
b

d
g

Supplementary Figure 1. (a) Schematic representation of the high-content screening. MDA-MB231 cells were seeded in 384-well plates and 24h later the FDA-approved compounds were added to cells at 1 and $10 \mu \mathrm{M} .24 \mathrm{~h}$ after treatment, cells were fixed and processed for immunofluorescence for YAP and stained with Hoechst. Automated image acquisition and analysis was then performed to analyse the fluorescence intensity. The screening was performed in duplicate; ca. 4,500 cells were analysed per experimental condition and replicate. (b) Luciferase reporter assay (MMTV-luc). MDA-MB-231 cells were treated with Betamethasone (BM) $1 \mu \mathrm{M}$ alone or in combination with RU486 $1 \mu \mathrm{M}$ for 24 h. Data are normalized to NT. Error bars represent mean \pm s.d., from $n=3$ biological replicates. (c) MDA-MB-231 and MII cells were treated with Betamethasone (BM) $1 \mu \mathrm{M}$ alone or in combination with RU486 $1 \mu \mathrm{M}$ for 24 h . Representative blots are shown. $\mathrm{n}=3$. (d) qRT-PCR analysis of MDA-MB-231 cells relative to Figure 1D. Error bars represent mean \pm s.d., from $n=3$ biological replicates. (e) qRT-PCR analysis of MDA-MB-231 cells transfected with indicated siRNA for 48h and treated with $1 \mu \mathrm{M}$ Betamethasone (BM) for 24 h . CTL siRNA is control siRNA. (f) Representative images of immunofluorescence in MDA-MB-231. Cells were grown in $10 \% \mathrm{FBS}$ and treated with $1 \mu \mathrm{M}$ Betamethasone (BM) for 24h. Scale bars, $15 \mu \mathrm{~m}$. (g) MII, BT-549 and MDA-MB-231 cells were transfected with control (siCTL) or Glucocorticoid Receptor (siGR) siRNA for 48h. Representative blots are shown. (h) MDA-MB-231 cells were transfected with control (siCTL) or Glucocorticoid Receptor (siGR) siRNA for 48 h and treated with cycloheximide $50 \mu \mathrm{M}$ for indicated hours. Representative blots (left) and densitometry analysis (right) are shown. $* P<0.05, * * P<0.01$; Two-tailed Student's t-test is used throughout.

Supplementary Figure 2. (a) Immunofluorescence images shown in Figure 3C, here presented with their nuclear staining (Hoechst). (b) Immunofluorescence images shown in Figure 3E, here presented with their nuclear staining (Hoechst). (c) qRT-PCR analysis in MDA-MB-231 transfected with indicated siRNAs. Error bars represent mean \pm s.d., from $\mathrm{n}=3$ biological replicates. (d) Quantification of cells with nuclear YAP by immunofluorescence. MDA-MB-231 transiently overexpressing YAPWT or YAP-5SA were treated with RU486 $1 \mu \mathrm{M}$ for 24 h in serum-free medium containing BM $1 \mu \mathrm{M}$. Error bars represent mean \pm s.d., from $n=3$ biological replicates. ${ }^{*} P<0.05,{ }^{* *} P<0.01$; Two-tailed Student's t-test is used throughout.

Supplementary Figure 3. (a) ChIP-Seq data for GR in A549 cell line treated with 100 nM Dexamethasone from ENCODE project. Signal represents normalized read density of GR; peaks are regions with significant binding. (b) Upon 6 h of betamethasone $1 \mu \mathrm{M}$ treatment, MDA-MB-231 cells were subjected to ChIP with either anti-GR antibody or normal Rabbit IgG. Binding of GR to the FN1 promoter was quantified by calculating the fold increase of normalized immunoprecipitated chromatin over the control IgG by qRT-PCR. The amplification of genomic region of the muscarinic acetylcholine receptor (AcR) promoter was used as control of GR specificity binding. Error bars represent mean \pm s.d., from $n=3$ biological replicates. (c) qRT-PCR analysis of MDA-MB-231 treated with $1 \mu \mathrm{M}$ Betamethasone (BM) alone or in combination with RU486 $1 \mu \mathrm{M}$ for 24 h . (d) qRT-PCR analysis of MDA-MB-231 transfected with indicated siRNA for 48 h and treated with $1 \mu \mathrm{M}$ Betamethasone (BM) alone or in combination with RU486 1 $\mu \mathrm{M}$ for 24h. (e) qRT-PCR analysis of serum starved MDA-MB-231 treated with $1 \mu \mathrm{M}$ Betamethasone (BM) alone or in combination with RU486 $1 \mu \mathrm{M}$ for the indicated times. (f) qRT-PCR analysis in MDA-MB-231 transfected with indicated siRNAs. Error bars represent mean \pm s.d., from $n=3$ biological replicates. (g) Quantification of cells with nuclear YAP (left) or with stress fibers (right) by immunofluorescence. MDA-MB-231 cells were transfected with indicated siRNAs for 24 h and treated with BM $1 \mu \mathrm{M}$ for additional 24 h in serum-free medium. Error bars represent mean \pm s.d., from $\mathrm{n}=3$ biological replicates. $* P<0.05,{ }^{* *} P$ <0.01; Two-tailed Student's t-test is used throughout.

