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"Necessity is the mother of invention."  
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Abstract 
 

 

Since their first application, nanotechnologies have been capable to produce improvements 

and revolutionary results in many technological and industrial branches: medicine, transport, 

food security, environmental management and many others. Among these, nanotechnologies 

have proved their potential in medicine and in the treatment of polluted water. Nano-medicine 

made available increasing numbers of personalized and selective diagnostic methods and 

therapies. Nano-systems produced also more efficient purification processes for the treatment 

of polluted water. Thanks to the results obtained so far, these research fields are particularly 

significant and highly valued in the scientific world.  

With this in mind, the present thesis focused on assessing the application of Carbon Dots (CDs). 

CDs are nano-sized carbon particles, with dimensions between 1 and 10 nm. Since their 

discovery, they have proven their potential in countless fields. Here, CDs were evaluated for the 

treatment of polluted water and for their potential application in nano-medicine. In particular, 

their reduced toxicity makes them the ideal candidate for drug delivery purposes. In addition to 

this, their peculiar nature allows their employment as charge delocalizers and photosensitizers, 

implementing the properties of established water purification systems. Among these systems, 

TiO2 is, up to now, one of the most powerful material. When excited by the correct wavelength, 

TiO2 can react with the water absorbed on its surface and produce highly oxidative radicals. 

Radicals that are capable to decompose water pollutants.  

In this study, CDs were synthesized from different precursors, and they were characterized. The 

samples with the most promising properties were selected and applied for the production of a 

TiO2-based high-performance photocatalytic material, capable of purifying polluted waters by 

exploiting solar light. This study pointed out also how the formation of sub-products during the 

CDs synthesis may be the responsible for CDs cytotoxicity. The research demonstrated, 

moreover, that CDs cytotoxicity was not related to the toxicity of the starting reagents. The 

class of CDs, synthesized with citric acid and diethylenetriamine, displayed the best properties 

for advanced TiO2 oxidation systems and the lowest cytotoxicity. Additionally, a TiO2-based 

photocatalytic system was also applied for water purification, exploiting the use of solar 
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radiation. An enhanced photocatalytic material was produced by loading TiO2 particles with CDs 

into. In order to preserve the CDs properties within the system, a hydrothermal process, with 

mild thermal treatments,  was developed and evaluated. 

In conclusion, we obtained a material which may be used to treat polluted water by exploiting 

the solar radiation. This material may represent the starting point for advanced water 

purification systems in developed and developing countries. 
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1-Introduction 
 

 

1.1-Nanotechnologies impact 
The main goal of technological development is the production of new technologies to improve our 

life quality. Nanotechnology is referred to the manipulation of matter on an atomic, molecular, 

and supramolecular scale. On a quantitative basis, it is commonly considered as the manipulation 

of matter with at least one dimension sized from 1 to 100 nanometers. The impact of 

nanotechnologies in our everyday life is high, even though we are commonly unaware of it. 

Electronics, pharmaceutics and agriculture are just few of the fields in which nanotechnologies are 

present and active. For this reason, the design of new technologies has to pay attention to its 

entire lifecycle and to the respective environmental interactions. Electronic waste, such as old 

computers and other out-of-date electronics, as well as pharmaceutical and chemical waste can be 

heavily polluting. The effects on human health can be critical, and the danger of contamination 

exponentially increase in nanotechnology. In fact, the dimensions and the typical high surface-to-

volume ratio of nano-based materials make them particularly reactive and invasive for living 

organisms, since they can easily bypass the cellular membranes and accumulate in the living 

tissues.  

However, nanotechnologies are also promising for the realization of innovative drug delivery 

systems, nanomachines, high efficiency photocatalysts and other systems with many other 

applications. 

 

1.2- Carbon Dots applications 
Carbon based nanomaterials are a big family that relevantly increased its numbers since the 

discovery of carbon nanotubes, fullerenes, and many others carbon nanoallotropes. As reported in 

Fig.1 this family groups 4 different systems characterized by their dimension: materials with 2 and 

3 dimensions such as multilayer graphitic nanosheets, graphene, and graphene nanoribbons, one-

dimension carbon systems based on nanomaterials like nanotubes and nanofibers and finally, zero 

dimension nano-allotropes  composed by fullerenes, nanodiamonds, graphene quantum dots and 

carbon quantum dots (Fig.1). 
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necessarily require toxic reagents. Thanks to their size, CDs can easily pass through the cell 

membranes. 

1.3- Titanium dioxide and applications 
As stated by Islam et al.3, TiO2 is one of the most extensively studied semiconductor 

photocatalysts. Its wide use is due to its capabilities able to overcome the worldwide energy 

shortage as well as counteract issues of climate change and environmental contamination. Since 

the first report of its use, for hydrogen generation via the photocatalytic decomposition of water 

by Fujishima and Honda4, TiO2 has attracted significant interest as a photocatalyst, due to its 

favorable band edge positions, which are well-matched with the redox potentials of water, CO2, 

and a variety of organic compounds. These unique properties have enabled TiO2 to be utilized in a 

wide range of applications, including solar energy conversion, antimicrobial and self-cleaning 

surfaces, paint whiteners, ceramics, textiles, personal care products, and environmental catalysis. 

Like many semiconductors, the photoactivity of TiO2 originates from its ability to absorb light with 

greater energy than its band gap, which generates electrons and holes as charge carriers by 

promoting electrons from the valence band to the conduction band. This photocatalytic process 

involves a series of physical processes including light absorption, charge separation, charge 

migration, charge recombination, and surface redox reactions. The photo-generated charges can 

recombine and release their energy as light and heat, or these excited charges may reach the 

surface of titania and participate in reactions. The excited electrons have the potential to reduce 

oxygen molecules in producing superoxide radicals that are very reactive and participate in 

different reactions. On the other hand, in electrochemical process, if they reach the electrolyte 

interface either at titania or at a counter electrode, holes are able to oxidize water to produce 

reactive hydroxyl radicals. Despite many attractive features of TiO2, the major challenges of its 

applications under natural solar light are its innate inability to absorb visible light, a high rate of 

photo-generated charge carrier recombination, and a low interfacial charge transfer rate of photo-

generated charge carriers3. 

 

1.4- Enhanced photocatalytic material for wastewater treatment 
The attention on the consumer goods full cycle, from their production to their management as 

waste material, impose more attention on: i) pollution administration, ii) their managements and 

iii) their costs. Waste treatment is a wide field that comprise solid waste, recycling, management 

of soil and air pollution. Nevertheless, one of the most important aspect concerns the treatment 
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of wastewater and polluted water. Water is both the most important natural resource for life and 

the most efficient system to spread pollution. Rains can extract pollution and clean the air, while 

water of rivers and canals can spread out pollution from contaminated sites to groundwater and 

cultivated soils. Moreover, water is one of the most used natural goods for agricultural and 

industrial processes, and for many companies and production plants is the most expensive waste 

to consider.  

Pollution dispersed in water involves both inorganic and organic chemical compounds, which are, 

generally, toxic with a lifetime of several years. The persistence of these compounds, in water as 

well as in soil, generates problems during clean-up processes. Most of the remediation processes 

provide to remove and transfer the pollutant in another place. So, in many cases of soil and water 

remediation, the storage of the high concentrated toxic materials extracted during the 

remediation process could generate additional problems. 

Therefore, as well as reducing pollution production, wastewater treatment and water sanitization 

are still the most important solution to contrast pollution efficiently. 

In the last decades, several water purification methods and sewage disposals are developed. 

Among these, most propose to collect pollutants removing them from water, whereas only few 

processes are able to convert pollutants in something less dangerous. Biological oxidation and 

anaerobic digestion used in lagooning processes are commonly used as secondary treatment and 

to tear down NH3, N and S based compounds and phosphates. These systems reproduces water  

natural cleaning cycle, but requires great spaces, long time and, often, they are not able to act on 

Permanent Organic Pollutants (POPs) as hexaclorobenzene, insecticides, polychlorinated biphenyls 

and dioxins. Electro-flotation permits to electro induced organic compounds oxidation and metals 

reduction, and is capable to remove the smallest solid suspension thanks to micro bubbles 

production5. This system permits to reuse directly the just treated water, but it requires great 

amount of energy.  Among these processes, Advanced Oxidation Processes (AOPs) seems to be the 

most promising way to treat water at accessible times and costs and, at the same time, to treat 

POPs. AOPs use strong and reactive oxidants as hydroxyl radicals to treat wastewater, which 

oxidize pollution obtaining CO2 and H2O. Produced radicals can theoretically oxidize any organic 

compound present in water, bacteria included. In order to produce a high concentration of 

hydroxyl radicals, ozone, hydrogen peroxide and oxygen are usually added into the treating 

system, but also strong UV light and photocatalytic materials as titanium dioxide.  

One of the most AOPs challenging aspect is the possibility to use it directly for water sanitization. 
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In everyday applications, as reported above, AOPs include also the use of ozone, H2O2 and/or UV-

light. Several methods have been developed6,7 to produce radical species, which can be grouped in 

two main categories: non-photochemical and photochemical methods. The former one includes 

the methods that generate radicals without light energy. They involve reaction with ozone, 

hydrogen peroxide and catalysts. The latter one uses UV lamps to activate the process. Indeed, 

there is a problem related to the fact that conventional oxidation processes cannot oxidize some 

stable organic pollutant. Often the intermediate product remaining in the system may be as toxic 

as or more toxic than the initial compound. In these cases, supplemental oxidation processes can 

be applied using UV radiation. The use of UV light increases oxidation power and, as it is showed in 

Tab.1, the highest oxidative power can be reached with radicals, produced by the photo excitation 

of a semiconductor as TiO2. 

Table 1: Relative oxidation power of some oxidizing species6 

Oxidizing species Relative oxidation power 

Chlorine 1,00 

Hypochlorous acid 1,10 

Permanganate 1,24 

Hydrogen peroxide 1,31 

Ozone 1,52 

Atomic oxygen 1,78 

Hydroxyl radical 2,05 

Positively charged hole on 
titanium dioxide, TiO2

+ 
2,35 

 

AOP's can be used also for mild water treatment, such as water sanification and antimicrobial 

maintenance for drinkable water distribution. Today in the world, 2,5 billion people lives without a  

basic water sanification. Water sanification is not only a common problem for poor and developing 

countries, but also for the rich part of the world, where drinkable water distribution is still 

inefficient and potentially dangerous8. The most common system to contrast bacteria proliferation 

in drinkable water is the addition of low concentration of sodium hypochlorite to the aqueduct. 

Water sanification with sodium hypochlorite involves poison substances. Important studies refer 

that rats supplied with water containing NaClO evidenced no cancer development, even though, 
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high NaClO doses (1,6 mg/Kg) increase the amount of sperm-head abnormalities in male rats6. 

Aware of these problems, application of advanced oxidation processes can offer an alternative to 

the sodium hypochlorite. The highly active radical species produced from activate photocatalysts, 

can easily destroy microorganisms and prevent their proliferation during water distribution. Due 

to the problem’s complexity, the study and application of TiO2 based processes for the wastewater 

treatment and sanitization of drinkable water can be considered as a hot theme. Indeed this 

research-work aims to developing TiO2 based wastewater treatment working under solar 

radiation. Today AOPs are not widely applied, and the use of reagents and UV lamp make these 

systems expensive, especially in developing countries.  

AOPs with radiation and activated TiO2 are potentially the cheapest systems: they do not strictly 

require additional reagents as H2O2 and, with an appropriate doping, they became a 

photocatalytic material able to absorb visible light from solar radiation. The part of this study 

concerning AOPs is focused in increasing visible absorption, developing a hybrid system in order to 

produce better photocatalytic performances under visible light. The development of a solar light 

sensitive photoactive material may be useful even for less stressed situation, as drinkable water 

treatment, supplying an alternative to water sanification with sodium hypochlorite.  

Here, CDs can play a central role in improving photocatalytic activity and the efficiency of the 

wastewater treatment, that may also be more eco-friendly and safer. Nitrogen-doped-titania is an 

active and robust photocatalyst, with the property to be activated also by solar light. Un-doped 

titania can be activated only in the near-UV region, and the solar radiation does not possess 

enough UV light for large scale wastewater treatment. Using a photocatalyst activated mostly 

under solar radiation, allows developing photochemical AOPs based on renewable energy 

resources. In the photocatalyst used in this research, carbon dots are loaded as charge delocalizers 

in order to reduce electron-hole recombination and enhance the photocatalytic activity. Usually 

CDs are loaded on the surface of photocatalyst by impregnation. While in other processes, CDs are 

directly synthesized on photocatalytic material surface. 

 

1.5- Objectives and summary of the research 
In the thesis, as reported in Fig.3, we have investigated  the CDs properties for fine applications 

such as drug delivery and photocatalytic enhancers. Then, for a possible environmental  

application, we studied the properties of doped titanium dioxide materials for wastewater 

purification, under solar radiation. Finally, we combined our findings on these topics to study the 
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2-General and Theoretical aspects 
 

 

2.1-Carbon Dots 

 

2.1.1-Synthesis 
Carbon Dots can be produced by different methods with both “bottom-up” and “top-down” 

approaches. The former starts processing organic molecules producing carbon based 

nanoparticles after their condensation and dehydration. Top down processes operate directly on 

carbon- or graphite-based bulk materials.  

Generally, bottom-up processes produce amorphous CDs (with small carbon sp2 domains 

embedded in an amorphous carbon sp3 matrix), while top-down processes produce crystalline 

graphitic nanoparticles9. Most top-down methods require special and expensive equipment or 

complicated synthesis procedures. Typically, these methods produce particles characterized by a 

dispersed size distribution and low quantum yield. Bottom-up approaches, based on carbonization 

of organic precursors via thermal treatment, produce particles with more homogeneous sizes and 

morphology. Independently from the synthesis approach, sometimes it is necessary to perform an 

additional passivation step in order to obtain suitable optical properties. Last but not least, 

bottom-up processes seems to be more cost effective in yield and quality10 with respect to the 

top-down ones. 

Bottom up 
In these processes the main carbon source typically is an organic molecule, e.g. glucose, fructose, 

citric acid, etc. These molecules are then dehydrated and condensed. Nitrogen source such as 

urea, amines, amino acids and other heteroatoms can be mixed with the organic molecules before 

the reaction in order to produce co-doped systems with specific properties. Hydrothermal 

synthesis is the most diffuse bottom-up process used to produce CDs11,12,13,14,15,16,17,18,19. Other 

documented processes are raw20,21 and microwave22 assisted pyrolysis of the precursors, 

electrochemically induced23,24 carbonization, and plasma treatment25,26,27 (where the energy of 

plasma induces carbonization of the precursor solution). Some studies propose also the precursors 

treatment by ultrasonication28,29. Other research foresee to produce CDs with reverse micelles30 
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systems. There exist several other bottom-up processes31,32,33 using also nano-sized porous 

structure templates, CDs can be synthesized by calcination of porous silica nanoparticles (SiNPs) 

impregnated with CDs precursor and annealed in order to obtain CDs with size comparable with 

SiNPs pores34. 

Tipically, hydrothermal processes are used for CDs production.  

Hydrothermal processes allow the production of CDs from a wide range of starting 

materials15,16,17,18,19. Carbohydrates, organic compounds, and natural products can be successfully 

used to produce carbon nanoparticles with fine optical properties. Despite this widespread 

diffusion, the formation mechanism presented in literature is complicated and generally not 

completely understood. For example, even the treatment of simple organic compounds, such as 

sucrose, generates complicated processes to achieve the CDs formation. Sahu and coworkers17 

tried to describe the CDs formation when hydrothermally treated sucrose undergoes hydrolysis to 

form glucose and fructose. Although glucose isomerizes to form fructose, dehydration and 

decomposition of fructose/glucose give rise to different soluble products such as furfural 

compounds, several organic acids such as acetic, lactic, propionic, levulinic and formic acids, 

aldehydes and phenols. The polymerization and condensation of these products results in the 

formation of soluble polymers. Aromatization and formation of aromatic clusters take place via 

aldol condensation, cycle-addition and a hydroxyl-methyl mediated furan resin condensation. 

When concentration of aromatic clusters reaches a critical super-saturation point, nucleation 

takes place and carbon dots are formed. 

Some works report easier processes using citric acid and amines. Probably, the use of precursor 

with known reactivity allows the description of the formation and the composition of 

intermediates   before CDs formation.  For example, the use of citric acid and amines produce 

fluorophores35,36 as intermediate compound before the CDs growth.  

Therefore, bottom-up approaches and in particular hydrothermal synthesis, allow producing 

particular types of carbon nanoparticles by the aggregation of fluorophores37,38. As deepened in 

the following paragraphs, these CDs have special optical properties, as the independence of the 

luminescence from the excitation wavelength and the red edge effect.  

 

Top down 
The first reported top-down method used an arc discharge to purify soot derived from SWCNTs to 

produce CDs39. Xu et al. started oxidizing soot with HNO3. The sediment, extracted by NaOH 
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solution, resulted in a stable black suspension. Finally, the suspension was further separated by gel 

electrophoresis into SWCNTs, short tubular carbons, and a new material called C-dots. 

Using top-down approaches, carbon systems such as soot, graphite, fibers, graphene, graphene 

oxide, and nanotubes are chemically, or electrochemically reduced in smaller parts to produce 

nano-sized particles. Top-down processes are based on exfoliation and oxidation of bulk materials. 

For this purpose, solvo-thermal processes are usually involved in these processes. However, also 

hydrothermal treatments can be used to exfoliate bulk materials in graphite flakes or in 

graphene40,41,42 sheets. The oxidation of the graphene to cut sp2 sheets into smaller fragments is 

another investigated method to obtain Graphene Quantum Dots (GQDs)43,44.  Conversely, the 

direct oxidation of bulk graphite with electro-induced exfoliation processes is also possible45. In 

this case, two graphite rods immersed in water are used as cathode and anode. When the right 

potential is applied, a great number of radical ions are formed by oxygen reduction. The formation 

of these highly active species on the graphite surface allows the oxidation and removal of nano-

sized graphite sheets forming a stable suspension in water. 

After the exfoliation process, the fragmentation can be achieved by further oxidation of the 

exfoliated material. For this purpose, several strong processes can be used, such as pyrolysis, 

sulpho-nitric and nitric acid reflux or even photo-Fenton reactions46.  

The oxidation process often is so strong that the resulting products require further treatments to 

acquire the desired properties. Usually, a reduction step with NaBH4 and hydroxylamine can 

recover the nanoparticles sp2 backbone47,48, 49,50,44,50. 

Clearly, the production of carbon nanoparticles starts from expensive materials as graphene and 

carbon nanotubes, however it can push for the research and development of new and cheaper 

productions51,52.  

 

2.1.2-Optical properties 
 

Photoluminescence: 
Luminescence usually defines a low temperature light emission. Luminescence can be due to 

chemical reaction, electrical energy or subatomic changes. Photoluminescence (PL) is a process 

caused by the absorption of an electromagnetic radiation. PL starts with photo excitation, 

followed by various relaxation processes followed by  the emission of another photon. Relaxation 

processes consume part of the energy of the absorbed photon, so the emitted photons are usually 
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less energetic than the absorbed ones. PL in carbon dots is not yet well understood, also because 

of the numerous processes involved in it: CDs are a complex system that undergoes different 

photoluminescence processes depending on the synthesis process.    

 

Mechanisms 
Photoluminescence is one of the most fascinating features of CDs, both for fundamental 

understanding and practical applications. Despite its relevance, the complete photoluminescence 

process in CDs is still not completely understood due to the different contributions from: CDs 

dimension, surface functionalization, oxidation level, and synthesis route. Both CDs surface and 

core play an important role on the PL behavior and on the CDs response to excitation light. The PL 

properties can also depend on the excitation wavelength and the pH of the CDs solution. This 

dependence and how the red shift emission is influenced by the solution pH is still matter of 

debate. 

CDs consist in a “muffin like” structure, where carbon sp2nano-domains are embedded in oxygen 

rich sp3 matrix. An accepted CDs description defines that sp2nano-domains have suitable band gap 

and can emit light thanks to electron-hole recombination with radiative processes. Furthermore, 

sp3 carbon matrix is rich in oxygenated chemical groups and can interact with sp2 domains 

producing charges33,53,54,55,55,31,56.   

Recent literature shows that quantum confinement effect, zigzag effect and surface traps are the 

processes at the base of the photoluminescence mechanism of action in carbon nanoparticles. 

 

Quantum confinement effect:  

When a nano object have a size comparable with the Compton wavelength (2,426× 10-12 m), its 

energy levels change from continuous to discrete configurations. The gap between the bands 

increases, and the produced emission is more energetic (Fig. 4A)32,57,58 with an inverse 

proportionality to the nano object size. This phenomenon called quantum confinement effect is 

evident in Fig.4B, where a series of CDs suspension with different sizes are showed under UV light: 

when the CDs sizes are higher the emission shifts from blue to orange23.   
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Vis 

UV 
1nm        1,2nm      2,3nm      4nm 

 

Figure4:Suspensions of CDs with different size. A) Bandgap dimension Vs particle size. The plot shows the 
dependence of the bandgap from the particle size. B) Photoluminescence emission at higher wavelenghts 
are recorded for CDs with highersizes (Angew.Chem. Int. Ed. 49, 2010 pp. 4430). 
 

At the present, also the role of quantum confinement effect as contribution in CDs luminescence is 

not completely clear. Recently, Bhattacharya et al. showed a strong correlation between 

luminescence and size distribution, and suggested that the excitation wavelenght (λex) 

dependence of CDs on PL arises from the inhomogeneous size distribution rather than to the 

distribution of different surface traps59. Obviously, CDs photoluminescence is related to the 

quantum confinement effect, but there are other phenomena giving a contribution that has more 

influence on it.  

 
Zigzag effect:  

Zigzag effect is a phenomenon ascribed only to highly sp2 graphitic ordered graphene quantum 

dots. The edge of these highly ordered materials possesses several ground state carbene 

(hybridized sp2) triplets and ground state carbyne (hybridized sp) singlets60,61.  

 

Figure 5:  Suggested chemical nature of the edge sites in GQDs. A) Carbyne armchair site and B) Carbene 
zigzag site. 
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The carbenes triplets (Fig. 5 A and B) that can be found on the GQDs edges have two singly 

occupied orbitals (σ and π). Thanks to the UV absorption, electronic transition between these two 

orbitals generate photoluminescence40. 

Therefore, luminescence in GQDs is generally due to the σ and π carbine triplet electronic 

transitions to the ground state respectively62.  

 

Surface traps and surface state: 

CDs have a high degree of surface functionalization. Therefore, the presence of specific chemical 

groups on the CDs surface can influence optical properties by arising several energy levels that 

may result in a series of surface defects. Moreover, an higher number of surface oxidation levels 

can results as a consequence of  more surface defects63, thus optical properties such as the shape 

of the absorption and emission spectra, the maximum absorption wavelength and the quantum 

yield are strongly correlated to the CDs synthesis method and the parameters involved. In 

particular, the production of functional groups on the surface (mostly carbonyl and carboxylic 

groups) allows adsorbed energy to relax with radiative processes64. 

Some examples of CDs oxidation or reduction prove the strong relationship between 

photoluminescence and functional groups. Tan et al. observed that the CDs luminescence changes 

with a redshift emission after oxidation with strong UV exposure. This was correlated to a greater 

C-O-C and C=O amount on the surface65. Meanwhile, Zheng et al. reduced green luminescent CDs 

with sodium borohydride, who selectively reduces carbonyl and epoxy moieties to hydroxyl groups 

without interacting with C=C and COOH66. After the reduction step, they noted blue-shifted PL and 

a 10-fold increase in QY. They also observed a decrease of sp2 C=C moiety and an increase of 

carbonyl surface functionalization, so they correlated the blue-shift emission and the greater 

quantum yield to the hydroxyl groups electron-donor characteristic. Both the research groups 

agreed that PL arise from surface traps: change of the surface traps directly causes optical 

properties variations. Finally, it is possible to state that CDs photoluminescence originates from 

oxygen-rich surfaces.  

In CDs there is a synergic interaction between sp2 and sp3 domains. The sp3 domains convert the 

energy transmitted from the sp2 domains into light, resulting in photoluminescence.  

Once cleared the general relationship between photoluminescence and surface functionalization, 

it is necessary to correlate specific functional groups to their possible optical properties. The 

studies reported above showed that carbonyl groups produce more energetic luminescence, 
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related to a blue shift of the emission, while ethers and carboxyl groups produce less energetic 

emission.  

However, how can we define the dependence or independence of the luminescence from the 

excitation wavelength?  

Surface groups such as C-O, C=O and O=C-OH can introduce trapping states with different energy 

levels, making CDs able to emit light with photoluminescence depending from the excitation light 

wavelength66,1.This can explain why many CDs systems show an excitation-dependent 

luminescence.  

This phenomenon produces a redshift of the emission spectra in response to the wavelength 

increase of the excitation light, and could arise from multi-chromophoric units. Fig.6 shows a 

typical effect of this phenomenon. 

In turn, multi-chromophoric units can be related to a different conjugation67,68of the CDs or to 

different chemical groups on the surface33,. Wen et al.33found two overlapped spectral bands: 

their experiments showed that an “intrinsic” band originates from the isolated sp2 nano-domains, 

while an “extrinsic” band is related to surface states. Ultrafast photoluminescence experiments 

revealed that excited electrons, produced by the photon absorption, are trapped into the surface 

states. Successively, surface states emit down-converted light.  

Figure6: Excitation wavelength dependence of the photoluminescence in CDs synthesized via hydrothermal 

treatment of black tea, (Bayda et al69). Legend reports the tested excitation wavelengths. 
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Das et al.70 illustrated the process with a similar concept, describing the excitation energy transfer 

from the core to lower energy sites, where energy states can be associated to  the surface state of 

the particle.  

Many groups tried to explain the relation between red shifting and the coexistence of surface 

states with different oxidation states71,72,73. However, this does not justify the redshift of the 

emission caused by the excitation light wavelength (λex). Indeed, even if the energetic levels of the 

bonding could be involved in radiative processes (surface traps), they are not homogenously 

distributed, consequently the continuity of the “broadening” cannot be explained. In addition to 

this, surface states cannot justify the recurring dependence to the pH. Kan and coworkers justified 

λex dependence, pH dependence, and the redshift continuity with the red edge excitation shift 

(REES)74. REES is a shift of the maximum fluorescence wavelength caused by a shift in the 

excitation wavelength toward the red edge of the absorption band. This effect is mostly observed 

with polar fluorophores in particular media such as very viscous solutions or condensed phases75. 

