that accurate values for 

(𝜑𝑖𝜑𝑗|𝜒𝜇𝜒𝜈) and (𝜑𝑖𝜒𝜇|𝜑𝑗𝜒𝜈) integrals are obtained in agreement with the 

general requirements for the auxiliary basis set that emerge from the analysis 

reported in the previous section. Accurate values for (𝜑𝑖𝜑𝑗|𝜑𝑘𝜑𝑙) can instead be 

obtained by using the same LCAO basis set in the expansion of the potential 

terms, as evidenced in Table 4.1 which report a comparison between two-electron 

integrals for selected MOs calculated by using the MOLPRO quantum chemistry 

package and the corresponding integrals calculated with the present algorithm. 

Note that the implementation requires a preliminary step where MOs output from 

MOLPRO are first expanded in the LCAO basis. The LCAO basis used in the 

projection step has the following characteristics: the order of the radial B-spline 

basis set is of order 10 for both the OCE expansion and the LCAO basis on the 

off-center spheres; B-splines of the OCE expansions are defined in a radial grid of 

knots extending up to 20.0 a.u. and with a linear step size of 0.25 a.u. while the 

radial grid on the N atoms extends up to 0.6 a.u. The truncation of the OCE 

expansion has been set to 𝑙𝑚𝑎𝑥
𝑂𝐶𝐸 = 15, while the maximum angular momentum in 

the off-center spheres is 𝑙𝑚𝑎𝑥
𝑁 = 2.  
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int. 
MOLPRO 

(HF/aug-ccPVTZ) 

B-splines 

(𝑙𝑚𝑎𝑥
0 = 15, 𝑙𝑚𝑎𝑥

𝑁 = 2) 

(1𝑎𝑔1𝑎𝑔|1𝑎𝑔1𝑎𝑔) 2.3015840737 2.3015822015 

(2𝑎𝑔1𝑎𝑔|1𝑎𝑔1𝑎𝑔) -0.1980272759 -0.1980267754 

(1𝑏2𝑢1𝑏2𝑢|1𝑏3𝑢1𝑏3𝑢) 0.5298663224 0.5298661084 

(1𝑏2𝑢1𝑏2𝑢|1𝑏2𝑢1𝑏2𝑢) 0.5762867089 0.5762864532 

  

Table 4.1: Two-electron integrals over MOs obtained at the HF/aug-ccpVTZ model chemistry 

for 𝑁2. The experimental 𝑁-𝑁 bond distance has been used. 
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5. Non-perturbative regime 

5.1. Introduction 

The availability of very strong, ultra-short pulses of electromagnetic radiation, due 

continual advancement in laser sources, including free electron lasers (FEL) has 

generated an intense research activity in their interaction with matter, and 

molecules in particular. Several new phenomena have been uncovered, giving rise 

to the so called strong-field physics, in parallel with investigation of ultra-short 

dynamics in pump-probe experiments, moving from nuclear dynamics in the 

femto/picosecond regime [64] to the purely electronic motion triggered by broad 

attosecond pulses. The description of strong field phenomena has been dominated 

by the strong field model, starting with the so called three-step [65], or simpleman 

model [66] with successive sophistication. 

In principle a complete description is afforded by solution of the TDSE in the 

external field, which is however very expensive, and has been applied only 

simplest system, often in reduced dimensionality. We have undertaken an 

extension, based on the availability of the very flexible and complete basis offered 

by the LCAO B-spline approach. The obvious prerequisite is the set up and 

validation of an efficient numerical TDSE solver, in conjunction with the B-spline 

basis. A quick tour of interesting phenomena is as follow.  

The prediction of the above-threshold ionization (ATI) photoelectron energy 

spectrum is a challenging theoretical issue, mainly under conditions of ultrashort 

and high-intensity pulses with several peaks. The comparison of the theoretical 

results with the experimental data shows how difficult is to describe the sudden 

appearance of side lobes or slope changes in the photoelectron spectra. In fact, it 

is really demanding to establish convergence in this kind of calculations, which 

involve the same requirements posed by the high-intensity non-perturbative 

phenomenon, namely the high-order harmonic generation (HOHG). Thus, a non-

perturbative calculation in the presence of a strong field is required and it has to 
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be followed by the analysis of the photoelectron energy and, in some cases, by the 

analysis of the angle-resolved spectrum. 

The wavefunction can be expanded in terms of the eigenstates of the atom [67] or, 

as in this work, in terms of a B-splines basis. Each method has advantages and 

disadvantages, but they are complementary to other techniques. 

Initially, the attention has been focused on the hydrogen atom because it can be 

described by an exact potential, so direct calculations can be obtained. In addition 

to this, the results can be compared to the experimental data [68]. In this way we 

can obtain a benchmark calculation useful to compare different methods [69].  

It is also of great interest for physics and chemistry trying to obtain time-resolved 

imaging of chemical reactions or other structural changes with sub-femtosecond 

resolution. In literature there are several examples of near-infrared ultrashort laser 

experiments [70] [71] which can furnish information about the valence electrons 

extracted by the radiation and the time resolution. 

Time-resolved spectra at the atomic/molecular time scales are now accessible 

thanks to studies of intense ultrashort fs and XUV laser pulses [72] [73] [74]. 

 

Furthermore, some experiments demonstrate that more than one orbital affects the 

molecular strong-field response [75] [76] [77]. Although these multi-orbital 

effects can furnish a lot of information, they complicate simple imaging schemes. 

For example, by analysing the high-harmonic radiation [78], one can observe the 

electron-hole in the ion generated by laser. 

So far, it doesn’t seem possible yet to make direct imaging of the valence 

electrons and of their field-free dynamics during, for example, a more complicated 

chemical reaction. 

Moreover, nuclear motion plays a crucial role in the competition of the different 

molecular photoionization processes, such as autoionization (AI), dissociative 

ionization (DI) and non dissociative ionization (NDI) [79] [80]. A temporal 

picture of these competing processes can be obtained through calculations that 

solve time-dependent Schrödinger equation by adding information to the 

stationary pictures.  
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F. Martin et al [81] have shown how to analyze both the short- and the long-time 

response of the H2 molecule after the absorption of one or several photons, using a 

method based on the expansion of the time-dependent wavefunction in a basis of 

discrete stationary states. 

For example, one- and multi-photon ionization processes in the hydrogen 

molecule are: 

H2 + nħω  H + H
+
 + e

-  
  (DI) 

H2 + nħω  H2
+
 + e

-  
        (NDI) 

H2 + nħω  H + H            (D) 

There are two regimes of photon energy: the multiphoton regime, where two or 

more photons can be absorbed, and the one-photon regime. In the H2 case, the 

first regime occurs from 2.7 to 13.7 eV, while the second one occurs from 25 to 

40 eV, a range in which we can observe the autoionization process. 

In the multiphoton regime, when the photon energy is in resonance with a bound 

intermediate state, the multiphoton ionization probability is led by the proper 

inclusion of the nuclear motion.  

In the other case, the time-dependent Schrödinger equation affords to study the 

interference phenomena appearing in the dissociative ionization, due both to the 

autoionization and dissociation processes that arise from doubly excited states.  

In this contest, the gauge of the electromagnetic field represents an important 

formalism. It will be discuss in the next chapter. 
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5.1.1. Electromagnetic field gauges 

According to a fundamental law of electromagnetic theory, the interaction of the 

electromagnetic (EM) radiation with matter should be independent with respect to 

the gauge of the electromagnetic field employed in the formulation of the 

problem. 

In perturbation theory and the dipole approximation, three gauges (length, 

velocity and acceleration) are commonly employed in the non-relativistic theory 

of the interaction of optical or UV frequencies with atoms or molecules, within 

the dipole approximation.  

Thus, when the transition amplitudes calculated within perturbation theory and 

exact atomic wavefunctions are used, the result are the same in all three gauges. 

Since it is not possible to get exact wavefunctions (except for the case of the 

hydrogen atom), the agreement of the calculations in the different gauges is used 

as criterion to probe the quality of the wavefunctions used in the calculation. 

The situation is more complicated for the interaction of strong radiation with 

atoms in the non-perturbative theory. The demands for the convergence of the 

calculation are now more severe.  

Convergence depends on many parameters (as well as the quality of the 

wavefunctions), such as the number of the angular momenta, the spatial extent of 

the total wavefunction, the time step in the integration of the time-dependent 

Schrödinger equation (TDSE). Since one cannot know a priori their best 

combination, each parameter is differently set during the calculation and may 

differ from method to method.  

In some cases, even within the same set of parameters and with the exact 

wavefunctions, a time-dependent calculation converges much faster in one gauge 

than in the other one.  

Furthermore, the demands for convergence for one quantity could be different 

from case to case, for example from the photoelectron spectrum of above-

threshold ionization (ATI) to ion yield.  
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An interesting case is represented by the number of angular momenta required for 

convergence: in fact, when the problem is solved in the velocity gauge, the 

number of angular momenta required for convergence dramatically decreases with 

respect to the length gauge [82].  

In this section, the main steps that lead to the expression of the Schrödinger 

equation describing the behaviour of an atom in the presence of a strong 

electromagnetic field, represented in the so-called ‘velocity’ and ‘length gauge’, 

will be summarized. This issue is clearly discussed in Cohen-Tannoudji et al 

(1989).  

Let us consider an electron in a potential under the action of an external 

electromagnetic field. Within the non-relativistic theory, the field can be 

expressed in terms of vector and scalar potentials, A(r,t) and U(r,t), respectively, 

as 

 
𝐸 = −∇𝑈 −

𝑑𝐴

𝑑𝑡
       𝑎𝑛𝑑       𝐵 = ∇ × 𝐴 (5.1) 

and a gauge transformation generates new potentials 𝐴′, 𝑈′ that leave the fields 

unchanged.  

