
On the Automatic Design of a Representation
for Grammar-based Genetic Programming

Eric Medvet and Alberto Bartoli

Department of Engineering and Architecture, University of Trieste, Trieste, Italy
emedvet@units.it, bartoli.alberto@units.it

Abstract. A long-standing problem in Evolutionary Computation con-
sists in how to choose an appropriate representation for the solutions. In
this work we investigate the feasibility of synthesizing a representation
automatically, for the large class of problems whose solution spaces can
be defined by a context-free grammar. We propose a framework based
on a form of meta-evolution in which individuals are candidate repre-
sentations expressed with an ad hoc language that we have developed
to this purpose. Individuals compete and evolve according to an evo-
lutionary search aimed at optimizing such representation properties as
redundancy, locality, uniformity of redundancy.
We assessed experimentally three variants of our framework on estab-
lished benchmark problems and compared the resulting representations
to human-designed representations commonly used (e.g., classical Gram-
matical Evolution). The results are promising in the sense that the
evolved representations indeed exhibit better properties than the human-
designed ones. Furthermore, while those improved properties do not re-
sult in a systematic improvement of search effectiveness, some of the
evolved representations do improve search effectiveness over the human-
designed baseline.

Keywords: Genotype-phenotype mapping, Grammatical Evolution, Meta-
evolution

1 Introduction

The choice of the representation of individuals in an Evolutionary Algorithm
(EA) has been a central point in the field of Evolutionary Computation since its
inception [29, 22]. In many cases, that choice has been guided a priori by analo-
gies with the biology, in which researchers looked for inspiration while designing
their artificial evolutionary systems, on the assumption that Nature eventually
succeeded as an effective search method [34]. On the other hand, the impact of
the representation on the EA search effectiveness has also been widely studied
a posteriori. In this respect, a common and well established practice consists in
investigating any possible relationship between properties of the representation
such as, e.g., redundancy and locality [23, 15, 31], and higher level properties of
the EA, e.g., neutrality [3] and evolvability [14].

2 E. Medvet, A. Bartoli

Despite these efforts, it is fair to claim that both approaches (a priori and a
posteriori) failed in clearly determining if and when a representation can guar-
antee the search effectiveness of an EA: copying from the Nature does not nec-
essarily lead to a good design [30, 7] and there is not a clear view of which
properties actually explain a good or a poor search effectiveness [1]. Indeed, the
debate is still lively, with arguments ranging from (deemed) misuse of Nature
analogies [35] to experimental-based (counter-)evidences [24] and outcomes in-
cluding guidelines for the design of a representation [34] or directions for future
research [29].

A case of particular interest is the one of indirect representations, i.e., those
in which each individual is represented by means of a genotype and a phenotype
and a mapping function exists for mapping the former to the latter. Practical
motivations for choosing an indirect representation include the possibility of us-
ing standard genetic operators—whose behavior is well known—and, at the same
time, tackling problems for which specific constraints act on the solutions (i.e.,
phenotypes). Moreover, indirect representations do have a counterpart in biol-
ogy, where the form of living organisms depends on the result of a transcription
process operating on encoded genetic material. Finally, indirect representation
properties can be easily defined and studied both analytically and experimentally
basing on the mapping function.

One of the most used EAs based on an indirect representation is Grammatical
Evolution (GE) [25], a form of grammar-based Genetic Programming (GP) [10],
which captures all the three aspects of indirect representations described above.
First, GE allows tackling the large class of problems in which constraints on the
solutions may be expressed by means of a context-free grammar (CFG). Second,
according to its inventors, the overall GE framework was directly inspired by
Nature [17]. Third, the properties of the GE genotype-phenotype mapping func-
tion have been widely studied [32, 31, 11]: indeed, those properties eventually
served as main goals while designing new GE variants, essentially consisting in
new mapping functions which were shown to be more effective than the original
approach [9, 12].

In this work, we attempt to provide new insights on the long-standing, un-
dercurrent topic of the choice of the representation. To this end, we consider the
broad class of EAs corresponding to grammar-based GP and propose a novel
approach for the automatic design of a representation driven by an evolution-
ary search aimed at optimizing the representation properties. Our proposal thus
tries, in a sense, to merge the a priori and a posteriori approaches.

Our contribution consists of the following: (a) we define a class of represen-
tations in which the genotype is a variable-length bit string and the phenotype
is a valid string w.r.t. a user-provided grammar; (b) we propose an evolution-
ary framework for searching the aforementioned space of representations; (c) we
experimentally investigate the ability of the proposed framework to generate rep-
resentations whose properties and search effectiveness are better than existing,
established representations.

Automatic Design of a Representation for Grammar-based GP 3

In detail, the class of representations is defined by a genotype-phenotype
mapping function template whose variable parts are described with a language
which we defined by means of a CFG. The mapping function template and the
language are such that: (i) any representation in the resulting class is a valid
genotype-phenotype mapping function—i.e., any input bit string is mapped to
a valid phenotype in a finite number of steps; (ii) it is possible to express such
existing and established representations as the original GE mapping [25] and
the recently proposed HGE and WHGE [12]. Having defined the search space
in terms of a CFG, we use a grammar-based evolutionary search method (CFG-
GP [36]) which we augmented using a diversity promotion strategy in order to
improve search effectiveness [13]. For driving the search, we use a fitness function
measuring to which degree an individual (i.e., a genotype-phenotype mapping
function) exhibits such mapping properties as redundancy, locality, uniformity
of redundancy. We compute those measures on a large amount of mappings
obtained from a sample grammar and a set of randomly generated genotypes.