Supplementary Figure 4. (a) Quantification of vinculin positive foci by immunofluorescence in MDA-MB-231 cells treated as indicated for 24 h in serum-free medium. Error bars represent mean \pm s.d., from $\mathrm{n}=3$ biological replicates. (b) Representative images of immunofluorescence in MDA-MB231. Cells were grown in serum free medium and treated with Betamethasone (BM) $1 \mu \mathrm{M}$ for 6 h . Scale bars, $15 \mu \mathrm{~m}$. (c) Representative images of immunofluorescence in MDA-MB-231 relative to Figure 5C. (d) Quantification of cells with stress fibers by immunofluorescence. MDA-MB-231 cells were treated as indicated for 24 h in serum-free medium. Error bars represent mean \pm s.d., from n=3 biological replicates. (e) qRT-PCR analysis of MDA-MB-231 cells grown in serum-free medium containing latrunculin A. $0.5 \mu \mathrm{M}$ (lat.A) and treated with Betamethasone (BM) $1 \mu \mathrm{M}$ for 24 h . Error bars represent mean \pm s.d., from $n=3$ biological replicates. (f) MDA-MB- 231 cells were grown in serum-free medium in presence of Betamethasone (BM) $1 \mu \mathrm{M}$ alone or in combination with Dasatinib (DAS) $0.1 \mu \mathrm{M}$ or PF-573228 (PF) $5 \mu \mathrm{M}$ for 24 h . Representative blots are shown. ${ }^{*} P<0.05$, ${ }^{* *} P<$ 0.01; Two-tailed Student's t-test is used throughout.

Supplementary Figure 5. Representative images of immunofluorescence in MDA-MB-231. Cells were grown in serum free medium containing Betamethasone (BM) $1 \mu \mathrm{M}$ and treated as indicated for 6h. LAT. is latrunculin A. $0.05 \mu \mathrm{M}$. Scale bars, $15 \mu \mathrm{~m}$.

Supplementary Figure 6. (a) CD44/24 FACS analyses of MII cells treated as indicated for 5 days. Percentage of CD44/CD24 cell populations is indicated. (b) Number of secondary mammospheres from MDA-MB-231 cells as in Figure 6b. Error bars represent mean \pm s.d., from $n=3$ biological replicates. (c) Number of secondary mammospheres from MDA-MB-231 cells as in Figure 6h. Error bars represent mean \pm s.d., from $n=3$ biological replicates. (d) Number of secondary mammospheres from MDA-MB-231 cells as in Figure 6b. Error bars represent mean \pm s.d., from $n=3$ biological replicates. (e) Scatter plot (black dots) and linear regression (red line) of standardized expression values indicate a positive correlation between gene signatures of GR activity (upper panels, [42]; lower panels, [26]) and a gene signature denoting YAP activity [75], in a metadataset of $n=3,661$ primary human breast cancers and in the $\mathrm{n}=751$ PAM50 basal samples (see Materials and Methods). (f) Primary human breast cancers $(\mathrm{n}=3,661)$ of a metadataset were stratified according to high or low GR activity and then the levels of the breast stem cell signature scores [52,53] were determined in the two groups. GR activity scores were obtained summarizing the standardized expression levels of signature genes into a combined score with zero mean [72]. Stem cell signature levels have been calculated as the standardized average expression of all signature genes in high and low sample subgroups (see Materials and Methods). Stem cell signature level is significantly higher in tumours with high levels of GR activity, as visualized by the box plot (*P $<0.05, * * * * \mathrm{P}<0.0001$, two-tailed Student's t-test). (g) MDA-MB-231 cells were treated with vehicle (NT) or Betamethasone $1 \mu \mathrm{M}$ (BM) alone or in combination with RU486 $1 \mu \mathrm{M}$, and DMSO or Paclitaxel $0,1 \mu \mathrm{M}$ for 48 h . Representative blots are shown. ${ }^{*} P<0.05,{ }^{* *} P<0.01$; Two-tailed Student's t-test is used throughout.

Supplementary Figure 7. Uncropped blots of main figures.