Using the Lagrangian formalism, we can express the Hamiltonian in the so called 

minimal coupling form, as: 

 
𝐻𝑣 =

1

2𝑚
[𝒑𝑣 − 𝑞𝑨𝑣(𝒓, 𝑡)]

2 + 𝑉(𝑟) + 𝑞𝑈𝑣(𝒓, 𝑡) (5.2) 

where q is the electron charge and m is the electron mass The gauge freedom 

allows one to choose arbitrarily the value of ∇ ∙ 𝑨. The most common form to 

describe radiation field is the coulomb gauge 

 ∇ ∙ 𝑨 = 0 (5.3) 

For a radiation field (𝜌 = 0, 𝑗 = 0) this requires also 𝑈 = 0. In Equation 5.2, 𝑝𝑣 is 

the conjugate of 𝑟𝑣. They can be expressed as follows: 

 𝑟𝑣 = 𝑟 → 𝑟 (5.4) 
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𝑝𝑣 = 𝑚�̇� − (− 𝑞𝑨𝑣(𝒓, 𝑡)) →  −𝑖ħ𝛻 

𝑟 has no more any subscripts being gauge-indipendent because of the mechanical 

momentum of the particle 𝜋 = 𝑚�̇� that is gauge-independent as well. Since the 

two conjugate variables are substituted with the operators by the quantization 

principle in the Equation 5.4, it is not relevant what they represent. The 

Hamiltonian then becomes: 

 
𝐻 =

1

2𝑚
𝑝2 +

1

𝑚
𝑨 ∙ 𝒑 +

1

2𝑚
𝐴2 + 𝑉(𝑟) (5.5) 

Thus, TDSE equation is satisfied by the total wavefunction of the system: 

 
𝑖ħ
𝜕

𝜕𝑡
𝛹𝑣(𝒓, 𝑡) = 𝐻𝑣(𝒓, 𝑡)𝛹𝑣(𝒓, 𝑡) (5.6) 

In order to obtain the Hamiltonian in the length gauge, one needs to express the 

potentials and the operators in the new gauge. This can be done by using some 

transformation formulas. In the case of potentials, they are:  

 𝑨𝑙(𝒓, 𝑡) = 𝑨𝑣(𝒓, 𝑡) + ∇𝜒(𝒓, 𝑡) 

𝑼𝑙(𝒓, 𝑡) = 𝑼𝑣(𝒓, 𝑡) −
𝜕

𝜕𝑡
𝜒(𝒓, 𝑡) 

(5.7) 

and for the wavefunction it is: 

 𝛹𝑙(𝑟, 𝑡) = 𝑇𝛹𝑣(𝑟, 𝑡) = 𝑒
(𝑖/ħ)𝑞𝜒(𝑟,𝑡)𝛹𝑣(𝑟, 𝑡) (5.8) 

where 𝜒(𝒓, 𝑡) refers to gauge function that might be dependent on 𝒓 and 𝑡.  

Göppert-Mayer [83] transformation can be used to obtain the equation expressed 

in the ‘length gauge’. This transformation is based on the following gauge 

function: 

 𝜒(𝒓, 𝑡) = −𝒓𝑨𝑣(0, 𝑡) (5.9) 

The Hamiltonian in length gauge can be obtained by using Equations 5.7 and 5.9 

and applying the electric dipole approximation: 
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𝐻𝑙 =

1

2𝑚
𝒑𝑙
2 + 𝑉(𝑟) + 𝑞𝒓𝑬(0, 𝑡) (5.10) 

where 𝑬(0, 𝑡) is: 

 
𝑬(0, 𝑡) = −

𝜕

𝜕𝑡
𝐴(0, 𝑡) − 𝛻𝑈(0, 𝑡) (5.11) 

This is the gauge-independent electric field within the dipole approximation. The 

conjugate operators become:  

 𝑟𝑙 = 𝑟 → 𝑟 

𝑝𝑙 = 𝑚�̇� →  −𝑖ħ∇ 
(5.12) 

Thus, the total wavefunction is now the solution of the TDSE equation in the 

length gauge: 

 
𝑖ħ
𝜕

𝜕𝑡
𝛹𝑙(𝒓, 𝑡) = 𝐻𝑙(𝒓, 𝑡)𝛹𝑙(𝒓, 𝑡) (5.13) 

By summarizing, the Hamiltonian (in a.u. and in the dipole approximation, 

neglecting the spatial dependence of the fields) is 

 𝐻(𝑡) = 𝐻0 − 𝑖�̅�(𝑡) ∙ ∇       𝛹𝑉(𝑟, 𝑡)        𝑉 − 𝑔𝑎𝑢𝑔𝑒 

 

𝐻(𝑡) = 𝐻0 − �̅�(𝑡) ∙ r̅         𝛹𝐿(𝑟, 𝑡)         𝐿 − 𝑔𝑎𝑢𝑔𝑒 

(5.14) 

with 

 
𝐸(𝑡) = −

𝜕𝐴(𝑡)

𝜕𝑡
              𝐴(𝑡) = −∫ 𝐸(𝑠)𝑑𝑠

𝑡

0

 (5.15) 

At the end of the pulse of length T (with 𝑡 > 𝑇), E is equal to 0. We also impose 

the condition A(t) = 0 to avoid a global additional time-dependent phase factor. 

We employ a pulse of the form 

 𝐴(𝑡) = 𝐴0𝑓(𝑡)𝑠𝑖𝑛 (𝜔𝑡 + 𝜙) (5.16) 

where 𝑓(𝑡) is a slowly varying function which defines the shape of the pulse, and 

𝜙 is called the carrier envelope phase (CEP). 𝐴0 is the peak value related to the 

peak of 𝐸 by 𝐴0 =  𝜔𝐸0. 
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5.1.2. Influences on the photoionization spectrum 

Ionization is a physical process (multiphoton transition) from an initial state to a 

final state lying in the electronic continuum through virtual intermediate states. 

This process is influenced by both the pulse parameters and the level structure of 

the system. The TDSE numerical solution provides photoelectron energy 

spectrum, which is difficult to obtain, even for the case of the hydrogen atom. 

Since this represents the simplest quantum system, it is the most used system to 

understand the basic behaviour of the ionization processes. The hydrogen atom 

makes possible accurate ab-initio numerical calculations and allows a complete 

control of the convergence. 

In the literature, a big number of hydrogen ionization studies has been published. 

However, most of them use additional approximations, such as reducing the 

dimensionality of the problem or employing a restricted basis set. Only a few of 

these provide results which can be used for an exact comparison. 

Besides the direct integration of TDSE the strong field problem in the non-

perturbative regime can be treated by ab-initio Floquet theory [84], variably 

implemented such as Sturmian-Floquet [85] and R-matrix-Floquet (RMF) theory 

[86].This treatment is exact for an infinite pulse duration (periodic field) but can 

be used also for slowly variable envelopes. It has been used for multiphoton 

ionization and high-order harmonic generation for atoms under electromagnetic 

fields characterized by constant or slightly variable intensity.  

Almost all approaches to the numerical solution of the TDSE employ a spatial 

discretization of the wavefunction, either as amplitudes on a selected grid of 

points: 𝑎𝑖(𝑡) = Ψ(𝑟𝑖, 𝑡), or as an expansion in a fixed basis set {𝜙𝑖}, 

 Ψ(𝑡) =∑𝑎𝑖(𝑡)𝜙𝑖
𝑖

. (5.17) 

In any case the partial differential equation is transformed into a large system of 

coupled ordinary differential equations (ODE) in the coefficients 𝑎𝑖(𝑡). 
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𝑖
𝑑

𝑑𝑡
𝑎𝑖(𝑡) =∑𝑀𝑖𝑗(𝑡)𝑎𝑗(𝑡)

𝑗

 (5.18) 

where 𝑀𝑖𝑗 is the corresponding discretization of the Hamiltonian. 

There are several methods to solve ODE problems. Among them, Runge-Kutta 

[87] [88] is the most used since it represents a good compromise between 

efficiency and accuracy. This method is commonly used for a general system, 

which does not require specific conditions. In our case, the Schrödinger equation 

satisfies special conditions, such as unitary evolution (which is not satisfied by the 

Runge-Kutta method) and temporal reversibility. One can expect that the use of a 

method which satisfies these conditions can provide more accurate results than 

methods which do not satisfy them. 

A special choice used to solve the TDSE problem consists in expanding the 

wavefunction on a suitable orthonormal basis. In the case of the hydrogen atom, 

one can expand the wavefunction on the basis of his eigenstates: 

 𝛹(𝒓, 𝑡) =∑𝐶𝑛𝑙(𝑡)𝜓𝑛𝑙(𝒓)

𝑛𝑙

 (5.19) 

This provides the time-dependent basis state population: 

 𝑃𝑛𝑙 = |𝐶𝑛𝑙(𝑡)|
2 (5.20) 

The ionization probabilities and other final observables at 𝑡 = 𝑡𝑓 do not change; 

as a consequence, for example the ground state final population is: 

 𝑃1𝑆 = |𝐶1𝑆(𝑡𝑓)|
2
 (5.21) 

while the total ionization yield is expressed as 

 

𝑌𝑖𝑜𝑛 = ∑ |𝐶𝑛𝑙(𝑡𝑓)|
2

𝑛𝑙(𝐸>0)

 (5.22) 

By projecting over the continuum states, one can obtain the photoelectron 

spectrum for any angle emission and over all angles of electric field polarization. 
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The calculations are usually done by considering light linearly polarized along the 

z-axis with respect to which the angle is defined. This is done for two reasons: the 

first one concerns the experimental data, which are very often obtained around 

zero angle simply because of the practical difficulty in collecting angle-integrated 

data; the second one is related to the fact that the prominence of a plateau is quite 

different in an angle-integrated spectrum with respect to the case of an angle-

resolved spectrum. 

The photoelectron spectrum contains characteristic features which depend on the 

laser parameters. In fact, the spectrum may show pronounced peaks or a 

continuum-like shape. Moreover, it is possible that the pronounced peaks are 

distorted by some substructures. The main parameters that affect photoelectron 

spectra are: laser intensity, laser frequency and pulse duration. The dependence of 

these parameters can be examined by passing from one regime to the other.  

laser intensity 

The presence of single peaks or continuum-like shape in photoelectron spectrum 

changes by varying the laser intensity: the lower is the intensity, the more 

pronounced are the peaks. This is a consequence of the ionization process that 

takes place by the absorption of the minimum (threshold) number of photons 

required to overcome the ionization potential, the so-called threshold ionization. 

As the intensity increases, we can observe a growth of the number of the visible 

peaks at higher energy separated by the value of the photon energy. This is a 

multiphoton above-threshold ionization (ATI)
2
. A shift of the position of the peak 

to lower energies may be also observed: this is due to the increasing intensity-

dependent on the ionization potential. In fact, the latter produces an effect called 

multiphoton channel closing. When the laser intensity exceeds a threshold value, 

the multi-photon ionization becomes energetically forbidden, so that the channel 

of the N-photon ionization becomes closed. 
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The photoelectron spectrum can also exhibit substructures nearby the peaks, 

named Freeman resonances [89]. This can happen both at weak and high laser 

intensities.  

Furthermore, the transition from the multiphoton regime to the tunnelling one can 

provide an increase of the peak intensity.  

Laser frequency 

By increasing the laser wavelength, the photoelectron spectra can show a growth 

of the number of the peaks and a shift to lower energies which is due to the 

channel closing. Furthermore, this shift rises both from a decrease of the photon 

energy and from an increase of the dynamic energy. Obviously, increasing the 

photon energy, the space between the peaks increases as well. 

Finally, the transition from the multiphoton regime to the tunnelling regime can 

also be observed by changing the laser frequency. 

Pulse duration 

Last but not least, pulse duration provides a change in the photoelectron spectra. 

In particular, a transition from continuous to multipeaked is observed by 

increasing it. These changes are evidently due to the peaks widths, which are 

linked to the Fourier width of the pulse. The relation between these two aspect is 

not trivial, and it can depend on the order of the multiphoton process [90]. 

The multiphoton ionization process is strongly nonlinear. This can lead to 

situations where greater photoelectron yields are given by the less probable 

photons absorption with energies that are below or above the incident photon. 