We investigated 3 search variants differing in the fitness definition and op-
timization strategy (i.e., single-objective vs. multi-objective). We assessed each
obtained representation experimentally not only in terms of the mapping prop-
erties, but also in terms of higher level EA properties (diversity) and of the
search effectiveness achieved on a small set of benchmark problems previously
used in the literature for assessing GE and its variants. The results are promis-
ing as some of the automatically generated representations are better than the
existing ones. Although our findings do not imply that automatically-designed
representations may fully surrogate carefully human-designed representations,
they further corroborate the importance of representation properties and might
ignite new research in the novel field of “self-evolving” evolutionary algorithms.

The remainder of the paper is organized as follows. In Section 2, we briefly
survey the state-of-the-art. In Section 3, we introduce our genotype-phenotype
mapping function template and the related CFG for describing its variable parts.
In Section 4, we describe which are the properties we use to drive the evolution
of the mapping function and how we compute them. In Section 5, we present
and discuss the results of our experimental evaluation. Finally, in Section 6, we
draw the conclusions.

2 Related work

Broadly speaking, our proposal is a form of meta-evolution [6] (also known as
hyper-heuristic [20] or self-adaptation [26]), where parts of an EA are chosen
or tuned according to a second-level evolutionary search. In most cases, the
literature focuses on specific EA parameters which can be optimized, rather
than designed from scratch—e.g., mutation and crossover rate in Genetic Se-
mantic Programming [2] or trial vector and control parameters in Differential
Evolution [21]. The application of evolutionary computation to evolve (online
or offline) components, rather than parameter values, of an EA is instead still
believed to be in its infancy [29], in particular for representation and variation

4 E. Medvet, A. Bartoli

operators. For the former, the scarcity of research results may be explained by
its hardness, as observed by De Jong [5]: “perhaps the most difficult and least
understood area of EA design is that of adapting its internal representation.”

Concerning the evolution of operators, the authors of [8] show how they
evolved a general purpose mutation operator for Evolutionary Programming
which outperforms existing operators on classes of functions (i.e., problems); they
also experimentally show that a mutation operator evolved for a specific problem
is better than a general purpose evolved operator. A similar goal is aimed at in [4],
where a framework for the online evolution of the operators, together with the
solutions, is proposed: as in the previously cited work, operators are represented
as trees and evolved using GP. Similarly to the present work, [4] considers also
other EA properties (diversity) other than search effectiveness as a criterion of
analysis.

Concerning the automatic design or adaptation of representations, a proposal
is presented in [28], where genotype-phenotype mapping for continuous opti-
mization problems is considered. The authors show, using a proof-of-concept
self-adaptation mechanism, that feed-forward neural networks can be used to
represent and improve a genotype-phenotype mapping, also for problems of re-
alistic complexity. Similarly to our work, the authors carefully consider redun-
dancy and locality in their analysis.

Another view on automatic design of representation is given by [27], which
again addresses the class of real-valued optimization problems: here, the repre-
sentation is the way in which the real values are encoded using a bit string. With
the premise that they focused only on (few) synthetic problems, due to the high
computational costs implied by meta-evolution, the authors find that an evolved
representation may improve the classical Gray encoding.

Also relevant w.r.t. our work are some proposals concerning grammar-based
GP in which the grammar itself is evolved (or improved) online, during the
evolution [38, 18]. Despite the evolution of a new, general purpose representation
was not among the goals of the cited papers (they rather attempt to discover
more knowledge about the problem defined by the user-provided grammar by
improving the grammar itself), they somehow demonstrate how a representation
can change while still enforcing the problem-specific constraints on the solutions.
In conclusion, to the best of our knowledge, our work is the first attempt of
evolving a general purpose representation for a large class of problems, as the
one addressable with grammar-based GP.

3 Representation template

We consider a family of EAs with an indirect representation where the genotype
ĝ is a variable-length bit string and the phenotype p̂ is a string of a language
L(G) defined by a CFG G = (N,T, s0, R), where: N is the set of non-terminal
symbols, T is the set of terminal symbols (with T∩N = ∅), s0 ∈ N is the starting
symbol, and R is the set of production rules. We do not pose any constraint on
components of the EA other than the representation (e.g., selection criteria for

Automatic Design of a Representation for Grammar-based GP 5

reproduction of removal of individuals, initialization). It is worth to note that
many significant and widely used variants of GE (beyond its original version)
belong to this family of EAs (e.g., πGE [16], HGE and WHGE [12]).

We define a representation template, i.e., a template of a mapping between
a variable-length bit string (genotype) and a string in L(G) (phenotype), as
follows. The mapping is based on the notion of derivation tree of a symbol s in
N ∪ T . Such a tree is rooted at s and the children of each non-terminal node
s′ ∈ N are symbols (in the proper order) of one of the derivation options for s′

in G. The derivation tree is constructed with the algorithm specified below. The
mapping occurs in two steps: the input genotype ĝ is mapped to a derivation tree
of the initial symbol s0 of G; the corresponding phenotype p̂ is then obtained by
concatenating, from the left to the right, the leaf nodes of the derivation tree.

Construction of a derivation tree is performed by a function Map(s, g, d),
where s is a symbol of T ∪ N , g is a bit string, and d ∈ N+ ∪ {0} is a posi-
tive number. This function essentially consists in three key steps: (i) choose one
derivation option among the ones available for s, by invoking function Choose();
(ii) obtain from g several bit strings, by invoking function Divide(); (iii) recur-
sively call itself for each symbol in the chosen derivation option, with the symbol,
one of the bit strings previously obtained, a counter d+ 1 of recursion depth as
input parameters.

