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Abstract

The research activity reported in this thesis concerns the numerical study of hydroacoustic
noise generation and propagation. Sound waves may be emitted whenever a relative motion
exists between two fluids or between a fluid and a surface. Examples for which flow-induced
noise has been a subject of concern are industrial jets and valves, automobiles, airplanes,
helicopters, wood-cutting machinery, ventilation fans, marine propellers, and household
rotary lawn mowers.

In nearly all problems of flow-generated noise, the energy source for sound production is
a kind of flow unsteadiness. This unsteadiness is not necessary associated to turbulence,
as there are numerous cases of tonal sounds (whistles, cavity tones, singing propellers and
turbine blades) that involve sinusoidal disturbances in the fluid. A number of other cases
of flow-induced sound, at low velocity (or Mach number) especially, involve a restricted
region of free shear turbulence (jets) or in contact with a body. An essential ingredient of
flow unsteadiness that determines the efficiency of noise production in non-cavitating and
bubble-fluids is its own vorticity.

In the latter decades, sophisticated fluid dynamic and acoustic solvers have been developed
also in view of the exponential increase of the available computational resources. However a
number of aspects related to acoustic modeling need further investigation. This is especially
true when noise production and propagation are related to complex physics (among the
others hydro-elastic effects, shock waves and cavitation bubbles), to the presence of multiple
sources or to the presence of inhomogeneous and moving media.

A direct acoustic model would require the numerical solution of the Navier-Stokes equations
for compressible flows. Few studies of this kind are available in literature, mostly limited
to 2D cases or elementary configurations. However, two fundamental problems arise: the
different time scales between fluid dynamic and acoustic processes and the limited dimen-
sions of the fluid dynamic mesh with respect to the acoustic “far” field. Both aspects make
unfeasible the direct adoption of the Navier-Stokes equations for compressible flows in case
of practical interest. An alternative choice, commonly in use in literature, is represented
by the so—called hybrid methods (descending from the so-called acoustic analogies), which
allow to decouple the fluid dynamic problem from the acoustic one. The background idea
is to treat the flow as a collection of noise sources, and to describe the way the pressure
signals interact and propagate in the field through the wave theory. This methodology
provides a number of advantages, the most important being that, starting from an essen-
tially confined (fluid dynamic) domain, the acoustic solution is radiated in the (acoustic)
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far field at any point of interest. Further, due to the presence of different source terms,
the inhomogeneous wave equation provides a simple identification of the dominant source
mechanisms taking place in the flow.

In the past decades much attention has been paid to aeroacoustic noise problems (i.e.
helicopter rotor noise). Over the years, theoretical and numerical models suitable for
transonic or super-sonic flows have been developed, and their effectiveness has been tested.
The main source of noise has been identified with the pressure field variation on the blades
surface, known as thickness and loading noise. To detect this type of noise source it is
enough to consider the linear terms of the Ffowcs Williams and Hawkings (FW-H) equation.
In underwater environment the acoustic waves, thus the pressure disturbances, travel at
speed much higher than that of the flow motion, such that most of hydrodynamic phenom-
ena are in an incompressible regime. Wave length is commonly much larger than the length
scale of the considered problem (such as the immersed body’s side). Moreover, vortex de-
veloping at the rear of an immersed body, persists on the wake until breaking downstream
thus giving a considerable contribution to the noise signature.

Under these conditions, the mechanisms of noise production and propagation need a differ-
ent modeling. Thus, in this work, different solution methodologies of the FW-H equation
are analyzed and discussed in order to account for the non-linear terms. In particular,
the advective form of the non-linear terms, suitable for wind-tunnel type of problems, is
derived.

The flow field, regarded as a collection of noise impulses, needs to be reproduced accu-
rately. A Large-Eddy Simulation (LES) is here considered as the most advantageous tool
to reproduce turbulent flows and, at the same time, deal with cases of practical interest.
The first part of the study is dedicated to the assessment of the model: we perform a LES
of a flow around a finite-size square cylinder. We compare the contribution from different
terms of the FW-H equation with the fluid dynamic pressure. Different methods which
are proposed in literature were considered. The direct integration of the volume terms
was found to give the most accurate results. Moreover, through dimensional analysis it is
observed that for hydrodynamic problems, where velocity of a body is small compared to
the speed of sound, the direct integration of the volume term is licit and practical .

The direct computation of non-linear terms, by integrating on the volume region surround-
ing the immersed body, is then employed, in the second part of the thesis, for the study
of noise signature generated by a flow around three different geometries: sphere, cube and
prolate spheroid. In spite of the fact that the frontal section of the bodies has the same
area, the analysis shows that a streamlined body is able to produce a pressure signal one
order of magnitude lower than that generated by a bluff geometry. Also, the presence of
sharp corners enhances the acoustic field generated by the body, both in amplitude and in
frequencies. A qualitative analysis between the case of the elongated square cylinder and
the cube, shows that the persistence of a two-dimensionally shaped wake when compared
to a three-dimensional wake contributes to increase the quadrupole part of the radiated
noise.

Last part of the thesis is devoted to a preliminary study of the acoustic field emitted by a
cavitating flow.
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Cavitation may be interpreted as the rupture of the liquid continuum due to excessive
stresses. It is the evaporation of a liquid in a flow when the pressure drops below the
saturation pressure of that liquid. The importance of understanding cavitating flows is
related to their occurrence in various technical applications, such as pumps, turbines, ship
propellers and fuel injection systems, as well as in medical sciences.

There are several types of cavitation. Distinct appearances of cavitation are: sheet cavi-
tation, bubble cavitation and vortex cavitation. Sheet cavitation may occur on hydrofoils,
on blades of pumps and propellers, specifically when the loading is high. This type of
cavitation can hardly be avoided, because of high efficiency requirements. The dynamics
of sheet cavitation often generates strong pressure fluctuations due to the collapse of shed
vapor structures, which might lead to erosion of surface material and intense and complex
noise track. In this thesis a preliminary study on the cavitation noise is proposed, first
considering an isolated bubble then a bubble cloud and then a two-dimensional hydro-
foil. In the last chapter, dedicated to concluding remarks, open questions and likely future
developments are hinted.

To summarize, the main results of the research are:

a dimensional analysis related to the time delays issue; the derivation of the advective
formulation of the non-linear volume term, necessary for evaluating the radiating noise
in wind-tunnel problems; the comparison of the noise signature radiated from different
bluff bodies, with considerations regarding the contribution of FW-H linear and non-linear
terms.
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Chapter 1

Introduction

Analysis of fluid mechanics noise is of primary importance in a number of industrial and
environmental applications. The acoustic pollution problems and their own impact on the
environment, the stringent regulations concerning transportation industry and military ap-
plications are just few examples of the growing attention toward development of theoretical
and numerical tools able to perform reliable noise predictions [9, 42]. For this reason, in the
latter decades, sophisticated fluid dynamic and acoustic solvers have been developed, also
due to the remarkable increase of computational resources. However, a number of aspects
related to acoustic modeling need further investigation. This is especially true when noise
production and propagation are related to complex physics (among the others, turbulence,
shock waves or cavitation bubbles), to the presence of multiple sources (with mutual in-
terference or scattering problems) or to the presence of inhomogeneous and moving media
62, 34].

Fluid dynamic noise represents the propagation of pressure/density disturbances generated
by a flow and the evaluation of the acoustic field would require the solution of the Navier-
Stokes equations for compressible flows. However, few studies are available in literature
where the above mentioned equations are solved numerically, they are mostly limited to
2D cases or elementary configurations (see, for example, Inoue and Hatakeyama [29] and
Marsden et al. [39]). On the other hand, engineering applications require accounting for
realistic three-dimensional (3D) geometry, often in presence of complex source system. This
leads to two fundamental problems: the different time scales between fluid dynamic and
acoustic processes and the limited dimensions of the fluid dynamic mesh with respect to the
acoustic wavelength. Both aspects make the direct use of the Navier-Stokes equations for
acoustic purposes very complex and computationally demanding. An alternative choice,
commonly in use in literature, is represented by the so—called acoustic analogy, which allows
to decouple the fluid dynamic problem from the acoustic one. The background idea is to
treat the flow as a collection of noise sources, and to describe the way pressure signals
interact and propagate in the field through the wave theory. This methodology provides a
number of advantages, the most important being that, starting from an essentially confined
(fluid dynamic) domain, the acoustic solution can be radiated in the acoustic far field at any



point of interest. Further, due to the presence of different source terms, the inhomogeneous
wave equation provides a simple identification of the dominant source mechanisms taking
place in the flow.

The original Lighthill analogy [35] represents a rearrangement of the fundamental conser-
vation laws of mass and momentum into an inhomogeneous wave equation. Lighthill’s work
was first extended by Curle [15], who accounted for the possible presence of a body in the
flow field, and subsequently by Ffowcs Williams and Hawkings [18], who developed a more
comprehensive formulation in which the body could be considered in motion. Accordingly,
earlier formulations appear to be special cases of the FW-H equation. A very useful feature
of the FW-H equation is that its original differential form can be turned into an integral
formulation (by the use of the free-space Green’s function), thus enabling the assessment
of the acoustic field through a relatively simple post-processing of fluid dynamic data.
Another important feature is the relationship between the resulting acoustic pressure and
three different integral terms (corresponding to three different source terms of the FW-H
differential equation), which are representative of all possible noise generation mechanisms.
Two terms correspond to surface (hereafter referred to as 2D) integrals. Whether the inte-
gration domain corresponds to the surface of the body source, they identify two processes:
the noise generated by the fluid displaced by the body (thickness component) and that
coming from the fluid dynamic loads acting on the body surface (loading component). In
this case, the 2D integrals are recognized as the “linear” terms of the FW-H equation and
coincide (for a stationary body) with the formulation proposed by Curle. The third term of
the FW-H equation accounts for all possible sources occurring in the field as a result of the
flow-body interaction (turbulence, vorticity, etc.); it is known as the nonlinear (quadrupole)
noise and, in principle, requires a volume (hereafter referred to as 3D) integration over the
whole fluid region affected by the body motion. The direct evaluation of such nonlinear
term has been carried out rarely, for different reasons. First of all, it has always been con-
sidered computationally demanding and complex to be implemented. Further, for many
years the quadrupole noise was believed to be relevant for bodies moving at a high speed
only (transonic or supersonic regime), when the flow is affected by the presence of shock
waves; at these conditions, some complex generating noise mechanisms arise (depending
on body motion and the position of the measurement point [25]) and the kernels of the
volume integrals may become singular. However, it is worth pointing out that, for a ma-
rine propeller, the need to compute the FW-H quadrupole term at (very low) subsonic
regime has been recently called into question and its contribution to the (hydro)acoustic
far field seems to be far from negligible [27]. The (aero)acoustic community moved towards
some alternative approaches, as the Kirchhoff method [32] and, subsequently, the so—called
porous formulation [17, 7].

The porous formulation consists of moving the 2D integrals from the body surface over an
external, closed and “permeable” radiating surface Sp, embedding the body together with
the whole fluid region containing the relevant nonlinear sources. This allows to account
for the contribution of the quadrupole sources located inside the domain wrapped by the
surface Sp through a simple and fast 2D integration. The main drawback of the method is
that the reliability of noise prediction is sensitive to the choice of the integration domain



and to the accuracy of fluid dynamic data available on Sp. Moreover, in many practical
problems (as a marine propeller, or, in general, those characterized by the presence of a
long, vortical wake advected downstream) the noise sources can be hardly embedded within
a closed domain, and the vorticity crossing the porous surface gives rise to a spurious
contribution of numerical nature. In literature, this undesired behavior is known as the
end—cap problem.

To avoid this problem, in literature, it is common to place the porous domain in a region
where the vorticity of the flow results negligible. In the case of a vorticity wake persisting
downstream, the ”outlet” side of the porous domain is omitted, so as to have an open
domain of integration.

In recent years, the porous formulation has been employed by several authors and improved
in many aspects. As regards the end—cap problem, Lockard and Casper [37] developed a
correction to account for fluid dynamic sources propagating through the permeable surface.
Their quadrupole boundary correction worked encouragingly for several two-dimensional
test cases and was also employed for a flow around a three—dimensional cylinder. In order
to reduce the spurious noise due to the end—cap problem, Rahier et al. [19] proposed to
add 2D flux terms representing an approximation of the complementary volume integral.
The effectiveness of their method was tested for an isolated vortex and a turbulent jet.
Nitzorski and Mahesh [11] developed a sophisticated end—cap solving technique, based on
multiple exit planes, over which the flux of quadrupole terms are subtracted and corre-
lated to correction parameters computed dynamically; this technique was first validated
considering a convecting potential vortex and, then, successfully applied to the study of the
noise propagating from the turbulent flow around an infinite circular cylinder, for different
Reynolds numbers.

To summarize, recent literature has demonstrated the importance of the non-linear quadrupole
terms in the far field noise propagation for a wide class of engineering problems; the direct
integration of the 3D volume terms has been avoided for a series of problems, the most
important being the evaluation of the time-delay which makes the computation imprac-
tical. The evaluation of these terms has been reconsidered through a porous formulation
which transforms 3D volume integrals onto 2D integrals over a porous surface embedding
the noise source. Techniques have been developed to solve the end-cap problem.

As regards the base fluid-dynamic field to be used within the context of the hybrid methods,
in literature it has been well recognize that the quality of the data plays a very important
role (for a discussion see the review paper of Brentner and Farassat [8]). More recently,
Lockard and Casper [37] found discrepancies between calculations using detached—eddy
simulation (DES) and the Spalart—-Allmaras Reynolds Averaged Navier-Stokes (RANS)
turbulence model, thus emphasizing the need for very accurate input dataset. A similar
conclusion can be found in the work of Ianniello et al. [20], where the authors studied
the hydroacoustic behavior of a marine propeller combining a RANS simulation with the
FW-H porous method; they highlighted the importance of the FW-H nonlinear terms and
demonstrated the inadequacy of a RANS approach to capture the nonlinear noise sources
required to achieve an accurate noise prediction. Nitzorski and Mahesh [11] underlined
that for highly turbulent flows a LES led to better results than Unsteady-RANS.



The adequacy of results from Large-Eddy simulations (LES) in conjunction with the acous-
tic analogies was investigated by different authors [17, 58], who focused their attention on
the high frequencies cut-off related to the unresolved sub-grid scales; their main conclusion
was that filtering removes the small-scales fluctuations contributing to the higher deriva-
tives of the Lighthill’s tensor. However, the small scales, being not strongly correlated, are
not expected to contribute significantly to the noise in the far field.

To summarize, in hydrodynamics, the new concept of ‘silent ship’ for reducing the envi-
ronmental impact of cruise ships, as well as military applications are pushing toward new
and state-of-art methodologies for the analysis of the radiated noise from immersed objects
(among the others, ship propellers). It must be emphasized that the effect on the far-field
noise of a persistent wake in hydrodynamics is more relevant and important to study than
in aeroacoustics. This is the reason for which most research in hydroacoustic is oriented
toward development of methodologies for an accurate reproduction of the non-linear terms
coming from the wake. Among the others, the porous methodology has given encourag-
ing results although the problem of closure of the domain in the wake region appears not
fully solved and an application to realistic cases is still not available. We consider the
‘standard’ application of the porous technique and compare results with those obtained by
direct volume integration. About this latter aspect, it is worth mentioning that, although
the mathematical formulation of the volume term (at least for a body in motion in a fluid
otherwise at rest) is known in literature since the original Lighthill manuscript, a direct
volume integration has been always avoided due to the the time delays issue. The compact-
ness condition for the noise source has been applied tout court to hydrodynamics without
performing a rigorous dimensional analysis highlighting the main difference between the
two field, namely the very different sound speed and the rotational velocity of blades.

In this context, the results of the present work concern:

» highlight these differences, performing a rigorous analysis of the problem of the time
delays in hydrodynamic applications;

» show that in hydrodynamics, the direct integration of the volume terms is feasible
and advantageous;

» derive the advective formulation of the non-linear volume term, necessary for evalu-
ating the radiating noise in wind-tunnel problems, which basically are the standard
problems in computational fluid dynamic applications;

» apply the acoustic analogy coupled with LES to compare the noise signature radiated
from different archetypal geometries;

» implement the acoustic formulations within the OpenFOAM® platform as post-
processing utilities.

Last part of the thesis is dedicated to an introductory study on cavitation noise.



Cavitation is the evaporation of a liquid in a flow when the pressure drops below the
saturation pressure of the liquid. The importance of understanding cavitating flows is
related to their occurrence in various technical applications, such as pumps, turbines, ship
propellers and fuel injection systems, as well as in medical sciences such as lithotripsy
treatment and the flow through artificial heart valves. The occurrence of low pressure
regions in flows is a well-known phenomenon. For example, in the case of a Venturi, i.e.
a converging duct followed by a diverging one, the velocity is maximum at the throat
where the cross section is minimum. Then, according to Bernoulli equation, the pressure
is minimum there and the risk of cavitation is maximum. Another example is the flow
around a foil at a given angle of attack which is representative of that around the blades of
a hydraulic machine. From classical hydrodynamics, it is well-known that the foil is subject
to a lift because of a lower pressure on the suction side in comparison to the pressure side.
Hence, the suction side is expected to be the place where cavitation will first develop. Last
example is that of vortices which are very common structures in many flows. Because of the
rotation and the associated centrifugal forces, the pressure in the core of such structures is
lower than outside. Hence vortices are likely to cavitate in their core. There are actually
many situations in which cavitating vortices can be observed as tip vortices or coherent
vortical structures in turbulent flows like wakes or shear layers. where Kelvin-Helmholtz
instability occur.
In devices such as propellers and pumps, cavitation causes a great deal of noise, damage to
components, vibrations, and a loss of efficiency. Cavitation has also become a concern in the
renewable energy sector as it may occur on the blade surface of tidal stream turbines. When
the cavitation bubbles collapse, they force energetic liquid into very small volumes, thereby
creating spots of high temperature and emitting shock waves, the latter becoming a source
of noise. The noise created by cavitation is a relevant problem for military submarines,
as it increases the chances of being detected by passive sonar. Although the collapse of a
small cavity is a relatively low-energy event, highly localized collapses can erode metals,
such as steel, over time.
The theory of classical bubble dynamics was started by Lord Rayleigh (1917) [50] during his
work for the Royal Navy investigating cavitation damage of ship propellers. Plesset (1949)
[1%] first applied the Rayleigh equation to the problem of traveling cavitation bubbles. In
the recent decades the collapse mechanism of a single isolated bubble has been studied
both theoretically and experimentally. Experimental observations on the collapse of a
single bubble as well as a bubble cloud demonstrate that violent radiated pressure waves
occur with amplitudes of the order of 100 bar, see for example Fujikawa and Akamatsu
[21]. Reisman et al. [51] experimentally investigated the break-up and collapse of sheet
and vortex cavities and observed strong pressure pulses on a hydrofoil surface.
For what concerns noise emissions from bubbles significant contributions come from [10,
, 12,16, 64, 53], where dynamics and acoustics of a spherical (or deformable) gas/vapor
bubble, steady or rising on a fluid column were investigated.
Numerical techniques frequently used for simulating a limited number of bubbles can be
subdivided based on how they treat the interface between the liquid and the gas. Interface
tracking techniques place grid nodes on the interface and the grid is thus deformed by



the bubble motion. Conversely, interface capturing techniques employ a static grid and
therefore do not place grid points on the interface, rather they reconstruct the interface from
a marker in the flow field. Although the former techniques provide a sharper representation
of the interface than the latter for the same grid spacing, the complexity of the interface
motion is more limited. In interface tracking the moving boundary, called interface in
the following, is explicitly described by the computational mesh. Hence, the movement
of the interface has to be accounted for by adjusting the position of the nodes on the
interface. Interface tracking approaches are known to provide great accuracy, yet their
applicability is limited in the case of severe interface motion. Only the flow in the liquid
phase is studied and is supposed to circumvent the cavity. The interface may be simply
the bubble wall, that separates the vapor from the liquid phase. In many cases of practical
interest, the huge number of bubbles developing in the flow (e.g. 1000 per cm? liquid) and
consequently huge number of interfaces to be tracked, would exclude the interface tracking
methods. Multicomponent methods describe the cavitating flow by adopting a full set of
equations, i.e. continuity, momentum and energy conservation equations, for the vapor
phase, the liquid phase and sometimes even an inert gas phase together with their own
thermodynamic relations. They allow for both mechanical and thermal non-equilibrium to
be taken into account. These methods are assumed to possess more generality, but they
are computationally expensive. The homogeneous-mixture methods are generally preferred
when one phase (or component) that is very finely dispersed within the other phase (or
component.) Many bubbly flows come close to this limit and can, at a first approximation,
be considered homogeneous.