A more detailed description of these effects, studied on the hydrogen atom, can be 

found on ref [91]. 
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Plateau 

One of the common features that one can find in a photoelectron spectra is a kind 

of plateau due to the high-order ATI peaks. In fact, photoelectron spectra exhibit a 

typical exponential decay followed by a plateau ending with a cut-off. This 

characteristic shape is explained by the rescattering processes and by the direct 

ionization.  

By using the simpleman model [92] [93], the electron starts without velocity, so 

that the final kinetic energy is: 

 
𝑇𝑓 =

𝐴(𝑡0)
2

2
 (5.23) 

where 𝑡0 is the initial time when the electron is released and 𝐴 is the vector 

potential.  

Nevertheless, the plateau in the photoelectron spectra are not always similar, but it 

changes in different situations and its shape depends on the laser intensity. A more 

detailed study needs a quantitative rescattering theory [94]. 

All these effects are accurately described by the analysis of the wavepacket 

generated by the solution of the TDSE with the appropriate pulse. 
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5.2. TDSE theory 

The goal of this project is to solve the TDSE equation: 

 
𝑖
𝜕𝛹

𝜕𝑡
= 𝐻(𝑡)𝛹(𝑡) (5.24) 

with the initial condition: 

 𝛹(0) = 𝛹0 (5.25) 

In this work an orthonormal base {𝜙𝑖} is employed, so that 𝐻(𝑡) is represented by 

the matrix elements: 

 𝐻𝑖𝑗(𝑡) = ⟨𝜙𝑖|𝐻(𝑡)|𝜙𝑗⟩ (5.26) 

The time-dependent wavefunction is expressed by the expansion on the chosen 

orthonormal basis 

 𝛹(𝑡) =∑𝑎𝑖(𝑡)𝜙𝑖
𝑖

 (5.27) 

In this way, the original equation is approximated by the ODE system: 

 
𝑖
𝜕𝑎𝑖(𝑡)

𝜕𝑡
=∑𝐻𝑖𝑗(𝑡)𝑎𝑗(𝑡)

𝑗

 (5.28) 

If the Hamiltonian is time-independent, the solution is easily expressed in terms of 

its eigenvectors: 

 𝐻𝜙𝑖 = 휀𝑖𝜙𝑖 

𝑎𝑖(𝑡) = 𝑒
−𝑖 𝜀𝑖𝑡𝑎𝑖(0) 

(5.29) 

which can be written in terms of the exponential of the Hamiltonian 

 Ψ(𝑡) = 𝑒𝑖𝐻𝑡Ψ(0) (5.30) 

In the case of the time-dependent Hamiltonian 𝐻(𝑡), one can discretize the time 

evolution in subintervals sufficiently small that the Hamiltonian is approximately 

constant (an evenly spaced grid is not needed) 
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𝑡𝑛 = 𝑛∆𝑡        𝑡𝑛+1

2
=
1

2
(𝑡𝑛+1 + 𝑡𝑛)       𝛹𝑛 = 𝛹(𝑡𝑛) (5.31) 

so that one can propagate Ψ(𝑡) over the interval [𝑡𝑛+1, 𝑡] as  

 𝛹𝑛+1 = 𝑒
−𝑖∆𝑡𝐻(𝑡𝑛+1/2)𝛹𝑛 (5.32) 

This so called exponential midpoint rule (the Hamiltonian is evaluated at the 

centre of the time interval) ensures an accuracy 0(∆𝑡2), which converges 

quadratically with the time step.  

It is possible to diagonalize 𝐻(𝑡
𝑛+

1

2

) given a basis {𝜉𝑖} to calculate the exponential 

value: 

 𝐻𝜒𝑘 = 𝐸𝜒𝑘             𝜒𝑘 =∑𝜉𝑗𝑐𝑗𝑘
𝑗

 

𝑐𝑗𝑘 = ⟨𝜉𝑗|𝜒𝑘⟩              𝑐𝑘𝑗
−1 = ⟨𝜒𝑘|𝜉𝑗⟩ = 𝑐𝑗𝑘

∗ = 𝑐𝑘𝑗
+  

(5.33) 

therefore, the expansion of 𝜉𝑗 is obtained: 

 𝜉𝑗 =∑𝜒𝑘𝑐𝑗𝑘
∗

𝑘

 (5.34) 

Thus, it is evident that: 

 𝑒−𝑖𝐻𝑡𝜒𝑘 = 𝑒
−𝑖𝐸𝑘𝑡𝜒𝑘 

𝑒−𝑖𝐻𝑡𝜉𝑗 =∑𝑒−𝑖𝐸𝑘𝑡𝜒𝑘𝑐𝑗𝑘
∗

𝑘

=∑𝑒−𝑖𝐸𝑘𝑡𝑐𝑗𝑘
∗

𝑘

∑𝜉𝑙𝑐𝑙𝑘
𝑙

=∑𝜉𝑙𝑑𝑙𝑗
𝑙

 

(5.35) 

where 𝑑𝑙𝑗 is: 

 𝑑𝑙𝑗 =∑𝑐𝑙𝑘𝑒
−𝑖𝐸𝑘𝑡𝑐𝑗𝑘

∗

𝑘

 (5.36) 

therefore,  

 𝑒−𝑖𝐻𝑡𝜓 = 𝑒−𝑖𝐻𝑡∑𝑎𝑖𝜉𝑖
𝑖

=∑𝑎𝑖
𝑖

∑𝜉𝑙𝑑𝑙𝑖
𝑙

=∑�̅�𝑙𝜉𝑙
𝑙

 (5.37) 

where 𝑎�̅� is: 
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 𝑎�̅� =∑𝑑𝑙𝑖𝑎𝑖
𝑖

 (5.38) 

The fundamental equation can briefly be expressed as follows: 

 𝐻𝐶 = 𝐶𝐸              𝐻 = 𝐶𝐸𝐶+       𝑒−𝑖𝐻𝑡 = 𝐶𝑒−𝑖𝐸𝑡𝐶+ = 𝐷.      (5.39) 

By summarizing, from the practical point of view, there are a few steps to 

accomplish: 

1) diagonalize 𝐻𝑖𝑗(𝑡) obtaining energies {𝐸𝐾} and coefficients {𝑐𝑗𝑘}. 

2) Compute the coefficients 𝑑𝑙𝑗. 

3) Calculate the transformed wavepacket coefficients 𝑎�̅�. 

If the Hamiltonian is real, coefficients 𝑐𝑗𝑘 are real as well, so: 

 𝑑𝑙𝑗
𝑅 =∑𝑐𝑙𝑘𝑐𝑗𝑘cos (𝐸𝑘𝑡)

𝑘

 

𝑑𝑙𝑗
𝐼 = −∑𝑐𝑙𝑘𝑐𝑗𝑘sin (𝐸𝑘𝑡)

𝑘

 

�̅�𝑖
𝑅 =∑𝑑𝑖𝑗

𝑅𝑎𝑗
𝑅 − 𝑑𝑖𝑗

𝐼 𝑎𝑗
𝐼

𝑗

 

�̅�𝑖
𝐼 =∑𝑑𝑖𝑗

𝐼 𝑎𝑗
𝑅 + 𝑑𝑖𝑗

𝑅𝑎𝑗
𝐼

𝑗

 

(5.40) 

 

5.2.1. Exponential 𝑒−𝑖𝐻(𝑡)𝑡 

Since the Hamiltonian is different in each time interval, it is impractical to 

diagonalize it completely at each time step. The complete Hamiltonian 

diagonalization is possible only using small matrices and a few time steps; this is 

computationally expensive but it can be useful as benchmark. An efficient 

algorithm can be obtained by defining an appropriate small local basis, as 

provided by approximate methods, such as Arnoldi [95] and Lanczos [96] 

algorithms [97] [98] that are actually quite similar between each other.  
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5.2.2. Krylov subspaces 

Let us introduce a matrix A and a vector b on a space V with dimension n (i.e. 

dimV = n). The Krylov subspace with dimension m is defined as follows: 

 
𝐾𝑚(𝐴, 𝑏) = {𝑏, 𝐴𝑏,… , 𝐴

𝑚−1𝑏} = {𝑥1, 𝑥2, … , 𝑥𝑚: 𝑥𝑖 = 𝐴
𝑖−1𝑏} 

(5.41) 

 Let us also introduce a polynomial: 

 𝑃𝑚(𝐴) = 𝑎0 + 𝑎1𝐴 +⋯+ 𝑎𝑚𝐴
𝑚 (5.42) 

The product 𝑃𝑚(𝐴)𝑏 is obtained building the 𝐾𝑚+1(𝐴, 𝑏) space: it is not needed to 

build the corresponding matrix 𝑃𝑚(𝐴). In this way, only m matrix-vector product 

will be executed: 

 
𝑃𝑚(𝐴)𝑏 = 𝑎0𝑏 + 𝑎1𝐴𝑏 +⋯+ 𝑎𝑚𝐴

𝑚𝑏 = 𝑎0𝑥1 + 𝑎1𝑥2 +⋯+ 𝑎𝑚𝑥𝑚+1 (5.43) 

Thus, 𝐾𝑚 represents the subspace of all the vector of V, that can be expressed as: 

 𝑥 = 𝑃(𝐴)𝑏 (5.44) 

where P is any polynomial with degree not greater than 𝑚− 1.  

This can be also employed to approximate functions 𝑓(𝐴) which can be expanded 

by a power series truncated at a given order (polynomial 𝑃𝑚). For example, let us 

assume that one wants to solve the following problem: 

 (𝐼 − 𝜆𝐴)𝑦 = 𝑏 (5.45) 

with 𝜆 constant. If 𝜆 is sufficiently small, 𝑦 becomes: 

 𝑦 = (𝐼 + 𝜆𝐴 + 𝜆2𝐴2 +⋯+ 𝜆𝑚𝐴𝑚)𝑏 (5.46) 

This expression indicates that the solution is included in the subspace 𝐾𝑚 (this is 

true for an appropriate m). A further approximation to obtain 𝑓(𝐴)𝑏 might be 

achieved by diagonalizing A on 𝐾𝑚: 



134 
 

 𝐴(𝑚)𝜙𝑖
(𝑚)

= 𝑎𝑖
(𝑚)
𝜙𝑖
(𝑚)

 (5.47) 

where 𝐴(𝑚) is the A matrix restricted on 𝐾𝑚 space. In this way, 𝑓(𝐴)𝑏 can be 

written as: 

 𝑓(𝐴)𝑏 =∑𝑓(𝑎𝑖
(𝑚))𝜙𝑖

(𝑚)
⟨𝜙𝑖
(𝑚)
|𝑏⟩

𝑖

 (5.48) 

Krylov subspaces are mostly used for taking into account large systems, 

eigenvalue equations and iterative methods since this treatment allows to perform 

matrix-vector products instead of matrix-matrix products. 

One can build an orthonormal basis for 𝐾𝑚(𝐴, 𝑏) using Lanczos algorithm (if 

𝐴+ = 𝐴) or using Arnoldi algorithm (with any 𝐴). 

