


Author: Foteini Kyrousi

e-mail: kyrousifo@gmail.com

Affiliation: Doctoral School in
“Earth Science and Fluid Mechanics”.

Dipartimento di Ingegneria e Architettura,
University of Trieste, Piazzale Europa 1,
I-34127 Trieste, Italy

Supervisor: Prof. Vincenzo Armenio

e-mail: armenio@dica.units.it

Affiliation: Dipartimento di Ingegneria e Architettura,
University of Trieste, Piazzale Europa 1,
I-34127 Trieste, Italy

External advisor: Dr. Francesca Zanello

e-mail: zanello@idrostudi.it

Affiliation: Idrostudi S.r.l., Loc. Padriciano,
I-34149 Trieste, Italy

External advisor: Dr. Luca Falcomer

e-mail: falcomer@idrostudi.it

Affiliation: Idrostudi S.r.l., Loc. Padriciano,
I-34149 Trieste, Italy



To my familly and my friends without whom
none of my success would be possible.

“As a young man, my fondest dream was to become a geographer. However
while working in the customs office I thought deeply about the matter and
concluded it was far too difficult a subject. With some reluctance, I then

turned to Physics as a substitute.”

- Albert Einstein (Unpublished Letters)



iv



Acknowledgements

This thesis is the result of my work as Early Stage Researcher (ESR) in
the framework of the SEDITRANS ITN project that has received financial
support from the People Programme (Marie Curie Actions) of the European
Unions Seventh Framework Programme FP7 with REA grant agreement no
607394. This thesis would not be here without the assistance and suggestions
of many people. So, in the following lines, I would like to thank all those
who supported me on this difficult journey.

Firstly, I would like to thank my supervisor prof. Vincenzo Armenio
for his guidance and his constructive advices all these years. To Dr. Luca
Falcomer and Idrostudi srl that offered me all the possibilities to enrich my
scientific carrier. I am also grateful to M.J. Franca, C. Juez and J. Zor-
dant for their scientific collaboration during my secondment in Laboratoire
de Constructions Hydrauliques (LCH) at Ecole Polytechnique Federale de
Lausanne (EPFL). I also thank the High-Performance Computer center of
EPFL (SCITAS) and Cineca for the computing time and technical support.

I would like to express my special thanks to Dr. Francesca Zanello and
Dr. Alessandro Leonardi for their support, both scientifically and personally,
for their patience all these years and for the drafting of this thesis. The daily
routine in the office would not be the same without them. Alessandro is the
best officemate that I could have. He has significantly helped me with coding
and we have spent endless time discussing about my work and life in general.
On the other hand, things would be much harder (and messier) without the
support and supervision of Francesca. Moreover, I think that I would never
managed to deal with all the Italian Bureaucracy without her.

Thanks to Carlo, Giulia, Mraco, Catalina, Steven and all the wonderful
people in the “lab”. They contributed to make my stay in Trieste unfor-
gettable and I feel glad that I had the opportunity to meet them. The
nice group of people that I have met through the SEDITRANS project.
Thanks to David, Ilaria, Marina and Mariantzlea for the nice moments that
we shared during my secondment in Lausanne. Thanks to my “flat mate”
Andrea who became like family to me. My friends Eleni, Tonia, and Sotiria
who always believe in me and have supported me all these years. They
are always there to share my joys and sorrows even if we have scattered
throughout Europe. Our meetings always revive me and give me strength



vi Acknowledgements

to continue. Of course, I could not forget Santiago. I feel very lucky that
coming to Trieste I had the opportunity to meet him. I would like to thank
him for the nice moments that we shared during this period in Trieste, his
support all these years that helped me to keep fighting and of course for his
patient, especially the last period of the PhD (era una verdadera locura...).

Finally, I am particularly thankful to my family: my mother, my father,
my sister and everyone else that make parts of it, for their love and care.
They are always present in any step of my life and I would never arrived
here without their help.

Trieste, 23 March 2018

Foteini Kyrousi



Abstract

Gravity currents are essentially horizontal flows driven by a density differ-
ence with respect to the ambient fluid. Such flows can trigger the transport
of large amounts of sediment resulting in rapid deformations on the bed of
rivers and reservoirs, causing important environmental issues. Despite the
importance of such phenomena, the main mechanisms that lead to sediment
entrainment in such flows are still poorly understood.

In this thesis a coupled hydro-morphodynamic model is presented in or-
der to simulate sediment transport processes induced by the propagation
of gravity currents over erodible-beds. The hydrodynamics of the flow is
resolved using the LES-COAST model, that is based on the large eddy sim-
ulation method, and the topological changes due to erosion and deposition
are tracked by the level-set method. The coupling between the two models
is achieved through the immersed boundary methodology. The resulting
hydro-moprhodynamic tool works in parallel environment that makes the
simulation of real systems possible. This model is applied to the simulation
of the ripple migration problem in order to test its capabilities. The obtained
results are compared with data provided by a similar numerical study and
indicate that the model is able to capture correctly the hydrodynamics of
the sediment-laden flow and the related topological changes.

The focus of this work is on the sediment transport induced by Boussi-
nesq compositional gravity-currents with high Grashof number. The geo-
metric configuration used corresponds to the case of a lock exchange flow
in an infinite channel in which part of the bottom boundary is considered
mobile.Two different study cases have been studied, one with stationary
boundaries and one with moving boundaries. In the first study case the
sediment pick-up induced by gravity currents is simulated assuming station-
ary flow boundaries and the numerical results are validated by experimental
data. The numerical setting considered in this case allows to identify the
region of the flow with higher erosive capacity and determine the flow fea-
tures which play a dominant role on the sediment entrainment. Moreover,
the effect of the suspended sediment on the stability condition of the gravity
current is examined, along with the influence of the latest on the suspended
sediment distribution.

Finally, the developed hydro-morphodynamic model is used to simulate
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the bed forms generated by such flows. It is worth-noting that the propaga-
tion of highly erosive gravity currents over loose beds can lead to consider-
able bed deformation that significantly influence the flow dynamics. For the
first time, 3D numerical simulations of gravity currents flowing over a de-
formable beds are performed. The instantaneous evolution of the generated
scour and deposition patterns is presented, providing a better insight on
the flow-sediment and flow-bed interaction in buoyancy driven flows hence
contributing to improve the understanding of this physical phenomenon, so
relevant at real scale applications.



Sommario

Le correnti di gravità sono flussi prevalentemente orizzontali causati da vari-
azioni di densità rispetto al fluido circostante. Tali flussi possono scatenare
il trasporto di notevoli volumi di sedimenti provocando cos̀ı rapide defor-
mazioni del letto dei corsi d’acqua e dei bacini causando importanti problemi
di natura ambientale. Nonostante la rilevanza di tale fenomeno, non è ancora
ben compreso il meccanismo che causa la ri-sospensione dei sedimenti.

Un nuovo modello idro-morfodinamico viene presentato nel presente la-
voro di Tesi al fine di simulare i processi di trasporto dei sedimenti indotti
dalla propagazione delle correnti di gravità su fondo mobile. L’idrodinamica
del flusso è risolta mediante il modello LES-COAST, che utilizza il metodo
Large-eddy mentre i cambiamenti morfologici causati dall’erosione e dalla
deposizione sono simulati mediante il modello level-set. L’accoppiamento
dei due strumenti modellistici è realizzato attraverso la strategia dei confini
immersi. Il modello numerico accoppiato è stato sviluppato in ambiente
parallelo, che consente di simulare problemi a scala reale. Il modello è stato
applicato alla simulazione della migrazione delle forme di fondo al fine di va-
lutarne le capacità. I risultati ottenuti sono stati confrontati con i dati esito
di un analogo studio numerico ed è emersa la capacità del modello di cat-
turare correttamente l’idrodinamica dei flussi acqua-sedimento e i connessi
mutamenti morfologici del fondo.

Questo lavoro è foccalizzato sul trasporto di sedimenti indotto dalle cor-
renti di gravità composizionale mediante l’ipotesi di Boussinesq con un alto
numero di Grashof. La configurazione geometrica utilizzata corrisponde al
caso di un flusso di lock-exchange in un canale infinito in cui parte del fondo è
considerato mobile. Sono stati studiati due casi diversi, uno con confini fissi
e l’altro con confini mobili. Nel primo caso di studio, la sospensione di sed-
imenti indotta dalle correnti di gravità viene simulato assumendo confini di
flusso stazionari e i risultati numerici sono convalidati da dati sperimentali.
Le impostazioni numeriche adottate in questo caso permettono di indenti-
ficare la regione del flusso con maggiore capacità erosiva e determinare le
condizioni del flusso che dominano la dinamica della sospensione dei sed-
imenti. Inoltre, è stato approfondito l’effetto dei sedimenti sospesi sulla
condizione di stabilità della corrente di gravità nonché l’influenza di tale
condizione sulla distribuzione dei sedimenti sospesi.
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Infine, il modello accoppiato idro-morfodinamico è utilizzato per simu-
lare le forme di fondo generate da tale tipologia di correnti. È importante
notare che la propagazione di correnti di gravità con elevato potere ero-
sivo su fondi mobili può causare notevoli deformazioni del letto che a loro
volta possono avere un effetto non trascurabile sulla dinamica del flusso. La
parte finale della tesi è dedicata all’ illustrazione degli esiti delle simulazioni
numeriche 3D delle correnti di gravità che interessano letti deformabili, ap-
proccio mai presentato sino ad ora nella letterature di settore. L’evoluzione
istantanea dei pattern di erosione e deposizione sono quindi presentati, for-
nendo cos̀ı una conoscenza più dettagliata dell’interazione flusso-sedimenti
e flusso-fondo in correnti di gravità e contribuendo a migliorare la com-
prensione di questo fenomeno fisico, cos̀ı rilevante nelle applicazioni su scala
reale.
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Introduction

Overview and motivation

The present research finds its motivation in the need for efficient prediction
and modeling of sediment transport. Sediment transport is a ubiquitous
phenomenon in nature and industry, which plays a vital role on Earth shap-
ing and on the development of water and soil resources. Since the beginning
of the mankind’s history, man has studied the water motion in rivers or
canals and had a notion of the importance of the particles movement in the
flow. However, sediment transport became a science itself at the beginning
of the previous century [40] and since then, it has concerned many scientists,
civil and environmental engineers.

Figure 1: Floodwaters laden with suspended sediment during the peak dis-
charge of Hurricane Isabel flood on the Potomac River at Great Falls, Vir-
ginia, September 2003. Credit: Paul Bierman, UVM

The main processes of sediment transport include erosion, transport and
sedimentation of particles and in fluvial, estuarine, and coastal areas are
able to produce new land or enhance existing one, providing both problems

1
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and opportunities. For instance, the morphological changes, induced by the
transport of sediment in those areas, are closely related to the amplification
of floods and other inundation hazards (see Fig. 1). Moreover, sediment
transport can pose serious problems, and is one of the main challenges that
engineers have to face during the construction of hydraulic infrastructure
[97]. A typical example is bridge scouring, the removal of sediments from
around bridge abutments and piers, which is considered one of the main
cause of bridge failure in USA and in Europe [107]. For instance, the con-
sequences of this phenomenon led to the dramatic event of Schoharie Creek
bridge collapse, on April 5, 1987. The collapse was caused by scouring
beneath a concrete pier footing [135] and led to the death of ten people.
Another well known engineering problem is the accumulation of sediments
upstream of reservoirs which can reduce their storage capacity and affect the
turbines and the mechanical equipment [119]. On the other hand, from an
environmental engineering perspective, the infrastructures can cause sed-
iment starvation downstream, with important consequences on plant and
animal species [150].

In addition to the aforementioned examples, sediment transport plays
also an important role in many other fields. Geologists are interested in such
phenomena to understand the processes that shape the landscapes and lead
to the creation of specific types of earth formations [5]. The Gran Canyon
in USA constitutes a characteristic example of the impressive features that
can be created by water erosion. The deposition of sediment in navigation
channels leads to the necessity of frequent dredging operations, with great
economical and environmental cost [1]. Furthermore, sediment transport
influences the dispersal of contaminants induced by industrial activity [74],
which in turn effect the quality of water, making it unsuitable for human
consumption or industrial use. In fact, there is a big amount of public
investment made every year on water treatment. Agricultural activities are
also significantly affected by sediment transport. The erosion of the top
soil, and the loss of nutrients and organic matter leads to the decrease of
soil fertility, which has to be replaced by fertilizers, a considerable cost for
the farmers. Such impacts have raised the awareness towards the topic,
which in turns triggered a huge practical and scientific interest over the past
decades.

Despite its importance and the wide range of studies dedicated to this
problem, many sediment transport and bed morphodynamic phenomena are
not yet completely understood. This is due to the fact that sediment trans-
port is essentially two-phase flow that involves a fluid phase (water or air)
and a solid phase (sediment). Furthermore, the particles that constitute
the solid phase are not homogeneous with regard to their shape and size.
This in-homogeneity plays an important role on particle packing and on the
forces acting on them. Finally, sediment motion is characterized by geo-
metric complexity and morphological changes due to erosion and deposition
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processes.

So far, our main understanding on sediment transport is based on lab-
oratory and field studies which are subjected to important limitations. It
has been demonstrated that the particle motion is highly related to flow
features developed in the viscous sub-layer [88, 73] and on forces exerted
on the surface of the particles. These areas are usually restricted to small
length scales, which are almost impossible to resolve with measurement in-
struments. Moreover, performing sediment transport experiments can be
challenging as the particles can interfere with the measurement devices. To
overcome the aforementioned limitations several numerical models have been
developed to study sediment transport applications. The main advantage of
such models lies in their ability to provide a detailed flow description over
the whole domain even in the viscous sublayer of the flow. Nevertheless, it
is known that, for what concerns the representation of the fluid flow, the
Navier-Stokes and the continuity equations constitute a general accepted
mathematical model. However, there is no comparable model that can de-
scribe adequately the flow-sediment and sediment-sediment interaction, the
sediment pick-up, and the bed evolution [23]. In this quest, sediment trans-
port remains still today a challenging topic of research, and improving the
understanding and modeling of sediment transport is of primary interest.

Objectives

The development of a CFD model able to reproduce accurately and effec-
tively all the physics involved in sediment transport processes is particularly
challenging. The first attempts in this direction, during the 1990s, are based
on the depth integrated approach combined with a simple equilibrium sedi-
ment transport formula [147]. The results obtained by such approaches are
only valid in applications where the true local sediment transport is not so
different than the local equilibrium transport. The increase of computational
power, over the past years, has led to the development of more and more
sophisticated models, able to reproduce the unstable three-dimensional flow
velocities and sediment concentration. However, the range of application of
those models is extremely diverse and depends on the level of details and
the scales that is aimed to solve as well as on the questions that need to be
addressed.

As mentioned above, the sediment-laden flows consists of a fluid and a
solid phase. The most commonly used numerical approaches that can be
employed to simulate the fluid phase, ordered by decreasing computational
cost, are: (1) The Direct Numerical Simulations models (DNS), which re-
solve all the relevant scales of the flow, (2) the Large Eddy Simulations
models, where the scales of the flow are resolved and the isotropic scales are
modeled, and (3) The Reynolds Averaged Navier-Stokes models (RANS),
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which are the least expensive, but require a turbulence closure model. The
solid phase can be treated based on the single-phase approach where the
flow and the sediment are considered a mixture or the two-phase approach.
In this work, the choice has fallen on the LES methodology combined with
the single phase approach for the sediment. This choice is based on the
effectiveness and the required computational cost.