The Volume-of-Fluid (VOF) method tracks the motion of a certain fluid volume through
the computational domain. The standard VOF method does account for the convective
transport, but not for the phase transition. In this work a mixture model based on VOF
method accounting for phase transition was adopted. The change of the cell vapor fraction
depends on the number of bubbles per cell volume times the volume change of a single
bubble and the convective transport.

Different forms of the transport equation-based cavitation models have been proposed in
literature. The main differences are due to different source terms that are needed for
cavity generation and destruction. All the models have introduced empirical factors to
regulate the mass transfer. These empirical factors have been tuned based on numerical
experimentation. The choice of the constants in the empirical relations appears to be
somewhat arbitrary.

There are not many experimental or numerical data available in literature on the pressure
field generated by cavitating flows, especially for simple cases that can be reproduced
by manageable numerical simulations. In fact, the experiments are conducted at very
high Reynolds numbers and the dependence on the parameters makes direct comparisons
difficult. Moreover, the effects of three-dimensionality clearly influence the dynamics of the
cavity and must be taken into account for a realistic analysis. Therefore, the present study
deals mainly with verifying the reliability of FW-H methods to study cavitating flows and
only preliminary considerations are proposed.



The Large-Eddy Simulations were performed through the use of OpenFOAM® software.
Other codes, concerning simpler cases dealt with in this thesis, as for example, the monopole
field, the advected vortex and the bubble cloud, have been written with Fortran.



Chapter 2

Simulation methodology

In this chapter an overview of the mathematical models adopted to reproduce the fluid-
dynamic and acoustic phenomena is proposed.

Different physical phenomena are simulated:

» the fluid dynamics is solved using the Large-Eddy Simulation method. The flow is
considered incompressible, Smagorinsky and dynamic Lagrangian turbulence model
are used (section 2.2);

» the acoustic field is reconstructed by adopting a hybrid method. It is assumed to
propagate in an homogeneous medium and any feedback of the acoustic waves on the
fluid flow are neglected (section 2.3);

» the presence of a mixture in fluid medium can be simulated. A general mixture model
is applied to the case of vapor gas in water. The fluid evaporation and condensation
rates are based on bubble dynamic model (which is reported in the later section 6.2).

The governing equations for a single-phase flow are the continuity equation and the mo-
mentum equation. They read, respectively:

dp | O(pus)
- = 2.1
ot + ox; 0, ( )
d(pu;)  O(pusuy) Op 0 2

s o2, 9, ~ P90t axj[ wSij = 3h(V - w)di) (2.2)

where u; is the i-component of the fluid velocity vector, p is the pressure, p is the dy-
namic viscosity, S;; is the strain rate tensor, g is the gravitational acceleration. The set of
governing equations is completed with the energy equation and the equation of state that
relates pressure with density and temperature. In incompressible flows the fluid density p
is assumed constant and drops out from the continuity equation which reduces to V-u = 0.
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Indeed, conservation of mass corresponds to conservation of the volume and the divergence
free condition simplifies the diffusive term in the momentum equation (2.2).

Equations (2.1, 2.2) are used to reproduce the motion of single-phase flows. As we will see,
the equations of Lighthill and FW-H derive from a re-arrangment of the above conservation
equations.

The first part of this chapter introduces the Large-Eddy Simulation approach along with
the two sub-grid models used in the present study.

Then the derivation of Lighthill and FW-H equations is described, together with the dif-
ferent integral solution methods adopted.

2.1 Large-Eddy Simulation

A turbulent flow is composed by vortices of different sizes. Large eddies are unstable and
break up, transferring their energy to smaller eddies. This energy cascade occurs until the
molecular viscosity is effective in dissipating the kinetic energy. The eddies in the largest
size range have length scale comparable to the flow scale, they are anisotropic and are
affected by the boundary conditions of the flow. The small scale eddies are statistically
isotropic and less case-dependent than the large ones.

A Direct Numerical Simulation (DNS) solves the turbulent flow entirely, so it must be able
to perceive the smallest temporal and spatial flow scales. The more the Reynolds number
is high, the more the difference between largest and smallest scales is considerable.

A Large-Eddy Simulation (LES) exactly computes the large structures of motion, while the
small scales of motion (i.e. with a characteristic length smaller than the grid cells width)
are modeled with a Sub-Grid Scale (SGS) turbulence model. In practice, the governing
equations are filtered by a spatial filter, the removal of the small-scale motion is performed
by the numerical grid. The resolved quantity @; is in the filter method defined by

ui(zx,t) = /D ui(@',t)Go(x — 2')dx’, (2.3)

where D is the entire domain. Different filter functions G can be adopted. The most
commonly used, named top-hat, is defined by the computational grid:

: A
% if |l —2'| < 5
Gx(x —a') = (2.4)
0 otherwise
where the filter length is the local grid width, defined by
(=17 = (A A A)Y3, (2.5)

and A,/ /. are the local cell dimensions in z,y, z directions, respectively.
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The LES approach provides an unsteady and three-dimensional solution for turbulent fluid
flow problems. Furthermore, it requires a coarser mesh compared to DNS and it is less
computationally demanding.

In the present work, the LES methodology is adopted together with the Smagorinsky and
the dynamic Lagrangian turbulent model alternately, they are presented in the following
section 2.2.

2.2 LES turbulent model

In this section, the filtered momentum equations are presented and both Smagorinsky and
dynamic Lagrangian turbulent models are derived.
Applying the implicit (meaning that the cell size provides the filter size) grid filter (2.4)
to the momentum equation (2.2), considering the case of incompressible flows at constant
density pg, ones obtains:

ow; Ouwu; 1 0p 0*u; 0 sas

N ~ o Tij i3 2.
o Oz; P03£U¢+V8xj8xj da; 993 (2.6)

where the fluctuations term, named also residual stress tensor, is defined by:

The residual tensor can be divided in the anisotropic and isotropic part:

SGS 1 sgs
Tij = Tij + ngk (5@' . (2.8)
~— |
anisotropic isotropic

The isotropic part of the Sub-Grid Scale (SGS) stress tensor contains the sum of the SGS
normal stresses T,kaS which is twice the kinetic energy k%S of the SGS fluctuations and
acts like a pressure.
This component is therefore added to the filtered pressure term, so as to obtain a new
pressure variable P:

2
P=p+ ngGS. (2.9)

The anisotropic part can be interpreted as the contribution of the small scales of motion
(i.e. smaller than the grid width) to the large scales and need to be modeled with a
turbulent model.

The description of the LES methodology here reported has been drawn mainly from [54, 63].

2.2.1 Smagorinsky model

The most popular eddy-viscosity SGS model is the Smagorinsky model [60] . The anisotropic
stress tensor 7;; is approximated by relating it to resolved rate of strain S;; via an artificial
eddy viscosity vy:
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where | Tou P
—_ U; ’U,j

== 2.11

SJ 2 [695] + 8wz] ( )

is the resolved strain rate tensor. This model is also known as eddy-viscosity model.
The eddy viscosity 1, characterizes the unresolved SGS fluctuations and has to be derived.
Smagorinsky proposed to relate 14 to the strain rate tensor:

v = C.A° (S5, (2.12)

where Cy is the Smagorinsky constant for SGS momentum fluxes. Note that the constant
C; is always positive, thus the energy transfer is everywhere from the large scales to the
small scales and energy backscattering is not allowed.

The Smagorinsky constant can be evaluated from analytical considerations, experiments
or DNS. The main drawback of setting Cs to constant value, relays in the assumption of
flow homogeneity. Close to solid boundaries, where the turbulent length-scales decrease,
the Van Driest damping function [01] is usually applied to overcome such limitation.

2.2.2 Dynamic Lagrangian turbulent model

In a non-homogeneous flow, the best suited approach is to determine C? dynamically.

In Germano et al. [22] the following exact identity is derived, that establishes a link between
the sub-grid tensor at two different filtering levels - and ~ with respective filtering length
scales A and A > A:

e

Uiy — ﬁzﬁ] = UUj — ﬁlﬁ] — (WJ — Uiﬂj) . (2.13)

Lij Tij Tij
The stress tensors 7;; and 7;; can be modeled by the Smagorinsky eddy-viscosity model:
~ ~ 2 (Gro
Tij == —2CZA ’S|Sz‘j7
and ——
Ty == —2C2(21)[S|S,.
being A =2A.
Inserting the latter in (2.13), we obtain an over-determined system of equations for the

unknown C2. In order to solve the system we should minimize the residual associated to
the use of Smagorinsky approximation, defined as:

¢ij = Ly —2A° [C§|§|\§U—4C§|§\§U] (2.14)
= L — C?M;;. (2.15)
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The most used solution is to operate a least-square minimization of the residual [30], that
is to find Cs such that:
Cr=_1"1 2.16

A relevant problem associated with the local dynamic model (2.16), is that the coefficient
field predicted by the local model varies strongly in space and may contain a significant
fraction of negative values. The problem was dealt with by averaging terms in the equations
for C2 over directions of statistical homogeneity. Meneveau proposed to average over
particle trajectories rather than over space and/or time.

The Lagrangian model is obtained by minimizing the error under the assumption that
Cs does not vary along the fluid-particle Lagrangian trajectories. The total error is then
defined as the pathline accumulation of the local error squared, it is minimized with respect
to C?, and the coeflicient is determined as:

s IMM(X,t) (217)

where the numerator and denominator can be expressed by integrals arising from the min-
imization procedure. By adopting an exponential function as a weighting function (which
corresponds to the idea of averaging over pathlines with an exponentially decreasing mem-

ory, see [11]), the integrals Zy s, Zpras are solutions of the following transport equations:
OZrv  _ OTpym 1

= —(LjjM;; — T 2.18

ot + Ug 8.’13k T ( ig4Vigg LM) ’ ( )
OZyvum  _ OLyum 1

= —(M;;M;; — T . 2.19

ot + Uk 8$k T ( ijiViiy MM) ( )

The relaxation time-scale is assumed to be:
T = 0A(ZraTarns)~ Y%, 6 =15, (2.20)

after the analysis of Meneveau et al. [11].

In order to enforce the condition C? > 0, a numerical clipping is performed on factors
Zrar and Zyrps: after the resolution of the partial differential equations (2.18,2.19), if Zp s
assumes negative values in some points, in that points it is set to zero; if Zyrps assumes
negative values in some points, in that points it is set to very small positive value (since it
is used as denominator, it cannot be set to zero).

For the sake of completeness, it can be pointed out that the numerical solutions of the
partial differential equations (2.18,2.19) are not strictly necessary. An approximate solution
is given by a sequence specified by recursion:

T3 (0) = elLigMig" () + (L= ) - Ty (x = W"AY)

(2.21)
TP 01 (%) = Cs o[ My Mi5]° (%)



ACOUSTIC ANALOGIES 13

where ¢; o = 0.0256 is a classical value for the Smagorinsky constant, and

Tt (x) = (M M)t (x) + (1 —€) - I, (x — U AL

0 o (2.22)
Ty (%) = [Mij Mi]" (x)
with At/
_ N -1/8
€= 1+ At/ " =0 A(TE A Tiga) S
We refer to Meneveau et al. [11] for a derivation and a physical interpretation of these

alternative equations.

2.3 Acoustic analogies

The theory of aerodynamic sound is built upon the equations of mass and momentum con-
servation of a compressible fluid. Lighthill originally derived the wave equation applicable
to free shear flows. Curle and then Ffowcs Williams and Hawkings extended this method-
ology to include stationary and moving surfaces, respectively, by incorporating additional
forcing terms to the wave equation. The FW-H approach can be applied also for non-rigid
or porous surfaces in motion that may encapsulate the noise-source flow region.

In this section, the derivation of the original Lighthill equation is briefly described in
subsection 2.3.1. Then, the FW-H equation is reported omitting the details of its derivation
in subsections 2.3.2. Finally the FW-H advective formulation is described in subsection
2.3.5 and details of the derivation are given in the last subsection 2.3.6.

2.3.1 Lighthill equation

Lighthill’s famous manuscript begins as ”A theory is initiated..” [35]. The author was
initially interested in solving problem of sound produced by a turbulent nozzle flow. He
obtained from the Navier-Stokes equations, governing the flow of a compressible viscous
fluid, an exact, inhomogeneous wave equation whose source terms are important only within
the turbulent region. He argued that sound is a small component of the whole motion,
thus, once generated, its back-reaction on the main flow can be ignored.

The conservative form of the momentum equation (eq. (2.2) ), omitting the gravitational

force, can be rewritten as:
8(pul) orn ij
= — 2.23
ot 8:1:j ’ ( )

where m;; = puju; + (p — po)dij — 045, and o045 = 2u(S;; — %Skk&j). i; is called momentum
flux tensor and the constant pg is inserted for convenience, it corresponds to the mean
pressure the fluid has at infinity (where it is assumed to be at rest). In an ideal, linear
acoustic medium, the momentum flux tensor contains only the pressure, and can be written
in terms of density:

mij = Ty = (p — po)dij = ¢§(p — po)dij, (2.24)
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thus, the momentum equation reduces to

d(pui) 4+ 9

P olcB(o = po)) = 0. (2.25)

Considering the time derivative of continuity equation (2.1) and spatial derivative of mo-
mentum flux equation (2.25) and summing them each other so as to eliminate the mixed
term 02 (pu;)/0tdx;), finally follows:

2
(57— 7) o= =0, (2.20)

which is the equation of linear acoustics satisfied by the perturbation density. Because the
turbulence is neglected in this approximation and there are no externally applied forces
or moving boundaries, the unique solution of this equation that satisfies the radiation
condition of outgoing wave behavior is simply p — pg = 0. Eq. (2.23) can be rewritten as
the momentum equation for an ideal, stationary acoustic medium of mean density pg and

sound speed ¢y subject to the externally applied stress m;; — ﬂ%:

d(pui) 9

5 = —%j(mj - 71'?]-). (2.27)
The stress distribution
Tij = mij — 7oy = pusuj + ((p — po) — c§(p — po))di; — 04 (2.28)
is called Lighthill tensor and the non-uniform wave equation that follows is named Lighthill
equation: ) )
(g ) B0=mil = 50 52 (2:20)

The turbulence generated sound is interpreted as the radiating density (or pressure) dis-
turbance into a stationary, ideal fluid produced by a distribution of quadrupole sources.
The wave equation may be solved in an integral form, assuming that the density /pressure
signal propagates in a uniform medium, thus by a convolution of the free-space Green’s
function with the source term of eq. (2.29) it follows:

1 0 Tij(y,t — |x = yl|/co)
H(x,t) = — ACAl d 2.30
e t) = fao L, — y, (2.30)

being p = c2(p — po).

2.3.2 Ffowcs Williams and Hawkings equation

It was necessary to generalize the Lighthill’s theory to account for the presence of solid
bodies in the flow. Indeed, turbulence is frequently generated in the boundary layers and
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wakes of flow past such bodies (airfoils, blades..), together with the unsteady surface forces
(dipoles) make a significant (or even predominant) contribution to the production of sound.
Curle [15] has derived a formal solution of Lighthill’s equation (2.30) for the sound produced
by turbulence in the presence of an arbitrary fixed surface.

Successively, Ffowcs Williams and Hawkings [18] developed the formulation in case of a
moving rigid body immersed in a quiescent fluid and representing a discontinuity in the
flow field. The differential form of the Ffowcs Williams and Hawkings equation reads as:

2
(G =) WD) = Stlowa +stun — 0l 00) (2.31)
2
— Al + pustn — 0] 50} + 85%@;1( 9l

where v, is the velocity of the surface S projected along the outward normal to S (repre-
sented by the unit vector n), p is the density perturbation of the flow field from a reference
value pg (note that for incompressible flows p = pg), p = p — po is the pressure distribution
on the surface and the function f describes the surface:

S = {x: f(x,t) = 0}. (2.32)

Moreover, the function f is such that f(x,¢) < 0 within S and f(x,t) > 0 outside S. H and
¢ are the Heaviside and delta functions respectively, they indicate where the integration is
defined. Specifically, if V' is the volume outside the closed surface S, H(f) =1 forx € V
and H(f) = 0 for x within S, while §(f) # 0 only for x € S and VH = Vfi(f) = nd(f).
The common assumption is that |V f| = 1 and f is a smooth function, defined everywhere.

Observation. The surface S may coincide with the body surface. In this case, equation
(2.31) is referred to as FW-H direct formulation and it verifies u, = v,. Alternatively,
the surface S may describe a not-physical surface, external to the body, often referred to
as porous domain or control surface. In this case, the net flow across S is given by the
difference wu, — vy, # 0.

Note that the use of Dirac and Heaviside functions to limit the acoustic sources distribution
to specific surfaces or fluid regions, from the point of view of mathematical formalism, leads
to consider derivatives in the sense of distributions. However, many of the known properties
of the classical derivative operator (i.e. limit of the incremental ratio) are retained also for
the generalized functions and are not discussed in the thesis.