CDs usually show a broadened shape emission, characteristic of systems composed by organic 

fluorophores which show similar unresolved emission and enlarged to less energetic frequencies. 

The same PL characteristics are found in aromatic fluorophores, embedded in viscous media. 

These effects depend on the existence of excited state and on their interaction with the 

environment. This is correlated to their slow relaxation rate. The intermolecular interactions allow 

for electron-transfer along several ways and for the generation of wide and continuous emission 

spectra, typical of the REES. The shape and the position of the spectra is related to the specific 

functional group constituting the fluorophore, and the pH variation of the environment can affect 

the protonation degree of the functional group76.  

In a system mostly related to functional groups, solvation dynamics of polar solvents strongly 

contribute to smooth the discrete emission of the surface traps.  

As previously reported, CDs surface groups are related to the reagent used during the synthesis. If 

nitrogen containing organic compounds are used as precursors to synthesize CDs, it is possible to 

introduce amino groups on the surface state and to drastically change the respective PL behavior. 

This phenomenon is particularly evident when short chain molecules are used. If oxygen based 

surface state causes the excitation-dependent PL production, amino-based molecule scan 

passivate the surface state. In this case, the energy derived from the recombination allows the sp2 

domains to directly emit their energy77.  
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dependence emission derives from other functional groups such as CO and COOH. Electron donor 

functional groups can boost the electronic cloud around the bond and enhance the number of 

electron at the excited level. Consequently, electron donor groups can enhance the number of 

radiative events, increasing the lifetime and the PL intensity. Moreover, for highly-functionalized 

surfaces, objects such as CDs permit to increase the odd-to-transfer electrons from the level of a 

functional group to another. Since each electronic transition causes an energy loss, the photon 

emission at a greater wavelength is more probable80,33. 

In conclusion, bottom-up synthesized CDs are composed by sp2nano-domains embedded in 

amorphous sp3 matrix. They possess high surface functionalization that is translated in surface 

traps and they show a continuous emission. This type of CDs adsorbs light from the sp2nano-

domains that transfers excited electrons to the amorphous sp3 surface, rich of energy traps. The 

produced photoluminescence is related to λex and pH, with a similar behavior to high-density 

clusters of organic fluorophores. Moreover, some recent studies found that some organic 

fluorophores can be synthesized in the same condition used to synthesize CDs. Therefore, it is 

possible that this type of carbon dots is constituted by organic fluorophores which define the 

respective optical properties. 

 

Passivation effect 

Passivation with organic compounds allows tuning of the surface functionalization and the optical 

properties, including also the λex dependence of the photoluminescence.Sachdev81 et al. 

passivated chitosan based CDs with polyethyleneimmine (PEI) and polyethyleneglycol (PEG), 

producing batches with different optical properties. However, both the batches presented 

photoluminescence λex dependence82. 

In order to obtain λex independence, Li and coworkers83 completely passivated the CDs surface 

with amino groups. The surface resulted very homogeneous and only one electron transition and 

emission was allowed, conferring the independence of the luminescence from the exciting 

wavelength (Fig.8). 
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Figure 8: effect of complete surface passivation with amine. Photoluminescence independence from the 
excitation wavelength was due to the removal of surface states with passivation. 

 

 

Photoluminescence up-conversion 

A particular optical property, commonly cited as an excellent peculiarity of the carbon dots, is the 

up-conversion of fluorescence (UPCL)84,85,86,87,88,89.  

UPCL is an anti-Stokes emission, in which the sequential absorption of two or more photons leads 

to the emission of light at shorter wavelength than the excitation wavelength90,91.   

Usually, up-conversion photoluminescence is a phenomenon strictly related to the presence of 

meta-stable levels between the main levels of the material that can be populated by photons. 

Moreover, the lifetime of the population of the levels must be long enough for further photon 

adsorption in order to populate the higher levels. These properties are typical of some elements 

and some organic compounds92,93,94,95, and the discovery of new materials with up-conversion 

properties could be very interesting. In the last years a great debate was opened on the existence 

of CDs up-conversion and, while some research groups sustain carbon dots present this peculiar 

property, others attribute these results to forgetfulness during the experimental setup that 

produce effects that can be confused with up-conversion photoluminescence. The up-conversion 
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PL in CDs could be due to the excitation of second order diffraction light from the monocromator 

of the spectrofluorimeter37.  

Despite all, to understand how carbon dots can produce up-converted photoluminescence it is 

necessary to understand the possible processes at the base of this phenomenon. With this aim, 

some of the most important up-conversion processes are described below.  

 

Excited state absorption 

In excited state absorption (Fig.9A), the system absorbs a photon with energy Φ1 equal (resonant) 

to the transition 1-2, promoting a charge to level 2. When the first transition allows the occupation 

of the intermediate level, another photon with energy Φ2, resonant with the transition 2-3 can be 

adsorbed. Finally, the relaxation of this system can emit one photon with energy equal or a bit 

lower than Φ1 + Φ2. If Φ1 = Φ2, the pumping source can be the same for both the1-2 and 2-3 

transitions, while if Φ1 ≠ Φ2 different pumping sources will be necessary. 

 

Processes where energy transfer can follow excited state absorption 

Energy transfer is a process of energy transport from a donor at an excited state to an acceptor at 

its ground state. Depending on both donor and acceptor electronic configurations and energetic 

states, it is possible to obtain several processes that induce up-conversion photoluminescence. 

The process exposed in Fig.9B happens when a conventional energy transfer is followed by an 

excited state absorption. This second phenomenon promotes the charge from the second to the 

third excited state. At the end, the emission produced from the final relaxation of the system 

produces a photon with a higher energy than that one of the two adsorbed photons. 

Another energy transfer process is called successive energy transfer. In this process, showed in Fig. 

9 C, the photons are adsorbed only by the sensitizer. In this case, the activator can receive 

different charges from two different excited sensitizers. This double absorption allows the charges 

promotion to the third excited state, and in this case, the relaxation of charges from the third state 

can produce photons at higher energy than the absorbed one. 

In Fig.9D a cross relaxation up-conversion is schematized. Energy transfer occurs between two 

identical objects. In this case, incident Φ is absorbed by the sensitizer and by the activator, leading 

both of the two objects in their excited state 2. Then, energy transfer between them promotes the 

activator in its state 3 while the sensitizer goes down to lower energy states. 
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Figure 9: possible processes ruling the up-conversion phenomenon in photoluminescence materials. A) 
Excited state absorption; B) Energy transfer followed by energy state absorption; C) Successive energy 
transfer; D) Cross relaxation up-conversion; E) Up-conversion from cooperative sensitization and F) Multi 
photon absorption. 

Multiphoton absorption (Fig.9F) is a process that occurs through the simultaneous absorption of 

two or more photons. The simultaneous absorption can occur via virtual levels, which significantly 

reduces the lifetime of the excited states. Since absorption rate of the material is proportional to 

the optical density of the incident light, multiphoton absorption does not need real levels, but just 

enough photon density. Considering the high pumping rate needed, this process can be only 

generated by high-energy sources as high frequency pulsed lasers. 

On the basis of the processes exposed above, the production of up-converted emission by carbon 

dots with low carbon-based crystallinity seem very difficult. Up-conversion processes arise from 

well-defined energy structures.  The electronic conformation of carbon dots is not so ordered and 

it makes difficult to obtain UPCL phenomena, even though some important articles report relevant 

experimental evidences in this sense72,89,96,23,97,98,99,43. Since we encountered problems 

reproducing some of the experimental results reported in literature, we tried to understand the 

real origin of the phenomena. In the next chapters, we will present our results which confirm the 

up-conversion fluorescence originates by the leakage from the second diffraction of the incident 

light on the monocromator. In fact, counterfeit up-conversion phenomena can be eliminated using 

an appropriate long pass filter able to block the excitation shorter wavelength light; even though 

Gan et al. shows that there is a co-existence both the two Up-conversion PL and second order 

diffraction light100. 

We also proved that within our amorphous carbon dots, up-conversion fluorescence (UPCL) 

derives from down-conversion of photoluminescence (PL) produced by the light component 

derived from the spectrofluorimeter grating monocromator second order diffraction component. 

In fact, the phenomena can be eliminated by using a long pass filter blocking the second harmonic 

leakage, or using a monochromatic light source to excite the samples75,101,102. 

Quantum Yield 

The CDs quantum yield (QY) was calculated by comparing the integrated PL intensities and 

absorbance values of the samples (exited at 360 nm), using quinine sulphate dissolved in H2SO4 0,5 

M as the standard (QY = 55%). The use of quinine sulphate in acidic media is widely recommended 

as a standard for static fluorescence103.This because its absorption maximum peaks is at a 
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wavelength very close to CDs maximum absorbance. The similarity of their maximum absorbance 

guarantees the avoidance of errors caused by intensity fluctuations in the emission of the 

instrument lamp. 

The relative QY,ϕ, can be calculated using equation (1), where Grad is the gradient obtained from 

the integrated fluorescence intensity as a function of absorbance and n is the solvent refractive 

index. The subscript R represents the reference fluorophore with known QY. 

 ߶ = ߶ோ ቀ ீ௥௔ௗீ௥௔ௗೃቁ ቀ௡మ௡ೃమ ቁ  (1) 

 
In order to minimize re-absorption effects, absorbance in the 1 cm fluorescence cuvette was kept 

lower than 0.05 Abs by using an excitation wavelength of 360 nm. 

QY differences between amino-functionalized CDs and raw CDs can be explained by the presence 

of amino-based groups. Since electron-donating groups can enhance the conjugation degree of 

conjugated systems, this is expected to increase the transition probability from the ground state 

to the lowest excited state of the CDs band gap, contributing to a higher quantum yield83.   

 

2.1.3-Doping CDs 
As reported in literature, one of the most important aspects related to CDs, is their capability to be 

doped with heteroatoms in order to adapt their properties to the need. In bottom-up approaches, 

CDs doping is performed adding a molecule that contains the heteroatom during the synthesis, 

i.e., it is possible to produce nitrogen doped CDs using urea104,105, amines12,106,107 and 

ammonia108,109,110, while aminoacids111,112 are used to produce co-doped CDs. Nitrogen 

heteroatoms can be added also using different compounds, as ammonium citrate113, sodium 

alginate114, polyethylenimmine115, and Trizma®116. 

Moreover, other heteroatoms can be loaded or used as co-dopants. Nitrogen and 

phosphorus117,118,, nitrogen and boron119,120, and nitrogen and sulphur121,122 co-doped CDs are 

synthesized using several molecules. For example, Barman et al.123 produced co-doped CDs by 

bottom-up hydrothermal treatment of citric acid, using diethylentriamine as nitrogen source, boric 

acid as boron source and phosphoric acid as phosphor source. During the synthesis, the molecules 

containing the heteroatom can interact with the carbon source and embed the dopant in the 

carbonaceous matrix. In spite of the simplicity of the doping process, during the synthesis of our 

co-doped samples it was difficult to synthesize batches doped with small inorganic compounds, 



30 
 

such as phosphoric acid and boric acid. The best approach is to consider the heteroatoms 

containing organic compounds, which can be able to react with the carbon source, instead small 

inorganic molecule. Indeed, when we used mercaptosuccinic acid as source of sulphur, the doping 

was performed without problems. 

 

Effect of the CDs doping 

In addition to passivation processes, CDs properties can be changed also introducing new 

heteroatoms in the carbon based backbone.  

For example, the increase of nitrogen content in N doped CDs allows a quantum yield increase. 

Wang et al.124 found that QY was correlated to conjugated π domains of C=N. Therefore, QY and 

photo stability under UV light exposure are enhanced by the increase of amine content in N-CDs 

synthesis. Carbon dots doping causes the insertion of new elements in the carbonaceous matrix 

introducing new bonding and new functional groups.  This feature affects the energy levels and 

the new intra-gap layers that can be used to change some CDs properties. 

The effect of doping can be particularly effective when CDs are used in charge transfer. 

The production of new intra-gap layers can be used to tune the energy level position in 

comparison with other materials, for example with photocatalysis.  

At this purpose, Han et al.125 produced nitrogen, phosphor, boron and Sulphur-doped and co-

doped CDs by combustion flame technique. They used their CDs without any other catalyst, 

enhance oxygen reduction reaction (ORR). CDs showed different photocatalytic performances to 

reduce oxygen. Finally they noted that N,B co-doped CDs presented good activity, with electron 

transfer number126 close to the Pt one. In this case, the particular disposition of the intra-gap 

layers, produced by the doping with nitrogen and boron, allowed a good electron transfer process 

capable to reduce oxygen. 

Barman et al.123 studied the photo-physical properties of nitrogen, phosphor and boron co-doped 

CDs and the influence of the dopants on the electron-hole transfer process. They studied the 

effect of the doping with nickel(II)phtalocyanine attached on CDs surface. By studying the radiative 

decay rate and the average decay time, they observed different behavior in NP-CDs and NB-CDs. 

Indeed, the first sample accelerates electron transfer from CDs to the phtalocyanine, while the 

boron slows down the electron transfer and promotes holes transfer. In conclusion they 

understood that the doping of different heteroatom, as showed in Fig.10, confers CDs p-type 

(Fig.10A) or n-type (Fig.10B)behavior. 
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2.2- Titanium Dioxide 

 

2.2.1-History of Titania 
Studies and application on titanium dioxide cover approximately one century.  

Over the past century an extensive research has been conducted to understand titanium dioxide 

properties and unveil its possible applications. 

In 1921, Renz published some preliminary observations in a paper concerning the interaction 

between titania and light. His work focused on the partial reduction of TiO2 into Ti2O3 and TiO 

when irradiated with sunlight in presence of an organic compound127. 

Furthermore, thanks to its wide application as pigment for external murals, de-cohesion and 

pulverization of the surfaces exposed to sunlight was observed. These phenomena induced 

Goodeve and Kitchener, in 1938, to presume that TiO2 could act as a catalyst increasing photo-

oxidation of the wall paint’s organic component128.     

Despite the captivating properties of TiO2, the interest of the scientific community remains mostly 

focused on zinc oxide because of its higher photocatalytic activity. In 1953 the reaction mechanism 

of ZnO was explained for the first time, showing its capability to oxidize organic compounds and 

reducing atmospheric oxygen. M. C. Markham described the involvement of radical species in the 

photo oxidation process129. During that period, her work was focused on the development of 

several typologies of photo-assisted fuel cells, by employing various metal oxides. Then, Markham 

discovered that the more active zinc oxide underwent fast photo corrosion, while titanium dioxide 

appeared to be more resistant. These findings reignited the interest of the scientists on TiO2. 
In 1958, while studying the oxygen absorbance on TiO2, Kennedy observed that the produced 

electrons were transferred to the oxygen only after the photo excitation and that oxygen was 

reduced before being absorbed on titania’s surface. In the same publication, he observed that when 

oxygen was absorbed, titania was able to decompose a sacrificial dye such as methylene blue or 

methyl orange130.  

In 1964, Kato studied titanium dioxide’ ability to oxidize alcohols, producing hydrogen peroxide. 

He found out that various types of titania had different photocatalytic activities. Moreover, he also 

observed that anatase powders were more active than the rutile powders131.   

One year later, Mc Lintock stated for the first time that, thanks to the conversion of superoxide ion 

to oxygen132, it was possible to oxidize organic compounds to CO2 and H2O.  
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During the end of 1971s, Fujishima found out that photo-activated titania evolved oxygen at 

different potential from the thermodynamic expectation, because the photo excitation process 

converted the photon energy into chemical energy with little loss4.    

In 1972, Fushijima and Honda published their famous paper on simultaneous oxygen and 

hydrogen production from titania using a photo electrochemical cell. Thanks to the solar energy 

conversion implication133, photoelectrochemistry started to receive much wider attention.  

In 1977, Bard and coworkers proposed that TiO2could be used for water purification via 

photocatalityc decomposition of pollutants134.  

They also expanded the research to a long list of inorganic and organic species and suggested that 

photocatalysis could be a useful approach to both environmental and photo-assisted organic 

synthesis. They proposed that each irradiated semiconductor particle could be considered as a 

photo electrochemistry cell, where both photo-assisted oxidation and dark reduction take 

place135. 

After several years of research, photocatalysis grew as a well-known technology for both selective 

and unselective oxidation of organic compounds for water purification136,137,138.  

However, the main drawback of this application is the necessity to employ powerful UV light sources to 

treat organic pollutants in wastewater. In the early 1990s, it was clear that the amount of UV light 

present in natural light was insufficient to produce passive purification processes without special 

light sources. Therefore, it was unavoidable to shift the focus to less energy-demanding technologies, 

such as passive self-cleaning and self-sterilizing surfaces. Despite the problems related to the low 

activity, the concern on this socially relevant application pushed the scientists to develop new 

systems coated with TiO2 films. At the same time, with the aim to produce more versatile 

materials able to be activated in visible light, several doping approaches were developed.  Metal 

doping, non-metal doping and oxygen-deficient titania were developed in order to reduce the 

titania bandgap. Alternatively to the bandgap reduction, the addition of photosensitizers able to 

transfer adsorbed energy to titania was also developed.  

In the last twenty years, the application of charge delocalizers with the purpose of reducing 

electron-hole recombination was also developed. At this purpose, cases of production and 

development of titania based hybrid materials in combination with metal nanoparticles, metal 

nanowires, carbon nanotubes, graphene sheets and carbon dots, increased in literature. Both 

titania doping system and titania based hybrid materials have been used in this work in the 

attempt to produce a versatile material for wastewater treatment under visible light. However, 
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before discuss those aspects, a short digression on chemical, physical, and electrochemical 

properties of Titania is reported below.  

 

Crystal structures of titanium dioxide 

Titanium dioxide exists with three different crystal structures: Rutile, Anatase and Brookite. Rutile 

and Anatase phases possesses photocatalytic activity. Just recently139, Brookite began to be 

considered a good material for photocatalysis. On the other way, despite Rutile possesses smaller 

bandgap than Anatase and Brookite, it shows smaller photocatalytic activity due to the less 

amount of oxygen defects. Since the thesis is focused on the application of Anatase as 

photocatalyst for wastewater treatment, this paragraph describe only this phase. Three different 

facets mainly describes anatase: {101}, {001} and {100}. The first two planes have low surface 

energy, for this reason they are common in natural crystalline materials140. In anatase nano 

crystals, the face {101} is the most prevalent (Fig.11). 

 

Figure 11: (101) anatase face, from Chemical Physics Letters 577 (2013) 114-120 

 

Electronic structure: valence band and conduction band 

Electrons in free and isolated atoms occupy well-defined energy levels, while atoms in solids are 

commonly disposed in periodic, regular and tridimensional organization. During the formation of 

the solid, valence electrons of the external orbitals start to interact with each other, starting to 

split the spin or to shift energy. When the number of atoms increases, an increasing number of 

orbitals shifts at higher and lower energy. Shifted orbitals move close each other and produce two 

distinct bands: the valence and the conduction bands. Whichever is the orbitals involved in the 

formation of the chemical bond, the energy gap between the bands is related to the inter-atomic 
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distances. The bandgap defines the energy required to promote an electron from the valence 

band to the conduction band.  

According to the characteristics of the bandgap as the disposition of the valence and conduction 

bands, the materials can be grouped into three different categories: metals, semiconductors and 

dielectrics materials. 

In metals (Fig.12A) the valence and conduction bands are overlapped. Since externals orbital 

attract electrons with weaker forces than the others orbitals, their electrons can be easily 

transferred. Therefore, few energy is required to move electrons through the net of atoms in the 

metal solid. This high electron mobility expresses one of the most important features of metals: 

the high electrical conductivity. 

In semiconductors (Fig.12B), the valence and conduction bands are separated by a discrete 

amount of energy. In metals, some electrons occupy the conduction band, but in semiconductors 

conduction band is completely unoccupied, because all electrons occupy the valence band. When 

the semiconductor receives enough energy to fill the gap, electron starts to be promoted to the 

conduction band. This electron movement results in a flux of current. 

Finally, in dielectric materials (Fig.12C), the valence and conduction bands are well separated and 

it is very difficult to promote an electron from the valence band to the conduction band. 

 

Figure 12: representation of valence and conduction band in A) metals, B) semiconductors and C) dielectric 
materials.  

In semiconductors, an electron promotion to the conduction band leaves a positive charged 

vacancy on the valence band, usually called “hole”. The necessary energy to promote electrons 

can derived by heat, chemical energy or light. Depending on the type of the carried charges 

(electrons or holes), semiconductors can be grouped into two distinct categories: n-type and p-

type semiconductors, in which electrons and holes respectively are the principal carried charges. 

Fermi level is another important parameter, useful to define the behavior of n- and p- type of 

semiconductors. It is defined as the energy level at which the probability of occupation by an 

electron is 0,5. For example, in a pure silicon based semiconductor the Fermi level lies at half 
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energy of the bandgap. For a n-type semiconductor the Fermi level lies just below the conduction 

band, meanwhile for a p-type material it lies just above the valence band. 

Titanium dioxide is a semiconductor with a bandgap depending on the considered crystalline 

phase. In anatase, bandgap is defined by the 3d band of Ti3+ (valence band) and the 2p band of O 

(conduction band). Oxygen in the lattice also defines photocatalytic properties of the 

semiconductor. Its behavior derives from the presence of some oxygen vacancy in the crystal 

lattice, that permits to redistribute free electrons from Ti3+ at the edge of the defect. This 

concentration of negative charges generates the n-type behavior of the anatase.  

If in rutile, the presence of oxygen vacancies permits to electrons of the neighbor Ti3+ atoms to re-

occupy their respective 3d orbitals,  in anatase, a “split geometry” takes place where an oxygen 

atom near the vacancy is attracted in it and partially shifted from its position. This partial 

migration of the oxygen generates two zones where titanium atoms possess greater electrons 

concentration. The first zone is defined by the Ti3+ atoms near the vacancy, whereas the second 

zone identifies with the space produced by the partial shift of the second oxygen141. 

 

2.2.2-Photo-electrochemical properties of titania 
The main property of titanium dioxide and of other semiconductors is the capability to adsorb 

thermic or light radiation to produce pairs of electron-hole. If the semiconductor is in contact with 

another material, as described below, it is able to concede electrons or holes. In this way, if the 

oxidation potential of the material is greater than the energy of the valence band, the hole 

transfer is allowed and the material can be oxidized. Conversely, when reduction potential of the 

material is less energetic than the conduction band, the semiconductor can transfer electrons and 

reduce the material. Therefore, the generation of electron-hole pairs can promote photo-

catalyzed reaction. When titania is irradiated in presence of water, electron-hole pairs can react 

with water to produce high reactive species able to oxidize a wide range of organic 

pollutants142,143.   
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ଶܱܪ  ାܪ2 + →  ଵଶ ܱଶ +  ା  (4)ܪ2

ାܪ2  + 2݁ି →  ଶ   (5)ܪ

 ܱଶ + ݁ି →  ܱଶି    (6) 
 2ܱଶି + ଶܱܪ → + ଶܪܱ   (7) ିܪܱ 

ିܪܱ  + ℎା →     (8)ܪܱ

 

The reaction (2) represents electron-hole pair generation from the adsorption of one photon by 

titanium dioxide, while the reaction (3) represents the recombination between the photo-

generated charges. In order to guarantee the development of the reaction (4-8), it is necessary to 

minimize or to suppress the reaction (3). The reaction (4) describes oxidation of water  by two 

holes to produce molecular oxygen and two hydrogen cations; meanwhile the reaction (5) 

describes the reduction of two H+ into elemental hydrogen. Reaction (6) illustrates oxygen 

reduction into superoxide radical anion, while reaction (7) illustrates the interaction of water with 

two superoxide radical anions to produce hydroperoxy radicals and hydroxyl anions. Finally, 

reaction (8) shows the oxidation of a hydroxyl into hydroxide radical.   

To fully understand the titania potentiality as photocatalyst for wastewater treatment, it is 

necessary to study the oxidizing and reducing species produced on the surface, as well as their 

roles in the photo assisted process of the pollutants mineralization. 

The main oxidizing species produced on titania surface include: holes, hydroxyl radicals, 

superoxide radicals anions and singlet oxygen; while oxygen and hydrogen peroxide are involved 

in the photocatalytic oxidation processes, with indirect mechanisms. 

 

Holes 

Holes are the first oxidizing specie in the photocatalytic process, since  they can directly react with 

pollutants adsorbed on titania surface. Moreover, they can react with water and with hydroxyl 

radicals to produce other active species. As it is showed in Fig. 6, holes are usually trapped in few  

picoseconds on the surface of photocatalyst; this indicates a high trapping rate and high 

concentration of holes on the surface. Yoshihara et al.146 describe two kinds of trapped holes: 

deep holes and shallow holes. Shallow trapped holes can be thermally excited and they show a 

comparable reactivity and mobility with free holes. These holes reacts rapidly with chemisorbed 

substances. On the contrary, deeply trapped holes usually possess less oxidizing potentials147 and, 

due to their localized nature, they prefer to react with more mobile physisorbed substances. 
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Hydroxyl radicals 

Another subject playing an important role in initiating oxidation reactions is the ● ●OH radical. OH 

is produced by oxidation of hydroxyl anion on the surface or adsorbed water and it is particularly 

active towards substances weakly adsorbed on TiO2 surface. However, after the research 

published by Ishibashi et al., the role of ●OH radicals lost importance as active species. The 

authors found out that hydroxyl radicals are produced with three orders of magnitude smaller 

than trapped holes148. Moreover, ●OH produces an indirect oxidation, while holes and many other 

substances act with direct oxidation149,150. Often the oxidation of adsorbed compounds can be 

produced easier by the direct oxidation than the indirect oxidation. In these cases, the role of 

hydroxyl radicals can be outclassed by the other species. 

For example methanol oxidation could be initiated by holes (11) (12) instead of ●OH radicals (9) 

ܪଷܱܪܥ :151(10) + ܱܪ →  ܪܥଶܱܪ  ଶܱ  (9)ܪ +

ܪܥଶܱܪ → ܱܪܥܪ + ାܪ + ݁ି   (10) 

 

The oxidation initiated by holes: ܪܥଷܱܪ + ℎା → ାܪଷܱܪܥ → ܪܥଶܱܪ +  ା (11)ܪ

ܪܥଶܱܪ → ܱܪܥܪ + ାܪ + ݁ି   (12) 

 

As for methanol, many other adsorbed materials can be oxidized by holes instead of ●OH radicals. 