The aim is to study the dynamics of sediment-laden flows and under-
stand more in depth the flow-sediment interaction, in particular in case of
buoyancy driven flows. Thus an in-house code, LES-COAST [111], has been
modified so that: a) it is possible to reproduce bed material entrainment and
deposition, induced by turbulent flows and b) deal with the bed deformations
resulting from such processes. In this model, the transport of suspended
sediments is simulated using an Euler-Euler single-phase approach, and the
sediment entrainment using empirical formulas. The settling velocity of the
particles is taken into account reducing the vertical velocity component in
the advective term of the scalar transport equation [21]. It is worth noting
that, in this work, only suspended sediment transport has been considered
and the bed-load transport is neglected. The main changes made to the
existing model are two. Initially, the modification of the boundary condi-
tions applied to the transport equation to represent the fluxes due to erosion
and deposition processes. Second, the implementation of the moving bound-
aries by means of the level-set method [93]. The level-set is a numerical
approach designed to track the evolution of 2D or 3D boundaries between
two different regions. This technique is coupled with the hydrodynamic
model and the immersed boundary methodology, already implemented in
LES-COAST, in order to reproduce flows with moving boundaries. In this
model, the treatment of the moving boundaries makes an optimized use of
information already presented in the level-set which makes the implemen-
tation of the moving immersed boundaries easier. The implementation of
the level-set methodology has been assessed by simulating the suspended
sediment transport above a ripple and the ripple migration. These results
have been compared with similar studies available in literature.

The developed model is used to study the sediment entrainment and the
bed forms generated by gravity currents. However, it may also be used for
other sediment transport applications. In summary, the main objectives of
the present work are:

I Investigating the main flow features that influence the bed material
entrainment in buoyancy-driven flows and study in depth the flow-
sediment interaction

I Quantifying the rate of bed material entrainment generated by the
propagation of salinity currents over a mobile bed

I Investigation of the bed forms created by gravity currents flowing over
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a mobile bed

The gravity currents studied are Boussinesq compositional gravity-currents
with high Grashof number, generated by the lock-exhange configuration.
Specifically, the numerical set-up consists of an infinite rectangular chan-
nel where part of the bottom boundary is considered mobile. The results
presented in this thesis can be divided in two parts. The first investigates
the bed material entrainment and the flow-sediment interaction in case of
lock-exchange gravity currents. Specifically, the numerical results allow to
study the main flow mechanisms that trigger sediment entrainment for such
flows, as well as the influence of the entrained material in the stability con-
ditions of the gravity currents. In this case, the bed deformation due to
erosion and sedimentation processes is neglected and the boundary of the
flow is considered stationary. The second part presents and analyzes the
bed forms, due to scour and deposition processes, generated by the passage
of a gravity current above a partially mobile bed. In both cases, the grain
size of the sediments is considered small enough to be transported directly
into suspension and the bed load is neglected.

Outline

The material in this thesis is structured as follows: Ch. 1 presents the physi-
cal phenomena studied in this thesis. The first part of the chapter is devoted
to the processes of sediment transport along with a brief review of the nu-
merical models used for their study. Then, the main characteristics of the
gravity currents and the generated bed forms are described. The recent
advances in this field and the main challenges with respect to the study of
bed material entrainement induced by gravity currents are also presented.
Ch. 2 contains the most common mathematical models used to describe sed-
iment motion. Particular attention is given to the single-phase suspended
transport and the pick-up functions used to describe the sediment exchange
between the flow and the bed. Ch. 3 is devoted to the detailed description
of the hydrodynamic model, LES-COAST, and the scalar equations neces-
sary for the transport of suspended material. The morphodynamic model
is described in Ch. 4. Specifically, the immersed boundary method (IBM),
along with the level-set method used to track the evolution of a deformable
bed and its implementation are presented. The hydro-morphodynamic cou-
pling is also discussed. In Ch. 5 the developed hydro-morphodynamic model
is assessed by simulating the suspended sediment transport above a ripple.
The chapter includes an in-depth analysis of the results of the application
of the model. In the last two chapters the focus is shifted to the simula-
tion of the sediment transport processes induced by the gravity currents.
Ch. 6 deals with the bed material entrainment over stationary bed and dis-
cusses the flow-sediment interaction. The numerical results are supported
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by experimental data provided by the research group of Hydraulic Construc-
tions Laboratory (LCH) in École Polytechnique Fédérale de Lausanne. The
hydro-morphodynamic model is then used to simulate the bed forms gen-
erated by similar flows on erodible beds (Ch. 7). Finally, conclusions are
drawn in Ch. 8 and an overview of possible further research is given.



Chapter 1

Physical phenomena

1.1 Sediment Transport

The field of sediment transport embodies the motion of two-phase flows, in
which one phase is fluid and the other is solid. The fluid phase may consist
of any type of fluid, however, in geophysics the main fluids considered are
water and air. The solid phase consists of sediment grains. According to its
size, sediment is classified into gravels, sand, silt, and clay (see Fig. 1.1).

Photo Particle size

gravels
>2mm

sand
0.2mm-2mm

silt
0.004mm-0.2mm 

clay
<0.004m

Figure 1.1: Sediment classification according to their size.
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flow

suspended
     load

bed-load

Figure 1.2: Schematic view of the different types of sediment load (bedload
and suspended load) carried in a flow.

In nature, the sediment cycle includes three natural processes: 1) ero-
sion 2) particle entrainment and transport and 3) sediment deposition [150].
Erosion is defined as the process of detachment and removal of rock particles
due to the action of water, wind, or other natural agents such as avalanches,
landslides. Once the particles have been detached, they can be entrained
and transported by the flow, where the term “flow” alludes to the motion
of water or air. Depending on the nature of the flow, sediment transport
can be distinguished in fluvial transport or aeolian transport, respectively.
When the flow conditions are not anymore able to transport the particles,
deposition occurs [150].

Sediment transport can be divided in two different modes: suspended
load and bed load transport (see Fig. 1.2). Even if there is not a clear
boundary in nature between these two modes, this separation is important
for the mathematical representation of the process. The mode in which the
sediment will be transported depends on the particle characteristics (e.g.,
shape, weight) as well as on the forces exerted on them by the flow. The
condition of initiation of motion corresponds to the moment when the bed
shear stress exceeds a critical value and the particles start moving close to
the bottom by rolling, sliding or saltation. These particles consist in the
so-called bed-load. Then, if the bed shear velocity exceeds the fall velocity
of the sediments, the particles can be lifted in the outer region of the flow
and remain into suspension due to the upward turbulent forces [143].

Interest in sediment transport problems related to irrigations channel
dates back to ancient China, Mesopotamia, Egypt, and in Roman Empire.
Nonetheless, it was not until 1734 when the hydraulic engineer DuBuat
(1734-1809) started studying the problem of sediment transport both an-
alytically and experimentally and the first description of sediment particle
motion was given by Hagen (1797-19884) in Germany and Dupuit (1804-
1866) in France. Serious experimental studies on this field started by Engels
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(1854-1945) in Germany and by Gilbert (1843-1918) in USA [148]. A signif-
icant contribution related to the initiation of motion of sediment transport
was made by Shields who introduced the Shields curve for the estimation
of the bed shear stress [124]. Since then, a significant amount of work have
been done to understand the mechanics of sediment transport. A detailed
review of the advancements in the field of sediment transport can be found
in the text books of Vanoni [150], Van Rijn [148], Garćıa [32].

It is worth noting that the fundamental on sediment transport processes
were established by field observations and laboratory experiments. How-
ever, the advancement of computer science in the end of 19th century made
the numerical modeling of sediment transport processes in time and space
increasingly common. The development of such numerical models managed
to provide a better insight in the dynamics of sediment-laden flows and
the flow-sediment interaction, and complement the knowledge obtained by
experimental studies.

1.1.1 A review of the sediment transport numerical models

Due to the three-dimensional and time dependent nature of sediment trans-
port phenomena, the mathematical formulations (see Ch. 2) are almost im-
possible to be solved analytically. Therefore, a numerical approach is neces-
sary to reproduce sediment-laden flows. This section presents the advances
of the scientific community on the numerical modeling of sediment trans-
port, focusing on the most widely used computational models. Along the
years, many sediment transport models have been developed. A comprehen-
sive review of the various sediment transport models can be found in [32].
The numerical models can be classified according to different criteria as:

I suspended load versus bed load

I one-dimensional, two-dimension or three-dimensional models

I steady versus unsteady models.

The first sediment transport models which have been developed since
early 1980s are 1D models formulated, except of some exceptions, in recti-
linear coordinates. These models solve the conservation equations of mass,
momentum (or energy) for the fluid, along with the advection-diffusion equa-
tion for the suspended sediment concentration. The majority of 1D models
are able to predict the bulk velocity of the flow, the fluid surface elevation,
the bed deformation, and the sediment transport load [98]. Representa-
tive examples of such models are HEC-6 by Thomas and Prashum [137],
SEDICOUP by Holly and Rahuel [50], and 3STI1D by Papanicolaou et al.
[96].

After a decade, another approach has been developed applying the depth
averaged Navier-Stokes equations along with a simple equilibrium sediment
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transport formula. These 2D models are applicable for unsteady flow con-
ditions and they can provide information about the fluid depth and the bed
elevation. Moreover, they can estimate the depth-averaged streamwise and
spanwise velocity, and the total sediment load. Some of the most widely used
2D models are MIKE2 [24], FAST2D [81] and DELFT-2D [154]. It is worth
noting that depth-averaged models have been also combined with morpho-
logical models to reproduce non-equilibrium transport conditions [10, 131]

More recently, with the increase of computational power 3D sediment
transport models have become more popular. The 3D models solve the
Navier-Stokes equations along with the advection-diffusion equation for sed-
iment transport. Such models are able to reproduce sediment transport pro-
cesses in purely 3D flows. Some of the most popular 3D models used for
hydraulic applications are MIKE3 [24], FAST3D [64], DELFT3D [22], and
TELEMAC-3D [151]. The majority of these models use the Reynolds aver-
age Navier-Stoke (RANS) approach to solve the governing equations. The
main disadvantage of this approach is the use of turbulence models for the
closure of the equations, which makes them ineffective for flows characterized
by complex physics and geometries [2].

The majority of the existing sediment transport models for engineering
purposes treat the suspended sediment and fluid flow as a mixed fluid. The
disadvantage of this approach is that it disregards the interactions between
the flow and the sediments and it is valid only for low sediment concentra-
tions [84]. The last decades several attempts have been done to represent
the sediment phase not as a continuum, rather as a collection of single
grains. In those models the particle motion is resolved by a Lagrangian
equation [87, 27, 132, 67]. However, this approach is computationally very
expensive and can be employed only in small scale problems.

This thesis employs an updated version of the LES-COAST model, a 3D
Navier-Stokes solver that makes use of the large eddy simulation methodol-
ogy (LES) and is able to reproduce flows with moving boundaries. Between
RANS and LES, the latter is more adequate for flows characterized by com-
plex geometry, but also more computationally demanding. A detailed de-
scription of the updated LES-COAST model is given in Chs. 3 and 4. In this
model, the flow and the sediment are considered as a mixture, whereas the
sediment exchange between the flow and the bed is determined by empirical
formulas imposed as boundary conditions. Bed-load transport is not con-
sidered in this work. The drawback of the numerical model resides on the
empirical formulas used to define the initiation of motion and the erosion
and deposition rates.
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1.2 Gravity currents

In the field of sediment transport rivers constitute the prototype domain.
However river motion is not the only agent of sediment transport. In a
geophysical sense the same sediment transport processes can be encountered
in various circumstances. In near-shore regions of lakes and oceans sediment
transport processes are triggered by the action of waves. Moreover, dessert
sand dunes constitute a characteristic example of aeolian sediment transport.
In fact, one of the main agents of sediment transport on land, in lakes, rivres,
and oceans are gravity currents [58].

1.2.1 General description

Gravity currents are essentially horizontal flows driven by pressure gradients
due to density variations with respect to the ambient fluid. Such differences
can be created by salinity or temperature variations or due to the presence of
suspended sediment. The latests may also be refereed as turbidity currents.
Gravity currents can be encountered in a large variate of circumstances in
environment, caused by natural or anthropological factors [128]. Sea breeze
storms, oceanic overflows, avalanches or airbone snow, volcanic eruptions,
and sediment-laden river outflows, constitute some of the typical examples
of such flows. Moreover, gravity currents are created due to release of water
with high salinity from desalination plants, accidental release of a dense gas,
oil spillages, pollutant discharge in water bodies or intrusion of salt water
into a mass of fresh water [128, 6].

Figure 1.3: Sediment-laden outflow of the Rhone river into the Geneve lake.
(Photo Credit: Rama, 2007, via Wikimedia)
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Such flows have been subject of interest of the research community due
to their ability to erode and transport sediment as well as oxygen and pollu-
tants. Specifically, gravity currents are able to travel over long distances, up
to hundreds of kilometer. Their propagation has devastating consequences
on reservoirs, emissaries and cables, and submarine infrastructures. For in-
stance, many accidents on liquid fuel containers have been recorded world-
wide where the released gases, propagating as gravity currents, caused signif-
icant damages [127]. An other example of the catastrophic nature of gravity
currents is the creation of submarine high-speed turbidity currents, caused
by the Newfoundland earthquake of November 18, 1929, that cost important
damages on twelve trans-Atlantic telegraph cables in about 28 places [114].

Gravity currents are very complex and parameter-rich physical phenom-
ena that can be classified in different categories according to various cri-
teria [142]: a) constant/non constant volume, depending on whether the
initial volume of the dense fluid varies during the propagation of the current
b)Boussinesq/non Boussinesq, controlled by the initial density difference be-
tween the two fluids c)Homogeneous/stratified, with respect to the vertical
distribution of the ambient fluid density d)Gravity currents/intrusions, re-
lated to whether the currents propagates on the geometric boundaries or in-
side a stratified fluid e)two-dimensional/cylindrical geometry, f)rotating/non-
rotating frame, with respect to the vertical axes g)compositional/particle
driven, depending on whether the agent of the current is a dissolve mate-
rial, like salt and temperature, or suspended non-neutrally buoyant particles
such as sediments.

In nature there is a big variety of initiation mechanisms for the gravity
currents. However, in experimental and numerical studies the two predomi-
nant configurations are the finite initial volume and the constant discharge.
In particular, in case of the finite volume configuration, which is the one con-
sidered in this work, the lock-exchange set-up is mainly used. In this set-up,
the flume is divided into two volumes by a sliding vertical gate. One volume
contains the denser fluid and the other one the lighter fluid. Both fluids
are initially at rest. When the gate is removed, differences in hydrostatic
pressure produce a dense current which moves along the lower boundary,
while a neutrally buoyant current travels in the opposite direction along the
upper boundary.