2.3.3 FW-H direct formulation

The differential form may be turned into an integral form by the convolution of the source
term of eq. (2.31) with the free-space three-dimensional Green’s function

6(t —7 — |x —yl|/co)
dr|x —y|

Gx—y,t—7)= (2.33)
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which is the solution of the wave equation (at observer point (x,t)) for an impulsive point
source at (y, 7), the wave propagating in a uniform and three-dimensional free space, with
velocity ¢g. Recalling briefly the fundamentals of wave theory, if we denote with ¢(x,t) the
source term of a wave equation (which may be interpreted as a distribution of impulsive
sources), the resulting pressure is given by

p(x,t) = q(x,t) x G(x,t) = /R3 /_OO q(y, 7)G(x —y,t — 1) dydr

_ / [q(yﬁ) } dy.
re AT = Yot ey

Moreover, denoting g =t — 7 — |x — y|/co and r = |x — y|, results:

o [6(g)] [ #m o W
s [] = [‘Wat - 2} 29).
(92 (5(9) 1 fifj 82 1 3@’@' — 5ij 8 3’f'ﬁj — 5@']’
Ji0z, [] [g r o T o 3] 2(9)-

Considering the case of S corresponding to the solid surface of an immersed body, thus
being verified the impermeability condition u, = v,, one of the possible integral solution
of eq. (2.31) reads as:

9 PoVn 10 / Pty
dmp(x,t) = — ———| dS+ —— ————| dS 2.34
mh(x;?) 8t/5[r|1—Mr| Iy W e A (2:34)
PNt 1 0? / Trr
| dS+ 5= — | dV
* /9|:T2|1_Mr|:|7 +c§0t2 v Lrl— M| ],
10 3TT7«—T@" 3Trr_T’i‘
—— - dV | dV,
* coat/v[r2|1MT| ] +/V T var B
being r = |x — y| the source-observer distance, & = (x —y)/r, i the (outward) unit normal
vector to the surface element dS, M, is the Mach vector projected along r, T}, = T;;7;7;
and Tj; the trace of the Lighthill tensor, which, under the assumption of negligible viscous
effects, constant flow density and iso-entropic transformations for the fluid in the acoustic
field, reads as:
T;j = pouiuj + (p — po)dij.

The integral kernels in eq. (2.34) are computed at the emission time

’X(t) — y(T)’ ) (235)

T=t—r/co=1t+
Co

T is the instant at which the noise impulse starts at the source point y, to reach the observer
x at the observer time t. The difference between observer and emission time is known as
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compressibility delay and points out that sound propagates in the fluid at a finite speed
and sound waves may add up.

The first integral term of eq. (2.34) is known as thickness noise component. It represents
the noise generated by the displacement of fluid mass caused by the motion of the body.
Second and third terms in eq. (2.34) depend directly on the fluid dynamic load acting on
S and for this reason they are identified as a loading noise component. Last three volume
integrals are known as quadrupole noise component and take into account all the possible
non linear sources occurring in the flow field.

2.3.4 FW-H porous formulation

Equation (2.31) was proposed by Ffowcs Williams and Hawkings in their original manuscript
in 1969, but the idea of calculating the corresponding surface terms on a radiant domain
external to the body was implemented later, see [17, 7]. By considering an external porous
surface S = S, the flow is allowed across the discontinuity surface and the impermeability
condition is not verified, meaning that u, # v,. Under this assumption and recombining
the terms, the integral solution of 2.31 reads as:

0 poU;in;
4mp(x,t) = — —— 1 d 2.
ot = g [ | o (230
10 Lijntr; / Lijn;r; .
— ————| dS ————| dS .
towat g ] g s, [P = gy | P

being

Ui = (1 - p> vi + L,
PO PO

Lij = [pou; (uj —vj) + Pl

where Pj; = (p — po)dij — 045 is the compressive stress tensor, with p — po the flow pressure
perturbation with respect to the reference value pg, o;; the viscous stress tensor and d;; the
Kronecker delta. Last term psp refers to a volume integration which should be evaluated
on the region external to the porous surface S,. It would account for the possible noise
sources present outside S, and consists of the volume integrals that appear in equation
(2.34). Generally, the control surface S, is chosen wide enough so as to embed all the noise
sources present in the flow, making the contribution of p3p negligible.

2.3.5 Advective FW-H formulation

When the background fluid moves at a constant and uniform speed the solving formulation
has to be derived from the convective form of the governing equation. A clear derivation
of the convective FW-H equation is reported in the paper of Najafi-Yazdi et al. [13], where
the authors developed an integral solving formulation for the linear (surface) terms, vali-
dated it for a monopole (stationary and rotating) and a dipole in a moving medium, and
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gave a detailed description of the “wind—tunnel” problem herein investigated, where both
the source and the observer are at rest. Note that in that paper (as well as in most papers
focused on the use of the FW-H equation), the nonlinear volume term (i.e. rhs:last com-
ponent of eq. 2.31) was not included in the solving formulation, since the authors assumed
its contribution to be negligible or, eventually, assessable through the porous formulation.
Here, first in literature, we derive the advective formulation of the volume term for the
particular case of the wind tunnel flow.

By the use of the free—space Green’s function for the convective wave equation (see Blokhint-
sev [5]), it is possible to derive an integral form of the FW-H equation, where the acoustic
pressure p, at any point x and time ¢, is represented by the sum of surface (pop) and
volume integrals (psp). Under the assumption of a fixed-in-space body and considering an
uniform flow with velocity Uy along the direction z; the surface terms may be written [13]
as

R ) L Pouify POU;T;T]
4 Hn = <2 1 — Myfy)—2220 1 g8 — PO g
mPan (X, ¢) ot /f:() [( 0Tl)r*ll MT’|:|T oo /f:O [7“*2\1 - M1, i
-9 S R BV FS —2 - | ds, 2.37
Coat/f:(] |:r*|1_MT|:|T +/f:0 |:T*2|1_MT|:|T ( )

u; indicates the ¢ component of the fluid perturbation velocity u, # and 7* are unit radiation
vectors (see next section 2.3.6), the appearance of their first components 7; and 7} is due
to the mean flow which advects the pressure acoustic field along the x-axis direction, r» and
r* are the module of the radiation vectors r and r* respectively, My = Up/cp is the inlet
Mach number and c¢g is the sound speed.

The tensor Lj; appearing in (2.37) is given by

Li; = [pous (u + Udyj — vj) + Py,

The volume integrals assume the form

1 92 Pt
A7p ) = — T | —1 dv
mPap (%, ) 307 /fo{ g L*HMA]}T
19 27 AR — R
_ T J 1] 1] dV
* co Ot /f>0{ Y [ 2 +52T*2|1—Mr| -
IFFPE — RE.
+ / {T'- [H]} dv. 2.38
50 1] ,r_*3|1 o Mr| . ( )

Equation (2.38) contains the second-order tensors R;; which is described in the next section.
It is worth noting that, to the best of our knowledge, equation (2.38) has never been
formulated in previous work.

Once again, particular attention has to be paid to the meaning of function f, representing
the integration domain. The points in space such that f(x,t) = 0 may describe a surface S
coincident with the surface of the body—source or, alternatively, a closed (porous) surface
Sy, embedding the body together with a fluid region around it, acting as a radiating
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domain. In the former case, the impermeability condition (u, = v,) and the assumption
of a fixed-in-space body (v = 0), reduce the pressure term pyp to the advective Curle

formulation: 1 8 o o
A Ty Ty
4 X, l) = —— dS—i—/ —s=| dS 2.39
mpap(X,t) co Ot Jg [ - }T s [ r*2 ]T ( )
On the contrary, in the latter case, the domain should embed the body and “all” possible
flow noise sources, in such a way to make the contribution of psp(x,t) (now evaluated over
a volume external to Sp) equal to zero.

2.3.6 Advective FW-H equation - Derivation of nonlinear terms

In this section we report some details about the mathematical manipulation of the con-
vective FW-H equation and, in particular, the procedure which allows to write down the
integral form of the nonlinear terms (2.38). The convective FW-H equation may be easily
obtained from the conservation laws of mass and momentum, by accounting for the pres-
ence of a medium moving at a constant velocity Ug; then, at each point, the fluid velocity
is Ug + u, being u the local perturbation velocity, and the equation reads [13]

2
Chit) = (57 + Uny g ) [Quind()] = 5 L s0(0)] + 505 TGHU)] (240

where all derivatives have to be accounted for in a “generalized” sense, being §(f) and
H(f) the Dirac and Heaviside functions, respectively, and

o2 o2 o2 o2
02 = | 25 — b + 2Upj moi— + UgiUgj
¢ [6752 Vozoz; Yooz, T %Y ooz,

represents the convective form of the D’Alembert operator. Furthermore

Qr = [p(ur+ Uok —vx) + po (vx — Uog)]
Lij = [pui (uj + Uoj —vj) + Pij]
T = [puiuj + Py — c5pdyj]

where P;; is the compressive stress tensor, p the perturbation density, co the sound speed
and ¢;; the Kronecker delta. Without loss of generality, it can be assumed that the mean
flow velocity Uy is along the positive zi-direction. By using the convective form of the
free-space Green’s function

Gx,t;y,7) = Z(g)

r
with g=7—-t+4+ —,
mr* co

where (x,t) and (y,7) are the observer and source position and time, respectively, and

r* = \/(:L“l —y1)* + B2 [(962 —y2)? + (w3 — y3)2}7

—My (1 — 1) +7° /
r= 7 , pB= I—Mg

(2.41)
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with the components of the unit radiant vectors given by
A (x1—y1) | (2 —y2) | (z3 — y3)
T T e B

2.42
r r* r ( )

e Mo 1 (o-w) (@2 ) (@3 =)

0 1 — . T2 — Y2 . T3 — Y3
1:_ﬁ+?7“7* , =, fa= (2.43)
equation (2.40) may be turned into an integral form. The first two source terms on the
right-hand-side give rise to the surface integrals of equation (2.37) and the procedure
is described in detail in [43]. An analogous transformation may be carried out on the
third (quadrupole) term, which, in essence, requires the manipulation of the double spatial
derivative of the Green function

0’ {5 (9)}

f

Ox;0x; | r*
Starting from
a [ég)] 7 0O 7y
ox; [ r* ] ot Ot [9(9)] r*25(g)

we have

o {oe 122} - ar {-a g e - | -

o [7F] 7 0
S 5 Y SR S
5o || 000 75 {5t}
From the relations o
O [m)__1on
Ox; [r*]  r*ox;  r*?

1

a[f*] Lo i

dxj 2] 2 oy 3
0 7 0
875]-[5(9)] —gg[ (9)]
we obtain
(2.44)
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Concerning the spatial derivative of 7}, we have

ory i ﬁ _i@r;‘ B ri or’ _i@r? _fﬁ;
Ox; a Oxj | r* oo Ox; r*2 0 oo 0 r*
1 0 0 .
1 T 1
™o o 3 T T
where we have set
1 0 0
Rfj =1(0 B2 0
0 0 p?

On the other hand, by reminding (2.42) and (2.43), it is easy to see
My 1 1 1,

721 = _ﬁ =+ @72; 5 7A’2 = ETA’; N 723 = @TS

so that
or 1 or* 1 [
e S — i
Ox;  fp%20x; [Prx - U
Finally, equation (2.44) reads

P [8g)] 1y 0°
[ ] +;% - @[5(9)]

Ox;0xj | r*
L[207F 1 e 5en] @
t o [ 2 gage (P75 = Rij) | 57 19(9)]
3irit — Ry,
+ [7,*3} 6(g) (2.46)

To obtain eq. (2.38) one needs to consider integration for parts to in order to move the
derivative operator on the Green’s function, considering that the Lighthill tensor (and its
gradient) is null on the boundary of the open set Q = {x: f(x,t) > 0}.

It’s worth pointing out that under the assumption My << 1 we have g = 1 and, conse-
quently, r = r*, R}, = d;;; then, equation (2.46) reduces to the classical form

82 5(9) _ 1 fi'f’j 82 1 3f’if’j - 51 0 37%‘7%’ - 5z’j
emwir}— 2 ap W) %[ﬂ}&w@H[TSF@

The product of equation (2.46) by the Lighthill tensor T;; exactly gives rise to the integral
kernels of equation (2.38).



Chapter 3

Assessment of FW-H solution
methodologies

In this chapter the important role of the time delays occurring in the FW-H integral
formulation is first discussed in section 3.1. Second section 3.2 deals with a well-known
vortex-crossing problem related to the positioning of the porous domain. The following
results may also be regarded as validation of the FW-H formulations involved.

3.1 Compressibility delays

In this section the FW-H porous formulation is tested for the simple case of a monopole
acoustic field. The aim is to point out the dependence of the solution from the computation
of the time delays. The following arguments apply to wind-tunnel cases where there is a
flow around a stationary object. The need to emphasize the (not essential) role of the time
delays lies in the fact that their calculation makes the acoustic post-processing extremely
longer and more complex and in the case of volume integration, even unaffordable. In fact,
the procedure consists of storing all the source data (pressure and velocity fields of the
fluid flow) for each emission time 7. Then, a data fitting is performed over all the data to
get the acoustic signal at the observer time ¢. The assumption that the source impulses
propagate without overlapping (in time) would avoid the calculation of time delays. This
assumption, as we will see, is only valid if certain (high) frequencies are no needed to be
considered and can be filtered out.

According to the FW-H integral formulation, the acoustic pressure p, evaluated at any
point x and time £, results as sum of integrals, whose kernels are evaluated at the emission
time 7. In particular, the porous formulation (eq. (2.36)), to highlight the role of variables
t,7,X,y, may be synthesized as :

P t) = /S (-], dS(y) (3.1)

P

where 7 =t — |x — y|/co [we omitted the dependence of x and y from ¢ and 7 respectively

22
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because we analyze the case in which the distance source-observer r = |x — y| is constant
in time].

As known, S, is the porous surface, where the noise sources are collected. If S, is “small”,
the source is said to be compact. More specifically, the source is compact if L << k, being
L the length of the source and k the wavelength corresponding to the speed of sound of
the medium cy.

In the following paragraphs different size of S, are tested at constant cp, for the simple
case of a monopole acoustic field.

3.1.1 Radiation from a sphere - monopole

A monopole is a pressure field generated by a pulsating sphere. The pressure field is
constant in the radial direction and may be represented by harmonic waves of angular
frequency w = 27 f traveling outward from the origin (starting at time to = 0):

ipoCokQ _i(i—
p(ra t) = Te ot kT)? (32)

wr
where @ is termed the strength of an omni-directional (monopole) source situated at the
origin, and Q = £ O’cf;, being p; the sound pressure amplitude. We consider the real part
of eq. (3.2) obtaining a sine wave. The radial particle velocity w,(r,t) in a spherically

spreading sound field is given by Euler’s equation as

1 [ ap(rt)
Po or

up(r,t) = dt. (3.3)

The porous domain S}, here considered is a sphere of radius R, discretized using 300 x 150
points in the angular directions ¢ x 6. The outward normal to the sphere surface is given
by the standard spherical coordinates

i, = sin(¢) cos(0)
ny = sin(yp) sin(0)
N, = cos(p)

with ¢ € [0, 7] and 0 € [0,27). The monopole field (eq. (3.2)) is evaluated on the porous
surface S, in order to provide source field data. The same equation offers an analytical
solution which is evaluated at point x,,;c = (100,0,0) as a reference pressure. Due to the
spherical symmetry of the problem, every point of the space at a certain distance from the
origin, is equivalent. We set cop = 300m/s.

As a first case a wave frequency equal to f = 1 Hz is considered, data (p and w,) on a sphere
of radius R = 0.1 m are collected with a time step dt = 0.01 s, on a period T = 600 x dt s.
[Hereafter when the measure unit are omitted, we assume that the lengths are in meters,
the time intervals in seconds and the frequencies in Hertz]. The porous formulation is
considered both with the account of the time delays (referred to as Por_delayON) and
without computing them (referred to as Por_delayOFF). Figure 3.1 shows a clear overlap
of the two reconstructed signals with the analytical solution.
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Figure 3.1: Comparison of a monopole pressure field (p ref) with time solution of FW-
H porous formulation, in case of time delays computation activated Por_delayON and
deactivated Por_delayOFF. The spherical porous domain has radius R = 0.1.

The agreement between Por_delayON and Por_delayOF F was expected. It is possible to
generalize this event by saying that the time delays computation is needed only when

> f (3.4)

Being

YES, yES,
Agel = — o - ; (3.5)

and f the higher frequency at which the fluid dynamic phenomena is observed. Note that
if dt is the time step at which the fluid dynamic data are stored, frequency higher than
1/dt are filtered out.

Thus, by omitting the time delays computation, only the frequencies higher than 1/A ;¢
are erroneously reproduced.

In the present case of a spherical porous domain Age; = 2R/cp, for any point X,;.. The
previous radius and time step considered (0.1 and 0.01 respectively) do not satisfy eq.
(3.4), thus the time delays computation is not essential. In practice, the source size is
small enough with respect to the propagation velocity that the pressure radiates from the
porous domain as simultaneous (compared to the observation time step) impulses.
Whether the radius of the porous domain increase up to R = 1, results do not change, see
figure 3.2. In fact, still Age = 2R/co =~ 0.0066 < dt = 0.01.



COMPRESSIBILITY DELAYS 25

Porous domain size R = 1

0.005 et
p ref
0.004 + For_delayON + i
J| Por_delayOFF
0.003 W

\ _

o .

0.002

0.001

-0.001
-0.002

-0.003

-0.004 |

-0.005

Figure 3.2: Comparison of a monopole pressure field (p ref) with time solution of FW-
H porous formulation, in case of time delays computation activated Por_delayON and
deactivated Por_delayOF F. The spherical porous domain has radius R = 1.

The time delays, for R = 1, should be significant at frequencies f > 1/0.0066 ~ 150 Hz. To
verify this statement we may consider a pressure signal p consisting of two frequencies, a
low frequency f; < 150 Hz and a higher one f, > 150 Hz. A radial pressure field, combined
of two angular frequencies, may read as:

p(r,t) = bn sin(wit — kyir) + b, sin(wpt — kpr) (3.6)
4dmr 4dmr

where w; = 27 f; and wy, = 27 fp, k; = wi/co and kj, = wp/cyp. The pressure amplitudes for
the lower-frequency and the higher-frequency monopole where chosen to be respectively
constant p;, = 1 and py, = 0.1.

The pressure p, reconstructed at X,;c, is shown in figure 3.3 together with the two decom-
posed signals, related to the two frequencies f; and f,. Two different double-frequency
monopoles are tested, first case (top panel in figure 3.3) is composed by f; = 1Hz and
fn = 40H z and we referred to as HF signal. The second case (bottom panel in figure 3.3)
is composed by f; = 10Hz and f, = 400H z, and we referred to as H H F signal.

For the reasoning above, in the first case the signals Por_delayON and Por_delayOF F still
overlap. In fact both frequencies, f; and f;, are below the threshold of 150H z. Results for
the HF signal case are in figure 3.4. In the second case (H HF') the signal Por_delayOFF
is not able to reproduce correctly the higher frequency f, = 400Hz, as shown in figure
3.5 (bottom panel) while the standard FW-H integration, with the complete calculation of



COMPRESSIBILITY DELAYS 26

0.006

0.004

0.002

-0.002

-0.004

-0.006

0.001

0.0008

0.0006

0.0004

0.0002

-0.0002

-0.0004

-0.0006

-0.0008

-0.001 1 1 1

Figure 3.3: Time evolution of a monopole combined of two frequencies fl and fh. Top
panel f; = 1Hz and f;, = 40H z, referred to as HF signal. Bottom panel f; = 10Hz and
fn = 400H z, referred to as HHF signal.
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Figure 3.4: Comparison of a monopole pressure field (p ref) with time solution of FW-
H porous formulation, in case of time delays computation activated Por_delayON and
deactivated Por_delayOF F. The spherical porous domain has radius R = 1. Reproduction
of the HF signal. The spherical porous domain has radius R = 1.

delays (Por_delayOF'F top panel), is in agreement with the analytical solution p ref.

