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Abstract 

DNA origami nanotechnology engineers DNA as the building blocks of newly conceived 

self-assembled materials and devices. Due to its high degree of customization and its 

precise spatial addressability, DNA origami provides an unmatched platform for nanoscale 

structures and devices design.  

Gold nanoparticles (AuNP) have been largely investigated because of their peculiar optical 

properties and in particular their localized surface plasmon resonance (LSPR) that modifies 

significantly the electromagnetic environment in a thin shell around them, and provides a 

tool with unrivalled potential to tune the local optical properties. 

The combination of DNA origami frameworks and AuNP into DNA based-plasmonic 

nanostructures offers a concrete approach for optical properties engineering. It has been 

successfully applied to design biosensor and to enhance Raman scattering or fluorescence 

emission. Moreover, it has been exploited to design molecular ruler in which the inter-

particle gap is controlled with nanometric precision through the transduction of the 

conformational changes into univocally detectable optical signals. 

In this thesis I present my PhD work which aims at the design of an environment-

independent AuNP decorated-DNA origami. A tetrahedral DNA shape structure has been 

selected for its three dimensional robustness and thus a DNA origami prototype has been 

assembled, characterized with SEM, TEM and AFM to verify the proper folding of the 

structure. The origami has been equipped with an actuator probe which recognizes a 

specific target oligonucleotide inducing a structural reconfiguration of the tetrahedron. To 

detect the conformational change triggered by the hybridization event, I functionalized the 

origami with two gold nanoparticles placed in two opposite facets at a known distance of 

10 nm: the change of the interparticle gap is effectively transduced in a LSPR shift. This 

working principle has been verified with optical extinction measurements and the 

interparticle distance reduction has been confirmed by SEM imaging and SAXS analysis 

performed in the SAXS beamline of Elettra Synchrotron, thus confirming that the 

operation of the device and its transduction mechanism are the same no matter of the 

external conditions, being them dry, liquid or solid. 

In the first part of this thesis I will introduce you to DNA origami technology and AuNPs 

decoration using a rectangular shape nanostructure used for the working conditions 

optimization. The peculiar and robust shape of the DNA origami rectangle can be exploited 

as a platform to evaluate AuNP-DNA origami linkage and purification.  



7 

 

Successively, I will walk you through the core of my PhD project: how the synthesis, the 

purification, and the AuNP decoration of the tetrahedral DNA origami have been 

optimized, all the characterization performed on the structure and the results obtained with 

the different analysis. 

Finally, I will present a collateral activity performed in collaboration with the University of 

Melbourne, in which we encapsulate DNA origami in a Metal Organic Framework (MOF). 

The protection offered by the crystal growth around biomolecule, in this case DNA 

origami, would enhance the half-life of the DNA origami structure addressing a topic, 

DNA-origami conservation, not yet considered in literature.   
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1 Introduction 

1.1 DNA Nanotechnology: origin and applications 

1.1.1 The molecule of life  

The deoxyribonucleic acid or DNA is the polymer responsible of the genetic information 

storage. The molecule is composed by fundamental blocks called nucleotides characterized 

by three specific units: a sugar, a phosphate group and a base. The pentose sugar in the 

form of ß-D-2-deoxyribose is connected through carbon 5′ to tri-phosphate group and 

through carbon 1′ to the base. The bases are nitrogen-containing ring molecules classified 

as the derivatives of two parent compounds: pyrimidine and purine. While pyrimidines are 

composed by an aromatic heterocyclic compound and are uracil (U), cytosine (C) and 

thymine (T), purines consist of a pyrimidine ring fused to an imidazole ring and are 

adenine (A) and guanine (G). Phosphodiester bond between nucleotides induces the loss of 

two of the three phosphate groups, providing the energy content necessary for the reaction 

which forms the linear filament of DNA.  

Nitrogenous bases hydrogen bind opposite DNA filaments to form the rungs of the 

"twisted ladder" or double helix of DNA following rigid base-paring rules, in particular 

adenine is always paired with thymine through two hydrogen bonds while guanine is 

always paired with cytosine through a stronger connection due to the third hydrogen bond 

(Figure 1.1a).  

 

 

Figure 1.1 a) Atomic model of DNA molecule; b) Photograph 51, first X-ray diffraction image of DNA taken by a PhD 

student of Rosalind Franklin in 1952. 

 

Single strand DNA is a reactive molecule, but the possibility to share hydrogen bonds 

between filaments stabilizes the polymer through the formation of a double helix structure. 

a) b) 
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The interaction and the spatial organization of the DNA is further strengthen by the 

hydrophobicity of the bases which are arranged within the structure and by the 

hydrophilicity of the phosphoric-sugar backbone which is placed outside. The 3D 

configuration of DNA was figured out by Rosalind Franklin in 1952 through X-ray 

diffraction analysis (Figure 1.1b); one year later Watson and Crick published a paper on 

Nature describing the most widespread B form of double-helix [1]. They observed a 

periodicity of about 0.34 nm among residues, with a rotation between adjacent nucleotides 

of ~ 34°, completing one turn around its axis every 10.4 - 10.5 base pairs with an helical 

diameter of 2.0 - 2.2 nm. In this repetitive 3D geometry it is possible to recognize minor 

groove and major groove, the latter is wider and represents the anchor point for many 

DNA-binding proteins. The hetero-polymer is directional because of the asymmetry of the 

sugar which has four carbon inside the cyclic structure and the fifth is outside and also 

because of the phosphate group position, involved in the link with carbon 5′. This 

directionality is maintained in the replication of the molecule, in the content and in the 

reading of genetic information.  

The molecule of DNA is the designed material for the information storage and 

propagation, representing the genome of sub-living virus, one-cell prokaryotic organism up 

to more complex and evolved eukaryotic live organisms as human being. 

In the eukaryotic cells, DNA is stored inside the nucleus and despite it is well protected by 

a strong barrier called nucleus membrane, it can receive external stimuli, rework them 

together through the help of dedicated proteins and chemo-physical input, in order to 

formulate the response and depending on the requirement the whole cell expression can be 

modified. 

The double-helix has a stable configuration which allows a calculated half-life of 521 

years; the pairing of the helices through base-stacking interactions is energetically favored, 

promoting a long-term stabilization of the molecule. 

The recognition affinity, the programmability and the mechanical properties of the DNA 

triggered researchers to employ it not only as a biological target but also as an effective 

material opening a completely new prospective in the nanotechnology field.  

 

1.1.2 DNA Nanotechnology 

DNA molecule can assume different spontaneous geometries enabled by the extraordinary 

bending and rearranging properties: B form, the most common in nature, A form, typical of 
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dehydrated conditions and Z form promoted by alternating purine-pyrimidine sequence 

(especially poly(dGC)), negative DNA supercoiling or high salt concentration. 

The versatility of DNA is fundamental for the evolution process because it allows the 

genetic information exchange. In 1964 Robin Holliday described a key intermediate in 

many types of genetic recombination composed by four DNA single strand junctions 

reassumed in a X structure where all the duplex pairing are in the classical B form. This 

particular configuration allows symmetric arrangement of sequences around the junction 

through the sliding of two double helix. At the beginning of 80’s Ned Seeman 

demonstrated that immobile nucleic acid junctions could be artificially created by properly 

design the strand sequences to remove symmetry in the assembled molecule [2], and that 

these immobile junctions could in principle be combined into rigid crystalline lattices. 

 

 

Figure 1.2 a) Formation of: (i) DX from double the reciprocal exchange of two dsDNA, (ii) TX from the 2 reciprocal 

exchange between DX and a third dsDNA; b) Formation of PX by the strands exchange of two double helices at every 

possible point where the filaments come into proximity (figure taken from [3]). 

 

By using these stable branched DNA motifs, a range of DNA tiles such as double-

crossover (DX), triple crossover (TX) [4] and paranemic (PX) [3] were designed and 

fabricated: double crossover contains two helical domains connected twice, triple 

crossover molecule is generated by two reciprocal exchanges between a helix of the DX 

molecule and another double helix (Figure 1.2a) [5], and paranemic are described by the 

strands exchange of two double helices at every possible point where the filaments come 

into proximity (Figure 1.2b). The resolution of these structures can be effected either by 

joining the filaments of the same polarity either by joining strands of different polarity. 

a) 

b) 
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The rigidity of the DNA tiles allows to build up more complex and large nanostructure like 

cubic architecture composed by eight 3-arm junctions [6] a truncated octahedron (Figure 

1.3a,b) [7] and Borromean DNA rings [8].  

 

 

Figure 1.3 a) DNA cube shows that it contains six different cyclic strands. Each nucleotide is represented by a single-

colored dot for the backbone and a single white dot representing the base (figure taken from [6]). b) A truncated 

octahedron contains six squares and eight hexagons. This is a view down the fourfold axis of one of the squares. Each 

edge of the truncated octahedron contains two double helical turns of DNA (figure taken from [7]). c) Formation of a 

two-dimensional lattice from an immobile junction with sticky ends (figure taken from [9]). 

 

The ability to produce different kind of structures ranging from 1D to 3D, stimulates both 

the arrangements of different objects together and the development of DNA dynamic 

devices fundamentally based on the molecular transition triggered by various stimuli. The 

building up of composed structures starting from an elemental block was performed 

through the formation of periodic patterns (Figure 1.3c) fabricated exploiting the sticky-

end cohesion and the rigidity of DX which is considered higher than dsDNA and Holliday 

junction (Figure 1.3c) [9].  

 

 

 

 

 

 

 

 

 

Figure 1.4 a) Design of DX molecular structure and arrangement into 2-D lattices consisting of four logic units (figure 

taken from [10]; b) Schematic of walker locomotion. Colored spheres represent dyes (HEX, green; Cy5, purple; FAM, 

red; Texas Red, blue) and quenchers (BHQ1, orange; IBRQ, black) for detecting walker movement: the sequentially 

addition/ removal of target strands produces the progressive attachment to the branches along the path (figure taken from 

[11]). 

 

b) a) 
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Winfree and colleagues, for example, tiled a plane alternating DX module and a second 

DX module that projects out of the plane of the helix axis (Figure 1.4a) [10]. DNA 

dynamic nano-machine have attracted large interest both because they are responsive to 

chemical or biochemical stimuli, and because they can be fueled with metal ions, enzymes, 

protons or complementary strands. One popular example is the DNA walker, powered by 

DNA strands hybridization (Figure 1.4b). In 2004 Pierce and coworkers developed a 

bipedal DNA motor which was able to walk in a predescribed path step-by-step through 

the addiction and the removal of specific targets and monitoring it through multiplex 

fluorescence quenching [11]. Recently Idili et al, designed efficient pH nanoswitches based 

on intramolecular triplex of DNA structures containing pH-sensitive parallel Hoogsteen 

interactions, and demonstrated the possibility to tune the pH of about 5 pH units by 

changing the relative content of TAT/CGC triplets [12].  

Thanks to its versatility, in the last decades DNA nanotechnology attracted an increased 

interest from multiple scientific fields reaching an high know-how level and even more 

awareness of the potentialities it offers.  

 

1.2 DNA origami technology 

1.2.1 The initial design 

Tile-based DNA nanostructures is a promising method for building lattices, crystal or 3D 

structures, but there are some drawbacks: first it needs the design and the check of the 

sequence at each assembling steps and second the production of high order nanostructure 

with a precise control over the shape and size is very challenging. To overcome these 

technical limitations, a new self-assemble strategy has been developed in 2006 by Paul 

Rothemund and it is named DNA origami technology. The term origami refers to the old 

Japanese art of paper folding into a complex shape but instead of papers it uses only DNA 

[13]. 

Employing hundreds of synthetic short single-strand DNA it is possible to induce the 

folding of a long circular viral scaffold strand (M13mp18; 7,249 bases) through the 

arrangements of periodic crossovers. The complexity of the achievable structures breaks 

the limit in length of the tile assembly and lead to the formation of more intricate 

architectures. In his famous paper published on Nature, Rothemund describes the main 
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steps for the design of DNA origami: the planning of the shape of interest, the folding of 

circular scaffold strand, the design of a set of oligonucleotides strands, called staples, the 

minimization of the strain, and the domain expansion of the DNA strands with the scaffold 

in order to achieve higher specificity and higher binding energy.  

The scaffold strand is allocated to run back and forth as if the whole area of our shape 

should be painted without detaching the brush from the paper. The presence of a "seam" 

allows the folding of the circular scaffold strand and it is placed, usually, in the center of 

the structure to keep high stability but could be shifted in accord to the shape complexity. 

The structural design, as introduced by Rothemund, is based on slightly stretched DNA 

parameters: rather than assuming 10.5 base pairs (bp) per turn (which corresponds to 

standard B-DNA twist), it uses an integer number of bases between periodic crossovers 

(for example, 16 bp for 1.5 turns). Once the shape is designed, it can be completely filled 

from top to bottom with pair of parallel cylinders, idealizing DNA helix, with a diameter of 

2 nm and a length of 3.6 nm (10.67 nts), which approximately represents one turn of the 

helix (Figure 1.5a). To hold the cylinder together, a periodic array of crossover is added; 

crossovers can occur every 1.5 turn but, in general, any odd number of half-turns helix can 

be used (Figure 1.5b). The fundamental constraint on a folding path is that the scaffold can 

form a crossover only at those locations where the DNA twist places it at a tangent point 

between helices. Thus for the scaffold to raster progressively from one helix to another and 

onto a third, the distance between successive scaffold crossovers must be an odd number of 

half turns. Conversely, where the raster reverses direction vertically and returns to a 

previously visited helix, the distance between scaffold crossovers must be an even number 

of half-turns.  

The parallel helices organized in a lattice and joined by crossover are not closed-packed 

probably because of electrostatic repulsion: the calculated inter-helix gap is around 1 nm 

for 1.5-turn spacing and 1.5 nm for 2.5-turn spacing. This model approximates the desired 

shape with a nanometer xy resolution as shown in Figure 1.5a. The minimization and 

balancing of twist strain between crossovers is complicated by the non-integer number of 

base pairs per half-turn (5.25 in standard B-DNA). To reduce the strain, the twist of 

scaffold crossovers is calculated and their position is changed (typically by a single bp). 

To fold the scaffold into a specific conformation, a set of helper strands called staples is 

added, providing Watson-Crick complements with the scaffold through crossovers between 

adjacent helices (Figure 1.5c). 



14 

 

 

Figure 1.5 Design of DNA origami (figures taken from [13]). a) shape (red) approximated by parallel double helices 

joined by periodic crossovers (blue). b) A scaffold (black) runs through every helix and forms more crossovers (red). c) 

As first designed, most staples bind two helices and are 16-mers. 

 

To give the staples strands larger domain with scaffold, it is possible to merge pair of 

consecutive strands together, in order to increase the stability of the entire structure. The  

length of a staple strand should be a multiple of 16 when crossover spacing is 1.5 turn. 

Shorter oligonucleotides are affected by less hybridization stability while longer sequence 

can modify their diffusion and assembling rate. The optimal length can varies from 20 to 

50 nm. Moreover the presence of a seam can generate a weaker line in the structure and if 

no helper is crossing the seam, the two half of the architecture could be just weakly linked. 

To strengthen it, an additional pattern of merges and breaks can be used, imposing to an 

helper the crossing of the seam. Other tips regarding how to avoid accidental stacking of 

the structures have been supplied by the author. DNA origami shapes with straight edges 

have high probability to stick together at the edges since the DNA base-pairs exposed at 

the edge are highly hydrophobic and tend to stack to each other. To prevent this 

phenomenon the staples strands placed on the edges of the scaffold could be modified with 

4 thymines sequence (4-T loop) that forms a non-interacting loop. The M13mp18 loop 

structure (usually not included in the assembling pattern) can be exploited also to insert 

some points as dots for patterning the structure that are detectable by the height difference 

with atomic force microscopy. The latter modification firstly opens the possibility to 

decorate the DNA substrate. 

Each design needs around 200 oligos to fold the scaffold strand in the desired shape.  The 

assembly consists in one-pot reaction in which the temperature has a fundamental role: in 

the first step high temperature degrees help to dehybridizes secondary structures and 

aspecific binding then it gradually decreases to induce the assembling of  all the reagents in 

the most stable configuration, the one with higher free energy. Rothemund in his first 
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work, designed and successfully synthetized many 2D DNA origami (Figure 1.6), working 

also on the optimization of the folding protocol. 

 

 

Figure 1.6 DNA origami structures of different shape in Rothemund's work. Graphical representation of the scaffold 

strand position (first line), simulation of the final helices arrangements (second line) and AFM images (third and fourth 

lines) (figures taken from [13]). 

 

Even if DNA origami represents a revolutionary technology, it shows some tricky points: 

first the difficulty keeping track of thousands of sequences and second the unavoidable 

helical nature of DNA. In particular, it is fundamental to determine the crossover positions 

which should be as close as possible to the tangent between parallel helices. B form of 

DNA in nature, has a an angular twist each 10.5 bases while if constrained it can assume a 

slightly overtwisted or understwisted configuration. Moreover we should also consider the 

asymmetry of DNA double helix, which gives the characteristic major and minor grooves. 

In order to handle all these information, Rothemund used a clunky Matlab program for the 

design of DNA origami structure which presupposed hand-generated functions both for the 

drawing of the scaffold and for the design of crossovers and staples sequences. 

 

1.2.2 DNA origami software-assisted design 

During the last decade, the design of DNA origami structures has been automated by using 

suitable software that calculates the spacing of the double helix and the place where it is 
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possible to form DX crossovers. Usually, they also provide a graphical overview of the 3D 

structural assembly. The most used are SARSE-DNA origami, NanoEngineer-1, 

CaDNAno [14] and its evolution DEADALUS [15]. SARSE has been developed by Ebbe 

Andersen and colleagues in Aarhus, it is a free download software and it presents an user 

friendly interface and a 3D generator. The editing and the automatic folding with staple 

strands present some complexity and problems [16]. NanoEngineer-1 is an open source 

software to construct DNA folding designs, it is not user friendly and quite time 

consuming because the crossovers require to be added manually one by one. Shih and 

colleagues developed CaDNAno that is an open source design software based on the finite 

elements analysis performed by CanDo (Computer-Aided eNgineering for Dna Origami) 

previous developed by Mark Bathe from MIT [17]. The latter is the most used software to 

create DNA origami because its interface is simple and the process of folding is complete 

and automatic; there are two different lattices: "honeycomb" (Figure 1.7a) and "squared" 

(Figure 1.7b) depending on the desired structure. The second version of CaDNAno is 

based on the Autodesk Maya© platform and can create clear 3D graphical helices 

representations (Figure 1.7d).  

 

Figure 1.7 CaDNAno software interface: a) honeycomb lattice and b) square lattice c) design window representing 

scaffold strand (light blue lines) and staples strands (colored lines); d) simulation performed by Autodesk Maya of the 

DNA helices arrangements in a DNA origami structure (colors are consistent with the ones on caDNAno files). 

 

DAEDALUS (DNA Origami Sequence Design Algorithm for User-defined Structures) 

named as the Greek craftsman and artist who designed labyrinths that resemble origami’s 

complex scaffold structures, can build any type of 3D shape, provided it has a closed 

surface. With the new technique, the target geometric structure is firstly described in terms 

of a wire mesh made up of polyhedra, with a network of nodes and edges. A DNA scaffold 

using strands of custom length and sequence is generated, automatically guiding the 

routing of the DNA scaffold strand through the entire origami structure, touching each 

vertex in the geometric form once. Complementary staple strands are then assigned and the 
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final DNA structural model or nanoparticle self-assembles, and is then validated using 3D 

cryo-EM reconstruction. 

 

1.2.3 From 2D to 3D  

A direct extension of 2D DNA origami to 3D solid structures would involve the stacking 

of flat sheets of helices arranged in a square lattice. The multisquare lattice conceives that 

each helix has four neighbor in a fourfold symmetry (Figure 1.8a). DNA B form considers 

a complete rotation along helix axis each 10.5 bp, this implies that one helix can share a 

crossover with the same helix each 21 bp. It follows that crossover to the remaining three 

neighbors in the square lattice should be distributed with an average spacing of 21/4= 5.25 

bp. And this can be obtained using non-periodic crossover. A smart way to achieve a 

constant crossover periodicity is to assume that B-form DNA has an average helicity of 

10.67 bp/turn. Crossover may be placed in interval of 8 bp, sharing crossover with one of 

the four neighbor each 32 bp. The constant 8 bp cross-over spacing underwinds the DNA 

resulting in a twisting torque and causing a global twist deformation of the entire object 

[18]. To minimize this effect Dietz and coworkers observed that it is important to achieve a 

double-helix densities closer to 10.5 bp/turn or to create an object with high torsional 

stiffness which varies inversely with the length of the nanoparticle. Shih and Yan [19] 

analyzed the global twisting of DNA origami cuboids formed by multiple layers of parallel 

helices characterized by a different length (Figure 1.8 b-d).  

 

 

Figure 1.8 Multilattice DNA origami cuboid: a) in square lattice scheme each DNA helix has four neighbors displayed in 

fourfold symmetry (figure taken from [18]); b) helical model of the cuboid (scaffold in gray and staples in three shades of 

blue); c) layout and connection of scaffold strand and staples; d) the square-lattice arrangement of parallel helices is 

revealed in cross-sectional slices (i–iv) that are parallel to the xy-plane spaced at 8-bp intervals and repeating every 32 

bp. Staple crossovers are shown as white lines linking two adjacent helices at each cross section (figures b,c,d taken from 

[19]). 
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Cuboids composed by shorter helices are subject to a smaller internal torque and greater 

torsional stiffness, which means a little noticeable global twisting.  

Another way to design 3D DNA origami, as nanotubes and 3D wireframe polyhedral 

consists in the constraining of helices in a honeycomb lattice resulting in a bundle of 

double-helices [20]. This implementation in the design has led to the expansion of the 

possible shape with designed twist and curvatures. In the honeycomb array the helix has 

three nearest neighbors (Figure 1.9a). Every 7 bp, the strand rotates by 240°, assuming B-

form twist density of 10.5 bp/turn. After 14 bp and 21 bp, the rotation achieved is 

respectively 120° (+ 360°) and 0° (2 x 360°). Antiparallel crossover in the honeycomb 

symmetry can be engineered each 7 bp. The addressable curvature or twist in the shape are 

programmed through the introduction or the deletion of single base pair. The deletion of a 

bp, will introduce an overwinding of that fragment which will torque and pull its neighbors 

(Figure 1.9b).  

 

 

Figure 1.9 3D curved and bended DNA origami: a) in honeycomb lattice scheme each helix has 3 neighbors; b)  helices 

constrained in a honeycomb lattice: in semi-transparence staple strands crossovers with 3 neighbor helices are spaced by 

7 bp rotating the plane each time by 240°; on the right, array cell with default content of 7 bp, which exerts no stress on 

its neighbors; above, array cell with content of 5 bp, which is under strain and therefore exerts a left-handed torque and a 

pull on its neighbors; below, array cell with content of 9 bp, which is under strain and therefore exerts a right-handed 

torque and a push on its neighbors. c) from the left: 2 helix-bundles in which deletion or insertion of bp in the array cell 

(orange and blue parts) induce a global left-handed / right-handed twisting with cancellation of compensatory global bend 

contributions; 2 helix-bundles left in which in curvature and bending are accurately produced through gradient of bp 

deletion and insertion (figures taken from [20]). 

 

This effect is then relieved by compensatory global left-hand twist of the bundle. In the 

same way insertion of a base pair can induce a local underwinding balanced out by a global 
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right-handed twist of the bundle. By the formation of a gradient between deletion and 

insertion Dietz and Shih reached different degrees of curvature (Figure 1.9c). 