 

5.2.3. Lanczos base and algorithm 

Lanczos algorithm is a simplification of the Arnoldi approach with the 𝐴+ = 𝐴 

condition. Krylov vectors are orthonormalized by using the Gram–Schmidt 

process: 

 𝑥𝑖 = 𝐴
𝑖−1𝑏 

𝑥𝑖 → 𝑦1 =
𝑥𝑖 − ∑ ⟨𝑦𝑗|𝑥𝑖⟩𝑦𝑗

𝑖−1
𝑗=1

‖ ∙ ‖
  

(5.49) 

As a consequence, ⟨𝑦𝑖|𝑦𝑗⟩ = 𝛿𝑖𝑗. 

 

𝑦𝑖 =∑𝑥𝑗𝑐𝑗

𝑖

𝑗=1

 

𝐴𝑦𝑖 =∑𝑥𝑗𝑐𝑗𝑖

𝑖+1

𝑗=1

=∑𝑎𝑗𝑦𝑗

𝑖+1

𝑗=1

 

(5.50) 

Thus one obtains: 

 ⟨𝑦𝑘|𝐴𝑦𝑗⟩ = 0     if     𝑘 > 𝑗 + 1 (5.51) 
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By applying the condition 𝐴+ = 𝐴 it follows also 

 ⟨𝑦𝑗|𝐴𝑦𝑘⟩ = 0     if      𝑗 < 𝑘 − 1 (5.52) 

therefore, using {𝑦𝑖} as basis, the 𝐴 matrix has to be tridiagonal, so that the only 

non-zero elements 𝐴𝑖𝑗 are: 

 ⟨𝑦𝑖−1|𝐴𝑦𝑖⟩,         ⟨𝑦𝑖|𝐴𝑦𝑖⟩,         ⟨𝑦𝑖+1|𝐴𝑦𝑖⟩ (5.53) 

i.e., 𝐴 has this structure: 

 

 

(5.54) 

where,  

 𝛼𝑖 = ⟨𝑦𝑖|𝐴𝑦𝑖⟩,               𝛽𝑖+1 = ⟨𝑦𝑖|𝐴𝑦𝑖+1⟩ = ⟨𝑦𝑖+1|𝐴𝑦𝑖⟩ 

 
(5.55) 

 𝐴𝑦𝑖 =∑𝑦𝑗𝐴𝑗𝑖
𝑗

= 𝐴𝑖+1,𝑖𝑦𝑖+1 + 𝐴𝑖𝑖𝑦𝑖 + 𝐴𝑖−1,𝑖𝑦𝑖−1

= 𝛽𝑖𝑦𝑖+1 + 𝛼𝑖𝑦𝑖 + 𝛽𝑖−1𝑦𝑖−1 

(5.56) 

and 

 𝛽𝑖+1𝑦𝑖+1 = 𝐴𝑦𝑖 − 𝛼𝑖𝑦𝑖 − 𝛽𝑖𝑦𝑖−1           𝛽1 ≡ 0   (5.57) 

Defining 𝑢 as follows: 

 𝑢 = 𝐴𝑦𝑖 − 𝛼𝑖𝑦𝑖 − 𝛽𝑖𝑦𝑖−1 (5.58) 

we finally have: 

 𝛽𝑖+1𝑦𝑖+1 = 𝑢 

𝛽𝑖+1 = ‖𝑢‖,            𝑦𝑖+1 =
𝑢

𝛽𝑖+1
 

(5.59) 
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and this provides the Lanczos recursion. 

Starting with the initial vector 𝑦1 = 𝑥1, with 𝛽1 = 0 at each step 𝑖, one computes 

𝛼𝑖 = ⟨𝑦𝑖|𝐴𝑦𝑖⟩, 𝛽𝑖+1 and 𝑦𝑖+1.  

At the end, the transformed tridiagonal matrix is diagonalized and used to 

compute the exponential. The Krylov vectors 𝑥𝑖 are generated on the fly and the 

Lanczos basis 𝑦𝑖 are stored, as column vectors in the original basis 𝜙𝑖. Note that  

 
Ψ(𝑡𝑛) = 𝑥1 = 𝑦1 

(5.60) 

is the starting vector of the sequence. Then Ψ(𝑡𝑛+1) is obtained by the 

transformations outlined in section 5.2. 

We rewrite it in the new notation. 

In the Lanczos basis {𝑦1, … , 𝑦𝑚}, 𝑦1 = Ψ(tn), the eigenvectors of the projected H 

matrix are  

 𝐻𝜒𝑘 = 𝐸𝜒𝑘             𝜒𝑘 =∑𝑦𝑗𝑐𝑗𝑘
𝑗

    𝑦𝑗 =∑𝜒𝑘𝑐𝑗𝑘
∗

𝑘

 (5.61) 

then 

 Ψ(𝑡𝑛+1) = 𝑒
−𝑖𝐻𝑡Ψ(𝑡𝑛) = 𝑒

−𝑖𝐻𝑡y1 =∑𝑦𝑙𝑑𝑙1
𝑙

 (5.62) 

 with  

 𝑑𝑙1 =∑𝑐𝑙𝑘𝑒
−𝑖𝐸𝑘𝑡𝑐1𝑘

∗

𝑘

 (5.63) 

 

5.2.4. Arnoldi base and algorithm 

If the matrix is not Hermitian (symmetric) the same orthonormalization produces 

Hessenberg upper triangular matrix. Here also  

 ⟨𝑦𝑖|𝐴𝑦𝑗⟩ = 0     𝑖𝑓 𝑖 > 𝑗 + 1 (5.64) 

but the transpose does not hold. Then  
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𝐴𝑚 =

(

 
 

𝐴11 𝐴12 𝐴13 ⋯ 𝐴1𝑚
𝐴21 𝐴22 𝐴23 ⋯ 𝐴2𝑚
0 𝐴32 𝐴33 ⋱ 𝐴3𝑚
0 0 ⋱ ⋱ 𝐴𝑛𝑚
0 0 ⋯ 𝐴𝑚−1,𝑚 𝐴𝑚𝑚)

 
 

 
(5.65) 

 

𝐴𝑦𝑗 =∑𝑦𝑖𝐴𝑖𝑗

𝑗+1

𝑖=1

 
(5.66) 

so, 

 𝐴𝑦𝑚 = 𝑦1𝐴1𝑚 +⋯+ 𝑦𝑚𝐴𝑚𝑚 + 𝑦𝑚+1𝐴𝑚+1𝑚 (5.67) 

and 

 

𝑦𝑗+1𝐴𝑗+1𝑗 = 𝐴𝑦𝑗 −∑𝑦𝑖𝐴𝑖𝑗

𝑗

𝑖=1

 (5.68) 

From the algorithmic point of view, within a Krylov subspace with dimension m, 

the initial vector 𝑦(1) is chosen, with ||𝑦(1)|| = 1. At each step, the vector 𝑦𝑗 is 

multiplied by 𝐴, then the vector is orthogonalized by a modified Gram-Schimdt 

process (which is numerically more stable than the standard one). In some cases, 

it is convenient repeating the orthogonalization. At step 𝑖 

 

𝑤𝑗 = 𝑦𝑗+1𝐴𝑗+1𝑗 = 𝐴𝑦𝑗 −∑𝑦𝑖𝐴𝑖𝑗

𝑗

𝑖=1

 (5.69) 

 𝐴𝑗+1𝑗 = ||𝑤𝑗|| (5.70) 

 

𝑦𝑗+1 =
𝑤𝑗

𝐴𝑗+1𝑗
 (5.71) 

Because of this orthogonality problem, Arnoldi algorithm is preferred to the 

Lanczos one, even with Hermitian matrices. 
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5.2.5. Magnus expansion 

Even when the Hamiltonian is time dependent, the exact propagator 𝑈:  

 Ψ(𝑡) = 𝑈(𝑡, 𝑡0)Ψ(𝑡0) (5.72) 

can be expressed exactly in exponential form 

 𝑈(𝑡, 𝑡0) = 𝑒
𝑖Ω(𝑡,𝑡0) (5.73) 

The midpoint exponential propagator, 

 𝑒−𝑖H(𝑡1/2)∆𝑡 (5.74) 

is the lowest order approximation to Ω. Independent from the accuracy with which 

the exponential is evaluated (by Lanczos-Arnoldi), the convergence with time step 

is only quadratic 𝑂(Δ𝑡2). To increase the order a possibility is to employ better 

approximations to Ω, although we have not implemented it.  

In general, the Magnus expansion provides an exponential representation of the 

homogeneous differential equation solution for a linear operator. In particular, it 

gives the fundamental matrix of an n order ODE system with variable 

coefficients. The exponent is built with an infinite series whom terms have 

multiple integrals and commutators inside other commutators. Let us take a 𝑛 × 𝑛 

matrix 𝐴(𝑡); our goal is to solve the problem knowing the initial values, which are 

associated to the linear differential equation for the vectorial function 𝑌(𝑡). 

 𝑌′(𝑡) = 𝐴(𝑡)𝑌(𝑡)         𝑌(𝑡0) = 𝑌 (5.75) 

If 𝑛 = 1, the solution is: 

 
𝑌(𝑡) = 𝑒

∫ 𝐴(𝑠)𝑑𝑠
𝑡
𝑡0 𝑌0 (5.76) 

this is still valid for 𝑛 > 1 if 

 [𝐴(𝑡1), 𝐴(𝑡2)] = 0      𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡1, 𝑡2 (5.77) 
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This is true only if 𝐴 is constant. The Magnus approach consists in expressing the 

solution in the following form: 

 𝑌(𝑡) = 𝑒𝛺(𝑡,𝑡0)𝑌0 (5.78) 

where 𝛺(𝑡, 𝑡0) is a 𝑛 × 𝑛 matrix function, which is built with a series expansion 

(for 𝑡0=0): 

 
𝛺(𝑡) = ∑𝛺𝑘(𝑡)

∞

𝑘=1

 (5.79) 

This is the Magnus expansion. The first series terms are  

  𝛺1(𝑡) = ∫ 𝐴(𝑡1)𝑑𝑡1
𝑡

0
 

 𝛺2(𝑡) =
1

2
∫ 𝑑𝑡1 ∫ 𝑑𝑡2[𝐴(𝑡1), 𝐴(𝑡2)]

𝑡1

0

𝑡

0
 

 𝛺3(𝑡) =
1

6
∫ 𝑑𝑡1 ∫ 𝑑𝑡2 ∫ 𝑑𝑡3([𝐴(𝑡1), [𝐴(𝑡2), 𝐴(𝑡3)]] +

𝑡2

0

𝑡1

0

𝑡

0

[𝐴(𝑡3), [𝐴(𝑡2), 𝐴(𝑡1)]]) 

 𝛺4(𝑡) =
1

2
∫ 𝑑𝑡1 ∫ 𝑑𝑡2 ∫ 𝑑𝑡3 ∫ 𝑑𝑡4

𝑡3

0
([[[𝐴1, 𝐴2], 𝐴3], 𝐴4] +

𝑡2

0

𝑡1

0

𝑡

0

[𝐴1, [[𝐴2, 𝐴3], 𝐴4]] + [𝐴1, [𝐴2, [𝐴3, 𝐴4]]] + [𝐴2, [𝐴3, [𝐴4, 𝐴1]]]) 

(5.80) 

𝛺1(𝑡) can be viewed exactly like the exponent in the scalar case (𝑛 = 1), but this 

equation does not provide the entire solution. For 𝑛 > 1 the exponential has to be 

correct and this correction is given by the Magnus expansion.  