As a further prove, we lower the Ay, by decreasing the radius of the porous domain,
making the source more compact. The choice of a radius R = 0.1 is adequate, in fact
Ager = 0.2/¢0 = 0.00066 thus 1/A4 ~ 1500H z. It means that the solution of the FW-H
equation without time delays, on a porous domain of this size, can provide a correct signal
up to 1500 Hz. The results are in figure 3.6.

As a last remark, we may emphasize that the considerations just made regarding the time
delays for the integration on a porous domain apply to the volume integrals of the standard
FW-H formulation, whether the volume is enclosed on the porous surface.

In figure 3.7 the response of the direct FW-H formulation is showed, time delays were not
considered in the reconstruction of the signal. It must be said that in the acoustic field
generated by a pulsating sphere there are no shear forces acting on the volume, thus, the
contribution of the FW-H volume integrals is negligible. The signal in figure 3.7 is then to
be attributed to the thickness term contribution. The monopole acoustic field would not
be a good example to test the direct formulation.
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Figure 3.5: Comparison of a monopole pressure field (p ref) with time solution of FW-H
porous formulation, in case of time delays computation activated Por_delayON (top panel)
and deactivated Por_delayOFF (bottom panel). The spherical porous domain has radius
R = 1. Reproduction of the HH F’ signal. The spherical porous domain has radius R = 1.
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Figure 3.6: Comparison of a monopole pressure field (p ref) with time solution of FW-
H porous formulation, in case of time delays computation deactivated Por_delayOF'F'.
Reproduction of the HH F signal. The spherical porous domain has radius R = 0.1.

3.2 Advected vortex

In recent numerical experiments ([14]; [37] ), spurious signals are showed to affect the
FW-H acoustic solution when the porous surface is immersed in a high vorticous flow. In
literature, to avoid the erroneous response of the FW-H integration, some corrections to
the porous formulation were proposed. The alternative, commonly adopted in literature, is
to place the porous domain in a region where the vorticity of the flow results negligible. In
the case of a vorticous wake persisting downstream, the ”outlet” side of the porous domain
is avoided, so as to have an open domain of integration.

In this section a two-dimensional potential vortex is reproduced, in order to investigate
on the effect of the passage of a vortex through the boundaries of the acoustic integration
domain. In particular, the spurious signal is noticed at the passage of the vortex through
the porous domain, while a considerable difference is observed and justified in the case of
the volume integration method.

3.2.1 Potential advected vortex

The two-dimensional incompressible potential vortex is initially centered at (z, o), and is
advected by a uniform and constant velocity U. The velocity potential is given by
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Figure 3.7: Comparison of a monopole pressure field (p ref) with time solution of FW-H di-
rect formulation, in case of time delays computation deactivated. The spherical integration
domain has radius R = 1.

re
t)y=Ux — —. 3.7
The center of the vortex moves accordingly
T = x9+ Ut,
Y = Yo,
0 = arctg(y/x)

The velocities are derived from the potential and the pressure is calculated from the non-
linear Bernoulli equation as

I
u(z,y,t) =U + py- sin(#), (3.8)
r
v(x,y,t) = ~3 cos(0),
F2
p(l‘,y,t) =Po — P

822’
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Figure 3.8: Sketch of the two cases reproduced. On the left, the vortex travels inside the
rectangular integration domain. On the right, the vortex starts outside the domain, and
moves inside passing through the left short side of the rectangular domain (referred to as
inlet side).

where 7 is the distance from the vortex moving center (Z,y) and I' = Un/100 to ensure
small perturbations.

The FW-H integration domain is rectangular and two situations are considered, as in figure
3.8 : in the first case (left panel) the vortex travels inside the integration domain thus any
spurious signal is expected in this case; in the second case (right panel) the vortex center
is initially positioned outside the integration domain and moves inside the box crossing the
left side of the rectangular domain.

The uniform velocity is U = 10m/s and is oriented along the z-axis. The rectangular
domain is 100m high and 200m long, is set such as y € [—50,50] and = € [0,200]. The
microphone is positioned at (Zmic, Ymic) = (100, 51), thus just one meter from the upper
long side of the rectangular domain and at half length of it.

Case 1) The time step is dt = 0.1s and the period of the simulation is 77 = 10s. The initial
position of the vortex center is (xg,y0) = (50,0). At the end of the period T} it
reaches the point (150,0).

Case 2) The time step is dt = 0.1s and the period of the simulation is 75 = 20s. The initial
position of the vortex center is (xo,y0) = (—50,0). At the end of the period T it
reaches the point (150, 0).

The flow field data u,v and p given in eq. (3.8) are collected both along the perimeter
of the rectangle (which represents the porous surface) and in the area contained in the
rectangle (which represents the volume region).

3.2.2 Direct vs porous formulation

Direct and porous FW-H formulations are compared for the two cases. In the first case,
the vortex never crosses the boundaries of the FW-H domain. As expected, the resulting
signals coincide, as showed in figure 3.9. The passage of the vortex results as a lowering
and rising of the pressure. The minimum, at ¢ = 5s, is reached when the vortex is in
correspondence of the microphone, i.e. ;. = Z.
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In the second case, the vortex crosses the inlet side of the rectangular domain. In figure
3.10 the pressure profile reconstructed by the FW-H porous formulation, at time ¢ = 5s,
shows a sort of discontinuity. This spurious signal is due to the passage of the vortex
through the inlet side. The FW-H direct solution looks smooth and both of the compared
solutions reach the minimum pressure at time ¢ = 15s, which is the time at which the
vortex is in correspondence of the microphone.

We may isolate the contribution of the inlet side by integrating on this patch separately.
In figure 3.11 (top panel) is noticeable how the spurious signal is due exclusively to the
integration over the inlet side.

Looking at te porous equation, it is easy to recognize a term which does not have its
correspondent in the direct formulation: it is, in short, the derivative in time of the surface
integral of us, where uy is the velocity of the flow projected along the outward normal
(unit vector) to the porous surface n. In this case, the outward normal to the inlet patch
is n = (—1,0), thus the integration over this patch depends directly on the streamwise
velocity u, being u; = (—u,0). The streamwise velocity at the center line (z = ) of
the vortex has a discontinuity, as depicted in figure 3.12. It means that, as the vortex
crosses the inlet side, the term related to the velocity u contributes to the overall signal by
providing a discontinuity.
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Figure 3.9: Comparison of FW-H direct and porous formulation for the case of an advected
vortex which remains inside the integration domain, left panel of fig. 3.8 . Microphone
positioned at (Tmic, Ymic)-
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Figure 3.10: Comparison of FW-H direct and porous formulation for the case of an ad-
vected vortex crossing the integration domain, right panel of fig. 3.8 . Microphone posi-
tioned at (Tmic, Ymic)-
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Chapter 4

Flow around a square cylinder

In this chapter, we consider a turbulent flow around a finite-size cylinder with square
section (Figure 4.1). The inlet uniform flow, around the body, generates vorticity and
turbulence which is advected downstream and the wake assumes an oscillatory pattern.
As well known, the flow around an elementary geometry such as a cylinder, has always
represented a benchmark for CFD simulations, especially for the periodic vortex shedding
mechanism occurring in a wide range of Reynolds numbers. This mechanism is responsible
of a strong tonal (named aeolian) noise and different authors adopted the Curle’s (linear)
formulation to analyze the flow-induced noise (see, for example, [23, 10]). Even in case of
such a simple configuration, it is fundamental to account for the (non linear) contribution
from the (turbulent) wake, which can affect the resulting acoustic field significantly.

The body has a finite size in the spanwise direction in order to consider a realistic configu-
ration. The finite size produces tip vortices interacting with the vorticity field generated by
the cross-stream section, making the problem different from its simplified two-dimensional
counterpart. The Reynolds number is large enough to generate a fully turbulent wake,
characterized by a wide energetic spectrum. However, the use of a high aspect ratio en-
ables the comparison with analogous results available in the literature (at least for the
fluid dynamic solution) at the central section of the cylinder. In order to obtain a realis-
tic instantaneous velocity—pressure field, the fluid-dynamic simulation is carried out using
wall-resolving LES (that is, a LES where the viscous sublayer developing in the near—wall
region is directly resolved and no-slip boundary condition is used). As above mentioned, in
fact,the vorticity field generated in a wall-resolving LES contains the frequencies relevant
for the noise generation and propagation, while the subgrid-scale contribution does not
appreciably affect the pressure signals. In this sense, the results of the fluid-dynamic simu-
lation can be considered as practically free from modeling errors, thus allowing for a clean
comparison between different acoustic methodologies. Due to the lack of any experimental
data or analogous acoustic simulations available in literature, the noise predictions will be
directly compared with the pressure provided by the underlying LES, here considered as a
reference quantity; details on the feasibility of this procedure can be found in [26] and will
be discussed later.
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The numerical solution of the integral solving approaches discussed in section 2.3.5 are
compared. In particular, we first compare the Curle and porous formulations, in order to
assess the relevance of the nonlinear terms and to identify the dominant source mechanisms
taking place in the flow, both near and far from the body. Then, the results from the porous
method are compared with a full and direct solution of the convective equation, including
the volume integrals appearing in (2.38).

4.1 Numerical setup

Both fluid dynamic and acoustic fields are solved in the framework of the OpenFOAM®library,
based on Finite Volume Methods (FVM). Specifically, we use the pisoFOAM solver, with
spatial derivatives discretized using second-order central differences, whereas implicit time
advancement runs according to the Euler scheme. The sub-grid scales of the motion were
modeled according the Smagorinsky model.

The FW-H solving formulation was implemented as a post-processing utility of the LES
data. Here, for sake of completeness, a brief description of the procedure is given. The
size and shape of the integration surface/volume is given as input. The algorithm reads
the flow data, (i.e. velocity and pressure fields), the surface of the body and the volume
of the cells over which to calculate the integrals. It calculates the integrand functions of
eqs. (2.37) and (2.38) over each single element respectively and then it sums over the
whole integration domains. The time derivatives appearing in eqgs. (2.37) and (2.38) were
calculated using both second- and forth-order schemes.

The equations are solved by a forward—in—time integration scheme: at each source point of
the integration domain, the emission time 7 is fixed and identified by the time step of LES
run, so that the corresponding observer time ¢ is determined by the code. Then, each signal
is computed within its own time window and a data fitting procedure is implemented to
calculate the resulting noise signal as the sum of single sources contributions. Due to the
absence of body motion and the high value of sound speed, the compressibility delay ¢t — 7
here reduces to a time shift homogeneous in space, which does not affect the overlapping
of elementary signals. In other words, the body together with its own wake, appear as a
compact source and the calculation of the delays could be omitted, in order to obtain an
instantaneous (“incompressible”) propagation of noise: this allows for a remarkable saving
of CPU time and makes the computation of the volume (quadrupole) integrals feasible and
even advantageous.

Figure 4.1 shows a sketch of our test case, together with the frame of reference and geo-
metrical parameters. The square cylinder has side d = 0.04 m and length h = 30d. It is
immersed in a uniform velocity stream Uy = 1 m/s, so that the Reynolds number based on
the side d is Regy = 4000. At the boundaries of the computational domain we set a zero-
gradient condition for the pressure. The grid consists of about 3 millions of cells, a linear
stretching enables high spatial resolution near the body surface. The grid spacing normal
to the wall for the first layer of cells is 0.01d at the cylinder surface directly resolving the
viscous sublayer. The mesh is stretched in the cross stream direction y, in order to have
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Figure 4.1: Left panel: frame of reference and geometrical parameters of the simulation.
Right panel: sketch of the finite-size cylinder with square section, the computational grid is
the black outline, while an example of porous domain considered for the FW-H formulation
is displayed in light gray.

a cell expansion ratio of 30 between the first cell on the body and the last, at the edge of
the domain. Cells are stretched also along the streamwise direction; in the wake region, at
a distance of 20d, cells are slightly elongated along the x-direction and the maximum grid
size reaches 0.5d. The resolution on the wake region may produce inaccuracies; thus we
performed an additional simulation by using a grid (hereafter referred to as homogeneous
grid) which was built starting from the previous one carrying out a redistribution of points
in order to have higher resolution on the wake and coarser resolution in the boundary layer.
Grid spacing Az goes from 0.06d in the proximity of the cylinder to a maximum of 0.12d,
in the wake region. Remarkable differences (reported in the next section) are observed
in the fluid dynamic field using the two grids, the first grid (hereafter referred to as fine
grid) being able to give more accurate results. However, since here we are interested in the
evaluation of the ability of the acoustic analogy to reconstruct the fluid dynamic field, for
this aim the signal provided by the homogeneous grid may also serve as a good dataset. In
fact we haven’t observed any difference in the ability of the acoustic solver to reconstruct
the pressure signal.

In order to keep the Courant number under the threshold of 0.5, the time step was set
equal to At = 5 x 107° s. Once the flow was completely developed, data were collected
in two groups: (a) a time-window of about 250t. (t. = d/Uy being the inertial time scale),
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Figure 4.2: Two-dimensional sketch of the z-plane and the corresponding cross-sections of
different porous domains herein adopted: four concentric rectangular open boxes A, B, C
and D and a pyramid E (white line). Points a, b, .., g indicate the probes.

sampled with a larger time interval (5/4)t. and (b) a time-window of about 75t., sampled
with a time interval ¢./4. These time intervals are those employed in the acoustic solver.
The flow data of group (a) are used to evaluate the statistics of the turbulent field. The
availability of two different datasets allows to analyze the possible influence of sampling
interval on acoustic calculations.

Subsequently, the acoustic analogy was applied to determine the pressure time history at
different measurement points (probes). By positioning the probes within the fluid dynamic
computational domain, it was possible to compare the pressure coming from the acoustic
model with that provided by the LES (incompressible) solver, the effects of compressibility
delays on the resulting signature being negligible. Different domains S, were selected to test
the capability of the porous formulation, varying their own size and shape. These domains
are open both at inlet and downstream of the cylinder, thus violating the theoretical
requirement for Sp to be closed. Nonetheless, as already mentioned in section 3.2, the
closure of Sp may give rise to relevant spurious noise components and the removal of the
domain regions crossing the wake is rather a common practice in the application of the
porous formulation (see, among the others [3]). On the other hand, our aim here is not to
deal with the mentioned end-cap problem, rather to assess the reliability and accuracy of
different FW-H-based numerical approaches.

Figure 4.2 shows a side view of the porous domains used for calculations: four concentric
rectangular boxes and a pyramidal box. Box D and pyramid E embed the whole turbulent
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Table 4.1: Coordinates of probes at z = 0 (in terms of the side d of the square section),
shown in Figure 4.2.

@) () (o (@ (o () (g
x| 0 10d 30d 55d 0 10d 30d
y |21d 21d 21d 21d 6d 9d 13d

wake. We also used a “direct” approach, by computing the volume terms of the FW-
H equation, and in order to compare the direct and porous solutions, the 3D integrals
were always calculated over the volume enclosed by the corresponding porous domain.
The noise predictions were carried out at different probes, located in the plane z = 0
and always selecting the y coordinate in order to set the distance of the probe from the
permeable domain S), to one diameter (see Figure 4.2). For clarity, the coordinates of these
measurement points are listed in Table 5.1. Finally, without loss of generality, all acoustic
calculations refer to air: the fluid density was set to 1.234 Kg/m?, while the speed of sound
is equal to 340 m/s.

4.2 Fluid dynamic results

A turbulent flow around a finite-size cylinder with a square section does not exhibit any
direction of homogeneity; nevertheless, due to the selected aspect ratio of the body, the
behavior of the flow is comparable to the benchmark case of a 2D square section, at least
in the central sections of the cylinder (around z = 0). This suggests to average over
longitudinal x — y planes along the spanwise direction z, within a limited space interval far
from the edges of the body. We make it in the range —5d < z < 5d. Quantities averaged
this way in space and over the time-window (a), are denoted with the symbol (.). The
computed lift (Cr) and drag (Cp) force coefficients are shown in Figure 4.3 for the fine
and coarse mesh respectively, while their mean and rms values are listed in Table 4.2. The
two meshes give quite different results for both coefficients. The simulation based on the
coarse grid exhibits a slightly larger time of vortex release, quantified by a smaller value
of the Strouhal number St = fd/Uy. This quantity is computed from the power spectrum
of the lift force coefficient (bottom panel of Figure 4.3). The fine grid case predicts a
Strouhal number close to 0.132, in good agreement with data of Okajima [15]. Specifically,
the authors found a constant Strouhal number of 0.133 for a square section placed in a
uniform flow, with 0.5% of free stream turbulence within the range of Reynold numbers
1000 < Regq < 20000.

Figure 4.4 shows the space-time averaged non-dimensional streamwise velocity component
(u) along y-lines, at various streamwise locations over the square section. Unfortunately,
no reference data were found to validate these profiles, but the fine grid seems to indicate
a better resolved velocity field in the near-wall region.
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Table 4.2: Mean and rms of lift C; and drag Cy force coefficients.

Clrms C’l Cdrms éd
fine grid | 0.5089 | 4.01e=* | 1.14e72 | 2.073
coarse grid | 0.098 | —3.23¢=* | 7.06e=* | 1.607

A comparison between the streamlines obtained in the two simulations (fine versus coarse)
is in Figure 4.5. The fine grid simulation (top panel of Figure 4.5) gives flow separation
at both front corners. Shallow recirculation regions are observed over the streamwise-
oriented surfaces, while two large recirculation regions appear in the wake. The end of
this latter separated region is at approximately z/d = 1. Note that the coarse grid is not
able to completely resolve the boundary layer on the surface of the section and predicts a
reattachment point moved further downstream, at approximately x/d = 2; also, the grid
coarseness is not able to resolve the small recirculation zones over the streamwise-oriented
body surfaces.

The contours of space-time averaged velocity components (u) and (v) are reported in Figure
4.6 together with their root mean square values. The quantities are made non dimensional
with the inlet freestream velocity Uy. The maps refer to the fine grid simulation. The
small asymmetries in the contour maps are probably due to the acquisition time-window
asynchronous with respect to the vortex shedding cycle. Figure 4.6 (c) show the presence
of high fluctuations levels in the shear layers developing at the edge of the separation
regions. Large values of v, instead occur on the centerline of the wake, approximately at
x/d = 1.5, which is behind the reattachment point (Figure 4.6(d)). The shape of the wake,
as well as the spatial distribution of the rms of velocity components, are in qualitatively
good agreement with previous studies, see for example Oudheusden [410].