In addition of bended bundles or twisted lattices Dietz and colleagues created circular 

objects; using hierarchical assembly of small parts, a complete gear were developed as well 

as a toothed gear, six parts spiral, and a spherical wireframe. The spiral is essentially a 

continuum gradient with increasing radius of curvature of circle sections assembled [20] 

(Figure 1.10a). In 2011 Yan and coworkers completed the architectural possibilities of the 

curved 3D DNA origami creating a real spherical surface [21].  

 

 

Figure 1.10 a) Curved and twisted nano-objects as gears, toothed gears, triangles, spirals (figure taken from [20]); b) 2D 

nanoforms with accompanying AFM images, and 3D structures of hemisphere, sphere, ellipsoid and narrowed nanoflask 

visualized at TEM (figure taken from [21]).  

 

Concentric rings of DNA were used to generate in-plane curvature while, out-of-plane 

curvature was introduced by adjusting the particular position and pattern of crossovers 

between adjacent DNA double helices, whose conformation often deviates from the natural 

B-form twist density, and increasing the base pairs number. Adjusting the piling of these 

concentric rings incredible structures were developed such as spherical shells, ellipsoidal 

shells and narrowed nanoflask (Figure 1.10b). 

 

1.2.4 Wireframe structures and polyhedra 

The 2D and 3D DNA origami structures are most commonly designed through the 

alignment of parallel helices. The introduction of new motifs as DNA multiarm junctions 

allows the folding of wireframe architectures expanding the achievable configurations. 

Han et al. created wireframe DNA origami structure with a gridiron pattern [22]. The latter 
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was made by 4 arms-junction producing a square frame. Connecting more units together, 

they successfully produced a series of 2D lattices. Through the generation of 

tension/bending on the structure (described in the previous paragraph), they created 

curvatures to fold S structure and wireframe sphere (Figure 1.11a). The evolution of the 

method, was done by Zhang and colleagues by controlling the length of a T-loop inserted 

into the staple strands which surrounds the vertices to tune the angles amplitude and to 

create intricate structures such a flower-and-bird image (Figure 1.11b). In this design each 

edge contains two helices, so the scaffold strand should pass through the edges twice to 

connect all arms of the final object [23].  

 

 

 

Figure 1.11 a) (figure taken from [22]) and b): wireframe DNA structures made of 4 multiarm junctions. Scale bar 50 

nm (figure taken from [23]). 

 

The nanostructures produced were characterized by a rigid control over the angles degree, 

obtained through the hierarchical assembly of DNA origami tripods specifically arranged 

to form polyhedral architectures (Figure 1.12a).  

 

 

Figure 1.12 Design of wireframe polyhedral: a) hierarchical assembly of DNA origami tripods (polyhedral from 20 to 60 

MD) through sticky-ends cohesion, the different set of staples shaped tripods with different angles (figure taken from 

[24]); b) tetrahedron-shape DNA origami with flexible joints at the vertices and TEM visualization (figure taken from 

[25]). 
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Iinuma et al, proposed an efficient method to assemble differently angled tripod monomers 

to obtain structures ranging from tetrahedron (composed by 4 monomers) to hexagonal 

prism (composed by 12 monomers).  

The method is based on association sites consisting of sticky ends extensions protruding 

from the rigid bundles to form 3D polyhedron, whose inter-arm angles are tuned by 

supporting struts and strengthened by vertical helices. They were able to produce poly-

structures with a maximum molecular weight of 60 MDa [24]. 

A different approach to design wireframe 3D polyhedron was used by Smith and 

coworkers for the synthesis of a tetrahedral DNA origami structure (Figure 1.12b). The 

latter is composed by 6 six-helix-bundles connected at each of the four hinged vertices to 

the two neighboring bundles by a four-base single-stranded section of the circular scaffold 

extending between their termini. The tetrahedron benefits of great flexibility, can be 

produced with high yield of correctly assembly nanoparticle representing one class of 

structures which holds a broad relevance in applied nanoscience as potential container 

systems [25]. 

A new method to design arbitrary polyhedron and wireframe structures is based on the use 

of a new DNA origami design-assisted software called DEADALUS. Top-down geometric 

specification of the target shape is followed by fully automatic sequence design and 3D 

atomic-level structure prediction (Figure 1.13).  

 

 

Figure 1.13 Process of the design, synthesis and AFM, cryo-EM characterization of DNA origami platonic solid using 

DEADALUS (scale bar 20 nm) (figure taken from [26]). 

.  

Mark Bathe’s group demonstrated a versatile synthesis strategy to self-assemble complex 

nanoparticles which are stable in different buffers and in physiological conditions, offering 

the opportunity for their potential use in numerous in vitro or clinical applications [26]. 



22 

 

1.3 DNA origami Functionalization and Application 

The extraordinary properties of nucleic acids, like the programmability, the bp-affinity and 

the mechanical flexibility, allow the precise design and synthesis of multi-shaped objects 

with nanometer resolution. Oligonucleotides are also easy to modify by the addition of 

chemical groups, as thiol, amine, fluorophores and chemotherapeutic molecule. The 

annealing of few modified oligonucleotides in a DNA origami structure allows to precisely 

address molecules or more complex polymers to a focused binding site. Thanks to this, 

DNA origami has found a variety of applications, ranging from the engineering of devices 

to research on fundamental mechanisms in nanoscience. 

 

1.3.1 DNA origami for drug delivery 

Because of its biocompatibility, minimal cytotoxicity, programmability for targeted and 

controlled release, DNA origami is considered one of the most promising technology for 

drug delivery. Anyway, the DNA has to overcome the barrier of being digested by cellular 

nuclease, enzyme designated for the protection from host attacks through DNA 

fragmentation. It is indispensable that DNA origami remains intact in cellular environment 

before completing their delivery mission. In this way, Yan’s group observed that DNA 

origami structures survival for at least 12h in a cell lysate [27]. Moreover, the stability is 

maintained in tissue culturing [28], serum [29], in the presence of chaotropic agents [30] 

and organic solvents [31]. The aforementioned properties stimulated researchers to develop 

nanorobot for the transport of focused drugs that could kill cancer cells. Ding and 

coworkers loaded different shape of DNA origami with a doxorubicin chemotherapy  

molecule [32]. The latter intercalates DNA double helix inhibiting the cell proliferation. 

The load capacity is consistently high because of the numerous double helices present in 

the structures. This system has been able to kill specifically both the adenocarcinoma cells 

and tumor cell Dox-resistant, demonstrating a good antitumor efficacy also in a mouse 

model of the tumor. DNA origami is associable with other therapeutic methods as 

photothermal and photodynamic therapy. Ding and colleagues, associated a triangular 

shape DNA architecture with a gold nanorod and delivered the hybrid structure to MCF-7 

tumor cells [33]. By infrared irradiations, they generated an heating of the metal particle, 

able to kill tumor cells. The latter responds to the near infrared photothermal therapy and 

also improves the imaging qualities of tumor tissue. To demonstrate the use of DNA 

origami also for photodynamic therapy Zhuang and colleagues loaded the photosensitive 
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agent BMEPC through intercalation delivering the complex into the cell [34]. BMEPC 

produces free radical and singlet oxygen upon light irradiation to kill cancer cells and 

simultaneously destroys the DNA origami structure through photocleavage (Figure1.14a).  

The DNA origami before being a good carrier for drugs, is a good hauler for nucleotides. 

In nature there are some specific sequences able to stimulate immunosystem response. 

CpG islands are present with high frequency in bacterial genome with respect to 

mammalian’s one. Liedl and coworkers functionalized a DNA origami tube with 62 

cytosine-phosphate-guanine sequence to study immunoresponce on spleen cells [35]. The 

mammalian system is able to recognize them as foreign bodies and trigger the immune 

response. Thanks to this, CpG can be used as immunestimulatory response to improve the 

mammalian resistance from viral or bacterial attacks. CpG sequences directly injected in 

the organism are immediately degraded from nucleases, while the link with DNA origami 

not only protects them from digestion but enables the cellular membrane crossing, 

stimulating an important immunoresponse (Figure 1.14b).  

 

 

 

Figure 1.14 DNA origami for drug delivery: a) DNA origami triangle and nanotube can be used to load chemotherapic 

molecule, photosensitizer for photodynamic and gold nanorods for photothermal therapy (figure taken from [32,34,33]); 

b) DNA origami tubed loaded by CpG island stimulate immoresponse (figure taken from [35]); c) nanorobot with 

aptamers controlled-release containing antibody against leukocyte (figure taken from [36]); d) lipid bilayers coating of 

DNA origami octahedron to increase cell uptaken and to reduce the immuneresponse (figure taken from [37]). 
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To improve the target delivery specificity Douglas and colleagues built an aptamer-gated 

nanorobot (Figure 1.14c). Aptamers are specific DNA sequences which have high affinity 

for various molecular targets as proteins, virus and cells [36]. The DNA origami robot 

contained antibody fragments which fight leukocyte cells (HLA)-A/B/C. In the absence of 

the proper molecular target, the robot was inactive, but if it encounters the right key, it 

opened and exposed the antibodies. The antibodies can attack the receptors on the cell 

surface blocking the proliferation of the tumor. Bare DNA origami is scarcely uptaken by 

cells, because it presents some difficulty in the translocation across the cell membrane. 

Mikkida and coworker presented a method to incorporate DNA origami inside a viral 

capsid, increasing the internalization efficiency of more than 10 times [38]. Shih and 

colleagues, coated the surface of DNA structures using PEGylated lipid bilayers enhancing 

the pharmakokinetic bioavailability by a factor of 17, reducing by 2 orders of magnitude 

the immune activation (Figure 1.14d) [37]. 

 

1.3.2 Nucleic acid detection 

Molecular biology offers the possibility to analyze DNA or RNA fragments substantially 

through the (RT-) PCR amplification of the targets. The use of DNA origami as a chip for 

a punctual detection of the oligonucleotides arouses the interest to the analysis at single 

molecule level through microscopy. 

Single nucleotide polymorphisms (SNP) are the most common type of genetic variation 

among people. They have been found in the DNA between genes and they can act as 

biological markers, helping to locate genes that are associated with disease. Moreover, 

when SNPs occur within a gene or in a regulatory region near a gene, they may play a 

more direct role in disease by affecting the gene’s function. Seeman’s group, used a visual 

method to recognize SNPs based on a strand displacement reaction and AFM origami 

patterns [39]. One single strand hybridized a ssDNA protruding from a double strand helix 

end thanks to a partial or full complementarity. Initially the hybridization involved single 

strands parts, also called toehold and continued with branch migration to displace the 

shorter helix forming the initial double strand. The branch migration process is strongly 

affected by the length of the toehold as well as the perfect complementarity between 

strands. The presence of a mismatch could dramatically reduce the hybridization process 

acting as a kinetic trap. A rectangular shape DNA origami chip, containing four different 
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alphabetical patterns of strands overhung from the surface, was designed and synthetized 

(Figure 1.15a). 

 

 

 

Figure 1.15 Nucleic acid detection: a) of SNP using a DNA origami array patterned with 4 letter containing ssDNA 

protruding from the surface which differ just from 1 base, the presence of SNP in the ssDNA added dramatically 

decreases the hybridization inducing the disappearance of the letter (figure taken from [39]); b) hybridization kinetic in 

DNA origami array where oligonucleotides are spaced 44 nm and 5 nm detected through FRET (figure taken from [40]). 

 

Each pattern is made up the same DNA sequence but with a single nucleotide in the same 

position. The invading DNA strand can match just with the fully complementary sequence 

on the alphabetic pattern, inducing the disappearance of the letter under AFM.  

To improve the knowledge of the kinetic behavior of the DNA hybridization, Walter and 

co-workers studied through FRET the rate of ds pair/unpair both in a crowded neighbor 

environment and in an empty surrounding [40]. Single target strands are positioned in a 

DNA origami array separated by 44 nm in the empty chip while 5 nm in the crowded one.  

They figured out that the dissociation rate of a target strand is reduced by an order of 

magnitude in the densest oligo array. Two mechanisms were proposed to explain the slow 

dissociation: the movement and the hybridization between adjacent sequences on the 

origami surface and the salt bridges attractive electrostatic interactions of the oligos with 

the DNA origami pegboard (Figure 1.15b).  

 

1.3.3 Biophysical study using DNA origami  

The forces investigation on the biological sample is useful for a complete knowledge of 

sophisticated mechanisms. The most commonly used techniques are atomic force 

microscopy or optic/magnetic tweezers. Necessary to analyze the elasticity of the cell 
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membrane or the dehybridization of the dsDNA, they suffer for limited data throughput 

and require for a physical connection to the macroscopic world. The design of a nano-

spectroscopy can overcome these disadvantages, allowing the forces analysis at single-

molecule level. Nickel and colleagues designed a force clamp to study the mechanical 

forces involved in the molecular interaction [41]. The structure used (Figure 1.16a) 

resembles to a potato peeler in which the supporting structure is made with rigid DNA 

origami and the blade is represented by a ssDNA spring. The entropic spring behavior of 

the ssDNA was used to exert controlled tension in the low piconewton range on a 

molecular system, whose conformational transitions were monitored by single-molecule 

Förster resonance energy transfer. They first tested the device with the conformer 

switching of a Holliday junction as a benchmark to study the TATA-binding protein-

induced bending of a DNA duplex under tension. The observed bending suppression of 

above 10 piconewtons provides further evidences of mechanosensitivity in gene regulation.  

 

 

Figure 1.16 Biophysical study with DNA origami: a) molecular force spectroscopy using DNA origami nanoclamp, in 

the right side each constant-force variant, individual origami samples were assembled (figure taken from [41]); b) 

measurement of base pair stacking force through rigid DNA origami bundles (figure taken from [42]).  

 

Dietz and coworkers used a DNA origami architecture to study the forces of base stacking 

at single molecule level [42]. They substituted a DNA origami structure to an optical 

tweezers to precise position blunt end of helices and to measure the weak base stacking 

forces (Figure 1.16b). The system was composed by two sets of parallel helices used to 

study the base pair stacking forces and by a rigid bundle of DNA origami supporting the 
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blunt end which reduced the background present at low forces range. One flexible 

connection mildly joined the two counterparts in order to increase the frequency of 

binding/rebinding. The hybridization of the bases was studied in different Mg
2+

 

concentrations: 20 mM, which represents the in vitro environment concentration for the 

DNA origami synthesis and 500 mM which represents the cell contents. In this way they 

demonstrated that in both conditions the forces exerted present a sequence dependent rule: 

a stronger stacking (-3.42 kcal/mol) occurred with GC/CG and a weaker stacking (-0.81 

kcal/mol) between AT/TA.  

 

1.3.4 DNA origami templated architecture 

DNA origami nanotechnology offers the possibility to rearrange with nanometer-scale 

precision nano-object as carbon nanotubes, metal particles and metal rods. The fine 

organization of metal particles in well-defined geometries and distances permits to exploit 

their unique optical and electrical properties. Metal nanoparticles can be chemically 

modified with DNA sequences which specifically recognize the strand protruding from the 

DNA origami surface. To ensure a robust bond and to address with higher precision the 

object on the DNA origami structure, more than one strand come out from the binding site 

on the surface. Yan and coworkers found a novel method to arrange gold nanoparticle on a 

triangular shape DNA origami, demonstrating that they can control the position and the 

number of the nanoparticles attached (Figure 1.17a) [43,44]. This pioneering work, opened 

the way for the analysis of novel properties. DNA origami, for example, was used to study 

the distance-dependence of single fluorophore quenching [45] by gold nanoparticles. Liedl 

and coworkers, utilized a rigid DNA origami scaffold as a linker to assemble metal NP, 

quantum dots and organic dyes into hierarchical nanocluster with planet-satellite-type 

shape (Figure 1.17b). Using DNA origami with different length, it was possible to tune the 

inter-particle distance of 5-200 nm. Moreover nanoscale components can be positioned 

along the radial DNA spacers of the nanostructures, which allows short- and long-range 

interactions between nanoparticles and dyes to be studied in solution [46]. To better 

control the geometry of the NPs arrangement, Gang et al assembled nanoparticles into 

crystalline and open 3D frameworks by connecting them through designed DNA-based 

polyhedral frames (Figure 1.17c). Polyhedral 3D DNA origami frames, whose vertices 

connected DNA-encoded NPs [47,48], facilitated the establishment of local particle 

coordination that results in the formation of 3D ordered NP–DNA frameworks. Five 
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different DNA origami polyhedral frames, including octahedron, cube, elongated square 

bipyramid, prism and triangular bipyramid geometries, were built using six-helix-bundle 

edges with lengths (depending on the frame shape) from 30 to 45 nm. The designed DNA 

frames thus connect NPs at their vertices, establishing the overall lattice topology based on 

frame geometry. The different crystal lattice achieved were characterized both with cryo-

EM and with small angle x-ray scattering analysis confirming the construction of the 3D 

nanoparticle lattice. Metallic nanoparticles, have surface plasmonic resonance affecting a 

small surrounding area. Mie and Prodan [49] predicted that the metal nanoparticle can 

absorb light and a plasmonic coupling can occur if the distance between them is short 

enough. In particular, the plasmonic coupling requires the edge-to-edge distance to be less 

than 2.5 times the particle diameter [50].  

 

 

Figure 1.17 a) Gold nanoparticle arrangement in a triangular shape DNA origami platform (figure taken from [43]); b) 

Rigid DNA origami scaffold as a linker to assemble metal NP, quantum dots and organic dyes into hierarchical 

nanocluster with planet-satellite-type shape (figure taken from [46]); c) ssDNA functionalized AuNP linked to the 

vertices of DNA origami polyhedral frames: octahedron (a1), elongated square bipyramid (b1), cube (c1) and prism (d1) 

and X-ray scattering structure factor, S(q), extracted from the 2D SAXS pattern (abcd-3) and the proposed superlattice 

structures (the experimental scattering profile is in blue and the model fitting is in red) (figure taken from [48]). d)  

nanorods arranged in a triangular DNA origami with different inter-rod orientation inducing a red-shift of the absorbance 

peak position respect to the monomeric construct (figure taken from [51]). 
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DNA origami is an ideal platform to address the assembling of plasmonic nanostructure 

with new optical properties. Klein and coworkers, for example have used a DNA origami 

scaffold to align a series of 10 nm gold nanoparticles separated by 14 nm for visible 

spectrum subdiffraction plasmonic wave-guiding [52]. When the metal-nanostructure 

assembly is asymmetric, its plasmonic coupling can interact with the incident light 

according to the chirality of the assembled plasmonic structure. Yan’s group reported a 

DNA origami-templated plasmonic nanostructure by arranging gold nanorod dimers in 

different inter-rod angles (Figure 1.17d). UV/vis spectra showed that angular orientations 

between the rods of 180°, 60° induced a red-shift of the absorbance peak position with 

respect to the monomeric construct, 0° on the other hand causes 5.5 nm blue-shift [51]. 

The simulated model well matches with experimental results. Chiral plasmonic structures 

were obtained also through the arrangement of gold nanoparticles or rods in helical 

superstructures. Liedl and coworkers have helically organized 9 binding sites for the 

nanoparticle attachment in a 24-helix bundle. The optical response can be tuned in 

handedness, color and intensity [53] in accordance with the theoretical model. The same 

effect was obtained by folding a rectangular shape DNA origami with a diagonal 10 nm 

gold nanoparticles-arranged in a tubular way [54].  

 

 

Figure 1.18 a) DNA origami metamolecule: the strand displacement induces the angle change of the AuNR, generating 

b) the switchable variation of the CD signal attributable to either a left- or right-handed state (figures a and b taken from 

[55]). c) Nanoantenna DNA origami with 2 AuNPs spaced several nm enhanced the fluorescence intensity in a plasmonic 

hotspot (figure taken from [56]). d) DNA origami decorated with a AuNP dimers to enhance Raman signal; optimization 

of the size and Au-Ag shell composition increases Raman enhancement by 1010 (figure taken from [57]). 
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Strand displacement reaction makes the plasmonic structure reconfigurable and dynamic. 

Liu and co-workers have created reconfigurable 3D plasmonic metamolecule using a 

dynamic DNA nanostructure, consisting of two connected DNA bundle, to organize two 

gold nanorod (AuNR) (Figure 1.18a).  

Fueled by specific strands, the device movement caused the relative angle change between 

the AuNR, generating the switchable variation of the CD signal attributable to either a left- 

or right-handed state (Figure 1.18b) [55].  

Plasmonic structures can create a strong local field that enhances the brightness of the 

dye’s fluorescent emission when the dye is placed at a specific local spot, called hotspot. 

The nanoantenna concept, indeed, enhances the excitation field in a very small local area, 

to direct single-molecule emissions [58] and to increase quantum yield for the detection of 

quantum yield-dye [59]. Tinnefeld and colleagues constructed a nanoantenna by 

positioning two gold nanoparticles with a distance of several nanometers on a DNA 

origami to enhance the dye fluorescence intensity in a plasmonic hotspot [56]. A 220 nm 

long and 15 nm wide pillar-shape DNA origami is attached to a surface through biotin-

streptavidin interaction. Two AuNP and a fluorescent dye were immobilized in a defined 

positions imposed by the capturing strands. When the dye was positioned in a gap of 23 

nm between a dimer of 100 nm AuNP, the fluorescence was enhanced of 117-fold (Figure 

1.18c). They demonstrated that this system can be used for the single-molecule analysis to 

detect the binding or the unbinding events of a short strands, as well as the dynamic 

conformational changes of the DNA Holliday junction dyed with FRET reporters. 

Improvements on this DNA-based nanoantenna allowed to reach 5000-fold fluorescence 

enhancement, achieving a single-molecule detection limit of 25 μm. A Surface-Enhanced 

Raman Spectroscopy signal can be amplified using the same system. Bald’s group, indeed, 

used a triangular shape DNA origami as a platform for the positioning of AuNPs dimers 

with a gap distance of 25 nm. Thanks to this approach they revealed several molecules by 

SERS [60]. Optimizing the size and the composition of Au-Ag-core shell nanoparticles, 

they reached a Raman enhancement of 10
10

 (Figure 1.18d) [57]. 

 

1.3.5 Moveable DNA origami structures 

DNA origami structure can be also reconfigurable: the accurate design of the components 

constituting the whole project allows various structural rearrangements and conformational 

changes. This fundamental property can be exploited with a double purposes: the creation 
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of a nanorobot which switches after the appropriate stimuli, and the plan of a dynamic 

device which is able to detect specific targets. One pioneering work in this field has been 

the design of a 3D box made up by the assembling of 6 DNA origami squares with a 

dynamic lid [61]. It had a “lock-and-key” system to control the closing and opening of the 

lid based on the hybridization of ssDNA positioned both on the edges of the lid and on the 

main structure (Figure 1.19a). At the initial point the box was closed because the ssDNA of 

the lid duplexes with the sticky-end extensions to provide a toehold for the strand 

displacements. The key, represented by a ssDNA, separated the hybridized strands and 

opened the lid. The box can be loaded and it specifically released its cargo after a proper 

stimulation. Marini and coworkers [62] demonstrated the autonomous and reversible 

motion of a DNA origami hatch which contained an internal moveable disk (Figure 1.19b). 

The internal flexibility of the disk is caused by unpaired regions, the hybridization with an 

hairpin ssDNA complementary to a DNA probe caused the wings aperture. Adding a linear 

competitor strand with more affinity for the probe than the target, the wing closed and the 

initial configuration was reestablished. The system was initially detected through FRET 

and AFM imaging.  