The generated gravity current can be divided in three parts, the head,
the body, and the tail [72]. The head is the forward part of the current where
3D effects and intense mixing is taking place. This region has a dominant
role on the dynamics of the current and has been subject of extensive inves-
tigation. It is also assumed to play an important role on the erosion induced
by gracity current [58]. A detailed description of the head dynamics can be
found in [129]. The propagation of the head of the current leads to two types
of instabilities. First, the shear developed in the interface between the heav-
ier and the ambient fluid overcomes the stabilizing effect of stratification,
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Kelvin-Helmholtz
instabilities
(billows)

Lobes and clefts

Head
Body nose

Shear layer

Figure 1.4: Schematic view of the shear layer between the dense and the
lighter fluid. The different types of instabilities as well as the nose of the
current are also presented

leading to Kelvin-Helmholtz instabilities (billows) [101]. These instabilities
are ubiquitous in nature and are one of the major agent of mixing. Secondly,
in the front part of the head, a buoyancy-induced instability is also devel-
oped, refereed as lobe and cleft [126, 128]. The foremost point of the head
close to the bottom is called nose resulting from the non-slip condition on
the boundary (see Fig. 1.4). The body of the current is separated from the
head by the created billows. This part is thinner compared to the head and
characterized by less dense mixed fluid and lower velocities [58]. Between
the body and the tail, a further decrease in the concentration is observed
and the velocity of the current are significantly reduced.

Furthermore, in unsteady gravity currents three different flow regimes
can be observed during their propagation, depending on the dominant force [51]:
1) the slumping phase, where the buoyancy forces are balanced by inertia
forces and the current propagates with constant velocity, 2) the self-similar
phase in which the propagation of the current is still determined by the
balance between the buoyancy and inertia, but the velocity of the front
decreases with time (Uf ∼ t−1/3), and c) the viscous phase where the
viscous effects are dominant and the velocity of the current decays faster
(Uf ∼ t−4/5).

1.2.2 Literature review

The monitoring of gravity currents is a complex task due to their unpre-
dictable nature and the difficulty of accessing the locations where these phe-
nomena usually occur. Von Kármán [153] and Benjamin [6] were the first
who dealt with the motion of gravity currents using the Bernoulli equations
for an inviscid fluids. In particular, Benjamin [6] demonstrated the essential
role of wave-breaking and the energy losses on the propagation of the front.
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Additionally, he calculated the shape of the interface between the current
and the ambient fluid. After them, there was a rapid increasing interest and
a large body of literature has been created, concerning the various aspects
of gravity currents. A detailed review of gravity currents in a broad rate of
context can be found in [128]. In the past, the knowledge on such flows was
mainly based on laboratory experiments [127, 112, 34, 45, 59, 89, 90, 95]. In
the last decades, with the advent of computers, numerical studies started to
gain relevance in the investigation of gravity currents. Initially, depth aver-
aged models were used to reproduce the propagation of such flows [8, 99, 61].
However, as resulting by a detailed comparison between the results obtained
with 2D and 3D simulations [85], the 2D simulations are loosing important
features of the flow. In particular, Necker et al. [85] has observed that
at the early stages of the gravity current propagation the 2D model can
accurately predict the evolution of the flow. However, as the current ad-
vances the 2D model is not able to reproduce the kinetic energy decay due
to breaking of the billows behind of the head. This limitation derives from
the three-dimensional nature of the Kelvin-Helmholtz instabilities, which
are not accurately resolved in the 2D simulations.

Depth resolving simulations, such as DNS and LES (see description in
Ch. 3), constitute a more accurate approach to simulate the evolution of such
flows. The first DNS simulation of gravity currents was performed by Härtel
et al. [46] focused of the turbulent structures of the foremost part of the front
of the current. Some years later, Necker et al. [86] investigated the mixing
and dissipation in particle-driven gravity currents. Furthermore, Cantero
et al. [11] have studied the turbulent structures and their influence on the
dynamics of the flow. However, DNS models are very computational de-
manding and limited to gravity currents with low Grashof number. Thus,
LES have recently emerged as an appropriate tool for the study of gravity
currents with high Grashof number. Ooi et al. [92] has performed LES of
high Grashof number compositional gravity currents with small initial vol-
ume of release. He has investigated the effect of the Grashof number on the
near-bed flow structures and the bed friction velocity distribution, induced
by the passage of a gravity current after the bore was formed. He also as-
sumed that the sediment entrainment increases rising Grashof number of the
current. Moreover, Gonzalez-Juez et al. [39] has investigated the influence
of isolated obstacles on the structures of gravity currents, whereas Tokyay
et al. [140] has studied the propagation of lock-exchange gravity currents
over a periodic array of obstacles. A brief review on the recent advance-
ments related to the LES of lock-exchange gravity currents can be found
in [19].

In the literature, various studies [44, 86, 30, 90, 94] have focused on the
ambient fluid entrainment on the mixing interface between the two fluids.
However, the propagation of gravity currents over loose beds is closely tied
to erosion and bed material entrainment [76, 92]. The turbulent flow fea-
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Figure 1.5: Schematic view of the bed material entrainment induced by
gravity currents

tures in the bottom boundary of the current are able to exceed the motion
threshold of the bed material and transport the particles into suspension,
or as bed load (see Fig. 1.5). These particles can be then deposited at long
distance from its initial position leading to important topological changes.
Moreover, the presence of bed material in the flow can influence the dy-
namics of the current by changing its density. In this respect, Parker et al.
[99] has studied self-accelerating turbidity currents, Meiburg and Kneller
[75] gives a detailed overview related to the deposits of turbidity currents,
and Kneller and Buckee [58] provides an overview about turbidity currents
from a geological prospective.

It is worth mentioning that Meiburg et al. [76] has made an interesting
description of the main achievements and the remaining open questions in
the field of numerical modeling of gravity currents. As he has mentioned,
one of the aspects that still remains poorly understood in this field is the
bed material entrainment induced by such flows. The majority of the stud-
ies which have been focused on gravity currents consider the flow dynamics
over non erodible beds. Only few studies have been dedicated on the erosion
induced by the gravity currents. Parker et al. [100] conducted laboratory ex-
periments of turbidity currents flowing above an erodible bed which consists
of sediment similar to that carried by the current itself. The velocity and
concentration profiles were studied to evaluate the water and sediment en-
trainment coefficients of the governing equations. Furthermore, Blanchette
et al. [7] has performed 2D numerical simulations of turbidity currents flow-
ing down-slope over a mobile bed. He has studied the influence of the
entrained bed material on the propagation velocity of the turbidity cur-
rents. Eames et al. [25] has proposed a resuspension parameter for 2D saline
and particle-driven currents, based on dynamic characteristics of the cur-
rents available in literature and the knowledge on resuspension in channel
flows.

Despite the aforementioned studies on the sediment exchange between
the bed and the current, the main mechanisms that lead to entrainment in
such flows are poorly understood. The bottom neck of the majority of the
research dedicated to sediment entrainment, is that the agent of the current
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is of the same nature as the bed material. Thus, it is difficult to estimate the
net fluxes of entrained bed material. An acceptable alternative to overcome
this problem is to represent weakly depositional turbidity currents by salin-
ity currents, which are conservative with respect to the agent that drives
the flow [20]. Garcia and Parker [34] has conducted pioneering experiments
of salinity currents, flowing downslope over a mobile bed, to analyze the
entrainment capacity. He observed that conservative currents with a large
excess of density can entrain a large amount of bed material into suspen-
sion. Additionally, he reported an empirical relation for the entrainment
of sediment in suspension, as a function of the bottom shear stress, grain
size, and other parameters related with the flow dynamics and the charac-
teristics of the bed material. However, in the best of our knowledge, there
is a lack of numerical simulations related to this subject. High-resolution
numerical simulations can provide an detailed space and time distribution
of the velocity, bed shear stress, and of the turbulent structures formed in
the flow. Moreover, they can capture the instantaneous evolution of the bed
material fluxes. The combination of such information can lead to a deeper
understanding concerning the flow-sediment interaction.

1.2.3 Gravity current bed forms

The study of sediment transport is directly realated to topological changes.
In channel flows, particle motion triggered by the flow lead to the creation of
a large variaty of structures on the river bed. The type and the size of these
structures depend on the flow properties and on the sediment characteristics.
Depending on the flow regime the bed forms are ussually classified into [149]:

I plane bed, ripples, and dunes in lower flow gerimws

I washed out-dunes in transitional regimes

I plane bed and antidunes in upper flow regimes

Ripples and dunes exhibit different geometrical characteristic. Specifically,
the ripple height does not depent on the flow depth and is much smaller
that the height of the dunes. On the other hand, the ripple length can be as
large as the flow depth, whereas the dune length is much larger than the flow
depth [149]. Moreover, ripples are mainly generated due to turbulent veloc-
ity fluctuations present in the vicinity of the bed interface whereas, dunes
are caused by large-scale eddies [158]. The antidunes are wavy structures
mainly observed in steep streams.

Despite the wide variaty of shapes all the bed forms resulting by scour-
ing and deposition processes. In particular, bed material is scoured by the
trough regions and is deposited in the crests. This process continues increas-
ing the amplitude of the structures until the latest arrives in an equilibrium
amplitude. The creation of bed structures modifies the hydraulic roughness
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and depending on the size of such structures may have an important feed-
back on the dynamic of the flow. Specifically, it is observed that strong
adverse pressure gradients are created in the lee slopes of the bed forms
that lead to flow separation. As a consequence, at the downslope regions
the pressure has lower values [32].

Gravity current flows with high erosive capacity can also interact with
the bed material and create similar dynamic sedimentary patterns at the
bed interface. Several cases have been reported in nature where large-scale
bed forms have been created by gravity flows ( [155, 105, 54]), having a
considerable impact on morphological changes. In particular, high velocity
turbidity currents are assumed to be one of the main responsibles for the
submarine canyon scouring [53].

Despite the ubiquitous nature of those structures and their relevant im-
portance few studies have investigated the bed forms induced by gravity
current. Parker et al. [100] and Garcia and Parker [34] have reported bed
forms created by the passage of saline and turbidity currents over a mo-
bile bed. However, they have not evaluated their interaction with the flow
field. Sequeiros et al. [122] observed the formation of bed forms due to bed-
load transport induced by turbidity current. In this work, different types
of bed formations are observed depending on the flow conditions and the
sediment characteristic. The influence of the bed formations on the velocity
and the density fields of gravity currents have been investigated in the work
of Sequeiros et al. [121]. The bed forms observed in [122, 121] are presented
in Fig. 1.6 and vary with the bed material characteristics. It is worth noting
that these structures were recorded after the sequential action of multiple
event. Furthermore, [133] have investigated the formation of wedge shape
deposits associated with decelerating turbidity currents.

Apart of the aforementioned experimental studies, few numerical stud-
ies have been devoted on the investigation of the bed forms generated by
gravity currents. Kubo and Nakajima [63] have employed a layer-averaged
numerical model in order to investigate the sediment-wave formation of the
bed induced by turbidity currents and Hoffmann et al. [49] studied the sed-
iment wave formation induced by turbidity currents using two-dimensional
direct numerical simulations. However, in the best of our knowledge there is
not a numerical study that reproduce the instantaneous three dimensional
bed structures generated by such flows.

In this thesis, a numerical model able to reproduce the sediment en-
trainment and the bed deformation due to erosion and deposition processes
induced by gravity currents is presented. Specifically, the flow features that
have a significant role on the bed material entrainement are identified and
the generated patterns of scour and deposition are presented.
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Figure 1.6: Several types of bed forms observed after the passage of gravity
current over mobile beds [121].



Chapter 2

Mathematical modeling of
sediment transport

Sediment transport modeling plays an important role in the understanding
and prevention of many environmental problems linked to such phenomena.
However, the multidimensional and multi-scale nature of sediment-laden
flows makes their mathematical representation challenging. An accurate
mathematical model should be able to reproduce both fluid and sediment
motion as well as their interactions. Moreover, the description of the sedi-
ment exchange between the flow and the bed due to erosion and deposition
processes is also required.

2.1 Rouse number

The modes of sediment transport are distinguished mathematically by the
Rouse number, that expresses the ratio between the falling velocity of the
particles and the shear velocity of the flow and is defined as,

Rouse =
ws

σκu∗
, (2.1)

where ws and u∗ represent the settling velocity of the particles and the shear
velocity of the flow, respectively. The formulation of the settling velocity and
the shear velocity are shown bellow. κ is the von Karman constant [153]
and σ is a coefficient that relates the sediment and momentum diffusion
coefficients. The β coefficient is assumed to be equal to 1 [84]. Depending
on the value of the Rouse number the mode of transport is classified as:

I Bed-load if Rouse > 2.5

I 50% suspended if 1.2 < Rouse < 2.5

I 100% suspended if Rouse < 1.2

19
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To represent mathematically the incipient motion as well as the evolution
of the two separate sediment modes different formulas are necessary. These
formulas are shown in the following sections.

2.2 Initiation of motion

Before the detailed mathematical representation of the different modes of
sediment transport, the concept of incipient motion should be presented.
The ability of the flow to transport sediment depends on the balance of the
forces acting on the particle. Those forces are the gravitational force, FG,
the drag force, FD, and the lift force, FL and they are presented in Fig. 2.1.
When the fluid forces (FD and FL) exceed the gravitational force the grain
starts moving. Despite the simplicity of this concept, the exact prediction
of the incipient condition is a difficult task due to the sediment packing on
the bed and the fluctuation over time of the fluid forces. Various efforts
have been made over the years to develop a formulation that adequately
estimates this threshold and a brief review can be found in [29].

If one considers the initiation of motion of a pack of particles with a
certain distribution of sizes, the threshold that corresponds to incipient
conditions becomes function of macroscale parameters. In literature, this
threshold is mainly linked to the bed shear stress, τw. Shields [124] proposed
a deterministic approach for the estimation of the critical condition that has
proven to be the most prevailing one. In this approach the critical value of
the bed shear stress τcr is given by the Shields diagram (see Fig. 2.2) and is
related to the particle Reynolds number, Red, and to the dimensionless bed
shear stress, θ. These quantities are defined as:

θ =
τw

[(ρs − ρ)gd]
, (2.2)

and

Rep =
u∗d

ν
, (2.3)

where ρ and ρs denotes the density of the fluid and sediment, respectively.
ν is the viscosity of the fluid, g represents gravity, d is the mean particle
diameter, and u∗ is the shear velocity defined as:

u∗ =

√
τw

ρ
(2.4)

It is noteworthy to mention that the aforementioned graph (see Fig. 2.2)
is based on bed-load experiments. Therefore, Vanoni [150] modified the
Shields diagram in order to extend it to suspended sediment. More specifi-
cally, he introduced an extra dimensionless parameter Vs equal to:

Vs =
d

v

√
0.1sgd, (2.5)
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Figure 2.1: Forces exerted by the fluid on a single grain [79].

where s = (ρs − ρ)/ρ. The parameter Vs corresponds to a group of parallel
inclined lines which were added to the original diagram. Each of those lines
correspond to a different value of the Vs parameter. A specific flow/sediment
configuration (depending on the value of Vs and Rep) is represented by a
point on one of those inclined lines. The value of the critical bed shear
stress for this configuration corresponds to the intersection between this
parallel line and the Shields curve. Additional, the distance of the point
from the Shields curve indicates the flow potential to transfer sediment into
suspension.