4.3 Acoustic results

As a first evidence of non-linear sources occurring in the flow, the term (8%/0z;0x;)T;;,
based on the Lighthill tensor of eq. (2.35) and the module of vorticity || are illustrated
in Figure 4.7. The two quantities appear well correlated, with high vorticity regions corre-
sponding to areas of large values of the module of the Lighthill tensor. Note that regions
of high vorticity are characterized by very low pressure. This analysis suggests that a
quadrupole contribution is expected to be large in this regions.

As above mentioned, the probes are positioned within the fluid dynamic mesh in order to
use the LES pressure as a reference data. It might be argued that a direct comparison
between FW-H and LES pressure signals is questionable, since we are comparing a noise
prediction implying flow compressibility with a pressure signal obtained under the incom-
pressible flow assumption. In practice, the probes are placed at fairly small distances from
the acoustic source. Thus, due to the high speed of sound with respect to fluid velocity,
to the limited dimension of the mesh and the absence of body motion, the effects of com-
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Figure 4.5: Mean flow streamlines together with contour map of the space-time averaged
velocity magnitude made non-dimensional with |Up|. Top panel: Fine grid simulation;
bottom panel: coarse grid simulation.
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Figure 4.7: Contour plot of instantaneous —aTij (top panel) and magnitude of the
L0

vorticity || (bottom panel).
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pressibility on the resulting noise can be neglected. The noise predictions determined by
assuming 7 = t or, alternatively, by computing the retarded times as 7 = t — R/cy, are
indiscernible and match the LES reference data.

First, we analyze the noise signatures provided by the Curle (linear) formulation, that is
the solution of eq. (2.39), at the probes depicted in Figure 4.2, by using the time-window
(a) characterized by the large time interval. At probe e, located just above the middle of
the square section (z = 0,y = 6d, z = 0) the agreement between the LES pressure and the
Curle solution is very good, both in terms of amplitude and of resulting waveform (top panel
of Figure 4.8). This suggests that close to the body the dominant source mechanisms are
related to the loads acting on its surface. It is interesting to note the excellent agreement
of pressure peak values, in spite of the higher difference in time resolution of fluid dynamic
and acoustic fields and the presence of time derivatives in the integrals of eq. (2.39).
Nevertheless, as we move far from the body, this agreement vanishes. The bottom panel
of Figure 4.8 shows the pressure signatures at probe g, still positioned above the middle of
the body but in the downstream region (z = 30d,y = 13d, z = 0). Here the LES pressure
signal exhibits a more irregular pattern indicating the presence of high frequencies, while
the Curle solution is still dominated by the fundamental frequency of the vortex shedding
and produces a remarkable underestimation of pressure peaks. This behavior becomes even
more evident by increasing the distance from the cylinder. Figures 4.9 and 4.10 show the
time histories computed with the smaller time interval (group (b) discussed in Section 4.1)
and the corresponding spectra of pressure at probes a — d of Figure 4.2, whose coordinates
are in Table 5.1. Note the persistent, smooth waveforms predicted by eq. (2.39) and the
underestimation of pressure peaks, here present also at probe a located just above the
body at = 0. The results in the frequency domain confirm the occurrence of additional
components, different from the frequency related to vortex shedding, f = 3.3s~!, which,
anyway, is well predicted by both LES and Curle solutions close to the body source. These
results show the inadequacy of a linear solution for the prediction of acoustic noise in the
class of problems herein investigated. Close to the cylinder, the acoustic field is dominated
by the fluid dynamic loads on body surface and by the fundamental frequency of vortex
shedding in the downstream region. However, moving far from it, additional nonlinear
sources get relevant. At this stage, it is clear that an accurate assessment of the acoustic
(far) field requires accounting for the contribution of nonlinear, quadrupole sources.

This task can be achieved in two different ways: through the porous formulation, namely
eq. (2.39) now integrated on a domain S, embedding the body and the noise sources, or
by adding to the Curle expression the volume terms of eq. (2.38). Also we remark that a
complete porous formulation needs the 3D terms contribution from the external volume.
The proper choice of the domain S, plays an important role. Looking at Figure 4.2, the
wake spreads and progressively expands downstream, making a “rectangular” domain (like
A, B or C) to cross the wake, unless we use a sufficiently large box (like D), able to
apparently enclose the whole vortical and turbulent field propagating downstream. There,
however, the fluid dynamic data must reckon with the spatial limits of the mesh and the
effects of numerical boundary conditions. Furthermore, as already discussed, the solutions
has to deal with the end-cap problem and occurrence of spurious noise components due to
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Figure 4.8: Pressure time signals obtained by LES and Curle (linear) solution at probes e
(top panel) and g (bottom panel) of Figure 4.2.
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the transverse (orthogonal to the flow direction) cutting of the wake.

Figure 4.11 contains time signals at probe e of Figure 4.2: the pressure time signal obtained
by LES; the noise prediction provided by the porous formulation by using the rectangular
(box A) and the pyramidal (box E) domains; the direct solution of the FW-H equation,
carried out by adding the 3D terms integrated over the volumes enclosed by surfaces (box
A) and (box E) respectively. The porous solution captures well the main features of the
resulting pressure signal, although it slightly underestimates the pressure peaks; the results
are unaffected by the choice (rectangular versus pyramidal) of the domain. The direct
solution is a bit superior to the porous one, exhibiting an excellent agreement with the
fluid dynamic reference data. This is not unexpected, since at probe e the linear solution
is already very close to the reference (LES) pressure. However, the contribution from
nonlinear sources is able reconstruct accurately the time signal even in the restricted time
window highlighted in the picture by a circle, where the linear solution fails (see Figure
4.8).

The behavior does not change moving at probe f as depicted in Figure 4.12. The direct
method appears superior to the porous one.

Analysis at probe g, further downstream with respect to the probe f is shown in Figs. 4.14
and 4.13 for different porous domains (A,B,C,E of Figure 4.2).

The porous solution for domain A is not accurate; the use of domain B slightly improves
accuracy (Figure 4.13, top panel). The results on domains C and E are even better and
similar to each other, although still far from the reference values (Figure 4.14, top panel).
Overall, the acoustic solutions with the porous method slowly converges to the reference
one when the surface approaches the probe. Also, the fact that the wake may cross the
porous surface in the region far downstream the probe, appears irrelevant for the quality
of the results, thus suggesting a dominant transversal (orthogonal to the flow direction)
directivity of the nonlinear sources.

The direct solution behaves substantially better that the porous one (Figs. 4.13 and 4.14
bottom panels). The solution appears much more robust with respect to the variation
of the size of the integration volume. However the best agreement with reference data is
obtained when the integration volume has the pyramidal shape (domain E), able to wrap
entirely the nonlinear sources. Note that both methods fail to reproduce the two large
pressure peaks present in the LES signal (namely at ¢t ~ 1.8 and ¢ ~ 8.3). Inspection at
the instantaneous turbulent field (not reported here), shows that the pressure peaks are
associated to advection of large scale vortices across all the domains considered approaching
the probe’s location. In other worlds, the two turbulent events make the probe immersed
within the nonlinear sources, thus making ineffective the FW-H analogy.

The accuracy of the FW-H direct solution with respect to the porous formulation further
increases moving far from the cylinder. Figure 4.15 shows the pressure time signals at the
furthest probes (a-d). The acoustic prediction is here performed using the smaller time
interval (time-window of group (b)), using the largest rectangular domain D depicted in
Figure 4.2. The figure clearly shows the reliability of the direct method when compared
to the less accurate porous method. In particular, the underestimation of the peak values
achieved by using the porous solution can be significant. These results can be better
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Figure 4.12: Pressure time signals obtained by LES, porous (top panel) and direct (bottom
panel) solutions at probe f, rectangular (box B) and pyramidal (box E) integration domains
of Figure 4.2.
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panel) solutions at probes a to d in panels (a) to (d) respectively. Rectangular (box

D) integration domain of Figure 4.2.
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Table 4.3: Lo norm of time signals p/(t) of Figure 4.19 coming from FW-H porous and
FW-H porous complete formulations, normalized by the Ls norm of the FW-H direct time
signal.

@) () (¢ ()
L2—Por 066 0.67 0.72 0.54
L2~ PorCompl 0.85 0.87 0.96 1.02

appreciated in the frequency domain (Figure 4.16). Unlike the Curle solution (see Figure
4.10), at probes ¢ and d the porous approach correctly identifies the relevant frequencies
of the resulting noise, but their amplitude is not correctly predicted; on the contrary, the
spectrum provided by the direct method matches very well the corresponding LES one,
thus confirming the dominant nonlinear nature of the acoustic far field and the robustness
of the direct approach.

Concerning the mentioned end-cap problem and the spurious noise components due to
the downstream closure of the integration domain, Figure 4.17 shows the pressure time
signals (top panel) and the corresponding spectra (bottom panel) at point (d), by using
the largest domain D, closed at the downstream section. The presence of the end-cap
from one side does not improve the accuracy with respect to the amplitude of the pressure
signal, and, from the other side, introduces spurious frequencies which make the prediction
even less accurate. This effect is well known in literature and, as mentioned in Section
3.2, recent techniques have proved to be successful at least in 2D fluid-dynamic problems.
However it has to be pointed out that the implementation of these techniques may be not
straightforward and that the extension to fully 3D cases is still under investigation.
Finally, we consider the complete porous formulation. We recall the original formulation of
the porous method which should take into account the volume around the porous surface,
as additional source of noise. Thus, we consider equations (2.37) and (2.38), with f =0
describing a porous surface instead of the body surface. The standard use of the porous
formulation does not consider the 3D terms contribution coming from the external volume,
under the assumption that the terms in eq. (2.38) are negligible. This may not be the case
when turbulence and vorticity propagate in the far field.

We add to the 2D integrals related to a permeable pyramidal surface the 3D integrals
provided by the “complementary” external volume. Figure 4.18 depicts this particular
combination: a pyramidal domain is adopted as a porous surface, the additional external
volume corresponds to the region enclosed by the rectangular domain (box D).

In Figure 4.19 results are shown for the complete porous formulation used to evaluate
pressure field at probes a — d. It is compared to the porous formulation evaluated on
the pyramidal domain and the FW-H direct formulation integrated on the whole volume
enclosed by domain D. The last was found to be in agreement with the LES reference
signals. The contribution from the complementary volume improves the acoustic solutions,
especially at the farthest probe d. This confirms that the nonlinear sources are more spread
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computational domain

Figure 4.18: Sketch of the domains adopted for the complete porous formulation. A
pyramidal porous surface and a surrounding external volume, enclosed in the box D of
Figure 4.2.

in the field than one can infer from the visual analysis of Figure 4.7 and the choice of a
porous domain apparently embedding the whole vorticity and turbulence field does not
guarantee an accurate prediction of noise. To better appreciate the signals differences
of Figure 4.19, in Table 4.3 we report the Ly norm of the time signal p/(¢), defined as
)|, = (JP'( th , corresponding to the FW-H porous (L2 — Por) and the FW-H
porous complete (L2 PorCompl) formulations, normalized by the Ly norm of the FW-H
direct time signal.
The underestimation given by the porous formulation is not fully balanced by the sum
of the volume terms. This means that the porous formulation seems “intrinsically weak”
compared to the direct solution and this result appears to be a basic drawback of the
methodology, regardless of the end-cap problem or of the choice of a suitable integration
domain. This weakness is of numerical nature. Even though, from a theoretical point of
view, the porous and direct integral formulations are fully equivalent, the type of data
and the way they are used can not be inconsequential on numerical result. The volume
integration manages the whole, three-dimensional field, locally accounting for any nonlinear
source mechanism (in particular, the velocity gradients): in this case, the FW-H equation
just appears as an alternative way to solve the Navier-Stokes equations far from the body,
in flow regions characterized by small pressure perturbations. Indeed, the direct solution
exhibits a very satisfactory agreement with LES data in all positions herein investigated.
In the porous approach, on the contrary, nonlinear sources are projected on an external
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surface: however careful this projection could be, it carries any unavoidable numerical
inaccuracy of fluid dynamic simulation and, represents a loss of information, compared to
the volume integration.

The essential role played by the nonlinear sources is also confirmed by depicting the root
mean square (rms) values of pressure on different points placed on concentric circles around
the body at 200d, 300d and 600d, just to show the main directivity features of the acoustic
far field. Figures 4.20 and 4.21 show the comparison of these values, as determined by
Curle (left picture) approach and porous (right picture) one, on plane z = 0 and y = 0,
respectively. Along the flow direction (plane z = 0), the Curle formulation provides a
typical two-lobed map, very similar to a dipole, clearly related to the fluctuations of pressure
on the body surface and the alternate mechanism of vortex shedding from the cylinder
(Figure 4.20); on the contrary, the contribution from nonlinear sources makes the noise
map more similar to a monopole, exhibiting a generally more intense and uniform acoustic
field in the rear part of the body. The same features can be observed in the plane y = 0
(Figure 4.21), concerning the plane y = 0, where approaches give an elongated shapes
in correspondence to the edges of the 3D (finite) cylinder. Once again, however, the
noise levels provided by the porous approach are notably higher with respect to the linear
solution. We remark that the far-field noise was evaluated also by switching the time
delays computation off, thus assuming instantaneous instantaneous noise propagation. No
differences were observed comparing these signals with those obtained considering time
delays. Results achieved in our study indicate the direct solution of the FW-H equation
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Figure 4.19: Pressure time signals at probes a — d (in panels (a) to (d) respectively)
determined by adding to the porous solution on the pyramidal 2D surface the volume
integrals computed on the 3D “external volume”.
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Figure 4.20: The pressure rms values determined by Curle (left panel) and porous (right
panel) methods, on the z = 0 plane, at a distance of 200d (dashed line), 300d (solid line)
and 600d (dash-dotted line) from the cylinder.
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Figure 4.21: The pressure rms values determined by Curle (left panel) and porous (right
panel) methods, on the y = 0 plane, at a distance of 200d (dashed line), 300d (solid line)
and 600d (dash-dotted line) from the cylinder.
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as the most reliable approach to compute the noise emitted by the body and nonlinear
sources. In fact, the porous formulation is less accurate on its own, is sensitive to the choice
of the integration domain whose determination may be not straightforward in presence of
complex noise sources and it may suffer for the end-cap problem. On the other hand, the
computational resources required by the evaluation of the quadrupole volume integral may
be much higher with respect to the faster surface integration of the porous approach. This
is true when the compressibility delays must be included in the solution, especially if a
noise map is required.

In fact, the unsteadiness of the fluid dynamic problems requires the use of a forward in
time integration scheme to solve eq. (2.38): the computation of 7 is very simple and fast,
but the time shift forces to store the signal from each elementary volume and, successively
to perform a time data fitting over millions of cells. This procedure has to be applied at
any measurement point and the computational cost may easily become unsustainable. In
principle, the compressibility delays should never be omitted. In practice, however, their
effects can be really negligible, as confirmed, in the proposed test case, by the perfect
overlapping of signatures determined by removing or by accounting them and, ultimately,
by the good agreement of noise predictions with LES (incompressible) pressure. Of course,
the adequacy of the assumption ¢ = 7 depends on the problem under consideration and,
in particular, the possible body source velocity, the speed of sound and the distance of the
measurement point. As well known from Aeroacoustics, for example, any assessment of
noise from a jet or a helicopter rotor based on such a simplification would be unreliable, even
at short distances, due to the concerned source velocity and the sound propagation speed
in air (co = 340 m/s). Nevertheless, in many other applications this assumption is fully
plausible and can be conveniently adopted. It is the case, for example, of noise predictions
from wind turbines or marine propellers (for which the rotational speed is very low and the
nonlinear sources can play a dominant role, see Ianniello [27]), or the ship noise certification
tests, where the body source moves very slowly, the sound has to be measured few hundreds
meters from the ship and the sound speed underwater is approximately ¢p = 1500 m/s. In
our particular case, the compressibility delays were found to be negligible, for the evaluation
of the noise pressure in both in the near and in the far field. Thus, in these (and other)
cases, a full, direct solution of the FW-H equation is probably the most accurate and even
convenient way to perform a numerical assessment of the acoustic field.

Another problem with the use of the direct solution is associated to the possible presence
of discontinuities in the region of noise generation, among the others, shock waves in air
and collapse of cavitation bubbles in liquids, producing spurious noise in the solution.
From this point of view, the complete porous formulation which includes the 3D integration
over the volume external to the porous surface may be a valid compromise between accuracy
and feasibility. From one hand it substantially reduced the dimension of the volume over
which the 3D terms must be evaluated, probably making acceptable the computational
cost, even in presence of not negligible time delays. From the other hand it allows to
embed the possible discontinuities within the porous surface, leaving to the 3D volume
integrals the role of correction of the porous solution.

As last observations, we would like to emphasize the independence of the acoustic results
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from the time and space resolution herein adopted. The acoustic results here reported are
relative to two groups of fluid dynamic data, time-window (a) and (b) described at the end
of Section 4.1, used as input data for the acoustic solver. Other data with different time
intervals were tested, but results are not showed here. The effectiveness of the acoustic
methods proved to be independent on the type of time interval chosen. Moreover, regarding
the porous domains, different grids were tested. The finest porous grid is of about 120 x 103
panels and was extracted directly from the fluid dynamic grid. While, the coarser porous
grid is of about 60 x 10® panels, the flow data were sampled on the grid by using different
interpolation schemes. No difference was observed related to the refinement of the grid or
to the interpolation scheme. Finally, we employed the fluid dynamic data obtained using
the less accurate coarse grid to carry out an acoustic analysis analogous to the one showed
for the fine grid. The discussion for the fine grid holds for coarse grid as well.



Chapter 5

Hydroacoustic noise from different
geometries

In spite of the geometrical simplification, the study of hydrodynamic noise generated around
simple bodies is significant, because it can exploit fundamental aspects of the topology of
the flow field which, in turn, rules generation and propagation of hydrodynamic noise.
In this study three elementary geometries were considered, immersed in a flow in the
turbulent regime: a sphere, a cube and a prolate spheroid at zero angle of attack. The
sphere produces massive separation at the rear of the body and a wake characterized by
overlapping of vortex shedding and energetic turbulence generated by a shear layer; the
cube behaves similarly to the sphere, apart the substantial difference given by the presence
of the sharp corners, which may give a contribution to noise generation; the prolate spheroid
is aligned with the main current and develops a small separation region in the leading edge
region and a wake much less intense than in the other cases. For sake of comparison, the
Reynolds number, based on the square root of the reference (frontal) area, the uniform inlet
velocity, and the viscosity, is Regq = \ﬂA)UO /v = 4430 for the three objects. The fluid
dynamic field is solved using wall-resolving Large Eddy simulation able to reproduce the
energetic part of the energy spectrum, which mostly contributes to the noise (see [17] and
[58]). The acoustic field is reconstructed by using the FW-H equation, computing directly
the volume (quadrupole) terms.