Since it is clearly impossible to sum exactly all the series, a truncation is needed. 

In this way, an approximate solution is obtained. The truncated series conserves 

important qualitative aspects of the exact solution (this is not true for other non-

perturbative method). For example, within classical mechanics, it conserves the 

symplectic character of the temporal evolution, while, within quantum mechanics, 

it conserves unitary evolution (this is not satisfied by the Dyson series). 
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From a mathematical point of view, the series converges when this condition is 

satisfied: 

 
∫ ‖𝐴(𝑠)‖𝑑𝑠
𝑇

0

< 𝜋 (5.81) 

where || ∙ || is a matrix norm.  

All the expansion terms can be generated with a recursive method. Let us define 

𝑆𝑛
(𝑘)

 as follows: 

 

𝑆𝑛
(𝑗)
= ∑[𝛺𝑚, 𝑆𝑛−𝑚

(𝑗−1)
]

𝑛−𝑗

𝑚=1

       2 ≤ 𝑗 ≤ 𝑛 − 1 (5.82) 

 

𝑆𝑛
(1)
= [𝛺𝑛−1, 𝐴] 

𝑆𝑛
(𝑛−1)

= 𝑎𝑑𝛺1
𝑛−1(𝐴) 

𝑎𝑑𝛺
0𝐴 = 𝐴        𝑎𝑑𝛺

𝑘+1𝐴 = [𝛺, 𝑎𝑑𝛺
𝑘𝐴] 

(5.83) 

thus 

 𝛺1 = ∫ 𝐴(𝑠)𝑑𝑠
𝑡

0
  

𝛺𝑛 =∑
𝐵𝑗

𝑗
∫ 𝑆𝑛

(𝑗)(𝑠)𝑑𝑠
𝑡

0

𝑛−1

𝑗=1

        𝑛 ≥ 2 

(5.84) 

where 𝐵𝑗 is Bernoulli’s number. 𝛺𝑛 can be expressed as linear combination of 

𝑛𝑡ℎintegral of 𝑛 − 1 nested commutator which contains 𝑛 matrices A. 

 

𝛺𝑛(𝑡) = ∑
𝐵𝑗

𝑗
∑ ∫ 𝑎𝑑𝛺𝑘1

(𝑠)𝑎𝑑𝛺𝑘2
(𝑠)⋯𝑎𝑑𝛺𝑘𝑗

(𝑠)𝑑𝑠
𝑡

0𝑘1+⋯+𝑘𝑗=𝑛−1,𝑘𝑖≥1

𝑛−1

𝑗=1

 (5.85) 

This expression becomes more complicated at higher values of 𝑛. Approximate 

formula of consistent order have been proposed in the literature [97]. 
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5.2.6. Final Wavepacket analysis 

Given a wavefunction (which we will generally call "wavepacket") properly 

normalized, the probability of observing another quantum state 𝛹𝑖 is given by the 

square of the amplitude 

 𝑃𝑖 = |⟨𝛹𝑖|𝜙⟩|
2 (5.86) 

This is true in particular for the eigenstates of the Hamiltonian of the system 

 𝐻𝛹𝑖 = 𝐸𝑖𝛹𝑖 (5.87) 

which we shall call "free states". 

For transitions in the continuous spectrum, such transition probabilities can be 

converted into (generalized) cross sections, which depend on the angle of the 

emitted electrons, or developed in an angular expansion, giving rise to angular 

dependence parameters. Moreover, if the initial molecule is not prepared in a pure 

state, by measuring all initial quantum numbers, one has also to average over the 

statistical distribution of the sample. In particular, this is true for the rotational 

motion, which is rarely controlled, so that a rotational average over random 

molecular orientations is required. In other cases, the molecule can be partially 

aligned, up to the ideal situation in which the orientation in space is fully 

determined. This gives rise to molecular frame photoelectron angular 

distributions (MFPADs). The same applies if final quantum numbers are not fully 

resolved, which requires then a sum over those not observed. 

To make things more precise, let us consider the fixed nuclei approximation and 

the electrons only. Given a molecule with a point group symmetry and irreducible 

representations (𝜆𝜇), and considering a single electron (independent particle 

approximation), one can write the eigenstates of the Hamiltonian 

 𝐻𝛹𝑖𝜆𝜇 = 𝐸𝑖𝜆𝛹𝑖𝜆𝜇 (5.88) 

 in the discrete spectrum, and 

 𝐻𝛹𝐸𝑗𝜆𝜇 = 𝐸𝛹𝐸𝑗𝜆𝜇 (5.89) 
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in the continuum spectrum (notice the index j that counts independent channels 

(angular momenta) within each symmetry (𝜆𝜇)). Alternatively the continuum state 

may be characterized by the electron asymptotic momentum �̅�. Note moreover 

that because of the infinite degeneracy of the continuum, different asymptotic 

conditions may be employed, to uniquely fix the solution. Since calculations are 

more easily carried out with wavefunctions in real form, employing the molecular 

symmetry, the so called K-Matrix normalized solutions 𝛹𝐸𝑗𝜆𝜇 will be obtained. It 

will then be necessary to transform from one boundary condition to another, and 

between the angular and the momentum eigenstates, which amount to linear 

transformations between different sets, as explained before. 

Thus, the time propagation provides a final wavepacket: 

 

𝜙𝐼 ≡∑𝜙𝐼𝜆𝜇
𝜆𝜇

 (5.90) 

which we represent expanded on symmetry adapted components 𝜙𝐼𝜆𝜇 (in general, 

external interaction will produce a mixing of different symmetries). On the other 

hand, the continuum states have to be computed: 

 

𝛹𝐸𝑗𝜆𝜇 →∑[𝑓𝑙
𝑗′
(𝑘𝑟)𝛿𝑗′𝑗 + 𝑔𝑙𝑗′

(𝑘𝑟)𝐾𝑗′𝑗
𝜆 ]𝑋𝑗′𝜆𝜇

𝑗′

 (5.91) 

(or equally 𝜓𝐸𝑗𝜆𝜇
−  or 𝜓�̅�

−). To compute the transition probablity, it is necessary to 

calculate the projection of the final wavepacket on these free field eigenstates. 

 

𝑃𝐸𝑗𝜆𝜇,𝐼 = ⟨𝛹𝐸𝑗𝜆𝜇|𝜙𝐼⟩ = ⟨𝛹𝐸𝑗𝜆𝜇|𝜙𝐼𝜆𝜇⟩ 
(5.92) 

Now, let us define the primitive basis: 

 
{𝜒𝑛𝜆𝜇} = {𝜒𝑝𝑖𝑗𝜆𝜇} 

(5.93) 

where 𝑝 is the index of a shell of equivalent centers (atoms), 𝑗 is the index of 

angular functions 𝑋𝑗𝜆𝜇in symmetry (λμ), and 𝑖 is the index of the radial B-spline 

𝐵𝑖. 
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The overlap matrix 𝑆𝑚𝑛
𝜆 is diagonal in λμ and independent of μ: 

 𝑆𝑚𝑛
𝜆 = ⟨𝜒𝑚𝜆𝜇|𝜒𝑛𝜆𝜇⟩ (5.94) 

The final wavepacket at 𝑡 (end of the pulse) is expanded as a linear combination 

of the bound basis functions (which are zero at the outer boundary): 

 

𝜙(𝑡0) =∑∑𝑐𝑛𝜆𝜇𝜒𝑛𝜆𝜇
𝑛𝜆𝜇

 (5.95) 

K-matrix normalized continuum states are also expanded in the primitive spline 

basis where now the {𝜒𝑝𝑖𝑗𝜆𝜇} basis includes the asymptotic ones (i.e. those 

nonzero at the outer boundary). 

 

𝛹𝐸𝑗𝜆𝜇 =∑𝑑𝐸𝑗𝜆𝜇𝜒𝑛𝜆𝜇
𝑛

 (5.96) 

Note also that the 𝑑 coefficients are independent of 𝜇. Then the projection is 

simply: 

 

𝑃𝐸𝑗𝜆𝜇(𝑡0) =∑𝑑𝐸𝑗𝜆𝜇
∗ 𝑆𝑚𝑛

𝜆 𝑐𝑛𝜆𝜇
𝑚𝑛

 (5.97) 

Now it is possible to evaluate the probability 𝑃�̅�, after transforming the 

amplitudes to incoming wave boundary conditions. 

 
𝑑𝑃

𝑑�̅�
= 𝑐𝑜𝑛𝑠𝑡 |⟨𝛹

�̅�

(−)
|𝜙𝐼⟩|

2

=∑𝐴𝐿𝑀(𝛺)𝑌𝐿𝑀(�̅�)

𝐿𝑀

 (5.98) 

and the total cross section 𝜎, the angular distribution parameters 𝛽 or 𝐴𝐿𝑀, the 

averages over molecular orientations, energy distribution of electrons, angular 

distributions (𝛺 specifies orientation of �⃗�  with respect to the molecule). The 

latter, in particular, is obtained by computing 𝐴𝐿𝑀(𝛺) for all the energies and then 

applying it by using the interested angles.  
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5.3. Computational details  

From the computational point of view, a typical calculation requires: 

 diagonalize the Hamiltonian for the initial state. The input file needs: the 

coordinates of the atoms, the symmetry group and the basis (radial grid and 

angular grid). 

 Compute the dipole matrices starting from eigenvectors obtained by the 

previous step. 

 Choose both the gauge of the electromagnetic field and the energy cut off 

threshold. 

 Time propagation, giving in input: intensity of the electromagnetic field, 

photon energy, duration of the pulse, Krylov dimension and time step. 

 Analysis of the wavepacket obtained by the time propagation projecting it 

on the continuum. Thus probability density (photoelectron spectrum) and 

angular distribution can be obtained. 
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5.4. Results 

5.4.1. Hydrogen atom 

Once the algorithm is built, it needs to be tested. To do this, the hydrogen atom is 

used as benchmark. There are several studies about the photoionization of the 

hydrogen atom. The best one we can use to test our results is that one published 

by Cormier and Lambropoulos in 1996 [82]. They calculated the above-threshold 

ionization photoelectron spectra with the aim to study the electromagnetic field 

gauge invariance within the quantum mechanics. 