Moreover, the values of the critical shields parameter obtained from the
diagram in Fig. 2.2 are not valid for sloped beds. In these cases the critical
Shields number should be modified to take into account the influence of the
local bed slope. The simplest approach to calculate the bed shear stress for
an inclined bed is the one proposed by van Rijn [146], according to which
the modified critical bed shear stress, τ̂c, is equal to:

τ̂cr = τcr
sin(β + a)

sin(β)
(2.6)

where a and β are the angles of the local bed slope and of the internal
friction, respectively.

Finally, an additional disadvantage of the Shields criterion is that it
has been developed within the RANS context. In other words, the Shields
parameter is calculated based on the averaged quantities of the flow and
does not take into account the turbulent fluctuations. To overcome this
limitation, Zanke [164] proposed a model of the initiation of sediment motion
that considers also the influence of turbulence. More specifically, he pointed
out that the critical value should be reduced by the turbulent fluctuations
of the bed shear stress as following:
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Figure 2.2: Shields diagram as modified by Vanoni [150].The inclined dashed
lines represent the values of Vanoni’s dimensionless parameter for each par-
ticle diameter.

θeff = θc − θ′, (2.7)

where θeff is the new value of the motion threshold and θ′ denotes the root
mean square due to turbulent fluctuations of the wall shear stress.

2.3 Suspended sediment transport

The suspended transport is a key process in coastal and estuarine regions.
One of the basic characteristics of this process is that the particle weight
is counteracted by the upward diffusion due to turbulent fluxes during the
entire motion. Nevertheless, when the flow conditions are not able to coun-
teract their weight, the particle tends to settle.

2.3.1 Settling velocity

The settling or falling velocity of the sediment is one of the fundamental
parameters used in the field of sediment transport. This velocity denotes
the rate at which the floating particles falls in a still fluid and plays an
important role on the transport of suspended sediments. Different formulas
have been developed to estimate the settling velocity of suspended sediment
depending on the properties of the particle (size, shape, density) and concen-
tration. The settling velocity of a single particle in laminar flow conditions
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is predicted by Stoke’s law and is equal to,

ws,1 =
(ρs − ρ)gd2

18µ
, (2.8)

where µ stands for the dynamic viscosity of the fluid. However, this formula-
tion does not hold true in case of concentrated solid suspension or in case of
a bounded flows. The presence of walls as well as high suspended sediment
concentration cause the decrease of the particle settling velocity due to hin-
dering effects. By far the most popular formulation to express the hindered
settling velocity is the empirical formulation proposed by Richardson and
Zaki. [108],

ws,h

ws,1
= (1− C)4.65, (2.9)

where C represents the sediment concentration. For low sediment concen-
tration and for sediment size in the range of 100 − 1000 µm the settling
velocity can be computed using Zanke’s approach [163]:

ws =
10ν

d
[(1 +

0.01sgd3

ν2
)0.5 − 1]. (2.10)

2.3.2 Suspended sediment models

The motion of the suspended sediment in the flow field can be treated with
two different techniques: a) the Euler-Euler approach and b) the Euler-
Lagrangian approach.

In the Euler-Euler approach, both sediments and fluid are treated math-
ematically as inter-penetrating continua [115, 70, 159, 21]. This method-
ology can operate on the assumption that the particles are fine enough so
the inertial effect of the particles can be neglected. In the Euler-Lagrangian
methodology the ambient fluid is treated as a continuum, whereas the sus-
pended sediment is treated in a Lagrangian way. Specifically, the motion of
the fluid is modeled via the Navier-Stokes equations and the motion of the
suspended sediment is described by the Newton’s equation of motion of each
particle [87, 27, 132, 67]. The interaction between the two phases depends
on the mass load of the solid phase.

Pertaining the models just described, the particle-particle interaction
can be described by two different ways. In the Lagrangian description of
the dispersed phase, inelastic collisions are represented via spring models,
whereas, in the case the phase is treated as continuous, particle-particle
interaction can be neglected [70, 68] or considered as a source term in the
transport equation [159].

The behavior of the suspended sediment in a turbulent flow can be char-
acterized by the dimensionless Stokes number (Stk). This number expresses
the ratio between the characteristic time of the particle and the charac-
teristic time of the flow field. The time scale of a turbulent flow is called
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Kolmogorov scale and corresponds to the time scale of the smallest eddy. It
is defined as:

τn =
(ν
ε

)1/2
, (2.11)

where ε is the turbulent energy dissipation rate per unit mass. Depending
on the size of the particles, the characteristic particle time, and respectively
the Stokes number, can be defined in two different ways:

I if the particle diameter is smaller than the length scale of the smallest
eddy (so-called Kolmogorov scale) η = (ν3/ε)1/4, the time scale of the
particle is defined as:

τp =
ρsd

2

18ρν
, (2.12)

and the Stokes number is equal to:

Stk =
τp

τn
=

ρsd
2

10ρη2
. (2.13)

I if the particle size is greater than the Kolmogorov scale, the time scale
of the particle is defined as:

τp =
(d2

ε

)1/3
(2.14)

and the Stokes number is:

Stk =
τp

τn
=

ρs

10ρ

(d
η

)4/3
. (2.15)

According to the value of the Stokes number, the sediment can be di-
vided into a) small Stokes number particles and b) large Stokes number
particles [73]. In particular, sediment with Stokes number lower than 1 is
considered to follow the flow closely. Under this conditions, the transport
of suspended sediment can be described by the single-phase approach. On
the other hand, for Stk > 1 the sediment detaches from the flow and the
two-phase approach should do be used to described the sediment motion.

In the single-phase approach, the fluid and the sediment are considered
as one continuous mixture where the suspended sediment concentration is
modeled by means of the transport equation. The flow-sediment interaction
can be either neglected, if the suspended sediment concentration is small
enough [118], or considered as a body force in the momentum equation of
the flow depending on the strength of flow stratification [130]. The particle-
particle interaction is neglected in this approach. The two-phase models are
based on the assumption that, each control volume contains a fraction of the
comprising substances at all times. Similarly to the single-phase approach,
the flow-sediment interaction is considered as a body force [42, 41].
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2.3.3 Pick-up and deposition

The pick-up and deposition of sediment particles constitute an essential
part of the mathematical representation of sediment transport processes.
However, due to the complexity of the phenomena the mathematical repre-
sentation of this process is based on empirical formulas, mainly obtained by
experimental works performed in open channel flows [145]. Various studies
have been focused on the pick-up of sediment transport changing the events.
Here, three of the most prevalent formulas are presented.

Yalin [158] proposed that the erosion rate, E, is monotonically increasing
with the shear velocity,

E = αρsu∗, (2.16)

while, Luque and Van Beek [71] assumes that the erosion rate is an exponen-
tial function of the sediment diameter, buoyant weight, and of the distance
of the Shields parameter from its critical value,

E = αρs(sgd)0.5(θ − θcr)
1.5. (2.17)

Van Rijn [145] after an extensive experimental work on open channel flows
with different sediment sizes, he derived the following formula:

E = 0.00033ρs(sgd)0.5T 1.5D0.3
∗ . (2.18)

Moreover, Van Rijn [145] in the same work concluded that the pick-up
function proposed by Yalin [158] is rather poor, whereas the one proposed
by Luque and Van Beek [71] provides good results for particle size < 200µm.

The deposition rate of the suspended sediment is equal to:

S = wsC0, (2.19)

where C0 represents the sediment concentration in the immediate vicinity
of the sediment bed and ws is the settling velocity.

2.3.4 Boundary conditions

The sediment exchange between the flow and the bed, due to the pick-up and
deposition presented above, is represented mathematically by the imposed
boundary conditions. The bottom boundary conditions can be classified in
two categories:

I Dirichlet type boundary conditions, that impose the near wall sedi-
ment concentration, also called reference concentration Cref, at a spe-
cific distance from the wall,zref,

Csed|x3=zref = Cref. (2.20)
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Various empirical formulas can be found in the literature, to estimate
the reference concentration and the reference level. However, the es-
timated reference level may not coincide with a grid point. In this
case the sediment concentration can be extrapolated using the Rouse
profile [113].

Csed

Cref
= (

h− y1

y1
· zref

h− zref
)(ws/κu∗), (2.21)

where h is the fluid depth, y1 denotes the distance from the bed of
the point that the concentration is imposed, and κ is the von Karman
constant.

I Neumann boundary conditions, that aim to specify the net sediment
fluxes at the bottom boundary. These fluxes are divided on upward
fluxes (erosion, pickup) and downward fluxes (deposition).

(κsed
∂Csed

∂x2
+ wsCsed) = S − E

ρs
, (2.22)

where S the sedimentation rate and E the erosion rate.

On the top boundary and at the lateral boundaries the most commonly
used boundary condition is the Neumann zero flux condition where:

(κsed
∂Csed

∂x2
+ wsCsed) = 0. (2.23)

Reference concentration

As it was mentioned in the previous section, there are quite a few formulas to
estimate the reference concentration. A comprehensive assessment of several
different formulas can be found in [33]. Two of the most commonly used
formulations are the one proposed by [130] and that of Van Rijn [144].

According to [130], the reference concentration is equal to:

Cref = C0
γ0T

1 + γ0T
(2.24)

where

T =
τ − τcr

τcr
, (2.25)

C0 = 0.65 is the maximum permissible concentration, and γ0 = 2.4×10−3 is
a constant. In Smith and McLean [130] approach the reference concentration
is calculated at a reference height which is equal to,

zref = α0
(τ − τcr)

(ρs − ρ)g
+ ks, (2.26)
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where α is a constant equal to 26.3 and ks is the bed roughness.

The reference concentration in [144] is:

Cref = 0.015
d

zref

T 1.5

D0.3
∗
, (2.27)

where

D∗ = d
(ρs − ρ)g

ν2

1/3

. (2.28)

In this approach, the reference height is equal to the half of the bed-form
height. In case that the bed-form height is not known, the reference height
is assumed equal to the bed roughness.

Both aforementioned reference concentration formulations have been de-
rived by channel flow experiments performed at small to moderated Shields
parameters. However, the main difference between the two equations is the
presence of the maximum concentration (C0) at the approach proposed by
Smith and McLean 197. This upper boundary of the reference concentration
plays an important role for high values of Shields parameter and gives to
McLean’s approach [130] a theoretical advantage.

2.3.5 Sediment diffusion

After the pick-up of the bed material, particles move to the upper region of
the flow due to the turbulent fluctuation of the vertical velocity component,
that induces upward mixing. The averaged turbulent diffusive fluxes of the
sediment can be estimated as [138]:

qv = −ksed
∂C

∂y
, (2.29)

where kseds denotes the sediment diffusivity. The sediment diffusivity is an
important parameter for the suspended sediment distribution in the fluid
column. This quantity is, the most of the times, related to the eddy viscosity
of the fluid, νt, by the following relation [150]:

ksed = σνt. (2.30)

It should be mentioned that the eddy viscosity of the fluid represents the
transfer of momentum caused by turbulent eddies. As mentioned at the be-
ginning of this Chapter, the coefficient σ for fine sediment is usually assumed
constant and equal to 1. However, in specific cases, different models have
been developed that calculate σ as a function of the suspended sediment
and the flow parameters. Some of those models are presented in the work
of [138].
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2.3.6 Stratification effects

The presence of suspended sediment in the fluid column can lead to impor-
tant density variations in the vertical direction of the flow. In this case, the
flow is called stratified and is considered as a) stably stratified when the
density increases as depth increases or b) Unstably stratified when density
decreases as depth increases. More precisely, in unstable stratified condi-
tions, a heavier fluid is present above a lighter fluid. Thus, vertical mixing
is provoked and convective motion is produced. On the other hand, sta-
ble stratification inhibits turbulent mixing and suppresses the dispersion of
particles in a flow [141, 3].

In continuously stratified fluids a key parameter that defines the influence
of stratification, is the gradient Richardson number Rig, which expresses the
ratio between buoyancy and shear forces:

Rig =
− g
ρw

∂〈ρ〉
∂y

(∂〈u〉∂y )2
, (2.31)

where 〈ρ〉 denotes the averaged density. The sediment concentration can be
related to the density distribution by the following equation:

ρ = ρw + (ρs − ρw)C, (2.32)

where ρw stands for the reference density of the the fluid.

A critical threshold of Rig, usually called stability criterion, is required
to defined the limit between stable and unstable conditions. Typically, this
value is equal to Rig = 0.25. It should be mentioned here that stable
stratification is guaranteed if Rig > 0.25, however Rig < 0.25 is not a
sufficient condition to define unstable stratification.

For incompressible flows under the boussinesq approximation, the strat-
ification effects should be taken into account as a body force term in the
momentum equation (see Chapter 3). However, if Rig is very small, the
stratification effects due to density variations can be neglected.

2.4 Bed load transport

Bed-load is the part of sediment transport that occurs in the vicinity of the
bed and most of the times its rate is related to the bottom shear stress.
Over the years, several deterministic and stochastic bed load rate formulas
have been proposed and used. The majority of these bed-load formulas use
empirical coefficients that have been calibrated according to the experimen-
tal conditions. Therefore, their applicability depends on the flow conditions
and the sediment size. Two of the most common formulas are presented:
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I The empirical formula of Meyer-Peter and Muller [78] based on a large
number of experiments with a wider range of particle diameter (3-
30 mm). In this approach the dimensionless bed load rate, q∗, is
computed as:

q∗ =
qb√
sgd3

= (8(θ − θcr)
3/2), (2.33)

where qb is the bed-load transport rate for flat a bed.

I The empirical formula developed by van Rijn [143] for particles be-
tween 0.2-2mm. In this approach the dimensionless bed load rate is:

q∗ =
qb√
sgd3

=
0.053

d∗0.3 (
θ

θcr
− 1)2.1. (2.34)
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Chapter 3

Hydrodynamic model -
LES-COAST

In sediment-laden flows, as in many other physical flows in nature (such
as flows at boar wakes, the smoke from an earthquake e.t.c.), turbulence
is prevalent, and plays an important role in the pick-up and deposition of
the sediment. An essential feature of the turbulent flows are the chaotic
changes in the velocity and pressure fields, which increases their ability in
transport and mixing compared to the laminar flows. In such flows, the fluid
motion is governed by the nonlinear, time-dependent, and three-dimensional
Navier-Stokes equations along with the continuity equation. However, due
to the complexity of these equations, their solution is not an easy task
apart from some simple cases. Thus, a numerical approach is necessary
to reproduce turbulent flows like those that can be found when studying
sediment transport processes. In this chapter, the numerical tool used in
this thesis work to reproduce sediment-laden flows is described.