 

Figure 1.19 a) DNA origami box with lock-and-key system to control the opening of the lid (figure taken from [61]). b) 

Reconfiguration of a  DNA origami hatch through strand hybridization, detection is performed with FRET (figure taken 

from [62]). c) DNA origami hatch with one moveable wing, decorated with two 20 nm- AuNP positioned between the 

hatch aperture. The addition of a specific target hybridizing the actuator strand induce the hatch aperture, increasing 

distance between NPs determining a blue-shift in the peak position of the absorbance. The system is reversible (figure 

taken from [63]).    

 

AFM analysis showed the hole upon the addition of the hairpin molecule; the mechanism 

was implemented by Piantanida who used a similar structure with only one wing decorated 
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with two gold nanoparticles, positioned between the hatch aperture (Figure 1.19c) [64]. 

The motion induced by the addition of different strands (target/competitor) was detected 

through LSPR analysis: a blue shift is visible for all the targets with respect to the control. 

The plasmonic metamolecule planned by Liu and coworkers and described in the previous 

paragraph is an example of how switchable DNA origami structures can be used to 

reconfigure plasmonic properties. Castro and colleagues implemented the mechanical 

principle of macroscopic engine to plan nanomachineries capable of complex 3D motion. 

These DNA origami robots are made up three constituents: a hinge, a slider, and a crank-

slider [65]. A ssDNA was used as a connection cable to control the slider by varying its 

length, determining different stiffness and range of motions (Figure 1.20a).  

 

 

Figure 1.20 DNA origami nanorobot: a) ssDNA controls the slider by varying its length, determining different stiffness 

and range of motions. TEM images confirm the expected behavior (scale bar 100 nm) (figure taken from [65]). b) 

Dynamic nanorobot made up by heterotrimeric constituents differently assembled, by the changes of Mg2+ concentration, 

switching between three state: disassembled, assembled with open arms and assembled with closed arms (figure taken 

from [66]). c) A DNA origami robot consisting of four arms in a rhombus shape that can control distances between 

interacting molecules (figure taken from [67]). 

 

The design with shorter connections resembled a linear spring with a stiffness of 0.42 

pN/m, while the design with longer strands exhibited a non-linear force/extension trend 

with a stiffness of 0.07 pN/m at a shorter extension and 0.21 pN/m at a longer extension. 
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Dietz and coworkers planned a reconfigurable dynamic nanorobot made up by 

heterotrimeric constituents which can be differently assembled by the changes of Mg
2+

 

concentration [66], switching between three states: disassembled, assembled with open 

arms and assembled with closed arms (Figure 1.20b). 

Ke and colleagues designed a nanoactuator which consisted of four rigid arms of DNA 

origami connected in a rhombus shape (Figure 1.20c). DNA origami nanoactuator used 

mechanical linkages to copy distance changes induced on one half (‘the driver’) to be 

propagated to the other half (‘the mirror’). To actuate the surface two different mechanisms 

were used. A locking ssDNA hybridized the strands protruding from two of the four arms, 

regulating the distance between the connecting sites and the angles of rhombus. The 

addition of an hairpin target induced a long range conformational change to the device. 

This system was checked to induce the formation and the separation of a split green 

fluorescence protein demonstrating tunable fluorescent behaviors via long-range allosteric 

regulation. The second mechanism, indeed, considered the use of a compressed spring to 

maintain the system closed, locking it in two different positions. The locking can be due to 

molecular interactions, RNA-RNA hybridization or G-quadruplex formation [67]. 

 

1.3.6 Other DNA origami application 

Different research fields found DNA nanotechnology favorable. Thanks to its fine 

programmability at nanoscale level and to its versatility, it was used for variegated 

applications.  

Lithography is a technique used to transfer a pattern from one object to another. The DNA 

origami exploitation can effectively improve the resolution of the technique itself. 

Liu’s group employed a DNA origami shape to be transferred in an inorganic pattern in 

one-step process [68]. The presence of DNA origami structures can modulate the vapor-

phase of SiO2 at molecular level. In the HF-etching of the SiO2, the water acts as a catalyst 

of the reaction. DNA origami can adsorb a huge amount of H2O molecules, reaching 100% 

if the humidity is relatively high, inhibiting the diffusion of HF in SiO2 surface and 

consequentially increasing the etching of the surface.  
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Figure 1.21 a) DNA origami used as a mask for lithographically pattern transferred to Silicon oxide surface: triangular 

shape on a SiO2, concave pattern transferred, convex pattern transferred (figure taken from [68]). b) DNA origami for the 

growth of non DNA material (scale bar 200 nm) (figure taken from [69]). Enzyme cascade study using glucose oxidase 

(Gox)/horseradish peroxidase (HRP): c) positioning the enzymes on DNA origami array (figure taken from [70]) d) 

introducing the enzymes in two modular DNA origami tubes (figure taken from [71]).  

 

By regulating the humidity conditions, the time and the speed of the reaction, DNA 

structures can be transferred in silicon wafer, enhancing or reducing the etching process 

and so the sub-ten-nanometer depth of patterns. To control the orientation and the position 

of the DNA origami structures on the surface, an electron beam lithography and dry 

oxidative process was developed. In particular, DNA origami-binding sites were created on 

a SiO2 surface through lithography. DNA structures attached the binding site with the 

proper orientation and position forming a nano-ordered pattern. The possibility to control 

the 2D and 3D shape of DNA origami gave the opportunity to use it for the programmable 

synthesis of inorganic material. By designing a set of DNA origami, Liedl and coworkers 

induce a shape-controlled metallization [69]. The negatively charge backbone phosphate is 

bound by 1.4 nm gold cluster positively charged as a seed for the growth of the gold 

cluster. The nanoparticles continued to metalize the DNA origami reproducing accurately 

the shape. To improve the size and the resolution in the shape, Seidel and colleagues used a 

DNA origami as a mold which contained a gold nanoparticle acting as a seed [72]. The 

seed in the box-like mold would grow until it fills completely the box. Using this method it 

was possible to create different 3D metal shape as sphere, cube an Y-shape structure. 
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The possibility to precise position nano-objects enables to use the DNA origami as a 

platform for the study of enzyme cascades. All the metabolic processes inside the cell are 

maintained by a set of enzymes involved in the same pathway. Enzymes, target molecules 

and intermediates are usually localized in the same compartmentalized area in order to 

facilitate the efficiency of the working mechanism. Yan and coworkers used a DNA 

origami chip to link glucose oxidase (Gox)/horseradish peroxidase (HRP) [70]. Gox 

oxidizes the glucose to gluconic acid and produces hydrogen peroxide H2O2. The latter is 

the substrate for the HRP which transforms ABTS
2-

 to ABTS
-
. Positioning the two 

enzymes at variable distances, they observed the distance-dependence of the mechanism: 

the HRP activity decreased if it is up to 20 nm far from Gox, but increasing the distance 

between them, did not highlight a strictly relation due to their separation. The phenomena 

was explained through a 2D restricted diffusion when the enzymes are in close proximity, 

while for long distances between the pairs, the Brownian diffusion dominates the scene. 

An evolution of this work was performed by Linko and colleagues through the design of 

two tube-like DNA origami containing separately Gox and HRP [71]. The connection of 

the two tubes, induced the formation of a DNA origami nanoreactor in which the diffusion 

is considerably reduced. 

1.4 Aim of the thesis  

The biological environments are complex frameworks in which chemical and physical 

stimuli synergistically operate in order to modify, digest and definitively remove externals 

body. The careful analysis of the constitutive material, the structural design and its 

resistance against modification and degradation induced by the operational environment 

are, indeed, fundamental parameters for the design of a successful device which is 

expected to operate within an biological organism.  

DNA origami technology was proposed for numerous biological and medical applications 

because of its peculiar properties. Among them, the compatibility with biological 

environments, the programmability at nanoscale level and the precise addressability of 

nano-compound as drug molecules, metal particles or antibodies are noteworthy. Drug 

delivery devices actuated by specific molecular recognition or contrast medium are two 

examples of how DNA architectures can contribute to the technological development in 

medicine and pharmacologic field, aiming to more focused treatments and reduced side 

effects (cytotoxicity).  
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The shape of the device assumes a strategic role and should be finely designed considering 

not only the final objective, but also the conditions imposed by surrounding environments: 

different shapes can in fact produce different responses in the organism. A tetrahedral 

DNA structure benefits from a great nominal robustness and its successful internalization 

in living cells was demonstrated in several studies. These nanostructures are characterized 

by high mechanical rigidity and stability against nuclease degradation; moreover, they 

seem to be compatible with most cell uptake mechanisms [73]. By exploiting these 

properties Hemmi and coworkers used a DNA tetrahedron nanostructures to carry 

cytosine-phosphate-guanosine (CpG) oligonucleotides into macrophage like RAW264.7 

cells [74]. By modifying the termination of each of the four DNA sequences composing 

the tetrahedron with CpG islands, they stimulated the Toll-like receptor 9 (TLR9) and 

induced immune responses. The secretion levels of certain cytokines (TNF-α, IL-6 and IL-

12) stimulated by these CpG-tetrahedral nanostructures were dramatically higher than 

those by single-strand CpG oligonucleotides even with the help of transfecting agents. In 

another work, Andersen’s group showed the transport efficacy of small interference RNA 

sequences in tetrahedral DNA cage. siRNA sequence are usually composed by few 

ribonucleotides able to hybridize a specific gene silencing it. They are efficaciously used 

for gene therapy but once in the cell, they are quickly degraded by nuclease. The loading of 

siRNA sequence inside a tetrahedral cage with the help of folate, improved the efficacy of 

RNAi and increased the blood circulation time with respect to that of isolated siRNA 

(t1/2≈24.2 min vs t1/2≈6 min) [75].  

DNA origami technology enhances structural stiffness and functionalization. The 

tetrahedral DNA origami can be differently designed in accordance with the final purpose. 

Varying the helix number and their disposition, the vertex design, the dimensions, and the 

typology of the desired polyhedron (wireframe or full structure), it is possible to plan 

architectures with different mechanical properties.  

The aim of this project is the design, the synthesis and the characterization of a 

biocompatible sensor which changes its conformation in response to a molecular target 

recognition. The device presents a wireframe tetrahedral DNA origami shape, providing 

for a structural stability in different environments and at the same time characterized by a 

great flexibility. To monitor the target-induced motion we have planned to integrate a 

plasmon ruler, built through the suitable decoration of the tetrahedron with two 20 nm-gold 

nanoparticles. The DNA origami will operate as a molecular-switchable nanomachine 
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which tunes the inter-particle distance, providing a spectral response univocally linked to 

the state of the origami that transduces a molecular recognition event into an optical shift. 

In our lab, we had already planned a plasmon ruler system as described in the paragraph 

1.3.5. but it presented some critical issues: the flap-motion was strongly influenced by 

adhesion forces when deposited on a substrate and by thermal fluctuations in liquid 

environment. Moreover, when hybrid structures are forced to pass through the agarose gel 

net in an electrophoretic migration, the gel itself could induce a closure of the system.  

The purpose of this work is the design and the validation of a DNA-origami nanostructure 

able to: 

 switch its configuration in response to an external stimulus, that in our case will be 

a complementary DNA single strand; 

 transduce a configuration change at the nanoscale  to a macroscopic signal that can 

be read from remote, that in our case will be the optical shift of the LSPR 

absorbance spectrum; 

 maintain its functionality also after the mechanically-harsh purification protocols 

that may be required by the adopted synthesis scheme, in our case mainly agarose 

gel filtration; 

 maintain its functionality independently from the operative medium, that may 

have, as in the case we tested, solid, liquid, or gel character. 

The wireframe DNA origami tetrahedron is composed by six DNA bundles connected at 

the vertices by flexible joints. The wireframe tetrahedral shape provides the necessary 

stability while preserving the required flexibility, overcoming the problems arisen in the 

previous structure. The decoration with two gold nanoparticles allows the transduction of 

the conformational change in a LSPR shift.  
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2 Materials and methods 

2.1 DNA origami design 

The design of the DNA origami structure has been implemented through CaDNAno 

software [76] arranged on a square lattice scheme (Figure 2.1). After the plan of the 

geometrical shape, parallel helices of scaffold strands are designed, imposing a central 

seam which enables the folding of a circular scaffold strand. The software suggests the 

crossover positions in order to avoid significant global twisting. Moreover it automatically 

generates a set of short helper stands (staples) after the input of few basic information as 

the crossover inter-distance (multiple of 16 bases) and the average bases number. Inter-

helix crossover can be rearranged in order to minimize the overall stress and to increase the 

stability of the system. Oligonucleotides length is then leveled out at ~32 bases. Shorter 

oligonucleotides are also possible but the hybridization stability and uniqueness can be 

affected, on the other hand an excessive length could reduce the staples diffusion and 

interaction rate in the self-assembly process.  

 

 

Figure 2.1 Design of DNA origami structure using caDNAno software: a) rectangle shape and b) tetrahedron shape. The 

horizontal blue lines represent scaffold strand helix, colored segments are staple strands which anneal scaffold strand to 

induce its folding through the arrangement of periodic crossover. Blue line protruding from the extremity of the structure 

in b) represent the scaffold junctions between different struts. 
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The insertion of scaffold strand sequence as M13mp18 determines the sequence of 

complement strands, exported in an excel file in which is specified the 5′ and 3′ points and 

the colors consistent with the one in the design (the staple sequences are listed in appendix 

1).  

CanDo [77] is an online sources which simulates scaffolded or non-scaffolded DNA 

origami 2D and 3D and the flexibility of single- and multi-layer structures to enhance their 

design process, starting from the input provided by the caDNAno design above. Through 

CanDo it has been possible to evaluate both the correct folding of the DNA origami 

structure and the thermal fluctuations of the system (Figure 2.2). 

 

 

 

 

The probe or actuator strand and the catchers strands coming out from the DNA origami 

structure for AuNP anchoring, have been built following the rules of avoiding self-

annealing, avoiding loops in each sequence, limiting the number of strong GC pairs, and 

checked using the online tools of IDT's Oligo Analyzer® v.3.1. Exceptions has been made 

for the target as it includes a 18 bp GC clamp (Table 2.1)  [63]. 

 

Actuator  5′-CGATCCGACCTTCCTCCCTCCTCCTCTTCCC 

TTGGGTCGAACATTGCTCGTCGTCACTGGGT

CCTGCTCATATTGGGTTTACAGCTCACATAG

GTAGACTTTAGCTTCCCGGGCTCGCAG-3′ 

 

ΔG = - 5.44 

kcal*mol-1 

Figure 2.2 CanDo simulation of a tetrahedron shape DNA origami made of 6 four-helix struts; the bar associates the 

color with the thermal fluctuation of the structure (nm). 
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Target  5′GGGCGGGGCGGGGGCGCGAAAGTCTACCT

ATGTGAGCTGTAAACCCAATATGAGCAGGAC

CCAGTGACGACGAGCAATGTTCGACCCAAGG

GAAGAGGAGGACGCGCCCCCGCCCCGCCC-3′ 

ΔG = - 27.8 

kcal*mol-1 

 

Table 2.1 Sequences of the actuator strand and the target equipped by a stem and loop structure, the stem is obtained with 

CG pair (underlined sequences); on the right side of the box it is shown the most probable secondary structure of actuator 

and target strands and the relative Gibbs energies.  

2.2 DNA origami synthesis and purification 

The DNA origami synthesis is based on one-pot reaction where the whole set of staples 

and the scaffold strand are mixed together in a buffer solution containing Mg
2+

. Staples are 

added 5 or 10 time in excess with respect to the scaffold strand and the synthesis buffer is 

composed by Tris (40 mM), acetic acid (20 mM), EDTA (2 mM), and MgCl2 (12.5 mM) 

forming the TAE 1× + Mg
2+

. The annealing path consists in a cooling down ramp obtained 

in a standard thermocycler: the sample is initially heated to denature DNA double strands; 

the temperature is then slowly reduced until room temperature with steps of - 0.1 °C. The 

cooling process duration is a critical point, and it has been largely examined by Shih and 

colleagues [78] in correlation with the bivalent cations concentration. It has been observed 

that multilayered DNA origami structures need longer annealing ramp probably because 

they traverse more kinetic traps, owing to the larger density of crossovers. The bivalent 

cations reduce the hybridization time neutralizing and consequentially stabilizing the final 

structure. Efficient Mg
2+

 concentrations range from 10 to 16 mM and the cooling process 

can last up to 173 h. 

The purification of the freshly prepared DNA origami from excess of staples removes 

useless material which can interfere with well-folded sample. The purification can be 

reached in different way, in this work we explored the Amicon filtration and the direct 

extraction of DNA origami from agarose gel. 

In the first method we remove extra oligo using Amicon Ultra 0.5 ml 100 kDa filters 

(Millipore, Massachusetts), adjusting the protocol supplied by the constructor. Briefly, 

TAE 2× / Mg
2+

 solution was added in the same amount of sample volume; capped Amicon 

Ultra were centrifuged four times refilling each time with 450 μl of buffer solution for 1.5 

minutes at 14000 × g. Concentrated samples have been eluted spinning the inverted filters 
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in a clean vial at 2000 × g for 3 minutes. The second purification method allows the 

selection of the well-folded and single structure from dimers, aggregates and free 

oligonucleotides. The sample is previously separated through agarose gel electrophoresis 

and then the band of interest is cut, crushed and filter in a Freeze and Squeeze tube for 10 

min at 10000 × g. At this point the gel matrix is confined inside the filter, while the DNA 

origami structure are extracted in few μl of buffer. 

2.3 Agarose Gel Electrophoresis   

Agarose gel electrophoresis is a method used in molecular biology to separate DNA 

fragments or protein based on their size and charge. Since nucleic acid molecules or 

structures are negatively charged, can be separated by applying an electric field in the  

agarose matrix. DNA origami analysis is performed using two references: the ladder as 

molecular weight standards for agarose gel electrophoresis and the scaffold strand 

M13mp18 which runs faster than the folded DNA origami (Figure 2.3, lane 2). The 

estimated time varies according to the temperature and the typology of the sample: in 

particular complex 3D DNA architectures require to run about 2 h at low voltage (50 V) in 

order to avoid the overheating and the consequently degradation of the sample.  

 

Figure 2.3 Example of agarose gel image exposed at UV light, post-processed with Image J software showing the 

migration of: ladder, scaffold strand M13mp18, DNA origami freshly synthetized using old and new buffer. The old 

buffer induced both a dimerization of DNA origami structure and both general aggregation (smear), at the contrary, with 

the new buffer this effect is reduced. 
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The gel is prepared mixing agarose powder (derived from algae agar agar) and TAE buffer 

in the right proportion for obtaining 1% mass/volume, boiling it in microwave oven until it 

dissolves and adding 1 × GelRed™ staining which intercalates inside DNA double helix 

and emits fluorescence if excited by UV light. The visualization of the bands produced by 

the electrophoretic separation is obtained through an UV transilluminator, recorded with a 

camera, and analyzed through post processing software, as Image J or similar (Figure 2.3). 

2.4 DNA functionalization of Gold Nanoparticles 

The functionalization of the gold nanoparticles surface increases the possible applications 

in order to exploit their peculiar optical properties. Small single strand oligonucleotides 

chemically modified with one thiol group at 5′ or at 3′ ends can fully cover the gold 

spherical surface through the formation of Au-SH bind. The 20 nm gold colloids (AuNP) 

are supplied in water with trace amounts of citrate which stabilized the negative surface 

charge [79] (extinction coefficient: 9.406 E
8
 M

-1
 cm

-1
, OD: 1 at 520 nm, particle/mL: 7.0 

E
11

) Ted Pella, Inc. First a coating with BSPP (Bis(p-sulfonatophenyl) phenylphosphine 

dihydrate dipotassium salt) has been carried on following published procedures [80-82].  

12 mL of colloids solution incubated overnight with 3.2 mg of BSPP. Then the particles 

are precipitated adding gradually NaCl until the solution changes color from ruby red to 

blue/gray. After the centrifugation at 10000 × g for 10 min, the transparent supernatant is 

removed, rinsed with BSPP 0.5 mM, concentrated and resuspended. Buffer exchange is 

achieved with another centrifugation step adding 50% in volume of methanol to induce the 

precipitation of the NP and then resuspending the concentrated sample with a solution of  

BSPP 2.5 mM in approximately 2 mL of final volume. The concentration of the AuNP in 

BSPP 2.5 mM is evaluated through absorbance analysis preformed in a spectrophotometer, 

diluting 1:20 the highly concentrated solution with ultrapure water into a quartz cuvette. 

The NPs concentration is determined through the Lambert-Beer’s law, taking the max 

value of the peak at 520 nm and using the extinction coefficient provided by the 

manufacturer company (Ted Pella, Inc.). The ssDNA are designed and purchased from 

Sigma Aldrich; the average length is 22 nt and they are chemically modified with a 

disulfide bond at one end. Depending on the concentration, on the length and on the 

specific modifications, oligonucleotides are purified through HPLC or desalting. Before 

facing the NPs gold surface, the thiol group of 40 μM of oligonucleotide is reduced with 

0.3 M  1,4-Dithiothreitol (DTT), 0.3 M NaCl and SPB buffer (0.01 M NaH2PO4/Na2HPO4, 

pH 7.04). All the material have been purchased from Sigma Aldrich unless specified. The 
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solution is aged on a tube rotator for at least 2 h and after the removal of DTT salt through 

NAP 5/10 columns filtration to avoid reducing environment, activated oligonucleotides are 

mixed with gold nanoparticle with a typical ratio DNA/NP of 3500-4000. 

The following salt ageing process will provide for the necessary ionic strength for DNA 

strands stability and will avoid the aggregation of AuNP through the gradual addition of 

NaCl and SPB to reach a final concentration of respectively of 0.1 M and 10 mM. After the 

stabilization of AuNP- DNA complex, the centrifuge step in Amicon filter concentrates the 

sample removing the extra oligonucleotides that have not adhered to the surface and 

allowing the resuspension of the sample in TAE 1× + 0.1 M NaCl. The final concentration 

estimation is performed through the spectrophotometer.  

2.5 Gold Nanoparticles anchored on DNA origami  

The presence of catcher strands coming out from DNA origami structure provides for a 

site-specific anchoring of gold nanoparticles covered with complement ssDNA. The 

protocol, optimized by Piantanida and coworkers [83], is based on the proportional mixing 

of the solution containing DNA origami structure with the AuNP solution in a ratio 

between binding site present on DNA architecture and AuNP of 1:2. In order to promote 

the hybridization, the sample is maintained at 50 °C for 45 min and it slowly cools down 

over night. The anchoring success is firstly checked with agarose gel electrophoresis 

(AGE); the result obtained can be confirmed by the visible pink / ruby red color of the gel 

band containing DNA origami (detected at UV light).  