This fact suggests the relative importance of this specie and the indirect oxidation process in 

comparison with holes and direct processes. 

The proper origin of ●OH could also be another aspect to be investigated. Fujishima et al.144 report 

a series of publication showing that ●OH is generated by the oxidation of water or hydroxide ion 

with photo-generated holes152. Nakato and co-workers153 proposed an alternative reaction (13), 

showed below, in which ●OH are produced by a nucleophilic attack of water on a hole trapped 

under the TiO2 surface. 
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Molecular oxygen is directly dissolved in the wastewater and participates in the reaction, 

accelerating the mineralization of organic pollutants. O2 also plays an important role in many other 

aspects of the TiO2 photocatalysis, such as it can capture the photo-generated electrons and 

suppress molecular recombination, but in TiO2 nanoparticles is able also to improve stimulated 

charge separation157. Indeed, more holes can be trapped on particles surface in presence of 

oxygen.  

Another aspect described before concerns the oxygen contribution to active oxygen species 

generation. Superoxide anion radical and hydrogen peroxide are the two main products of TiO2 

photocatalysis and are fundamental for the production of other active species such as ●OH and 
1O2. 

 If oxygen contributes to active species formation, it can also directly act as oxidizer of organic 

pollutants. It is proposed that mineralization of organic pollutants is mostly mediated by molecular 

oxygen. If holes can initiate the oxidation, oxygen can react with the formation of organoperoxy 

radicals (ROO●) with the consequent degradation and mineralization of the organic material. Its 

role in the formation of organoperoxy radicals is corroborated by similar conclusion obtained from 

photo electrochemical studies158,159  and isotope studies160. 

Another important role of the oxygen is the maintenance of the stoichiometry of TiO2. Indeed, 

oxygen atoms of TiO2 lattice can be lost during the activation. On the photocatalyst surface, high 

concentration of trapped holes could break oxygen bonded on the edge of the material changing 

the oxygen content on the surface. Moreover, it was noticed that during the degradation of 

adsorbed organic compounds as acetic acid, photocatalyst lose oxygen161. In O2 deficient 

conditions, oxygen atoms on the edge are lost with a change of the stoichiometry and with a 

reduction of the photocatalytic. Thus, presence of O2in the system can contrast the depletion of 

the element from the photocatalyst and the maintenance of its properties. 

 

2.2.3-Widening the titania absorption window: the doping effect 
Anatase is one of the most promising photocatalyst for wastewater treatment thanks to its 

bandgap values, its resistance to the corrosion and the cheap cost. Anatase possesses a band gap 

of 3,2 eV, and electrons start to be promoted to the conduction band  with a wavelength of 387 

nm162. The solar radiation transmitted through the atmosphere is composed by 95% of visible and 

infrared radiation and only 5% from UV region (Fig.17), thus the most part of the solar radiation is 

useless for titania. 
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study, we considered the nitrogen doped titania as starting material. This well-known compound 

may facilitate to focus on the problems deriving from the interaction of the loaded carbon dots 

and the photocatalyst. .  

Nitrogen doped titania 
During the synthesis of titania with TiCl4 in presence of NH4OH, Sato208 observed the production of 

NH4Cl. He noted that impurities of the salt, during the annealing process, produces a 

photocatalytic material able to absorb in visible light. Since this first report, nitrogen doped 

titanium dioxide was widely studied and the role of nitrogen in crystal lattice was clarified. 

In 2001 Asahi et al.209suggested that nitrogen introduces the N 2p level on the O 2p valence band 

and N 2p level produces a bandgap narrowing, improving its photocatalytic activity in the visible 

range. Despite the increase of nitrogen content, the N 2p level remain localized. Lin et al.164 

calculated that even for high nitrogen concentration as 12,5%, the level is always localized slightly 

above the top of the O 2p valence band.  

Since the discovery of this effect, several methods able to insert nitrogen into the lattice were 

proposed: i) sol-gel synthesis200,201,210,211,212, ii) chemical treatments of TiO2
202,213,214, iii) oxidation 

of titanium nitride215,216, iv) ion implantation217,218 and v) magnetron sputtering219,220. 

Regardless the synthesis, the nature of the doping nitrogen in the lattice determines photocatalyst 

properties. Nitrogen can remain simply trapped in the matrix as nitrogen oxide or can occupy 

defined sites in the lattice. Furthermore, it can be trapped into the lattice as: nitrogen oxide or 

chemically bonded with titanium and/or oxygen as interstitial and substitutional nitrogen. 

Concerning the second case, interstitial or substitutional doping nitrogen need some further 

explanations. As showed in Fig.18A, substitutional nitrogen is bonded with titanium atoms in a 

regular lattice site, while in Fig. 18B an interstitial nitrogen is directly bonded to a lattice oxygen. 

 

 

Figure 18: Schematic draw for A) substitutional and B) interstitial nitrogen doped anatase221. 
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visible range to the localized impurities, while the moiety of the titania without doping was able 

only to adsorb UV light.   

Today is clear that the oxygen substitution with nitrogen makes the photocatalyst able to interact 

with the visible light, but is also evident that nitrogen atoms are localized in the lattice. 

Consequently, the localized nature of the doping centers generates holes with very low mobility. 

This property was noted by Nakamura et al.224 who showed nitrogen doped titania able to degrade 

a sacrificial dye only with processes involving intermediate species, while the direct oxidation 

operated by holes is totally missing.  

In 2005, Livraghi et al.225 explained theoretically the behavior of nitrogen doped titania; they 

studied their results obtained by magnetic resonance spectroscopy (EPR) and their theoretical 

model was confirmed. Usually, the anatase oxygen vacancies are characterized by two exceeding 

electrons which cause the reduction of the neighbor Ti4+ in to Ti3+. EPR is able to detect the 

electron localized in 3d level of Ti3+.  

From the Livraghi et al.225 study emerged the existence of nitrogen species strictly bonded to the 

TiO2 lattice. Depending on the interaction with oxygen vacancies (Ti3+), these species generate 

doubly occupied or singly occupied electronic states. Doubly occupied states generate diamagnetic 

species (Nb-), while singly occupied states generate paramagnetic species (Nb●). This feature 

derives from the interaction of nitrogen with the oxygen vacancy, independently from their 

substitutional and interstitial position. 

Livraghi found that one of the two configuration is more stable because the electron that lies on 

Ti+33d level can be transferred to the N 2p level. As it is showed in Fig.20A, the electron transfer 

produces the oxidation of Ti3+ in to Ti4+ and the Nb● paramagnetic center recombines in a Nb- 

diamagnetic one. This phenomenon was associated to a diminution of oxygen vacancies after 

nitrogen doping of TiO2. Once nitrogen doped titania is excited by visible light radiation (Fig.20B), 

electrons in diamagnetic centers are promoted to the Ti3+ 3d level, making the backward travel 

and producing paramagnetic centers. This passage locks the photo-generated holes in the 

paramagnetic centers, enabling the direct oxidation nitrogen doped TiO2 to be absorbed on TiO2 

surface. In this process if holes are locked in the doping centers, electrons are free to react; as the 

case of the reduction of O2 into  ●O2
- superoxide anion.   
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titania through oxidizing titanium nitride (TiN) in O2 atmosphere by annealing226, at 550°C. In the 

same reference, nitrogen-doped anatase is produced by annealing undoped TiO2 in NH3\Ar 

atmosphere at 600°C. Further studies showed that when gaseous NH3 is used, it possible to tune 

the amount of N in TiO2-xNx changing the annealing temperature from 550° to 600°C227.  

At these temperatures, NH3 gas is both a nitrogen source and a powerful reducing agent, because 

at 550°C it decomposes in N2 and H2. So, when TiO2 is treated at the right temperature in NH3 

atmosphere, the sample is doped and reduced at the same time228. 

Annealing in NH3 atmosphere is used also to directly treat titanium isopropoxyde229 (TIP,) and 

Ti(OH)4
230. In order to produce TiO2-xNx, titanium-based alcoholates are also annealed in presence 

of urea231. Another synthesis is based on mechano-chemical methods. In these processes, nitrogen 

sources like urea and hexamethylenetetramine are ground with TiO2 into a ball mill. Energy 

applied during the milling allows nitrogen intercalation in the lattice. Moreover, these methods 

are very energetic and they can convert anatase into rutile phase. Unluckily, mechano-chemical 

processes permit to dope TiO2, but annealing at 400° C is required to remove residual organic 

substances and clean the compound232,233. 

Another dry process is the application of DC reactive magneton sputtering, where a nitrogen-

containing plasma can implant nitrogen atoms in TiO2 crystal lattice219. This technique is 

particularly versatile to dope thin film and TiO2 layers, even on non-flat and complex surfaces. 

 

Wet processes 
Sol-gel synthesis is the most widely used process to synthesize nitrogen-doped titanium dioxide.  

Sol-gel is a technique able to produce ceramic and glass materials that involves the transition of a 

colloidal solution (sol) into a solid phase (gel)234. 

A sol is a stable suspension of colloidal amorphous or crystalline particles in a liquid. Thanks to 

aggregation and covalent bonding between the sol particles it is possible to form a gel. 

A gel consists of a three-dimensionally continuous and porous solid network. In particular 

situations, when a solvent submerges a gel, the system is commonly called wet gel. In most sol–gel 

systems for the synthesis of oxide materials, gelation is due to the formation of covalent bonds 

between the sol particles. Gel formation can be reversible when other types of bond are involved, 

such as van der Waals forces or hydrogen bonds. The structure of a gel network largely depends 

on the size and shape of the sol particles. 

As for silica, the sol-gel synthesis of metal oxides involves the metal center with oxo (M-O-M) or 

hydroxo (M-OH-M) links until the generation of metal-oxo or metal-hydroxo polymer suspension. 
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Consequently, the sol evolves toward the formation of a gel system containing both solid and 

liquid phases with morphologies that can change from continuous network to discrete particles. 

Finally, a thermal treatment is necessary in order to favor further poly-condensation and to 

enhance the mechanical properties and structural stability until final sintering and densification. 

This versatile technology is reliable at low temperature and permits to control the composition of 

the final material on molecular scale. In fact, even small quantities of dopants, such as organic 

dyes and rare earth elements, can be introduced in the sol and uniformly dispersed in the final 

product235,236. 

In addition, thanks to the use of high purity reagents it is possible to synthesize materials with 

complex composition237,238. Sol-gel process also allows to produce systems of 

nanoparticles239,240,131, with well-defined porosity and surface area, as well as thin film 

coatings241,242,243,244. 

Usually, starting products used in the sol preparations are inorganic metal salts or organic 

compounds like metal alcoholates, which form the sol thanks to hydrolysis and polycondensation 

reactions. 

Though silicon-based material production is the most famous and used sol-gel system and can be 

usually taken as an example, there are some highly relevant differences among silicon and 

transition metals in sol-gel chemistry. The first difference that influences the reactivity is that 

other metals are more sensitive to nucleophilic attack thanks to their greater Lewis acidity. 

Another difference deals with coordination number. Silicon coordination number and valence is 4, 

while titanium is coordinated by other six atoms. The increase of the coordination number is due 

to the interaction with nucleophilic entities in the systems. Therefore, hydrolysis makes the water 

molecules that coordinate the Ti more acid than the non-coordinated water. This peculiarity 

allows to produce oxides or hydroxides depending on pH changes. 

As in case of silica-based sol-gel processes, transition metals M-OH groups derive from M-OR 

hydrolysis. Due to the higher Lewis acidity of metal alkoxides, nucleophilic attack on Ti is easier 

and hydrolysis rate is strongly increased. For this reason hydrolysis rate of Ti(OR)4 is about 105 

times faster than Si(OR)4 with the same substituent245. Thanks to their high reactivity, in order to 

obtain gels instead of precipitate, alkoxytitanates hydrolysis must be moderated, while the 

reactivity of alkoxysilanes has to be promoted by acid or basis catalysts. Acidic or basic conditions 

can be used in a sol-gel reaction to enhance respectively the kinetics of the hydrolysis step or the 

kinetics of the condensation step. 
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catalyst and to increase crystallization of metal oxides, but at greater concentration can be used to 

efficaciously dope titania212. 

High temperature annealing step is mandatory to obtain crystalline TiO2-xNx materials, even when 

synthesis concerns sol-gel methods211,212,202,42,200. Like the nitrogen content227, the crystallinity 

degree is important and defines the photocatalityc power.  

As reported in paragraph 1.5, the aim of this research concerns the synthesis of a system 

composed by crystalline nitrogen-doped titanium dioxide loaded with carbon nanoparticle. Since 

heat treatments higher than 300°C can oxidize carbon nanoparticles until complete combustion, it 

is necessary to find a method to produce a crystalline N2-doped TiO2 without the use of high 

temperature annealing. In fact, if combustion occurs, carbon may intercalate into crystal lattice 

acting as co-dopant in previously doped TiO2-xNx and change the bandgap due to the introduction 

of carbon related intragap bands. In consequence, an alternative method to produce anatase 

phase without annealing, called Gel-Sol method is applied. Despite gel-sol method is a wet process 

like the sol-gel, it is described in a dedicate paragraph. 

 
Gel-Sol method 
Gel-sol is a wet process that permits to obtain particles and nanoparticles of metal oxides starting 

from gel phase251. 

In a gel sol method, metal precursor is hydrolyzed in a metal hydroxide and then aged to obtain 

the gel phase. Subsequently, the gel is aged and treated in autoclave at well-defined temperatures 

and pH. During the hydrothermal treatment, the gel is solubilized in an intermediate compound, 

which can change depending to the pH of the system. When the intermediate saturates the sol, it 

starts to condense and to rearrange in a crystalline oxides with a well-defined crystalline phase. 

Gel-sol method is a versatile system developed in 1993 by Sugimoto et al.252 to study the 

formation mechanism of crystalline Fe2O3 from condensed ferric hydroxide gel; subsequently they 

continued their studies applying gel-sol method to titanium dioxide. 

Temperature used in Sugimoto works to produce crystalline anatase do not reach high enough 

values to degrade the carbon-based nanoparticles used to prepare nitrogen-doped titania loaded 

with carbon dots. In a typical gel-sol process to obtain undoped titanium dioxide, Ti(OH)4 is 

produced by hydrolyzing titanium alcoholates in water. After the collection and the washing steps, 

the gel pH is adjusted with HClO4 and NaOH at well defined ionic strength. Once the pH has been 

checked, hydrothermal process is done at 100°C for 24 hours. 
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Depending on the system pH, during the hydrothermal process the concentration of Ti(OH)2
2+ and 

Ti(OH)3
+ in equilibrium with Ti(OH)4 changes, with consequences on the treatment yield (Fig.22). 

Sugimoto found that the precursor complex able to produce anatase TiO2 is Ti(OH)3
+.253.  

 

Figure 22: mole fractions of Ti(OH)2
+ 2 , Ti(OH)+ 3 , and Ti(OH)4 complexes as a function of pH at 25°C and 

ionic strength 0.1. 
 
After the hydrothermal process, Sugimoto et al252, proposed to wash with a 2M HNO3 solution in 

order to remove un-reacted titanium hydroxide. For our samples, we changed this passage  

washing with H2O because we noted by X-ray diffraction that a lot of amorphous material was still 

present despite the acid washing. 

For our purposes, we adopted the technique developed by Sugimoto et. al. to produce TiO2-xNx 

anatase. Instead of un-doped Ti(OH)4, we started from a nitrogen-containing titanium-based gel. 

Moreover, treatment parameters proposed by the study of Sugimoto254,255,255 were changed. The 

amount of treated gel, ionic strength, temperature and treatment time were changed in order to 

obtain the maximum of anatase TiO2-xNx. 

 

 

2.3- Enhanced photocatalytic materials 
 

CDs interaction with other materials 
Thanks to their composition and structure, CDs possess fine properties that can used for several 

applications. Indeed, CDs can delocalize or supply easily electric charges in other materials and 

they can be used as photosensitizers or as charge delocalizers. 
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3- Materials and methods 
 

 

3.1- Hydrothermal processes 
Hydrothermal synthesis includes the various techniques of crystallizing substances using high-

temperature aqueous solutions and high vapor pressures; it is also known as "hydrothermal 

method". This method can be defined as a synthesis of single crystals that depends on the 

solubility of minerals in hot water under high pressure. The crystal growth is performed in an 

apparatus consisting of a steel pressure vessel called autoclave, in which a nutrient is supplied 

along with water. The method is also suitable for growing large quantities of good-quality crystals, 

while maintaining control over their composition. Disadvantages are the need of expensive 

autoclaves, and the impossibility of observing the process of the crystal growing. 

A custom-made teflon-lined autoclave is used to produce CDs with hydrothermal synthesis and to 

treat amorphous TiO2-based samples. 

 

3.2- Carbon dots 

 

3.2.1- Synthesis 
All the aqueous solutions were prepared using de-ionized water (<2μS/cm). Glucose [CAS 50-99-7], 

Citric acid [CAS 77-92-9], Urea [CAS 57-13-6], Ethylenediamine [CAS 107-15-3], Diethylamine [CAS 

111-40-0], Triethylenetetramine [CAS 112-24-3],  Boric acid [CAS 10043-35-3], Phosphoric acid 

[CAS 7664-38-2],  Sodium Hydroxide [CAS 1310-73-2], Magnesium Sulfate (anhydrous) [CAS 7487-

88-9], Ethanol [CAS 64-17-5] and Acetone [CAS 67-64-1],  was purchased by Sigma Aldrich and 

used as received. Ammonia solution (30%) was purchased by Carlo Erba and used as received. 

Graphite rods was purchased by TAAB . 

3.2.1.1: Upconversion study samples 
CD_A280:  

CDs_A was synthesized by mixing 3wt % of glucose dissolved in aqueous ammonia (30%) at room 

temperature. After the solution become homogenous, it was heated at a constant temperature of 

180°C for 4 hours. During the process, because of CDs formation, solution color changed from 
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transparent to pale yellow. The solution was cooled down to room temperature and centrifuged at 

13000 rpm for 40 min to remove larger particles. Solution was finally dried to remove all excess of 

ammonia. The dried sample was re-dispersed in distilled water to form a 0,5 mg/ml solution. 

 

CD_B29:  

CDs_B was synthesized dissolving 9,007g of glucose in 50ml of deionized water to form a 1mol/L 

clear solution. 2g NaOH was dissolved in 50ml of distilled water to form a 1mol/l clear solution, 

then was added to the solution of glucose and mixed for 10 min. The mixed solution was treated 

by an ultrasonic wave (150 W, 40 KHz) for 1 hour. The crude sample obtained from glucose/NaOH 

was adjusted to pH 7 with HCl. After that, the crude brown solution was dialyzed with 

semipermeable membrane (MWCO 3000 KDa) to remove any impurities. The dried sample was re-

dispersed in distilled water to form a 0,5 mg/ml solution. 

 

CD_C85:  

CDs_C was synthesized adding 1 g of glucose and 0.1 g of NaOH in 15 mL water under stirring. The 

solution was then transferred into a 60 mL Teflon-lined stainless-steel autoclave and was heated 

at a constant temperature of 160°C for 4 h. The resulting solution was cooled at room 

temperature and suspension containing CDs was obtained after centrifugation at 13000 rpm for 

40 min.  To purify, this solution was heated at 100°C to allow the residual sodium hydroxide to 

dissolve out, and dialysis treatment using a semipermeable membrane (MWCO 3 KDa) was 

performed.  The solution was dried under vacuum, and CDs sample was finally dispersed in de-

ionized water in the form of a 0,5 mg/ml solution.  

 

CD_D:  

CDs_D was synthesized dissolving 1,5 g of glucose in to 0, 4ml of NH3 25% and 14,6ml of H2O 

under stirring. The solution was transferred into a 60 mL Teflon-lined stainless-steel autoclave and 

heated at a constant temperature for 4 h at 160° C. The resulting solution was cooled at room 

temperature and the surnatant solution, obtained after centrifugation at 13000 rpm for 40 min 

was collected.  To purify, this solution was heated at 100°C to allow the evaporation of the NH3. 

The dried sample was finally kept in de-ionized water in the form of a 0,5mg/ml solution.  

 

CD_E23:  
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The electrolyte of the electrochemical process was produced by mixing ethanol 99,5% with 0.4 g 

of NaOH. By using graphite rods (diameter about 0.5 cm) as both anode and cathode, we have 

synthesized CDs imposing 190 mAcm2 current intensity. The raw CDs solution was treated by 

adding a suitable amount of MgSO4 (5–7 wt%), stirred for 20 min, and then stored for 24 h to 

remove the salts and water. After that, sample was centrifuged at 13000 rpm for 40 min, dried 

and dispersed in distilled water in the form of a 0, 5 mg/ml solution.  

 

3.2.1.2: Preliminary synthesis of codoped NCDs 
Citric acid was dissolved in the corresponding nitrogen source with molar ratio of 1:4. The mixture 

was transferred in a teflon-lined autoclave and treated at 170°C for 1h. Nitrogen doped and co-

doped CDs were synthesized with excess of nitrogen source. In each co-doped batch, citric acid, 

nitrogen source and co-doping source, were respectively used with molar ratio 1 : 4 : 0,2. 123 

An alternative purification was performed because dialysis process did not properly purify the 

samples, which passed through the membrane along with the un-reacted material. Therefore, the 

sample was dried in rotavapor and washed three times with acetone and ethanol respectively. For 

each washing step, centrifugation at 13000 rpm for 10 min permitted to collect all not solubilized 

sample. A final step considered to suspend CDs in water and collect supernatant after 

centrifugation at 13000 rpm for 10 min. In this way, the unstable material in water was wasted. 

Finally, only the supernatant fraction was collected and the suspension was dried in rotavapor and 

stored in vacuum overnight. 

Nitrogen doped and co-doped CDs were synthesized working with amine excess. Description of 

synthesized samples in Tab.2. 

Table 2: description of nitrogen co-doped carbon dots samples. For each sample nitrogen source and co-
doping source is described. 

Sample Amine source Co-dopant source 
N_CDs DIETHYLENTRIAMINE // 

N_P_CDs II P ACID 
N_B_CDs II B ACID 
N_S_CDs II MERCAPTOSUCCINIC 

ACID 
 

 

 

 

 



60 
 

3.2.1.3: Synthesis of codoped NCDs with different nitrogen sources 
 

In these synthesis, we increased the amount of citric acid with respect to nitrogen source. In order 

to maintain the adequate doping, the ratio between citric acid and co-doping source remained 

unchanged. Moreover,  water was added to the system. 

Each 1.11 mol of water, 10.5 mmol of citric acid and 6.25 mmol of corresponding nitrogen source, 

were mixed. The mixture was transferred in a teflon-lined autoclave at 200°C for 5h. When co-

doped samples were required, 2mmol of phosphoric acid, boric acid or mercaptosuccinic acid 

were added with the previous molar ratio.  

Once cooled, sample was dried in rotavapor and it washed three times with acetone and ethanol 

respectively. After each washing step, samples were centrifuged at 13000 rpm for 10 min, and 

surnatant was discharged. A final step foresaw the suspension of CDs in water and the collection 

of supernatant after centrifugation at 20000g/min for 10 min. In this way, all the unstable material 

in water was collected and wasted. Finally, only the water soluble fraction was collected. The 

suspension was dried in rotavapor and stored in vacuum overnight. Once dried, samples was 

stored in dry atmosphere to avoid water adsorption. 

Groups of samples were synthesized using urea, ethylendiamine, diethylentriamine, 

triethylentetramine as nitrogen source.  

The use of different nitrogen-based precursors permitted to study possible relationships between 

nitrogen source molecular weight (MW) and CDs size. In addition, the use of different precursors 

with different hazard grade permitted to study possible relationships between these toxic 

materials and CDs cytotoxicity. In the Tab.3, all the synthesized samples were described, with their 

nitrogen source and co-doping source. 

Table 3: Presentation of nitrogen co-doped carbon dots samples synthesized in presence of water. For each 
sample nitrogen source and co-doping source is described. 

Sample Amine source Co-dopant source 
Urea_NCDs UREA // 

Urea_NPCDs II P ACID 
Urea_NBCDs II B ACID 
Urea_NSCDs II MERCAPTOSUCCINIC 

ACID 
ETIDI_NCDs ETHYLENDIAMINE // 

ETIDI_NPCDs II P ACID 
ETIDI_NBCDs II B ACID 
ETIDI_NSCDs II MERCAPTOSUCCINIC 
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ACID 
DETA_NCDs DIETHYLENTRIAMINE // 

DETA_NPCDs II P ACID 
DETA_NBCDs II B ACID 
DETA_NSCDs II MERCAPTOSUCCINIC 

ACID 
TRITETRA-NCDs TRIETHYLENTETRAMINE // 

TRITETRA-NPCDs II P ACID 
TRITETRA-NBCDs II B ACID 
TRITETRA-NSCDs II MERCAPTOSUCCINIC 

ACID 
 

Sample purification was performed by repeated washing with solvents. CDs can be easily 

suspended in water but not in less polar solvents, as methanol or ethanol, while washing with 

acetone can remove not hydro-soluble moieties. As last purification step, CDs were suspended in 

water and centrifuged, in order to waste all not suspended materials. After drying step, samples 

were stored as solids until the characterization.  

 

3.3- Titanium Dioxide 
All the reactions and hydrothermal treatments were performed in milliQ water. As Titanium 

precursor, Ti(IV)isopropoxide was purchased from Sigma Aldrich [CAS: 546-68-9]. To avoid 

contamination and increase the reproducibility, trace analysis Nitric acid 69% was used and 

purchased from Sigma Aldrich, [CAS:7697-37-2]. To prepare the treating solution of hydrothermal 

processes, Sodium Hydroxide was purchased from Sigma Aldrich [CAS 1310-73-2], while Perchloric 

acid 70% was purchased from Carlo Erba[CAS 7601-90-3]. 

3.3.1- Synthesis of NTiO2 
All the samples containing TiO2 can summarized as follows: 

 TiO2Comm., P25, TiO2 ann. and NTiO2 ann. were used as reference materials. These 

samples have been treated at high temperature 

 S_1, S_2 and B_1 were synthesized, in order to define the right hydrothermal treatment to 

stabilize anatase without annealing processes. Samples S_1 and S_2 reproduced 

hydrothermal treatment of undoped TiO2, while sample B_1 reproduced the hydrothermal 

treatment of a nitrogen doped TiO2. 