Functions Choose() and Divide() are parameters of Map() and their sig-
nature includes a bit string as input argument. Their domain consists of all the
functions that can be defined by a language described in Section 3.1 that we
developed. The search space for representations, thus, essentially consists in all
the possible implementations for Choose() and Divide().

The mapping of ĝ to a derivation tree of s0 is done by invoking Map(s0, ĝ, 0).
The corresponding phenotype p̂ is then obtained by concatenating the leaf nodes
of the derivation tree.

In details, Map() is shown in Figure. 1 and works as follows. If s is a terminal
node, the tree composed by a single node s is returned by Map(s, g, d), regardless
of the values of g and d. Otherwise, the following steps are performed.

1. The derivation rule rs for the input argument s is obtained.

2. A vector e ∈ R|rs| is built, where each element ej is the product of the ex-
pressiveness of all the symbols in the jth option of rs. The expressiveness
of a symbol s′ (denoted by Expressiveness(s′) in Figure 1) is a measure
of the expressive power of s′: we quantify expressiveness with the number of
different derivation trees which can be obtained from s′. We limit the count-
ing to derivation trees with a maximum dexpr depth (an implicit parameter
of Expressiveness() and hence of the representation itself) in order to cope
with non-finite languages, for which Expressiveness(s′) may be infinite.

3. If the input argument d is greater than or equal to a predefined value dmax

(a parameter of the representation), the index i of the chosen rule option
is set to the value for which ei is the lowest in e. Otherwise, i is set to the
return value of a function Choose() which takes as input g, e, d and returns

6 E. Medvet, A. Bartoli

Algorithm 1 The genotype-phenotype recursive mapping function, which is
first invoked as Map(s0, ĝ, 0).

function Map(s, g, d)
t← TreeNode(s)
if s ∈ N then . s is a non-terminal

rs ← RuleFor(s)
for j ∈ {1, . . . , |rs|} do

ej ←
∏

s′∈Symbols(rs,j)

Expressiveness(s′)

end for
e← (e1, . . . , e|rs|)
if d ≥ dmax then . maximum depth reached

i← arg min
j∈{1,...,|rs|}

ej

else
i← Choose(g, e, d)

end if
(s1, . . . , sn)← Symbols(rs, i)
for j ∈ {1, . . . , n} do

ej ← Expressiveness(sj)
end for
e← (e1, . . . , en)
(g1, . . . , gm)← Divide(g, e, d)
for j ∈ {1, . . . , n} do . Append children

AppendChild(t,Map(sj , gj , d+ 1))
end for

end if
return t

end function

a number that will be used at the next step for choosing one of the options
of the derivation rule rs.

4. The sequence of symbols s1, . . . , sn corresponding to the ith option of the
rs rule is obtained. We denote by Symbols() the corresponding grammar
look-up function in Figure 1; Symbols() is protected, i.e., it works for any
i by using min(|rs| − 1,max(0, bic)) instead of the original argument i.

5. The vector e is reset to (e1, . . . , en), where ej is the expressiveness of sj
obtained at the previous step.

6. A sequence (g1, . . . , gm) of bit strings is set to the return value of a function
Divide() which takes as input g, e, d and returns a sequence of bit strings.
Each of these bit strings will be used at the next step for constructing sub-
trees to be appended to the derivation tree being constructed.

7. For each symbol sj in s1, . . . , sn, the tree obtained by recursively invoking
the Map(sj , gj , d + 1) is appended to the tree (initially) composed of the
only node s, which is eventually returned. While performing this step, in
case j > m (i.e., if there are fewer bit strings than symbols to built the
children of s), an empty bit string is passed to Map() as gj .

Automatic Design of a Representation for Grammar-based GP 7

〈mapper〉 ::= 〈n〉 〈lg〉 〈fun.n.n,n〉 ::= + | - | * | / | %
〈n〉 ::= 〈const.n〉 | 〈var.n〉 | 〈fun.n.g〉 (〈g〉) | 〈fun.n.n,n〉 (〈n〉 , 〈n〉) | 〈fun.n.ln〉 (〈ln〉) | 〈fun.n.ln〉 ::= length | max.index | min.index

〈fun.n.ln,n〉 (〈ln〉 , 〈n〉) | 〈fun.n.lg〉 (〈lg〉)
〈ln〉 ::= 〈var.ln〉 | 〈fun.ln.n〉 (〈n〉) | 〈fun.ln.n,n〉 (〈n〉 , 〈n〉) | apply (〈fun.n.g〉 , 〈lg〉) 〈fun.n.ln,n〉 ::= get

〈g〉 ::= 〈var.g〉 | 〈fun.g.g,n〉 (〈g〉 , 〈n〉) | 〈fun.g.lg,n〉 (〈lg〉 , 〈n〉) 〈fun.n.lg〉 ::= length

〈lg〉 ::= 〈fun.lg.g,n〉 (〈g〉 , 〈n〉) | 〈fun.lg.g,ln〉 (〈g〉 , 〈ln〉) | apply (〈fun.g.g,n〉 , 〈ln〉 , 〈g〉) 〈fun.ln.n〉 ::= seq

〈const.n〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 〈fun.ln.n,n〉 ::= repeat

〈var.n〉 ::= depth | g.count.r | g.count.rw 〈fun.g.g,n〉 ::= rotate.left | rotate.right | substring
〈var.g〉 ::= g 〈fun.g.lg,n〉 ::= get

〈var.ln〉 ::= ln 〈fun.lg.g,n〉 ::= split | repeat
〈fun.n.g〉 ::= size | weight | weight.r | int 〈fun.lg.g,ln〉 ::= split.w

Fig. 1. The CFG GMap defining the language for the Choose() and Divide() func-
tions and hence for an instance of the genotype-phenotype mapping function template
defined by Map().