2.6 Hybrid structures purification through density gradient 

centrifugation 

The separation of non-attached AuNP through AGE is an efficient method but if the 

sample is gel-extracted, the recovery yield is less than 100% and the desired structures may 

also be damaged. These limitations led to find other purification protocols capable of 

preserving the structural properties with high recovery yield that delivers purities of  >90% 

[84]. Rate-zonal centrifugation separation is performed by loading the sample solution in a 

narrow single layer on top of a gradient medium inside 2 mL tube. The centrifugal step is 

performed selecting the gradient medium density, the viscosity and the proper acceleration 

to reach the separation in few hours in bench-top microcentrifuge. The particles sediment 

under the influence of: centrifugal force, buoyant force and drag force (proportional with 

the hydrodynamic radius). The density gradient contains 9 layer of density/viscosity 
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gradient of iodixanol (density = 1.32 g cm
-3

, dynamic viscosity = 14.3 mPa s for 60 % 

iodixanol in water) from 15% to 50% mass concentration of iodixanol in TAE 1×. The 9 

layers are prepared one day in advance in order to stabilize the gradient. The day after the 

AuNP-DNA origami hybrid structures are gently pipetted on the top of the iodixanol 

density gradient and then centrifuged at 7000 × g for ~ 3 h in a swing-bucket rotor 

centrifuge. Most of the times we obtain two separated red bands which represent the 

conjugated NP with DNA (upper band) and free AuNP (lower band). We basically collect 

with a micropipette the band of interest but frequently also the other band (free AuNP) to 

check the precision in separation of this protocol. Filtering the obtained sample with TAE 

2× buffer + 25 mM MgCl2 through Amicon centrifuge step, the viscous medium which 

affected the SEM images is removed.   

2.7 Functionalized substrate for a controlled adhesion of the 

particles 

The particles adhesion on a substrate is strictly correlated with the properties of substrate 

and of the samples. The deposition control in terms of number and disposition of the 

adhered structures favorites the single-particle detection and the detailed architectural 

analysis. For example the dark-field detection of single or dimer AuNP is feasible only if 

AuNP are not in close proximity. AuNP dimers DNA origami conjugated, if properly 

interspaced in a surface can be exploited as SERS [57] substrate or can induce a Raman 

signal enhancement [60].  

 

 

Figure 2.4 Chemical formula of Biotin-PEG-silane and Methyl-PEG-silane. 
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The substrate functionalization protocol is based on the proper mix of methyl-PEG-silane 

(2000 Da) and biotin-PEG-silane (3400 Da), both purchased from Sigma Aldrich (Figure 

2.4). Hydrophilic polymer chains, poly(ethylene glycol) (PEG), are attached on the silicon 

surfaces by silylation of the silanol groups with the trimethoxysilanes of the polymers 

(Figure 2.4). We consider these tethered polymer chains to resemble to self-assembled 

monolayers (SAMs) of PEG since the grafting process is entirely spontaneous. All the 

preparation steps are performed in glove box to avoid the increasing reactivity of silanol 

groups. The two PEG molecules are separately dissolved in 97% of Ethanol + 30 mM HCl, 

and they have been freshly mixed before each incubation with the substrate. We prepare 

two different proportions of mPEG-silane and biotPEG-silane, 98:2 and 99.9:0.01, 

obtaining a total concentration of PEG molecules of 500 μM in a final volume of 5 mL 

using EtOH-HCl as solvent. The incubation of the two different solutions with the silicon 

wafers is performed at room temperature overnight. In parallel, a negative control in which 

the incubation of the silicon wafer is done with a solution of mPEG-silane 490 μM in 

EtOH/HCl has been realized. All consecutive steps involve both sample and control.  

Washing steps with EtOH/HCl solution have been done the day after to remove all the 

non-attached molecules. Surface passivation is obtained after 1 h 30 of incubation with 2% 

BSA. The BSA is then removed with three successive washing steps with TAE 1×. Then 

160 nM of streptavidin in TAE 1× solution is incubated for 2 h. Streptavidin is a tetrameric 

protein which binds biotin with high affinity (Ka = 10
15

M
-1

) and specificity and it is able to 

link more than one biotin simultaneously. After the streptavidin excess is removed through 

another washing with TAE 1× buffer. Finally, 1.8 nM of 20 nm biotinilated-AuNP is 

spotted  and incubated in wet chamber for 1 h and then the sample is washed three times 

with MilliQ water. Once the sample is dried, functionalized silicon wafers have been 

imaged through SEM. The AuNP count and the statistical analysis of each picture has been 

performed through Image J software. 

2.8 LSPR analysis direct in agarose gel 

UV-Vis characterization has been performed on inverted optical microscope (Axiovert 

200, Zeiss) in transmitted light illumination (HAL 100 illuminator, Zeiss) coupling a 

microscope with 750 mm long spectrometer (Shamrock SR-750, Andor Technology plc.). 

The agarose gels resulting from the electrophoretic procedure with distinguishable bands 

have been placed onto clean glass coverslip that was mounted on XY sample stage. The 

light transmitted through the sample has been collected by 100x immersion objective (NA 
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1.45, α Plan-FLUAR, Zeiss), directed into a spectrometer, split by a diffractive grating of 

600 lines/mm, and finally analyzed using TE-cooled EMCCD (Newton DU971-UVB, 

Andor Technology plc.).  

A basic equation to calculate the actual extinction spectra is: 

A + S + R + T = 1 (1) 

where A is absorption, S is scattering, R is reflection and T is transmission of the light and 

A+S= E represents the extinction. Neglecting the difference in the light reflection from the 

surface of clean gel and the one with AuNP, E = 1- T. Thus, the final equation to calculate 

the extinction is: 

E = (I0-Ii)/(I0-Ibg) (2) 

where Ii is the corresponding intensity of light passed through each band, and I0 is the 

intensity of light passed through the clean gel in a position without origami and 

nanoparticles. Ibg is a dark thermal noise of CCD. At least 5 different positions along each 

band have been characterized and finally averaged [63]. 

The resulting spectra show a peak in the range of 525-535 nm which is attributed to the 

LSPR in single gold NPs or dimers. The spectra also demonstrate a different extinction at 

low wavelengths complicating an estimation of LSPR position. Since the gel density, gel 

hydration and AuNP size in each series of experiment are supposed to be constant the 

difference in the extinction is caused by a variable gel thickness of the lanes. To determine 

the LSPR position we applied two steps procedure. At first step, the background corrected 

for the gel thickness was plotted for each spectrum and then subtracted. Second, the 

resulted spectra were fitted with two Gaussian functions in the range of 450-700 nm 

considering i) LSPR in spherical gold NPs at about 530 nm [85], and ii) an additional peak 

in the range of 560-600 nm (Appendix 2). The last one is caused either by a non-sphericity 

of gold NPs [86] or possible plasmon coupling effect [87], which cannot be distinguish in 

our case.  

2.9 Scanning Electron Microscope characterization 

Scanning electron microscope (SEM) is a type of electron microscope that produces 

images of a sample by scanning the surface with a focused beam of electrons. The 

accelerated electrons (1-30 kV) interact with the atoms in the sample, producing scattered 

electron with different energy and intensity depending on the surface topography and 

composition. The electron beam is scanned in a raster scan pattern, the scattered electrons 

are collected and amplified with the aid of detectors positioned at fixed angles, their 
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intensity is associated to the position of the primary beam in the sample, and finally the 

image is reconstructed point by point. The specimens should be observed in high vacuum. 

SEM can theoretically achieve resolution better than 1.6 nanometer, but not all the samples 

can be imaged with that resolution. The chemical nature of the sample, the presence of a 

metal coating which can enhance the scattered signal and the voltage applied can reduce it 

dramatically. Biological samples for instance, are imaged in a ultra-vacuum conditions, so 

dehydration and metallization are required. Small biological sample such as vesicles, 

proteins or DNA structures are usually deposited on silicon wafer which is the material of 

election for SEM measurements because it is a flat semiconductor material. The surface 

previously cleaned with ethanol or isopropanol and acetone, is then physically activated 

with Plasma Oxygen treatment. To make the surface hydrophilic, we physically / 

chemically modify the surface using the suitable protocol. The same activation has been 

obtained using different instruments: Reactive Ion Etching and a bench plasma cleaner. 

With reactive plasma etching it is possible to control all the parameters of plasma oxygen 

treatment. Bench plasma cleaner, instead, can control only of the power applied, while 

chamber pressure and consequently the BIAS and the oxygen flow remain unknown. 

However we got a successfully activation with both instruments. Oxygen plasma cleaning, 

in principle, produces an energy which is very effective in the breaking of most organic 

bonds of surface contaminants. A second cleaning action is carried out by the oxygen 

species created in the plasma (O3, O, O
+
, O

−
, ionized ozone and free electrons). These 

species react with organic contaminants to form H2O, CO, CO2, and exhibit on the surface 

OH groups making the surface more hydrophilic. 

The oxygen plasma obtained with Plasma Cleaner, has been performed applying a power 

of 40 W and a constant flow of oxygen for 2 min. The same protocol performed with RIE, 

provide for a precise control of the Bias (maintained stable at 100 V) and of the oxygen 

flow (fixed at 30 sccm). The oxygen plasma cleaning, in principle, can destroy the carbon 

layer on the top of the TEM grid. For this reason we developed  a less incisive treatment 

which is based on a disposition of the grid inside a metallic holder maintaining the grid in 

an oblique position. The latter produces a weaker effect of the plasma because it reduces 

the gas molecule entrance. Moreover, we have decreased both the power applied from 80 

to 20 W and the BIAS from 100 V to 45 V. At the same time we extended the treatment 

from 2 to 5 min, achieving the same effect obtained with silicon wafer. If the procedure is 

effective, the drop should spread immediately across the substrate, otherwise it maintains 

its shape because of the hydrophobic repulsion. 5 μl drop of DNA origami sample with and 
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without gold nanoparticles is left adsorb on the activated surface (silicon wafer or TEM 

grid) for 7-10 min before being washed twice with ultrapure water. After drying, the 

samples are imaged with scanning electron microscope Supra Zeiss 40 at 2 kV of 

acceleration voltage, a working distance between 2-5 mm and a filament current of 2.3 A. 

 

 

Figure 2.5 Gold nanoparticle adhered to a silicon substrate functionalized with an organic polymer, imaged at SEM using 

an energy of 2 kV and a working distance between 2-5 mm. 

 

Electrons seriously damages DNA origami structures after few second of exposition, so the 

measurements must be acquired rapidly. Gold nanoparticle, instead, are imaged with 

greater precision (Figure 2.5), so we exploit the numerous pictures obtained to measure the 

dimers inter-particle distance (from center to center) in order to estimate the average gap 

length.  

2.10 Atomic force microscope characterization  

Atomic force microscope (AFM) is a scanning probe microscopy (SPM) with a nanometric 

resolution that overcomes the optical diffraction limit. 

AFM provides a 3D profile of the surface on a nanoscale, by measuring the interaction 

between a sharp probe (<10 nm) and a surface at very short distance (0.2-10 nm probe-

sample separation). The AFM cantilever “gently” touches the surface and records the small 

force between the probe and the surface through a raster scan in a x-y plane. The motion of 

the probe across the surface is controlled through the feedback loop and the piezoelectronic 

scanners. The feedback loop has the cantilever deflection as input, and its output controls 

the distance along the z axis between the probe and the sample. The deflection of the probe 

is typically measured by an optical lever method: a semiconductor diode laser is bounced 

off the back of the cantilever and onto a position-sensitive photodiode-detector which 



49 

 

measures the bending of cantilever during the tip scanning over the sample. The measured 

cantilever deflections are used to generate a map of the surface topography, the signal 

achieved is plotted in a pseudocolor image, in which each pixel represents an x-y positions 

on the sample and the color represents the recorded signal. The AFM resolution is strictly 

dependent on the radius of curvature of the tip apex (typical 5-20 nm) and for this reason, 

compared with electron microscopy, the achievable resolution is much lower in x-y axis 

but it is sub-nano-metrical in z axis. AFM can operate in three different modes: contact, 

intermittent contact and non-contact mode. In contact mode the tip follows the samples 

exploiting repulsive forces, while in intermittent contact the tip oscillates up and down at 

its specific resonance frequency exploiting attractive forces. The oscillation amplitude and 

frequency are usually maintained constant but the interaction of forces acting on the 

cantilever when the tip comes close to the surface (Van der Waals forces, dipole-dipole 

interactions, electrostatic forces) causes the amplitude of the cantilever's oscillation to 

change as the tip gets closer to the sample. While in non-contact mode, the tip of the 

cantilever doesn’t interact with the sample surface and long-range forces that extends 

above the surface act to decrease the resonant frequency of the cantilever. 

The DNA origami AFM characterization can be performed both in liquid and in air. 

Visualization of biological sample benefit from the development of the intermittent contact 

mode in liquid for different reasons. First the tip does not deform the soft sample, second 

the bio-sample weakly adheres to the surface and the tip contact can modify or display it, 

and third the liquid conditions reproduce the physiological conditions of the sample. 

However the oscillation of a cantilever in a liquid presents important differences compared 

with oscillation in air or ultrahigh vacuum. 

The cantilever motion drags the surrounding liquid, leading to an increase of the effective 

mass and a corresponding decrease of the resonant frequency. And the strong 

hydrodynamic interaction between the cantilever and the liquid produces a very low 

quality factor (Q) of 2-10, about two orders of magnitude lower than in air. We observed 

that the DNA origami imaging can be performed in liquid as well in air without 

modification of the sample proprieties. Moreover the measurements in air increases both 

the final resolution of the picture and the stability of the sample that can be analyzed better 

also after few days from the sample preparation. 

The election substrate for the DNA origami imaging is freshly cleaved mica substrate 

which is extremely even, flat and negatively charged. The DNA origami particles are 

immersed in a saline buffer TAE 1× containing 12.5 mM of Mg
2+

 cations, which act as 
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bridges between the negatively charged phosphate backbone of the DNA and surface, 

thereby increasing the adhesion of the DNA onto the mica surface [88]. The addition of 1 

mM of NiCl2 solution in the final volume implements the adhesion between DNA nano-

structures and mica substrate. After 15 min of incubation the drop can be dried with a 

tissue, washed twice with a buffer solution to remove the not attached particles and rinsed 

with 1.5 ml for in liquid measurements (Figure 2.6b) or washed directly with ultrapure 

water and dried with a nitrogen stream for few seconds (Figure 2.6a).  

 

 

Figure 2.6 AFM topography DNA origami rectangular shape deposited on mica: a) in air b) in liquid. The images are 

performed with JPK AFM using a pyramidal cantilever. The pictures are both post-processed using Gwyddion software. 

 

The AFM images have been recorded using a JPK Nanowizard II, operated in liquid phase 

in tapping mode or in air in contact mode using Olympus OMCL-TR400PSA tips with a 

nominal force constant of 0.08 N/m and a resonance frequency of 34 kHz (in air).  

2.11  Transmission electron microscope characterization  

The transmission electron microscope is a type of electron microscope where the electron 

beam is transmitted through a specimen to form an image. The specimen, with a thickness 

ranging from few to hundred nanometers, lays on a TEM grid. The electrons beam (50-200 

kV) focused with a condenser system passes through the sample. The final image is 

reconstructed and magnified through lenses and it is finally recorded on a fluorescent 

screen or a charge-couple device (CCD).  

Materials with electron densities that are significantly higher than amorphous carbon are  

easily imaged. These materials include most metals (e.g. silver, gold, copper, aluminum) 

characterized by heavier atoms which scatter more electrons and therefore have a smaller 

electron mean free path than lighter atoms.  
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In general, samples must therefore be stable under vacuum, and so are traditionally 

prepared in the solid state. The water content of biological sample (cells, matrix, or 

proteins, etc.) requires other strategy for TEM visualization. Because biological material 

essentially consists of atoms of low atomic number, the contrast and consequently the 

signal-to-noise ratio (SNR) is generally low in cryo-EM. To increase the contrast of the 

bio-sample, uranil acetate and formate staining are commonly used.  

 

 

Figure 2.7 TEM picture of two 20 nm gold nanoparticles with a full coverage of ssDNA. 

 

TEM imaging has been largely used for the characterization of DNA origami-gold 

nanoparticle hybrid structures. In particular, copper grids covered with a thin carbon layer 

have been activated with a plasma cleaning treatment for 5 min at 20 W (45 bias). A drop 

of solution is then deposited on the surface and after 5 min it is removed with a paper 

wipers and rinsed twice with ultrapure water. When it is completely dried, it is possible to 

image it (Figure 2.7). 

2.12  Cryo-electron microscope characterization  

TEM measurement is useful method to examine with high resolution biological samples, 

but it presents few negative points. During the drying process of the sample, for example, 

the structures can collapse and the superficial tension forces can draw near the structures 

close to each other.  

Cryo-electron microscopy is a method in which the sample is frozen instead of dehydrated 

and then imaged at cryogenic temperatures by electron microscopy. The possibility to 

freeze the samples allows the keeping of the physiological condition, avoiding destructive 
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treatments. The specimen are prepared in standard buffered media and a drop of 4 μl is 

applied to an EM grid (200-mesh grid, EMS, Hatfield, PA). The grid is blotted for 3 sec 

and immediately plunged into a cryogenic liquid (ethane); this step called vitrification, 

prevents the rearrangement of water molecule into a crystalline lattice [89]. Plunge-

freezing of the cryo-EM grids has been performed using Leica EM GP (Leica, Buffalo 

Grove, IL) that incorporates a chamber to control the humidity (80%) and the temperature 

(8°C) for blotting and thus the evaporation. The sample is stored in nitrogen and remains 

always below -140°C to avoid devitrification. Hydrated, unstained samples are sensitive to 

electron irradiation because higher doses lead to progressive alterations of molecular 

structures [90]. Consequently, cryo-EM images have been recorded at low electron 

exposures, limiting their signal-to-noise ratio (SNR). 

 

 

Figure 2.8 Cryo-EM image of DNA origami bundles organized in a triangular shape decorated with 20 nm-gold 

nanoparticles. 

 

The DNA origami architecture decorated with gold nanoparticle have been imaged with 

Zeiss Libra 120 transmission electron microscope (Carl Zeiss SMT GmbH, Oberkochen, 

Germany) equipped with a LaB6 gun operating at 120 kV, an in-column energy filter, and 

a 4 k × 4 k Gatan UltraScan 4000 CCD camera (Figure 2.8).  

Numerous techniques can be used in cryoelectron microscopy, one of the most popular is 

the electron cryo-tomography which consists in a set of electron micrographs (tilt series) 

acquired at different angular orientations of the sample. Tilt series images are then aligned 

and computationally merged into a 3D image (tomogram). 
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2.13  Small angle X-ray scattering characterization  

Small-angle X-ray scattering (SAXS) is a powerful method for the structural 

characterization of both ordered and disordered macromolecule in solution. It provides 

nanoparticle size distributions, resolves the size and shape of (monodisperse) 

macromolecules, determines pore sizes, characteristic distances of partially ordered 

materials under various experimental conditions varying from extreme (e.g. high pressure 

or cryo-frozen) to nearly native. This is achieved by analyzing the elastic scattering 

behavior of  X-rays when travelling through the material and recording their scattering at 

small angles (typically 0.1 - 10°). It is done using hard X-rays originated from a source of 

synchrotron radiation with a wavelength of 0.07 - 0.2 nm. If the angles considered are 

between 10 - 90 °, this technique is called Wide Angle X-ray Scattering (WAXS). 

The setup of a SAXS experiment is conceptually simple: a solution of particles usually 

placed in a quartz capillary is illuminated by a collimated monochromatic X-ray beam, the 

intensity of the scattered X-rays is recorded by an X-ray detector (Figure 2.9). The 

scattering pattern of the pure solvent is collected as well and subtracted from the sample 

solution scattering leaving only the signal from the particles of interest. SAXS allows the 

analysis of different biological systems: mesoporous structures, polymer and proteins, 

colloids and nanoparticles but also gels. Thanks to this, we performed SAXS 

measurements of the DNA origami structures with AuNP in the original mix solutions, 

from agarose gel band and after the gel extraction. We used Au nanoparticle dimers with 

an interparticle distance comparable with the one in our DNA origami structure as a 

reference system. 

 

 

Figure 2.9 Working principle of SAXS analysis: x-ray primary beam crosses the solution containing the particles of 

interest; the x-ray beam will be partially scattered and the scattering pattern is then collected; subtracting from the 

scattering pattern of the solution the one of the pure solvent, it is possible to obtain the signal from the particles of 

interest. 
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The dimers have been obtained from the incubation of AuNP functionalized with two 

complementary sequences: the number of nucleotides (16 nt, 21 nt, 27 nt, 54 nt) 

composing the sequences would influence the interparticle distance.  

Small Angle X-ray Scattering (SAXS) measurements have been performed at the SAXS 

beamline of Elettra Sincrotrone in Trieste [91,92]. SAXS images have been collected with 

a Pilatus 1M detector (Dectris, CH) in a q-range from 0.058 nm
-1

 to 5 nm
-1

, at a photon 

energy of 8 keV. Sample-to-detector distance was 1381 mm. The liquid samples have been 

filled into flow through glass capillaries of 1.5 mm diameter (WJM-Glas / Müller GmbH, 

Berlin-Pankow, DE) and then have been measured at room temperature. The samples in 

gel, have been crushed and filled into a closed cell at both sides with mica substrates. 

Scattering data obtained have been corrected for the fluctuations of the primary beam 

intensity and sample transmission. The background has been subtracted with a 

corresponding buffer measurement. The conversion into 1D SAXS pattern is done with 

Fit2D. Data fitting analysis has been performed using IGOR Pro (Wavemetrics) with 

custom-made functions based on the literature. We used the following models: Schulz 

distribution for the size distribution for spherical particles and Sticky Hard Sphere structure 

factor (SHS) [93,94]. 
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3 DNA origami test bench  

3.1 Rectangular DNA origami 

DNA origami technology allows the design of complex structures as 3D cubes, wireframes 

and polyhedra. The precise positioning of different nanoparticles makes the DNA origami 

a wide-range technology, exploitable for physical, chemical, biological and also medical 

studies. 

Hybrid DNA-origami-AuNP structures present many critical points. For this reason the 

possibility to use a test bench is an important opportunity. A stable platform, characterized 

by defined mechanical properties, high stability, easy to recognize thanks to its unique 

shape can be considered a very good control to define experimental conditions. We have 

selected a 120 nm × 60 nm rectangular shape DNA origami both to fix the working 

conditions and to have a comparison with the more complex device planned. The 

rectangular shape DNA origami has been re-designed in our lab but it has been reported in 

several other study. The founding father was Paul Rothemund who firstly synthetized and 

characterized through AFM this shape, defining also its problem: the stacking among 

structures [13] which often occurs through bridges formation in linear edges which share a 

common path of staple strands. Anyway, the rectangle remains one of the most stable DNA 

origami structure and can be exploited as a platform to verify the positioning of gold 

nanoparticles.  

 

 

Figure 3.1 DNA origami rectangle: a) sketch of the structure decorating with two gold nanoparticle; b) Autodesk Maya 

rendering of the caDNAno design; c) caDNAno design in which the three AuNP binding sites and the respective 

interparticle distances are presented.   

  

We defined three binding sites for three differently covered gold nanoparticle separated by 

12.6 nm and 4.3 nm as shown in figure 3.1c. The final shape of the design performed with 
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caDNAno software, has been checked with Autodesk Maya (Figure 3.1b) which integrates 

the CAD file rendering helical disposition. The synthesis protocol lasts ~ 5 h and the 

cooling down ramp consists in a constant temperature decrease from 90 °C to 25 °C. 

Agarose gel migration as shown in figure 3.2 produced a smear of the band which usually 

does not influence the DNA origami quality. 

The DNA origami rectangle has been purified through Amicon filtration following the 

protocol explained in paragraph 2.2. The agarose gel electrophoresis has been performed 

on the sample before and after the filtration step. The image displayed in figure 3.2 shows 

an increase in brightness of the DNA origami rectangle band after the purification which 

corresponds to an increase in concentration. To calculate the concentration we post-

processed the images obtained with a standard camera. Considering the intensity of the 

non-filtered sample equivalent to 1.6 nM, which is the scaffold strand concentration, we 

proportionally calculate the intensity of the band brightness after Amicon filtration. The 

concentration often reaches 4-5 nM which is 2-3 times higher than the initial one.  