3.1 Numerical techniques

Turbulent flows are characterized by a large spectrum of scales (eddy size) [104]
(see Fig. 3.1). The scale of the larger eddies in the flow is given by the in-
tegral scale L and the smallest eddies by the kolmogorov length η. The
integral scale of the flow is constrained by the flow geometry, whereas the
kolmogorov scale depends on the viscosity of the flow. These scales of mo-
tion are coherent and energy is transferred across such structures down to
Kolmogorov scales, where ultimately energy is transformed into heat. Such
process is known as eddy break-up [106]. In other words, the large eddies,
which are unstable, break-up transferring kinetic energy to smaller eddies
until this energy is dissipated by viscous motion. There are three main
approaches (Direct Numerical Simulations (DNS), Large eddy simulations
(LES), and Reynolds Averaged Navier-stokes (RANS)) used to numerically
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large scales
small scales

Figure 3.1: Visualization of the different scales in a turbulent flow.

confront turbulent flows. The difference between these approaches lies on
the governing equations that they solve. Specifically, DNS solves the Navier-
Stokes equations, the LES the filtered Navier-Stokes equations and RANS
the time-averaged Navier-Stokes equations.

The most accurate numerical approach for studying turbulent flows is
the DNS, which explicitly resolves all the scales of turbulence down to
Kolmogorov scales. In this approach, the Navier-Stokes equations are dis-
cretized directly and solved numerically. Nevertheless, the main disadvan-
tage of this approach is its high computational cost. In particular, in DNS,
the size of the computational domain should be significatly larger than the
L and the required grid size has to resolve the Kolmogorov scale. Thus, the
number of the grid points that are required in 1D for this type of simulations
are L/η ∼ Re3/4, where Re is called the Reynolds number of the flow and is
equal to UL/ν and η represents the Kolmogorov length scale. Indicatively,
for 3D simulations the grid requirements increase with the Reynolds number
as Re9/4. Moreover, the time step of the simulations should be of the same
order of magnitude of the time scales of the smallest eddy. This time scale
is also propotional to the Reynolds number (∼ Re1/2). Taking into account
those restrictions, the computational cost for 3D DNS simulations increases
with the Reynolds numer as Re3 [104, 106]. Therefore, this method is im-
possible to use in engineering applications where the Reynolds number are
usually high. However, DNS has been widely used to study sediment-laden
flows at the laboratory scale [26, 12, 13, 14].

To decrease the computational cost, the RANS methodology has been
developed and is the most popular methodology used in industrial com-
putational fluid dynamics packages. This approach solves the statistically
averaged equation system, and the turbulent quantities are evaluated us-
ing turbulent closure models. Thus, a relatively coarse grid and a larger
time step is required for such simulations. However, the models used for
the closure of the problem are based on tunable parameters and have many
limitations. In the previous years, the majority of the sediment transport
problems were simulated using RANS methodology. RANS provide a good



Numerical techniques 33

Figure 3.2: Schematic view of the differences between DNS, LES, and
RANS methodologies. The figure above is from André Bakker’s lectures:
http://www.bakker.org/dartmouth06/engs150/10-rans.pdf

estimation of the global flow quantities such as mean streamwise velocity
but is not able to predict the unsteady nature of the flow. Therefore, turbu-
lent flows especially in case of high Reynolds number are poorly reproduced.
Furthermore, RANS models suffer of important limitation in case of vortex
shedding and flow seperation [109]. Finally, in case of sediment transport
problems, it has been shown that RANS cannot reproduce correctly the co-
herent structures formed in the vicinity of the wall, which play an important
role on the sediment entrainment and deposition [16].

A solution in between DNS and RANS is the LES methodology. The
main difference between these three models is summarized in Fig. 3.2. LES
is based on the principle that the large scales of a turbulent flow are strongly
influenced by the boundary of the flow, whereas the small scales are more
isotropic and do not depend on the geometry scales of the model [106].
Hence, the large scales of turbulence are resolved whereas the smaller scales
are modeled using a Sub-Grid Scale model (SGS). The cutoff is determined
by a low-pass filter (see Fig. 3.3). Under this assumption, LES models lead
to less restrictive resolution requirments than those of DNS models and they
can be used to study flows with much higher Reynolds numbers. The main
differences between RANS and LES models lies on tubulent models: the
LES tubulent models require fewer adjustments than the similar models for
RANS [104], and are used only to model the small scales and not the entire
flow. Therefore, LES is considered more accurate than RANS methodology.
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Figure 3.3: Conceptual model of the LES methodology.

Finally, the developement of new and more accurate SGS models, during
the last decades, that allows the simulation of more complex configurations,
has increased the popularity of the LES methodology in the Hydraulic com-
munity. In the field of sediment transport, LES numerical tools has been
extensively used to study a large variaty of problems for various Reynolds
numbers [18, 62, 120, 56, 21, 9].

In this thesis, the LES methodology is used to simulate sediment-laden
flows. The numerical tool used is LES-COAST, an in-house code developed
at the Department of Engineering and Architecture in University of Trieste.
This model makes use of non-staggered grids and solves the filtered Navier-
Stokes equations for incompressible flows under the Boussinesq approxima-
tion, along with the transport scalar equation. The code is written on For-
tran 77/90 on parallel environment using MPI routines, and the complex
geometries can be treated using curvilinear grids or the Immersed Bound-
ary Methodology (IBM) [110]. LES-COAST has been widely used to study
different industrial and environmental cases [95, 94, 162, 116]. Moreover,
recently it has been applied to study sediment transport problems in chan-
nel flows over fixed beds [21]. The advancement of this thesis with respect
to the work of Dallali [21] are twofold. First, the Neumman type boundary
conditions (see Sec. 2.3.4) for the sediment have been implemented. These
boundary conditions were tested in case of bed material entrainment induced
by gravity currents; the results were validated with experimenta data and
are presented in Ch. 6. Second, moving boundaries were implemented to
simulate topological changes due to erosion and deposition processes. This
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implementation has been assessed with respect to the work of Kraft [62].

3.2 Governing equations

In physics, the motion of compressible viscous fluids obeys the Navier-Stokes
equations which in the Cartesian frame of reference are:

∂ρui
∂t

+
∂ρujui
∂xj

= − ∂p

∂xi
+ ρgδi,2 + µ

∂2ui
∂xj∂xj

, (3.1)

where p and ui denote the pressure and the velocity components in the
xi direction of the computational domain, ρ represents the density of the
fluid, and µ is the dynamic viscosity of the fluid. The indexes i=1,2,3 cor-
respond to the streamwise, vertical, and spanwise direction, respectively.
These equations are solved along with the continuity equation:

∂ρ

∂t
+
∂ρui
∂xi

= 0. (3.2)

However, in hydraulic engineering, the considered flows are usually-
considered incompressible which means that the density remains constant.
Moreover, the majority of the times, the governing equations are solved un-
der the Boussinesq approximation. The Boussinesq approximation states
that, the density variations of the fluid can be considered equal to zero at
all the terms of the Navier-Stokes equations apart from the buoyancy term
(ρgδi,2), where the density variations are important. Thus, the buoyancy
term can be written as (ρw + ∆ρ)gδi,2 where ρw is the reference density of
the fluid. The simplified governing equations for incompressible fluids under
the Boussinesq can be written as,

∂ui
∂xi

= 0, (3.3)

∂ui
∂t

+
ujui
∂xj

= − 1

ρw

∂p

∂xi
+

(ρw + ∆ρ)

ρw
gδi,2 + ν

∂2ui
∂xj∂xj

. (3.4)

As mentioned above, when the Boussinesq approximation holds true ∆ρ <<
ρw, so in order to avoid round-off errors in the calculation of this term, the
buoyancy and the pressure terms,∂p/∂xj +(ρw +∆ρ)gδi,2, are rearranged as
∂P/∂xj + ∆ρgδi,2, where P is equal to p+ ρwgh and H stands for the flow
depth. Hence, the final form of the governing equations for incompressible
flows under the Boussinesq approximation is:

∂ui
∂t

+
ujui
∂xj

= − 1

ρw

∂P

∂xi
+

∆ρ

ρw
gδi,2 + ν

∂2ui
∂xj∂xj

. (3.5)

In the framework of the LES methodology, the large scales of the flow
are separated from the smaller scales through a filter operator. Specifically,
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the turbulent variables (f) are divided in two parts, f = f̄ + f ′. The f̄ is
the part related to large scales and is defined as,

f̄(x) =

∫
D
f(x′)G(x, x′)dx′, (3.6)

where D is the domain, x is the Cartesian coordinate vector, and G is the
filter function. On the other hand, f ′ is related to the modeled scales. The
filter used in LES-COAST model is the so-called tophat filter, where

G(x) =

{
1/∆, if |x| < ∆/2

0, otherwise.
(3.7)

In this equation, ∆ denotes the filter width. It should be mentioned that the
grid spacing used in the numerical simulations is propositional to the filter
width ∆. After the application of the aforementioned filter, the continuity
and momentum equations for incompressible fluids under the Boussinesq
approximations become:

∂ūi
∂xi

= 0, (3.8)

∂ūi
∂t

+
∂ūj∂ūi
∂xj

= − 1

ρw

∂P̄

∂xi
+ ν

∂2ūi
∂xj∂xj

− ∆ρ

ρw
giδi,2 −

∂τij
∂xj

. (3.9)

The quantities p̄ and ūi denote the filtered pressure, and the filtered
velocity components in the xi direction of the computational domain. In this
thesis, the streamwise, vertical, and spanwise directions are also denoted by
x, y, and z, respectively. Similarly, ū1, ū2, and ū3 are referred as u, v, and
w. The term τij corresponds to the SGS scales modeled by SGS models and
is described in details in the following sections.

3.3 Scalar transport

To calculate the Eulerian dispersion of scalars, in the LES-COAST model,
the governing equations have been coupled with the filtered transport equa-
tion:

∂M̄

∂t
+
∂ūjM̃

∂xj
= κs

∂2M̄

∂xj∂xj
− ∂λj
∂xj

. (3.10)

This advection-diffusion equation can be used to simulate the transport of
any scalar concentration, M̄ , and κs stands for the diffusivity of each scalar.
The term λj represents the SGS scalar fluxes that will be described later.
The density variations in the flow field due to the presence of scalars is
considered in the filtered momentum equation by the buoyancy term (see
Eq. 3.9). In environmental flows, these density variations are usually created
by temperature, T and/or salinity, Csal and are equal to:

∆ρ

ρw
=
ρ− ρw

ρw
= αk(T̄ − T̄0) + β(C̄sal − C̄1

sal), (3.11)
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where T and C̄1
sal are the reference temperature and salinity, respectively.

Additionally, αk is the coefficient of temperature expansion and β is the
salinity contraction coefficient.

The scalars used in this thesis are a) salinity and b) sediment. In case
that the single-phase Euler-Euler approach (see Sec. 2.3.2) is used, the trans-
port equation for the suspended sediment concentration is written as:

∂C̄sed

∂t
+
∂(ūj − wsδi,2)C̄sed

∂xj
= κsed

∂2C̄sed

∂xj∂xj
− ∂ηj
∂xj

, (3.12)

where Csed represents the suspended sediment concentration and, κsed is the
diffusivity of sediment, presented in Sec. 2.3.5, and ηj stands for the SGS
sediment fluxes. It is worth-noting that the velocity in the advection term of
the Eq. 3.12 is reduced to take into account settling. Moreover, the density
variations of the flow, due to suspended sediment concentration, are defined
as:

∆ρ

ρw
=
ρ− ρw

ρw
= sC̃sed. (3.13)

3.4 SGS models

In LES methodology, the flow quantities are decomposed into a filtered (re-
solved) component and a residual component by a low-pass filter operation.
In the filtered momentum equation the effect of the smaller scales is rep-
resented by the residual-stress tensor. The residual stress tensor is defined
as,

τRij = uiuj − ūiūj (3.14)

that includes an anisotropic and an isotropic part,

τRij = τij +
δij
3
τkk. (3.15)

The isotropic part is incorporated in the modified pressure field,

p̄ ≡ p̄+
δij
3
τkk (3.16)

while the anisotropic part is modeled, most of the times, using an eddy
diffusivity model,

τij = −2νtS̄ij , (3.17)

where νt is the eddy viscosity of the residual scales and S̄ij the filtered rate
of strain equal to,

S̄ij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
. (3.18)
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Similarly to the residual-stress tensor, the residual scalar fluxes are also
defined in Eq 3.10. These fluxes are modeled using the eddy-diffusivity
assumption,

λj = ūiT̄ − ujT = κt
∂T̄

∂xj
, (3.19)

where κt is related to eddy viscosity by the SGS Schmidt number,

ScSGS =
νt

κt
. (3.20)

In case that Reynolds analogy holds true the ScSGS is almost unity [3].

3.4.1 Smagorinsky model

One of the simplest and most widely used eddy-viscosity models is the
Smagorinsky model, where the eddy-viscosity, νt, is modeled as,

νt = (Cs∆)2|S̄|, (3.21)

where Cs is the Smagorinsky constant and |S̄| = (2S̄ijS̄ij)
1/2 represents

the contraction of strain rate tensor of the large scales. The main disad-
vantages of the Smagorinsky model are: a) the Smagorinksy constant is
defined a priori, so the model is not able to represent correctly the different
flow regimes and b) the Smagorinsky model appears to be very dissipative.
Therefore, more elaborate SGS models have been developed. A character-
istic examples constitute the Dynamic Smagorinsky [36] and the Dynamic
Lagrangian model [77]. These SGS model are suited for inhomogeneous
flows and are discussed in details below.

3.4.2 Dynamic models

The Dynamic Lagrangian model, proposed by Meneveau et al. [77], follows
the same principles with the Dynamic model proposed by Germano et al.
[36]. Specifically, in the dynamic approach the values of the Smagorinsky
coefficient Cs are estimated locally as a function of space and time, directly
from the resolved velocity field of LES. Thus, the dynamic models involve
an additional test filter with width ∆̂ > ∆. In LES-COAST model, the
test filter width is equal to ˆ∆ = 2∆. The residual stresses after the double
filtering operation are called ”subtest scale stresses” and are defined as:

T rij = ûiuj − ûiûj , (3.22)

where the (ˆ) symbol denotes the test filter. Moreover, according to Ger-
mano identity [35] the resolved turbulent stresses, Lij , can be calculated
as,

Lrij = T rij − τ̂ rij = ûiuj − ûiûj , (3.23)
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Figure 3.4: Conceptual model of the different stress tensors defined in the
Dynamic Smagorinky model.

In the previous section mentioned that the anisotropic part of the residual-
stress tensor can be modeled as,

τij = −2cs∆
2|S|Sij , (3.24)

where the coefficient is now defined as cs and |S| = (2SijSij)
1/2. In the

same way, the anisotropic part of the subtest scale stresses can be defined
as,

Tij = −2cs∆̂
2 |̂S|Ŝij . (3.25)

In these two equations, the coefficient cs is considered uniform. Applying
Eqs. 3.24 and 3.25 to Eq. 3.23, the anisotropic part of the resolved turbulent
stresses is equal to

Lij = −2csMij , (3.26)

where

Mij = ∆̂2 |̂S|Ŝij −∆2 |̂S|Sij (3.27)

Nevertheless, the above equations result in an error equivalent to

eij = Lrij + 2csMij . (3.28)

To minimize the error, Lilly [69] proposed a least square method, where the
Smagorinsky coefficient that minimizes the error is calculated to be equal



40 Hydrodynamic model - LES-COAST

to,

cs =

〈
LrijMij

〉
2
〈
MijMij

〉 (3.29)

where the symbol
〈〉

denotes averaging.
The main difference between the dynamic and the Lagrangian dynamic

model is that, the latest model calculates the required averages (see Eq. 3.29)
along flow path lines instead of statistical homogeneous directions.