This calculation is performed using a peak intensity equal to 3.16 ∙ 1013  
𝑊

𝑐𝑚2
 , 24 

optical cycles and a photon energy equal to 2 eV (𝛾 = 2.45, 𝑧 = 0.57, 𝑈𝑝 =

1.13 𝑒𝑉). The basis has been built employing 10 angular momentum, 𝑅𝑚𝑎𝑥 has 

been fixed to 3000 and 3000 knots have been used. In figure 5.1, the 

photoelectron spectrum obtained under these conditions is reported. It shows 

several peaks that decrease in intensity increasing the electron energy.  

This graph shows the probability of finding electrons emitted around a given 

energy by a multiphoton process. In this case, it indicates the ionization process 

caused by the absorption of at least eight photons. This kind of graphs are often 

reported using the logarithmic scale, thus the features of these trends can be 

observed more accurately. Figure 5.1 shows the comparison between the 

photoelectron spectra obtained by our algorithm and the one published by 

Cormier and Lambropoulos.  

Cormier and Lambropoulos spectrum is obtained by digitalizing that one shown in 

the article, so its accuracy could be a bit compromised. Apart from this, Figure 5.1 

shows a perfect agreement between our results and those ones reported in the 

literature.  
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Figure 5.1: Photoelectron spectrum of hydrogen atom computed using a peak intensity equal to 

3.16 ∙ 1013  
𝑊

𝑐𝑚2
 , 24 optical cycles and a photon energy equal to 2 eV. The spectrum is reported in 

linear scale (Figure a) and in logarithmic scale (Figure b).  In the latter, our calculation is shown in 
red, the one reported by Cormier and Lambropoulos [82] in black, and the calculation performed 
using the exact wavefunctions in dotted line. All the calculation are performed in velocity gauge. 

 

 

a 

b 
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An interesting property is the presence of substructures on the right side of the 

lowest peaks which can be explained by intermediate resonances. The absorption 

of at least eight photons when the field is at its maximum value leads to excitation 

of high-lying Rydberg states and can enhance ionization at exact resonance. 

In Figure 5.1, a further calculation is reported. This kind of calculation, called 

“Elspec”, is performed using the exact wavefunction of the system. This is 

obviously possible only for the hydrogen atom. This demonstrates that our method 

properly works and can accurately describe at least the time-dependent 

photoionization of the simplest quantum system.  

This algorithm is not only capable of computing the photoelectron spectrum, but it 

can also provide angular distributions. In fact, through photoionization, one can 

follow the evolution of the system, and angular distributions related to an oriented 

molecule provide more information than any other observable. In the case of the 

hydrogen atom, there is obviously no orientation. So, standard one-photon 

photoionization furnish angular distributions that show two symmetric lobes 

(𝛽 = 2). Whereas with these condition, different energies produce different 

angular distributions, which can provide a lot of information on the considered 

system.  

Cormier and Lambropoulos have also computed the angular distributions at some 

energies; in particular, they have reported to those ones relative to the first 10 

peaks of the photoelectron spectrum. In the Figure 5.2, the comparison between 

our angular distributions (in red) and those ones calculated by Cormier and 

Lambropoulos (in black) is reported. One can observe that there is a full 

agreement between the results. 
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Figure 5.2: Angular distributions of the first ten peaks of figure 5.1b, in black those reported 

by Cormier and Lambropoulos [82], in red those ones calculated with our algorithm. 
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Angular distributions are often reported in a polar mode in order to observe more 

accurately eventual changes on the distribution. In fact, from the figure 5.3, where 

the angular distributions of the first ten peaks are plotted in a polar mode, we can 

observe a less structured shape by increasing the energy of the corresponding 

peak. In particular, the little secondary lobes present in the centre of the angular 

distribution of the second peak (S=2) become larger at every peak, until they 

incorporate the principal lobes.  
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Figure 5.3: Angular distributions of the first ten peaks of the figure 5.1b plotted in polar mode. 
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To accurately test our algorithm, we have performed a more demanding 

calculation on the hydrogen atom. This has also been done by Cormier and 

Lambropoulos [69] one year after the previous calculation in order to study the 

convergence of the results with respect to the critical parameters. This calculation 

is performed using a peak field equal to 2 ∙ 1014  
𝑊

𝑐𝑚2
, 24 optical cycles and a 

photon energy equal to 2 eV (𝛾 = 0.97, 𝑧 = 3.59, 𝑈𝑝 = 7.17 𝑒𝑉). The basis has 

been built employing 30 angular momentum, 𝑅𝑚𝑎𝑥 has been fixed to 3250 a.u. 

and 6000 knots have been used. The resulting photoelectron spectrum is reported 

in Figure 5.4, where our calculation is shown in red and that one performed by 

Cormier and Lambropoulos in black. 
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Figure 5.4: Photoelectron spectrum plotted in logarithmic scale of the hydrogen atom 

computed using a peak field equal to 2 ∙ 1014  
𝑊

𝑐𝑚2
, 24 optical cycles and a photon energy 

equal to 2 eV. In red is shown our calculation, in black the one reported by Cormier and 

Lambropoulos, and in dotted line the calculation performed using the exact wavefunctions. 

All the calculations are performed in velocity gauge. 
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Also in this situation, a good agreement between the results is achieved, except 

for high energies where one can observe a shift between them; this can be due to 

the bad digitalization of the article.  

The same consideration done for the previous graph is valid also in this case: a 

clearly visible plateau cannot be observed, but a definite change of the slope is 

evident around 1.5 a.u.  

For these calculations on the hydrogen atom, a study of the convergence has been 

done in terms of the box size, number of B-splines, angular momenta, Krylov 

space dimension, threshold energy and other parameters. The results obtained can 

be considered convergent. To study the behaviour of the distribution of the 

electrons as increasing the energy, three angular distributions relative to three 

peaks (at 0.918, 2.086 and 2.899 a.u.) have been computed and reported in the 

following figure: 
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Comparing the results obtained by our discrete time-dependent method with those 

ones obtained with the perturbation theory for the hydrogen atom in a long laser 

pulse with low intensity field, one can verify the accuracy of our method. The 

field intensity used is 1∙ 1010  
𝑊

𝑐𝑚2
 with a pulse duration of 20 fs (𝛾 = 359, 

𝑧 = 0.71 ∙ 10−7, 𝑈𝑝 = 0.19 ∙ 10
−5 𝑒𝑉). The photon energy goes from 0 a.u. up to 

2.5 a.u. Within these conditions, one of the observables that can be computed for 

Figure 5.5: Angular distributions computed for three energies: 0.918, 2.086 and 2.899 a.u. 
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the one-photon (N=1) and two-photon (N=2) ionization is the cross section, which 

could be calculated by the TDSE ionization probabilities with the following 

expression [81]: 

 
𝜎(𝑐𝑚2𝑁𝑠𝑁−1) = (

𝜔

𝐼
)
𝑁 𝐶(𝑁)

𝑇
𝑃𝑖𝑜𝑛
𝑇𝐷𝑆𝐸 

𝐶(1) =
8

3
      𝐶(2) =

128

35
 

(5.99) 

where 𝜔 is the photon energy in Joules, 𝐼 is the laser intensity in W/cm
2
, 𝑇 is the 

laser duration in seconds and 𝐶(𝑁) is a dimensionless factor that considers the 

time dependence of the pulse envelope. 

In Figure 5.6, the one-photon ionization cross section obtained by the time-

dependent propagation (in red) and that one obtained by the perturbation theory 

(in black) are reported [99].  

The figure shows the full agreement between the perturbative and the TDSE 

results in the photon energy range considered. The cross section obtained by the 

time-dependent propagation gets closer to the perturbative propagation by 

increasing the pulse duration.  

This can be done for the two-photon process as well. In Fig. 5.7, cross section 

obtained with the TDSE method (in red) and the accurate perturbative result 

obtained by Karule [100] (in black) for the two-photon ionization are compared. 

Figure 5.7 shows that there is a perfect agreement for values of energy higher than 

0.5 a.u. unlike at lower energies where the agreement is not so accurate. This is 

due to the finite duration of the pulse: in fact, the singularities of the energies 

below the threshold ionization are smoothed by the pulse bandwidth. 

These results exhibit a good functionality of our algorithm, which is capable to 

describe the above-threshold ionization in condition of a short pulse duration. The 

latter has to be shorter than the time that the wavepacket needs to reach the 

boundary of the box, where the system is confined. 
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Figure 5.6: One-photon cross section calculations as function of photon energy. In red dots the 

cross section calculated through the TDSE ionization theory and in black that one calculated by 

the perturbation theory. 

Figure 5.7: Two-photon cross section calculations as function of photon energy. In red the 

cross section calculated through the TDSE ionization theory and in black that one calculated 

by Karule [100]   
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5.4.2. 𝐻2
+ and 𝐻𝑒𝐻++ 

Once the case of the hydrogen atom has been tested, the next system that can be 

examined is represented by the dihydrogen cation. Even at this stage, finding in 

literature some results that can be used as comparison is difficult. This is a clear 

indication that these kind of calculations are really demanding and interesting in 

this research field. 

Two calculations have been done for the case of 𝐻2
+: the first one under the 

condition of a weak field and the second one under that one of a strong field. The 

strong field calculation is made with a field intensity equal to 2∙ 1014  
𝑊

𝑐𝑚2
, a pulse 

duration of 6 optical cycles and a photon energy equal to 800 nm. In this condition 

the system is in the multiphoton above-threshold ionization regime, so we expect 

that several peaks may be observed. In Figure 5.8, the photoelectron spectra 

obtained by this calculation (red) is compared to that one obtained by J. Förster 

[101] (black) which uses the elliptic coordinates. The elliptic coordinates are 

particularly appropriate for this calculation, but they can be obviously used only 

for diatomic molecules. Our method, on the other hand, can be used for all the 

symmetries.  

The graph shows a good agreement between the two methods: this proves that our 

algorithm works also by considering molecules as target systems, even though for 

the case of the simplest one. Note that the calculation is performed in the velocity 

gauge, and the two gauges implemented do not give the same results. In Figure 

5.8, the different photoelectron spectra obtained by the velocity (red) and by the 

length (green) gauges is plotted.  
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Figure 5.8: Photoelectron spectrum of the  𝐻2
+ under a field intensity equal to 2∙ 1014 𝑊/𝑐𝑚2, a 

pulse duration of 6 optical cycles and a photon energy equal to 800 nm. In figure a, in red the 
photoelectron spectrum calculated by our algorithm is reported and in black the one calculated by 

J. Förster [101] using elliptic coordinates is reported. Both are reported in logarithmic scale. In 
figure b Photoelectron spectrum calculated in velocity gauge (red) and that one calculated in 

length gauge (green) are reported in logarithmic scale. 

 

 

a 

b 
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As said before, a calculation on a weak field has also been computed. This 

calculation uses a field intensity equal to 1 ∙ 1011  
𝑊

𝑐𝑚2
, a pulse duration of 20 fs 

and a photon energy equal to 1.4 eV. In figure 5.9, the resulting photoelectron 

spectra are shown.  