 The sample W_1 was used to study amorphous nitrogen doped titania. In particular, the 

samples was analyzed to study the CDs addition protocol during the production of the 

amorphous NTiO2. 
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 Samples WS_1 and WS_2 were synthesized in order to study the best host for the CDs.  

  TiO2@CDs based samples were used as comparison for samples loaded with CDs. 

Working with new compounds requires reference materials in order to compare the properties of 

the new samples with known reference systems. For this purpose, the cited work of Di Valentin et 

al.221 offered a selection of good references. In the paper, the authors deeply characterized the 

role of nitrogen in nitrogen doped titanium dioxide, and furnished good explanations for behavior 

shown by our nitrogen doped titania. Moreover, the several annealing processes, presented in the 

paper, could be used to highlight differences with the hydrothermal treatments described in this 

thesis. In addition to the samples prepared according to the Di Valentin’s recipes, it was necessary 

to compare the properties of our samples with some other accepted reference systems such as a 

commercial TiO2 anatase purchased by Sigma-Aldrich and a commercial Degussa P25.  

TiO2Anatase  (TiO2 Comm.) 

 It was a commercial titanium oxide nanopowder purchased by Sigma-Aldrich, with a particles 

average size of 25nm. This product is commercialized as CAS 1317-70-0. 

In this work, this sample was labeled as TiO2 Comm. 

 

Degussa P25 (P25) 

Degussa P25 was a titania photocatalyst widely used, thanks to its relatively high activity, in many 

photocatalytic reaction systems. P25 was used as standard titania photocatalyst. 

In this work this sample was labeled as P25. 

 

Un-doped Titania (TiO2ann.) 

The anatase TiO2 reference was synthesized by the sol-gel method still proposed by Di Valentin et 

al.281. This sample was synthesized following the recipe of the paper, but without the addition of 

ammonium chloride added to the synthesis as nitrogen source. Sol-gel TiO2 sample was prepared 

mixing a solution of titanium (IV) isopropoxide in isopropyl alcohol with some ml of milliQ water. 

The system was aged 15h in order to obtain the complete hydrolysis of the Ti precursor and dried 

in oven at 80°C. The dried gel was annealed at 500°C for 1h. 

In this work this sample was labeled as TiO2 ann. 

 

Nitrogen-doped titania: (NTiO2ann.) 
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Anatase nitrogen doped titania reference sample was synthesized by the same sol-gel process 

described by Di Valentin et al281 and described in the previous paragraph, but using ammonium 

chloride, which was added to the synthesis as nitrogen source. Sol-gel NTiO2 sample was prepared 

mixing a solution of titanium (IV) isopropoxide in isopropyl alcohol and adding to the solution 

some ml of milliQ water. The system was aged 15h in order to obtain the complete hydrolysis of 

the Ti precursor and dried in oven at 80°C. The dried gel was annealed at 500°C for 1h.  

In this work this sample was labeled as NTiO2 ann. 

The reference samples purchased or synthesized from selected literature are summarized in Tab.4. 

 

Table 4: Reference samples, commercial references as TiO2comm. and P25 were purchased, so the treating 
parameters are unknown 

Sample Treating parameters Structural properties 
TiO2 ann. 505°C x 2h Anatase - bulk 

NTiO2 ann. 505°C x 2h Anatase - bulk 
TiO2comm   unknown Anatase- nanosized 

P25 unknown unknown 
 
 

The next section describes the synthesis of the samples containing a stabilized anatase phase 
without the use of annealing processes. The sample B_1 proposes a synthesis of nitrogen doped 
TiO2, while the samples S_1 and S_2 propose samples of undoped TiO2. These samples are 
summarized in Tab.5. 

B_1 synthesis 

The synthesis of the sample B_1 was based on the paper written by Bao et al.246The authors 

presented one pot synthesis to prepare nitrogen doped crystalline titanium dioxide. The proposed 

synthesis was able to satisfy both the necessity to produce  nitrogen doped and anatase titania 

phase using  hydrothermal treatment. For this reason, this procedure was studied with the others 

to produce crystalline material. 

First, 6.8 ml of Titanium tetrabutoxide and 10 ml of Ethanol were mixed with stirring for 30 min to 

form solution A. Secondly, 5 ml of Etilamine, 10 ml of milliQ water and 10 ml of Ethanol were 

mixed with stirring for 10 min to form solution B. Then, solution A was added drop-wise into 

solution B under vigorous stirring. The resulting mixture was transferred into a 120ml Teflon-lined 

stainless-steel autoclave and heated at 150°C for 8 h. Finally, the obtained white precipitate was 

washed with H2O and EtOH several times, and dried at 80°C for 8 h in vacuum. 
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In this work this sample was labeled as B_1 

 

S_1 synthesis 

The synthesis of the sample S_1 was taken from the work of Sugimoto et al253. The authors 

proposed a procedure to produce crystalline undoped TiO2. The adopted synthesis followed the 

prescription of the paper working at pH condition indicated as the best to obtain anatase phase. 

2,96ml of Ti(IV)isopropoxide was added to a 40ml of solution 0,1M of HClO4. The pH of the 

solution was adjusted to 3 with solutions of NaOH and HClO4 0,1M. The system was maintained 

under stirring for 120 minutes at room temperature to stabilize the pH and to obtain complete 

hydrolysis and condensation of the gel. Finally, the formed gel was stored in an autoclave at 100°C 

for 24h. After the treatment, the autoclave was cooled at room temperature and the powder was 

washed three times with milliQ water and dried in oven at 80°C. 

In this work this sample was labeled as S_1 

 

S_2 synthesis 

The synthesis of the sample S_2 was referred to another paper of Sugimoto et al.255 concerning 

the study of undoped anatase production made with the use of amines as shape control agents 

and through hydrothermal route. Also in this case, synthesis was performed following the 

prescription of the paper and working at pH condition indicated as the best to obtain anatase 

phase. 

First a stock solution was prepared mixing Titanium (IV) isopropoxide with triethanolamine at 

molar ratio of 1:2 respectively, in order to produce Ti4+ compound stable at room temperature. 

The solution was diluted with the addition of milliQ water to make an aqueous stock solution of 

0,5 mol/L in Ti4+.  

10 ml of the stock solution were mixed with additional 10ml of milliQ water, placed into a screw-

capped Pyrex bottle, and aged at 100°C for 24 h in order to obtain the gel. Finally, the resulting 

highly viscous gel was transferred to Teflon-lined autoclave and aged at 140°C for 72h to nucleate 

and grow titania particles. 

The final product was washed three times with milliQ water and dried in oven at 80°C overnight. 

Table 5: Samples studied to define the best hydrothermal process to stabilize anatase phase. For each 
sample treating parameters, structural properties and chemical formula are reported.  

Sample Treating 
parameters 

Structural 
properties 

Material 
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S_1 20°Cx 2h + 100°C x 
24h 

Anatase -
microsized 

TiO2 

S_2 100°Cx24h + 
140°Cx72h 

Anatase -
nanosized 

TiO2 

B_1 150°C x 8h Anatase -
nanosized 

NTiO2 

 

Synthesis of the amorphous NTiO2 

W_1 sample represented the amorphous nitrogen doped TiO2 to treat with the selected 

hydrothermal process. WS_1 was obtained after hydrothermal treatment of W_1 sample.  WS_2 

was obtained with optimized hydrothermal process, and corresponded to the best sample 

obtained. 

 

W_1 synthesis 

WS_1 synthesis was produced starting from the study proposed by Wang et al.282 The procedure 

was adapted to insert CDs suspension during the synthesis. 

W_1 synthesis was represented in Fig.26. Titanium (IV) isopropoxide (TIP) (3,2ml) was added drop 

wise into a solution made by 15 ml of milliQ water and 4ml on concentrated HNO3 under 

continuous stirring. After hydrolysis, condensation and dissolution of TIP other 4ml of 

concentrated HNO3 was added. These additional 4ml could be used to introduce CDs in the 

system, using a suspension of the required amount of CDs in concentrated HNO3. After 30 min 

stirring ammonia solution was added drop-wise to the system until the complete precipitation of 

an orange slurry. The orange precipitate was filtered and washed with 400ml of milliQ water in 

order to remove all the salt produced by the neutralization and all the ammonia in excess. In order 

to remove all the water the sample was dried in oven at 80°C. 
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Figure 26: scheme for the production of the W1. Once synthesized, the amorphous material was treated in 
to solvothermal process in order to obtain crystalline photoactive material.  

WS_1 synthesis 

This sample was synthesized following the procedure reported in W_1 synthesis, followed by the 

hydrothermal treatment proposed for the production of the sample S_1, autoclave at 100°C for 

24h. 

WS_2 synthesis 

This sample was synthesized following the procedure reported in W_1 synthesis. However, the 

subsequent hydrothermal treatment (proposed for the production of the sample S_1) was 

optimized to obtain the highest crystallinity grade. 

 

3.4- Enhanced photocatalytic materials 
 

WS_2@CDs synthesis 

This sample was synthesized following the procedure of the WS_2 sample with the addition of a 

suspension of CDs in concentrated HNO3 (in the step 3 in Fig.26).  

In order to verify the optimal CDs concentration, we added NCDs suspensions indicated in Tab.6. 

Table 6: reagent amount used to synthesize each sample of nitrogen doped titanium dioxide with different 
percentages of carbon dots. 

Sample ml TIP Total ml HNO3 ml soluz 10mg/ml 
NCDs 

mg NCDs  

WS_2 3,2 4 + 4 0 0 
WS_2@0,01% 3,2 4 + 4 0,008 0,08 
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WS_2@0,1% 3,2 4 + 4 0,08 0,8 
WS_2@1% 3,2 4 + 4 0,8 8 

 

 

 TiO2@CDs synthesis 

With the purpose to test an alternative synthesis, we prepared a set of samples of titanium 

dioxide (TiO2ann.) loaded with NCDs or NSCDs. The sample preparation protocol was performed 

by adding 0,8ml of 10mg/ml CDs suspension to a solution of 3,2ml TIP in 3,2ml of isopropyl 

alcohol. The system was incubated for 15h, in order to obtain the complete hydrolysis of the Ti 

precursor, and then dried in oven at 80°C. The dried gel was treated with the optimized 

hydrothermal synthesis used to produce WS_2 sample. 

In Tab.7 we showed a scheme of the composition of the TiO2 samples loaded with NCDs and 
NSCDs.  

Table 7: description of the TiO2 samples loaded with NCDs and NSCDs.  

Type of CDs NCDs NSCDs 
Doping elements N N,S 
Sample name TiO2@NCDs TiO2@NSCDs 

 

 

3.5- Characterizations 
 

Photoluminescence analysis: 

Photoluminescence investigations on nitrogen doped carbon dots and co-doped carbon dots were 

performed with a Perkin Elmer LS 55 fluorescence spectrophotometer 

Upconversion studies: 

Upconversion photoluminescence (UPCL) is a fine anti-Stokes emission, where two or more 

photons are sequentially absorbed inducing emission at shorter wavelenght than the excitation 

one. UPCL is useful in several different applications, from lighting to bio-imaging and from 

photovoltaic to nanomedicine. These phenomena are typical for some lanthanide elements and 

for some quantum dots, and are also often cited in CDs early bibliography. 

The study of UPCL phenomena from CDs could be useful for different reason, but the most 

important for our topic could be the anti-Stokes emission. It can be used to adsorb visible light and 
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re-emit in near UV region, where a photocatalyst as titanium dioxide can be activated. UPCL 

depends on a well-defined energetic structure, and could be difficult to observe it in a 

heterogeneous material as CDs, where the high number of surface states could interfere with the 

process. 

UPCL is an uncommon phenomenon, and even in fitted materials needs powerful light sources to 

be produced. At this purpose powerful photon source, as lasers, are commonly used to induce 

UPCL. Despite that, several studies on CDs show UPCL using Xenon lamps commonly equipped on 

spectrofluorimeter. This peculiarity generate several questions, because using a polychromatic 

source, as a lamp, could introduce light components such as second order of diffraction light. If 

these components are not properly removed, they could generate some effects that could be 

mistaken as UPCL.  

Indeed, in a common spectrofluorimeter, excitation light is selected thanks to grating 

monocromator, in which light emission from Xenon lamp is mirrored in different directions. 

Theoretically, only a well defined range of few nanometers wavelength can be selected by the 

monocromator; practically, also those lights with a diffraction order equal to a whole number. 

௠ߠ  = arcsin ቀ ௠ఒௗି ୱ୧୬ ఏ೔ቁ  (25) 

When light collides with the grating of a monocromator with an angle of θi parallel to the plane 

wave, the diffracted light can exhibit maximum intensity at angles θm defined in formula (25). If λ 

is the wavelength and d is grating spacing, m is the integer defining the maxima order of 

diffraction. Commonly, a spectrofluorimeter selects the first order of maxima diffraction as 

excitation beam, thanks to its highest intensity. While the chosen wavelength pass, the second 

and others diffraction orders are selected, contributing with their energies to the sample 

luminescence (Fig.27A). For this reason, using a long pass filter on the excitation beam permits to 

stop those contributions of the light source that do not correspond to the selected wavelength 

(Fig.27B). Considering that light intensity is lower for every diffraction order, we consider the 

second order of diffraction the real cause of the photoluminescence emission in the sample.  
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ܾ݁ܿ݊ܽݎ݋ݏܾܣ   = (ଵିோ)మଶோ   (21) 

 

A detailed band gap analysis needs to plot and fit absorption data, taking in consideration the 

direct or indirect nature of the bandgap of the semiconductor. Commonly, the absorbance of 

materials with an absorption coefficient greater than 104 cm-1 obey the Tauc relation (22). 

 

ߥℎߙ   ∝  (ℎߥ −  భ೙  (22)(݃ܧ

 

The symbol n take on values of 3, 2, 
ଶଷor 

ଵଶ corresponding respectively to indirect forbidden, indirect 

allowed, direct forbidden and direct allowed transitions. Is widely accepted that TiO2 anatase 

possesses indirect allowed transitions. The definition of the energy value of the band gap (eV) is 

defined by the first electron promoted from the valence band to the conduction band. This first 

event is graphically obtained calculating the intercept of the Tauc plot with the abscissa axis. To 

obtain a Tauc plot is necessary to plot the signal as(ℎߥ − Eg)ଵ/௡ versus the energy (eV).  

 

Quantum Yield (QY) determination: 

The Quantum Yields (QY) was measured using an Infinite M1000Pro, Tecan, excitation wavelength 

360nm, emission wavelength range 370-650nm, using Quinine Sulfate as reference. In this work, 

quantum yield results was calculated using quinine sulfate283 in 0,5M H2SO4 solution (QY 58%). 

Quantum Yield against Rhodammine 6G (QY 95%) is calculated as follow (23).  

 

  ܳ ோܻ௛ = ܳ ொܻ௦0,0551   (23) 

 

Absorbance at the excitation wavelength was optimally kept in between A = 0.02-0.05, in order to 

avoid inner filter effects and ensure linear response on the intensity. Quinine sulphate was used as 

reference because its absorbance maximum was close to the CDs absorbance maximum. In this 

way, possible errors caused by intensity variation in the lamp light spectra could be avoided. 

 

Fourier-transform infrared spectroscopy:   

Carbon dots functional groups were determined with a NICOLET NEXUS FTIR coupled with an 

AVATAR diffuse reflectance accessory. All the spectra were obtained integrating 24 interferograms 
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collected with interval from 600 to 4000cm-1, pass of 4cm-1 on KBr power, and sample mix 

without any further modifications. 

For the determination of the nitrogen content in NTiO2 samples, a spectrophotometer IR Bruker 

Tensor 27 was used. Spectra were collected with interval from 600 to 4000cm-1. Spectra of each 

sample was produced integrating 24 interferograms. 

 

 

Elemental analysis: 

For the elemental determination of CHNS in carbon dots, Thermo Fisher Scientific Flash EA 2000 

CHNS was used.  

For determination of P and B content in carbon dots, Perkin Elmer Optima 4300DV ICP-OES was 

used. 

 

Atomic force microscope: 

In order to determine dimensions of first synthesis carbon dots, AFM Nanoscope IIIa was used.  

 

Scanning electron microscopy: 

Scanning electron microscopy (SEM) images were collected with an in-lens detector 5 keV beam 

energies on a Sigma VP Field Emission SEM (Zeiss, Oberkochen Germany), 1,5 nm resolution. 

Samples were suspended in ethanol (10-50ug/ml) and briefly ultra-sonicated. Three µl of each 

suspension were deposited on a silicon wafer substrate mounted with carbon double tape on an 

aluminum stub, the dried at 70°C for 24h. 

Transmission electron microscopy: 

CDs TEM images were taken with a JEOL JEM 3010, operating at 300 kV, equipped with ultra-high 

resolution objective pole pieces (theoretical point resolution = 0.17 nm), a GATAN (Warrendale, 

PA, USA) Model 794 MultiScan CCD camera. TEM specimens were prepared by ultrasonically 

dispersing the powdered samples in milliQ water (approximately 10 mg/ mL) and depositing 5–15 

µL of the suspension on a holey carbon film grid. 

TiO2 and enhanced photocatalytic materials TEM images were obtained with an electron 

transmission microscope Jem-1400 (120kV). At this purpose, each sample was dispersed in 

isopropanol and treated in sonication bath for 30 min. The fine suspension was dropped on copper 
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grids with carbon layer and dried at room temperature for two hours. No staining processes are 

conducted on samples of this part of the work. 

 

Cytotoxicity studies: 

Cytotoxicity was measured on HeLa cells using an Infinite 200 PRO instrument at the CRO of 

Aviano. Cytotoxicity is evaluated by means of cells counting after incubation with the compound 

of interest. In our case, we tested CDs concentration ranging from 1,95µg/ml to 1000µg/ml 

repeating the experiments three times. 

In order to evaluate the less detectable cytotoxicity, 1000mg/ml of CDs suspension is chosen as 

discrimination concentration. Of course, contaminations with so high concentration are impossible 

in a living organism, but working at maximum concentration allowed to stress the effect of CDs in 

cells and to obtain clear considerations of CDs effect on living organisms. 

 

Electrophoresis studies: 

Electrophoresis can be used to separate carbon dots and to define some of their important 

properties. Actually, since migration speed of analyzed material is due to its charge and 

dimension, electrophoresis can informs CDs dimensional distribution and superficial charge. CDs 

suspension is placed in holes in the middle of the gel, and when potential is applied, they start to 

migrate. Migration is imposed with a speed in direct proportion to superficial charge and with 

inverse proportion to particle dimension. The direction of the nanoparticle migration is imposed 

by the charge of surface functionalization. Nanoparticles with negative surface functionalization 

migrate to positive electrode and vice versa. Moreover, for biological use of electrophoresis is 

common to dye the sample in the gel with dyes or luminescent materials. Depending on the used 

dye, UV or visible lamps can be used to check the sample position in the gel. Here, CDs 

luminescence can be used to detect their position in the gel without any dye process, making 

easier and faster this step.  

In addition, pH of the gel and of the running buffer can be changed, and possible variations in the 

sample can be correlated to CDs superficial charges change. Therefore, performing electrophoresis 

at different pH can give additional information concerning CD functionalization. 

Smear formation in the gel can derives by the loss of the CDs superficial charge effect. Once 

masked the effect of the charge, CDs dimension is the only parameter able to condition migration 

speed. In this case, if the sample is composed by wide size distributed nanoparticles, migration will 
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produce a smear. Bands formation are defined by CDs with similar size and superficial charge that 

impose similar migration speed. 

To perform electrophoresis, a BIO-RAD Sub-Cell GT Agarose gel Electrophoresis system was used, 

while a Perking Elmer Geliance 600 imaging system was used to collect gel images. All the pictures 

were collected lighting up the gel with UV lamp. 

All electrophoresis were performed on 1%W Agarose gel. Since the application of high power could 

warm up and dissolve agarose gel, the electrophoretic system applied was 10W for all the 

samples. The power was fixed instead of the voltage because different buffers used had different 

conductibility. 

For each sample, a suspension of 10mg/ml was produced, and mixed 1:1 vol. with loading buffer. 

The loading buffer was made with 1:1 vol. with running buffer and glycerol. In this way, the sample 

was too thick to do not diffuse in the running buffer. 

Running buffer stock solution used for each pH value: 

pH4: Na acetate 10x 

80ml milliQ water + 9,712g Na acetate, adjusted to pH4 with HCl 

pH6: BisTris 10x 

80ml milliQ water + 16,740g bistris, adjusted to pH6 with NaOH or HCl 

pH8: TBE 10x 

250ml milliQ water + 45g tris base, 13,75g Boric acid and 10ml EDTA 0,5M pH8 

pH10: CAPS 10X (caps= 3-cyclohexylamino-1propannesulfonic acid) 

80ml milliQ water + 17,705g CAPS, adjusted to pH6 with NaOH 

Before to use, all the running buffer stock solution was diluted at 1x. 

 

X-ray diffraction: 

The microstructure of the samples was studied by means of X-ray powder diffraction (XRPD).  

A Bruker D8I-90 with Bragg–Brentano geometry, connected to a highly stabilized generator (40 

kV), was used for the Wide-Angle X-Ray Scattering (WAXS) measurements of the sintered 

specimens. 

The definition of the crystallinity of the samples synthesized for the optimization of the 

hydrothermal treatment and the definition of the parameters for the sample WS_2 was obtained 

with an X-Pert Powder diffractometer of PAN-alytical. The measurements was conducted using Kα 
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Cu radiation 1.5419Å. XRD study on WS_2 samples was performed in the X-Ray diffraction 

laboratories of the Universitad Autonoma de Barcelona during my internship in the research group 

of the Prof. Xavier Sala Roman. 

All measurement was conducted from 10° to 100° integrating 4,5 sec each acquisition point. On 

XRD patterns, Rietveld analysis was performed  order to calculate crystalline phase content and 

crystallite diameter. On XRD patterns, Rietveld analysis was performed in order to calculate 

crystalline phase content and crystallite diameter. 

Photocatalytic activity studies: 

To define the photocatalytic activity of samples, the degradation ability of a solution of methyl 

orange was studied. The apparatus was composed by a solar lamp of 180W posed in front of a 

boron silicate beaker covered with a watch-glass (Fig.29). The beaker containing the methyl 

orange solution was maintained under stirring and positioned at a well defined distance to the 

lamp in order to obtain a radiation equal to 1sun.   

 

Figure 29: draw of the photocatalytic apparatus used in this work. The length L was defined with a diode, in 
order to obtain an incident radiation of 1 sun. 
 

First, a stock solution of 5.87 10-3M of methyl orange was produced. Secondly, 0,25ml of stock 

solution was added in 80ml of milliQ water and positioned under stirring in the photocatalytic 

apparatus. Third, after the sampling of 3ml of solution to define the zero, 50,0mg of photocatalytic 

material was added under stirring to the solution, and maintained in the dark for 40min. Dark time 

permitted to produce an adsorption-desorption equilibrium between the powder and the solution. 

After 40 min, the system was exposed to the lamp radiation and after 20min, 40min, 60min, 
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90min, 120min, 180min and 220min 3ml of solution was sampled. Solution sampled was filtered 

with syringe 0,45um filter and collected in closed vial.  

Once the last sampling was taken, UV-Vs were collected to define the intensity at 464nm, 

corresponding to the maximum wavelength adsorption of methyl orange. After the plot of the 

intensity at 464nm on a calibration line previously defined, using Lambert-Beer law (24) the 

concentration of methyl orange for each sampling was calculated.  

ܾ݁ܿ݊ܽݎ݋ݏܾܣ  = ܾܽܿ   (24) 

Where: 

a: absorptivity of the substance (cm2/mmol) b:optical path (cm) c:concentration (mg/ml) 

To compare the photocatalytic activity of several materials, the relative concentration C/C0was 

plotted versus time (min).  
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4- Results and discussion 
 

 

 

The aim of this part of the work was to clarify  the CDs behavior, from their synthesis to their 

characterization, in order to use them for advanced oxidation processes and nano-medicine. These 

themes were to the center of important studies in the world of the research, and CDs could give 

important improvements in both of the two fields. 

In order to study possible CDs candidates for nano-medicine and advanced oxidation processes 

applications, several CDs groups were produced by hydrothermal synthesis. Despite other 

processes, hydrothermal synthesis could be easily controlled, and it guaranteed good 

reproducibility of the produced materials. For the synthesis, citric acid was generally chosen as 

carbon source in literature, thus we used this precursor. Conversely, we chosen to test Urea, 

Ethylendiamine, Diethylentriamine and Triethylenetetramine as nitrogen sources. Finally, nitrogen 

was chosen as main doping heteroatom to improve photoluminescence due to surface 

passivation. Surface passivation induced a PL independence from the excitation wavelength, a 

higher efficiency, and a  more efficient charge delocalization processes. The addition of Boron, 

Phosphor and Sulfur as co-doping elements was performed to test the presence of intra-band 

layer differences in CDs bandgap and in order to study the respective effect when loaded in NTiO2 

in high performance photocatalytic materials. Several groups of doped and co-doped CDs were 

synthesized via hydrothermal synthesis, using four nitrogen sources and three co-doping sources . 

These samples are described in Tab.3 in the chapter 3.  

As preliminary synthesis and in order to prepare some reference systems, a group of co-doped 

samples were synthesized using recipes found in literature29,85,280,284. Optical and morphological 

characterization were performed and the synthesis parameters were adjusted to improve the 

purification procedure. Indeed, purification with dialysis membranes didn't produce good 

performances. So, synthesis parameters  were changed to produce CDs more easy to purify. 

However, because of the persistence of purification problems, a new procedure was developed 

and optimized. Therefore, all the synthesized samples were purified and characterized with 

additional studies, as cytotoxicity and electrophoresis tests at different pH. 
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4.1.1- Up conversion studies 
In this study, samples selected from articles presenting CDs with UPCL properties were selected, 

synthesized, and optically characterized. At this purpose, CD_A, CD_B, CD_C, CD_D and CD_E were 

synthesized with bottom-up approach (as described in the paragraph 3.2.1) and the respective 

UPCL was studied. 