The chapter is organized as follows. Section 5.1 contains the general features of the nu-
merical setup. Section 5.2 contains: validation of the results for the fluid dynamic field
on the sphere together with a test on the acoustic model adopted (subsection 5.2.1), and
a comparison of the acoustic far-field generated by the three different objects (subsection
5.2.2)

5.1 Numerical setup

Both fluid dynamic and acoustic fields are solved in the framework of the OpenFOAM®
library. A brief description is given at the beginning of section 4.1. The sub-grid scales

61
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for these simulations were modeled according the dynamic Lagrangian model. The PISO
algorithm, including the SGS closure, has been customized at the laboratory of Industrial
and Environmental Fluid Mechanics (IE-Fluids) of the University of Trieste, and details
can be found in [11].

As previously discussed, due to the absence of body motion, to the high value of sound
speed and to the small length scale of the body, the compressibility delay ¢ — 7 practically
reduces to a time shift homogeneous in space, which does not affect the composition of
elementary signals. In fact, after switching off the computation of the compressibility
delay, so as to have practically instantaneous source propagation, we noted that results
were practically identical. In other words, the body together with its own wake appear as
a compact source and the calculation of the delays can be omitted.

We consider three bodies, respectively a sphere, a cube and a 0 angle of attack prolate
spheroid. The sphere diameter is D = 0.01 m. It is immersed in a water stream with
velocity Up = 0.5 m/s and kinematic viscosity v = 1.0 x 107%m?/s, so that the Reynolds
number based on the sphere diameter D is Rep = 5000. In order to compare the three dif-
ferent geometries, the Reynolds number based on the square root of the reference (frontal)
area is the same for the three configurations Re4 = VAU, /v = 4430. The side of the cube
is [ = 0.008 m, the minor-axis of the ellipsoid is equal to the sphere diameter D and its
major-axis is 6.D.

The computational domain for the sphere and the cube is a box with dimensions 16D x
16D x 16D along the x, y and z axes respectively. The domain for the prolate spheroid
is 24D x 16D x 16D along the three directions. At the boundaries of the computational
domain we set a zero-gradient condition for the pressure but at the outlet, where pressure
is set to zero. The velocity is set to Uy at the inlet, stress-free condition is set at the lateral
boundaries and zero gradient condition is set for the velocity components at the outlet.
In order to evaluate the accuracy of the simulations, for the case of the sphere, for which
available experimental and numerical reference data are available, two unstructured, body-
fitted grids were used: a coarse one (CG) consisting of about 5 millions of cells and a fine
one (FG) consisting of about 8 millions of cells. The meshes were built employing the utility
of OpenFoam snappyHexMesh. In the CG case, the grid spacing normal to the wall for the
first layer of cells is 0.001D at the body surface directly resolving the viscous sub-layer;
a refinement box around the body was considered so as to obtain, in the wake region, a
grid size of about 0.1D at a distance of 8D. Out of the region of interest a coarser grid
allows the increase of the dimensions of the domain, reducing possible disturbance effects
coming from the boundaries. An A posteriori analysis showed that about 5 grid points
where placed within 10 wall units (y* = v/u, with ur = \/7y/po and 7, the mean shear
stress) off the wall. In the FG case, same conditions were considered in the proximity of
the body surface, hence the first layer of cells is 0.001D, but a refinement was carried out
in a rectangular region which embeds the sphere and its wake, up to 9D downstream, so
as to have a grid size less than 0.05D at a distance of 8D, about 8 grid points within 10
wall units off the body and also smaller grid size in the plane parallel to the body surface.
A constant time step At = 5 x 107° s was used for the CG case, whereas it was reduced
to At = 107° for the FG case. In both cases, the Courant number was kept smaller than
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0.5. The flow around the sphere, after about 80 characteristic times D /Uy, was completely
developed. After that, statistics were accumulated, collecting the flow data for additional
40D /Uy (coarse grid) and 20D /Uy (fine grid), sampled every 0.1D/Uy. The pressure and
velocity fields were then employed for the acoustic analysis.

The analysis of the results obtained with the two grids and comparisons with reference data
(reported in the next Section) show that the FG was able to give results more accurate
than the CG.

For this reason, the cases of the cube and of the prolate spheroid were run using a fine grid
of about 8 million cells, built in a way similar to the case of the sphere. For the flow around
the cube, the flow data were collected every 0.25D /Uy over a period of 20D /Uy; for the
prolate spheroid data collection was performed every 0.2D /Uy over a period of 35D /Uj.
The data obtained in the three cases were employed as input for the acoustic solver. The
acoustic analogy was applied to determine the acoustic pressure time-history at different
measurement points (named microphones or probes). As mentioned, calculations refer to
water. For the acoustic field the fluid density is set to 1000 Kg/m?3, while the speed of
sound is equal to 1400 m/s.

5.2 Results

This section is composed of three subsections. The first one describes the main features
of the turbulent flow around the sphere and validate our numerical results against the
available literature data of [55], [30] and [57] . To test the adequacy of the mesh two
different simulations were performed, one on the CG of about 5 million of cells and one on
the FG of about 8 million of cells. The subsection also shows the validation of the acoustic
solver using LES reference data for the sphere case.

The second subsections contains the analysis of the acoustic far-field produced by the
three geometries, at different microphones. The third subsection contains a discussion on
qualitatively difference between 2D- and 3D-shaped wakes with respect to the far field
noise.

5.2.1 Validation of the fluid dynamic and acoustic solvers - sphere case

The subcritical flow around a sphere undergoes laminar separation near the equator and
exhibits an instability appearing as a progressive wave motion with alternate fluctuations
produced by the shear at the edge of the separation present in the wake region. The
large scale (sinuous) instability of the wake is commonly referred to as “vortex shedding”,
though measurements and smoke visualizations of [30] showed no evidence of discrete vor-
tex shedding behind the sphere. The mode associated with the small-scale shear-layer
Kelvin—Helmholtz instability at the edge of the recirculation region, is responsible for the
distortion of the large-vortex structures, for production of small scales and, eventually, for
transition to turbulence in the detached shear layers.

Experiments clearly show that the two instability modes co-exist up to a certain Reynolds
number in the subcritical regime, although there is disagreement on its actual value. [I]
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did not detect the high frequency mode beyond Re = 6000; [59] did not observe it beyond
Re = 1.5 x 10* whereas [14] were able to capture it at Re = 3 x 10%. The measurements of
[30] and [2] showed the presence of the two modes up to Re = 10°.

The Strouhal number corresponding to the shedding spiral mode remains approximately
in the range 0.18 — 0.2. However, according to the experimental data of [!], in the range
Re = 6 x 10° to 3 x 10%, the Strouhal number rises from St = 0.125 to St = 0.18. In
experimental studies, a higher frequency component is also observable, associated with the
development of the Kelvin-Helmholtz instabilities in the detached shear layers, (St > 1.3).
A numerical simulation may need a high level of grid refinement in the shear layer region
to detect the small-scale instability, as in the DNS study of [57].

We compare our results obtained with two grids with the reference DNS data of [57] and
the experimental data of [30], both at the same value of the Reynolds number as in our
case.

Hereafter, quantities averaged in time and over a direction in space are denoted with the
symbol (.). The mean streamwise velocity (u) (made non-dimensional with Up) along the
radial direction, is depicted at three different positions along the z-axis: x =0, z = 0.5D
and x = 2D (figure 5.1). Asin [57], the mean velocity profiles are calculated over the cross-
stream planes x = const averaging over the circumferential direction at constant distance
from the axis of symmetry with coordinates y = 0,z = 0. Note that the radial direction
depicted in the figure does not coincide with that one defined in spherical coordinates. The
origin of the Cartesian frame of reference is at the center of the sphere, hence the plane
x = 0 corresponds to the equatorial plane of the sphere normal to the inlet velocity.
Although the CG is able to give results in reasonable agreement with the DNS data, the
FG reproduces much better the velocity profiles. This is particularly true at the equatorial
plane where the FG perfectly reproduces the thin boundary layer developing along the wall-
normal direction and at the leading edge (x = 0.5D). In the wake, a small disagreement
is present, which may also be attributed to differences in the geometrical configurations.
Specifically, we consider an isolated sphere, whereas in the DNS the authors considered a
solid stick supporting the sphere at the rear, likewise in laboratory experiments.

The distribution of the skin friction coefficient C; = (7,)Re/poUZ and of the pressure
coefficient C, = (p—po)/0.5p0U¢ (po is the pressure at the inlet) around the circumferential
direction are in figures 5.2 and 5.3 respectively. These quantities are averaged over time and
azimuthal direction. The skin friction coefficient is compared with DNS data of [57]; the
comparison is very good also for this quantity for the FG. Conversely, some disagreements
appear for the CG case. This occurs both in the region of attached flow as well as in
the separation region, where the change of sign of the shear stress is not reproduced with
accuracy. The pressure coefficient is compared with experimental data of [30]. In both
cases, our LESs reproduce very well the angular distribution of the coefficient as well as of
its minimum, well captured at § = 71°.

The lift coefficient Cl = F,/(0.5p0U%A) obtained in our simulations exhibits an oscillatory
behavior (figure 5.4, top panel). Here y and z are a couple of mutually orthogonal axes
contained in a plane orthogonal to the axis x running along the freestream direction (see
figure 5.7). The shape of the signal obtained with the FG suggests the presence of a larger
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Figure 5.4: Time record of the lift coefficient Cl and drag coefficient C'd for the sphere
(top panel). C1 in the frequency domain (bottom panel). CG, lines; FG, lines with dots.

number of discrete frequencies. In fact, figure 5.4 (bottom panel) reveals the presence of
three main peaks in case of FG. The three peaks correspond to St = 0.07,0.16 and 0.32.
The CG is not able to reproduce such dynamics, giving two main peaks only, corresponding
to the values of St = 0.127 and 0.2 respectively.

The drag coefficient Cy = F,/(0.5p0U%A) also exhibits a weakly oscillatory behavior. The
mean value of the drag coefficient is 0.47 for the FG and 0.43 for the CG. Both values are
in agreement with literature results (in the range 0.4 - 0.5 for Reynolds numbers in the
range 10% <+ 2 x 10°.

To summarize, overall, our LES results exhibit a good agreement with reference DNS and
experimental data. As expected, the FG exhibits a better agreement with reference data
than the CG. Specifically the FG is able to reproduce a richer frequency contain of the
signal. For this reason, the simulation for the other geometries (cube and prolate spheroid)
are carried out on a fine grid, shaped likewise the sphere case.
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Figure 5.5: Validation tests
for the acoustic solver.
Longitudinal cut (plane
z = 0) of the computational
domain with a cut of the
box (in evidence) used
for the volume integration
of the quadrupole term:
the probes locations are a
(0,2D,0), b (2D, 2D,0)
and ¢ (4D, 2D, 0).

For sake of completeness, we repeat some validation tests on the FW-H formulation con-
sidering the flow herein investigated. Specifically, we test the acoustic solver by a direct
comparison of the pressure signals provided by the FW-H equation with the hydrodynamic
pressure provided by LES for three probes with coordinates (0, 2D, 0), (2D, 2D, 0) and
(4D, 2D, 0) respectively. The volume domain considered for solving the quadrupole terms
of acoustic equation, that cannot contain the microphone, is sketched in figure 5.5, which
shows the section z = 0 of the computational domain.

Along the z-axis it is 14D long, it covers the entire length along the x-axis, and along the
y-axis the domain is 3D wide. The volume thus extends up to 0.5D from the probes. The
results of the validation test are shown in figure 5.6. Specifically we show the spectra level
obtained with the two signals. The amplitude is reported in the logarithmic unit decibels
(dB). The spectrum level was calculated as 20 x logo(FFT(p')/pref), where FFT denotes
the Fast Fourier Transform of the signal (that was normalized by the number of sample
points) and p,.y = 1pPa is the reference pressure adopted for underwater sound pressure
level measurements. On the left panels we report the comparison for the CG, on the right
panels we show the results for the FG. The agreement between the signals is very good in
both cases, although in case of FG the reconstruction of the signal appears slightly better,
in particular in the range of high frequencies. This is in agreement with the findings of [3]
who emphasized the need of fine grids for an accurate reconstruction of the signal.
Hereafter, when referring to LES data for the sphere, we implicitly make reference to those
obtained with the fine grid.

Note that the frequency-dependent hearing threshold of human ears in underwater condi-
tions is relatively high, 84 — 100 dB, when referenced to 1 puPa, and the ambient noise is
in the range of 60 — 100dB.

5.2.2 Comparative analysis for the three bodies

First, we show instantaneous streamtracers for the three bodies investigated, to give a
qualitative sight of the flow at the rear of the three objects (figure 5.7). Flow separation
is substantially different in the three cases: the separation angle on the sphere is about
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90°; the main recirculation beyond the sphere covers a long region up to x = 2D where
the mean flow reattaches, while smaller recirculation spots are present in the proximity of
the surface. The snapshot captures a large vortex released at the top side of the sphere
and a number of small structures close to the body surface, result of the small-scale shear
layer developing beyond separation. The flow over the cube separates at the front corners
causing a widening of the mean flow which tends to reattach about 1D in the downstream
region. Small-scale vorticity is appreciable over the free stream-oriented surfaces. Finally,
the streamlined profile of the prolate spheroid gives rise to a recirculation region in the
very rear part of the body, small compared to that of the previous cases. The main vortex
behind the spheroid (depicted in figure 5.7) has a diameter of about 0.28D compared to
those behind the sphere (~ 1D) and behind the cube (~ 0.8D). The flow over the prolate
spheroid separates at © = 2.7D, at the ending part of the body.

In order to get a qualitative view of the turbulent wake, contour plots of the resolved
turbulent kinetic energy k = 3((«/u’) + (v'v') + (w'w’)) (the symbol / denotes resolved
fluctuations) are depicted in figure 5.8. The time window over which the quantity was
calculated is not enough to obtain convergent second-order statistics, however, for the
scopes of the present paper, the figure gives useful information. Three planes, orthogonal
to the flow direction, were selected for this analysis, located respectively at distances D,
3D and 6D respectively, from the trailing edge of the bodies.

For a certain body, the region of high k intensifies and increases in size moving downstream
(panels from the left to the right). At a certain distance from the trailing edge, for the three
bodies (panels from the top to the bottom) we observe that the cube produces the highest
level of k in a wider region. The intensity of the wake behind the sphere is comparable to
that of the cube although a bit smaller in size. The prolate spheroid produces small levels
of k over a small region (note the different spatial scales of the bottom panels with respect
to the others in figure 5.8). These differences are expected to affect the acoustic signals.
In order to study the acoustic far-field we analyzed the pressure signals reconstructed by
the FW-H equation at 6 different probes, whose coordinates are in table 5.1. Two probes
are over the longitudinal axis x in the far wake (A and A;); two over the transversal axis y
in the far field (Cp and C1) and two over a diagonal oriented at 45 degrees in the z —y plane
(Bop and Bj), in the far field. The domain considered to compute the quadrupole terms
of the FW-H equation is the volume centered over the body and enclosed in a box with
dimension 12D x 12D in the y, z directions, and running along the entire computational
domain along the z-axis.

The time-signals of the bluff bodies turn out to be the most intense and richest in frequencies
(figure 5.9). The sphere and cube produce equivalent far-field noise. The noise radiated by
the prolate spheroid is substantially smaller than that of the other bodies.

As well known, the FW-H equation consists of a sum of linear terms, related to the integra-
tion on the body surface (loading noise), and nonlinear terms, corresponding to a volume
integration on the flow-source region. Thus, it may be interesting to evaluate the separate
contributions coming from the different terms.

We show the spectrum level from the linear source terms in figure 5.10 and from the nonlin-
ear sources in figure 5.11 respectively. Overall, the analysis of figure 5.10 suggests that the
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Figure 5.7: Snapshots of the flow around sphere (top panel), cube (middle panel) and
prolate spheroid (bottom panel). Instantaneous streamtracers together with contour of the
streamwise velocity, made non-dimensional with the inflow velocity Uy.
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Figure 5.8: Contouring of the resolved non-dimensional turbulent kinetic energy k/ Ug
over three planes orthogonal to the streamwise direction, at a distances x = D, 3D, and
6D from the trailing edge of the bodies (from left to right panels): Sphere (top panels);
cube (middle panels); prolate spheroid (bottom panels).
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loading noise deriving from the bluff bodies is substantially larger than that coming from
the streamlined body, thus confirming that its elongated, hydrodynamic shape produces
a very low (loading) noise. This occurs at all probe positions investigated. Further, the
energy content in the high frequencies appears a bit larger in the case of the cube than for
the sphere. This may be the effect of the small scale vorticity developing because of the
sharp corners. In fact, the high frequencies appear more the linear part of the signal, while
nonlinear terms seem to provide mainly low frequencies.

The sound spectrum level of the non-linear part of the signal (figure 5.11) gives information
on the sound level mostly generated by the wakes developing downstream. The loudness
of the wakes appear comparable among the three cases downstream the bodies in the far
wake (microphones Ay and Ap). Conversely, at noticeable distance from the bodies, along
the transversal directions (microphones B to Cs), the wakes generated by the bluff bodies
appear more loudly than that of the prolate spheroid. This suggests a sort of directivity of
the noise generated by the hydrodinamically streamlined body, compared to the two cases
of bluff bodies.

Finally, we observe that, for bluff bodies, the linear contribution to the far field noise
is always more significant than its non-linear counterpart. The opposite is true for the
prolate spheroid, due to the very weak loading noise generated by this body. In general,
this behavior may be explained by referring to the FW-H equation, where, as well known,
the far field components of linear terms decay as 1/r (r being the source-observer distance),
while the decay of the nonlinear source contributions is notoriously much faster.

A0 Al BO B1 Co C1
z | 50D 100D 50D 100D O 0
Y 0 0 50D 100D 50D 100D

Table 5.1: Coordinates of probes at z = 0 placed in the far field for the analysis
of the radiated noise.

5.2.3 Cube versus square cylinder

This section is devoted to a preliminary comparison between the hydroacoustic field gener-
ated by the cube, as presented in the previous section, and by an elongated cylinder with
a squared section, studied in the previous chapter 4.

It has to be pointed out that in the cylinder case the acoustic analysis of the pressure
signals was carried out considering air as a medium. Also, the inlet velocity as well as the
dimension of the body were different from those of the cube. Consequently, for making
the present comparison consistent, first we re-processed the pressure signal relative to
the cylinder considering water as the carrying fluid. Then we present the results in non-
dimensional form, thus showing the spectrum of the pressure made non dimensional with
poUZ as a function of the non-dimensional frequency fd/Uy.

Figure 5.12 shows a comparison between velocity fields determined in fully developed con-
ditions for the two cases. Specifically, the comparison is shown on the longitudinal x — y
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AQ0, .., C1, their coordinates are in table 5.1.
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Figure 5.10: Sound spectrum level of the linear terms of FW-H in at all probes probes of

table 5.1.