 
 

Figure 3.2 Agarose gel electrophoresis of DNA origami rectangular shape before and after the Amicon filtration. The 

lowest band represents free staple strands which are removed through filtration. 

 

3.2 AFM sample preparation, analysis and preservation 

Rectangular shape DNA origami have been used for studying DNA hybridization kinetics 

[40] as well as chemical reaction through the specifically displacement of biotins [95]. 

Most of these studies are based on the topographical detection of the DNA origami 

structure performed though AFM characterization. Rectangular DNA architecture is 

suitable not only for the investigation of molecular mechanism but also for the in depth-



57 

 

analysis of adhesion mechanism to the substrate, of the sample stability in liquid and in air, 

and its preservation over the time.  

The immobilization of DNA nanostructures on a surface is a key step for the integration of 

DNA-based material for electronic applications. Fritzsche and coworkers studied the effect 

observed when already immobilized and dried origami were again rehydrated under certain 

conditions, resulting in a certain ordering of densely packed origami structures [96]. In our 

case we used the rectangle to optimize a protocol to stably anchor DNA origami structures 

to the surfaces. 

The sample has been initially spotted on a freshly cleaved mica substrate for 5 min and 

then ~1 mL of TAE 2× + 25 mM MgCl2 has been added before AFM analysis. With this 

protocol we obtained high resolution images, in which it is possible to see the central seam 

of the DNA origami. However we observed that after 1-2 h, the structures did not adhere 

anymore to the substrate and were dragged from the AFM tip. To avoid this phenomenon, 

we improved the adhesion adding 1 mM of NiCl2, which resulted in a prolonged stability 

during the time.  

 

 

Figure 3.3 a) AFM of DNA origami rectangles in intermittent contact imaged in liquid showing the central seam of the 

structure. Evaluation of the DNA origami stability b) in liquid with a freshly prepared sample (intermittent contact); c) in 

air with one day sample (contact mode); d) in air with 2 months-old sample (intermittent contact). 
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We analyzed the sample through AFM topography in liquid on the freshly prepared sample 

(intermittent contact), one day after we repeated the same measurement on dried sample 

(contact mode), after two months we performed on the same sample the measurement in 

air (contact mode). The images demonstrated that the time and the drying process did not 

affect the structure of the DNA origami (Figure 3.3). Even if buffer solution is considered 

determinant for the maintenance of the biological molecules in the physiological 

conditions, in this case it was not crucial for preserving DNA origami shape. 

Moreover we investigated also the adhesion strength of DNA origami on the silicon 

surface (after plasma cleaning treatment) performing AFM topography. A comparison 

analysis has been done with SEM. The images showed that DNA structures strongly 

adhere to silicon thus allowing AFM measurements. 

 

 

Figure 3.4 Rectangular shape DNA origami on silicon imaged with a) AFM performed in air (contact mode); b) SEM. 

 

3.3 DNA coverage of gold nanoparticles 

The ssDNA coverage of gold nanoparticles has been done using an already optimized 

protocol described in the paragraph 2.4 [83]. A good covering of gold nanosphere is 

correlated with the typology of the bond and with the reactivity of the molecules arranged 

on the surface. The number of molecule involved on the coverage strongly influence its 

reactivity. In particular, if the molecule density is high, the ssDNA are highly packed 

because of the stacking interaction along the molecular chains. A reduction in the number 

of molecules, instead, could generates a large non-homogeneity on the surface that 

prevents the correct stand up position leaving most molecules laying down [97]. This effect 

produces a large portions of gold surface exposed and available for electrostatic 

interactions such as, for example with the ions contained in the buffer solution. Since the 
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gold surface is negatively charged it tends to generate aggregation between NP through the 

formation of an electrostatic salt bridge between exposed gold surface portions. The 

success of the functionalization procedure, therefore, is correlated with a sufficient number 

of molecules attached on the surface to allow the NP neutralization in buffered ionic 

solutions.  

In our functionalization protocol, we used one of the most common way to produce a full 

DNA coverage of the gold sphere, consisting in the formation of sulfur-gold bond. Sulfur 

atom, in fact, strongly interacts with a cell of four gold atoms of the nanosphere providing 

for a strength bond similar to the covalent one (Figure 3.5a) [98].  

 

Figure 3.5 a) Representation of sulfur-gold bond: the S atom strongly interacts with 4-Au atoms cell (figure taken from 

[98]); b) The radius of curvature of a spherical surface induces a different arrangement of the molecules which 

determines the angle between molecular chains affecting the stacking interactions. 

 

In literature there are many examples of Self Assembly Monolayer (SAM) in which thiol 

modified molecules react with gold planar surfaces to create a monolayer with a controlled 

degree of order. The radius of curvature of a spherical surface induces a different 

arrangement of the molecules which determines the angle between molecular chains 

affecting the stacking interactions (Figure 3.5b). The substitution of sodium citrate, used 

for gold colloids synthesis, with BSPP (Bis(p-sulfonatophenyl) phenylphosphine dihydrate 

dipotassium salt) is fundamental to passivate the gold colloids surface. Moreover, BSPP 

can be easily replaced by thiol reactive groups.  

Single strands DNA are modified with thiol reactive group at one extremity. But the 

presence of a disulfide bond (oxidation of two thiol groups that bind together) is 

thermodynamically favorite in solution and prevents the premature disulfide bond 

formation in solution between the DNA strands. For this reason, the thiol group is 

synthesized with a protective chemical "cap" making the extremity not reactive. The 

reduction reaction to break disulfide bonds can be carried on with several reducing 

molecules. Among them, we selected dithiothreitol (DTT) because, as widely reported in 

literature [99], it is able to reduce the disulfide bond producing two -SH (thiol) 
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terminations. Immediately after DTT de-protection, the DNA molecules have been mixed 

with a proper ratio with gold colloids previously coated with BSPP (DNA concentration/ 

NP concentration = 3500-4500). The salt-ageing process in which the NP are kept stirred 

and a small salt (NaCl) amounts are added step by step to reach 0.1 M concentration which 

gradually stabilizes the link of DNA strands on the gold surface. Thanks to this slow 

process, DNA strands can acquire all the ionic charge needed to strengthen the interaction 

with the surface, avoiding aggregation caused by rapid salt amount addition.  

 

 

Figure 3.6 a) Extinction spectra of (i) 20-nm gold nanoparticles in BSPP (peak max = 524.3 nm) and (ii) 20 nm gold 

nanoparticles DNA functionalization. The latter induces a red-shifted plasmonic peak  associable with a change of 

permittivity. b) Functionalized gold NP are characterized by a ruby red color which becomes violet/gray after the 

formation of aggregated complex; the agarose gel migration is avoided if functionalized NP aggregate forming a violet 

line inside agarose well. 

 

The solution stability is primarily checked controlling the color that should remain ruby 

red and transparent (Figure 3.6b). The same color should be maintained also after agarose 

gel electrophoresis migration. If functionalized gold colloids are stable also inside buffer 

solution, they enter in the gel producing a clear red colored band otherwise they don’t enter 

inside the well producing a violet/ gray line (Figure 3.6b). The UV-Vis spectra performed 

with the gold colloids in BSPP shows a peak maximum at 523 nm, after the  

functionalization with DNA, the peak position is slightly red-shifted to 527 nm because the 

permittivity is changed (Figure 3.6a). 

3.4 Functionalized substrate for nanostructures anchoring 

Biotin-functionalization of DNA origami structures as well as DNA covered-AuNP, 

introduce anchor points to specifically deposit the particles on a substrate. Thus, the 
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substrates modification with organic molecules which are able to bind both the substrate 

and the nano-particle of interest. In our experiment, we functionalized a silicon wafer with 

two different PEG-silane one modified with methyl-group and the other one with biotin. 

Overnight incubation in non-oxidizing atmosphere was sufficient to fully recover all the 

silicon piece. We mixed methyl-PEG-silane and biotin-PEG-silane in different proportions 

(ratio 1 = 98:2 and ratio 2= 99.9:0.01). The height profile of the layer was determined in 

dried sample through AFM topography, repeated also after the scratch of a small area to 

calculate the layer thickness. The height profile of different scratched area presents an 

height average of 1 nm (Figure 3.7), demonstrating that there was an organic layer laying 

on the surface. 

 

 

Figure 3.7 AFM image of PEG-silane functionalized substrate with the central scratch performed with AFM tip; the 

profile measurement shows a step of ~1 nm. 

 

To understand the relation between the biotinilated-PEG concentration in solution and 

biotin deposited on the surface, we functionalized gold nanoparticles with an 

oligonucleotide biotin-modified. The streptavidin addition and the washing steps have been 

performed for each ratio (methyl-PEG-silane and biotin-PEG-silane) in parallel both for 

the sample and for the negative control represented by a substrate functionalized only with 

methyl-PEG-silane. After the incubation with biotinilated-AuNP we counted through SEM 

their density (Figure 3.8). The statistical analysis evidences that AuNP average number in 

the negative control was 20 times less than the sample containing 0.01% of biotinilated-

PEG. The sample containing 0.01% of biotinilated-PEG shows an half number of particles 

with respect to the sample containing 2% of biotinilated-PEG. The aspecific binding of 

AuNPs observed in negative control remained constant in all the experiments.  
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Figure 3.8 SEM picture representing biotinilated-AuNP incubated on functionalized substrate with: a) 99.9 : 0.01 of 

metil-PEG-silane and biotinilated-PEG-silane; b) 100% metil-Peg-silane. 

 

3.5 A platform for AuNP arrangement 

Rectangle DNA origami allows different rearrangement of AuNP. We organized three 

binding sites for gold nanoparticle functionalized with a different DNA sequence (F5, F9 

and F1) as shown in figure 3.1c. Each binding site is composed by three catchers strands 

protruding from the surface interspaced ~ 10 nm (AuNP radius). Our purpose was to 

increase the precision in positioning, and to strengthen the bond. However only two NP 

can be attached to the origami at the same time because of the partial overlapping of two 

binding sites (Figure 3.1c). The decoration protocol is usually performed mixing the DNA 

origami and the AuNP with a ratio of 2 NPs to each binding site. If the initial concentration 

of the NP is not sufficient to satisfy the ratio, an aliquot of NP solution is centrifuged to 

pellet the NPs and the volume of the supernatant is reduced as many times as necessary. 

The resuspended particles are then added to DNA origami and incubated at 45 °C/ 50 °C 

for 45 min, and cooling down overnight. The long cooling down ramp, should avoid 

thermal shock that can modify the structure. The presence of conjugated AuNPs and DNA 

origami has been confirmed by gel electrophoresis (Figure 3.9).  
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Figure 3.9 Agarose gel electrophoresis of DNA origami rectangle decorated with two AuNP, imaged with visible light 

and UV lamp, shows the band of the product functionalized and the band of free NP.  

 

The samples decorated with one or two NPs have been imaged both with SEM and STEM 

as shown in figure 3.10. The purification of DNA origami rectangle from excess of free 

NPs has been performed using different protocols. In gel extraction the ruby red band 

corresponding to DNA origami-AuNP is cut and centrifuged in Freeze and Squeeze filter.  

The SEM imaging of purified AuNP-DNA rectangles showed the dirt produced by agarose 

gel residues as displayed in figure 3.10b. Most of the structures were trapped inside gel 

matrix and the concentration was extremely reduced. The further proof of a decrease in 

concentration was the color of the sample which became transparent after gel extraction. 

 

 

Figure 3.10 a) STEM image representing DNA origami rectangle decorated with one AuNP; b) freeze and squeeze gel 

extraction of the DNA origami rectangle linked with two AuNP. 

 

These critical points encouraged us to find another way to purify the AuNP-decorated 

DNA origami using a completely new method exploited by Liddle’s group [100]. The 

protocol is based on a density gradient separation which employs a viscous liquid 

(iodixanol) to purify DNA origami rectangles decorated with 1, 2 and 3 AuNP in discrete 
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bands after a 2 h long centrifugation step. In all the experiments we performed, after the 

centrifugal step we obtained two pink bands both analyzed through SEM imaging. A 

successive Amicon filtration with TAE 1× containing MgCl2 removed the viscous liquid 

improving the quality of SEM images (Figure 3.11). Through this protocol we successfully 

separated most of the free AuNP from AuNP conjugated DNA origami but we didn’t 

succeed in the separation of DNA origami with 1 NP from 2 NPs. Moreover the protocol 

was barely reproducible, so we concluded that it is not appropriate for further experiments.  

 

 

Figure 3.11 Iodixanol separation and purification of AuNP decorated-DNA origami rectangles: a) iodixanol density 

gradient shows an intense red band and a pale band representing free AuNP and AuNP-DNA origami; b), c) and d) SEM 

images of pale red band shown in a). Red circles surround DNA origami anchored by 2 AuNPs while all the other 

particles are DNA origami with 1 NPs attached. Few free NPs are present. 

 

The LSPR analysis on the samples purified with the iodixanol method has been performed 

using a spectrophotometer. In the graph shown in figure 3.12 we have measured free AuNP 

and DNA origami rectangle decorated with AuNP in both combination: F9-F5 and F9-F1. 

Data are not normalized to highlight the different signal intensities. In the origami the 

intensities are strongly reduced because of the purification step after the decoration with 

AuNP, where most of the structures were lost. The three peak positions are overlapped, 

thus confirming that most of the structures observed possess only one AuNP as shown in 
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figure 3.11. For this reason the optical response of the particles linked to the DNA origami 

is comparable with the free AuNP response and no LSPR red-shift is observed. 

 

 

Figure 3.12 LSPR analysis of free AuNP and DNA origami rectangle with two different combination of AuNP; the peak 

position does not evidence relevant red-shift  after the conjugation of AuNP with DNA origami rectangle. 
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4 Plasmonic-based tetrahedral DNA origami device  

4.1 Tetrahedron design 

As mention in the thesis aim, I focused my attention to a wireframe DNA origami 

tetrahedron. Each edge is composed of four dsDNA helix ~90 nm long and is connected to 

the other two neighboring edges at the vertices by flexible joints. The scaffold strand, 

coming out from the struts, crosses each vertices twice. The connection points between the 

struts are composed by 5 bases left at single strand. The number of bases composing three 

of the six struts slightly differ to fold completely the scaffold strand. Three of the struts 

have been designed with a central seam which separates the two half of the pillar itself, so 

we properly prolonged the staples strands tuning their pairing to build a cage around the 

seam in order to reinforce the central part. In the three pillars left, the scaffold strand still 

forms a central seam but the external helix extends along the entire length of the pillar 

maintaining the struts more solid (Figure 4.1). 

 

 

Figure 4.1 Visual model of the scaffold strand folding path: six 4-helix bundles in blue, the flexible connections at the 

vertices in red. There are two different types of struts: the two half struts typology and the strut with a central seam. On 

the right side, a focus of the vertex connection. 

 

In order to tune the mechanical properties of the bundles, we designed three different set of 

staples which induced the formation of weakened points on two of the six struts. The three 

sets of staple strands include staple strands which: (i) anneal the entire scaffold strand of 

the bundle (0ss), (ii) anneal the scaffold strand except 4 bases of one of the four helix (1ss), 

(iii) anneal the scaffold strand except 4 bases of three helices composing the bundle (3ss) 

(Figure 4.2).  
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Figure 4.2 Three set of staples containing: 0 base single strand (0ss), 4 base single strand in 1 helix (1ss), and 4 bases 

single strands in 3 helices (3ss). The scaffold strand is blue, the structural staples strands are red, the staples involved in 

the variable part of the struts are gray, and the green dotted segments are the 4-bases gaps where the scaffold strand is left 

unpaired. On the right, the arrows indicate the position and the number of weak points.  

  

The three structures have been separately designed through the help of design-assisted 

software caDNAno as described in section 2.1. The success in the proper folding of the 

structures has been estimated using CanDo simulation software. The three structures share 

the same tetrahedral shape but they are differently colored (Figure 4.3). 

 

Figure 4.3 CanDo simulation of tetrahedral DNA origami 0ss, 1ss and 3ss. The color bar represents the thermal 

fluctuation (nm) of the structures. 

 

The CanDo simulation provides a qualitative information about the deformation induced 

by thermal fluctuations experienced by the DNA origami. The zones in which the 

deformations are higher highlight the regions where the conformational changes are more 
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likely to happen. Tetrahedron 3ss show a completely different colors pattern respect to 0ss 

and 1ss. 0ss and 1ss present red zone in two vertices while the rest of the structure is 

approximately stable; 3ss, instead, exhibits red parts in an entire strut and in three of the 

four vertices, but the other pillars are more stable than in 0ss.  

The purpose of 1ss tetrahedron design and synthesis was to use it for SAXS measurements, 

since its behavior should be too similar to 0ss to be detected with other technique.   

In order to bind two gold nanoparticles to the tetrahedron, we extended oligonucleotides 

from the original design, creating “catchers” strands. Each AuNP has three anchor points 

coming out from three different struts of a tetrahedral facet. The length of the catchers 

strands has been accurately defined to position the NP in the middle of the facet with a 

nominal interparticle distance of 10 nm from surface to surface. 

 

 

Figure 4.4 4 helix-bundle DNA origami tetrahedron 0ss and 3ss (4 nucleotides gap), represented with the CanDo 

simulation, are decorated with an actuator strand and with two 20 nm- gold nanoparticles positioned in the center of two 

opposite tetrahedral facets with an planned interparticle distance of 10 nm (30 nm from center to center). The addition of 

molecular target induces a conformational change of the structure reducing the gap between AuNP. 

 

A third tetrahedron facet is modified by the addition of the “actuator” strand, which 

represents the probe of the DNA origami device. One long ssDNA, connects two of the six 

struts of the tetrahedron through  two catcher strands complementary to the 5′ and 3′-ends 

of the actuator strand. The complementary sequence is 18-bases long. The target has a stem 

and loop configuration, complementary with the actuator strand sequence. The annealing 
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of the target loop with the central part of the actuator strand reduces the actuator length 

pulling the tetrahedron from both sides. The partial collapse of the structure, decreases the 

gap between AuNP and changes the optical properties of the system (Figure 4.4).  

4.2 Synthesis of DNA origami structure 

The synthesis of DNA origami structure has been performed in one pot-reaction through 

the addition of three different staple mix. The synthesis condition are described in the 

session 2.2 [18,25], some optimizations of the original protocol have been done modifying 

the cooling down ramp, the Mg
2+

 and the scaffold/staples strands concentrations in order to 

improve the quality and the quantity of the tetrahedron DNA origami.  

We firstly have used a scaffold strand concentration of 1.6 nM; the latter determines the 

concentration of folded DNA origami. The purification step was performed through 

centrifugation in Amicon filter, described in paragraph 2.2, which removed the excess of 

staple strands and increased the DNA origami concentration from 1.6 nM to 2.8 nM, 

calculated with the same method presented in paragraph 3.1. 

In figure 4.5a is shown an agarose gel: in the first and in the third lanes we can observe the 

migration of the ladder and of the M13mp18 while the forth and the fifth wells were filled 

with DNA origami tetrahedron respectively before and after the Amicon purification. The 

red box in figure 4.5a identifies the gel bands corresponding to the well folded origami. 

After the purification step the origami concentration was increased (band brightness 

enhancement). Meanwhile we assist to the formation of two slower bands which 

correspond to larger constructs, derived from the aggregation of two and three 

tetrahedrons. SEM characterization confirms the agarose gel indications: in fact, most of 

the tetrahedrons analyzed were aggregated (Figure 4.5b,c) or broken in different places, 

probably because of the harsh purification step. 
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Figure 4.5 a) Agarose gel electrophoresis of DNA origami tetrahedron shows the concentration and the aggregation 

enhancement after Amicon purification, M13mp18 is used as a control of the folding success; b) and c) SEM pictures in 

which there are well-folded tetrahedron, broken and aggregated DNA architectures. 

 

Reducing the centrifugation speed of Amicon filtration from 14000 × g to 4000 × g, the gel 

band resolution and position are not modified, but the presence of free staples highlights an 

insufficient purification. The addition of  the “actuator” strand does not induce any 

additional aggregation. However, the structural instability of tetrahedron demonstrate that 

further improvements of the synthesis protocol are required. The purification step has been 

avoided and synthesis protocol adjusted, reducing both the incubation time from 48 h to 40 

h and modifying the cooling down ramp. Instead of an homogeneous decrease from 90 °C 

to room temperature lasting 48 h, the ramp starts at 80 °C, reaches 60 °C in 20 min, and 

slowly decreases in the following 40 h, reducing the time in which the high temperature 

can degrade DNA filaments. 

The cooling down ramp time, as described by Carlos Castro [18], varies from few hours 

for single-layer to several days for multi-packed structures. DNA origami tetrahedron is 
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intermediate because it is composed by the folding of only 4 helices. For this reason, we  

tried also the fast synthesis which consists in a 3 h-long protocol, with a constant cooling 

down ramp from 80 °C to 25 °C. The agarose gel electrophoresis showed a band 

comparable with the one obtained with the 40 h-long protocol. However, SEM analysis 

indicates that the structure stability is strongly affected by the duration of the protocol, and 

the stacking among the structures is increased for the shorter one.  

Therefore we concluded that the 40 h-long folding protocol is the more appropriate to 

obtain a reproducible DNA-origami. To increase the amount of the synthesized origami we 

increased the scaffold concentration from 1.6 to 10 nM and proportionally the 

concentration of the staple strands mixture (up to 100 nM). The analysis in agarose gel and 

at the SEM shows that the resulting origami are well folded and separated as shown in 

figure 4.6. 

 

Figure 4.6 a) Agarose gel analysis of tetrahedron 3ss synthetized with 2-week old buffer and freshly prepared buffer; the 

latter produced a more confined band reducing the number of aggregation (upper part of the gel). b) SEM images of 

tetrahedron 3ss deposited on carbon coated grid; white spots represent salt residues.  

 

The final DNA origami concentration was calculated using ImageJ software: the brightness 

of the whole lane can be assumed proportional to the M13mp18 initial concentration (10 

nM), so the ratio between the brightness of the origami band and of the entire lane is 

equivalent to the ratio between the concentration of the tetrahedron and of the scaffold 

strand. Moreover, we investigated the ageing effect of the used chemical and solutions. In 

particular we compared the use of freshly opened buffer, with respect to a buffer bottled 

opened three weeks before and then stored at room temperature. We observed that freshly 

prepared buffer instead of old buffer (3 weeks old) may influence the output of the 

synthesis as shown in figure 4.6a. The old buffer, in fact, induced the formation of a 
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second band and a smear representing the dimerized structures and aggregated ones . The 

characterization of DNA origami 0ss, and 3ss performed through agarose gel 

electrophoresis and SEM did not evidence structural differences among them.  The same 

sample deposited on the grid used for the SEM imaging shown in figure 4.6b has been also 

imaged with TEM (Figure 4.7), confirming the results already obtained with SEM. Even if 

TEM increases the structures magnification, the absence of a negative staining reduced 

dramatically the contrast of DNA which appears more defined in SEM images. 

 

 

Figure 4.7 TEM images representing well-folded tetrahedrons (thanks to Mattia Fanetti). 