We found that up-conversion phenomena can be removed using an appropriate long pass filter 

able to block the excitation light with shorter wavelengths. In Fig.31A,CD_A photoluminescence 

spectra, obtained at excitation wavelength ranging from 750nm to 950nm without long-pass filter 

was described as a function of the emission wavelength. In the inset, we showed the same 

measurement conducted with the long-pass filter. In Fig.31B, we showed the CD_A luminescence 

spectra, excited at wavelengths corresponding to the second harmonics. 
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Figure 31: A) Photoluminescence spectra of the CD_A sample, produced by the second harmonic grating 
leaks.  In the inset, the same process is excluded by the use of a long pass filter. B) CD_A luminescence 
spectra, excited at wavelengths corresponding at the second harmonic. 

Photoluminescence curves in Fig.31A showed typical CDs emission shape: a broad curve with a tail 

at greater λ. PL spectra in Fig.31A showed contribution of light of the second order of diffraction. 

They also were characterized by the presence of small peaks at λ equal to 
ଵଶλex. These small peaks 

were visible at 400nm, 425nm, 450nm and 475nm for spectra obtained at λex 800nm, 850nm, 

900nm and 950nm, respectively. They represented the leaking light from the excitation source.  In 

the inset of Fig.31A, no photoluminescence was showed due to the use of long-pass filter. In 

Fig.31B photoluminescence emission obtained at  
ଵଶλex was showed.  

Our results confirmed that the fluorescence up-conversion originated by the leakage from the 

second order diffraction of the incident light on the monochromator. 

In comparison to the emission obtained before, these PL showed the same λmax, indicating that the 

PL arised from the same λex. To avoid any contribution in excitation, no filters were used. For this 

reason, at the beginning of the PL curves, it was possible to note the peak corresponding to the 

excitation light used to promote the emission. CD_A showed the typical emission dependence 

from the λex of the CDs without passivated surface. This phenomenon is called red edge excitation 

shift and arises from the intermolecular interaction of the chromophores that constitute the CDs. 

The detection of light in the region where CDs are commonly excited could justify the emission 

(λ<450nm), because that light could be used to excite the material and to produce PL emission. 
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The real origin of the photoluminescence was unequivocally defined by the application of the long 

pass filter and not by the production of up-converted emission. 

For the remaining samples only PL study conducted at λex from 750nm and 950nm were reported, 

since the other results were exactly the same of the previous ones. The comparison between PL 

studies conducted with and without long pass filter proved again the real origin of the 

photoluminescence and excluded the production of up-converted emission. All the other PL 

studies, conducted on λex<450nm are reported in the appendix A. 
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Figure 32: PL studies of the spectra produced by the second harmonic grating leaks. In the inset, the same 
process is excluded by using a long pass filter. A) CD_B; B)CD_C; C)CD_D and D) CD_E samples. 

In Fig.32A, CD_B were shown photoluminescence spectra, obtained at excitation wavelengths 

ranging from 750nm to 950nm, as a function of the emission wavelength, without long-pass filter. 

In the Fig.32A inset, the PL obtained with long pass filter application were showed. In this case, the 

second order diffraction peaks were more evident due to the low PL, thus the emission was due to 

light leaking contribution. 
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PL in Fig.32B referred to CD_C excited at the same λex value. In this case, the second order 

diffraction peaks were less evident due to high PL. However, also in this case the emission was due 

to light leaking contribution. PL in Fig.32C referred to CD_D excited with λex ranging from 750 nm 

to 950nm, but the second order diffraction peaks were not detected due to very low PL. PL in 

Fig.32D referred to CD_D excited with the usual λex range. Here, the second order diffraction peaks 

were evident due to low PL, showing again that the emission was due to light leaking contribution. 

Despite the different synthesis, all the studied samples showed similar characteristics. In fact, all 

the samples showed an emission dependence from λex. However, their surface functionalization 

was too inhomogeneous to produce this phenomena, which was unusual for highly passivated 

carbon dots. All the samples were characterized by the presence of peaks with λ=
ଵଶλex, which 

corresponded to the light leaks detected by the spectrofluorimeter. In all the samples, the 

contribution of λex<450nm light was essential to produce photoluminescence and the second 

order diffraction leak limitation by longpass filter, completely removed the UPCL effect. 

In the previous experiments a Xenon lamp was used. However, high energy light sources are 

normally used to study UPCL. Therefore, further experiments were performed using high energy 

lasers to excite our samples. In Fig.33A and B we showed PL spectra recorded from 300nm to 

700nm for all the studied samples, excited with 800 nm and 980 nm, respectively. 
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Figure 33: A)PL spectra of the samples CD_A, CD_B, CD_C, CD_D, CD_E excited with monochromatic light 
source at 800nm. B) PL spectra of the samples CD_A, CD_B, CD_C, CD_D and CD_E excited with 
monochromatic light source at 980nm.  

Both Fig.33A and B didn't show UPCL, despite the high energy supplied to the system. Indeed, the 

instrument recorded only background signal.  

In this study, we proved that five different synthesized CDs didn't present any up-conversion 

property. The PL observed during the experiments shall not be confused with UPCL, but 

interpreted as down conversion emission derived from excitation by second order diffracted light. 

In fact, by using a long pass filter or a monochromatic light source was possible to avoid the 

phenomena.   
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4.1.2- Synthesis study of co-doped CDs 
In order to produce appropriate materials to use in catalysis and in nanomedicine, the attention is 

generally focused on the synthesis and characterization of nitrogen doped carbon dots (N_CDs). 

Usually, N_CDs have strong passivated surfaces due to the use of high amount of amine for the 

synthesis. Highly passivated surfaces reduce the surface traps and contrast recombination events 

that decrease the quantum efficiency. Surface passivation induces PL independence from the λex, 

and higher quantum yield (QY). But higher efficiency implies more efficient charge delocalization 

processes, which are useful in enhanced photocatalytic systems. 

In order to further investigate the CDs potential properties, we decided to dope them with 

different heteroatoms. In fact, co-doping CDs with phosphor, boron, and sulfur could add intra 

bandgap layers in order to improve the CDs energy transfer demand in titania@CDs systems. 

Moreover, the heteroatom doping could have significant effects on cytotoxicity, which was 

fundamental for their possible use in nanomedicine. 

After the reagents definition, a synthesis recipe was selected from literature. All the synthesized 

samples were purified and optically characterized. Cytotoxicity was evaluated to define the 

relationships between precursors and CDs toxicity. Electrophoresis at different pH was evaluated 

to define the CDs surface charge.    

Concerning CDs size and shape, several problems emerged from TEM analysis. The weak contrast 

due the carbon coating of the grid and the low CDs resistance under the beam made these 

materials difficult to analyze. The first samples were characterized by AFM, and only after several 

tryouts and experiment we found a way to analyze CDs by TEM.  

 

4.1.2.1-Preliminary CDs study: 
The experiments below were performed on the samples synthesized as described in materials and 

methods (pag. 56). 

 
Optical studies: 
In order to study the co-doping effect on the produced CDs optical properties, UV-vis absorbance 

studies were performed. Right before the tests, all the samples were prepared as a clear 50ug/ml 

suspension to avoid re-absorption processes and concentration quenching phenomena. 
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Figure 34: Absorbance spectra of synthesized nitrogen doped and co-doped CDs. The peaks between 275 
and 450 nm are reported in the inset. 
 

In all the spectra showed in Fig. 34 two contributes were evident. The shoulder from 229nm to 

263nm was related to aromatic π-π* and σ-π* transitions. Usually, this absorption band was 

produced by saturated compounds containing oxygen, nitrogen or sulfur. Since these samples 

were nitrogen rich, the main responsible of this absorbance contribution was the C-N bonding of 

the amidic group. Indeed, the reaction of –COOH groups of the citric acid with -NH2 groups of the 

diethylentriamine could produce amidic groups.  

Another important contribution in the spectra was the peak between 300nm and 450nm, 

centered at 350nm. Typically, absorption contributes at wavelength greater than 285nm were 

related to n-π* transitions. As light variation within the NBCDs was the only difference observed 

between these spectra. This blue shift could be related to the presence of functional groups 

reducing electronic delocalization.  

 

Photoluminescence characterizations were performed by PL and PLE measurements. The last ones 

provided information in the λex range, while the PL measurements provided information in the 

emission range. The results are depicted in Fig. 35. 
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Figure 35:A)NCDs B) NPCDs C) NBCDs and D) NSCDs PLE recorded at 540nm emission and PL recorded at 
360nm, 380 nm and 400nm, respectively.   

Fig.35A showed the photoluminescence study of the NCDs samples. The PLE excitation, and the PL 

emission λmax were recorded at wavelengths of 245nm and 447 nm, respectively. From the PL and 

PLE λmax comparison emerged a Stokes shift of 202nm. Fig.35B showed the photoluminescence 

study of the NPCDs samples. For NPCDs, PLE λmax at 355nm and PL emission λmax at 447nm were 

recorded, respectively. In this case, the PL and PLE λmax comparison showed a Stokes shift of 92nm. 

In Fig.35C and 35D the photoluminescence study showed the samples NBCDs an d NSCDs. For both 

of them the PL and PLE λmax comparison showed a shift of 92nm. Recording the emission at 

different excitation wavelengths it was possible to confirm the independence of the emission from 

the λex. The PL spectra of the NSCDs sample showed an asymmetric peak, with a tail towards 

greater wavelengths. The NCDs showed a Stoke shift of 202nm, while the other co-doped CDs 

showed the same stoke shift of 92nm. This indicated less energy loss in the absorption-emission 

process, and a more efficient material. Despite these differences, the shapes of PL and PLE were 

similar, indicating that the synthesis of the four CDs produced systems with similar optical 
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properties. However, all the samples showed photoluminescence independence from the λex. This 

phenomenon could arise from surface passivation due to the high content of amine during CDs 

synthesis. In fact, amine could passivize the surface, substituting surfaces traps with different 

energies and homogeneous functionalization with one energy level. 

After the optical properties, the different doped CDs were  characterized from the morphological 

and dimensional point of view. 

Morphological study 

The TEM images production of nitrogen doped and co-doped CDs was complicated due to the low 

resistance of these objects, which were destroyed under the TEM beam. In addition, the low 

contrast between carbon coated grid and CDs made their individuation difficult. To bypass these 

problems, atomic force microscopy (AFM) scans were performed. In order to work on flat 

substrates, mica layer was employed as support for the CDs. From the AFM images of the samples, 

it was possible to note particles with a wide size distribution in the range of few nanometers. 

 

A 

 

B 
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Figure 36: A) and B) AFM images of NCDs. C) and D): AFM images of NBCDs. E) and F): AFM images of 
NPCDs. G) and H) AFM images of NSCDs. A) and )B show a scale of 2µm; C) shows a scale of 1 µm; D) shows 
a scale of 200nm, while E) F) G) and H) show a scale of 100nm. 
 

From AFM images of the sample NCDs showed in Fig.36 A and B, is possible to note objects with 

wide size distribution. Probably, these objects were made by aggregated carbon nanoparticles. 

From profile studies on smaller objects emerge a population of nanoparticles of 4nm. From the 

studies on NBCDs showed in Fig.36 C and D, was clear that the sample presented smaller particles 

than in NCDs sample. Moreover, the sample NBCDs was more homogeneous than the sample 

NCDs, with a nanoparticles size of 0.6nm. NPCDs AFM images in Fig.36E and F showed similar 

homogeneity found in NBCDs. Profilometry measurements on NPCDs defined nanoparticles 

dimension of 0.8nm. Finally, NSCDs images in Fig.36G and H showed a less homogeneous sample, 

with size of the smaller objects of 1nm. 

For a better comparison, all the average  sizes are summarized in the Tab.8. 
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Tab.8: Size dimension of nitrogen doped and co-doped CDs, calculated by profilometry on AFM images  

Sample NCDs NBCDs NPCDs NSCDs 

Size (nm) 4nm 0.6nm 0.8nm 1nm 

 

Small dimension defined through AFM measurements could elucidate how dialysis purification 

was not an appropriate process for the raw samples. In fact, small CDs dimension could filtrate 

through membrane and get lost in the dialysis solution. 

 
In this chapter, NCDs, NBCDs, NPCDs and NSCDs were synthesized and characterized from optical 

and morphological point of view. Problems in purification steps obliged to use an alternative 

purification method. From absorbance analysis, all the samples presented π-π* and σ-π* 

transitions. All the samples showed n-π* transitions, but probably, for the NBCDs sample, a small 

blue shift could be ascribed to some functional groups, able to reduce electronic delocalization in 

NBCDs structure. Checking photoluminescence, NCDs showed Stoke shift of 202nm, while the 

other co-doped CDs showed the same Stoke shift of 92nm. Despite these differences, shapes of PL 

and PLE were similar in all the samples, indicating that the four CDs synthesis produce materials 

with similar optical properties. Furthermore, all the samples showed photoluminescence 

independence from the λex. This phenomenon could arise from surface passivation due the high 

content of amine during CDs synthesis. Amine could passivize the surface, and substitute surface 

functionalization with different energies, with a more homogeneous decoration. AFM and 

profilometry studies showed co-doped CDs sized between 0.8nm and 0.6nm; while doped NCDs 

showed nanoparticles five times greater than nanoparticles of the other samples. Greater 

nanoparticle dimensions and wide size distribution could be considered as an indication of sample 

partial aggregation. The very small size of the four sample permitted to understand why dialysis 

membrane was and inadequate purification method. In fact, CDs small dimension allowed to pass 

through membrane and to be lost in the washing solution. 

To produce CDs with greater dimensions, synthesis parameters were changed increasing 

temperature, reaction time and introducing water in the reaction system. These samples were 

studied in the following paragraph. 
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4.1.3- Characterization of co-doped CDs with different amines 
 

In this paragraph, CDs with nitrogen source at increasing molecular weight (MW) were studied. 

Citric acid was used as carbon source, while boric, phosphoric and mercaptosuccinic acids were 

used as B,P and S co-doping sources. The studied samples were synthesized as reported in Tab.3, 

paragraph 3.2.1. 

Optical studies were performed to define relations with nitrogen source reagents and CDs 

properties. UV-Vis absorbance was studied to verify its possible variations related to different 

nitrogen source and different co-doping. PL was studied to verify possible differences between 

different CDs precursors. In particular, this analysis performed to define the emission dependence 

from the λex.. Finally, quantum yield (QY) of all synthesized samples was investigated. 

Moreover, cytotoxicity study was performed on all synthesized samples. To complete the 

definition of CDs properties, electrophoresis at different pH was performed. This technique is 

commonly used in research biology field, but it produced substantial results to study the CDs 

surface charge and dimensional distribution. 

To define synthesis reproducibility, the samples matrix is re-synthesized and QY, Cytotoxicity and 

electrophoresis at different pH were still compared. 

For our purposes, the most important CDs properties were luminescence efficiency and safety. 

Luminescence efficiency defined the absence of recombination traps that can reduce the CDs 

ability to delocalize TiO2 charges. Cytotoxicity allowed to select safe CDs, and to reduce the danger 

to work with poisonous nanomaterials.  Therefore, to select a defined group of samples to apply in 

enhanced photocatalytic systems, QY and cytotoxicity were used to select the best group of 

samples. 

As last characterization, elemental analysis was performed on selected samples, in order to verify 

the right elemental composition and doping. 

 

4.1.3.1-Optical Investigation 
Optical studies were performed on NCDs, synthesized with different nitrogen source and on 

different UREA, ETIDI, DETA and TRITETRA based groups of samples. UV-Vis absorbance was 

studied to verify possible absorbance variation in relationship with different nitrogen source and 

different co-doping. PL was studied to verify possible differences due to CDs precursors and to 
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define the emission dependence from the λex. Finally, QY of all synthesized samples was 

performed. 

As reported in Fig.37, UV-Vis absorbance of nitrogen doped CDs was compared to define 

differences and relations with nitrogen source reagents at increasing molecular weight. 
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Figure 37: Absorbance of synthesized NCDs, produced with several nitrogen source. 

ETIDI_NCDs showed a shoulder at 240nm due to π-π* and σ-π* transition, and an absorption peak 

of 338nm derived from n-π* transition. DETA_NCDs showed greater absorption at 240nm than 

ETIDI_NCDs, and an additional contribute at 352nm. If the absorption at 240nm could be related 

to π-π* and σ-π* transition, contribute at 352nm was referred to n-π*transition. TRITETRA_NCDs 

showed the same contributions at 240nm than sample DETA_NCDs, and an absorption at 358nm 

related to n-π*transition. Finally, UREA_NCDs showed a strong absorption near 200nm, that could 

hide a small contribution at 240nm. The same strong absorption partially covered a peak at 305nm 

representing n-π* transitions. 

From the comparison of the nitrogen doped CDs synthesized with different nitrogen sources, was 

possible to correlate some aspect with the increase of molecular weight. Increasing molecular 

weight from ETIDI to TRITETRA, absorbance was increased at 240nm. Another change noted was a 

redshift of the peak correlated to n-π* transition.  

Since all contributes at λ>280n could be referred to n-π* transitions, all the samples could be 

involved in this comparison. Absorbance redshift could derive by a cyclic compounds iper-
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conjugation that defined greater electronic delocalization, with consequences on the energy 

required for the n-π* transitions. Here, redshift of the absorbance was noticeable from 

UREA_NCDs to TRITETRA_NCDs, with a total shift of 53nm. Therefore, increasing molecular weight 

precursor, increased the electronic delocalization in NCDs. 

 

In Fig.38, absorbance studies on UREA, ETIDI, DETA and TRITETRA based samples are reported. 
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Figure 38: Absorbance comparison of synthesized nitrogen doped B, P and S co-doped CDs produced with A) 
UREA, B) ETIDI, C) DETA and E) TRITETRA. 
 

From the comparison reported in Fig.38A, UREA based CDs showed one peculiarity. While 

UREA_NCDs showed a peak at 305nm, all the co-doped samples showed the same absorption 

shape: a plateau from 275 nm to 336 nm, with an absorption tail until 400 nm. From the 

comparison of the different ETIDI based CDs presented in Fig.38B, no difference were detected. All 

ETIDI samples showed an absorption shoulder at 245 nm and a peak at 337 nm. In Fig.38C, all 
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DETA based samples showed a first peak at 245 nm, while a second peak emerged at 351 nm. In 

Fig.38D, all TRITETRA samples showed a more intense peak at 245 nm and a second absorption at 

358 nm. Increasing MW of the nitrogen source bring an absorbance contribution at 245nm 

development, and a redshift of the absorbance from 337 nm to 358 nm. The absorption contribute 

at 240 nm could be related to the increase of aromatic π-π* and σ-π* transition. Absorbance 

redshift could be due to cyclic compounds iper-conjugation, that defines greater electronic 

delocalization, with consequences on the energy required for the n-π* transitions. 

The co-doping heteroatoms didn't affect absorbance in the UV-Vis region. All the co-doped 

samples of ETIDI, DETA and TRITETRA based CDs showed two peaks at 240nm and 338nm. The first 

peak was determined by aromatic π-π* and σ-π* transition, while the second peak was 

determined by n-π* transition. 
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Figure 39: Photoluminescence study of synthesized nitrogen doped and B, P and S co-doped CDs produced 
with A) UREA, B) ETIDI, C) DETA and E) TRITETRA. 
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In Fig.39A photoluminescence studies on UREA based CDs are showed. Studying PLE at fixed 

emission of 440nm, was evident that all the samples presented one excitation peak centered at 

365nm. PL studies showed an emission beginning around 360nm and fading close to 575-600nm. 

The emission range was similar for all the four samples, but the PL λmax was different for NCDs and 

co-doped CDs. If NCDs emitted at 420nm, NBCDs, NPCDs and NSCDs emitted at 430nm. In Fig.39B 

studies on ETIDI based samples are showed. Studying PLE at 440nm of ETIDI samples, was evident 

that all the samples possessed two excitation peaks at 315 and 360nm. PL measurements obtained 

with both the two λex begun around 360nm and faded close to 600nm. In Fig.39C studies on DETA 

based samples are showed. Form PLE measurements at 440nm, all the samples showed two peaks 

at 315 and 375nm. In comparison with PLE of ETIDI samples, the intensity of the two peaks were 

inverted. PL studies, showed the emission beginning around 380nm and fading close to 600nm. In 

Fig.39D studies on TRITETRA based samples are showed. Studying PLE at emission at 440nm, all 

the samples showed two peaks at 326 and 360nm. 

With exclusion of UREA-based samples, no PL differences were noted. All the PL curves expressed 

maximum at 440nm. Moreover, no differences were noted in PL curves shape, even setting the 

excitation at the two different PLE maximum. From the range of λex evaluated in this experiment, 

was noticeable a different behavior in emission dependence from λex. In consequence a deeper 

optical study, focused on the determination of the emission dependence from the λex was 

performed. 

 

In order to determine the emission dependence from the λex, PL measurements were recorded 

with excitation shifts of 10nm in a range of 60 nm. Finally, emission variations were described. In 

this experiment only NCDs synthesized with different nitrogen source were studied. 
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Figure 40: A) PLE and PL studies at different λex on the NCDs samples synthesized with UREA B) PLE and PL 
studies at different λexon the NCDs samples synthesized with ETIDI. C) PLE and PL studies at different λexon 
the NCDs samples synthesized with DETA. D) PLE and PL studies at different λexon the NCDs samples 
synthesized with TRITETRA. 

In Fig.40A, PLE of UREA_NCDs is reported from 300nm to 370nm. A series of PL were performed 

from 310nm to 370nm. UREA_NCDs emission shift started at 404nm, at λex 310nm, and continued 

until 445nm at λex 370nm. UREA_NCDs expressed a redshift of 40nm. Fig.40B shows, PLE of 

ETIDI_NCDs  from 300nm to 370nm. A series of PL were performed from 330nm to 380nm. 

Despite the different λex, no photoluminescence variation were observed. In Fig.40C, PLE of 

DETA_NCDs is shown from 300nm to 420nm. A series of PL were performed from 330nm to 

380nm. Also in this case, despite the different λex, no photoluminescence variations were 

observed. Fig.40D, shows the PLE of TRITETRA_NCDS from 300nm to 420nm. A series of PL were 

performed from 330nm to 380nm. Despite the different λex, no photoluminescence variation were 

observed. 
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From the study of the emission independence from the λex was possible to conclude that 

UREA_NCDs was the only sample that presented this property. Indeed, all the other samples 

showed PL independence from λex. Emission dependence from the excitation wavelength was a 

typical characteristic of CDs with not passivated surface. Therefore, UREA_NCDs didn't possess 

concentration of surface nitrogen-based functionalization to avoid emission dependence from λex. 

Among several measurements for optical properties determination, quantum yield (QY) was 

undoubtedly one of the most important determination. Since QY was defined with the ratio 

between absorbed and emitted photons, errors could arise if the excitation lamp can emit an 

inhomogeneous light in different portion of the spectrum. Therefore, the use of reference 

materials with absorbance close to the sample could avoid error produced by these conditions. 

Since Quinine sulphate (QS) absorbed from 320nm to 348nm and CDs samples absorbed from 

300nm to 400nm, it represented the best reference material. In a second time, from relative QY 

calculated on QS (QY 55%), absolute QY was calculated against Rhodammine 6G in ethanol (QY 

95%), considered the absolute reference material. In addition, in order to determine QY 

repeatability, all CDs considered in this study were re-synthesized and their QY was studied. In the 

plot showed in Fig.41, calculated absolute QY for all the samples and their repeated synthesis are 

showed. 
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Figure 41: Quantum yield comparison of all the samples produced with different nitrogen source and co-
dopant source. Here, in order to check reproducibility, results of two-repeated synthesis are showed. 
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For easier consideration, calculated QY against QS and Rh6G is showed in the Tab.9.  

Table 9: QY values calculated against quinine sulphate solution in 0,5M H2SO4 and calculated QY against 
Rh6G solution in ethanol. Presented values are the mean calculated on the two-repeated synthesis.  

Sample QY QS QY Rh6G Sample QY QS QY Rh6G 

Urea NCDs 12.6±6.9 7±4.2 DETA NCDs 31.2±2.1 17.2±1.3 

Urea NBCDs 0.5±4.9 0.3±3 DETA NBCDs 27.9±2.8 15.4±1.7 

Urea NPCDs 8.5±0.8 4.7±0.5 DETA NPCDs 29±7.6 16±4.7 

Urea NSCDs 9.4±7.2 5.2±4.4 DETA NSCDs 30.2±11.5 16.7±7 

ETIDI NCDs 13.9±12.2 7.7±7.4 TRITETRA NCDs 8.5±5.3 4.7±2.9 

ETIDI NBCDs 12.5±8.7 6.9±5.3 TRITETRA NBCDs 14.3±4.4 7.9±2.4 

ETIDI NCPDs 10.5±12.3 5.8±1.4 TRITETRA NPCDs 7.4±10.7 4.1±5.9 

ETIDI NSCDs 9.1±6.9 5±4.2 TRITETRA NSCDs 6.9±3.6 3.8±2 

 

From the comparison of the plotted QY values, no appreciable variations were noted for samples 

synthesized with different heteroatoms. Similar considerations could be done for samples 

synthesized with different nitrogen source. With exclusion of the DETA-based group, all the other 

samples showed similar QY. This aspect excluded a direct relationship between amine molecular 

weight and quantum yield. Finally, from the comparison of the plotted quantum yield values, 

emerged that the QYs of samples from second synthesis were greater than those from the first 

synthesis, so the parameters relative to the syntheses and the reproducibility of the samples were 

not completely under control. It was also noticeable that DETA based group showed the highest 

QY. 

To conclude the optical characterization of the four groups of samples, was possible to determine 

more differences between UREA, ETIDI, DETA and TRITETRA than between different co-doped CDs. 

Considering absorbance was noticeable that some differences were observed for samples of 

different groups, while different co-doping didn't produce any change. From the comparison of 

different groups absorbance, redshift absorption of the peak at λ>300nm was determined, with a 

shift of 53nm from UREA based samples to TRITETRA based samples. The shift could be due to the 

cyclic compounds iper-conjugation that defined greater electronic delocalization, with 
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consequences on the energy required for the n-π* transitions. Concerning photoluminescence, the 

most important difference was the UREA_NCDs excitation dependence from the λex, probably 

derived from a low surface passivation. Finally, from the comparison of the QY, the most efficient 

material were the DETA based group of samples, with absolute QY close to 20%. 

4.1.3.2- Elemental analysis 
In this paragraph we report the elemental analysis of some samples in order to correlate nitrogen 

and codoping CDs content  with quantum yield. 