RESULTS 75
. 60 .
60F ~--~Sphere - nonlinear -~ Sphere - nonlinear
@ —Prol. Spheroid - nonlinear %\ 40t —Prol. Spheroid - nonlinear
= 40 Cube - nonlinear = Cube - nonlinear
[ ~= © 20t
> >
L 2ot <@
€ E or
> N >
E o B
3 Q 20
& 20 )
-40
40 g e 3 q 2
10 10 10 10 10 10
Freauency (Hz) Freauency (Hz)
60 : 40 -
-~ Sphere - nonlinear -~ Sphere - nonlinear
o 40t —Prol. Spheroid - nonlinear m 20F —Prol. Spheroid - nonlinear
o . o .
g Cube - nonlinear g Cube - nonlinear
Q 20f R Q@ of -
o o
E of £ -20f
> >
S S
© ©
@ -201 @ -401
o Q
9p] n
40T -60
10" 102 10° 10" 102 10
Freauency (Hz) Freauency (Hz)
60 - 40 -
- = Sphere - nonlinear - = Sphere - nonlinear
@ —Prol. Spheroid - nonlinear @ — Prol. Spheroid - nonlinear
—= 40r Cube - nonlinear = 207 Cube - nonlinear
%) [0)
> >
Q o
£ 20 £ 0
> >
s =
3 3
3 or 3 -20f ]
wn wn
20 g B 3 40 I B
10 10 10 10 10 10

Freauency (Hz)

Freauency (Hz)

Figure 5.11: Sound spectrum level of the non-linear terms of FW-H in at all probes probes

of table 5.1.



RESULTS 76

Figure 5.12: Comparison of instanta-
neous streamwise velocity u, made non-

dimensional by the inlet uniform velocity
| ﬁj Up, in the case of a flow around a cube
(left panel) and flow around a square
cylinder (bottom panel).
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Figure 5.13: Comparison of linear terms (left panel) and nonlinear terms (right panel) of
the FW-H reconstructed signal in the frequency domain, at a distance of 100D (probe Al
in table 5.1). Case of a flow around the cube (dash dot line) and a square cylinder (solid
line).

mid-plane of the two computational domains. As expected, in the mid-section the flow
downstream the cylinder is characterized by the presence of a persisting and oscillating
wake, which becomes progressively wider and finally breaks, turning into a rather chaotic
and turbulent flow. On the other hand, the wake behind the cube is more irregular and,
above all, spreads out much earlier in the field, thus providing a much weaker occurrence
of nonlinear noise sources in a region limited in space.

Figure 5.13 shows a comparison between the noise non-dimensional spectra at probe Al
(located 100D downstream of the body), corresponding to both linear (left panel) and
nonlinear (right panel) FW-H source terms. Apart the extent of the spectra in the frequency
domain, related, from one side, to the extension of the available time window and, from
the other side, to the sampling time interval, the figures give very useful information. The
loading terms given by the two bodies overlap in the regions of non-dimensional frequencies
in common. This is not surprising, since the loading term is mainly related to the shape
of the cross-sectional section that, in the two cases investigated is the same (a square).
On the other side, substantial differences are observed in the non-dimensional spectra of
the non-linear quadrupole terms, the signal given by the wake of the cylinder being much
larger than that given by the cube. This has to be attributed to the energy content of the
2D-shaped wake developing behind the cylinder, when compared to the 3D-shaped wake
developing around the cube. This important aspect will be exploited in a successive work.



Chapter 6

Hydroacoustic noise from
cavitating flows

This chapter is dedicated to preliminary considerations on the modeling of pressure dis-
turbance that may propagate from cavitating flows and results from simplified cases are
discussed from a qualitative point of view. The dynamics of vapor bubble forming and
collapsing within a flow requires many assumptions that force both theoretical and nu-
merical models to approximate several physical mechanisms. The main assumptions which
have been made for the present study are: vapor bubbles are spherical, the temperature is
constant, the distribution of bubble is uniform in space and phenomena of coalescence or
collision of bubbles are absent.

In the present study, three steps are proposed, to analyze the complex mechanisms re-
lated to cavitation noise and to discuss the numerical results of a cavitating flow around
an hydrofoil. First, we present dynamics and acoustics related to a single bubble whose
oscillatory motion is ruled by the Rayleigh-Plesset equation. Then, a collection of bubbles
constituting of a symmetrical spherical cloud is considered, whose behavior is strictly re-
lated to the single bubble motion. Last step introduces the mixture model, in which the
vapor growth is based on the bubble dynamics, derived from the Rayleigh-Plesset equation.
The mixture model is applied for the case of a cavitating flow around an hydrofoil. The
pressure signals observed in the hydrofoil case are found to be related to those observed
in the case of the single bubble and the bubble cloud. In particular, the bubble rebounds
characterize the bubble noise as well as the rebounds of the vapor cavity characterize the
cavitating hydrofoil noise signal.

The chapter is organized as follow: before describing the equations of the mixture model
adopted to reproduce the cavitating flow (section 6.2) a brief introduction is given (section
6.1) about physics concerning the formation of bubbles in a liquid medium and about
alternative methods of modeling this type of multiphase flow. In section 6.3 and 6.4
dynamics and acoustics of a single isolated bubble and of bubble cloud respectively are
briefly presented and discussed; section 6.5 is devoted to some details of the adopted
multiphase solver and the numerical results for a cavitating flow around a hydrofoil, at
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different Reynolds and cavitation numbers.

6.1 Physical aspects of sheet and cloud cavitation

The cavitation phenomenon can be interpreted as the rupture of the liquid continuum due
to excessive stresses. The liquid to vapor transition may be obtained either by heating the
liquid at constant pressure, which is well known as boiling, or by decreasing the pressure
in the liquid at constant temperature.

In practice, if a liquid at constant temperature is subject to a decreasing pressure p below
the saturated vapor pressure p, the transition to vapor occurs. The value of (p — p,) is
called the tension, and the magnitude at which rupture occurs is the tensile strength of the
liquid [6].

The (instantaneous) formation of vapor cavities in a liquid is generally initiated from
microscopic nuclei carried by the flow. Such nuclei are points of weakness for the liquid
from which macroscopic cavities are generated and grow in low pressure regions.

The simplest and most widely used model of nucleus is that of a micro-bubble. Such a
micro-bubble, typically of a few microns in diameter, is assumed to be spherical and to
contain a gaseous mixture made of the vapor of the liquid and possibly of non condensable
gas.

It is well-known that ordinary water contains dissolved air (essentially oxygen and nitrogen)
at least if no special degassing procedure is applied to it.

In any practical experiment or application (see among others [19, 21]), weaknesses can typ-
ically occur in two forms. The thermal motions within the liquid form temporary, micro-
scopic voids that can constitute the nuclei necessary for rupture and growth to macroscopic
bubbles. This is termed homogeneous nucleation. In practical engineering situations it is
much commoner to find that the major weaknesses occur at the boundary between the lig-
uid and the solid wall of the container or between the liquid and small particles suspended
in the liquid. When rupture occurs at such sites, it is termed heterogeneous nucleation.
While it may be possible to remove most of these nuclei from a small research laboratory
sample, their presence dominates most engineering applications.

The important fact concerning the liquid weakness is that the different nuclei concentration
is significant for the inception and development of cavitation. To make comparisons of the
initial /background conditions of ambient liquid created in the experimental laboratories,
a non-dimensional parameter was introduced: o = (pg — p,)/0.5 * pLU? which is named
cavitation number. It is a measure for the sensitivity of the flow for cavitation to occur
and is useful to facilitate the comparison of results from experiments and numerical simu-
lations. A higher cavitation number indicates that the pressure in the flow must decrease
more before cavitation occurs. A smaller cavitation number indicates that a smaller de-
crease in pressure causes cavitation. Thus, a low cavitation number corresponds to a high
susceptibility for cavitation.

The Rayleigh-Plesset (RP) equation [50] describes the time evolution of the bubble radius
when the bubble lies in an infinite domain. The equation simply represents the equilibrium
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of the stress at the interface between gas and liquid. In order to obtain the RP equation,
the mass and momentum conservation equations in both fluids are considered and the stress
equilibrium at the interface is then written. The driving term is the time evolution of the
liquid pressure at infinity po(t). Initial bubble radius Ry needs to be specified as well as
the initial interface velocity R often chosen equal to zero as it is the case if the bubble
is initially in equilibrium. There is no solution in closed form for the Rayleigh-Plesset

equation, but accurate numerical solutions can be easily obtained.

6.2 Mixture model

Numerical techniques frequently used for simulating a limited number of bubbles can be
subdivided based on how they treat the interface between the liquid and the gas. Interface
tracking techniques place grid nodes on the interface and the grid is thus deformed by
the bubble motion. Conversely, interface capturing techniques employ a static grid and
therefore do not place grid points on the interface, but they reconstruct the interface from
a marker in the flow field. Although the former techniques provide a sharper and precise
representation of the interface, they turn out to be impractical whether the vapor cavity
consists of a multitude of bubbles that may be also smaller than a computational cell.
Homogeneous-mixture assumes that vapor phase is very finely dispersed within the liquid
phase. Many bubbly flows come close to this limit and can, to a first approximation, be
considered to be homogeneous. In fact, the two phases could, in theory, be sufficiently
well mixed and the disperse particle size sufficiently small so as to eliminate any significant
relative motion.

To summarize, the main assumptions of the mixture model here adopted are: the vapor
phase is very finely dispersed within the water phase, the relative motion between lig-
uid and vapor phases is neglected, the two phases are in thermodynamic and mechanical
equilibrium, the liquid vapor mixture is treated as an homogeneous medium with variable
density p,, and viscosity p,,, being

|2

ay = —

v |4
pm = prL(l — )+ aypy

pm = pr(l—ay) + pwpy

where V' is a volume element of fluid and V), is the volume of vapor contained in V', «y is
named the vapor fraction, the subscript L and v indicate that the constant quantities (p
or p) refer to liquid or vapor phase respectively.

The solver is available in OpenFoam (named InterPhaseChangeFoam) for incompressible,
isothermal immiscible fluids with phase-change. It employs a VoF phase-fraction based
interface capturing approach. It solves the continuity and momentum equations for the
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being U, the interface-compression velocity which will be discussed in section 6.5.1. The
two terms on the RHS are source/sink terms, they describe the phenomena of vaporization
and condensation. In literature different models for the source/sink terms are available;
we adopted the one proposed by Sauer et al. [50], which relates them to the variation of
the bubbles radius by using the Rayleigh-Plesset equation [50, 48]. Further details on the
multiphase solver adopted for the numerical experiments are reported in section 6.5.

6.3 Single bubble

The dynamics of a single, spherical bubble immersed in a incompressible fluid can be
modeled by a nonlinear differential equation of second order, known as the Rayleigh-Plesset
equation. The radius of the spherical bubble, assuming constant temperature, varies in time
R(t) according to the equation

2 2
pL (R(t)a £’§t> +; <8];§t) ) ) = (6.2)

25\ [ Ro \*'  2s 1 OR(t)
(e ) (i)~ wg g o o0 000

where Ry and po are the bubble radius and the fluid pressure at undisturbed (reference)
conditions, respectively, pr, is the density of the liquid, p is the dynamic viscosity, s is the
surface tension, «y is the polytropic index for the gas inside the bubbles and Ap(t) is the
imposed driving pressure at infinity. Under equilibrium conditions Ap(t) = 0, the pressure
inside the liquid surrounding the bubble is pg.

The outer pressure varies in time as

Ap(t) = Apo sin(27 feget), (6.3)
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Table 6.1: Characteristic values of gas (air) and surrounding liquid (water) that have been
used for the simulation.

Initial radius Ry 14pm
Liquid pressure po 100kPa
Liquid density o 998 Kg/m?
Dynamic viscosity w 1mPa
Vapour pressure Py 5945 Pa
Surface tension s 725mN/m

Polytropic exponent ~ 1

where Apg = 36kPa and the resonance frequency fe.. = 1260k H z. The values used for the
simulation are listed in the Table 6.1, where the value v = 1 corresponds to an adiabatic
behavior.

The values R(t + At) and R(t + At) are calculated using Taylor’s series expansion of the
solution at the previous time step R(t), R(t), and R(t); then equation (6.2) is used to find
R(t + At). The program automatically adjusts the time steps to ensure that the fractional
change in bubble radius between two subsequent steps does not exceed 5%.

In Figure 6.1 the evolution of the bubble radius over time is depicted for the case of the
imposed harmonic pressure wave given in eq. (6.3). The difference between top and bottom

panel of figure 6.1 lies in the duration of the imposed external pressure, in particular:

a) the top panel figure shows the response of the bubble to a single sinusoidal oscillation
of Ap(t), that is Ap(t) = 0 for ¢ > 1/feze. It is noticeable the distinct resonant
behavior of the micro-bubble which rebounds according its natural frequency;

b) the bottom panel figure shows the response of the bubble to a continuous sinusoidal
pressure, meaning that Ap(t) behaves as in eq. (6.3) for any time ¢. In this case, a
second lower frequency appears, and makes the maximum value of radius, reached at
every rebound, fluctuating (oscillating) as well.

The acoustic pressure disturbance generated by the oscillating bubble can be written ac-
cording to FW-H equation, neglecting the contribution of volume sources, that is including
only the thickness and loading terms. Moreover, in most cases, far field acoustic pressure
from bubbles or cavities is due to rapid oscillations of their volume which is represented
by the thickness term alone. This is responsible for the monopole character of the far field
bubble noise. Considering the system as instantaneous, (a reasonable assumption, due to
the high sound speed underwater and the small source length scale), we may approximate
the far field acoustic pressure as

PL 0 Un
p=Pre [ Ungg 4
47 8t /av T dS (6 )
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Figure 6.1: Normalized bubble radius R(t)/Rg excited by harmonic pressure wave given
by equation (6.3). If the imposed pressure is zero for t > f.,. the bubble oscillates symmet-
rically in time (left panel). If the external pressure persists for any time ¢ a lower frequency
characterizes the resulting radius oscillation (right panel).

where 0V = S is the bubble surface, u,, is the bubble velocity projected along the outward
normal to the bubble surface and 7 is the source-observer distance. The velocity of the
bubble oscillation is expressed as the time derivative of the radius u, = R, thus from eq.
(6.4) we obtain

 4motr | Ot ot? ot |

The acoustic pressure P, is evaluated for the oscillating bubble of figure 6.1: the two cases,
left and right panel respectively, are depicted in figure 6.2. The observer is at a distance
r = 0.001m from the bubble center. The typical pressure field behavior (see for example [6])
is computed correctly, since (as expected) each volumetric rebound of the bubble causes an
acoustic peak. The radial symmetry of the velocity field u,, characterizes the acoustic field
as a monopole field; it is worth noting that by accounting for a deformation of the spherical
symmetry, the pressure field would probably characterized by a specific directivity.

2
P, = pL 01 [3R4FR2] _rL [MRQ + 2387}% (6.5)
r

6.4 Bubble cloud

In this section we deal with a simplified ensemble of bubbles which are enclosed in a spher-
ical domain. The modeling of dynamics and acoustics is quite similar to the one described
in the previous section, but it refers to a spherical cloud of bubbles. Some assumptions are
needed, to gradually address the complex physics of the problem. Specifically, the relative
motion and the mass transfer between the two phases (bubble gas/vapor and surrounding
liquid) are neglected. The population of bubbles per unit liquid volume 7, within the cloud,
is assumed uniform initially and there is no coalescence or break-up of bubbles. Since the
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Figure 6.2: Far field acoustic pressure P, evaluated according eq. (6.5) of oscillating
bubble of figure 6.1, left and right panel respectively.

relative motion and coalescence phenomena are neglected, it follows that 7 is constant and
uniform within the cloud in time. The equations here adopted are those derived in [16] and
[64]. The continuity and momentum equations for the one-dimensional spherical bubbly
mixture are rewritten in an integral form, in terms of the Lagrangian coordinate (ro,t),
where 7 is the (non-dimensional) initial radial position at time ¢ = 0. The equations for
the cloud dynamics are

3 b 47nR> 24 v
34‘47777/0 (3 +4mnR>(&, )€ 5] ;

127 /TO OR(¢,t)
(3 + 4mn)r2(ro,t) Jo ot

In eq. (6.6) the variable r is the Eulerian radial coordinate measured from the center of
the cloud, 7y is the Lagrangian radial coordinate measured from the center of the cloud
and u is the radial velocity of the fluid. The parameter n may be expressed in terms of the
void fraction n = o/(1 — ar).

The dynamics of the bubbles within the cloud is always ruled by (6.1); nevertheless, in this
case:

it = [ (6.6)

R*(&,1)E%d¢.

u(ro,t) =

» the dynamic viscosity u is replaced by the dynamic viscosity of the mixture ug,
» the time derivative 0/0t is replaced by the material derivative D/Dt = 9/9t+ud/0r.
» the external pressure Ap(t) is replaced by the pressure field p = p(ro, t).

The pressure field p, which varies along the radial direction and in time, is obtained by
solving the equation of motion:

Du
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where 7 = 47 R3/3 is the bubble volume. The boundary condition for the pressure p is
given by an harmonic pressure wave Cp;,¢(t), external to the bubble cloud:

Apolcos(27 fezct) — 1] 0 <t < 1/ fexe
0 ; t> 1/fe:rca

where fe.. coincides with the frequency adopted for the single bubble case and Apy = 6k Pa.
Different values were chosen for the external harmonic pressure Cp;, ¢, the effective viscosity
up and the void fraction «, and a strong dependence of the bubble cloud dynamics on their
variation has been observed. However, the in-depth analysis of the complex dynamics of
the bubble ensemble is beyond the scope of this thesis and we limit our attention to a single
test case whose parameters are listed in Table 6.2 (in addition to those already expressed
in Table 6.1); note that the initial cloud radius is set to Ay = 100Ry. As already mentioned
in [64], the characteristics of the growth of the cloud are similar to those of the bubbles
within the cloud and all the bubbles grow almost in phase. Instead, comparing bubble
cloud behavior with that of a single isolated bubble (see previous section) a substantial
difference was found to be related to the dissipative action of the effective viscosity of the
mixture. The oscillations of the bubbles within the cloud (and consequently of the cloud
itself) are damped by the high viscosity ppg, as showed in Figure 6.3 (left panel), where the
time history of the cloud radius A(t) = r(Ay,t) is reported.

For what concerns the acoustic noise generated by the spherical cloud, the same obser-
vations and arguments made for the single bubble apply. With reference to the FW-H
equation, the only contribution to the acoustic (far) field is provided by the thickness noise
term, which is related to the motion of the cloud surface. Thus, by applying eq. (6.4), where
S = 4mA(t)? and u = u(Ao,t) now represent the cloud surface extension and velocity re-
spectively, we obtain a pressure disturbance which is strictly related to the cloud rebounds,
see Figure 6.3 (right panel). Further experiments should investigate on the acoustic fre-
quency dependence from the different parameters involved, the rate of dissipation due to
the effective viscosity, which is related to the number of bubble within the cloud.

Cping(t) = { (6.8)

Table 6.2: Characteristic values used for the bubble cloud simulation.

Initial bubble radius Ry 14pum
Initial cloud radius Ag 140 um
Liquid pressure po  100kPa

Effective dynamic viscosity pp 100mPa
Void fraction a  0.03%
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Figure 6.3: Time history of the cloud radius (left panel) and far field acoustic pressure P,
evaluated according eq. (6.5) of the oscillating bubble cloud (right panel).