 

One can observe from this graph the one-photon ionization peak at a value of 

electron energy of about 0.3 a.u. and the two-photon ionization peak at energy of 

about 1.7 a.u. This demonstrates that the spacing between the two peaks 

corresponds exactly to the value of the photon energy. This type of calculation can 

also be obtained using perturbative theory: this has been done to have an 

additional proof of the good quality of our method. 

These conditions imply a short pulse; as a consequence, it is possible to calculate 

the photoionization cross section from the TDSE ionization probabilities by using 

Figure 5.9: Photoelectron spectrum in logarithmic scale of the 𝐻2
+ under a field intensity equal 

to 1 ∙ 1011  
𝑊

𝑐𝑚2
, a pulse duration of 20 fs and a photon energy equal to 1.4 eV. 
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the Expression 5.9. In this case, only the cross section relative to the one-photon 

𝑘𝜎𝑢 transition can be computed. The latter is plotted in red in Figure 5.10 versus 

the cross section calculated with the stationary method.  

 

 

There is a good agreement between the two methods also in this case; this 

demonstrates, once more, the capability of our algorithm to describe both 

ionization regimes in condition of a short pulse duration. 

  

Figure 5.10: Cross section related to the one-photon 𝜎𝑢 transition of the 𝐻2
+ as function of 

the photon energy. In red dots the cross section calculated through the TDSE ionization 

theory and in black that one obtained by the perturbation theory. 
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In order to assess whether the time-propagation algorithm is well behaved, it has 

been decided to test the final wavepacket through the coefficients that describe it. 

This has been done starting with 𝐻𝑒𝐻++ which is a system more complicated 

with respect to the 𝐻2
+ molecule.  

Two studies have been made: the first one (parallel) with carrier envelope phase 

(CEP) equal to zero and the second one (antiparallel) with CEP=1. In Figure 5.11, 

the coefficients of the final wavepackets obtained through a time propagation that 

uses a peak field equal to 2∙ 1016  
𝑊

𝑐𝑚2
, a pulse duration of 2 optical cycles and a 

photon energy equal to 800 nm are shown. These two results are compared to 

those ones obtained by J. Förster [101]; differences between the two results are 

difficult to find, even by analysing more accurately the figures. 
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Figure 5.11: Final wavepackets coefficients obtained by a time propagation that uses 

a peak field equal to 2∙ 1016  
𝑊

𝑐𝑚2
, a pulse duration of 2 optical cycles and a photon 

energy equal to 800 nm. The wavepackets coefficients obtained by our calculation 

are reported in red, while those ones obtained by J. Förster [101] are reported in 

black. Both of them are shown in logarithmic scale. 
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5.4.3. 𝑁𝐻3 

NH3 has been studied to observe the ionization yield as a function of the angle 

between the electromagnetic field and the molecular axes. In Figure 5.12, the 

ionization yield of NH3 is reported. This study has been done to verify the 

periodicity of the ionization yield by rotating the field around the C3v axis. This is 

shown by the orange and the yellow curves in Figure 5.12; in fact, the periodicity 

of these results is 120°. The circular rotation of the electromagnetic field, that is 

also implemented, provides a shift on both the curves. This is shown in Fig 5.12b, 

where the yellow and the orange curves are related to different polarized light, and 

one is shifted with respect to the other one. Note that the different polarization of 

the light does not affect the rotation through the 휃 angle. 

 

 

  

Figure 5.12: NH3 ionization yield as function of the angles of the molecule. In figure a, 

the ionization yields as function of the θ angle with right and left polarized light are 

reported in blue and black, respectively; in yellow and orange the ionization yields 

are reported as function of the θ angle with right and left polarized light. On the right 

figure, we highlight a portion of the left figure a. 

Both of them are shown in logarithmic scale. 
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5.4.4. 𝐻2𝑂 

We have also performed TDSE calculations for the water molecule. Ionization 

yield has been computed for several laser intensities and compared to the result 

reported in literature [102]. We focused on the HOMO 1b1, by studying a pulse of 

8 optical cycles and by setting the photon energy to 800 nm. Once the final 

coefficients are obtained, one can compute the total ionization yield by following 

the Expression 5.22. The result is shown (in red dot) in Figure 5.13 compared to 

that one reported in literature. 
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Figure 5.13 shows that these two results are in good agreement at high values of 

the field, but not at low values. The convergence of our results has been tested by 

Figure 5.13: 𝐻2𝑂 ionization yield for the 1b1 transition as function of the intensity of the field. In 

red is reported our calculation, in black is reported the one in literature
1
. Both the axis are in 

logarithmic scale. 
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changing both the time step and the Krylov dimension. In fact, the value of these 

two variables do not affect the final wavepacket. The length of the radial grid 

(Rmax) is a further variable that could affect the ionization yield. The convergence 

of the ionization yield has been studied by considering Rmax equal to 300, 600 and 

1000 atomic units; the results obtained at several field intensities are reported in 

Table (5.1). One can note that a good result is achieved by setting Rmax just to 300 

a.u. 

 
Ionization yield 

Field intensity 

(W/cm
2
) 

Rmax = 300 a.u. Rmax = 600 a.u. Rmax = 1000 a.u. 

2 ∙ 1013 1.04124 ∙ 10−8 1.04755 ∙ 10−8 1.04946 ∙ 10−8 
3 ∙ 1013 2.53605 ∙ 10−7 2.53641 ∙ 10−7 2.53660 ∙ 10−7 
5 ∙ 1013 6.04260 ∙ 10−6 6.04332 ∙ 10−6 6.04521 ∙ 10−6 
7 ∙ 1013 4.35182 ∙ 10−5 4.36963 ∙ 10−5 4.37594 ∙ 10−5 
1 ∙ 1014 3.73609 ∙ 10−4 3.74174 ∙ 10−4 3.74112 ∙ 10−4 
3 ∙ 1014 5.11064 ∙ 10−2 5.12331 ∙ 10−2 5.12204 ∙ 10−2 
5 ∙ 1014 2.22122 ∙ 10−1 2.22673 ∙ 10−1 2.22694 ∙ 10−1 
7 ∙ 1014 4.92168 ∙ 10−1 4.93606 ∙ 10−1 4.93601 ∙ 10−1 

 

The photoelectron spectrum is more sensitive to the length of the radial grid with 

respect to the ionization yield: in fact, a too short grid can cause the electron to 

bounce back. Photoelectron spectra obtained at 2 ∙ 1013 (Figure 5.14a), 1 ∙ 1014 

(Figure 5.14b) and 5 ∙ 1014 (Figure 5.14c) W/cm
2 

are reported in Figure 5.14 in 

logarithmic scale for different values of Rmax. If we consider a water molecule 

exposed to a field of intensity 2 ∙ 1013 W/cm
2 

(Fig. 5.14a), the probability 

intensity profile is atypical. It is worth noting that the scale of the probability 

density is really short. The oscillations become less evident at larger values of 

Rmax. This result suggests us that these oscillations are just due to a numerical 

error. This is confirmed by the distance between different oscillations, which is 

much smaller than the photon energy (~0.06 𝑎. 𝑢.). Furthermore, the curve 

relative to Rmax = 1000 a.u. shows a minimum at about 0.02 a.u., that is not visible 

Table 5.1: 𝐻2𝑂 1b1 ionization yield for different length of the radial grid as function of the 

intensity of the field. 
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in the other curves. As a consequence, it is possible to argue that the structures 

that should be visible in all the curves are hidden by numerical errors. The 

oscillations become less evident at larger values of Rmax also for field of intensity 

1 ∙ 1014 W/cm
2
. Convergence is reached at Rmax = 600 a.u. In fact, the difference 

between the values calculated at Rmax = 600 a.u. and Rmax = 1000 a.u. is not so 

evident. Figure (5.14b) with Rmax = 600 a.u. or Rmax = 1000 a.u. shows a typical 

trend of the photoionization spectra: the spacing between different peaks is of the 

order of the photon energy and the profile is decreasing. In this case, the scale of 

the electron energy starts from 0 a.u. up to 1 a.u. 

The last spectrum we have considered is that one with a value of field intensity of 

5 ∙ 1014 W/cm
2
 (figure 5.14c). In this case, it is evident how increasing the value 

of Rmax causes much smoother oscillations. In the smaller box inside the figure, 

we consider the same profile just at low energy and we can observe oscillations 

even for Rmax = 600 a.u. The profile calculated at Rmax = 1000 a.u. does not 

exhibit any oscillations. The profile at Rmax = 300 a.u. shows a similar trend only 

at low energies, while the profile at Rmax = 600 a.u. follows that one at Rmax = 

1000 a.u. up to 0.8 a.u. Judging from the absence of fast oscillation and the 

smoothness of the profile, one can expect the result reported to be fully 

converged. In this case, although it should be interesting to use a larger value for 

the length of the radial grid in order to ensure the convergence at higher energies, 

the computational cost is huge: 256 processors, 500 GB and 24 h are in fact 

needed to perform one calculation with Rmax = 1000 a.u. 
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Figure 5.14: 𝐻2𝑂 photoelectron spectra in logarithmic scale for different field intensities: 2 ∙ 1013 (a), 1 ∙ 1014 (b) 

and 5 ∙ 1014 (c) W/cm
2
. All the calculations are performed using a pulse of 8 optical cycles and a photon energy 

equal to 800 nm. This is done for three different length of the radial grid: 300 (in black), 600 (in red) and 1000 (in 

blue) atomic units. 
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Following the profile of the photoelectron spectrum as a function of the intensity 

of the field is of great interest. In order to do this, photoelectron spectra obtained 

with several intensities of the field are reported in logarithmic scale in Figure 

5.15. For the presence of numerical errors, the first two graphs (2 ∙ 1013 and 

3 ∙ 1013 W/cm
2
), as already mentioned, have not a particular physical meaning. 

However, in the graph 3 ∙ 1013 W/cm
2
, we can observe a slight oscillation in the 

average trend that is less evident in the graph 2 ∙ 1013 W/cm
2
. Although 

characteristic structures show up in the 5 ∙ 1013 W/cm
2 

graph (Fig. 5.15c), they 

are not well resolved. Nevertheless, we can see that the spacing between different 

structures is about of the order of the photon energy (~0.06 𝑎. 𝑢). This is more 

evident in the spectrum recorded at 7 ∙ 1013 W/cm
2 

(Fig. 5.15d) where the peaks 

become less pronounced above 0.4 a.u. The spectrum related to the field with an 

intensity of 1 ∙ 1014 W/cm
2
 presents well resolved peaks, which are regularly 

spaced by the value of the photon energy. In this case, the peaks are visible only 

until 0.6 a.u. The higher intensity spectra show more structured and irregular 

profiles where, as before, the spacing between subsequent peaks corresponds to 

the value of the photon energy, with a strong increase in the photoionization 

probability density. 