Regardless of the actual behavior of Choose() and Divide(), it can be easily
seen that Map() always returns a derivation tree (from which a valid phenotype
is then obtained) in a finite number of steps. First, whenever the value of d (which
is increased at each recursive invocation) reaches a threshold, the derivation
option is chosen as the one with the lowest expressiveness, instead of by using
the Choose() function: since in any valid CFG, for any non-terminal symbol,
there is at least one derivation option with a finite expressiveness, this guarantees
that in a finite number of steps Map() will be invoked with a terminal symbol
s ∈ T . Second, regardless of the return value of Choose(), a valid derivation is
always chosen for s, since only options of rs are considered.

3.1 Language for the mapping function

Functions Choose() and Divide() are parameters of the mapping function. The
space of possible values for these parameters consists of all the functions that
may be described by the CFG GMap specified in Figure 1 and discussed below.

GMap includes terminal symbols representing numerical constants (0, . . . , 9),
input arguments (g for g, ln for e, and depth for d), and functions (e.g., size returns
the length of a bit string, weight returns the number of bits set to 1 in a bit string).

Names for the non-terminal symbols representing functions begin with fun
and encode the signature of the function with a simple conventional rule. For
example, 〈fun.lg.g,n〉 represents functions whose return value is of type 〈lg〉 and
whose list of input arguments is of types 〈g〉 and 〈n〉. Non-terminal symbols
other than functions represent data types: 〈n〉 represents numbers, 〈ln〉 represents
sequences of numbers, 〈g〉 represents bit strings, 〈lg〉 represents sequences of bit
strings. Thus, the above example represents functions whose return value is a
number and that take a bit string followed by a number as input arguments.

Concerning terminal symbols that represent functions, as the size and weight
described above, we omit a detailed description of the semantics, leaving it im-
plicit in the name of the corresponding symbols. All the functions are type-
protected, i.e., they guarantee that a correctly typed value is always returned—

8 E. Medvet, A. Bartoli

e.g., the number n in which a bit string g is split by the split function is internally
adjusted as min(`(g),max(1, bnc)), where `(g) is the length of the bit string g.

Symbols g.count.r and g.count.rw corresponds to accessing a global counter, the
former reads the value of the counter while the latter reads and then incre-
ments its value. By “global” we mean that a single counter is maintained during
the execution of both Choose() and Divide(); this counter is set to 0 when
the enclosing Map() is first called with parameters s0, ĝ, 0. Including a global
counter allows to express also genotype-phenotype mapping functions which are
not inherently recursive, but can be expressed as recursive function thanks to
the counter: the original GE mapping fits this case (see Figure 2).

Non-terminal symbol 〈mapper〉 is the crucial component for expressing an in-
stance of the genotype-phenotype mapping function, i.e., of functions Choose()
and Divide(). This symbol can be derived only as a pair 〈n〉, 〈lg〉: the concatena-
tion of the leaves of the derivation tree rooted at the left child of 〈mapper〉 is the
function Choose(); similarly, the right child represents the function Divide().

As stated in the introduction, a key feature of our proposal is that it allows
expressing such existing and established genotype-phenotype mapping functions
as those used in GE, HGE, and WHGE. Indeed, Figure 2 shows the Choose()
and Divide() functions corresponding to (a slightly improved version of) GE
and WHGE. Differently than the original GE mapping, this version does not
require a mechanism for aborting the mapping when it looks endless (in [25]
there is a maximum number of genotype reuses, i.e., wrappings), since that case
is addressed by comparing d against dmax in Map().

GE
Choose() int(substring(rotate.left(g, *(gl.count.rw, 8)), 8))
Divide() repeat(g, length(ln))

WHGE
Choose() max.index(apply(weight.r, split(g, length(ln))))
Divide() split.w(g, ln)

Fig. 2. Choose() and Divide() for the original GE mapping and for WHGE.

4 Properties-driven evolution

Since we defined the search space of the problem of the automatic design of a
representation by means of the CFG GMap, we can tackle that problem using any
grammar-based GP approach (e.g., GE, πGE, SGE, HGE, WHGE, CFG-GP),
provided that we define a fitness function suitable for driving the search. In this
work, we want a fitness function able to capture the degree to which a candidate
representation m ∈ L(GMap) exhibits the desired mapping properties.

Among the several properties of indirect representations which have been
studied in the literature (see [22] for a comprehensive analysis), we considered
redundancy, locality, and uniformity of redundancy—we actually considered non-
locality and non-uniformity in order to conform to the semantics of “the lower,
the better”.

We measure the properties of a representation m basing on how m maps
a predefined set G of genotypes to a corresponding set P of phenotypes using
a predefined CFG Glearn. That is, for each ĝ ∈ G we construct p̂ = m(ĝ) by

Automatic Design of a Representation for Grammar-based GP 9

concatenating, from the left to the right, the leaf nodes of the derivation tree
returned by Map(ĝ, s0, 0), where Map() is the instance of the map function
template corresponding to m and s0 is the starting symbol of Glearn. Having
constructed P from G according to m, we quantify the properties of interest as
follows.