To define elemental composition of the synthesized CDs, elemental analysis was performed. At 

this purpose, two groups of sample were selected. To define the amount of nitrogen content 

depending to the amine molecular weight, nitrogen-doped samples synthesized with different 

nitrogen source were studied. Moreover, the second selected group was composed by DETA 

based samples, because they were selected to be applied in enhanced oxidation photocatalytic 

materials. Analyzed samples are underlined in the Tab.10. 

Table 10: Samples characterized with elemental analysis. 

Urea NCDs ETIDI NCDs DETA NCDs TRTETRA NCDs 
Urea NBCDs ETIDI NBCDs DETA NBCDs TRTETRA NBCDs 
Urea NPCDs ETIDI NPCDs DETA NPCDs TRTETRA NPCDs 
Urea NSCDs ETIDI NSCDs DETA NSCDs TRTETRA NSCDs 

 

Fig.42 shows the %w elemental composition of NCDs samples prepared with ETIDI, DETA, TRITETRA 

and UREA groups . From the figure it was possible to compare CDs composition synthesized with 

different nitrogen sources. 
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Figure 42: histogram shows elemental composition %w of the nitrogen doped samples of the ETIDI, DETA, 
TRITETRA and UREA groups. 

From the elemental analysis study, was noticeable that samples with similar elemental 

composition were produced, and particular homogeneity was obtained for the nitrogen and 

carbon %w. Despite these samples were synthesized with equal moles of molecules with different 

MW, carbon percentages were fixed between 51%w and 49%w, while the nitrogen percentages 

changed from 11.7% w and 15.7% w. Similar homogeneities were obtained for hydrogen and 

oxygen content, where percentages varied from 5.5%w and 6.3%w for hydrogen and from 26.6%w 

and 33.3%w for oxygen content. Relating nitrogen elemental percentages and QY, was possible to 

assume that, for N_CDs, nitrogen content and quantum efficiency were not correlated. In fact, if 

DETA_NCDs showed the best QY of the nitrogen doped CDs category, the elemental analysis 

showed no differences composition in comparison with the other samples. 

 

In the Tab.11 is possible to compare theoretic (T) and determined (D)%w of the different N_CDs. 

Theoretic percentage was calculated considering the moles of C, H, N and O of each reagent used 

in sample synthesis. From the comparison emerged for all the analyzed samples a general loss of 

oxygen. Oxygen loss, comprised between 10,8%w and 17,6%w,was probably due to the 

condensation of citric acid with the nitrogen source. Moreover, determined hydrogen content was 

smaller than the theoretical percentage for all the samples synthesized with amines. Also 

hydrogen loss could be due to the condensation process occurred during CDs synthesis. 
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Table 11: presentation of the elemental theoretical and the determinate composition of N_CDs synthesized 
with different nitrogen source. 

Sample C%w H%w N%w O%w 
T D T D T D T D 

UREA_NCDs 37.2 49.9±0.03 4,4 5.8±0.04 11.0 11.7±0.03 47.4 32.6±0.02 
ETIDI_NCDs 37.9 51±0.04 5,6 5.5±0.02 7.3 11.9±0.04 49.2 31.6±0.04 
DETA_NCDs 39.7 49±0.04 6,3 5.1±0.03 9.9 12.6±0.04 44.1 33.3±0.04 
TRTETRA_NCDS 41.2 51.4±0.02 6,8 6.3±0.03 11.9 15.7±0.02 40.1 26.6±0.03 

 

In Fig.43 elemental composition in %w of DETA based samples are showed. 
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Figure 43: histogram showing elemental composition percentages in weight of the nitrogen doped and B,P,S 
co-doped DETA samples. 

Here, no boron and phosphor were determined in elemental analysis of NBCDs and NPCDs, while 

1,3 %w of sulphur was detected in NSCDs. Also in this case strong homogeneity in carbon and 

nitrogen percentages was showed in all the samples. In addition, elemental percentages could be 

compared with CHNO values of the previous samples. Strong compositional homogeneity was still 

observed. N%w in DETA samples was close to the N%w found in samples made with other nitrogen 

source. Therefore was possible to assume that the higher QY of DETA samples cannot be ascribed 

to the nitrogen content. 

In the Tab.12 is possible to compare the theoretical and the determined percentages of the DETA 

based CDs. From the comparison of the %w of the theoretical calculation and the analytically 

determination, emerged an oxygen and hydrogen loss. Clearly, O and H loss was due to the 
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condensation processes during the CDs production. Moreover, emerged that no B and P doping 

took place. 

Table12: presentation of the elemental theoretical and the determinate composition of DETA based carbon 
dots with different doping. 

Sample 
DETA 

C%w H%w N%w O%w HETEROATOM% Δ% 
D-T T D T D T D T D T D 

NCDs 39.7 49±0.03 6.3 5.1±0.03 9.9 12.6±0.03 44.1 33.3±0.02 - - - 
NBCDs 37.4 50.1±0.02 6.1 5.4±0.04 9.3 11.9±0.02 46.4 32.6±0.04 0.8 <0.1 0.8 
NPCDs 38.7 49.8±0.03 6.1 5.8±0.03 9.2 13.6±0.04 43.7 30.8±0.04 2.3 <0.1 2.3 
NSCDS 39.3 53.1±0.04 6.1 5.5±0.02 8.9 14.9±0.04 43.4 25.2±0.03 2.3 1.3 1 
 

We would like to underline that the amount of reagent for CDs co-doping was not high. The used 

amount of boric acid was enough to load theoretical 0,8%W of B. Despite the low quantity, we 

maintained the C and B source ratio proposed in the publication used to study co-doped CDs 

synthesis123. Despite the use of 
ଵସ of the moles of the prescribed N source increased the amount of 

the co-doping moles, this was not enough to dope NBCDs with boron. The amount of the used 

phosphor and sulphur precursors was enough, theoretically, to load 2,3%w of heteroatoms. 

Despite that, elemental analysis detected 1,3%w of sulphur, and no phosphor was found.  

Difference loading yield could be due to the different precursor compatibility with the system. 

Mercaptosuccinic acid was used as sulphur precursor, while inorganic acids were used as 

phosphor and boron precursors. Probably inorganic acids were less available as organic molecules 

to contribute to carbon dots formation, with negative repercussion on co-doping process. 

 

4.1.3.3-Cytotoxicity 
In this study, cytotoxicity was considered a propaedeutic step for CDs interaction with living 

organisms and their application in nanomedicine. For this reason, cytotoxicity was fundamental 

for the characterization and the application of nanostructured materials as CDs. In fact, the use of 

toxic precursors as amines at different molecular weight could produce unsafe nanostructured 

materials. At this purpose, similar consideration could be associated with heteroatoms sources 

used to synthesize NBCDs, NPCDs and NSCDs. Cytotoxicity was evaluated also to define the real 

applicability of synthesized materials in nanomedicine. For these considerations, the evaluation of 

the toxicity was an essential step to base additional measurements on biological compatibility. At 
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Figure 45: Cytotoxicity determination of the two-repeated synthesis of the samples synthesized with urea as 

nitrogen source. A) study onDETA_NPCDs#1. B)study onDETA_NPCDs#2. X axes show decreasing CDs 

concentration (µg/ml), while in Y axes cells viability calculation are reported. 

 

In Fig.45A, DETA_NPCDs#1 cytotoxicity determination is showed. Comparing cell viability at 

increasing CDs concentration with the CTRL, good cell viability was exhibited even at 1000 µg/ml. 

In Fig.45B DETA_NPCDs#2 cytotoxicity determination showed similar results, and didn't present 

cell viability decrease even at maximum CDs concentration. From the comparison of the two 

repeated samples emerged a good reproducibility. 

The cytotoxicity of all the other samples synthesized with the other combinations of nitrogen and 

co-doping sources was showed in the Tab.13. The yellow label indicated the toxicity of the first 

synthesis, the orange label indicated the toxicity of the second synthesis, while the brown label 

indicated if both of the two synthesis produced toxic materials. 

Table 13: Summary of the toxicity of the two repeated samples of nitrogen doped and co-doped CDs. 

Urea ETIDI DETA TRITETRA
N 

N, B 
N,P 
N,S 

 

TOXIC #1 

TOXIC #2 

TOXIC #1,2 
 

From toxicity tests made on both of the two repeated synthesis, had arisen a clear relation 

between some precursors and cytotoxicity. Samples synthesized with urea showed toxicity in each 

of the two synthesis, while the use of the other nitrogen source didn't influence the safety of the 

material. Similar consideration can be done concerning the use of mercaptosuccinic acid as 

sulphur precursor in NSCDs. It was possible that during the hydrothermal synthesis of the UREA 

based CDs and the production of NSCDs with mercaptosuccinic acid, the reagents could degrade 

into toxic compounds. These toxic compounds could be joined in the CDs formation, with 
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consequences on safety of the produced nanoparticles. Indeed, mercaptosuccinic acid could be 

degraded into succinate compounds285. For example, sodium succinate is class-2 hazard 

compound, and similar product embedded into CDs could reduce cell viability. Moreover, in 

another study high toxicity CDs were synthesized from fructose due the thermal degradation at 

100°C of fructose in furan286. 

4.1.3.4-Electrophoresis 
In this paragraph, we show the results of electrophoresis study at different pH, conducted on the 

DETA-based group of sample. Similar studies were performed on all the other samples, 

synthesized with all the possible combinations of nitrogen and co-doping sources. All the 

electrophoresis studies performed on these samples were reported in the appendix A - paragraph 

4.1.3.3. 

Gel holes were loaded with NCDs, NBCDs, NPCDs, NSCDs suspensions. Images of the gels showed 

CDs migration directed to negative and positive electrode. The loading was repeated for the 

synthesis #1 and #2. Thanks to this comparison, possible differences in migration speed from a 

sample to another could be observed, and others differences between first and second synthesis 

were emphasized. 

 

 

DETA N NB NP NS 

 

A pH4 B pH6 
Figure 46A and B: Electrophoresis study at pH 4 and pH6 respectively, performed on repeated synthesis 
DETA_NCDs, DETA _NBCDs, DETA _NPCDs and DETA _NSCDs. 
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In Fig.46A, electrophoresis study conducted at pH 4 of the samples DETA_NCDs, DETA _NBCDs, 

DETA _NPCDs and DETA _NSCDs is showed, while in Fig. 46B, similar study conducted at pH6 on 

the same samples is presented. 

DETA pH4: unlike the other UREA, ETIDI and TRITETRA based samples, DETA based samples 

showed good resolution at pH4. Despite the presence of smears, one band was easily detectable 

in the front of the migration of negative charged nanoparticles. Another important aspect was the 

presence of great CDs portion that, despite acidic pH, possessed zero superficial charge. 

DETA pH6: at greater pH, no substantial differences were found in comparison with 

electrophoresis performed at pH4. In fact, migration speed was not increased and the head of the 

migration was close to the same position of the electrophoresis at pH4. 

 

DETA N NB NP NS 

 

A pH8 B  pH10 
Figure 47 A and B: Electrophoresis gel at pH 8 and pH10 respectively, performed on repeated synthesis of 
DETA_NCDs, DETA _NBCDs, DETA _NPCDs and DETA _NSCDs. 

In Fig.47A, electrophoresis study conducted at pH 8 of the samples DETA_NCDs, DETA _NBCDs, 

DETA _NPCDs and DETA _NSCDs is showed, while in Fig.47B, similar study conducted at pH10 on 

the same samples is presented. 

DETA pH8: at increased pH, CDs migration speed was increased. However, despite resolution 

increases, only two bands emerged from the smear. Even at pH8, positive charged CDs were still 

migrating to negative electrode, while a portion of inert CDs lies in the loading holes. 
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DETA pH10: also for DETA based samples, high pH values increased negative charges on CDs and 

increased migration speed to positive pole. Moreover, high pH deprotonated surface charge of the 

entire sample population, because no luminescence was observed in the loading holes and in the 

lower part of the gel. In fact, if pH 10 buffer pushed the other CDs outside the gel, it was able to 

pull out CDs fraction with balanced surface charges from the loading holes, and to attract them to 

the positive side. At the end of the process these populations were the only still presents in the 

gel. 

From the electrophoresis study at different pH, performed on DETA-based samples, was possible 

to take some important consideration. 

When pH was increased, CDs showed low response to electric field. We supposed that this 

phenomenon was due to greater functional group density. Supposing that surface functional 

group were also responsible of luminescence properties of the material, higher density of 

functional groups could also explain greater quantum yield of DETA-based samples. 

 

It was possible to state that electrophoresis analysis at different pH permitted to identify several 

different CDs population, and to differentiate them on superficial charge and dimension. In this 

experiment was observed how CDs migration speed could change with pH values. When pH 

increased, nanoparticles speed attraction to positive electrode also increased, while the speed 

attraction to negative charge decreased. This phenomenon could be related to the different 

deprotonation degree of the functional groups that decorated the surface of the nanoparticle. 

Greater concentration of negative charges increased CDs response against the electric field, and 

increased migration speed to the electrode with opposite charge. At the same time, the reduction 

of positive charges on CDs surface, due to the increased deprotonation of surface functional 

group, decreased their migration speed to the negative electrode. 

In addition, emerged also that when pH increased, some population of CDs reached a charge 

balance between positive and negative charged surface functional group, becoming inert against 

the imposed electric field. In this situation inert CDs lied in the loading holes of the gel. Despite 

that, speed variation related to pH allowed to identify CDs population that at in unique pH could 

be impossible to determine. 

Band definition of different CDs and the comparison of these bands of different samples permitted 

to define reproducibility of samples of the same synthesis group. If good superimposition of the 

bands of the CDs samples of the same group indicated good synthesis reproducibility, in the 
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repeated batches (#1 and #2) CDs bands changed. From the comparison of the band of the two #1 

and #2 series emerged increasing reproducibility from the UREA group of samples to TRITETRA, 

and from ETIDI to DETA. 

From the comparison of the samples group with different nitrogen source emerged that increasing 

pH, the migration speed of some group increased slower than others did. This phenomenon could 

emerge from the different concentration of functional groups on the CDs surfaces. If a defined 

energy was required to deprotonate one functional group, the energy required to deprotonate a 

second functional group, close to the first, needed additional energy to contrast the force of the 

negative charge of the just deprotonated groups. Therefore, required energy was increased when 

number of deprotonated functional group was increased. 

 

Samples cytotoxicity and quantum yield were used to select the group of samples for the 

enhanced photocatalytic materials: the CDs loading in TiO2-based systems. Therefore some 

characterization, as the morphologic determination were performed on a smaller group of 

samples. On these considerations, DETA-based samples were chosen for the application with TiO2 

and for further characterizations. 

 

4.1.3.5-TEM imaging 
TEM images analysis were performed to determine size and shape of nitrogen doped and co-

doped CDs. Considering QY and cytotoxicity results, DETA based samples were selected as the 

most interesting for further applications . In general, CDs were difficult to be detected by TEM 

technology due to the very low contrast with the carbon layer of the grid. Therefore, CDs were 

dropped on the opposite layer of the grid. In this way, copper was the only component of the grid, 

and CDs were more detectable than when dropped on the carbon layer. Despite the contrast 

increase, CDs were still difficult to be detected. 
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A 
Figure 48A and B: TEM images of DETA_NCDs 

 
B 

 
A 
Figure 49 A and B: TEM images of DETA_NBCDs 

 
B 
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A 
Figure 50 A and B: TEM images of DETA_NPCDs 

B 

 
A 
Figure 51 A and B: TEM images of DETA_NSCDs 

 
B 

 

From the comparison of the individuated DETA_NCDs, was possible to define a wide size of 

particle distribution. If in Fig.48A was represented one CDs of 40nm, in Fig. 48B only small objects 

with irregular shape and dimension close to 10nm were found. Despite these dimensions were 

easily detectable with TEM technique, CDs individuation had been long and difficult. 

Same problems emerged also for NBCDs detection showed in fig 49A and B. In Fig.49A the 

presence of CDs was just detectable (for an easier comparison are inscribed in white circles). Here, 

object individuated in circles had dimension less than 10nm. At the same time, in Fig. 49B, one 

system similar to that exposed in Fig.48B was showed. Despite the similar size and shape, CDs 

represented in Fig.49B was less contrasted, and probably thinner than the previous one. 

In comparison with NBCDs nanoparticles, NPCDs were more easily detected. Despite that, even 

this sample presented wide size distribution. In Fig.50A was possible to note CDs with similar 

dimensions to those reported in the previous figures, while in Fig.50B three CDs, with dimension 

comprised from 10nm and 20nm were showed. Finally, in DETA_NSCDs, were individuated only 

small particles. In fact, Fig.51A and Fig.51B showed particles with size close to 10nm. 

In conclusion, it had been possible to obtain  images of DETA_NCDs and different B, P and S co-

doped CDs. To recover CDs images, was spent along search on the loaded grid. Moreover, once 

CDs were individuated, their low contrast make difficult to obtain good images. From the pictures 

showed emerged CDs with wide size distribution, with globular shapes and with irregular and 
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frayed edges. Finally, no detected nanoparticles showed visible sp2 graphitic planes, but only 

amorphous carbon. 

 

4.1.4- Results 
In the whole paragraph 4.1, were shown the results of synthesis, purification and characterization 

of nitrogen doped and co-doped CDs. The most important aim of this paragraph was to better 

understand CDs behavior, from their synthesis to their characterization. In second instance, we 

tried to define CDs best properties in order to apply them in advanced oxidation processes and in 

nanomedicine. From this perspective, attempts were made to understand if CDs were able to 

produce UPCL phenomena and how they could be used for these properties. As the founding 

concerning UPCL enlight, CDs didn't produce UPCL. 

At a later stage, to study possible CDs to be applied in enhanced photocatalytic materials, and to 

verify CDs possible application in nanomedicine, several groups of CDs had been produced via 

hydrothermal synthesis. 

Nitrogen was chosen as main doping heteroatom to improve photoluminescence thanks to surface 

passivation. The use of nitrogen containing precursors with different toxicity permitted to study 

the relationship with their toxicity and CDs safe. Usually CDs were considered nontoxic and safe. In 

this research we stated that the use of nontoxic precursor, like urea, produced toxic CDs, while the 

use of toxic compounds as ethylenediamine, diethylenediamine and tryethylenetetramine 

synthesized safety CDs. Moreover, the use of co-doping heteroatoms permitted to study the same 

phenomenon with other molecules. In this case, the use of mercaptosuccinic acid as sulphur 

precursor produced CDs with moderate toxicity. 

Another aspect analyzed was the variation of the purification procedure. Purification with dialysis 

membranes was often the only choice to clean CDs. Usually, dialysis membranes required long 

time treatment and considerable attention to load the sample. The osmotic pressure generated 

between the inner CDs suspension and the cleaning water could broads pores size or break the 

membrane. In the specific case of the materials studied in this work, hydrothermal synthesis 

produced CDs smaller than CDs produced in other ways. Therefore, small CDs could pass through 

the membrane within impurities and other un-reacted materials. To avoid the sample loss, 

another purification process was developed. This procedure, based on different chemical affinity, 
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considered repeating washing with solvent at increasing polarity. The use of this process 

permitted to remove partially reacted materials and to obtain clean samples. 

Samples studies were directed to define their possible application in nanomedicine and to 

increase advanced oxidation processes efficiency. In particular, the analysis on the results of 

characterization, individuated a small group of samples to apply to photocatalysis. 

Considering optical analysis, greatest differences were found in samples synthesized with the 

different nitrogen precursor. The most important result in absorbance studies was the redshift 

adsorption at λ>240nm at increasing molecular weight of the nitrogen source. The redshift was 

due to the cyclic compounds iper-conjugation that defined greater electronic delocalization, with 

repercussions on the energy required for the n-π* transitions. Considering photoluminescence, 

UREA based samples were the only compounds that showed emission dependence from the 

excitation wavelength. Considering quantum yield, the study showed that DETA-based group of 

samples were the most efficient material, with absolute QY close to 20%. 

Toxicity tests showed clear relation between some precursors and cell viability. UREA-based 

samples showed discrete toxicity, while other nitrogen source produced safe CDs. Same 

consideration could be done for mercaptosuccinic acid in NSCDs. Hydrothermal treatment 

degraded both urea and mercaptosuccinic acid in toxic compounds before CDs formation. 

TEM investigation showed how samples are constituted: CDs with wide size distribution, globular 

shapes and irregular and frayed edges. Moreover, no sp2 graphitic planes were detected in high-

resolution measurements, but only amorphous carbon. 

Electrophoresis studies at different pH showed considerable qualitative information, concerning 

nanoparticles distribution on their size/surface functionalization relationship. CDs were 

particularly difficult to be characterized with common techniques. Electrophoresis at different pH 

could become one of the most important measurements, such as TEM imaging, toxicity studies 

and optical characterizations. 

Elemental analysis (EA) identified the effective nitrogen doping and the presence of the other 

heteroatoms. Despite negative results concerning boron and phosphor co-doping, EA showed 

independence of C%w and N%w from the different nitrogen precursors. The use of urea, 

ethylenediamine, diethylentriamine and triethylentetramine produced CDs with similar 

composition. 

After the characterization of all the samples, it was decided to apply DETA based CDs for the 

studies on enhanced photocatalytic systems. Their greater quantum efficiency, low toxicity and 
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good reproducibility, make DETA based CDs ideal materials for improvements of advanced 

oxidation processes, where treated water could transmit and spread these nano materials in the 

environment. After EA determination, only DETA based NCDs and NSCDs were used for the study 

of the enhanced photocatalytic material. 
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4.2- Titanium dioxide 
 

As described in the introduction, one of the aim of this study was to develop an enhanced 

photocatalytic material able to treat wastewater using solar radiation. 

In particular,  we studied a process able to obtain the desired crystalline phase (anatase TiO2 

phase) without annealing in order to avoid any deterioration of loaded CDs. The work developed 

in this part had been summarized in Fig.52. From this perspective, in the aim to produce a 

crystalline photocatalytic system loaded with CDs, was necessary to find a procedure able to 

obtain a well-crystallized TiO2 and to preserve CDs structure. In our research, in order to bypass 

any thermal treatment, amorphous TiO2 was previously synthesized and three different 

hydrothermal treatments were applied to produce crystalline anatase. These processes were 

selected from literature, reproduced and successively characterized trough XRD studies, 

morphological studies, bandgap measurements and photocatalytic activity. Properties of the 

produced samples were compared with respective literature and the selection of the best 

hydrothermal treatment was used to treat selected amorphous NTiO2. After hydrothermal 

treatment selection, a study of the correspondent literature based the selection of the amorphous 

NTiO2 was performed. The amorphous NTiO2 was synthesized and treated with the selected 

hydrothermal process to obtain crystalline NTiO2 anatase. The new material was characterized 

with XRD studies to define the crystallinity, while with FTIR was defined the presence of doping 

nitrogen after the hydrothermal process. Further characterizations were performed with bandgap 

and photocatalytic activity. On this material, synthesis temperature was studied to enhance 

nitrogen doping level. After preliminary characterization, the hydrothermal process was optimized 

in order to improve crystallinity and photocatalytic activity. At this purpose, XRD study, and 

photocatalytic experiments were performed to define the improvement of material properties . 

Finally, the best sample with the best crystallinity and photocatalytic activity was selected for the 

study of enhanced photocatalytic material. 
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4.2.1-Crystal phase stabilization 
In order to produce a crystalline photocatalytic system loaded with carbon dots, was necessary to 

find a procedure able to obtain a well-crystallized TiO2 and to preserve CDs structure. In our 

research, to bypass any annealing treatment, amorphous TiO2 was previously synthesized and 

three different hydrothermal treatments were applied to produce crystalline anatase. Selected 

treatments were already summarized in the paragraph 3.3.1. 

To confirm the reproducibility of the three selected methods, XRD diffraction patterns and TEM 

images of the synthesized materials were compared with the literature results. After that, to study 

the influence of the synthesis procedure on the final properties, photocatalytic activity and the 

bandgap of all the samples were measured and compared. This comparison allowed to select 

samples with the best properties. 

In order to check the crystalline  phase produced with hydrothermal treatments, XRD analysis 

were performed. 
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Figure 53: XRD patterns of the samples B_1, S_1 and S_2. The three samples are compared with a reference 
sample of titania annealed at 500°C for 1h. All the samples show typical anatase patterns but, the sample 
S_1 also shows a small peak at 30° typical of brookite phase. 

In Fig.53 is showed the comparison of XRD pattern, while in Tab.14 are reported the values of 
calculated phase percentage and crystallite sizes. From XRD studies was possible to assert that all 
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the  proposed processes re-arrange amorphous TiO2 into anatase evidencing the same phase 
presented in the corresponding literature. 

Table14: Phase quantification and crystallite diameter calculated on XRD patterns. 

 Anatase % <L> (nm) Brookite % <L> (nm) 
B_1 99 27 1 nd 
S_1 86 4,7 14 2,3 
S_2 100 18 - - 

TiO2 ann. 100 22 - - 

Despite the reproducibility of the majority of the samples, S_1 showed a discrete amount of 

brookite mixed with anatase phase. In environmental condition, anatase was the most unstable 

polymorph, but usually was stable in nanoparticles bigger than 14nm287; S_1 nanoparticles were 

smaller than 14nm, and produced a mixture of the two phases. Sample S_2 showed greater 

anatase amount, but also presented greater crystallite size. Similar results were showed by B_1. 

Considering crystallites volume and anatase%, the greatest anatase amount was obtained by 

samples with bigger crystallites. This relationship was in agreement with the study of Zhang et 

al287. S_1 showed the lowest crystallite dimension in comparison with the other samples. In 

conclusion, considering XRD information, sample S_1 was the best sample because the process 

could produce the smallest crystallites of the set. So, considering XRD analysis, hydrothermal 

treatment represented by the sample S_1 could be the best candidate to treat an amorphous 

NTiO2 loaded with CDs, and to produce enhanced photocatalytic materials. 

Once crystalline phase was defined, and the production of anatase with hydrothermal treatment 

was stated, the samples were morphologically characterized. 
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Photocatalytic Activity: 

In order to define the best hydrothermal treatment among S_1, S_2 and B_1 samples, 

photocatalityc degradation of methyl orange under visible light was compared with reference 

material such as TiO2 ann., NTiO2 ann., TiO2 comm. and P25. The photocatalytic activity is showed 

in Fig.55. 
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Figure 55: Photocatalityc activity of P25, TiO2ann., NTiO2ann., B_1, S_1 and S_2 

From the comparison of the photocatalytic activity reported in Fig.55, P25 resulted  the best 

systems. Degradation of methyl orange confirmed that annealed samples as TiO2 ann. and NTiO2 

ann. had better activities than the samples treated with hydrothermal processes. Considering only 

the samples produced by hydrothermal procedure, sample B_1 showed the best activity, while 

sample S_2 showed the worst activity.  