 

4.3 AFM characterization of DNA origami tetrahedron 

SEM characterization is an helpful and rapid method to simultaneously check the correct 

folding of numerous DNA origami, but it provides a partial information especially 

considering the three-dimensionality and the flexibility of the structure of choice. SEM 

imaging is a destructive technique in which organic sample are rapidly damaged: this does 

not allow the detailed characterization of the origami. Even if low voltage energies are 

used, the measuring time is still limited. Thus, a complementary analysis with AFM 

imaging is usually required. Because of its flexibility and wireframe configuration, the full 

3D structure of this DNA origami cannot be properly reproduced using AFM. For this 

reason we intentionally flattened the tetrahedron by preparing a staples mix in which 6 

staples involved in the seam reinforcement of one of the six pillar, are omitted. In this way, 

we obtained in a controlled way, an homogeneous sample in which almost all the structure 

are 2D. We performed the flattening both for 0ss and for 3ss tetrahedron inducing the 
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formation of a kite-like structures, obtaining primary information on the pillars height and 

width (Figure 4.8a).  

 
Figure 4.8 a) The omission of few staples strands in the one-pot synthesis protocol induced the formation of kite-like 

structures (0ss and 3ss); b) after the synthesis of the DNA origami kite-like we performed the agarose gel analysis in both 

structures before and after the addition of the target; purified samples show an electrophoretic migration comparable with 

that of the not-purified samples. 

 

After the folding of DNA origami Kite-like, achieved with the same protocol of the 3D 

tetrahedron, we purified the product of interest from excess of staple strands. 2D DNA 

origami, did not require the same precaution of the 3D tetrahedron: both gel extraction and 

the Amicon filtration did not influenced structural properties even if the latter, exactly as in 

the 3D shape, introduced kites aggregation (Figure 4.9c).  

Agarose gel analysis of the 0ss and 3ss samples after the extraction from a previous 

agarose gel produced a fine selection of the product of interest, as shown in Figure 4.8b, 

without perturbing the migration but it reduced the concentration and introduced dirt 

originated from agarose gel fibers as shown in SEM pictures (Figure 4.9d). AFM imaging 

has been performed in air because of the prolonged sample durability and of the higher 

resolution with respect to the liquid environment; moreover, the topographic analysis in air 

is faster and easier than in liquid. After the measurements performed on the rectangular 

DNA origami structure I have established that the drying process doesn’t affect the 

samples shape and position (paragraph 3.2). 
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Figure 4.9  a) AFM images performed in contact mode (dried samples) of kite-like structures and b) zoom in on a DNA 

kite-like structure; SEM images of: c) kite-like DNA origami filtered in Amicon, d) kite-like structures gel extracted. 

 

AFM showed that almost all the structures are in the flat configuration, except few of them 

which are folded down on themselves (Figure 4.10a), probably because the scaffold strand 

can still pull the two halves of the broken strut together. Moreover, the flexibility of the 

vertices provides enough degrees of freedom to allow the folding of the structure on itself 

even if it is statistically less favorably placed configuration due to the electrostatic 

repulsion between the origami struts. The profile of the kite DNA origami deposited on 

mica as measured from the topographic images, post-processed with Gwyddion software, 

highlights an average strut height of 2 nm which is substantially lower than 2 double-helix 

value in solution (between 4 and 5 nm) (Figure 4.10b,d) [101]. The apparent width of the 

ds-DNA molecules is strictly correlated with the tip used, but it was always exceeding the 

2 ds-DNA diameter in solution, which is to be expected for tips with apex radii exceeding 

substantially the molecular diameter (Figure 4.10c). 
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Figure 4.10 a) AFM images in which there are kite-like DNA origami, few of them are folded on themselves; b) height 

profile of the structures shown in 3.10a; c) wide of the kite-like struts using Gwyddion tool; d) 3D image of a kite-like 

DNA origami. 

 

4.4 DNA origami gold nanoparticle-decoration 

DNA origami tetrahedron provides for two binding sites which consist of 3 

oligonucleotides protruding from 3 different struts. If connected by the three catchers 

strands, each AuNP will be positioned at the center of a tetrahedral facet. When two AuNP 

are anchored to the tetrahedron at two opposite facets, the calculated distance between 

them is 10 nm from surface to surface or 30 nm from center to center (of the NPs). 

Catchers strands are made up of three domains: one 16-mer complementary to the DNA 

origami structure and one 22-mer complementary to the ssDNA sequence attached to the 

AuNP and a third domain between the former two which provides the length required to 

position the nanoparticle in the exact center of the facet. The decoration protocol is 

performed mixing DNA origami and NP with a ratio of 2 NPs for each binding site. AuNP 

were then added to DNA and incubated at 45 °C/ 50 °C for 45 min, and cooled down over 

night. The presence of hybridized AuNPs on the DNA origami has been confirmed by gel 

electrophoresis. The agarose gel migration of DNA origami decorated with gold 

nanoparticles, both 0ss and 3ss, before and after the target addition, induces the appearance 
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of ruby red gel bands. The UV light image of the same gel highlights the DNA staining, 

provides a clear correspondence between the specific bands of hybrid structures with the 

band of DNA origami (Figure 4.11a). The targets are usually mixed in excess of 200 times 

respect the DNA origami concentration, to induce complete hybridization to DNA origami.  

To increase the AuNP band, we doubled AuNP concentration, as shown in figure 4.11b, 

and we got a more intense ruby red gel bands which correspond to DNA origami decorated 

with NP, before and after the actuation with the target c120, but a lot of free NP which 

were trapped in between. The excess of unbound NPs can be observed as the broad red 

band in all the lanes and is negative upon DNA staining. 

 

Figure 4.11 Agarose gel Uv/vis representing the migration of DNA origami-gold nanoparticles hybrid structures. The 

AuNPs functionalization induces a smear of the band. The presence of gold nanoparticles allows the formation of a 

visible band. Agarose gel electrophoresis showing the migration of: a) tetrahedron 0ss and 3ss decorated with AuNP 

(ratio 1 DNA structure :5 NP) not previously filtered from free staples strands before and after the target addition; b) 

tetrahedron 3ss decorated with AuNPs (ratio 1 DNA structure: 10 AuNP) not previously filtered before and after the 

addition of the target strand. 

 

No differences have been observed in the bands position between the Au-NP decorated 

DNA origami and the two DNA target-actuated constructs. The structural differences 

induced by the target hybridization are not large enough to produce an appreciable 

electrophoretic migration delay. A slowly moving bands attributed to the formation of 

DNA origami superstructures (dimers, aggregates) can be observed. These results have 

been also confirmed by SEM characterization. 
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4.5 SEM/TEM characterization of the DNA origami/NP hybrid 

structures 

After the functionalization of DNA origami with gold nanoparticles, SEM imaging has 

turn out to be useful in the characterization of the samples. While DNA origami alone 

doesn't provide enough electronic contrast to be efficiently characterized with this 

technique, the presence of gold nanoparticles produces a good contrast which is 

meaningful for a statistical analysis of the interparticle distance. We deposited the samples 

on different types of substrate as silicon wafers and TEM copper grid carbon. The latter 

were preliminary checked at SEM before being analyzed at TEM, producing a good 

contrast of the images. 

In order to selectively decorate the DNA origami structure with one or two gold 

nanoparticles, we initially synthetized it using only one set of catchers strand which are 

involved in the binding of one AuNP.   

 

 

Figure 4.12 DNA origami tetrahedron conjugated with 1 AuNP; (up) SEM images with a broken tetrahedron in which is 

visible the right AuNP positioning; (down) TEM images (thanks to Mattia Fanetti). 

 

The conjugation of one AuNP to the DNA tetrahedron, still allows to visualize the 

tetrahedral shape. Moreover, the presence of kite-like structure, as in figure 4.12, evidences 

the precise positioning of the AuNP in the center of a tetrahedral facet.  

The further functionalization of the tetrahedron with two gold nanoparticles has been 

performed through the addition of two sets of catcher strands, which recognize the same 

AuNP functionalization, during the DNA origami synthesis. The presence of a second NP 
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attached to the tetrahedral architecture, further increases the signal background, coming 

from secondary electrons scattered by the two nanoparticles, thus outshining the signal 

generated by the origami itself. However, sometimes we noticed a triangular shadow, that 

we attributed to DNA origami (Figure 4.13).  

The imaged sample has not been previously purified because, as explained in paragraph 

4.3 and 4.4, any kind of purification may break, aggregate, and in some case dilute the 

sample, with the introduction of dirt. 

 

 

Figure 4.13 Dimers of gold nanoparticles with a triangular like shadow representing DNA origami tetrahedron with two 

gold nanoparticles (Scale bar 100 nm). 

 

The SEM analysis showed a huge number of gold nanoparticles dimers which have been 

counted and analyzed to evaluate the interparticle distance on the 3ss tetrahedron before 

and after the addition of the target. The distance analysis, has been performed on more than 

100 particles for both the samples (3ss and 3ss + target), measuring the distance between 

the NPs from center to center (Figure 4.14a,b). In this way, the AuNP dimension 

variability does not affect the measurements. The statistical analysis evidenced two 

different trends of the interparticle distance for actuated and not actuated structures. Before 

the addition of the target, the interparticle distance is subjected to great variability. In 

particular the center-center distance can be described by two Gaussian distribution 

centered at 27 nm and 33 nm respectively. After the addition of the target, a single 
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Gaussian can be used to reproduce the interparticle distance, peaked between 23 nm and 24 

nm. 

 

 

Figure 4.14 a) Representative SEM image of not purified DNA origami sample before target hybridization. Well-folded 

3ss tetrahedron decorated with two gold nanoparticles are identified and distinguished from the free AuNPs also present 

in the solution. In the inset a representative profile used to evaluate the interparticle distance. b) Representative SEM 

image of not purified DNA after target hybridization. In the Inset a representative profile used to evaluate  the 

interparticle distance. c) Statistical distribution of interparticle distance (center-to-center) of 3ss dimers before (black) and 

after (magenta) the hybridization of target. The interparticle distances were evaluated measuring the profile width 

through SEM SUPRA software. Before hybridization the distribution is broad with a bimodal character peaked at 26nm 

(AuNP in quasi-contact) and 33 nm (equilibrium configuration). After target hybridization, the distribution become 

monomodal peaked at 23-24 nm. 

 

This outcome can be motivated by the flexibility of 3ss structure which allows numerous 

configurations, determining a change of the interparticle distance in a range of 20 nm. The 

equilibrium configurations are closed to the designed ones (interparticle distance of 30 nm 

from center to center). The addition of the target pulled the struts closer and stabilized the 

configuration in which the two particles are 3-4 nm far from each other. The actuation 

mechanism of tetrahedral device was further investigated and confirmed through LSPR 

analysis. 

4.6 Plasmon ruler actuation 

The optical response of the DNA origami tetrahedron before and after the actuation with 

target strand has been studied through LSPR measurements. The analysis, of 0ss and 3ss, 
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has been performed directly in agarose gel with the setup described in paragraph 2.8. The 

electrophoresis allows the separation of the DNA origami tetrahedron from dimer, trimers, 

aggregated structures and free AuNP. The gel extraction, in fact, reduces the concentration 

of the DNA origami-AuNP hybrid structures modifying the structural properties. In our 

lab, we have already demonstrated the possibility to perform LSPR measurements of DNA 

origami/NP in agarose gel, obtaining absorbance peak positions univocally associable with 

a specific interparticle distance [64]. We recorded extinction spectra for each structure both 

in liquid and directly in the separated gel bands to minimize cross band contamination. In 

figure 4.15 are displayed the extinction spectra of AuNPs in BSPP, DNA coated gold NPs 

in water and the tetrahedrons 0ss and 3ss decorated with gold nanoparticles. Measurements 

in liquid have been performed because in previous experiments we have noted a tight 

packing of NPs in gel and this, associated with higher dielectric permittivity of the gel, 

results in significant red shift of LSPR peak and its broadening due to a plasmon coupling 

effect in respect to origami with gold NPs [87]. 

 

 

Figure 4.15  AuNP LSPR analysis in solution. Spectra from pure AuNP, DNA coated AuNP, 0ss and 3ss origami are 

displayed. A spectral red shift is observed, as expected, because of the increased dielectric constant of the AuNP 

environment from pure, DNA covered, and DNA origami environment. The shift from 0ss to 3ss structure is due to the 

higher thermal fluctuation in the latter that reduce the average interparticle distance. 

 

Extinction spectra showed that the DNA-covered gold NP red shifts respect to AuNP in 

BSPP solution because of the change in permittivity of the medium around the 

nanoparticle (see also paragraph 3.3). A further red-shift for non-actuated tetrahedrons is  

due to the reduction of interparticle separation driven by the tetrahedron structure. The 

larger red-shift of the 0ss with respect to the 3ss and the larger broadening of the latter can 
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be explained by the higher flexibility of the 3ss tetrahedron which can assume a broader 

range of conformations.  

The spectra before and after the target addition, recorded in separated gel bands, are shown 

separately for 0ss in figure 4.16a and for 3ss in figure 4.16b. The spectra showed that the 

target triggers a change in the optical response only on tetrahedron 3ss, inducing a further 

red-shift of the peak position. The two curves representing 0ss actuated and not actuated by 

the target, instead, are peaked in the same position. 

 

 

 

Figure 4.16 AuNP LSPR analysis in agarose gel, after band selection. Spectra from a) 0ss and b) 3ss structures with and 

without target. A significant red shift is observed only in 3ss after target addition and it is attributed to the interparticle 

distance reduction due by the target-probe hybridization. 

 

The normalization of the data to 1 at the peak maximum facilitates the visualization of the 

peak positions, highlighting the plasmonic shift of the tetrahedron 3ss after the 

hybridization with the molecular target (Figure 4.17a,b).  

  

 

Figure 4.17 Normalized spectra of: a) AuNP LSPR analysis in solution. Spectra from 0ss structures with and without 

target; no spectra shift is observed. b) 3ss structures with and without target displaying a significant red-shift is observed 

after the target-probe hybridization. 
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Before the addition of molecular target, LSPR peaks are centered at 528.7 nm for 0ss and 

527 nm for 3ss. Using Mie theory and considering single NP, we evaluated the value of 

effective dielectric permittivity that is 1.8. Using this value, the interparticle distance in the 

tetrahedron 3ss is estimated to be 9 nm before the reaction with the target. After the 

interaction, the LSPR peak does not change for 0ss while 3ss is red-shifted to 534 nm. This 

7 nm LSPR red-shift is proportional to a distance reduction of 5 nm. These data match with 

the interparticle distance distribution defined with SEM analysis. All the extinction spectra 

have been fitted for background subtraction with two Gaussian curves as shown in 

Appendix 2. In the fitted data, the absolute peak position is slightly red-shifted in all the 

graphs but it does not influence the results since I consider only the shift between the 

peaks, which is not affected by the fit. 

The same analysis has been performed on the 3ss tetrahedron in which the concentration of 

the AuNP was double with respect to the previous experiment to ensure that all the binding 

sites present on the tetrahedral structures were linked to a nanoparticle (Figure 4.18).  

 

Figure 4.18 LSPR graph representing the extinction of tetrahedron 3ss before and after the actuation with the target c120 

measured in agarose gel. The excess of free AuNP superimposed to DNA origami-AuNP structures strongly influences 

the curves shape. 

 

The identification of the LSPR peak is made more difficult by the superposition of the 

stronger component of the free AuNP, for this reason I separated the single peaks 

composing the curves through multi-Gaussian fit. The fit has been applied to non-

normalized data.  
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Figure 4.19 Fit of the plot in figure 4.18 representing 3ss tetrahedron before a) and after b) the addition of the target. The 

multi-Gaussian analysis performed with 3 elements in a) and 4 elements in b) highlights a common component at 520 nm 

associable to the free AuNP absorbance and another major curve (blue) which is presumably related with the tetrahedron-

AuNP dimers which red-shifts 6.5 nm after the target hybridization. 

 

The fit of the 3ss before and after the addition of the target highlights the present of a 

strong component at 520 nm which can be reasonably associated with free AuNP 

absorbance (Figure 4.19). The other main component (blue curve fit) has been associated 

with the LSPR of the dimers linked to the tetrahedron: the position of this component after 

the addition of the target resulted shifted by 6.5 nm with respect to the 3ss sample before 

the target addition. This value is in accordance with the previous experiment and 

demonstrates the successful actuation of the DNA origami structure. 

4.7 Small angle x-ray scattering  

We probed the structures of AuNP dimers-DNA origami hybrid constructs by in situ small-

angle X-ray scattering (SAXS). SAXS allows the structural analysis and the distance 

determination with nanometer resolution. The measurements have been performed at 

SAXS beamline at Elettra Synchrotron. We measured about 77 samples previously 

checked through agarose gel electrophoresis.  

 



84 

 

 

Figure 4.20 a) Comparison of three different measurements of the nanoparticles dispersion with the corresponding fit. 

The fits have been performed using form factor for spherical particles adding a Schulz sphere size distribution with 

Sticky Hard Sphere Structure factor (black solid lines). Data are shifted for clarity. b) Comparison of three different 

measurements of the nanoparticles in agarose gel with the corresponding fit. The fits have been performed using form 

factor for spherical particles adding a Schulz sphere size distribution with Sticky Hard Sphere Structure factor (blue and 

dark red lines). 

 

Half of them was in liquid, and half was measured directly in agarose gel. In a preliminary 

analysis we noticed that gel-migrated AuNP were detectable through SAXS (4.20 b).  

The signal produced and the intensity, in fact are comparable with the one of the AuNP in 

liquid represented in figure 4.20a. Thanks to these measurements, we predicted that  

tetrahedron 0ss, 1ss and 3ss decorated with 2 AuNP could be analyzed before and after the 

actuation with target directly in agarose gel to reproduce LSPR measurements conditions. 

The same samples have been measured also after the gel extraction to analyze the 

structural changes of the samples after gel purification to precisely evaluate the 

conformational change attributable to this process. Only for SAXS measurements, we 

designed three more targets which differ from target used for the previous experiments 

(Target c120) both for the secondary structures and for the complementary region with the 

actuator/probe strand (Table 4.1).  
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Table.4.1 Target strands designed for SAXS measurements. Sequences in red represent the regions complementary to the 

actuator strand while underlined sequences are GC stems. Target 1, 2, 3 have a central T-loop and 5′ and 3′ ends –are 

complementary to the ends of the actuator strand. Target c120, instead, has a central loop which is complementary with 

the central part of the actuator strand. 

 

The samples in gel before and after gel extraction have not been sufficiently concentrated 

and the background produced by the different agarose matrices could not be subtracted. 

While, the measurements performed in the not purified samples in liquid, displayed an 

interesting signal variation after the addition of the target c120 to the tetrahedron 3ss; the 

hybridization of the target with the actuator strands, in fact, induces a reduction of the 

interparticle distance. We examined in depth this behavior repeating SAXS analysis in 

solutions both for tetrahedron 0ss and for 3ss before and after the addition of target 1 and 

target c120. The raw data of the 3ss tetrahedron before and after the addition of the target 

c120 have been normalized to 1 at 0 cm
-1

 as shown in figure 4.21a. The samples analyzed 

have not been previously purified from excess of free AuNP. For this reason, the data 

obtained from functionalized AuNP are then subtracted from data of the tetrahedron with 

and without target to remove free NPs contribution, highlighting the differences between 

the two samples as shown in figure 4.21b. The black arrow in the plot, shows the region of 

interest (30 nm from center to center), while the biggest differences in the initial parts of 
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the curves are not considered because they describe longer order range which are 

attributable to supramolecular structures. 

 

 

Figure 4.21 SAXS data analysis. a) Plot of raw saxs data normalized to 1 at 0 cm-1 of DNA origami tetrahedron 3ss with 

two AuNPs measured in solution before and after the target addition; b) plot of the data in a) divided by free AuNP data 

to remove their contribution and to highlight the differences between the two samples. 

 

Subtracting the data obtained for tetrahedron 3ss to tetrahedron 3ss with target, we focused 

with more precision on the interparticle distance differences. In particular we noted a peak 

maximum fixed at 30 nm which represents the AuNP gap of the tetrahedron 3ss, and a 

maximum valley at 25 nm for DNA origami tetrahedron 3ss after the addition of c120 

(Figure 4.22).  
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Figure 4.22 SAXS data representing the subtraction of tetrahedron 3ss-gold NP after the addition of the target c120 to 

the tetrahedron 3ss with AuNP. A peak corresponding to the interparticle distance before the actuation is fixed at 30 nm 

(center-to-center) and the max valley representing the interparticle distance in the tetrahedron after the target addition is 

highlighted at 25 nm (center-to-center). 

 

The differences observed in the tetrahedron 3ss are not found in the tetrahedron 0ss, 

confirming LSPR measurements for both samples. Thanks to these two techniques, we 

demonstrated that AuNP-DNA origami tetrahedron (0ss and 3ss) behavior is not 

influenced by liquid or gel environment. Moreover, we confirmed that only tetrahedron 3ss 

is sufficiently flexible for being actuated by target c120. 

LSPR measurements have been performed on the 3ss tetrahedron, previously analyzed 

with SAXS, to evaluate its actuation before and after the incubation with target c120 and 

with target 1 (Figure 4.23). Since SAXS results have indicated a distance reduction only 

after the addition of target c120, we wanted to confirm these results performing LSPR 

analysis on the previously irradiated samples after their purification through 

electrophoresis. The results shown in figure 4.23 demonstrate again no effect of the target 

1 and a significant reduction in the actuation efficiency operated by the target c120; the 

shift value of ~ 2 nm does not match with the ~7 nm red-shift observed in the previous 

experiments. However, the detection of a small shift is a relevant result to prove not only 

the sensibility offered by our LSPR set-up with respect to SAXS, but also the stability of 

the structure even after X-ray irradiation. 
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Figure 4.23 LSPR plot of 3ss tetrahedron with and without targets 1 and c120, displaying a restrained red-shift only after 

the target c120-probe hybridization; target 1 does not considerably affect the AuNP distance. 

 

To reproduce the results obtained without tetrahedral structure, we designed a pool of 

AuNP aggregates with fixed interparticle distance, linking the particles through a given 

ssDNA sequence. 

For this purpose we functionalized 20 nm gold NP with thiolated single strand 

oligonucleotides and their complementary strand. The selected DNA filaments are 

composed by 16-mer, 21-mer, 27-mer and 54-mer. Considering thiol modification at 3′ of 

approximately 0.7 nm, the final length of these oligos is 6.15 nm, 7.84 nm, 9.88 nm, 19.06 

nm respectively. Each functionalized AuNP has been then mixed with the AuNP 

functionalized with the complementary oligo, producing a disordered aggregation, in 

which, however the interparticle distance is fixed. SAXS analysis is able to determine the 

average interparticle distance at nanometer scale. The calibration system offered by 

interconnected AuNP could be exploited for the selection of an appropriate fit of the 

AuNP-DNA origami structures. The complexity of SAXS analysis requires a great effort in 

finding the right fit to better elaborate the information acquired. For this reason we are now 

working on this purpose. 

4.8 Cryo-EM characterization of the AuNP decorated-DNA 

origami structures  

Cryo-EM provides a characterization of the samples in physiological conditions, in 

solution and without the need of depositing onto a surface, which may lead to structural 

changes driven by the interaction with the substrate. The synthesis of the tetrahedron has 

been performed in the structural biology lab using all the reagents delivered from our lab. 
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The synthesis and the functionalization with two gold nanoparticles have been firstly 

checked through agarose gel electrophoresis, using the same protocols previously 

described in this chapter. The gel bend intensity and position were consistent with the ones 

of the well-folded tetrahedrons (Figure 4.24a,b).  

 

 

Figure 4.24 Agarose gel images representing the synthesis performed in Berkeley lab: a) UV light images in which the 

red box highlight the tetrahedron 3ss, b) agarose gel imaged with Vis light showing the AuNP functionalization of two 

synthesis of the tetrahedral DNA origami. 