The redundancy of m is measured as 1− |G||P | , i.e., one minus the ratio between

the number |G| of unique genotypes and the number |P | of unique phenotypes.
The locality of m is measured as the Pearson correlation between the dis-

tances among genotypes and distances among phenotypes. More formally, let

DG be the sequence of |G|(|G|−1)2 genotype distances (i.e., dGi,j = dG(ĝi, ĝj) is the

distance between the ith and the jth elements of G, with j < i) and let DP be the
corresponding sequence of phenotype distances (i.e., dPi,j = dP (m(ĝi),m(ĝj))).

The locality is the Pearson correlation cor(DG, DP) between DG and DP . As
distances, we used the edit distance for both bit strings and strings of L(Glearn).

The non-locality is measured as 1 − 1+cor(DG,DP)
2 , such that it is 0 when geno-

type and phenotype distances are perfectly correlated (cor(DG, DP) = 1), and
1 when they are inversely correlated (cor(DG, DP) = −1).

Finally, the uniformity of m is measured by means of the coefficient of vari-
ation of the size of the partitions of G for which every genotype in the par-
tition corresponds to the same phenotype. More formally, let G1, . . . , G|P | the
partitions of G such that, for each k, ∀ĝi, ĝj ∈ Gk : m(ĝi) = m(ĝj), and let
S = |G1|, . . . , |G|P || contains the sizes of the partitions. The non-uniformity is
the coefficient of variation σS

µS
of S.

In order to define a criterion for driving the evolutionary search in the space
of representations, we considered that, according to many studies, redundancy,
locality, and uniformity appears to affect the effectiveness of the search in the
respective order [17, 23, 14]. We hence explored three variants for driving the
search for a representation: by minimizing redundancy only (single-objective),
by minimizing redundancy and non-locality (multi-objective), and by minimizing
redundancy, non-locality, and non-uniformity (multi-objective). We denote the
respective search variants by R, R/NL, and R/NL/NU.

In all of our experiments, we used CFG-GP [36] as the evolutionary search
algorithm, in a version augmented with the diversity promotion mechanism pre-
sented in [13] (with npartition = 10 as partition size, phenotype equivalence as
partitioning criterion, and youngest individual as parent representative selection
criterion) and with the selection criteria for reproduction and removal of indi-
viduals based on the comparison between individuals according to the Pareto
dominance.

5 Experiments and discussion

We performed an experimental evaluation aimed at answering the two following
research questions: RQ1: Can we evolve a representation which is better than
the existing ones in terms of redundancy, locality, and uniformity? RQ2: Are the
evolved representations also effective when used inside an actual EA?

10 E. Medvet, A. Bartoli

In order to answer RQ1, we proceeded as follows. First, we executed a num-
ber nlearningrun = 10 of learning runs for each of our proposed variants R, R/NL,
R/NL/NU. From each learning run we obtained a set of non-dominated represen-
tations (R/NL and R/NL/NU variants, multi-objective) and a set of represen-
tations with the same, minimal redundancy value (R variant, single-objective).

Second, for each learning run, we selected a subset of nvalidationrepr = 5 represen-
tations for further analysis, as follows. We selected one representation randomly
and then we selected iteratively, one at once, the nvalidationrepr − 1 representations
which are farthest from those already selected in terms of Euclidean distance on
the fitness space (in case of ties we chose one representation at random).

Third, for each selected representationm, we performed a number nvalidationrun =
5 of validation runs on each of the three validation problems specified below.
That is, we solved each of those problems with representation m and the evolu-
tionary search algorithm resulting from Table 1 (right).

In summary, we performed 3×10 = 30 learning runs and 3×10×5×3×5 =
2250 validation runs. The software we developed for this experimentation is
publicly available1.

Table 1. Parameters for the evolutionary runs.

Learning Validation

Population size 500 500
Pop. initialization Ramped half-and-half Random
Generations 50 30
Max depth dmax 14 9
Expressiveness depth dexpr N. A. 2
Genotype size N. A. 1024
Crossover rate 0.8 0.8
Crossover operator CFG-GP crossover two-points same length
Mutation rate 0.2 0.2
Mutation operator CFG-GP mutation bit flip w. pmut = 0.01
Selection for reproduction tournament with size 3 tournament with size 3
Selection for removal worst individual worst individual
Replacement m+m w. overlapping m+m w. overlapping

We structured learning runs as follows. We composed the set of genotypes G
with the following steps: (i) we randomly generated a seed set of 10 bit strings,
each of length equal to 256 bit; and, (ii) for each genotype in the seed set, we
obtained other 9 genotypes by iteratively applying the bit-flip mutation opera-
tor (with pmut = 0.01). The rationale was to obtain a uniform distribution of
distances among the genotypes, useful in particular for measuring of the locality
property. We used the CFG of the Pagie1 problem as grammar Glearn for map-
ping G to the corresponding set P of phenotypes. We set the parameters of the
evolutionary search with CFG-GP in the space of representations as in Table 1
(left).

1 https://github.com/ericmedvet/evolved-ge

Automatic Design of a Representation for Grammar-based GP 11

We used the following three benchmarks as validation problems: the K-
Landscape synthetic problem [33] (with k = 5), the Pagie1 symbolic regres-
sion problem [19], and the Text generation synthetic problem [11]. Two of these
benchmarks have been recommended as standard benchmarks for GP perfor-
mance evaluation [37], whereas the last one (Text) has been designed specifically
for assessing GE and presents a grammar of larger complexity.