After the definition of the photocatalytic activity, sample bandgap was studied. 

 

Bandgap measurement: 

For the determination of the quality of a photocatalyst, bandgap was one of the most important 

parameter. In  Fig.56 and Tab.15 are presented the Tauc plot and the calculated bandgap. Tauc 
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plots and bandgap values of the reference materials were compared with the S_1, S_2 and B_1 

samples. 
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Figure 56: Tauc plot of the reference material and of the synthesized blanks. 

For a better comparison, Tab.15 shows bandgap values calculated from the Tauc plot in Fig.57. 

Considering bandgap values of reference materials, P25 and TiO2 comm. showed the same value 

reported in literature. The conformity between literature and experimental results, determined 

the validity of the bandgap study. TiO2 ann. and NTiO2 ann. reached similar bandgap values. TiO2 

ann. showed lower bandgap than expected, probably due to a great number of defects that the 

annealing process didn't removed. Indeed defects could interfere with the bandgap optical 

determination due to their disposition under the conduction band. The low bandgap value of 

NTiO2 ann. could arise from the presence of nitrogen doping in the lattice, which could introduce 

an intragap layer. Considering bandgap values of re-synthesized samples, S_1 and B_1 were 

similar, while S_2 showed the lowest value. Also for sample S_1 and S_2, the presence of defect 

not removed by the hydrothermal process could reduce the gap. Both of the nitrogen doping and 

the presence of defects may reduce B_1 value.  

Table 15: Calculated Bandgap values of all the reference and re-synthesized materials. 

Sample P25 TiO2 TiO2 ann. NTiO2 ann. S_1 S_2 B_1 
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comm. 
Bandgap 

(eV) 
3,1 3,2 2,8 2,9 3,0 2,8 3,0 

 

In this study , suitable hydrothermal processes were selected to produce nano-sized anatase. At 

this purpose three different hydrothermal synthesis were compared from the physical and 

photocatalytic point of view. Despite the formation of 14% of brookite, the sample S_1 produced 

smaller nanoparticles than the others. Comparing the bandgap, the most suitable sample to work 

under solar radiation was the sample S_2, but its photocatalytic activity resulted weaker than the 

other samples. In conclusion, sample S_1 was chosen as prototype of the hydrothermal synthesis. 

As demonstrated in the studies on the morphology and on the photocatalytic activity, 

hydrothermal process proposed through the S_1 sample produced nano-sized and active 

photocatalytic material. So, this process could perform similar results starting from different 

amorphous material. 

 

4.2.2 -Crystal phase process optimization 
In the last decades, NTiO2 was widely studied and synthesized with several methods250,288,289,202. 

Our aim was to produce an amorphous material doped with nitrogen able to containing, at the 

same time, the right amount of CDs. Many of the published papers deal with: i) annealing 

processes of amorphous titania oxides in nitrogen rich atmosphere. ii) The annealing of 

amorphous titanium oxide produced in presence of amines. Very few articles foresaw to insert 

nitrogen during hydrolysis and condensation of the titanium precursor290,282,246. According to the 

last approach and in order to obtain the anatase phase, we had chosen the synthesis proposed by 

Wang etal.282. In this paragraphs synthesis, optimization and characterization of the NTiO2 to host 

CDs were studied.  

To define the best hydrothermal treatment, X-ray diffraction  patterns of the treated sample were 

compared. Moreover, as indicated by Darzi et al.291, to check the presence of nitrogen in to the 

crystal lattice FTIR was used. 

The synthesized W_1 sample undergone a hydrothermal treatment proposed by the S_1 sample, 

producing the WS_1 sample. 
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The XRD patterns reported in Fig.57 showed that all the peaks corresponded to anatase, except a 

small peak at 30° which corresponded to the main peak of brookite. Therefore, we could conclude 

that the S_1 hydrothermal treatment on W_1 permitted to obtain crystalline anatase in conditions 

able to preserve CDs. 
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Figure 57: X-Ray diffraction of W_1 and the hydrothermally treated WS_1, compared with the reference 
NTiO2 ann. 

In order to check the presence of nitrogen before and after hydrothermal treatment in Fig. 58,FTIR 

of sample W_1 and WS_1 were compared. In the 3700cm-1-3000 cm-1 region all peaks were 

assigned to the stretching vibration of water and OH species292. The bands for Ti-O and Ti-O-Ti 

bonds were visible in the 800 cm-1 – 400 cm-1 area292,293. In some publication, where nitrogen 

doped TiO2 was produced in wet processes, the presence of nitrite and hyponitrite was also 

evidenced294. In our samples, there was no evidence of peaks at 1387 cm-1, 1104 cm-1 and 1060 

cm-1 corresponding to hyponitrite. Similar results were reached for the presence of nitrite at 1450 

cm-1, 1260 cm-1 and 1160 cm-1. Darzi et al.294 proposed some FTIR studies of nitrogen doping in 

TiO2 produced with wet processes. They proposed that peaks comprised between 1500 cm-1 and 

1250 cm-1 could be attributed to the presence of nitrogen embedded in the TiO2 matrix. Both 



125 
 

samples, proposed in Fig.59 showed the mentioned peaks. Therefore, the hydrothermal treatment 

maintained the nitrogen doping in the sample WS_1. 
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Figure 58: As indicated by Darzi et al., peaks comprised between 1500 cm-1 and 1250 cm -1could be 
attributed to the presence of nitrogen embedded in the host TiO2 matrix. 

 

4.2.2.1-Temperature effect  
After NH4OH addition, a fast increase of the reactor temperature was observed and the system 

warmed up at a variable temperature comprised between 65° and 70°C. Since the temperature 

was an important parameter that must be controlled to obtain reproducible samples, a study 

focused on the definition of the best process temperature was performed. Each sample 

synthesized at different temperatures was hydrothermally treated following the procedure S_1. 

The reaction was performed in a jacketed vessel connected to a thermostatic bath; the 

temperature of the thermostatic bath was changed from 45°C to 65°C. 

In order to compare the produced samples, bandgap values were calculated on the Tauc plot 

showed in Fig.69 and in Tab.16. 
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Figure59: Tauc plot of WS_1 samples synthesized at several temperatures; the two dot lines defined the 
linear range used to calculate the linear fit for the optical bandgap determination. 

Best sample showed the lowest bandgap, which was related to the high nitrogen doping in the 

lattice. The linear interval used to calculate the bandgap was comprised between 3,24 and 3,43 

eV. 

Table 16: Calculation of the optical bandgap of each samples synthesized, and definition of the best 
synthesis temperature. 

Treating T° Linear fit Y=0 Bandgap 
45°C Y= 2,32X - 7,04 X= 7,04/2,32 3,03 eV 
55°C Y= 5,79X - 17,76 X= 17,76/5,79 3,06 eV 
65°C Y=  3,17X - 9,92 X= 9,92/3,17 3,12 eV 

 

Bandgaps reported in Tab.16, calculated on the plot represented in Fig.60, showed that synthesis 

at 45°C produced a sample with lower bandgap. In order to contrast the increasing temperature, 

and to maintain the right temperature during the process, all the synthesis was synthesized at 

45°C 

After the best temperature definition, the optical bandgap on WS_1 sample synthesized at 45° 

was measured. In order to check the quality of the instrumental apparatus, the bandgap of the 

sample SW_1 was compared with references samples TiO2comm. (3,2 eV) and the P25 295 (3,1 eV). 
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Figure 60: Tauc plot of commercial anatase TiO2, Degussa P25 and a sample of WS_1. TiO2comm and P25 
are taken as reference in order to check the good response of the analysis. 

In Fig. 60, the Tauc plot of the sample WS_1 showed some differences with the two commercial 

materials. Tauc plot of P25 and TiO2 comm. presented well defined transition, while WS_1 showed 

a decreasing trend at lower energy values. Reference materials bandgap, which were reported in 

Tab.17, matched with values reported in literature. Therefore, we could assume that reflectance 

measurement were conducted in the right manner, and the calculated value for sample WS_1 was 

reliable.  

 

Table 17: Calculation of the optical bandgap of each samples synthesized in order to define the best 
synthesis temperature. 

 

To define the quality of WS_1, photocatalytic activity was performed under simulated solar light 

radiation. Here, the ability of the photocatalyst to degrade sacrificial material was plotted against 

the time of light exposition. As showed in the plot in Fig.61, WS_1 didn't produce any 

Sample Linear fit Y=0 Optical bandgap Reference Band Gap 
P25 Y= 4,94x – 15,12 X=  15,12 / 4,94 3,06 eV 3,1 eV 

TiO2comm Y= 9,66x – 30,84 X= 30,84 / 9,66 3,19eV 3,2 eV 
WS_1 Y= 4,25x - 12,43 X= 12,43 / 4,25 2,92 eV from 3,0 eV to 2,6 eV 
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photocatalytic activity under solar light simulation. At this purpose, in Fig.57, wide X-Ray 

diffraction showed the baseline of the pattern. The baseline indicated the presence of a large 

amount of amorphous material. Since the photocatalityc activity was related to crystallinity, we 

changed hydrothermal process parameters in order to increase the crystallinity. 
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Figure 61: Photocatalityc degradation of methyl orange under visible light realized by the nitrogen doped 
titanium dioxide hydrothermally treated with S_1. 

As summary of this paragraph, we can conclude that the sample WS_1 didn't possess enough 

crystallinity to perform good photocatalytic activity. At this purpose, optimization of the 

hydrothermal treatment is needed. 

 

4.2.3- Hydrothermal process of the nitrogen doped titanium dioxide 
XRD pattern of WS_1 sample was compared with the TiO2 comm. and amorphous W_1. The wide 

halo presented in the WS_1 XRD pattern indicated the presence of a large amount of amorphous 

phase. Since the photocatalityc activity of a material was related to the crystallinity, we changed 

the hydrothermal process parameters in order to increase sample crystallinity. The hydrothermal 

process parameters were: i) the amount of amorphous material treated per unit volume; ii) ionic 

strength of the treating solution; iii) temperature of the process and iv) time of the process. We 

didn't change the pH of the solution because Sugimoto et al.252 already defined the best pH values 

that allow the maximum conversion of amorphous gel in to anatase. The samples were labeled 
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according to the parameters used during the process. WS_1 represented the synthesis of W_1 

with the hydrothermal treatment of S_1. In a typical labeling, as for example WS_10_01_24_100, 

the first number represented the amount of amorphous material treated on milliliter of treating 

solution (mg/ml); the second number represented the ionic strength of the treating solution 

(mol/L); the third number represented the treating temperature during the hydrothermal 

treatment and, finally, the last number indicated the time of the treating process. The Tab. 18 

reports all the parameters related to the percentage of the anatase phase produced during the 

hydrothermal treatment. Furthermore, amorphous W_1 and a sample of an annealed TiO2 had 

been added to the table. W_1 was characterized after washing and without further treatment, 

while the other sample was annealed at 500°C for 2h. In the Tab.18 parameters of the 

hydrothermal process used for each sample are showed. 

Table18: Treatment parameters optimization, and the resulting percentage of anatase phase obtained 
treating the amorphous nitrogen doped titanium dioxide. 

 
Sample 

Amorph. Mat/ 
treat. Solution 

(mg/ml) 

Ionic 
Strength 
(mol/L) 

Treating 
T° (C°) 

Treating 
time (h) 

 
% Anatase 

Diameter 
Crystallite 

(nm) 
W_1    - - -    - - -    - - -    - - -    0    - - - 

WS_10_01_24_100 10 0,1 100 24 42 4,3 
 WS_5_01_24_100 5 0,1 100 24 47 5,5 

WS_2_01_24_100 2 0,1 100 24 73 6,1 
WS_2_1_24_100 2 1 100 24 84 4,7 
WS_2_2_24_100 2 2 100 24 95 6,1 
WS_2_2_24_150 2 2 150 24 97 6,9 
WS_2_2_24_200 2 2 200 24 98 10,4 
WS_2_2_15_200 2 2 200 15 98 9,2 
WS_2_2_8_200 2 2 200 8 98 9,6 

Annealed    - - -    - - -    - - -    - - - 100    - - - 

 

In Fig. 62 patterns comparison of the most representative samples are showed. When crystallinity 

increased, patterns were more defined. Sample WS_10_01_24_100 showed high amount of 

amorphous phase, and both the low definition of the peaks and the amorphous halos indicated  a 

sample with low crystallinity. Optimization of hydrothermal parameters, such as the sample 

dilution in the treating solution, the increase of the ionic strength solution and the temperature, 

produced higher  crystalline phase and sharper peaks.  
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Figure 62: X-ray diffraction patterns of the more representative samples related to the optimization of the 
hydrothermal process. Increasing ionic strength, processing temperature, treatments time and reducing the 
amount of treated material, enhance the crystallinity. 

The histogram presented in Fig. 63 summarizes the amount of crystallinity in all the samples. The 

increase of crystallinity was related to the amount of anatase phase determined for each sample. 

With respect to the analysis of the XRD patterns, in this histogram was easier to notice the 

crystallinity growth and the formation of a plateau. The plateau was reached when ionic strength 

was increased from 1mol/L to 2mol/L. The temperature variation restricted the crystallinity 

development. After temperature variation, was possible to reduce the treating time from 24h to 

8h. Despite the optimization, the 100% of crystallinity was not reached, but the 98%. 

In conclusion, WS_2_2_8_200 was the sample with the best crystallinity obtained with the best 

conditions. 
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Figure 63: Histogram showing the increase of crystallinity thanks to the optimization of the hydrothermal 
process. The optimization started from parameters indicated by Sugimoto et al. with crystallinity of 42% and 
increase until 98% after optimization. 

 
To understand the effects of the hydrothermal process, and how the dissolution and re-

crystallization can change the sample structure, SEM analysis was performed. At this purpose, 

amorphous W_1 was compared with WS_1 and WS_2_2_8_200. 

A B 
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C D 

E F 

Figure 64 morphological study of A) and B) amorphous W1, C) and D) WS_1, while in E) and F) 
WS_2_2_8_200 is showed. 

 

In the Fig. 64A and 64B, the amorphous nitrogen doped TiO2 (W_1) presented a homogeneous 

aspect. The sample showed compact body, without substructures. As it is showed in the next 

images, hydrothermal treatment was able to change radically the shape and the morphology of 

the sample. If the treated WS_1 maintained a bulk shape (fig.64C), at greater magnification 

(Fig.64D) was noticeable the dissolution and re-crystallization effect produced during the 

hydrothermal treatment. A great number of nano-sized globular particles, with an average size of 

18±2nm constituted the bulk material. The globular particles were strongly bonded each other. A 

strong sonication was not able to disaggregate the solid in to particles. In Fig. 64 E and F, sample 

WS_2_2_8_200 showed characteristics very similar to the WS_1. The solid was still composed by 

small globular particles, with an average size of 12±1nm. From the size comparison of the globular 

particle, was noticeable how increasing crystallinity is related with smaller nanoparticles. 
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From the morphological analysis of amorphous and differently treated samples, was noticeable 

how hydrothermal process obtained crystalline material. The dissolution and re-crystallization 

process evolving in hydrothermal treatment produced small and crystalline particles which group 

together in bulk materials. Changing hydrothermal process parameters to produce more 

crystalline material led a production of smaller particles. 

In order to explain the behavior of the different samples, the photocatalytic activity of 

WS_2_2_8_200 was compared with WS_10_01_24_100. To evidence the real improvement of the 

optimized hydrothermal treatment, photocatalytic activity of sample S_1 and NTiO2 ann. were 

added for comparison. Photocatalytic study conducted on different hydrothermally treated 

samples, compared with the photocatalytic activity of amorphous S_1 and reference NTiO2ann. 

have been showed in Fig.65. 

0 50 100 150 200 250 300
0,0

0,2

0,4

0,6

0,8

1,0

Time (min)

C
/C

o

 S_1
 NTiO

2
 ann.

 WS_10_01_24_100
 WS_2_2_8_200

 

Figure 65: Photocatalityc activity of WS_10_01_24_100 and WS_2_2_8_200 against S_1 and reference 
NTiO2ann. 

We would like to remember that sample S_1 and sample WS_10_01_24_100 were processed with 

the same hydrothermal treatment, but they were synthesized with different path. Moreover, 

WS_10_01_24_100 was doped with nitrogen, it was orange colored and it was able to absorb 

more visible light instead of the white and un-doped S_1. Despite this feature, WS_10_01_24_100 

showed a lower photocatalytic activity than S_1. Optimizing the hydrothermal process permited to 



134 
 

produce a system such as the sample WS_2_2_8_200, which showed similar photocatalytic activity 

to S_1. Despite the optimization of the hydrothermal process, the reference sample NTiO2 ann. 

still possessed the best photocatalytic activity. 

The reading of the Tauc plot represented in Fig.66 must consider two factors: the slope of the 

linear transition of the absorption, used to calculate the bandgap; and the adsorption tail in visible 

region. If W_1 showed small bandgap and great absorption in the visible range (hν> 3,26eV), the 

increase of crystallinity in WS_10-01-24-100 reduced the absorption. WS_10-01-24-100 still 

showed absorption in visible light and an appreciable reduced bandgap, but the WS_2-2-24-200 

and WS_2-2-8-200 showed an increased bandgap. This increment was associated to an 

absorbance loss in visible region, due to a loss of nitrogen. Indeed, these two samples showed a 

behavior typical of an un-doped TiO2. 

2,0 2,5 3,0 3,5 4,0 4,5 5,0
0

1

2

3

4

5

6

7

h (eV)

(A
*h
)

^1/
2

 W_1 
 WS_10-01-24-100
 WS_2-2-24-200
 WS_2-2-8-200

 

Figure 66: Comparison of Tauc plot of different optimization step. Starting from the amorphous material, 
the optimization of the hydrothermal process reduce the amount of nitrogen and, at the same time, reduce 
the ability to absorb in visible region and increase the bandgap. 

In Tab.19 bandgap comparison of the most representative samples of the hydrothermal treatment 

optimization have been showed. As underlined for the comparison of the Tauc plot in Fig.66, the 

optimization produced a system with a bandgap typical of un-doped samples.  
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Table19: calculated bandgap of the most representative sample, synthesized during the optimization step. 

Sample W_1 WS_10-01-24-100 WS_2-2-24-200 WS_2-2-8-200 
Bandgap (eV) 2,8 2,9 3,1 3,1 

 

Hydrothermal treatment permitted to improve the crystallinity, but also produced a narrower 

bandgap. To understand if the amount of doping nitrogen depended on the treating parameters, it 

was necessary to analyze samples elemental composition. 

 

To define if the bandgap narrowing was due to the nitrogen loss, elemental analysis was 

performed on the most representative samples obtained by the optimization process. In Fig. 67 

the %w of carbon, hydrogen and nitrogen of these samples have been showed.  
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Figure 67: Histogram representing the %w of carbon, hydrogen and nitrogen measured for the most 
representative samples of the optimization process. After the hydrothermal treatment, the amount of 
nitrogen falls and completely disappear. 

W_1 posses the 5,52%w of nitrogen, but in WS_10_01_24_100 the nitrogen amount falled at 

0,87%w. Reducing the amount of treated amorphous material from 10mg/ml to 2mg/ml the %w of 

nitrogen decreased to 0,32%w. Finally, the increase of the treating solution concentration, 

represented by WS_2_2_24_100, determined the complete nitrogen removal. From the elemental 
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analysis emerged also that the annealing treatment at 500°C for 2h removed all the nitrogen 

present in the material. 

In Fig.68, the crystalline phase fraction have been compared with the nitrogen %w for the most 

representative samples. 
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Figure 68: comparison of the crystalline phase fraction with the nitrogen %won the most representative 
samples of the hydrothermal process optimization. 

As it is showed in the Fig.68, W_1 possessed 5,18%w of nitrogen and, obviously, no crystalline 

phase. When the material was treated under a mild hydrothermal condition it was possible to 

obtain the 47% of crystalline phase with the 0,87%w of nitrogen. Reducing the amorphous material 

an additional increase of the crystallinity was reached, but more nitrogen was lost. The 73% of 

crystallinity matched with an amount of nitrogen equal to 0,32%w. Unlikely, appreciable amount of 

anatase was reached only when last nitrogen traces are lost. The increase of the concentration of 

the treatment solution from 0,1mol/L to 2mol/L led an increase of the crystallinity until 95%, but 

no nitrogen was detected. 

4.2.4- Results 
A procedure to obtain NTiO2 to host CDs was investigated . At this purpose, the synthesis 

proposed by Wang et al. was adopted to produce NTiO2. After synthesis definition, previously 

selected hydrothermal process was applied, followed by the determination with FTIR of the 

presence of nitrogen in the host lattice. Once confirmed the presence of nitrogen, the 
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optimization of the amorphous NTiO2 was carried out defining the best synthesis temperature, 

using material bandgap as discriminating factor. After that, the hydrothermal treatment 

optimization was conducted focusing on the production of the maximum fraction of crystalline 

anatase phase. The optimization progress was followed calculating the crystallinity on XRD 

patterns. Elemental analysis and photocatalityc activity were associated to their crystallinity for 

the most representative samples of the hydrothermal optimization. Despite these great 

improvements, all the intra-crystalline and inter-crystalline nitrogen was lost. The decrease of 

absorbance detected in Tauc plots could derive from the decrease of defects that produce 

absorbance, but certainly, they were due to the removal of the nitrogen from the crystal lattice. 

The suppression of the nitrogen from the material removed the absorption ability in visible range, 

as for the samples without nitrogen. The loss of the nitrogen content increased the bandgap from 

2.9eV of the sample WS_1-10-01-24-100 to 3,1eV of the sample WS_1-2-2-8-200. The 

achievement of the 98% of crystalline phase was an important aspect, especially if obtained with 

alternative method than annealing processes. Despite the complete loss of nitrogen in the crystal 

lattice, this method produced a photoactive and crystalline material with conditions able to 

maintain unaltered CDs. In this way, during the synthesis could be possible to insert CDs in the 

matrix. So, the obtained composite amorphous material could be processed with the 

hydrothermal treatment instead of annealing. Synthesis and crystallization in presence of CDs 

avoided the impregnation, with the risk to lose them in the solution during the application of the 

photocatalytic material. If the process developed above didn't fit for the production of nitrogen 

doped titanium dioxide, it could be applied for un-doped titania loaded with CDs. These 

experiments were focused on the characterization of samples with different CDs loading and with 

different doped CDs. Not to be confuse with complex sample labels, WS_2_2_8_200 was labeled 

as WS_2. 
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4.3.1- Reproducibility 
To study the CDs loading effect during the WS_2 synthesis, defined amounts of NCDs were added 

during the third step of the synthesis showed in Fig. 70. To the amorphous material, a theoretical 

percentage in weight equal to 0,01%w; 0,1%w and 1%w was loaded. The right amount of NCDs was 

reached adding 10mg/ml NCDs suspension to the HNO3 solution (Tab.18). All the synthesis were 

performed with optimized hydrothermal treatment. 

With the aim to assess the reproducibility of the CDs loading, three synthesis of WS_2 with 

different loaded CDs were produced. To define if the addition of different amount of CDs could 

change the reliability to reproduce the material, optical bandgap was considered. 
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Figure 70: A) Tauc plot of the three repeated synthesis of WS_2. B) Tauc plot of the three repeated synthesis 
of WS_2 doped with the theoretical 0,01% in weight on NCDs. C) Tauc plot of the three repeated synthesis of 
WS_2 doped with the theoretical 0,1% in weight on NCDs. D) Tauc plot of the three-repeated synthesis of 
WS_2 doped with the theoretical 1% in weight on NCDs. 
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Fig. 70A showed the Tauc plot of three-repeated WS_2. It was noticeable how two of the three 

samples showed similar behavior. This difference was reported in the Tab. 20, where bandgaps of 

WS_2_1 and WS_2_3 were similar. Same consideration could be done for the three repeated 

WS_2 @CDs_0,01% in Fig. 70B. Considering Tauc plots in Fig. 70C and in Fig.70D, repeatability 

increased with CDs loading. In Tab.20, samples were presented with their associated linear fit and 

the calculated optical bandgap. For each series of repeated sample, semidispersion on bandgap 

was calculated. 

Table20: Calculation of the optical bandgap of each samples synthesized in order to define the repeatability 
of the synthesis with different percentages of CDs. The presence of CDs do not heavily alter the 
reproducibility of the bandgap. 

Sample Linear fit Y=0 Bandgap Mean 
WS_2 _1 Y= 4,25x - 12,43 X= 12,43 / 4,25 2,92 eV 

2,97 ± 0,07 WS_2 _2 Y= 6,83x - 20,09 X= 20,09 / 6,83 3,06 eV 
WS_2 _3 Y= 4,5x - 13,2 X= 13,2 / 4,5 2,93 eV 

WS_2 @CDs_0,01%_1 Y= 5,26x - 15,91 X= 15, 91 / 5,26 3,02 eV 
 

3,05 ± 0,06 
WS_2 @CDs_0,01%_2 Y= 5,70x - 17,20 X= 17,20 /5,70 3,01 eV 
WS_2 @CDs_0,01%_3 Y=  7,91x - 24,75 X= 24,75 / 7,91 3,13 eV 

WS_2 @CDs_0,1%_1 Y= 4,19x - 12,1 X= 12,1 / 4,19 2,89 eV 
2,90 ± 0,02 WS_2 @CDs_0,1%_2 Y=  4,35x - 12,61 X= 12,61 /4,35 2,90 eV 

WS_2 @CDs_0,1%_3 Y= 4,88x - 14,34 X= 14,34 / 4,88 2,93 eV 

WS_2 @CDs_1%_1 Y= 4,92x - 14,61 X= 14,61 /4,92 2,93 eV 
2,92 ± 0,02 WS_2 @CDs_1%_2 Y= 4,37x- 12, 73 X= 12,73 / 4,37 2,91 eV 

WS_2 @CDs_1%_3 Y=  4,26x - 12,32 X= 12,32 /4,26 2,89 eV 

 

For a better understanding of the meaning of these results, the calculated mean was plotted. As 

showed in Fig.71, was clear that the increasing amount of NCDs didn't condition reproducibility 

and bandgap of the material, because all the values were inscribed in the semidispersion of the 

other samples. Considering that the mean of the all calculated bandgap was 2,96± 0,02 eV, we 

could assume that the synthesis process, with or without NCDs, showed a discrete reproducibility. 