Supplementary Table 1: genes of the GR activity signatures

GENE	siRNA NAME	siRNA SEQUENCE
Human YAP1	siYAP \#1	CUGGUCAGAGAUACUUCUU
Human YAP1	siYAP \#2	GACAUCUUCUGGUCAGAGA
Human LATS1	siLATS1	CACGGCAAGAUAGCAUGGA
Human		
LATS2	siLATS2	AAAGGCGUAUGGCGAGUAG
Human GR	siGR	CCGAGAUGUUAGCUGAAAU
Human FN1	siFN1 \#2	ACAAUGGAGUGAACUACAATT
Human		
Human FN1	siFN1 \#1	siSGUGGUG

Supplementary Table 2: siRNAs sequences.

GENE	PRIMER NAME	PRIMER SEQUENCE
H3	H3 F	GTGAAGAAACCTCATCGTTACAGGCCTGGT
	H3 R	CTGCAAAGCACCAATAGCTGCACTCTGGAA
CTGF	CTGF F	AGGAGTGGGTGTGTGACGA
	CTGF R	CCAGGCAGTTGGCTCTAATC
ANKRD1	ANKRD1 F	CACTTCTAGCCCACCCTGTGA
	ANKRD1 R	CCACAGGTTCCGTAATGATTT
GR	GR F	TACCCTGCATGTACGACCAA
	GR R	TССТTСССТСTTGACAATGG
CYR61	CYR61 F	AGCCTCGCATCCTATACAACC
	CYR61 R	TTCTTTCACAA GGCGGCACTC
GILZ1	GILZ1 F	TCTGCTTGGAGGGGATGTGG
	GILZ1 R	ACTTGTGGGGATTCGGGAGC
LATS1	LATS1 F	CTCTGCACTGGCTTCAGATG
	LATS1 R	TCCGCTCTAATGGCTTCAGT
LATS2	LATS2 F	ACATTCACTGGTGGGGACTC
	LATS2 R	GTGGGAGTAGGTGCCAAAAA
$\begin{aligned} & \text { GAPDH } \\ & \text { mouse } \end{aligned}$	$\begin{aligned} & \text { GAPDH m } \\ & \mathrm{F} \end{aligned}$	ATCCTGCACCACCAACTGCT
	$\begin{array}{ll} \text { GAPDH m } \\ \mathrm{R} \end{array}$	GGGCCATCCACAGTCTTCTG
$\begin{aligned} & \text { CTGF } \\ & \text { mouse } \end{aligned}$	CTGF m F	CTGCCTACCGACTGGAAGAC
	CTGF m R	CATTGGTAACTCGGGTGGAG

Supplementary Table 3: Primer sequences.

Term	PValue	Benjamini
hsa05200: Pathways in cancer	$1,20 \mathrm{E}-04$	0.017
hsa04920:Adipocytokine signaling pathway	$3,30 \mathrm{E}-04$	0.022
hsa05222:Small cell lung cancer	$2,00 \mathrm{E}-03$	0.089
hsa05215: Prostate cancer	$3,10 \mathrm{E}-03$	0.102
hsa04510:Focal adhesion	$3,10 \mathrm{E}-03$	0.084
hsa04910:Insulin signaling pathway	$3,10 \mathrm{E}-03$	0.071
hsa05220:Chronic myeloid leukemia	$3,10 \mathrm{E}-03$	0.061
hsa04520:Adherens junction	$3,10 \mathrm{E}-03$	0.064

Supplementary Table 4: Pathway enrichment analysis (KEGG) of the Dexamethasone-induced genes list (DAVID functional annotation).

ID	Gene Name
795442	baculoviral IAP repeat-containing 3
781132	catenin (cadherin-associated protein), beta 1, 88kDa
797879	collagen, type VI, alpha 3
816368	epidermal growth factor receptor
800291	fibronectin 1
778146	filamin B, beta (actin binding protein 278)
797639	integrin, alpha 10
799503	integrin, alpha 5 (fibronectin receptor, alpha polypeptide)
777632	integrin, beta 4
825374	kinase insert domain receptor (a type III receptor tyrosine kinase)
809283	phosphoinositide-3-kinase, regulatory subunit 3 (gamma)
821855	placental growth factor
784849	platelet-derived growth factor alpha polypeptide
772977	son of sevenless homolog 1 (Drosophila)
786559	son of sevenless homolog 2 (Drosophila)
781513	v-raf-1 murine leukemia viral oncogene homolog 1
788771	vasodilator-stimulated phosphoprotein
822191	vinculin

Supplementary Table 5: List of Dexamethasone-induced genes involved in focal adhesion.