Table 2 shows the property values for the evolved representations, averaged
across the 5 selected representations for each of the 10 learning runs. The first
three rows correspond to property values computed in the learning runs only
(hence using the Pagie1 grammar only); the second three rows correspond to
property values computed using the grammars of the 3 validation problems; the
last three rows correspond to property values for the GE, HGE, and WHGE
representations computed using the grammars of the 3 validation problems and
can be used as baseline. We emphasize that all the baseline are human-designed,
i.e., they are the result of dedicated research efforts.

Table 2. Representation properties.

Search variant Redundancy Non-locality Non-uniformity

L
ea

rn
. R 0

R/NL 0.095 0.032
R/NL/NU 0.797 0.319 0.077

V
a
l. R 0.266 0.291 0.284

R/NL 0.247 0.28 0.292
R/NL/NU 0.261 0.29 0.288

GE 0.990 1.000 0.000
HGE 0.620 0.403 2.211
WHGE 0.410 0.412 2.689

It can be seen that, in general, property values for the evolved representation
are much better than for the baselines. Furthermore, property values on the
validation problems appear to be independent from the search variant (R vs.
R/NL vs. R/NL/NU). We interpret this result as a combination of: (i) these
values are computed on 3 grammars w.r.t. the one used for learning; and, (ii) for
multi-objective fitness variants, the shown values tend to “average” different
representations, i.e., points which are far away from each other in the fitness
space.

In order to answer RQ2 we then examined the search effectiveness of the
evolved representations. That is, we examined the fitness values for each of the
validation problems when solved with the evolved representations and when
solved with the baseline representations. Table 3 shows, for each validation prob-
lem, the final best fitness BF and the difference ∆BF between the final and initial
best fitness—both BF and ∆BF are averaged, for each evolved representation
and baseline, across the nvalidationrun = 5 validations runs. Index ∆BF is relevant
as it should capture the ability of the representation to actually improve the so-

12 E. Medvet, A. Bartoli

lution during the evolution. For each of the three search variants, Table 3 shows
BF and ∆BF obtained with the best, mean, and worst representations among
the nlearningrun = 10 learning runs with that search variant.

Table 3. Final best fitness BF and difference ∆BF between final and initial best fitness.

BF ∆BF

Search variant Best Mean Worst Best Mean Worst

K
L

a
n
d
.-

5

R 0.11 0.6 0.81 0.48 0.11 0
R/NL 0.58 0.66 1 0.27 0.11 0
R/NL/NU 0.55 0.7 1 0.33 0.06 0
GE 1 0
HGE 0.58 0.06
WHGE 0.6 0.25

P
a
g
ie

1

R 3.42 338.66 4488.27 2440.7 400.88 2.16
R/NL 3.32 114.39 1142.28 7975.03 579.07 0
R/NL/NU 7.42 45.61 169.16 172.18 33.62 0
GE 20.99 0
HGE 4.32 6.33
WHGE 2.75 6.86

T
ex

t

R 6.5 65.12 176 10.5 3.93 0
R/NL 7 88.06 176 154 25.23 0
R/NL/NU 8.33 75.95 176 57 3.89 0
GE 9.2 1.8
HGE 5.4 2.6
WHGE 5.4 3.2

It can be seen that for each validation problem there is at least one evolved
representation which is more effective than the GE baseline. On the other hand,
all the human-designed baselines tend to perform better than the average evolved
representation. It can also be seen that the R search strategy tends to be more
effective than either R/NL or R/NL/NU: driving the evolution of the repre-
sentation by redundancy only, thus, appears to be the more effective choice. It
is interesting to note that the evolved representations tend to exhibit a much
greater value for ∆BF than the baseline representations, that is, the evolved rep-
resentations appear to be able to improve fitness during a search significantly.

The finding that the R strategy is more effective than either R/NL or R/NL/NU
is confirmed also by Table 4. The table shows, for each problem and each of the
three best representations obtained with each search variant, the average per-
centile rank of the final best fitness among all the validation runs (i.e., including
other evolved representations) on that problem.

Finally, in order to gain further insights into the evolved representations, we
analyzed the populations of the validation runs in terms of diversity at the level of
phenotype and of fitness. We measured diversity as the rate of unique individuals

Automatic Design of a Representation for Grammar-based GP 13

Table 4. Percentile ranks of three most effective representations for each search variant.

Search variant n KLand.-5 Pagie1 Text

R
1 0.003 0.086 0.003
2 0.009 0.09 0.003
3 0.316 0.021 0.003

R/NL
1 0.182 0.016 0.003
2 0.059 0.252 0.035
3 0.549 0.303 0.051

R/NL/NU
1 0.1 0.303 0.068
2 0.311 0.303 0.103
3 0.311 0.303 0.103

in the initial and in the final population. Table 5 shows the results, for each search
variant and for each baseline: for the evolved representations, diversity were
computed averaging across runs and across representations with the same search
variant—e.g., the 0.66 initial phenotype diversity for R on the KLandscapes-5
problem is obtained by averaging the phenotype diversities measured at the first
generation of the 5× 5 = 25 validation runs performed with R search variant on
that problem.

Table 5. Initial and final diversities.

KLand.-5 Pagie1 Text

Search variant In. Fin. In. Fin. In. Fin.