Of course, small bandgap values variations corresponded to appreciable differences in the ability 

of adsorbing light. For that reason, these values must be considered sufficient, but not excellent. 
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Figure 71: Comparison of the mean bandgap value calculated on the three-repeated synthesis of the 

samples WS_2, WS_2 @CDs_0,01%, WS_2 @CDs_0,1% and WS_2 @CDs_1% respectively. 

 

4.3.2- CDs loading and type study 
In order to define the effective CDs loading, elemental analysis was performed to define the 

carbon%w loaded on samples WS_2. 

Table 21: Elemental analysis of sample WS_2 loaded with different amount of NCDs 

Sample C(%w) H(%w) N(%w) 
WS_2 0,3 0,4 0,1 
WS_2@NCDs 0,1% 0,2 0,5 <0,1 
WS_2@NCDs 1% 1,1 0,62 <0,1 
WS_2@NCDs 5% 4,2 1,4 <0,1 
 

In the Tab.21, carbon, hydrogen and nitrogen %w were showed. Considering the carbon % 

increase, was possible to state that the loading process took place. In samples WS_2 and 

WS_2@NCDs 0,1% carbon detected might derived from contaminations, but carbon content in 

WS_2@NCDs 1% and WS_2@NCDs 5% unequivocally derived from NCDs. Nitrogen content in 

NCDs was too low to be detected with elemental analysis. 

In order to define if the NCDs loading can change photocatalytic properties, and to define the best 

CDs percentage, photocatalytic activity of WS_2 samples loaded with different NCDs% were 

studied. 
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In Fig.72 photocatalytic activities of WS_2 and WS_2 loaded with increasing % of NCDs had been 

presented. NTiO2ann. was compared as reference material. 
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Figure 72: Photocatalytic activity of NTiO2ann. compared withWS_2 with increasing amount of NCDs. 

From the comparison emerged that WS_2@NCDs_5% was the only sample with evident different 

photocatalytic activity. In addition, when CDs changed the behavior of the system, photocatalytic 

activity was reduced. Samples with less percentage of NCDs showed photocatalytic activity 

comparable with NTiO2ann. 

To study if different CDs loading could change sample bandgaps, Tauc plot-based study was 

performed. 
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Figure 73: Tauc plot of NTiO2ann. compared with WS_2 with increasing percentage of NCDsweight. 

As is possible to understand from the Tauc plot in Fig.73 increasing the percentage of NCDs don't 
change semiconductor bandgap. Indeed Tauc plots of the samples are completely overlapped. 

Similar conclusion could be done from the calculated band gap showed in Tab.22.  

Table.22: calculated bandgap for sample WS_2 and samples with increasing amount of NCDs. 

 

Calculated bandgap was similar for all the samples. In comparison with TiO2ann. all WS_2 samples 

showed greater bandgap. The bandgap value regularity was also significant on the type of 

interaction between CDs and titania. This was indicative that CDs didn't contaminate the crystal 

lattice with carbon atoms, and didn't reduce the bandgap introducing intragap layers typical of 

carbon-doped titania. 

 

The loading of different quantities of CDs couldn't improve photocatalytic activity neither reduce 

bandgap. The only changes from the photocatalytic point of view derived from WS_2@NCDsN5%. 

Due to this consideration, even if several NSCDs-doped WS2 were produced, only 

WS_2@NSCDs5% was taken in consideration. In this experiment WS_2 samples were, firstly, 

loaded with 5% of NCDs and NSCDs and, secondly, characterized. At this purpose, the 

photocatalytic activity and bandgap determination of the two samples were compared.  

Sample TiO2ann. WS_2 WS_2@NCDsN0,1% WS_2@NCDsN1% WS_2@NCDsN5% 
Bandgap (eV) 2,9 3,1 3,1 3,1 3,1 
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In Fig.74, photocatalytic activity conducted on WS_2, WS_2@NCDs5% and WS_2@NSCDs5% had 

been showed. 
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Figure74: Photocatalytic activity of samplesTiO2ann., WS_2 and WS_2 loaded with 5%w of NCDs and NSCDs. 

Comparing WS_2@NCDs and WS_2@NSCDs, some differences with equivalent samples loaded 

with corresponding 1%w could be noticed. WS_2@CDsN5% shows smaller photocatalytic activity, 

while WS_2@CDsNS5% showed activity comparable with WS_2 and TiO2ann. Probably the 

interaction of NSCDs with the host material didn't produce any effect on photocatalytic activity. 

To study if the CDs co-doping with sulphur could change sample bandgaps, Tauc plot-based study 

was performed. At this purpose, Tauc plot of unloaded WS_2 and reference samples as NTiO2 ann. 

were added in the comparison. 
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Figure 75: Tauc plot of WS_2 samples loaded with theoretical 5%w NCDs and co-doped NSCDs. 

Tauc plot in Fig.75 showed that the loading of 5%w of different doped CDs didn't change samples 

bandgap. Tauc plots of the samples were completely overlapped. Similar conclusion could be done 

from the calculated bandgap showed in Tab.23.  

Table23: Bandgap values of reference annealed NTiO2 and samples WS_2 unloaded and loaded with 5%w of 

different doped NCDs, calculated from Tauc Plot showed in Fig.76. 

Sample NTiO2 ann. WS_2 WS_2@NCDs5% WS_2@NSCDs5% 
Bandgap (eV) 2,9 3,1 3,1 3,1 

 

Calculated bandgap was similar for all the samples. In comparison with TiO2ann. all WS_2 based 

samples showed greater bandgap. Optimized hydrothermal treatment was applied to produce 

high crystalline WS_2 samples loaded with increasing amount of NCDs. In this way, was defined 

the minimum CDs% able to produce differences in sample properties. 

Samples were characterized from the optical and photocatalytic point of view. From the analysis, 

emerged that despite the increasing amount of loaded CDs, in calculated bandgap no change were 

noticed. Photocatalytic activities of different loaded WS_2 samples were not increased. To obtain 

different photocatalytic activity, 5%w of NCDs must be loaded. In this case, in comparison to the 

unloaded WS_2, the catalytic behavior decreased.  
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At this regard, in order to explicate the poor activity of these materials, new amorphous TiO2 

based material was loaded with NCDs and NSCDs, and processed with the optimized hydrothermal 

treatment. In this way was possible to understand if the low activity derived from the low quality 

of the amorphous material or from the optimized hydrothermal treatment. 

 

4.3.3- Comparison with standard material 
In order to define if the bad quality of the WS_2 based samples derived from the amorphous 

material or from the hydrothermal treatment, new TiO2 based samples were studied. The 

synthesis of these samples were proposed in the paragraph 3.4. These new samples were loaded 

with NCDs and NSCDs and processed with hydrothermal treatment used for WS_2 samples. 

As first characterization, XRD pattern of the basic TiO2, loaded with 1% of NCDs and NSCDs, was 

studied. The three samples were compared with a reference titania annealed at 500°C for 1h. the 

results of this study was showed in Fig. 76. 
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Figure 76: XRD pattern of the TiO2@ and loaded with 1% of NCDs and NSCDs. The three samples are 
compared with a reference sample of titania annealed at 500°C for 1h. 

XRD patterns of treated samples presented in Fig.76, showed re-arrangement from amorphous to 

crystalline material. All the three samples denoted broaden peak patterns. This characteristic 
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derived from nano-sized dimension of the material. From pattern analysis resulted that samples 

were not completely constituted by anatase. Quantification of the different peaks assigned 

approximately 10% of the samples to brookite phase. In the Tab.24, calculated quantities of the 

two phases and crystallite dimensions were reported.  

Table24: Phase quantification and crystallite dimension calculated on patterns showed in Fig.77. 

Sample Anatase % <L> (nm) Brookite % <L> (nm) 
TiO2 ann. 100 22 - - 

TiO2@CDs 0% 90,3 7,6 9,7 6,1 
TiO2@NCDs 1% 90,5 8,2 9,5 6,9 

TiO2@NSCDs 1% 90,7 8,5 9,3 6,6 

 

In comparison with TiO2ann., hydrothermal treatment produced smaller crystallites than an 

annealed material. Comparing TiO2 based samples with WS_2 based samples showed in Tab.8, the 

hydrothermal treatment produced similar crystallite dimension. 

In order to study the effective CDs loading in TiO2@NCDs1% and TiO2@NSCDs1%, elemental 

analysis was performed. 
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Figure 77: Histogram representing the %w of carbon, hydrogen, nitrogen and sulphur measured for the 
samples of loaded and unloaded TiO2 with NCDs and NSCDs.  

As is noticeable from the elemental analysis showed in Fig. 77, a fraction of carbon was detected 

in samples loaded with CDs. In comparison, the unloaded sample didn't show presence of carbon, 
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and this difference allow to argue that the detected carbon arised from CDs loading. Since during 

the synthesis of the amorphous TiO2@NCDS and TiO2@NSCDS, an amount of 1%W of CDs was 

added, the detection of 0,2% induce to assure that 
ଵହ of the added CDs was effectively loaded in 

TiO2@CDs samples. 

In order to define the morphology and the size of the samples of un-doped titania, SEM images 

were performed on unloaded TiO2@CDs0%, TiO2@NCDs_1% and TiO2@NSCDs_1%.  
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Figure 78: A) and B) SEM images of the sample of unloaded TiO2@CDs_0%. C) and D) SEM images of the 
sample of TiO2@NCDs_1%. E) and F) SEM images of the sample of TiO2@NSCDs_1%. 
 

From the morphological study, emerged that TiO2@CDs_0% showed in Fig.78A and B was 

composed by 10nm globular nanoparticles. A wide range of agglomerated nanoparticles 

composed the material, with objects constituted by few nanoparticles since micron-sized 

aggregates. As TiO2@CDs_0%, TiO2@NCDs_1%, presented in Fig.78 C and D, was composed by 

10nm globular nanoparticles. Here, the addition of NCDs suspension during the amorphous 

synthesis didn't produce substantial variations from the unloaded sample. In addition, 

nanoparticles aggregates varied from few gathered nanoparticles to big micro-sized objects. As 

the unloaded sample, TiO2@NSCDs_1%,presented in Fig. 78 E and F, was composed by globular 

nanoparticles of 10nm. Here, the addition of NSCDs suspension during the amorphous synthesis 

didn't produce substantial variations from the unloaded sample. Also in this case, nanoparticles 

aggregates varied from few gathered nanoparticles to big micro-sized objects. 

Therefore, from the morphological analysis conducted on the group of standard materials 

emerged that during the synthesis, the addition of CDs suspension didn't produce morphological 

variations. 

To define optical bandgap and the possible correspondence with bandgap and CDs loading, Tauc 

plot from reflectance measurements was studied in fig 79. 
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Figure 79: Tauc plot of TiO2@CDs_0%, TiO2@NCDs_1% and TiO2@NSCDs_1% 

As for the previous loaded materials, new samples of titania loaded with different doped NCDs 

didn't present bandgap differences from the unloaded sample. In addition, loaded CDs didn't 

condition the optical bandgap. Similar consideration could be taken from the Tab. 25. 

Table 25: Bandgap values of TiO2 samples unloaded and loaded with 1%w of different doped NCDs, 
calculated from Tauc Plot showed in Fig.80. 

Sample TiO2@CDs0% TiO2@NCDs1% TiO2@NSCDs1% 
Bandgap (eV) 3,1 3,1 3,1 

 

As final consideration, in Fig. 80 photocatalytic activity of the samples TiO2@CDs_0%, 

TiO2@NCDs_1% and TiO2@NSCDs_1% was compared with reference samples as such as P25 and 

TiO2ann. 
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Figure 80: Photocatalytic activity of TiO2@CDs_0%, TiO2@NCDs_1% and TiO2@NSCDs_1% compared with 
P25, TiO2 ann. reference materials. 

 

Comparing TiO2@NCDs and TiO2@NSCDs with reference materials clarified how the loading of CDs 

could really improve the photocatalytic activity. Despite the implementation derived from the CDs, 

P25 still showed the best photocatalytic performances.  

After the definition of the photocatalytic activity of the WS_2-based and TiO2-based group of 

samples, emerged that the quality of the amorphous material strongly conditioned the properties 

of the photocatalytic material. Considering also that the hydrothermal process was the same used 

for the treatment of the two kind of amorphous materials, we concluded that the hydrothermal 

treatment produced a good quality of photocatalytic material. Therefore, the low photocatalytic 

activity of the WS_2 based group of samples was due to the synthesis of the amorphous material. 

To better understand how the photocatalytic activity was related to the synthesis of a good 

amorphous starting material, a comparison between photocatalytic activity of TiO2@ and WS_2@ 

based systems was presented in Fig. 81. 



152 
 

0 50 100 150 200 250 300
0,0

0,2

0,4

0,6

0,8

1,0

C
/C

0

Time (min)

 P25
 WS_2@NCDs1%
 WS_2@NSCDs1%
 TiO

2
@NCDs1%

 TiO
2
@NSCDs1%

 

Figure 81: Photocatalytic activity of the samples, WS_2@NCDs1%, WS_2@NSCDs1%, TiO2@NCDs1% and 
TiO2@NSCDs1% 

From the comparison of the two group of samples, was clear that the TiO2@ based samples offer 

the best performances. This comparison clarified the good efficacy of the optimized hydrothermal 

treatment to produce high crystalline materials with good photocatalytic activity. Moreover, Fig.81 

showed how the good quality of the starting amorphous material conditioned the performances of 

the final product. 

 

4.3.4- Results 
Despite the effect of carbon nanoparticles, the low performances of WS_2 based samples, 

underlined the problem of which step determined their low quality. Therefore, to verify the 

responsibility of the low quality to the synthesis of the amorphous material or to the hydrothermal 

treatment, additional samples were synthesized. At this purpose, un-doped TiO2 loaded with 1% of 

different doped NCDs was produced. To synthesize these samples, the production of the starting 

material of TiO2 ann. was used. During the gelation step CDs water suspension was added and 

instead of annealing, the amorphous material was processed with optimized hydrothermal 

treatment. After crystallinity and bandgap characterization, photocatalytic activity was 

determined. Then, WS_2-based and TiO2-based samples were compared. From this study emerged 

that the quality of the amorphous material strongly conditioned the properties of the sample. 

Considering also that the hydrothermal process was the same used for the treatment of the two 

kind of amorphous materials, was possible to conclude that the hydrothermal treatment allowed 

producing good quality photocatalytic material. 
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Usually, photocatalytic material was firstly synthesized and annealed, secondly, was loaded 

through impregnation with CDs. Now, hydrothermal treatment draw up for crystalline titania 

production permitted the CDs loading during the synthesis of the amorphous material. This 

process allowed better interaction between CDs and photocatalytic material but, mostly 

important, allowed to not lose CDs in reaction environment. 
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5-Conclusions 
 

Nanotechnologies are massively present in our everyday life. Electronics, pharmaceutics and 

agriculture are just few fields in which nanotechnologies are present and active. For this reason, 

the design of new technologies has to take care even to its entire lifecycle and the respect 

environmental interactions. Carbon dots (CDs) are a recent family of materials in the nano systems 

universe, and since their discovery in 2004, they have attracted great attention due to their 

physical and chemical properties and their versatility in a wide range of applications, such as 

lighting and theragnostic materials.  

In this chapter, most important conclusion are presented following the adopted research line. 

As reported in results and discussion chapter, three main issues were considered and studied in 

this thesis: 1) Carbon dots, 2) Titanium dioxide and 3) Enhanced photocatalytic materials. 

 

1) Carbon dots. 

The study and application of CDs was developed to assess their viability in the field of treatment of 

polluted water and the related cytotoxicity for a possible application in nanomedicine. From this 

perspective, many efforts have been made to understand if CDs could be used for enhanced 

advanced oxidation systems, and how they could be able to produce UPCL phenomena.  

As reported in this work, we demonstrated that the CDs emission was due to the second order of 

diffraction of the main excitation light, and it is not derived by UPCL. Indeed, further studies will be 

focused on deeply understand this issue. 

Heteroatoms doping in CDs allowed to insert intragap layers in the CDs energetic structures, useful 

to delocalize charges in advanced oxidation systems and able to improve their efficiency. In order 

to study possible doped-CDs candidates, different samples have been produced via hydrothermal 

process. This kind of synthesis was chosen because it is easy to control and it has great synthesis 

reproducibility. Preliminary group of different doped CDs was synthesized using a receipt reported 

by Barman et al123.  

Optical studies carried out in this research, photoluminescence showed independence from the 

λex, but different Stoke-shift between NCDs and the other co-doped samples. The independence 

from the λex is due to the passivation of the CDs surface with high content of amine. Indeed, the 

role of amine is to substitute the surface functional groups, of different energies, with an 
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homogeneous functionalization, that has the same surface energy. The morphological 

investigations showed the small sizes of the co-doped and doped samples. This result permitted to 

understand that the dialysis is an inadequate purification method. Indeed, this kind of CDs pass 

through membrane and is lost in washing solution. With the aim to avoid the CDs lose, another 

purification process based on different chemical affinity of solvents with un-reacted material have 

been developed. The use of this process permitted to partially remove reacted materials, and 

obtain clean samples rich in CDs. 

The CDs with greater dimension produced with the changed procedure of hydrothermal synthesis, 

as reported in Materials and methods chapter, were characterized in order to select the best CDs 

to apply in enhanced photocatalytic materials. The characterization considered the optical 

properties, cytotoxicity, CDs size/surface functionalization ratio, morphological features and 

elemental analysis. The obtained results showed that DETA-based group is the most suitable 

samples for the enhancement in advanced oxidation processes and for their potentially use in 

nanomedicine. Elemental analysis results showed that in the DETA-based samples, only NCDs and 

NSCDs are doped with the right heteroatoms (N and S) as we attended. These results allowed to 

select DETA NCDs and NSCDs as the best samples to apply in enhanced photocatalytic processes. 

The cytotoxicity investigation unlighted that the use of DETA allow to produce non-toxic 

compounds. Furthermore, from our results it can be noted that CDs cytotoxicity can be 

independent on the toxicity of the starting reagent and dependent to the toxicity of degradation 

products, which contribute at the CDs formation.  

 

2) Titanium dioxide. 

The aim of the study was to develop a procedure to produce crystalline NTiO2 able to host CDs and  

be activated under solar light radiation.  

The experiments carried out following the procedure proposed by Sugimoto et al. was able to 

produce small crystallites and photoactive material. Its application on different amorphous 

materials, as the selected NTiO2, produced a crystalline material but without photocatalytic 

activity, probably due to the low crystalline amount. Furthermore, the hydrothermal procedure 

was modified and it produced sample with better photocatalytic activity but the new material lost 

all its nitrogen content. The nitrogen loss reduced the ability of the material to be activated under 

solar light. Concluding, the developed material does not satisfy the required properties. However, 
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the developed material (S_1-2-2-8-200) was loaded with CDs to study enhanced photocatalytic 

materials. 

 

3) Enhanced photocatalytic material 

Combining the CDs selected to enhance advanced oxidation processes photocatalytic activity with 

the selected S_1-2-2-8-200 material produced with the Sugimoto-modified procedure, we 

obtained a new composite which has lower photocatalytic activity. This disadvantage can be due 

to the low capability of the amorphous material (NTiO2) used in the hydrothermal procedure, to 

obtain a crystalline material without crystal defects. This aspect is demonstrated by experiments 

carried out on obtained samples in comparison with reference samples loaded with CDs.  

Concluding, synthesis and crystallization in presence of CDs should preserve CDs properties. 

However, has to be taken into consideration the use of an amorphous photocatalytic material able 

to rearrange the structure into a system free of defects. 

 

 

The world of CDs has just discovered, and despite great efforts are spent, several aspects must to 

be clarified. 

The efforts spent in this study showed several necessities, as a standardization of the CDs 

characterization. Each study considered in literature shows a partial characterization that not 

allow a complete knowledge on CDs system. A complete and systematic characterization, should 

include optical studies, cytotoxicity analysis, morphological investigation, elemental composition 

and surface functionalization. The purpose is to obtain a data-set useful to optimize the research 

and to finally use CDs for the technologic development. 

The example of the CDs toxicity is a case in point. Usually CDs are considered safety ex-ante. The 

conclusion of this study, demonstrates that CDs safety must not be taken as granted taking in 

consideration CDs size and their membrane permeability. 

 

Another point of interest emerged in this thesis, is that electrophoresis can be used to study in 

detail CDs superficial charge and size distribution. In order to make the use of electrophoresis 

unquestionably effective for CDs study, a charge/size reference is needed. In our opinion, the 

development of a reference system with well-defined charge and size objects may permit to the 

electrophoresis analysis to be a quantitative technique for the CDs study. 
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Finally, the experience developed in this study underline the necessity to study the ions which 

support functional groups decorating the CDs surface. If in literature the CDs surface is customized 

with defined functional groups, the ions that balance functional group charges are often not 

studied. A greater knowledge of these negligible aspects may permit to develop CDs with higher 

ability to load defined compounds, and may base new studies focused on carrier-CDs able to 

release defined compounds in defined environmental conditions. These studies may allow the 

developing of new drug delivery materials generation.  
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6-Appendix 
 

 

 

List of the samples 
Table 1: List of all the samples reported in this thesis. 

Carbon Dots 

Upconversion study samples 
CD_A CD_B CD_C CD_D CD_E 
Preliminary codoped NCDs 

N_CDs N_P_CDs N_B_CDs N_S_CDs 
Codoped NCDs with different nitrogen sources (synthesis #1 and #2) 

UREA_NCDs 
UREA _NPCDs 
UREA _NBCDs 
UREA _NSCDs 

ETIDI_NCDs 
ETIDI_NPCDs 
ETIDI_NBCDs 
ETIDI_NSCDs 

DETA_NCDs 
DETA_NPCDs 
DETA_NBCDs 
DETA_NSCDs 

TRITETRA-NCDs 
TRITETRA-NPCDs 
TRITETRA-NBCDs 
TRITETRA-NSCDs 

Titanium Dioxide 

Reference samples 

TiO2 ann. NTiO2 ann. TiO2comm P25 

Hydrothermal study samples 
S_1 S_2 B_1 

Crystal phase optimization 
W_1 WS_1 

WS_1 45°C WS_1 55°C WS_1 65°C 
Hydrothermal process of the nitrogen doped titanium dioxide 
WS_10_01_24_100 WS_5_01_24_100 WS_2_01_24_100 WS_2_1_24_100 WS_2_2_24_100 

WS_2_2_24_150 WS_2_2_24_200 WS_2_2_15_200 WS_2_2_8_200 Annealed 

WS_2_2_8_200  = WS_2 

Enhanced Photocatalytic Materials 
Repeatibility 

WS_2_1 WS_2@CDs_0,01%_1 WS_2@CDs_ 0,1%_1 WS_2@CDs_1%_1 

WS_2_2 WS_2@CDs_0,01%_2 WS_2@CDs_ 0,1%_2 WS_2@CDs_1%_2 

WS_2_3 WS_2@CDs_0,01%_3 WS_2@CDs_ 0,1%_3 WS_2@CDs_1%_3 

CDs loading and type of study 
WS_2 WS_2@NCDs 0,1% WS_2@NCDs 1% WS_2@NCDs 5% WS_2@NSCDs 5%

Comparison with standard material 
TiO2@CDs 0% TiO2@NCDs 1% TiO2@NSCDs 1%
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4.1.1-Upconversion studies 
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Figure 1: CD_B PL spectra excited at the same wavelength of the second harmonic. In the inset, 
magnification of the emission is proposed. PL recorded at 470nm and 475nm are magnified x5. 
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Figure 2:  CD_C PL spectra excited at the same wavelength of the second harmonic.  
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Figure 3:  CD_D PL spectra excited at the same wavelength of the second harmonic.  
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Figure 4: CD_E PL spectra excited at the same wavelength of the second harmonic. In the inset, 
magnification of the emission is proposed. 
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4.1.3.3- Electrophoresys studies 
 

UREA N NB NP NS CDs 

 

pH4 pH6
Figure 36 A)and B): Electrophoretic gel at pH 4 and pH6 respectively, performed on repeated synthesis of 
UREA_NCDs, UREA_NBCDs, UREA_NPCDs and UREA_NSCDs. 

 

UREA N NB NP NS CDs 

 

pH8 pH10
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Figure 37 A)and B): Electrophoretic gel at pH 8 and pH10 respectively, performed on repeated synthesis of 
UREA_NCDs, UREA_NBCDs, UREA_NPCDs and UREA_NSCDs. 

 

ETIDI N NB NP NS 

 

pH4 pH6
Figure 38 A)and B): Electrophoretic gel at pH 4 and pH6 respectively, performed on repeated synthesis of 
ETIDI_NCDs, ETIDI_NBCDs, ETIDI_NPCDs and ETIDI_NSCDs. 

 

 

ETIDI N NB NP NS 

 

pH8 pH10
Figure 39 A)and B):  Electrophoretic gel at pH 8 and pH10 respectively, performed on repeated synthesis of 
ETIDI_NCDs, ETIDI_NBCDs, ETIDI_NPCDs and ETIDI_NSCDs. 



179 
 

 

DETA N NB NP NS 

 

pH4 pH6
Figure 40 A)and B):Electrophoretic gel at pH 4 and pH6 respectively, performed on repeated synthesis 
DETA_NCDs, DETA _NBCDs, DETA _NPCDs and DETA _NSCDs. 

 

DETA N NB NP NS 

 

pH8 pH10
Figure 41 A)and B):  Electrophoretic gel at pH 8 and pH10 respectively, performed on repeated synthesis of 
DETA_NCDs, DETA _NBCDs, DETA _NPCDs and DETA _NSCDs. 

 
TRITETRA N NB NP NS 
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pH4 pH6
Figure 42 A)and B): Electrophoretic gel at pH 4 and pH6 respectively, performed on repeated synthesis 
TRITETRA_NCDs, TRITETRA_NBCDs, TRITETRA_NPCDs and TRITETRA_NSCDs. 

 

TRITETRA N NB NP NS 

 

pH8 pH10
Figure 43 A)and B): Electrophoretic gel at pH 8 and pH10 respectively, performed on repeated synthesis of 
TRITETRA_NCDs, TRITETRA_NBCDs, TRITETRA_NPCDs and TRITETRA_NSCDs. 
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