 

The cryo-EM sample preparation and maintenance are critical passages which have been 

performed following the protocol optimized by Gary Ren’s group [102]. The images, 

performed on tetrahedral DNA origami decorated with AuNP, showed a distribution of the 

structures in close proximity of the holey carbon of the grid as if they were electrostatically 

attracted. All the structures analyzed, displayed a triangular shape and in many cases the 

NP position is in the center of the tetrahedral facet (Figure 4.25a,b). We tried also to 

measure the interparticle distance of the dimers which was comparable with the desired 

one but the aggregation and the overlapping of the structures didn’t allow a precise 

analysis.  
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Figure 4.25 Cryo-EM images of tetrahedron 3ss functionalized with AuNP: a) most of the structures are arranged in 

close proximity of the holey carbon grid; b) zoomed picture showing the aggregation of the 3ss tetrahedron DNA origami 

with AuNP, the AuNP is however positioned in the center of a tetrahedral facet. 

 

We found out few single tetrahedral structures (Figure 4.26a,b) and in one of them we 

performed also the tomography (Figure 4.26c), acquiring a set of electron micrographs (tilt 

series) at different angular orientations of the sample.  

 

 

Figure 4.26 Cryo-EM images of 3ss tetrahedron with AuNP: a) aggregated structures and one single particle zoomed in 

figure b). c) Dimer of AuNP positioned over a DNA triangular facet used to perform the tomography. 

 

The tomography of the structures has been produced but it is difficult to appreciate the 3-

dimensionality of the structure.  

There are few possible explanation for the tetrahedral aggregation shown by cryo-EM 

image: the structure were not sufficiently stabilized by salt charges and so they formed big 
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aggregates or the oligonucleotides and functionalized gold nanoparticles were degraded 

from delivery. Another possibility is that the TEM grids were strongly treated by glow-

discharge protocol attracting all DNA architectures.  
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5 DNA origami biomineralization 

5.1 Metal Organic Frameworks 

DNA preservation is fundamental in genomic research being crucial for bio-banking 

design, drug delivery, forensic and data storage. Even if DNA is considered a stable 

molecule over the time, if embedded in water, it is subject to chemical degradation through 

hydrolysis, oxidation and alkylation and biological fragmentation through nuclease attack. 

The possibility to encapsulate biopolymers, microorganisms and living cells in crystals 

lead to the biomimetic mineralization, which is able to preserve the biological activity even 

after treatments with solvent, heat or toxic reagents. Metal Organic Frameworks (MOF) 

can be grown around biomolecules to encapsulate and protect from the environment. MOF 

is a class of porous materials composed by metal nodes and organic linkers forming a 

versatile hybrid compound. MOF possesses tailored physical and chemical features due to 

the wide-range of applicable building blocks. The most competitive advantages offered by 

MOF over other existing coordination networks are the manipulation in shape, size and 

physiochemical conditions suitable with the hybrid material involved, and the porous 

structure which allows efficient cargo loading. The biodegradability and the 

biocompatibility of the MOF and the ease of surface functionalization prone to the 

molecular recognition are required qualities for the use of MOF in medical application. A 

well-studied member of the MOF family is the Zeolitic Imidazole Framework (ZIF) which 

is stable in water, low-cost, form rapidly around biomolecules and can be selectively 

degraded. ZIF are topologically isomorphic with zeolites and are composed by a 

tetrahedrally-coordinated transition metal ions (e.g. Fe, Co, Cu, Zn) connected by 

imidazolate linkers. ZIF-8 represent a class of ZIF in which zinc ions coordinated by four 

imidazolate rings in the same way as Si and Al atoms are covalently joined by bridging 

oxygens in zeolites. In one recent work, Liu and coworkers firstly demonstrated the one-

pot synthesis of cytochrome C–embedded MOFs by co-precipitating metal ions and 

organic linkers. TEM images revealed the growth of the particles from rods to rhombic 

dodecahedron crystals [103]. ZIF can be grown around bovine serum albumin (BSA) at 

room temperature by adding an aqueous solution of zinc acetate to an aqueous solution 

containing BSA and 2-methylimidalole ligand in water. 90% of the macromolecule have 

been encapsulated, their coverage was determined through FTIR and confocal microscope 

tagging the BSA with a fluorophore [104]. Later, other biological molecules have been 
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biomineralized in ZIF-8 structures as ovalbumin, HRP, trypsin and single strand DNA 

resulting in a wide range of morphologies: nanoleaves, nanostars, and rhombic 

dodecahedron crystal respectively [104].  

There are many studies which demonstrate DNA origami stability over the time and in 

different medium. DNA origami structures survival was tested in cell lysate, after injection 

in mouse and also varying chemo-physical parameters as the pH, the temperature and the 

chemical content of the solution. However after prolonged time, it can be degrade as well 

as nucleic acids strands. The DNA origami biomeralization prolongs its survival over the 

time and in an environment- independent manner. Any kind of harsh chemical or physical 

treatments as irradiation with high energetic photon, such x-rays or UVs, treatments in 

corrosive media, or exposure to high temperature would not affect with the structural 

integrity. The defined shape of DNA origami could play a crucial role in the crystal 

growth, influencing also the final ZIF morphology. ZIF-8 can be dissolved by EDTA 

solutions in few second. Previous experiments demonstrated that this treatment doesn’t 

influence the biomolecule previously encapsulated. For example, DNA strands released 

from ZIF-8 coatings were immediately amplified with polymerase chain reaction without 

further purification .  

In this work we biomineralized DNA origami structures encapsulating them in ZIF-8 

crystals. The crystals, grown around DNA origami rectangles, have been prepared through 

the successive addition of 2-methylimidazole and zinc acetate (precursor). The structural 

morphology and the chemical composition of DNA origami-ZIF covered, prepared using 

different precursor concentrations, have been analyzed. This project has been performed in 

collaboration with Joseph J. Richardson from the University of Melbourne, Victoria, 

Australia.  

 

 

Figure 5.1 Controlled encapsulation in a MOF crystal of DNA origami rectangular after precursor addition and release 

operated by EDTA addition 
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5.2 DNA origami-ZIF encapsulation 

DNA origami rectangle has been synthetized and purified from excess of staple strands as 

described in paragraph 3.1. The buffer used for the purification does not contain EDTA, 

which would interfere with MOF encapsulation. ZIF precursor solutions is prepared 

separately dissolving in MilliQ water powder of: zinc acetate (Zn(OAc)2) 40 mM and 

methylimidazole (MeIm) 160 mM (SIGMA Aldrich). Depending on the amount water-

soluble biomolecule to encapsulate (mg), the same volume of MeIm and Zn(OAc)2 were 

sequentially added to the DNA origami solution. Cui and coworkers claimed that the Zn
2+

 

concentration and organic ligands are determinant for crystal morphology [105]. Adjusting 

the concentrations of Zn
2+

 ions while keeping the high concentration of 2-methylimidazole, 

it is possible to directly control the ZIF shape. For this reason, we examined different 

precursor ratios with respect to DNA origami solution. In particular, we mixed a 8 nM 

DNA origami rectangle solution in Tris-Acetate buffer 2×  with ZIF precursors in a 

volumetric ratio of 5:1, 5:5, 5:20, 1:20 and 5:1 (10× precursor concentration). The 

precursor volume is composed of MeIm (160 mM) and Zn(OAc)2 (40 mM) in a 1:1 

volume ratio, while for the sample with 10× precursor concentration MeIm and Zn(OAc)2 

are 10 times more concentrated. The concentration of DNA origami and ZIF precursor for 

each volume ratio is presented in Table 5.1. 

 

Volume Ratio 

DNA origami / ZIF-

8 precursor 

DNA origami 

Final Conc (nM) 

MeIm 

Final Conc (mM) 

Zn(OAc) 2 

Final Conc (mM) 

5:1 6.7 13.3 3.3 

5:5 4 40 10 

5:1 (10 × precursor 

concentration) 

6.7 133.3 33.3 

5:20 1.6 64 16 

1:20 0.38 76.1 19 

 

Table 5.1 Correlation between the final concentration of DNA origami and the ZIF-8 precursor (MeIm and Zn(OAc)2) 

used for the crystal synthesis. 

  

After the addition of the precursors, the DNA origami solution shortly turned turbid; after a 

1-hour incubation, which is sufficient to stabilize the MOF crystals, we removed the 
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supernatant pelleting the crystals at 10000 × g for 10 min and resuspending them in MilliQ 

water. 

5.3 Crystallized DNA origami characterization 

DNA origami-ZIF encapsulated were analyzed through different techniques which 

revealed structural and chemical properties of the crystals formed. 

Small and Wide Angle X-ray Scattering define with high resolution the crystallinity level 

of the ZIF-8 produced. All the sample previously mentioned and the naked DNA origami 

have been analyzed in SAXS/WAXS beamline of the Australian Synchrotron (Figure 5.2). 

The peaks observed in the SAXS and WAXS graphs are separated to facilitate the 

comprehension. In both measurements, increasing concentration of precursor with respect 

to DNA origami induces the comparison of peaks which represent an enhancement in the 

crystallinity of the structures. The peaks positions and pattern correspond to the crystal 

structure of the ZIF-8 phase of Zn(2-methylimidazole)2 MOFs. The evidence that DNA 

origami is effectively included in the metal organic framework and is involved in their 

formation is that when the precursor concentration is too high (1:20) respect to the DNA 

origami, the crystallinity is strongly reduced respect to 5:5 and 5:20 ratios. This is 

reasonable because MOF formation process is fairly sensitive to the presence of charged 

molecule like the DNA phosphate backbone. Moreover, SAXS and WAXS analysis also 

implies that the origami does not interfere with the crystalline structure of the MOF. 

 

 

Figure 5.2 a) SAXS and b) WAXS graph of DNA origami-MOF and naked DNA origami in light blue. The ratio written 

in the graphs represents the proportion between DNA origami and MOF precursor concentration.  
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SEM analysis highlighted that precursor concentration influences the shape and 

morphology of the crystal formed. The images of 5:5 and 5:20 samples show interesting 

shapes of crystal similar to ZIF-8 growth confirming the results of SAXS/WAXS 

measurements which highlighted their orderly arrangements.  

All the samples analyzed present fused crystal. A possible explanation to this phenomenon 

is that they can be produced by DNA origami. The latter creates a bridge between two 

crystals during the crystallization process, which starts from DNA origami negative 

backbone thereby causing them to grow together. Some of the images show also the mini 

MOFs presence or square bumps on the crystals (Figure 5.3, 5:5 image), that might 

correspond to single DNA origami having MOFs grown around it. That sort of process 

may occur when the fusing process is stopped because the precursors run out. 

 

 

Figure 5.3 SEM images of DNA origami ZIF of samples prepared with different ratio between DNA origami and MOF 

precursor volume. 5:5 and 5:20 sample present higher crystallinity organization than the other samples; SEM image 5:5 

shows mini MOF growth. 

 

The sample with extreme values of the ratio between the DNA and the MOF precursor 

(1:20 and 5:1) didn’t display crystal morphology: when the DNA is in excess the precursor 

concentration is too low for the crystal growth, while with extremely high concentration of 

precursor, the Zinc content can aggregate DNA origami structure interfering with crystal 

formation. The morphology study has been combined with an elemental analysis to 

determine the element content percentage and distribution detected through the energy-

dispersive X-ray spectroscopy (EDX) of the SEM samples. EDX is an analytical technique 

used for the elemental analysis of a sample. It relies on an interaction of high-energy 
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electron beam X-ray excitation focused on the sample studied. Its characterization 

capabilities are due in large part to the fundamental principle that each element has a 

unique atomic structure allowing a unique set of peaks on its electromagnetic emission 

spectrum. The output of this analysis is the distribution map of chemical element on SEM 

image (N, Zn, O, C, Si) and the layered image which merged all the single element maps 

acquired showing the layers composition. Moreover it provide for an elemental graph 

where all the element percentage concentration are shown. Maps acquired in all the SEM 

images of MOF-DNA origami displayed an homogeneously distribution of Zinc ions 

throughout the crystals.  

  

Figure 5.4 EDX 5:1 (10x precursor) 
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Figure 5.5 EDX 5:1  

 

Figure 5.6 EDX 1:20  
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Figure 5.7 EDX 5:5 

 

 

Figure 5.8 EDX 5:20 

 

The element concentration of all the DNA origami-MOF samples have been summarized 

in two histograms where the relative contents of each element in each samples have been 

normalized with respect to C concentration.  
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Figure 5.9 Normalized histograms representing the element contents in naked DNA origami and in the DNA origami-

MOF samples, considering C concentration = 1 of naked origami, 5:1 (10x precursor), 5:1, 1:20, 5:5,  5:20. 

 

The concentration considered in the histograms are averaged over the all EDX maps 

(Figure 5.9). The results obtained with this last morphological and elemental analysis 

demonstrate that the MOF formation in the DNA origami solution has been performed 

correctly, matching with ZIF-8 crystal characterization found in literature [106].  

The phosphor detection has been also performed in the 5:5 and 5:20 samples but the signal 

intensity is comparable with the background noise and so it cannot be considered to 

evaluate the DNA origami presence. To prove the encapsulation of DNA origami structure 

inside the formed crystal, I have detected the fluorescence signal of the MOF-DNA 

origami stained with a commercial DNA intercalant (Gel Red, Biotium) compared with a 

non-stained sample. I have incubated 10 μL of DNA origami with 0.3 μL of the intercalant 

following the same protocol adopted by B. Ding’s group to load doxorubicine inside a 

triangular DNA origami [107]. After an overnight incubation, the DNA origami has been 

centrifuged at 10000 × g for 10 min to remove the excess of dye. The ZIF-8 synthesis has 

been performed using a ratio of 5:20 between DNA origami and ZIF-8 precursor because 

this ratio has given the best results for crystal formation, and then the sample has been 

washed as described in the previous paragraph. Fluorescence micrographs have been 

acquired for both samples with and without DNA staining using two different filters: a 

filter assembled on purpose for the Gel Red analysis, with an excitation window in the UV 

and an emission window in the red, and a standard FITC filter with an excitation window 

in the blue and an emission window in the green, used to check he intensity of the ZIF-8 

broadband autofluorescence.  
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Figure 5.10 Fluorescence images of  ZIF-8 encapsulating stained DNA origami observed with  a) the specific filter for 

intercalant dye (ex UV/ em Red) and b) non-specific filter (ex Blue / em Green ). The red line represents the region in 

which the underlying plots has been measured. 

 

The detection has been performed with both filters to highlight the emission of 

fluorescence not related with the dye staining in the non-stained sample.  

The images in 5.10 represent the fluorescence observed with the specific (a) and non-

specific (b) filter of MOF-DNA origami stained with intercalant dye. The red line indicates 

the region along which the intensity profiles shown in the underlying plots have been 

extracted. The autofluorescence signal saturates the camera, while the fluorescence emitted 

in the proper conditions is three times lower.  
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Figure 5.11 Fluorescence images of  ZIF-8 encapsulating non-stained DNA origami observed with  a) the specific filter 

for intercalant dye (ex UV/ em Red) and b) non-specific filter (ex Blue / em Green ). The red line represents the line in 

which the underlying plots has been measured. 

 

The autofluorescence observed with non-specific filter has been confirmed through the 

measurement of ZIF-8 which encapsulates DNA origami without any staining (Figure 

5.11). The signal emitted with the non-specific filter saturate the camera as in the stained 

sample, while the fluorescence observed with the specific filter is three times less than the 

one measured in the same condition but with the labeled DNA. The presence of non-

specific fluorescence emission using the specific filter can be due to the overlapping of the 

transmission window of the filter with the end of the spectral region where the 

autofluorescence is emitted. The comparative analysis of these two samples suggests a 

significant increase of the fluorescence signal in the sample containing the intercalant dye 

with respect to the non-labeled one: this results strengthen the idea that the DNA origami is 

effectively encapsulated inside the crystal. 

Further confirmation of the effective encapsulation of the DNA origami inside the ZIF-8 

crystal should be provided by AFM and SEM analysis of the samples after EDTA addition, 

which is expected to dissolve the MOF crystals and free the DNA origami. However, a 

specific purification step to allow a precise identification of the origami structure is 
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required and so far its development has been unsuccessful. This represents the future work 

to be performed in the immediate future. 
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Conclusions and future perspectives 

I have planned a DNA origami-based plasmonic device in which a molecular stimulus 

produces a structural reconfiguration. To define all the conditions for the design, the 

synthesis, the decoration with AuNP and the purification from particles in excess, I have 

first set up a test-bench structure: DNA origami rectangle. It represents a robust platform to 

define all the preferable working conditions to be used in more challenging structures. In 

particular, employing a new purification protocol, based on a density gradient ultrafast 

separation I have been able to separate free NP from AuNP-decorated rectangular shape 

DNA origami avoiding architectural alterations. DNA origami-AuNP conjugates can be 

analyzed also at single particle level measuring the optical response for SERS, Raman and 

dark-field analysis, in the perspective of its use in the location-specific molecular 

detection. 

The shape chosen for the final DNA origami device is the tetrahedron with rigid struts 

connected by flexible joints (0ss), allowing a wide range of structural motions. To tune the 

mechanical properties of the tetrahedron, I have designed another structure introducing 

three 4-nucleotides gaps in the two struts connected by the actuator strand (3ss). The 

designed detection system was based on two AuNP strategically positioned in two opposite 

facets of the tetrahedron. In this way, any relevant structural change, which may results in 

a nanometric shift of the interparticle distance, can be effectively monitored through 

extinction measurements. The actuation, triggered by the hybridization with a molecular 

target, induces a clearly detectable red-shift of the peak position of the LSPR spectrum of 

AuNP proportional to the interparticle distance reduction, thus creating a plasmon meter. 

The optical extinction measurements performed on actuated and not-actuated structures 

confirmed the presence of an LSPR shift in the actuated 3ss samples only, confirmed by in-

depth analysis of conformational changes performed using high resolution detection. 

SAXS analysis performed in liquid samples, in fact, confirmed the results obtained with 

LSPR measurements in gel, highlighting the gap reduction between AuNP after the target 

binding in the 3ss tetrahedron structures only. SEM imaging on the 3ss DNA origami 

further confirmed the reduction of the interparticle distance in the presence of the target 

strand. From this analysis I understood that after the deposition on a substrate the 

flexibility of the tetrahedron allows two main conformations at the equilibrium, in which 

AuNP are separated by a bimodal distribution of the interparticle distance centered at 26 

nm and 33 nm; after the target addition the configuration is stabilized at 24-25 nm. These 
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results are in line with the results obtained both with LSPR and SAXS analysis, 

demonstrating its robustness also if dried. An important issue still open regards the large 

scale production and purification: I tested several different purification protocols, but all 

have introduced damages, dirt and conformational changes on the starting DNA origami 

design. Nonetheless, in all the conditions (dried, wet and in gel) the results are comparable, 

thus demonstrating the ability to preserve the desired behavior independently from the 

analysis environment. 

A further DNA origami characterization through cryo-EM has been attempted at the 

Molecular Foundry, Berkeley CA. Frozen samples can be imaged in their physiological 

conditions, providing for an accurate study of the thermodynamic configurations of the 

tetrahedron DNA origami before and after its actuation without any modification induced 

by sample pretreatment. The analyzed samples displayed DNA origami aggregation, 

making the identification of well-folded structures difficult; only in some cases I have 

found isolated structures with AuNP dimers and, with one of them, I have been able to 

perform tomographic analysis. Tetrahedron shaped DNA origami has demonstrated the 

environment independence feature for which it has been originally designed, paving the 

way to its application in the field of molecular recognition in different conditions. 

Moreover, its biocompatibility due to both its shape and its material allows to use it in in 

vivo analysis, for example as an injectable biosensor or as a contrast medium for biomarker  

detection. 

These perspective applications are limited by the difficulties in purifying the structure, 

hindering its use in the clinical field. By pursuing the same approach and aims applied to 

the tetrahedron, I will design a different structure: the new shape will be a triangle 

designed to avoid weak points inside the structure during the folding and where the helix 

bundles are connected by more robust joints. The choice of the triangular shape is 

supported by many works already reported in literature, which confirm its stability and 

biocompatibility in in vitro and in vivo studies. 

Finally, I tried to explore a strategy to prolong the DNA origami half-life, encapsulating it 

on metal-organic frameworks (MOFs). ZIF-8 crystals with the inclusion of DNA origami 

were successfully produced, demonstrating that the addition of the origami doesn’t 

interfere with the crystal formation. We also noted that the DNA origami didn’t affect the 

shape of the crystals, while its dimension can induce a fusion among crystals. We are now 

working on the release of the DNA origami through the addition of EDTA, but further 

investigations are required to monitor the DNA origami presence inside the grown MOFs.  
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The demonstration of the successful inclusion of the DNA origami inside a zeolitic 

imidazole framework  can help in the preservation and long-term storage of the structures. 