P
h
en

o
ty

p
e

R 0.66 0.5 0.99 0.49 0.93 0.21
R/NL 0.95 0.68 1 0.27 0.68 0.19
R/NL/NU 0.41 0.29 0.37 0.06 0.28 0.06
GE 0.01 0 0.01 0 0.05 0
HGE 0.49 0.31 0.58 0.01 0.95 0.03
WHGE 0.45 0.46 0.63 0.06 0.92 0.02

F
it

n
es

s

R 0.44 0.19 0.97 0.47 0.13 0.01
R/NL 0.83 0.04 0.98 0.16 0.04 0
R/NL/NU 0.35 0.01 0.37 0.05 0.03 0
GE 0.01 0 0.01 0 0 0
HGE 0.42 0 0.42 0 0.13 0
WHGE 0.33 0.02 0.54 0.05 0.12 0

It can be seen that the populations evolved with the evolved representations
are, in general, more diverse, than those evolved with the baselines, both from
the point of view of the phenotype and of the fitness. However, we believe that
this effect might be a result of the generally better search effectiveness of the
baselines, which could lead to faster convergence of the population towards one
or few (possibly locally) optimal solutions. On the other hand, it is interesting
to note that the representations evolved with the R strategy appear more ca-
pable of preserving the population diversity: this finding confirms the interplay

14 E. Medvet, A. Bartoli

existing between redundancy and diversity, which has already been highlighted
in previous works [11].

6 Concluding remarks and future work

In the attempt of providing new insights into the long-standing problem of choos-
ing the most appropriate representation for an EA, we have presented a method
for the automatic synthesis of a representation for the large class of problems
whose solutions spaces can be defined by a CFG. We have defined a represen-
tation template for genotype-phenotype mapping, in the form of a recursive
function with two parameter functions that can be described using an ad hoc
language that we have developed for this purpose. Our representation template
is expressive enough to describe the classic GE mapping and more recent pro-
posals such as HGE and WHGE; at the same time, our template is much more
general and ensures that any instance representation is valid, i.e., it maps any
input variable-length bit string to a string of the user-provided language in a fi-
nite number of steps. We used CFG-GP to evolve the representations expressed
by our template with a multi-objective optimization of 3 crucial representation
properties: redundancy, non-locality, and non-uniformity.

We executed a number of experiments and carefully assessed the evolved rep-
resentations using human-designed representations proposed earlier in the liter-
ature, i.e., GE, HGE, and WHGE. The results show that our proposal indeed
allows automatically designing a representation which exhibits better properties
than the human-designed ones. However, only in few cases the evolved repre-
sentations are also able to provide better search effectiveness. We hope that
our work might open new research perspectives in the young field of automatic
design of representations.

References

1. Altenberg, L.: Probing the axioms of evolutionary algorithm design: Commentary
on “on the mapping of genotype to phenotype in evolutionary algorithms” by peter
a. whigham, grant dick, and james maclaurin. Genetic Programming and Evolvable
Machines 18(3), 363–367 (Sep 2017)

2. Castelli, M., Manzoni, L., Vanneschi, L., Silva, S., Popovič, A.: Self-tuning geomet-
ric semantic genetic programming. Genetic Programming and Evolvable Machines
17(1), 55–74 (2016)

3. Correia, M.B.: A study of redundancy and neutrality in evolutionary optimization.
Evolutionary computation 21(3), 413–443 (2013)

4. Cruz-Salinas, A.F., Perdomo, J.G.: Self-adaptation of genetic operators through
genetic programming techniques. In: Proceedings of the Genetic and Evolutionary
Computation Conference. pp. 913–920. GECCO ’17, ACM, New York, NY, USA
(2017)

5. De Jong, K.: Parameter setting in eas: a 30 year perspective. Parameter setting in
evolutionary algorithms pp. 1–18 (2007)

Automatic Design of a Representation for Grammar-based GP 15

6. Fogel, D.B., Fogel, L.J., Atmar, J.W.: Meta-evolutionary programming. In: Signals,
systems and computers, 1991. 1991 Conference record of the twenty-fifth asilomar
conference on. pp. 540–545. IEEE (1991)

7. Foster, J.A.: Taking “biology” just seriously enough: Commentary on “on the map-
ping of genotype to phenotype in evolutionary algorithms” by peter a. whigham,
grant dick, and james maclaurin. Genetic Programming and Evolvable Machines
18(3), 395–398 (Sep 2017)

8. Hong, L., Drake, J.H., Woodward, J.R., Özcan, E.: A hyper-heuristic approach
to automated generation of mutation operators for evolutionary programming.
Applied Soft Computing (2017)

9. Lourenço, N., Pereira, F.B., Costa, E.: Sge: a structured representation for gram-
matical evolution. In: International Conference on Artificial Evolution (Evolution
Artificielle). pp. 136–148. Springer (2015)

10. Mckay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based
genetic programming: a survey. Genetic Programming and Evolvable Machines
11(3-4), 365–396 (2010)

11. Medvet, E.: A comparative analysis of dynamic locality and redundancy in gram-
matical evolution. In: Genetic Programming: 20th European Conference, EuroGP
2017, Amsterdam, Netherlands, April 19-21, 2017, Proceedings. p. to appear.
Springer International Publishing, Cham (2017)

12. Medvet, E.: Hierarchical grammatical evolution. In: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO (2017)

13. Medvet, E., Bartoli, A., Squillero, G.: An effective diversity promotion mechanism
in grammatical evolution. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion. pp. 247–248. GECCO ’17, ACM, New York, NY,
USA (2017)