As already mentioned in the previous chapter, this algorithm provides the 

possibility to obtain the angular distributions at one given energy. In figure (5.16), 

the angular distributions of the energies related to the first 9 peaks of the 

photoelectron spectrum obtained with an intensity of the field equal to 1 ∙ 1014 

W/cm
2
 (figure 5.15e) are reported. Peaks at low energies show a dispersion of the 

emitted electron, while at higher energy the two lobes on the left represent the 

major part of the distribution.   
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Figure 5.15: 𝐻2𝑂 photoelectron spectra in logarithmic scale for different field intensities:  

2 ∙ 1013 (a), 3 ∙ 1013 (b), 5 ∙ 1013 (c), 7 ∙ 1013 (d), 1 ∙ 1014 (e), 3 ∙ 1014 (f), 5 ∙ 1014 (g) and 7 ∙ 1014 (h) W/cm
2
.  

All the calculations are performed using a pulse of 8 optical cycles, a photon energy equal to 800 nm and 

Rmax=1000 a.u. 
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Figure 5.16: Angular distributions of the first nine peaks of the photoelectron spectrum obtained with an intensity of the 

field equal to 1 ∙ 1014 W/cm
2
 (Figure 5.15e). 
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On 𝐻2𝑂 we started a collaboration with the group of professor Bernard Piraux 

(Louvain) for the benchmarking of the a new computationally less expensive 

method [103] to study, always within the single active electron (SAE) 

approximation, the interaction of a complex system with an intense ultrashort 

laser pulse. This approach is based on a model that was first developed to treat the 

interaction of atomic hydrogen with an electromagnetic pulse [104] in the 

momentum representation, where the main idea is to replace the kernel of the 

Coulomb potential by a sum of N symmetric separable potentials, each of them 

supporting a bound state of the system. This method, which is called SPAM 

(Separable Potentials for Atoms and Molecules), allows one to reduce the 4-

dimensional time-dependent Schrödinger equation (TDSE) to a system of N 1-

dimensional Volterra integral equations depending only on time. As a result, the 

integration over the spatial coordinates which, in some cases, requires 

prohibitively large grids or bases, is completely avoided. Each separable potential 

may be calculated from the exact wave function of the atomic state it supports. 

However, its analytical expression is not always unique. In this method the 

HOMO is generated in terms of Gaussian type orbitals by means of the well 

established quantum chemistry software package GAMESS(US) [105]. It is then 

straightforward to move to the momentum space and to define the corresponding 

separable potential. It provides results for the electron energy spectra that compare 

very well with those obtained by solving the TDSE with the exact Coulomb 

potential in situations where the number of essential atomic states playing a 

significant role is low. By moving from the momentum space to the configuration 

space, it is easy to show that the separable potentials have a finite range. Let us 

note that once the separable potentials are determined, the continuum states are 

automatically defined and, being solutions of the same equation as the one 

satisfied by the exact bound states taken into account in the calculations, they are 

orthogonal to these bound states. The absence of the intermediate states in the 

SPAM model means however that regimes where these states are important, like 

low frequency ionisation, cannot be treated accurately. Nevertheless, the SPAM 

model allows one to make predictions for any complex system, where the 
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aforementioned approximations are adequate, in the single photon regime. The 

model is very scalable, so the limits on the size of the system are given by the 

hardware resources. 

In order to have some idea about how accurate is the prediction of the SPAM 

model for high frequencies, we ran the SAE-TDSE code shown in this thesis in 

different photoionization regimes and compared the ionisation yield prediction of 

these two SAE models (see Figure 5.17). A significant difference between these 

models is the fact that for SAE-TDSE the full coulomb potential has been taken 

into account in generating the orbital basis, thus the SPAM result has been 

corrected with a constant factor. In fact, for high frequencies we can approximate 

a Coulomb wave with a plane wave. It turns out that using plane wave instead of 

Coulomb wave is equivalent to introducing a constant factor. This factor is not "ad 

hoc" as it can be derived from the dipole matrix elements in the case of a 

Coulomb wave and a plane wave final state of the ionising system.  

Both ionisation yields are normalised to 1. In fact, we have perfect agreement 

between these models for high frequencies, and poor agreement for the photon 

energies near the ionisation threshold. This can be explained by the fact that SAE-

TDSE uses 6000 Kohn-Sham orbitals to propagate the wavefunction, while in 

SPAM there are no any intermediate state at all. This discrepancy could be 

reduced by including the lowest unoccupied orbital in the SPAM calculation. 

Note that, in Figure 5.18, the corrected SPAM coincides with SAE-TDSE in a 

wide intensity range as well. This agreement of the corrected SPAM model and 

SAE-TDSE approach in a wide intensity and frequency range indicates that the 

SPAM correction factor does not depend on intensity and on frequency.  
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Figure 5.17: (Colour online) Dependence of the ionisation yield of two water molecule models on 

the photon energy for a sine squared pulse of 2 cycle duration and 4 ∙ 1014 W/cm2 peak 

intensity. The solid line has been obtained by using the SPAM method, the dots show the results 

of SAE-TDSE calculation. 

Figure 5.18: Dependence of the ionisation yield of two water molecule models on the laser 

pulse peak intensity for a sine squared pulse of 6 cycle duration and 5 a.u. photon energy. The 

solid line has been obtained by using the SPAM method, the dots show the results of SAE-TDSE 

calculation. 
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6. Conclusions 

This thesis has studied photoionization processes from a theoretical perspective 

with the aim of increasing the number of the describable phenomena involving in 

such processes. This aim has been achieved by using and implementing methods 

focussed on the treatment of  correlation effects and non-perturbative 

photoionization regime.  

The first part of the thesis has been dedicated to correlation effects within the 

bound states. Since a standard DFT method does not permit to study any 

correlation effect, it is necessary to use Configuration Interaction (CI) method to 

describe both the neutral initial state and ionic final state. More specifically, 

Complete Active Space Self-Consistent Field (CASSCF) procedure coupled to a n-

electron valence state perturbation theory (NEVPT2) procedure has been applied. 

By the superposition between final and initial wavefunctions, one can define 

Dyson orbitals. The most frequent evidence of electron correlation is the presence 

of additional bands, called satellite bands, in the photoelectron spectra. It is 

known that photoelectron spectrum of both CO and CS presents well-resolved 

satellite bands. Thus, the structure of satellite bands in these molecules as in 

further isoelectronic molecules (CSe and SiO) has been studied. The position of 

the satellite bands in CS and CSe stays at lower 𝐼𝑃 values compared to the second 

sigma primary ionization state 2𝛴, whereas in CO and SiO it stays at higher 𝐼𝑃 

values with respect to the 2𝛴 band. For all the four considered molecules, 

dynamical photoionization observables (i.e., cross sections and asymmetry 

parameters) have been calculated for the first four ionization states, by comparing 

the results so obtained to those ones got by standard DFT method, Dyson orbital 

approach and HF method. Satellite bands can be taken into account only by the 

Dyson approach, which has proved to be able to properly describe also the other 

ionization states. A further significant result refers to DFT method, which, despite 

its mono-determinantal nature, is able to treat a small part of correlation although 

not to treat strong correlation effects, such as those ones present in the first two Σ 
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primary ionization states of the SiO molecule. The formalism has also been 

applied to the 𝑂3 molecule in a collaboration aimed to study ultra short electron 

motion after coherent excitation of the GS and the B excited state by an 

appropriate laser pulse. As a probe we have considered time resolved 

photoelectron spectra obtained by a subfemtosecond UV pulse, in preparation for 

a further collaboration with an experimental group. A clear signature of the 

wavepacket evolution is predicted, and its angular dependence has been 

investigated, as reported in a joint publication [106].   

In the second part of the thesis, the implementation of an algorithm to calculate 

two-electron integrals in the LCAO B-spline basis with the aim to treat all the 

many-electron effects has been illustrated. This has been done to fully express the 

final wavefunction within the Close-Coupling (CC) formalism that permits to also 

describe correlation effects involving continuum states. In particular, the integrals 

have been calculated by solving the Poisson equation. A test on the product 

between B-splines and orbitals has been carried out to ensure that the electron 

density can be expanded in the B-splines basis set providing the best possible 

compromise between truncation errors and computational cost. The program has 

been tested by comparing two-electron integrals for selected MOs obtained by the 

presented algorithm to the corresponding integrals calculated by using the 

MOLPRO quantum chemistry package. The comparison, reported in Table 4.1, 

has shown a good agreement between the two results. This represents a first but 

extremely relevant step to completely describe the wavefunction with the Close-

Coupling formalism.  

The third part of the thesis has been focused on the non-perturbative phenomena. 

To study these phenomena, the implementation of an algorithm to solve Time-

Dependent Schrödinger Equation (TDSE) has been carried out. In the method that 

will be presented, time-evolution is discretized in subintervals sufficiently small 

so that the Hamiltonian approximately becomes time-independent. Since the 

diagonalization at each step is not computationally feasible, an appropriate small 

local basis is provided by Lanczos-Arnoldi method. The final wavepacket, derived 
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by time propagation, is then projected onto the continuum states calculated with 

the DFT method. In this way, photoelectron spectrum and MFPADs can be 

obtained. The program has been accurately tested by comparing our results to 

those ones reported in literature. An intensive study has been done on the 

hydrogen atom: photoelectron spectra calculated with different pulse parameters 

have been compared to those ones reported by Cormier and Lambropoulos. All 

the spectra, in addition to the angular distributions, have proved to be correct. This 

method can intrinsically treat also the perturbative phenomena. An evidence of 

this has been made by studying both one-photon and two-photon ionizations of 

the hydrogen atom. This method has also been tested on some molecular systems. 

The final wavepacket of 𝐻𝑒𝐻++ has been successfully compared to the one 

calculated by another research group. Photoelectron spectra relative to molecules 

under strong field and short pulse are really difficult to be found in literature, even 

in the case of 𝐻2
+: this demonstrates the rarity and then the importance of this kind 

of calculations. Two different studies on 𝐻2
+ have been done: the first by 

employing a strong field and the second with a weak field. Strong field 

photoelectron spectrum has been compared to that one obtained by using elliptical 

coordinates, which are appropriate just for such systems. The calculation with a 

weak field has been applied in the case of one-photon ionization. The resulting 

cross section has been compared to that one obtained by the perturbative method. 

NH3 has been studied to observe ionization yield as a function of the angle 

between the electromagnetic field and the molecular axes, verifying that the 

periodicity of the ionization yield by rotating the field around the C3v axes 

amounts to 120°. Ionization yield of the 𝐻2𝑂 HOMO 1b1 has been calculated as a 

function of the intensity of the field and it has been used as benchmark for a new 

computationally less expensive method implemented by another research group 

we started a collaboration with. Several photoelectron spectra of this molecule 

have been calculated at different intensity of the field, with particular attention to 

the convergence of the results by varying the length of the radial grid. Several 

angular distributions have also been reported. 
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To conclude, this thesis collects the implementation of several algorithms based 

on the use of B-splines as basis functions; these efficient functions have 

contributed to the improvement of the theoretical knowledge about 

photoionization processes, making possible the description of both many-electron 

phenomena due to correlation effects and non-perturbative phenomena due to 

strong field radiations. Moreover, the algorithms built can be efficiently used in 

parallel computing. As a consequence, this study has improved the amount of 

cases that can be treated and that can be compared to experimental data. 
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