Moreover, by exploring the combination of DNA origami with different MOFs, these 

hybrid structures could also be used as improved drug delivery systems. 
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Appendix 1 

NAME START END Sequence 5' ----->3' Length 
 

ST1 23[3] 21[215] AAATCAAATTTAATTGACGGTGTCTGGAAGTT 32 
 

ST2 4[298] 5[298] ATAGCCGAACAGAGATGGTTTA 22 
 

ST3 3[168] 1[183] GTAAAGCACAAGTTTTCCAACGTCAAAGGGCG 32  

ST4 22[119] 20[104] ACCACATTGATAGCGTCTAATGCAGAACGCGC 32  

ST5 15[232] 13[247] TGCCTGCAACAACATAGGCGCCAGGGTGGTTT 32  

ST6 1[216] 3[231] CGTATTAATTCCGAAAGACGGGGAAAGCCGGC 32  

ST7 2[151] 0[136] ACCACCGGATCAAAATGAACAAGATGATATTC 32  

ST8 16[135] 18[128] CTAAATCGTTTTGCGGCTCAGAGC 24  

ST9 6[215] 4[200] AAGGGAACTAAAACGACTTATTACGCAGTATG 32  

ST10 13[248] 15[263] TTCTTTTCTGGGTTATCTAGAGGATCCCCGGG 32  

ST11 0[39] 0[21] AGTGTACTGGTAATAAGTT 19  

ST12 9[216] 11[231] GAATTGAGAGCCGTTTACAGCCATATTATTTA 32  

ST13 12[39] 14[32] AAATTCTTCAATAGGATTCCGGCA 24  

ST14 8[135] 10[120] CTTGCTTCAATCAATAATTTCAATTACCTGAG 32  

ST15 17[280] 19[287] CTCATTTTGTCAATAAAAACAAGA 24  

ST16 9[56] 11[71] GGCAATTCTAAGACGCGTAGATTTTCAGGTTT 32  

ST17 12[103] 14[88] ATAAGAATAAATGTGAGCATCTGCCAGTTTGA 32  

ST18 21[144] 23[159] TATTACAGCTGAATATGTAATTCTGAATCCCC 32  

ST19 14[183] 12[168] TAACTCACCGCCAGGGAAATATATTTTAGTTA 32  

ST20 0[135] 2[120] ACAAACAAGTCAGACGCCCTCAGAGCCGCCAC 32  

ST21 4[39] 6[21] GTAAATATAAATGAATCGCCCACGCATAACCGATA 35  

ST22 2[279] 0[264] CACTAACAACAGTTGACAGCAAGCGGTCCACG 32  

ST23 13[88] 15[103] TCAACATTAAACACCGTGTTGGGAAGGGCGAT 32  

ST24 7[72] 5[87] TCACCCTCGCTTGATAACAGTTTCAGCGGAGT 32  

ST25 12[167] 14[152] ATTTCATCAGTCGGGACGTTGCGCTCACTGCC 32  

ST26 12[231] 14[216] GCTGATGCGCGTATTGCGAGCCGGAAGCATAA 32  

ST27 1[56] 3[71] ATTTGGGAATACATGGCAAGTTTGCCTTTAGC 32  

ST28 1[248] 3[263] TTTAAAAGCCCCAGCAGAAGGGAAGTCAGTTG 32  

ST29 2[215] 0[200] CTTTACAATAGAGCTTTCGGCAAAATCCCTTA 32  

ST30 21[120] 23[127] TAAAACGAATGTTCAGCCAATACT 24  

ST31 9[248] 11[263] AACAATGAAAACCAAGAAACGATTTTTTGTTT 32  

ST32 23[104] 21[119] TTAGACTGCAACTAATGAAAAATCTACGTTAA 32  

ST33 20[199] 22[184] GCCAGTAAACTAAAGTCTCCTTTTGATAAGAG 32  

ST34 8[111] 10[88] TAATTAATTTTCCCTTTGAATTACAACAAACATCAAGAAA 40  

ST35 9[120] 11[135] AGTACATATGTAAATCAATAACGGATTCGCCT 32  

ST36 0[199] 2[184] TAAATCAATCTATCAGCACTACGTGAACCATC 32  

ST37 14[87] 12[72] GGGGACGATGCGCAACGAATCATAATTACTAG 32  

ST38 16[231] 18[216] CAATTCTATAAATTGTTAATCAGAAAAGCCCC 32  

ST39 11[200] 9[215] GCCAGTTAGAGCAAGATAAATATAACCCACAA 32  

ST40 3[136] 1[151] TTTTCATAAACCGCCTATTGGCCTGTCCACTA 32  

ST41 4[135] 6[120] GGAATAAGTTTTTTCAGGAGCCTTTAATTGTA 32  

ST42 16[175] 18[152] GAATTAGCAAAATTAAGATAAAAAGCCGGAGAACCGCCAC 40  
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ST43 8[71] 10[56] GCTTAGATATCAATATGTTTGGATTATACTTC 32  

ST44 22[215] 20[200] AGAGTACCAATCAGGTGCAGAGGCATTTTCGA 32  

ST45 7[40] 5[55] GCAGGGAGACAACCATTTTCTGTATGGGATTT 32  

ST46 4[103] 6[88] AATTCATAAAAGGAACCTTTCGAGGTGAATTT 32  

ST47 2[183] 0[176] ACCCAAATCTAAATCGCCCGAGAT 24  

ST48 7[200] 5[215] CACCAACCCGAACTGATTACCCAAATCAACGT 32  

ST49 23[32] 21[55] CGACGATAAAAACCAAACCCTCGTTCATTGTGAATTACCT 40  

ST50 8[199] 10[184] AATCATTATGAAGCCTTTAGTTGCTATTTTGC 32  

ST51 18[151] 16[136] CCTCAGAATACCGCCAGCCTCAGAGCATAAAG 32  

ST52 5[184] 7[199] AAGAACCGCGTAGAAAAATGCCACTACGAAGG 32  

ST53 1[88] 3[103] CACCAGAGCAGTCTCTTTTTCATCGGCATTTT 32  

ST54 17[56] 19[71] GCCCGTATATAGTTAGTGCTCAGTACCAGGCG 32  

ST55 17[80] 19[103] CTGCCTATCCATGTACACAACGCCAGGGTTGATATAAGTA 40  

ST56 21[280] 23[287] CATTTCGCTATAAAGCGAAAGACT 24  

ST57 6[159] 4[136] GCGCATAGAAAAAAGGTTTTTCATAACGCAAAGACACCAC 40  

ST58 10[119] 8[112] CAAAAGAAGGAGAAACGTCGCTAT 24  

ST59 7[232] 5[247] CACTAAAAAACGAGGCCAGTGAATAAGGCTTG 32  

ST60 20[231] 22[216] CCAACATGTATAACAGAACAGGTCAGGATTAG 32  

ST61 16[39] 18[32] TTTGTCGTGGGGTCAGCCTCAAGA 24  

ST62 23[233] 21[247] TAGTCAGCAAACTCCTTGATTCCCAATTCTG 31  

ST63 11[232] 9[247] TCCCAATCAAGTCAGAAATAATAAGAGCAAGA 32  

ST64 16[71] 18[56] CAGCCCTCAAACAGTTCTGAAACATGAAAGTA 32  

ST65 11[136] 9[151] GATTGCTTAATTATTCTATGTGAGCTAAGAAC 32  

ST66 15[72] 13[87] ATTCAGGCCGACAGTACTGTAGCCAGCTTTCA 32  

ST67 12[263] 14[248] GCTTAGGTACCAGTGAATTGTTATCCGCTCAC 32  

ST68 15[136] 13[151] GCGAAAGGGGATAGGTACAAACGGCGGATTGA 32  

ST69 8[298] 9[298] CAATAATCGGCTAAGAAAAGTA 22  

ST70 10[247] 8[232] CCTGAACACAAATAAGTACCGCACTCATCGAG 32  

ST71 3[72] 1[87] GTCAGACTGCCAAATCCAGCAACCAGAACCAC 32  

ST72 20[71] 22[56] GAAAAATATTTAAGAACATAGTAAGAGCAACA 32  

ST73 5[120] 7[135] AATAATAATTTATTTTACAGAGGCTTTGAGGA 32  

ST74 9[88] 11[103] ATTTCATTAGAATCCTACAGTAACAGTACCTT 32  

ST75 1[120] 3[135] TGAGGCAGATAAATCCATTAGCGTTTGCCATC 32  

ST76 16[263] 18[248] TTCATTTGCGCATTAAACTAGCATGTCAATCA 32  

ST77 20[143] 22[120] GACGACAATAAACAACACTAACGGGTTGAGATTTAGGAAT 40  

ST78 10[215] 8[200] ATATCAGACAAAATAATTATTTTCATCGTAGG 32  

ST79 5[21] 4[21] CAGACGTTAGTTGACGGAAATT 22  

ST80 14[247] 12[232] AATTCCACGGTCGACTATAACTATATGTAAAT 32  

ST81 9[184] 11[199] GGAGGTTTCCGCGCCCTTCCAGAGCCTAATTT 32  

ST82 11[72] 9[87] AACGTCAGAATTGATTAATCCTACATTTAACA 32  

ST83 17[155] 19[167] GCAAGGCAATAAACCCTCAGACAGTCAAA 29  

ST84 19[200] 17[215] TGATAAATGAAAGTAAGCCTGGATTGTATAAG 32  

ST85 2[298] 2[280] TCTAAAATATCTTTAGGAG 19  

ST86 18[215] 16[200] AAAAACAGTAATGCCGAGTAGCATTAACATCC 32  

ST87 10[151] 8[136] CAGAGGCGTGAATACCCCGGTATTTGAATAAC 32  
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ST88 11[40] 9[55] GAAATAAAGGAAGGGTCTGATTATCAGATGAT 32  

ST89 11[104] 9[119] TTACATCGGATGATGACTTTTTTAATGGAAAC 32  

ST90 0[231] 2[216] GATGGTGGATCCTTTGATTTAGAAGTATTAGA 32  

ST91 6[298] 6[280] GTATCATCGCCTGATAAAT 19  

ST92 5[248] 7[263] CCCTGACGAATAACGGTTTGACCCCCAGCGAT 32  

ST93 19[264] 17[279] CCTGAGAGATCGTAAAATTTTTGTTAAATCAG 32  

ST94 13[216] 15[231] GGCGGTTTAAATCCAACAGTGCCAAGCTTGCA 32  

ST95 4[71] 6[56] AGGGCGACAACTTTCACCGATAGTTGCGCCGA 32  

ST96 9[280] 11[298] GCCCTTTTTGTCTTTCATAGCAGCCTTTACAGAGA 35  

ST97 21[176] 23[199] ATGTTTTAAATATGCATAAGAGAAAAACGAGAATGACCAT 40  

ST98 2[247] 0[232] GATAATACCGAGAAAGGGCGAAAATCCTGTTT 32  

ST99 20[167] 22[160] AAGGTAAAAATGCTGTGCTTAGAG 24  

ST100 5[144] 7[167] ATCTCCAAGCTGGCTGATAAAAGAGAGGAAGTTTCCATTA 40  

ST101 0[71] 2[56] TAAGCGTCATTAGAGCACCAGTAGCACCATTA 32  

ST102 19[32] 17[55] GAAGGATTAGGATTAGCTGAGACTTGCCTTGAGTAACAGT 40  

ST103 4[231] 6[216] GGCATGATTGCTCATTGCAGACGGTCAATCAT 32  

ST104 0[263] 2[248] CTGGTTTGTTTGAGTAATTAGAGCCGTCAATA 32  

ST105 8[231] 10[216] AACAAGCATTAAGCCCGGGTAATTGAGCGCTA 32  

ST106 0[175] 2[152] AGGGTTGAGTGTTGTTCGTGGACTTTGGGGTCCCAGAGCC 40  

ST107 17[248] 19[263] TTAAAATTGGGCGCGAGGCTATCAGGTCATTG 32  

ST108 10[55] 8[40] TGAATAATGAAATTGCTGAGAAGAGTCAATAG 32  

ST109 16[199] 18[184] AATAAATCAATGCAATTGTGTAGGTAAAGATT 32  

ST110 18[55] 16[40] TTAAGAGGCGGGGTTTCGTAACGATCTAAAGT 32  

ST111 20[39] 22[32] TGTAGAAAAACTTTAATTACCAGA 24  

ST112 22[287] 20[264] TCAAATATCGCGTTTTGGAAGCCCCAACGCTCAACAGTAG 40  

ST113 3[104] 1[119] CGGTCATACCGCCACCAGCATTGACAGGAGGT 32  

ST114 11[168] 9[183] ACGCTAACACAATTTTAACCTCCCGACTTGCG 32  

ST115 7[168] 5[183] AACGGGTAACGGTGTACAAGAGTAATCTTGAC 32  

ST116 13[176] 15[191] GTGCCAGCTGCATTAAACTTTTTCTTTTCCCA 32  

ST117 18[287] 16[264] GAATCGATGAACGGTATCTGGAGCCCTGTTTAGCTATATT 40  

ST118 22[159] 20[144] CTTAATTGGTAGAAAGTATTCATTGTCCAGAC 32  

ST119 8[263] 10[248] CGGGTATTAATAGCAAAGAATTAACTGAACAC 32  

ST120 9[21] 8[21] CGGAATTATCATCAAAATCATA 22  

ST121 11[21] 11[39] ATTATTTGCACGTAAAACA 19  

ST122 3[21] 3[39] ATCGATAGCAGCACCGTAA 19  

ST123 19[232] 17[247] TTGAGAGACCGGTTGAAAACGTTAATATTTTG 32  

ST124 6[55] 4[40] CAATGACATTAAAGGCGATTGAGGGAGGGAAG 32  

ST125 17[184] 19[199] ATATTTTAATACAGGCATTCAACCGTTCTAGC 32  

ST126 11[264] 9[279] AACGTCAATAGACGGGTAGCTATCTTACCGAA 32  

ST127 21[88] 23[103] GTCAGGACCAACAATAGGTAATAGTAAAATGT 32  

ST128 7[136] 5[143] CTAAAGACCTCCAAAACGTTGAAA 24  

ST129 4[263] 6[248] AACGCAATAGAAACACACCTGCTCCATGTTAC 32  

ST130 8[39] 10[21] TGAATTTATCATATTCTAGAACCTACCATATCAAA 35  

ST131 17[216] 19[231] CAAATATTCTAATAGTGAGAGGGTAGCTATTT 32  

ST132 7[104] 5[119] GAGGGTAGTCAGCTTGAACTAAAGGAATTGCG 32  
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ST133 13[152] 15[167] CGCTTTCCTTCTGACCCTGCAAGGCGATTAAG 32  

ST134 12[135] 14[120] AAATACCGCCGTGGGACACGTTGGTGTAGATG 32  

ST135 4[167] 6[160] GGCAACATACCTTCATCAGACCAG 24  

ST136 3[40] 1[55] TCAGTAGCAAGGCCGGGTCACCGACTTGAGCC 32  

ST137 15[104] 13[119] CGGTGCGGGTAACCGTGCGAGTAACAACCCGT 32  

ST138 21[248] 23[263] CGAACGAGTGAGAATCCGGATTGCATCAAAAA 32  

ST139 6[279] 4[264] TGTGTCGAGCGCGAAAAGAAGGAAACCGAGGA 32  

ST140 3[200] 1[215] CCCCGATTACATGGCCGGCGAATTCGACAACT 32  

ST141 7[264] 5[279] TATACCAAAATCCGCGCAGAACGAGTAGTAAA 32  

ST142 6[87] 4[72] CTTAAACAAGCAGCGACAGCGCCAAAGACAAA 32  

ST143 19[72] 17[79] GATAAGTGCTATTATTAATGCCCC 24  

ST144 1[152] 3[167] TTAAAGAACCAGTTTGCACCGGAAGAGGTGCC 32  

ST145 0[103] 2[88] GGAAAGCGCCGCCGCCCTCAGAGCCACCACCC 32  

ST146 2[119] 0[104] CCTCAGAAGCCCCCTTTCATTAAAGCCAGAAT 32  

ST147 1[280] 3[298] GAACAAAGGAGAGTTGAAGGAATTGAGGAAGGTTA 35  

ST148 19[168] 17[183] TCACCATCTGAGAAAGTTTTTAGAACCCTCAT 32  

ST149 13[120] 15[135] CGGATTCTACCGTGTGGCTATTACGCCAGCTG 32  

ST150 5[216] 7[231] AACAAAGCTAAGACTCAAGAGGCAAAAGAATA 32  

ST151 0[298] 1[298] CCTGGCCCTGAAAACCACCAGA 22  

ST152 21[216] 23[232] TCATTCCATAATTTAGCTTTACCCTGACTATTA 33  

ST153 1[184] 3[199] AAAAACCGAAGAATAGGAACCCTAAAGGGAGC 32  

ST154 13[56] 15[71] TTCGCGTCTGTTTAGTCAAAGCGCCATTCGCC 32  

ST155 10[279] 8[264] AAGCGCATAAATGAAACTTATCATTCCAAGAA 32  

ST156 12[71] 14[56] AAAAAGCCTGGCCTTCTCGGCCTCAGGAAGAT 32  

ST157 15[32] 13[55] CCGCTTCTGGTGCCGGAGCCAGCTACGCCATCAAAAATAA 40  

ST158 2[87] 0[72] TCAGAGCCGTAGCGCGGAATTTACCGTTCCAG 32  

ST159 16[103] 18[96] TACAAACTCGTAACACCAAGCCCA 24  

ST160 20[263] 22[248] GGCTTAATTAGATTTACTTCAAAGCGAACCAG 32  

ST161 5[56] 7[71] TGCTAAACATTCAACCCGCTTTTGCGGGATCG 32  

ST162 23[264] 21[279] GATTAAGAAATTCGAGGTTTGACCATTAGATA 32  

ST163 3[232] 1[247] GAACGTGGATTTGAGGCCCGAACGTTATTAAT 32  

ST164 21[56] 23[71] TATGCGATATATCCCAGAGGCTTTTGCAAAAG 32  

ST165 5[280] 7[298] TTGGGCTTAAGTTACCCAAAGTACAACGGAGATTT 35  

ST166 13[280] 15[287] TTGCCCTTGAGAGACTGTAATCAT 24  

ST167 9[152] 11[167] GCGAGGCGAGGCTTATAAGTTACATCTTACCA 32  

ST168 18[247] 16[232] TATGTACCTCTACAAAGCTGAAAAGGTGGCAT 32  

ST169 23[72] 21[87] AAGTTTTGTTACGAGGCTGGCTCATTATACCA 32  

ST170 10[298] 10[280] GAATAACATAAAAACAGGG 19  

ST171 22[87] 20[72] AAAAGGAACCAGAGGGGATAAGTCCTGAACAA 32  

ST172 22[247] 20[232] ACCGGAAGAAGCAAAGGCCATATTTAACAACG 32  

ST173 20[103] 22[88] CTGTTTATGTTGGGAAGCAGATACATAACGCC 32  

ST174 14[55] 12[40] CGCACTCCAAACCAGGATCATATGCGTTATAC 32  

ST175 6[247] 4[232] TTAGCCGGCACTCATCAATACCCAAAAGAACT 32  

ST176 6[119] 4[104] TCGGTTTACAACGGCTGTCACAATCAATAGAA 32  

ST177 14[119] 12[104] GGCGCATCGCCTCTTCATAAATAAGGCGTTAA 32  
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ST178 14[287] 12[264] GGTCATAGCTGTTTCCTCGAATTCACCTTTTTAACCTCCG 40  

ST179 18[95] 16[72] ATAGGAACTTCGGAACCCGTCGAGTGTAGCATTCCACAGA 40  

ST180 2[55] 0[40] CCATTAGCGACAGAATCTTTTGATGATACAGG 32  

ST181 23[128] 21[143] GCGGAATCGTCATAAAATTCATCAAACAACAT 32  

ST182 7[21] 7[39] TATTCGGTCGCTGAGGCTT 19  

ST183 10[87] 8[72] ACAAAATTATGAATATTGAAAACATAGCGATA 32  

ST184 15[264] 13[279] TACCGAGCTGTGTGAAGACGGGCAACAGCTGA 32  

ST185 5[88] 7[103] GAGAATAGTGGTTTACAAGACAGCATCGGAAC 32  

ST186 22[55] 20[40] CTATCATAAATAGCGATCCTAATTTACGAGCA 32  

ST187 3[264] 1[279] GCAAATCAACTAATAGACATTATCATTTTGCG 32  

ST188 1[21] 2[21] TTAAAGGTGAATTATCACCAAACGTCACCAATGAAACC 38  

ST189 4[199] 6[184] TTAGCAAAGATATTCACCAACTTTGAAAGAGG 32  

ST190 8[167] 10[152] GATATAGATTTTAGCGATCCTGAAAAATCGCG 32  

1NP1 10[183] 27[118] 
ACCCAGCTGAGCGTCTAATAGCAAGCAAATCAGTACTTCCTTAAA
CGACGCAGGCTTATCCTTCACGATTGCCACTTTCCAC 

83  

1NP2 14[151] 29[140] 
CCGTAATGGGGATGTGTAAATTTAATGGTTTGGTACTTCCTTAAA
CGACGCCTTCACGATTGCCACTTTCCAC 

73  

2NP1 18[183] 33[190] 
CAAAAGGGAATATGATAAGGCAAAGTACTTCCTTAAACGACGCC
TTCACGATTGCCACTTTCCAC 

65  

2NP2 23[160] 24[171] 
CTCAAATGCTTTAAACTGCGGATGAGCTCAACGTACTTCCTTAAA
CGACGCCTTCACGATTGCCACTTTCCAC 

73  

1NP3 22[183] 31[124] 
GTCATTTTAGTTCAGATATAAAGTACCGACAAGTACTTCCTTAAAC
GACGCACTTCACGATTGCCACTTTCCAC 

74  

2NP3 6[183] 25[110] 
ACAGATGAAAATACGTATACATACATAAAGGTGTACTTCCTTAAA
CGACGCAGGCTTATCCTTCACGATTGCCACTTTCCAC 

83  

CATCHERS 
ACTUATOR 
1 

15[168] 26[246] TTGGGTAAATTAATTGAACCTGTCCTGCGAGCCCGGGAAGCT 42  

CATCHER 
ACTUATOR 
2 

28[159] 17[154] GGGAGGAAGGTCGGATCGTTTATTTCAAC 29  

ACTUATOR probe 
 

CGATCCGACCTTCCTCCCTCCTCCTCTTCCCTTGGGTCGAACATTG
CTCGTCGTCACTGGGTCCTGCTCATATTGGGTTTACAGCTCACATA
GGTAGACTTTAGCTTCCCGGGCTCGCAG 

120 
 

   

GGGCGGGGCGGGGGCGCGAAAGTCTACCTATGTGAGCTGTAAA
CCCAATATGAGCAGGACCCAGTGACGACGAGCAATGTTCGACCC
AAGGGAAGAGGAGGACGCGCCCCCGCCCCGCCC 

120 
 

SET OF STAPLES FOR 1SS TETRAHEDRON 
 

1ss1 13[192] 14[184] TGAATCGGTGCCTAATGAGTGAGC 24  

1ss2 19[104] 17[127] TAGCCCGGAGGGATAGTGAGTTTCTATGACCCTGTAATAC 40  

1ss3 16[123] 17[143] TACCTATCACCGTACTCAGGAGGTTTAGCCGCCACCGAGAAGCC 44  

1ss4 18[127] 16[104] CACCACCCTCATTTTCAATAGGTGAAAAACATGTCACCAG 40  

1ss5 14[215] 12[196] AGTGTAAAACGACGGCTCGCAAGACAAAGAACGCGA 36  

1ss6 15[192] 13[215] GTCACGACGTTGTAAAGCCTGGGGCCAACGCGCGGGGAGA 40  

      
SET OF STAPLES FOR 0SS TETRAHEDRON 

1ss1 13[192] 14[184] TGAATCGGTGCCTAATGAGTGAGC 24  

1ss2 19[104] 17[127] TAGCCCGGAGGGATAGTGAGTTTCTATGACCCTGTAATAC 40  

0ss3 16[127] 17[143] GTTGTACCTATCACCGTACTCAGGAGGTTTAGCCGCCACCGAGAA 48  
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GCC 

1ss4 18[127] 16[104] CACCACCCTCATTTTCAATAGGTGAAAAACATGTCACCAG 40  

0ss5 14[215] 12[192] AGTGTAAAACGACGGCTCGCAAGACAAAGAACGCGAGAAA 40  

1ss6 15[192] 13[215] GTCACGACGTTGTAAAGCCTGGGGCCAACGCGCGGGGAGA 40  

SET OF STAPLES FOR 3SS TETRAHEDRON 
 

3ss1 13[196] 14[184] TCGGTGCCTAATGAGTGAGC 20  

3ss2 19[104] 17[123] TAGCCCGGAGGGATAGTGAGTTTCTATGACCCTGTA 36  

3ss3 16[123] 17[143] TACCTATCACCGTACTCAGGAGGTTTAGCCGCCACCGAGAAGCC 44 
 

3ss4 18[123] 16[104] ACCCTCATTTTCAATAGGTGAAAAACATGTCACCAG 36 
 

3ss5 14[215] 12[196] AGTGTAAAACGACGGCTCGCAAGACAAAGAACGCGA 36 
 

3ss6 15[196] 13[215] CGACGTTGTAAAGCCTGGGGCCAACGCGCGGGGAGA 36 
 

 

Table The table contains the nucleotides sequences used for the synthesis of the DNA origami tetrahedron structures 

(ST). The catchers strand for the anchoring of AuNP positioned in the facet 1 and 2  are named 1NP and 2NP: the black 

sequence is complementary with the structure sequence, the green sequences represents the region complementary to the 

AuNP sequence and the red part in the linker. The catchers for the actuator strand and the actuator strand. Three different 

sets of staples strand have been used for the synthesis of the DNA origami tetrahedron 0ss, 1ss and 3ss. 
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Appendix 2 

 

A 0-1 Fit of the graph shown in figure 4.15 

 

 

A 0-2 Fit of the graph shown in figure 4.17 a 

 

 

A0-3 Fit of the graph shown in figure 4.17 b 
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