14. Medvet, E., Daolio, F., Tagliapietra, D.: Evolvability in grammatical evolution.
In: Proceedings of the Genetic and Evolutionary Computation Conference. pp.
977–984. GECCO ’17, ACM, New York, NY, USA (2017)

15. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian ge-
netic programming. IEEE Transactions on Evolutionary Computation 10(2), 167–
174 (2006)

16. O’Neill, M., Brabazon, A., Nicolau, M., Garraghy, S.M., Keenan, P.: πGrammatical
Evolution, pp. 617–629. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

17. O’Neill, M., Ryan, C.: Genetic code degeneracy: Implications for grammatical
evolution and beyond. In: European Conference on Artificial Life. pp. 149–153.
Springer (1999)

18. O’Neill, M., Ryan, C.: Grammatical evolution by grammatical evolution: The evo-
lution of grammar and genetic code. Genetic Programming pp. 138–149 (2004)

19. Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evolu-
tionary computation 5(4), 401–418 (1997)

20. Pappa, G.L., Ochoa, G., Hyde, M.R., Freitas, A.A., Woodward, J., Swan, J.: Con-
trasting meta-learning and hyper-heuristic research: the role of evolutionary algo-
rithms. Genetic Programming and Evolvable Machines 15(1), 3–35 (Mar 2014)

21. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with
strategy adaptation for global numerical optimization. IEEE transactions on Evo-
lutionary Computation 13(2), 398–417 (2009)

22. Rothlauf, F.: Representations for genetic and evolutionary algorithms. In: Rep-
resentations for Genetic and Evolutionary Algorithms, pp. 9–32. Springer Berlin
Heidelberg (2006)

16 E. Medvet, A. Bartoli

23. Rothlauf, F., Goldberg, D.E.: Redundant representations in evolutionary compu-
tation. Evolutionary Computation 11(4), 381–415 (2003)

24. Ryan, C.: A rebuttal to whigham, dick, and maclaurin by one of the inventors of
grammatical evolution: Commentary on “on the mapping of genotype to phenotype
in evolutionary algorithms” by peter a. whigham, grant dick, and james maclaurin.
Genetic Programming and Evolvable Machines pp. 1–5 (2017)

25. Ryan, C., Collins, J., Neill, M.O.: Grammatical evolution: Evolving programs for
an arbitrary language, pp. 83–96. Springer Berlin Heidelberg, Berlin, Heidelberg
(1998)

26. Saravanan, N., Fogel, D.B., Nelson, K.M.: A comparison of methods for self-
adaptation in evolutionary algorithms. BioSystems 36(2), 157–166 (1995)

27. Scott, E.O., Bassett, J.K.: Learning genetic representations for classes of real-
valued optimization problems. In: Proceedings of the Companion Publication of
the 2015 Annual Conference on Genetic and Evolutionary Computation. pp. 1075–
1082. ACM (2015)

28. Simões, L.F., Izzo, D., Haasdijk, E., Eiben, A.E.: Self-adaptive genotype-phenotype
maps: neural networks as a meta-representation. In: International Conference on
Parallel Problem Solving from Nature. pp. 110–119. Springer (2014)

29. Spector, L.: Introduction to the peer commentary special section on “on the map-
ping of genotype to phenotype in evolutionary algorithms” by peter a. whigham,
grant dick, and james maclaurin. Genetic Programming and Evolvable Machines
18(3), 351–352 (Sep 2017)

30. Squillero, G., Tonda, A.: (over-)realism in evolutionary computation: Commentary
on “on the mapping of genotype to phenotype in evolutionary algorithms” by peter
a. whigham, grant dick, and james maclaurin. Genetic Programming and Evolvable
Machines pp. 1–3 (2017)

31. Thorhauer, A.: On the non-uniform redundancy in grammatical evolution. In: In-
ternational Conference on Parallel Problem Solving from Nature. pp. 292–302.
Springer (2016)

32. Thorhauer, A., Rothlauf, F.: On the locality of standard search operators in gram-
matical evolution. In: International Conference on Parallel Problem Solving from
Nature. pp. 465–475. Springer (2014)

33. Vanneschi, L., Castelli, M., Manzoni, L.: The k landscapes: a tunably difficult
benchmark for genetic programming. In: Proceedings of the 13th annual conference
on Genetic and evolutionary computation. pp. 1467–1474. ACM (2011)

34. Whigham, P.A., Dick, G., Maclaurin, J.: On the mapping of genotype to phenotype
in evolutionary algorithms. Genetic Programming and Evolvable Machines pp. 1–9
(2017)

35. Whigham, P.A., Dick, G., Maclaurin, J., Owen, C.A.: Examining the best of both
worlds of grammatical evolution. In: Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation. pp. 1111–1118. ACM (2015)

36. Whigham, P.A., et al.: Grammatically-based genetic programming. In: Proceedings
of the workshop on genetic programming: from theory to real-world applications.
vol. 16, pp. 33–41 (1995)

37. White, D.R., Mcdermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kron-
berger, G., Jaśkowski, W., O’Reilly, U.M., Luke, S.: Better gp benchmarks: commu-
nity survey results and proposals. Genetic Programming and Evolvable Machines
14(1), 3–29 (2013)

38. Wong, P.K., Wong, M.L., Leung, K.S.: Hierarchical knowledge in self-improving
grammar-based genetic programming. In: International Conference on Parallel
Problem Solving from Nature. pp. 270–280. Springer (2016)