3.5 Scaling

To ease the definition of scales, the filtered Navier-Stokes equations pre-
sented in Sec. 3.2 can be written in dimensionless form. In this manner, the
relative importance of each part of the equation becomes immediately clear.
For the non-dimensionalization of the Navier-Stokes, a characteristic length,
L, and a characteristic velocity, U, should to be chosen depending on the
problem studied each time. Using this characteristic scales the dimensionless
variables (illustrated by the symbol (∗)) can be defined as follow:

ū∗ =
ū

U
x∗ =

x

L
t∗ =

tU

L
p∗ =

P̄

ρwU2

τ∗ =
τ

ρwU2

(3.30)

Replacing the aforementioned scaling parameters to the governing equations,
the latest can written as:

∂ū∗i
∂t∗

+
∂ū∗j∂ū

∗
i

∂x∗j
= −∂p̄

∗

∂x∗i
+

ν

UL

∂2ū∗i
∂x∗j∂x

∗
j

− ∆ρLg

ρwU2 δi,2 −
∂τ∗ij
∂x∗j

. (3.31)

In this dimensionless form of the governing equations, two dimensionless
parameters appear. The Reynolds number, Re, and the bulk Richardson
number, Ri, defined as:

Re =
ν

UL
Ri =

∆ρLg

ρwU2 (3.32)

The relative importance of each term in the above dimensionless equa-
tions can be defined by comparing the order of magnitude of each dimen-
sionless parameter. For instance, in flows that characterized by high values
of Reynolds number the diffusivity term is becoming dominant. Further-
more, flows that have similar values of Reynolds are expected to exhibit a
similar behavior. Following the same procedure for the transport equations,
it is obtained:

∂C̄sal

∂t∗
+
∂ū∗j C̄sal

∂x∗j
=

1

ReScs

∂2C̄sal

∂x∗j∂x
∗
j

−
∂λ∗j
∂x∗j

, (3.33)
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Figure 3.5: Non-staggered grid in the physical and computational domain.

∂C̄sed

∂t∗
+
∂(ū∗j − ŵ∗s δi,2)C̄sed

∂x∗j
=

1

ReScsed

∂2C̄sed

∂x∗j∂x
∗
j

−
∂η∗j
∂x∗j

, (3.34)

where the Schmidt numbers (Scs and Scsed) express the ratio of the viscosity
of the fluid to the diffusivities of the scalars (ks and ksed).

3.6 Curvilinear coordinates

To reproduce complex geometries the governing equations are transformed
to curvilinear coordinate system, where the discretization of the domain
with curved boundaries is simpler. The resulting grid from the discretiza-
tion locates the pressure, the cartesian velocity components, and the scalar
quantities in the centroids, whereas the contravariant velocity fluxes are
located in the cells’ faces, as shown in Fig 3.5.

The governing equations (Eqs. 3.8 - 3.10), presented previously in the
Cartesian frame of reference, can be transformed in the generalized curvilin-
ear co-ordinate system by an invertible transformation. This transformation
leads to the following equations:

the continuity equation,
∂Um
∂ξm

= 0, (3.35)

the momentum equation,

∂(J−1ui)

∂t
+
∂(Umui)

∂ξm
= − 1

ρ0

∂

∂ξ

(∂J−1ξm
∂xi

p
)

+
∂

∂ξm

(
νGmn

∂ui
∂ξn

)
− ∆ρ

ρ
J−1δi,2 −

∂τij
∂ξm

∂ξm
∂xi

,

(3.36)
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and the scalar transport equation,

∂J−1T

∂t
+
∂UmT

∂ξm
=

∂

∂ξm

(
κsG

mn ∂T

∂ξm

)
, (3.37)

where ξm represents the curvilinear coordinates (ξ1, ξ2, ξ3), J−1 is the inverse
of the Jacobian that defines the volume of the cell, Um denotes the volume
flux normal to the surface of constant ξm, and Gmn is the mesh skewness
tensor. These quantities are defined as,

J−1 = det
(∂xi
∂ξj

)
, (3.38)

Um = J−1∂ξm
∂xj

uj , (3.39)

Gmn = J−1∂ξm
∂xj

∂ξn
∂xj

. (3.40)

3.7 Numerical methods

The numerical method used to resolve the governing equations is the frac-
tional step method described in details, for curvilinear coordinates, in work
of Zang [161]. The Adams-Bashforth technique is used for the time evolution
of the convective terms, whereas the diffusive terms are treated implicitly
with the Crank-Nicolson scheme. The space derivatives, in the curvilinear
coordinate system, are discretized with a second-order centered scheme. In
same cases, the advective terms of the scalar equation may discretized us-
ing a third-order accurate, upwind scheme (Quick [66]). The discretized
equations are

δUm
δξm

= 0, (3.41)

J−1u
n+1
i − uni

∆t
=

2

3
(C(uni ) +Dε(u

n
i ) +Bn−1

i )− 1

2
(C(u)n−1

i +Dε(u
n−1
i ))

+Ri(p
n+1) +

1

2
(DI(u

n+1
i + uni )),

(3.42)

J−1T
n+1 − Tn

∆t
=

2

3
(C(T )n +Dε(T

n
))− 1

2
(C(T )n−1) +Dε(T

n−1
))

+
1

2
(DI(T

n+1
+ T

n
)),

(3.43)
where δ

δξm
denotes the discrete finite difference operator in space and the

superscripts (n, n + 1, and n − 1) represent the different time steps. C
stands for the convective terms, Dε and DI are the explicitly treated off-
diagonal diffusive terms and the implicitly treated diagonal viscous terms,
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respectively, Bi stands for the body forces, and Ri denotes the operators for
the pressure gradient terms. These quantities are defined as

C(µ) = − δ

δξm
(Umµi), (3.44)

DI =
δ

δξm

(
νGmn

δ

δξn

)
m = n, (3.45)

Dε =
δ

δξm

(
νGmn

δ

δξn

)
m 6= n, (3.46)

Bn
i = −∆ρn

ρw
J−1δi,2, (3.47)

Ri = − δ

δξm

(
I−1 δξm

δxi

)
, (3.48)

where µ represents each variable (uni , T
n
).

3.7.1 Fractional step method

The fractional-step method, originally proposed by Chorin [17] and Te-
man [136], can proceed in different ways. The approach used in this thesis
is the one described in work of Zang [161], where the time advancement
is decomposed into parts. In the first part is called call predictor and is
used to approximate the Eq. 4.25 by calculating an intermediate velocity
uini without taking into account the pressure terms in the Eq. 4.25,

(I − ∆t

2J−1
DI)(u

in
i − uni ) =

∆t

J−1

[2

3
(C(uni ) +Dε(uni +Bn

i )

− 1

2
(C(un−1

i ) +Dε(u
n−1
i ) +Bn−1

i ) +DI(uni )
]
,

(3.49)

where I is the identity matrix. In the second step, called corrector, the final
solution of the velocity at the next time step is calculating by correcting the
intermediate velocity using the pressure terms and enforcing continuity,

un+1
i − uini =

∆t

J−1

[
Ri(φ

n+1)
]
, (3.50)

where the variable φ satisfies the following equation,

Ri(p) =
(
J−1 − ∆t

2
DI

)(Ri(φ)

J−1

)
. (3.51)

Deriving the Eq. 3.50 for the contravariant fluxes Um, the Poisson equation
for pressure is obtained,

∂

∂ξm

(
Gmn

∂φn+1

∂ξn

)
=

1

∆t

∂U∗m
∂ξm

. (3.52)

The multigrid technique is used for the solution of the Poisson equation [161].
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3.7.2 Stability condition

As it has been clear in the previous sections, iterative techniques are used
to solve the governing equations of the flow. However, these techniques may
face stability or convergence problems depending on the different schemes
that have been used. Thus, most of the times, the time step of the simula-
tions should meet specific requirements to ensure stability.

It is noteworthy that the implicit schemes, although they are more com-
plicated to implement, allow larger time steps compared to the explicit
schemes. Thus, in LES-COAST model the viscosity stability limit can be
removed since the viscous terms are solved implicitly. Nevertheless, the con-
vective terms are treated explicitly so the time step of the simulations is re-
stricted by the explicit stability limit known as the Courant-Friedrichs–Lewy
(CFL) condition.

max{CFL} < Ĉ, (3.53)

where Ĉ is a function of Reynolds number (∼ 1). CFL is equal to,

CFL =
( |u1

∆x
+
|u2|
∆y

+
|u3|
∆z

)
∆t

= (|U1|+ |U2|+ |U3|)
∆t

J−1
,

(3.54)

where ∆x, ∆y, and ∆z stand for the cartesian grid spacing in streamwise,
vertical, and spanwise directions, respectively. According to this condition,
the fluid particles should not travel more than one computational cell per
time step.



Chapter 4

Morphodynamic model

Sediment transport problems are characterized by complex geometries and
rapid morphological deformations. In the past, morphological changes were
studied almost exclusively by laboratory experiments. However, thanks to
the advances in computer science, in recent years it became possible to inves-
tigate the topological changes due to sediment transport also numerically. In
this chapter the numerical simulation of the evolution of bottom boundaries
by means of the level-set method combined with the Immersed Boundary
Methodology (IBM) is discussed.

4.1 Numerical techniques for moving boundaries

The deformation of the bed can be reproduced numerically by decoupled or
coupled hydro-morphodynamic models. Decoupled models calculate the flow
field above stationary boundaries and then use the calculated flow quantities
to evolve the bed interface independently [117]. In other words, in those
models the flow field does not feel the moving boundaries. Such models
are inherently incapable of simulating the interaction between the flow and
the mobile bed and lead to inaccurate prediction of topological changes due
to sediment transport processes. On the other hand, in coupled models the
velocity field is solved simultaneously with the bed evolution [68, 57, 156, 70].
This means that, at each time step, the flow field is calculated based on the
position of the boundaries at the previous time step and the calculated
flow quantities are used to update the position of the boundaries. The new
position of the bed is then used as boundary of the flow field at the next
time step. It is worth-noting that such models require the implementation
of a moving boundary technique, which increases their complexity and the
computational cost.

The most common technique used to reproduce flows over moving bound-
aries is the mesh deformation of the flow domain. This approach has been
widely used to study the bed evolution induced by different sediment trans-
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Figure 4.1: Mesh deformation of a vibrating flume bottom [70].

port problems such scouring, dune morphology, bed forms [70, 27, 139, 156].
The mesh deformation method uses body-fitted grids, which have to be dy-
namically deformed at each morphodynamic time step to follow the modified
boundaries as shown in Fig. 4.1. Hence, re-meshing of the computational
domain has to be applied every time that the bed changes shape. It is worth-
noting that the applicability of this method is restricted to small local bed
deformation, due to the creation of instabilities, as reported in [56, 156].
Additionally, it is characterized by immense computational cost [70].

A few years ago, Khosronejad et al. [57] proposed a new numerical
method for simulating deforming beds. In this approach the flow is solved in
a fixed curvilinear grid and the bed geometry is introduced as an immersed
body. Furthermore, the immersed bed interface is meshed by an unstruc-
tured triangular grid. To calculate the evolution of the bed due to sediment
transport the Exner–Polya equation is used and discretized on the triangu-
lar unstructured mesh of the bed interface. Specifically, at each time step
the sediment flux at each grid point of the bed interface is calculated and
the level of the bed grid is modified according to those fluxes. This method
was used to simulate bed load transport as well as sand waves in turbulent
channel flows [57, 56]. The main advantage of this method is that it does
not suffer from the instabilities encountered with the mesh-deforming ap-
proach. Moreover, it should be mentioned that the complex bed geometries
are easier to reproduce with the IBM than with body-fitted grids.

In our work, a relatively new method is implemented to treat the evo-
lution of the bed surface. In this approach, the bottom boundary is also
treated as an immersed body, but the evolution of the bed interface is tracked
using the level-set method. The level-set method [93] is an implicit numer-
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ical approach able to reproduce the propagation of 3D boundaries or 2D
interfaces, activated by an external generated velocity field. The combina-
tion of the level-set method with the IBM has the advantage that both the
flow and the bed interface are simulated on the same fixed grid. Moreover,
in this approach the numerical instabilities can be avoided due to the fact
that the boundary interface is reproduced by a smooth function.

In recent years, the level-set method has been widely used by the hy-
draulic community for the representation of the interface between two dif-
ferent phases and precisely for gas-liquid interfaces [134, 15, 52, 15, 160].
However, to the best of our knowledge, few studies have been done using
the level-set method for the representation of the bed interface. Kraft [62]
studied numerically the fully coupled problem of sediment transport in sus-
pension and the ripple migration by means of LES and the level-set method.
In this work both the flow field and the level-set are simulated in a Cartesian
grid and the position of the bed is updated at each time step. Similarly, [117]
investigated the scour and the deposition pattern around a pier using level-
set method along with a RANS model for the fluid motion. Specifically, the
level-set method is used for the representation of both free-surface and mov-
able sediment bed. However, [117] has fully decoupled flow and sediment
bed, which means that the boundaries of the flow are not updated due to
topological changes.

One of the main objective of this thesis is to present the implementation
of the level-set method for curvilinear coordinates and its combination with
the IB methodology for curvilinear grids presented in [110]. This model is
then validated with the coupled simulations of [62].In this chapter, the level-
set method and its implementation for curvilinear coordinates is described
in Sec. 4.2 along with the immersed boundary methodology in Sec. 4.3.
Additionally, in the last part of this chapter, the coupling procedure between
the hydrodynamic model and the mobile bed is presented.

4.2 Level-set method

The flow motion above a bed that consists of sediments can trigger the
transport of the bed material changing the shape of the flow boundaries.
Such changes in turn can affect the evolution of the flow. To reproduce
such phenomena numerically, a model able to capture the changes of the
geometry is necessary. In this work, the level-set method proposed by Osher
and Sethian [93] is implemented in the Navier-Stoke solver, LES-COAST,
to track the evolution of the bed. In this approach, the sediment surface is
represented by the zero level-set of an implicit function φ whose evolution
is calculated by the Hamilton-Jacobi equation,

φt + Vext|∇φ| = 0, (4.1)
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Fluid:φ>0

Bed interface:φ=0

Solid:φ<0

Figure 4.2: Definition of the computational domain in the concept of the
level set approach, where the bed is defined as the zero level set of an implicit
function φ.

where φ(x, t) is the level set function. It is worth mentioning that the
equation φ takes positive values in one side of the interface and negative on
the other side (see Fig. 4.2). Moreover, Vext represents an external generated
velocity field normal to the sediments surface. This velocity field corresponds
to the propagation velocity of the interface. It is obvious that, in Eq. 4.1,
Vext should be defined in the entire domain (Ω). However, in many practical
applications this quantity is defined only on the interface (Γ). For instance,
in sediment transport problems the propagation of the bed interface depends
on the erosion and the sedimentation processes, present only at the vicinity
of the bottom wall, and is defined as [62]:

Vext = S(e2 · n)− E

ρs
, (4.2)

where n expresses the unit vector normal to the bed interface pointing in the
fluid domain and e2 is the unit vector in the vertical direction. Thus, the
extension of the Vext from the interface to the whole domain is necessary (see
Fig. 4.3). This extension is obtained based on the method of characteristics
by solving the PDE [102],

(Vext)t + S(φ)
∇φ
|∇φ| · ∇Vext = 0. (4.3)

The advantages of this approach is straight forward and easy to imple-
ment [102].