6.5 Hydrofoil NACAO0012

In the previous sections a brief introduction about bubble motion was presented. The
passage from the case of a spherical symmetrical bubble cloud to the case of a cavitating
flow is not immediate and, roughly speaking, in the mixture model each computational cell
is interpreted as a cloud bubble. As a first attempt to reproduce a cavitating flow, with
the aim to test the available multi-phase solver in OpenFoam, we considered a simple two-
dimensional configuration: an hydrofoil NACA0012 at a low Reynolds number (based on
the foil chord) Re. = 2000, 6000. We first introduce some details on the multiphase solver
adopted and briefly discuss the results, then we apply the FW-H equation to reconstruct
the acoustic pressure field.

6.5.1 InterPhaseChangeFoam

In this section we describe some details on the multiphase solver we adopted to reproduce
a two-dimensional cavitating flow over an hydrofoil. The solver, named InterPhaseChange-
Foam, already implemented in OpenFoam, is defined as a solver for two incompressible,
isothermal fluids with phase-change (e.g. cavitation). It uses a VOF (volume of fluid)
phase-fraction based interface capturing approach. The momentum and other fluid prop-
erties are related to the mixture and a single momentum equation is solved with a unique
density of the mixture p,, = (1 — a)pL + Q.

In particular, the governing equations are those presented in section 6.2. Here we give a
description of the source/sink terms that appear in eq. (6.1): m* +m™.

Different phase-change models have been developed and are available in literature and many
of them are present in OpenFoam, though in a simplified version. A comparative analysis
of the different source/sink models response and their sensitiveness on parameters variation
is described in [20]. In the present study, the model proposed by Sauer and Schnerr [50]
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was adopted. This model relates the sink/source terms of the advective equation for «
to the bubble dynamics expressed by the Rayleigh-Plesset equation; thus m™ and m™ are
function of bubble radius R which varies according to the ambient pressure. This means
that the micro-bubbles are thought to be contained in a computational cell and the pressure
related to every cell works as outer pressure for the bubble dynamics. The bubbles grow
and collapse and hence change the vapor fraction in a computational cell in addition to the
convective transport.

The vapor fraction «,, is defined as:

Vo Nouwbles - 37R>  nVi-37R*  n-37R3
‘/vcell %“‘VE n‘/l%ﬂ-R3+W 1+77%7TR3

where V. is the volume of the computational cell, V,, and V; are the volumes occupied by
vapor and liquid respectively, Npyppies is the number of bubbles in the computational cell
and 7 is the bubble concentration per unit volume of pure liquid.

The transport equation for the vapor fraction reads as:

Day, n 0 (4
= — | = 1
Dt <1 +77-§7TR3> ot (37rR ) (6.10)

Thus, the vapor production and dissipation m™* + m~ depend on the number of bubbles
per cell volume (rhs: 1st parenthesis) times the volume change of a single bubble (rhs: 2nd
parenthesis). The motion of the bubble radius R is ruled by the Rayleigh-Plesset equation,
however, not the whole equation (6.2) is solved in interPhaseChangeFoam. If the pressure
difference p, — Ap(t) of eq. (6.2) is large enough, after neglecting second order terms, the
bubble growth may be described in terms of the single component:

o [2py — Ap(t)
R= ,/gT, (6.11)

being Ap(t) associated to the ambient cell pressure.

(6.9)

Oy =

The InterPhaseChangeFoam solver needed some corrections regarding the correct imple-
mentation of surface tension and compression terms. The corrections were made on the
basis of a work previously done by the IE-FLUIDS group on a different multiphase solver.
In particular, in the original solver, surface tension and compression of the interface were
activated indiscriminately throughout the whole domain. On the contrary, a consistent
modeling should activate the contribution of surface tension only where it is possible to
define an interface to allow compression. Moreover, in the present case, the interface is
meant as the transition area from high bubble concentration region to a pure liquid region.
Thus, there is no need to make it as fine as if it were an interface between two distinct
phases.

In the modified solver the surface tension and the compression at the interface are controlled
so as to be activated in presence of a consistent interface region. The technique that makes
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this process automatic is called dynamic switch and is based on the following criterion (see
for example [65]) :

|Vl

- max(|Val)

with A switch function and A; threshold value, which need to be set appropriately. When
the normalized magnitude of the gradient of the void fraction A becomes smaller than some
cutoff value )\, actual phase dispersion and interface sharpening is turned off.

The artificial compression term in eq.(6.1) has non-zero value only at the interface and
defines the flow of «a,, in the normal direction to the interface. The expression for Ug is
that proposed by [66] :

>\ (6.12)

U. = min[Cy,|ul, max(|u|)]|§z. (6.13)
where C,, is a binary coefficient which switches interface sharpening on (1) or off (0).
The sharpening mechanism may be controlled by calibrating A; which is based on the
multiphase flow characteristics that are taken into account. In the present work no rigorous
study of dependence on this parameter has been carried out, and the cutoff value was set
At = 0.4 and, therefore, C, =1 as A > ;.
Here a comparison between the original solver (without dynamic switch) and the modified
solver is reported. Noticeable differences from the original solver were observed. Figure
6.4 reports two snapshots of the cavity developing on the leading edge of the hydrofoil for
the two cases: modified solver (top panels) and original solver (bottom panels). The main
improvement regards the cavity contour, which appear smoother so as to make the vapor
region homogeneous and not jagged as in the original solver results. However, in general,
the cavity shape develops similarly in the two cases.

6.5.2 Cavitating hydrofoil

In this section, the aforementioned modified solver is adopted to reproduce a cavitating
flow around a two-dimensional hydrofoil NACAQ0012 at different conditions. Three cases
are considered and details of the simulations are summarized in Table 6.3, in particular Uy
is the uniform inlet velocity and the Reynolds number Re is based on Uy and the chord
length ¢ = 0.1m. It was adopted the same grid for the three cases, it consists of 250000
cells. The downstream section of the computational domain is 4c¢ long and half height of
channel is 1.5¢.

The flow around the hydrofoil for the three simulations was developed (deactivating the
cavitation) until a regular vortex shedding was observed. Then, the vapor pressure p, was
set as to obtain the cavitation numbers listed in Table 6.3. Since the occurrence of cavita-
tion, the simulations ran for a period of about T' = 6s. The constant time step needed to be
very low in order to keep the Courant under 0.01, they are At = 0.00002, 0.00005, 0.0001
for N2a, N2b and N6 respectively. The initial radius is set Ry = 1075,

We have to point out that the physical characteristics of the vapor bubble, which forms
and develops over time, can not be compared with previous experimental studies, since the
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Figure 6.4: Snapshots of the volume vapor fraction « which depict the cavity forming on
the leading edge of the airfoil then being transported by the flow.

three-dimensional effects, which largely affect the dynamics of the cavity, are not taken into
account. Anyway, results observed were considered qualitatively adequate for the purpose
of the present study. Different angle of attack, inlet velocity and vapor pressure p, have
lead to different response of the cavity motion.

As showed in figure 6.5 the inception of cavitation occurs, for the three cases, on the leading
edge. The cavity grows correctly and is advected by the laminar flow. The re-entrant jet
on the upper surface of the foil is strong enough just in the case N2b and N6 (second
and third column) and it induces a separation on the sheet cavitation, while a vapor cloud
detaches and is driven by the flow. The N2a case does not exhibit this behavior; the cavity
was observed to have an initial decrease (between first and second picture of first column)
and then stabilizes (third and forth picture of first column).

6.5.3 Hydrofoil acoustics

This section is dedicated to a preliminary hydroacoustic analysis of the profile in presence of
cavitation. The results obtained through the FW-H formulation are presented and briefly
discussed on the basis of a qualitative analysis. Very few quantitative measurements of
noise from surface cavitation on hydrofoils are available in literature. In the work of Blake
et al. [1] measurements of noise of a two-phase flow over hydrofoils were performed in a
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Table 6.3: Characteristic of the three simulations performed with interPhaseChangeFoam,
to reproduce a cavitating flow around an hydrofoil NACA0012.

NAME o Re AoA U

N2a 1.25 2000 8&° 0.02
N2b 1 2000 &° 0.02
N6 0.8 6000 6° 0.06

Figure 6.5: Snapshots of the volume vapor fraction o which depict the cavity forming
on the leading edge of the airfoil then being transported by the flow. Three cases are
reproduced and their characteristics are expressed in Table 6.3: N2a - first column, N2b
second column, N6 - third column.
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water tunnel (acustically calibrated). The results put in evidence the dependence of noise
from the type of cavitation produced, and for each type, the dependence on speed and
cavity index 0 = (poo — Pv)/ % prUZ. An experimental investigation reported by Reisman
and Brennen [52] concerns the acoustic pressure related to cloud cavitation appearing on
hydrofoil flow. They observed large pressure impulses with typical durations of the order
of tenths of milliseconds. The strength of the pressure pulses was found to depend on both
the cavitationa and Reynolds number. From a qualitative point of view, their acoustic
results are comperable to the pressure impulsive behavior observed in the present study.
A comparison of the pressure field extracted from the fluid dynamic simulation for the N6,
in presence and absence of cavitation, is showed in figure 6.6 (top panel). The measurement
point is set at (0, 0, 0.6¢). It is evident the difference between the smooth and regular oscil-
latory pattern of the non-cavitating case with respect to the richer signal of the cavitating
case. This last signal preserves an oscillatory mode due to the main motion of the flow,
which is still characterized by the vortex shedding on the trailing edge; however, it also
exhibits clear pressure disturbances appearing as the several peaks. In the bottom panel
of Figure 6.6 the pressure signals of the three cases are compared; it shows how the N6
case presents a jagged signal, this is due to the high volume variation of the vapor cavity.
In fact, the pressure peaks due to the vapor cavity rebounds remind the behavior of the
bubble cloud acoustic peaks, evaluated in the previous section. In Figure 6.7 the spectrum
of bubble cloud pressure signal (depicted in Figure 6.6) is compared with the spectrum of
the cavitating hydrofoil, whose pressure signal in time was obtained by running the N6 case
with a time step dt = 107% (and sampling the pressure data at every time step), in order
to have an appreciable comparison on the highest frequencies. The comparison, however,
has a qualitative purpose, due to the different physical conditions that characterize the two
cases. Moreover, the acoustic field radiated from the hydrofoil has an intrinsic directivity
while the pressure signal of the bubble cloud has radial symmetry.

In order to validate the FW-H solution in the particular case of cavitating flows, we report
the comparison of the acoustic pressure field obtained by the porous and direct FW-H
solution with respect to the fluid dynamic pressure, here assumed as a reference data. The
direct FW-H solution was applied as follows: the loading terms were evaluated on the
hydrofoil surface, the quadrupole terms were evaluated in the liquid section of the volume
(i.e. where a = 1) and the thickness term was considered on the cavity surface, so as to
take into account the effects of the volume variation of the cavity on the acoustic field.
However, the adopted solver doesn’t provide a sharp interface, in fact, a thick layer of cells
assume values in the range 0 < a < 1. They represent regions where the concentration of
bubbles gradually decreases, until they encounter cells containing pure water. This vapor
mixture, represented by the entire region where o < 1, was treated as if it were a bubble
cloud, described in the previous section. Consequently, the thickness noise term Ty, is

evaluated as:
N 0 PyUn o 0 Pl
Tth_f)t/sc[ ; Ldsc_f)t/vc v av. (6.14)

where v, represents the velocity of the vapor mass projected along n the outward normal
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to the cavity surface S., while V. is the cavity volume. Due to the absence of a defined
interface on which to calculate the normal unit vector and the surface element dS,, the right
formulation in equation (6.14) was adopted. The porous formulation remains unchanged
from that adopted in the previous chapters. The porous domain is a box which is left open
at the outlet side. Both the formulations, depicted in Figure 6.8, are able to reproduce the
pressure disturbance satisfactorily, although the signals do not exactly overlap.
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Figure 6.6: Top panel: comparison of pressure field in the case N6 of Table 6.3 with respect
to the activation (cavON) or deactivation (cavOFF) of cavitation. Bottom panel: Com-
parison of pressure field for the three cases N2a, N2b and N6 of Table 6.3. Measurement
point is (0, 0, 0.6¢).
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Chapter 7

Concluding remarks

In the present thesis the accuracy of different numerical methodologies to solve the (con-
vective) FW-H equation were investigated and the noise generated by archetypal three-
dimensional bodies placed in a uniform current has been estimated.

In order to consider the nonlinear contribution to the generation of noise, the convec-
tive form of the quadrupole term has been formulated. The analysis is significant in the
turbulent incompressible flow regime.

As a fluid-dynamic problem, first the flow around a finite size cylinder with square section,
at Re = 4000, has been considered. Although simple, this case exhibits a number of
points of interest for the generation and propagation of fluid dynamic noise. First, it is
characterized by the presence of a turbulent wake, combined with a vortex sheet, which
gives rise to a significant contribution form the FW-H quadrupole source terms; second, it
is representative of a wide class of problems of interest in engineering.

The fluid-dynamic field was solved using wall-resolving LES and validated using available
literature data. This simulation provides both the input data for the acoustic solvers and
a reference pressure to check the reliability of noise predictions given the negligible role
played by the compressibility delays. The results from a (pure linear) Curle solution, the
standard porous formulation, the direct approach including the computation of the vol-
ume, nonlinear terms and a combination of porous and direct methods, were compared.
The calculations confirm that in cases where the acoustic field is essentially of nonlinear
nature (like those herein investigated), the noise due to the fluid dynamic loads occurring
on body surface is relevant just in a very near region close to the body itself; thus, as
expected, the Curle solution is inadequate to evaluate the noise signature far from the
cylinder, both in terms of amplitude and frequencies. The porous formulation successfully
predicts the main frequency components of the resulting signature, but their amplitude
can be undervalued and the solutions are somehow sensitive to the position of measure-
ment points, as well as the choice of the integration domain. This can be attributed to
the overall distribution of nonlinear sources and their main cross-stream directivity. On
the contrary, the direct approach provides a noise prediction very similar to reference data
everywhere in the field, at least at points where (according to the fundamental assumption
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on which the FW-H equation is based) the pressure is characterized by small (acoustic)
perturbations. This methodology is easy to be implemented, fully exploits the underlying
CFD solution and makes the calculations free from any arbitrariness concerning the ra-
diating domain. Nevertheless, its applicability is presently limited to problems where the
effects of fluid-dynamic compressibility on noise propagation can be neglected (low Mach
number and absence of cavitation); in this context, the acoustic calculations could be even
coded within the fluid dynamic solver, thus avoiding any complex post processing of huge
set of data. The coupling of porous and direct methods appears as a further, valid and
convenient, computational approach: although not able to fit the direct solution perfectly,
it can improve the solution achieved by the pure porous formulation, somehow relaxing
any rigorous requirement about the choice of the integration domain; then, it may be con-
sidered a useful and interesting compromise between accuracy and computational cost for
engineering purposes.

As further cases of study, the flow around a sphere, a cube and a prolate spheroid has been
reproduced, at a value of the Reynolds number, based on the square root of the frontal
area, Ry = 4430. The acoustic analogy has been used, solving the turbulent fluid dynamic
field through wall-resolving LES and the FW-H equation for the evaluation of the acoustic
far-field noise. The quadrupole term of the FW-H equation was solved through direct
volume integration.

The analysis of the fluid-dynamic data showed that the cube has the widest and most
energetic and irregular wake mainly associated to the sharp corners. At the opposite
stands the prolate spheroid, whose the streamlined shape provides a small slender wake
characterized by a low level of turbulent kinetic energy. These differences were shown to
impact the generated hydrodynamic noise.

The comparison of the acoustic field generated by sphere, cube and ellipsoid demonstrate
how body shape is decisive in the generation of different types of hydroacoustic noise.
Specifically, the cube appears to be the loudest with a signal composed of a wide spectrum
of frequencies; the sphere is characterized by an almost monochromatic signal with smaller
amplitude compared to the cube; the prolate spheroid provides a pressure signal one order
of magnitude lower than the other cases, associated to a very low frequency.

The analysis of the contribution of the different terms of the FW-H equation showed that
for the bluff bodies (cube and sphere) the linear terms contribute to the overall noise signal
more than the non-linear ones. The opposite is true for the streamlined body (prolate
spheroid).

Finally, a preliminary comparison between the noise generated by the cube and by square
elongated cylinder, shows that the aspect ratio of the body might affect the relative im-
portance between linear and non-linear contributions to the acoustic field. This has been
attributed to the persistence of the two-dimensionally shaped wake in case of elongated
cylinder when compared to the three-dimensional one generated by the cube. This issue
deserves a successive study.

Last part of the thesis represents an introductory study on the noise radiated from cavi-
tating flows. To gradually approach the complex physics involved first the dynamics and
the acoustics of a single bubble were reproduced, using the Rayleigh-Plesset equation that
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governs the motion of the radius of a bubble with spherical symmetry and the thickness
term of the FW-H equation which is related to the pulsations of the bubble. Then, a spher-
ical ensemble of bubble was considered, and it was observed how the viscosity influences
the bubble dynamics within the cloud distinguishing it from that of an isolated bubble.
Moreover, other parameters were found to considerably influence the solution of the bubble
cloud equations, however, the study on the complex dynamics of the bubbles was consid-
ered beyond the scope of this thesis. Finally, a cavitating flow around an hydrofoil was
reproduced by adopting the mixture model, which considers an advected vapor fraction
and relates the condensation/vaporization rates to the bubble radius. Different Reynolds
and cavitation numbers were considered. Since the case of Re = 6000 turned out to be the
most interesting and “noisy”, it was qualitatively compared to the bubble cloud pressure
signal and similar type of pressure peaks due to the vapor cloud rebounds were observed.
All the Large-Eddy Simulations described in this study were performed by adopting cus-
tomized solvers present in OpenFOAM® . The acoustic solver (namely the integral for-
mulations of the FW-H equation) was implemented as a post-processing utility within the
OpenFOAM® platform.

All the topics addressed in this thesis deserve further investigations.

The coupling of LES and FW-H equation may be adopted to study more complex config-
urations, such as an isolated marine propeller or a propeller behind hull. Some works are
already available in literature concerning an isolated propeller, it would be interesting to
adopt the FW-H direct formulation and isolating different region of the volume one may
identify the main noise source which characterize the wake. A more accurate study may
concern the response of objects immersed in a flow according to their particular surface
geometry. Indeed, the surface variations can largely affect the loading term contribution;
either the effect of roughness or a mechanism of absorption of the fluid dynamic forces
by the object’s walls may be considered. Moreover, the effect of sound wave reflection
may be faced by adopting the Green’s function for the semi-space and the phenomenon of
refraction may be investigated by changing gradually both the density and speed of sound
of the medium where the sound waves propagates.

The reproduction of cavitating flows and the noise emissions related to them have many
aspects that need to be clarified and improved. For example, the multiphase solver adopted
in this thesis may take into account for a more complex bubble dynamics than the one
already considered. Moreover, the effects of coalescence, separation and collapse are not
provided in the current solver.

All the aspects just mentioned are interesting, they deserve careful research and may be
developed in the near future.
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