The level set equation is initially imposed to be equal to the signed
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Vext n

Vext n

Vext n Vext n

Figure 4.3: Schematic view of the extension of the external generated veloc-
ity fields that evolve the bed interface.

distance function (|∇φ| = 1),

φ =


+d, for x ∈ Ωliquid

0, for x ∈ Γsed

−d, for x ∈ Ωsolid

, (4.4)

which provides the absolute minimum distance between the grid points and
the bed interface. The main advantages of this representation are two.
First the extension of the forces presented berofe is more accurate in case
that the signed-distance function is used [123]. Secondly, the numerical
approximation of the derivatives in regular grids where the grid spacing is
constant is more precise if the gradient of φ is known and equal to |∇φ| =
1 [38]. This choice is also beneficial for the immersed boundary methodology,
as it will be shown in the next sections. However, solving the Hamilton-
Jacobi equation (Eq. 4.1) is not possible to prevent the deviation of the
function φ from the signed distance function [38]. Thus, a reinitialization
procedure, activated periodically, is required during the simulations. Among
the different reinitialization procedures encountered in literature, the one
proposed by Sussman [134] is used in the present work. The reinitialization
is operated by solving:

φt + S(φ0)(|∇φ| − 1) = 0, (4.5)

where S is the smoothed sign function,

S(φ0) =
φ0√
φ2

0 + ε2
. (4.6)
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ε is a smoothing parameter with the same order of magnitude of the grid
spacing and φ0 is equal to φ(x, t = 0). This choice is beneficial due to its
simplicity and also because it is not necessary to explicitly find the zero-level
set of the function φ.

4.2.1 Implementation of the level-set method

To reach the goal of the present work, which is the simulation of sediment
transport processes, the level set formulation has to be coupled with the
hydrodynamic model, which makes use of curvilinear coordinates. For this
reason, the Eq. 4.1 is transformed in curvilinear coordinates as follows:

∂(J−1φ)

∂t
+
∂(Vextφ)

∂ξm
. (4.7)

To numerically solve the differential equations for the evolution and reini-
tialization of the level-set function (Eqs. 4.1 and 4.5), a forward Euler scheme
is used for time discretization,

φn+1
i,j,k = φni,j,k −∆t ·R(φn). (4.8)

According to Min [80] the forward Euler scheme gives comparable results to
the higher order accurate temporal descritization schemes. The forward Eu-
ler scheme is coupled with a second-order essentially non-oscillatory (ENO)
scheme, for the spatial discretization in a curvilinear coordinate system.
The idea of ENO schemes is to have a local adaptive stencil which ob-
tains information from the smoothest region and avoids the discontinuities.
Consequently, this method can provide high-order accuracy even in case of
“shocks”. This approach was presented by Harten et al. [47] for hyperbolic
conservation laws and then was introduced to Hamilton-Jacobi equations
by Shu [125].

The second-order derivatives in curvilinear coordinates are calculated as
follows:

φ(2)−
x = φ(1)−

x +
∆x−

2

δ2φ−

δx2
(4.9)

φ(2)+
x = φ(1)+

x +
∆x+

2

δ2φ+

δx2
(4.10)

where φ
(1)−
x and φ

(1)+
x are calculated by a first order upwind scheme

φ(1)−
x =

∂ξ1

∂x
(φi,j,k − φi−1,j,k)

+
∂ξ2

∂x
(φi,j,k − φi,j−1,k)

+
∂ξ3

∂x
(φi,j,k − φi,j,k−1), (4.11)
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φ(1)+
x =

∂ξ1

∂x
(φi+1,j,k − φi,j,k)

+
∂ξ2

∂x
(φi,j+1,k − φi,j,k)

+
∂ξ3

∂x
(φi,j,k+1 − φi,j,k), (4.12)

and
∆x−i ≡ xi,j,k − xi−1,j,k,∆x

+
i ≡ xi+1,j,k − xi,j,k. (4.13)

The second-order locally-adaptive stencils are calculated as:

δ2φ−

δx2
= minmod(φ1, φ2) (4.14)

δ2φ+

δx2
= minmod(φ2, φ3) (4.15)

where φ1, φ2, and φ3 are the central difference approximation of the operator:

δ2φ

δx2
≡ ∂ξmφ

∂x

δ

∂ξm
(
∂ξn
∂x

δφ

δξn
). (4.16)

The minmod function is zero when the arguments have different sign and is
equal to the argument value with minimum absolute value when they have
the same sign,

minmod(a, b) =

{
sign(a) min(|a|, |b|) if a · b > 0
0 otherwise

(4.17)

Finally, to calculate the Hamiltonian |∇φ| the Godunov method is used [160],

|∇φ| ' HG(D+
x φ,D

−
x φ,D

+
y φ,D

−
y φ,D

+
z φ,D

−
z φ), (4.18)

where

HG(a, b, c, d, e, f) =


H1 if S(φ) > 0
H2 if S(φ) < 0
0 otherwise

(4.19)

and

H1 =
√

max(a2
+, b

2
−) + max(c2

+, d
2
−) + max(e2

+, f
2
−)

H2 =
√

max(a2
−, b

2
+) + max(c2

−, d
2
+) + max(e2

−, f
2
+). (4.20)

Note that,

a = φ(2)−
x , b = φ(2)+

x ,

c = φ(2)−
y , d = φ(2)+

y ,

e = φ(2)−
z , f = φ(2)+

z , (4.21)
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a+ = max(a, 0), a− = min(a, 0). (4.22)

Regarding the extension of the externally-generated velocity field Vext

usually the accuracy of the numerical method is not an issue [102]. Thus,
in this case the forward Euler time scheme is used coupled with a first-order
upwind scheme for the spatial derivation,

V n+1
i,j,k = V n

i,j,k −∆t[(S(φi,j,k)n
x
i,j,k)

+(Vext)
(1)−
x

(S(φi,j,k)n
x
i,j,k)

−(Vext)
(1)+
x + (S(φi,j,k)n

y
i,j,k)

+(Vext)
(1)−
y +

(S(φi,j,k)n
y
i,j,k)

−(Vext)
(1)+
y + (S(φi,j,k)n

z
i,j,k)

+(Vext)
(1)−
z +

(S(φi,j,k)n
z
i,j,k)

−(Vext)
(1)+
z ], (4.23)

where (x)+ = max(x, 0), (x)− = min(x, 0). Moreover, nx, ny, and nx are
the components of the normal vector in streamwise, vertical, and spanwise

direction, respectively. The first order derivatives, (Vext)
(1)−
x and (Vext)

(1)+
x ,

are computed as φ
(1)−
x and φ

(1)+
x presented above.

Since the previous equations are advanced with an explicit scheme in
time a time step condition should be applied to enforce numerical stability.
Here, the chosen time step for the reinitialization equation and the extension
of the forces is equal to [80]:

∆t = 0.45min(∆x,∆y,∆z) (4.24)

4.3 Immersed boundary method

The level-set approach presented in the previous sections is able to track
the evolution of the bed interface. However, to set this topology as a flow
boundary the IBM is necessary. The IBM is widely used in literature to
simulate flows in complex geometrical domains using a structured grid. The
main advantage of this method compared to body fitted approach is that
the grid can remain unchanged, even for flows with moving boundaries.
This feature renders the IBM a suitable tool for simulating bed deformation
problems due to sediment transport.

In the IBM methodology, which was originally proposed by Peskin [103],
the boundary interface is taken into account by a force field applied in the
interior of the computational domain. There are two ways to calculate this
force field. The first was proposed by Goldstein [37] and is called feedback
forcing method. According to this approach the external force field is de-
fined as a function of the difference between the calculated velocity at the
boundary surface and the velocity of the boundary itself. The second appo-
rach, so-called direct-forcing, was initially proposed by Mohd-Yusof [83] and
applies a forcing term (fi) at the right-hand side (RHS) of the Navier-Stokes
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equations to impose the correct boundary conditions on the boundary in-
terface. Both approaches make use of interpolation procedures to enforce
the desired solution at the immersed boundaries since, most of the times,
the position of the interface does not coincide with the computational grid.
However, the main disadvantages of the feedback-forcing approach are that
it requires the tuning of two flow-dependent constants and also that it is very
restrictive with respect to the time step. LES-COAST model uses the direct-
forcing immersed boundary technique, as described by Fadlun [28], and ex-
tended to non-orthogonal curvilinear grid as proposed by Roman [110]. It is
worth noting that, in LES-COAST, the source/sink term on the continuity
equation is neglected. It has been shown in the literature that considering
the source/sink term only on the momentum equation provides satisfac-
tory results [82]. Thus, the modified momentum equation (Eq. 4.25) in the
curvilinear frame of reference can been written as:

∂(J−1ui)

∂t
+
∂(Umui)

∂ξm
= − 1

ρ0

∂

∂ξ

(∂J−1ξm
∂xi

p
)

+
∂

∂ξm

(
νGmn

∂ui
∂ξn

)
− ∆ρ

ρ
J−1δi,2 −

∂τij
∂ξm

∂ξm
∂xi

+ J−1fi.

(4.25)

Furthermore, the immersed boundary approach is based on the separa-
tion of the computational grid on solid and fluid regions by means of an
interface. The grid points belonging to the fluid regions that have at least
one neighbor in the solid region, are called immersed boundary (IB) points.
There are different techniques to identify the solid and fluid nodes. In the
present work, the level-set representation of the bed surface is exploited for
this purpose. The grid points can be easily classified according to the sign of
the implicit function φ(x, t), φ < 0, for x ∈ Ωsolid and φ > 0, for x ∈ Ωsolid.

In addition to the solid, fluid, and IB points, some additional points need
to be specified when the IBM technique is used. Those points are presented
in Fig. 4.4 and are:

I the IP points, which represent the intersection between the boundary
interface and the normal line passing from the IB nodes.

I the PP points, which are fictitious points (they do not belong on the
grid) lying on the line normal to the boundary passing from the IB
point. These points are chosen to be as close as possible to the first
fluid point.

As mentioned before, to estimate the forcing term fi, on the RHS side
of the Navier-Stokes equations interpolation techniques are used. In par-
ticular, the velocity of the IB point, uIB should be known, in compatibility
with the boundary conditions of the boundary interface. The procedure to
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Fluid

Solid

IB

IP
PP

Figure 4.4: Node classification in 2D grid. The black circles denote the
fluid nodes, the black squares the solid nodes inside the boundaries and the
black triangles the IB points. The red lines represents the normal line on
the interface passing from the IB points whereas the red circle is shows the
PP point and the red square the IP point.

calculate the uIB is the following. Initially, the velocity at the PP point is
interpolated by the surrounding fluid nodes. Then, the bed shear velocity,
u∗, is calculated using the law of the wall:

u+
PP =

upp

u∗
=

1

k
log(d+

PP) +B, (4.26)

where d+
PP = dPPu∗/ν represents the wall distance of the PP point from

the boundary surface, k is the von Karman constant equal to 0.41, and
B is a constant equal to 5.1. It is worth mentioning that considering the
level-set representation of the bed, the normal vector to the boundary sur-
face, for each grid point, can be easily approximated using the derivative
approximations used for the level set function,

n =
∇φ
|∇φ| . (4.27)

Finally, since the wall distance between the surface and the IB points (d+
IB)

is known, uIB can be calculated from the equation below:

u+
IB =

{
1
k log(d+

IB) +B if d+
IB > 11,

d+
IB if d+

IB < 11.
(4.28)

Additionally, the wall-normal velocity at IB nodes, vIB is obtained by a
parabolic interpolation. A more detailed description of the IB methodology
can be found in (Roman2009a).
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4.4 Coupling of the hydrodynamic and morpho-
dynamic model

To simulate coupled hydro-morphodynamic sediment transport processes,
the level-set method has been combined with the IBM and the LES-COAST
solver as illustrated in Fig 4.5. It has to be mentioned that the level-
set method is working separately from the LES-COAST model and their
communication appears only through the IBM. Specifically, the initial bed
interface defined by the implicit function φ is applied as boundary of the
flow using the immersed boundaries and the governing equations of the flow
are solved. At each time step, the calculated flow quantities, such as bed
shear stress and sediment concentration, are used to evolve the bed inter-
face through the advection equation Eq. 4.1. The new position of the bed
interface is updated and used as the new boundary for the flow domain.

An important problem that arises from the coupling between the hy-
drodynamic and the morphodynamic models is the computational cost. In
particular, the time step resulting from the CFL condition of the turbulent
flow is usually prohibitively small. Thus, to update the bed interface with
the same time step of the flow is very computational expensive [68, 117].
Considering that the flow field changes much faster than the bed interface
due to sediment motion, two different time steps may be used. In work
of Liang et al. [68] where they study scour below a pipeline the morpholog-
ical time step is chosen to be 10∆tflow. The difference in time step depends
on the speed at the bed interface changes at each specific problem.
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Figure 4.5: Flow chart of the overall coupling procedure.



Chapter 5

Assessment of the level-set
method: Ripple migration

As described in the previous chapters the fluid motion over beds that are
composed of loose sediment can lead to the entrainment of solid particles.
The entrained material is then carried downstream and it may settles if the
inertial forces acting on the sediment are small compared to gravitation,
creating bed forms. In various circumstances (such as wave motion above
sand beds), the interaction of the flow with the loose bed is followed by the
creation of ripple-like structures, perpendicular to the flow [132]. As the
flow evolves so do the bed structures while mantaining their shape [62]. In
this chapter, large eddy simulation of suspended sediment transport above
a ripple structure and the ripple migration are presented. In order to assess
the implementation of morphodynamic model based on the level-set method
proposed by Osher and Sethian [93], the work of Kraft et al. [62] is taken as
reference. The study case is described in Sec. 5.1, while Sec. 5.2 presents the
statistically stable velocity field and the suspended sediment concentration,
before activating the mobile boundaries. Finally Sec. 5.3 shows the evolution
of the ripple.

5.1 Study case

The numerical set-up used in this study mimics the one considered in the
work of Kraft et al. [62]. The domain is 0.15 m long, 0.15 m deep, and
0.075 m wide and is discretized by a Cartesian grid that consists of 152 ×
128×64 cells, in the streamwise, vertical and spanwise direction, respectively.
In the vertical direction the grid has been stretched in the vicinity of the
loose boundaries in order to resolve all the relevant scales of the different
flow quantities. It is worth noting that the resolution considered here is a
bit higher than the one presented in [62].

The sediment interface is represented by the zero level-set and its initial

57
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Figure 5.1: Numerical domain along with the grid and the bed interface.

configuration follows the ripple contour as proposed by Haslinger [48]:

yk
K

= 1− 2.107sin
[
1.15 · exp

(2πx

3L

)
· sin

(πx
L

)]
, (5.1)

where K is the height of the ripple equal to 0.02, L represents the length of
the domain, and x the stremwise position. This interface has been imposed
as bottom boundary for the flow, using the immersed boundary methodology
described in Sec 4.3. Fig. 5.1 illustrates the computational grid along with
the immersed interface.

From the three different Reynolds numbers performed in Kraft et al. [62]
the one that corresponds to mean velocity equal to um = 0.4 m/s is used
in this work. The boundary conditions of the flow filed are periodic in the
streamwise and the spanwise direction, no slip at the bottom wall, and free
slip on the top boundary. Regarding the suspended sediment, a constant
flux boundary condition has been implemented in order to reproduce the
sediment exchange between the the flow and the bed. This flux is calculated
according to Eq. 2.22. It is worth noting here that the direct calculation
of sediment fluxes also eases the estimation of the propagation velocity of
the sediment interface (see Eq. 4.3). For the estimation of the erosion rate,
the approach of Van Rijn [145] is used (see Eq. 2.18) as proposed in Kraft
et al. [62], to ease the comparison. The deposition rate is calculated using
Eq. 2.19. The sediment diameter is equal to d = 100 µm and the critical
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bed shear stress is τcr = 0.49.

It should be noted that in the ripple migration problem the bed evolves
much slower to scouring. Therefore, in this work the time step used for
the evolution of the level set is equal to 50∆tflow, in order to reduce the
computational cost. This means that after each morphological update, 50
time steps of the flow field calculations are carried out and the averaged
value of the Vext is then used the evolve the bed interface.

5.2 Velocity and sediment concentration filed above
stationary boundaries

Since the evolution of the riple due to sediment transport is much slower
than the evolution of the flow field, Kraft et al. [62] assumed that, for each
instantaneous ripple contour the velocity and sediment concentration field
have arrived in a statistically quasi-steady state. Fig 5.2 shows the sta-
tistically steady velocity field, calculated in this study. The velocity field
indicates flow recirculation in the lead side of the ripple and the separation
point is located at the crest of the ripple at distance x = 0.03 m and the
reattachment point at the x-position around 0.1 m. These results agree well
with the observations made in [62].

An essential parameter for the incipient motion of sediment is the bed
shear stress distribution. In the regions where the bed shear stress exceeds
the critical value, the bed material starts to move and subsequently is en-
trained in the flow. The estimated spanwise-averaged bed shear stress over
the ripple bed is presented in Fig. 5.3 and is compared with the results of [62].
In wall resolved LES, the bed shear stress can be calculated by dividing the
velocity, at the closest grid-point to the interface, by its distance from the
interface. It is noteworthy to mention that the distance of each grid point
from the interface is directly obtained by the level-set representation of the
bed, since level-set function has been imposed to be equal to signed-distance
function (see Ch. 4). The distribution of the bed shear stress shows high
positive values on the stoss side of the ripple. At the crest of the ripple
that coincides with the seperation point of the flow, as well as at the reat-
tachement point, the bed shear stress drops to zero, as expected. At the lee
side of the ripple negative values of the bed shear stress are observed, with
lower absolute value than those detected on the upslope. In this region the
highest values are observed at the trough of the ripple. The negative sign
of the bed shear stress indicate that sediment is entrained in the opposite
direction of the flow. It worth noting that the bed shear stressed calculated
in this study are slightly higher than those observed in [62]. This can be
due to the different grid resolution.

After the velocity field has arrived in statistically steady state the sedi-
ment transport model is activated considering that the ripple is still station-
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(a)

(b)

Figure 5.2: Statistically steady velocity field above the stationairy bed. a)
numerical results obtained in the present study and b) results obtained in
the work of Kraft[62].
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Figure 5.3: Statistically steady bed shear stress along the ripple baed com-
pared wioth the results presented in [62].
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ary. The transport of the suspended sediment concentration is simulated
by the advection-diffusion equation (Eq. 3.12). In this sudy only suspended
sediment is consider and the relative concentration is considered as a passive
scalar. This means that density differences due to the presence of sediment
are not taken into account in the momentum equation. As mentioned in
Sec. 5.1, Van Rinj’s approach is used to estimate the sediment pick-up.
The distribution of the instantaneous spanwise-averaged suspended sedi-
ment concentration result of the application of the updated LES-COAST
model at the time instant of 1 s is presented in Fig. 5.4. These results show
that erosion mainly occurs in the stoss side of the ripple where the higher
values of the bed shear stress are also observed. The entrained material is
then transported downstream creating a finger-like shape, close to the sep-
aration point as reported in [62]. Additionally, entrainment is important at
the trough of the ripple and downstream the reattachment point of the flow.
In the region just after the separation point deposition seems to be more
important. It is noteworthy that the tool used in this study captures cor-
rectly the main physics of sediment transport. However, some discrepancies
can be observed compare to the results presented in [62] due to the different
numerical models adopted.

5.3 Ripple migration

The velocity field and the suspended sediment distribution presented previ-
ously over a stationary boundary are used as initial conditions to simulate
the migration of the ripple. The level-set method is used to track the bed
interface evolution (see Eq. 4.7). In the case studied here, the externally-
generated velocity filed is defined as in Eq. 4.3. As mentioned before, this
velocity field is defined only in the vicinity of the ripple, so it has to be
extended in the whole domain using Eq. 4.3.

The evolution of the ripples after t = 60 s is shown in Fig. 5.5 (green
line) along with the initial position of the bed (red line). The erosion over
the ripple structure is mainly present upstream the separation point and
downstream the reattachment point of the flow, where the higher values of
bed shear stress were observed. The deposition has a dominant role at the
lee side of the ripple instead. This behaviour is in agreement with the one
pbserved and reported in [62]. It should be noted here that, in this study, in
order to decrease the computational cost of the simulations the bed interface
is updated every 50 time steps which roughly corresponds to t = 0.03s. On
the other hand Kraft et al. [62] have used the same time step for the flow and
the morphodynamic model, a difference that may justify the small diversity
in the ripple profile between the two figures.

Furthermore, as it has been also mentioned in [62], the constant threshold
value of the wall shear stress prevents the periodic translation of the ripple
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(a)

(b)

Figure 5.4: Spanwised-averaged suspended sediment concentration at the
time instant around t = 1 s. a) numerical results of the present study and
b) results presented in [62].
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(a)

(b)

t=0s
t=60s

Figure 5.5: Bed evolution. The red line corresponds to the initial position
of the bed and the green line to the evolved bed a) numerical results of the
present study at the position at time t = 60 s and b) results presented in [62]
at the position at time t = 96 s .

migration. In particular,in the regions in which the bed shear stress is
close to zero, the assumption of a constant threshold does not allow the
entrainment which is necessary for the periodic translation of the ripple. In
order to overcome this problem, Kraft et al. [62] proposed to use Zanke’s
approach for the motion threshold (see Sec. 2.7). However, the scope of this
chapter is the assessment of the morphodynamic model and not the detailed
study of the ripple migration problem, so this theme will not be further
investigated.



64 Assessment of the level-set method: Ripple migration



Chapter 6

Numerical simulations of
sediment entrainment
induced by gravity currents

This chapter deals with numerical simulations of the entrainment of sediment
induced by the propagation of gravity currents over mobile beds. The sedi-
ment exchange between the flow and the bed is modeled by a flux boundary
condition, which has been implemented, as part of this thesis, in the LES-
COAST model. For sake of clearness, the bed deformation, for the cases
studied in this chapter, are small enough so they can be considered negligi-
ble. Thus, the bottom boundary of the flow in the numerical simulations is
considered stationary.

This study seeks to advance the knowledge on the main mechanisms
that influence the sediment entrainment in buoyancy flows, by reporting
and analyzing the results of high-resolution LES of salinity currents flowing
over a mobile bed. For the simulations, it is considered currents with high
Grashof number (104) driven by small density differences (less than 4%),
so the boussinesq approximation holds true. The numerical outcome con-
cerning the entrained material distribution is compared with experimental
data. In particular, the main objectives are: 1) to numerically reproduce
the entrainment and transport of particles induced by the passage of the
current above the mobile bed, 2) to correlate the flow properties with the
entrainment processes and to point out the control mechanisms of erosion 3)
to identify the regions of the current that are the most active in terms of ero-
sion 4) to estimate whether the entrained material influence the dynamics of
the gravity current, and 5) to study the importance of the flow stratification
on the distribution of the entrained material. For these reasons, two dif-
ferent current Grashof numbers and two different sediment diameters have
been considered.

In this chapter, initially the study case is presented followed by a brief

65
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Figure 6.1: 3D view of the experimental set-up [165].

mathematical description and the used simulation parameters. Furthermore,
the characteristics of the current, such as density profiles, velocity fields and
the estimated bed shear stress are discussed. The final part of this chapter
summarizes the results with respect to the sediment entrainment. First, the
analysis of the sediment entrainment distribution, above the mobile bed,
along with the comparison with experimental data are presented. Then, the
correlations between the flow properties and the sediment entrainment, as
well as the stability condition of the current are investigated. Finally, the
main conclusions of this study are reported.

6.1 Description of the study case

The gravity currents that have been considered in this thesis are compo-
sitional, non-rotating, homogeneous, Boussinesq and of constant volume.
The geometric configuration considered for studying the bed material en-
trainment is inspired by the similar experimental work performed by Zor-
dan [165]. The experimental set-up is presented in Fig. 6.1. Specifically,
it consists of a rectangular flume 7.48 m long, 0.2 m deep, and 0.275 m
wide. Additionally, a big tank is located downstream of the flume, which
serves for the dissipation of the current. Since the lock-exchange configu-
ration has been used, the horizontal flume is divided in two volumes, each
of which contains fluid with different densities due to salinity differences.
These two volumes are separated by a movable lock-gate located at a dis-
tance xlock = 2.5 m from the rear wall. In addition, at distance 2.5 m
from the gate, there is a mobile bed 0.6 m long. In the experimental work,
3D instantaneous velocity measurements have been recorded using the 3D
Acoustic Doppler Velocity Profiler (ADVP) [65, 31], exactly before the mo-
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Figure 6.2: Conceptual model of the study case and mesh details (not
scaled). The mesh at the dissipation part is coarser compared to the mesh
of the rectangular flume.

bile reach of the bed. These velocity measurements have been done in such
distance from the gate so they can be considered independent of the gate
opening speed. Moreover, the lateral evolution of the flow above the mobile
bed has been recorded by a high-speed camera SMX-160.

The numerical simulations reproduce the rectangular flume presented in
the experiments. The tank has been replaced by an extra part 10.0 m long.
This part allows the dissipation of the current and ensures that the numerical
results are nor disturbed by return flow or reflection of the current at the
end of the flume. In this work only full-depth release cases are considered
and the initial aspect ratio of the lock fluid is kept constant, for all the
cases, equal to R = H/x0 = 0.08 << 1 (where H denotes the height of
the flume). The bottom of the flume is considered fixed except of the small
mobile section where sediment can be entrained. A conceptual model of the
numerical set up is given in Fig. 6.2.

6.2 Simulation parameters

In the experimental work of [165] different test runs have been performed
varying the initial salinity difference and the grain size of the bed material.
To reproduce numerically the influence of the initial salinity difference, grav-
ity currents with varying Grashof number, Gr, have been simulated. On the
other hand, the differences on the bed material are simulated by adapting
the settling velocity ws and the Shields parameter θcr. The Gr is defined as:

Gr =
(ubH

ν

)2
, (6.1)

where ub is the buoyancy velocity of the current equal to:

ub =
√
g′H. (6.2)
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Test ρlock g′ ub

√
Gr d u∗ d+ θcr ws Rouse

[kg/m3] [m/s2] [m/s] [-] [m] [m/s] [-] [-] [m/s] [-]

A 1040 0.39 0.28 56000 80 ×10−6 0.012 1.10 0.15 5.5×10−4 0.10

B 1040 0.39 0.28 56000 150 ×10−6 0.012 2.10 0.09 17.4×10−4 0.30

C 1048 0.47 0.31 61000 80 ×10−6 0.011 1.00 0.15 5.5×10−4 0.11

D 1048 0.47 0.31 61000 150 ×10−6 0.011 1.80 0.09 17.4×10−4 0.35

Table 6.1: Parameters of the lock-exchange simulations

and

g
′

= g
ρlock − ρw

ρw
. (6.3)

In the latest equation ρlock represents the density at the lock. It should
be noted here that the ambient fluid volume beyond the lock has always
density ρw. The density of the current can be transformed into salinity
concentration by the state equation:

ρ = ρw
[
1 + β

(
Csal − C0

sal

)]
, (6.4)

where (C0
sal) stands for the salinity of the ambient fluid and is equal to zero.

In the simulations Gr varies from 56000 to 61000 in order to investigate
the influence of the initial salinity concentration. Additionally, the impor-
tance of the sediment size on the erosion procedure has been investigated by
changing the bed material. The simulation parameters are summarized in
the Table 6.1. It is worth noting that, in all cases, the size of the sediment
is considered small enough to be transported directly into suspension and
the bed load is neglected. This can be also justified by the Rouse number
(see Sec. 2) presented in the Table 6.1. The non-dimensional grain size d+

is defined as:

d+ =
du∗
ν
, (6.5)

where d is the mean sediment diameter (d50).

Moreover, for the cases studied here the St is calculated and presented in
Table 6.2. These values indicate that an Euler-Euler single phase approach
can be used for the simulation of the suspended sediment (see Sec. 2.3.2).
The mathematical and numerical model of the simulations are presented in
details in the next section.

6.3 Mathematical and numerical model

For the simulation of the gravity currents the scaled, non-dimensional Navier-
Stokes equations have solved using the LES methodology (see Sec. 3.5). The
scaled parameters used are the buoyancy velocity of the current, ub and the
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Test η Std
[m] [-]

A 5.5×10−5 0.11

B 5.5×10−5 0.12

C 5.1×10−5 0.24

D 5.1×10−5 0.27

Table 6.2: Estimated Stoke numbers for all the cases studied in this work

height of the flume, H. Hence, the Navier-Stokes equations are written as:

∂ū∗i
∂t∗

+
∂ū∗j∂ū

∗
i

∂x∗j
= −∂p̄

∗

∂x∗i
+

1√
Gr

∂2ū∗i
∂x∗j∂x

∗
j

− ∆ρ

ρlock − ρw
δi,2 −

∂τ∗ij
∂x∗j

, (6.6)

It is worth mentioning that the dimensionless time scale for the currents
is t∗ = H/ub. The scalar equations for salinity and suspended sediment
concentration are those shown in Sec. 3.5. The density variation in the di-
mensionless momentum equation due to both salinity and sediment is equal
to:

∆ρ

ρlock − ρw
=

ρ− ρw

ρlock − ρw
=
C̄sal

C̄1
sal

+
s

βC̄1
sal

C̄sed. (6.7)

The Schmidt numbers, that represents the ratio of the molecular viscosity
ν to the molecular diffusivities of the scalars is considered equal to 600 for
salinity and for sediment equal to 1.

The dimensions of the scaled numerical domain are L1 = 87.4H, L2 = H,
L3 = 1.375H. However, only a length of 37.4H in x is used for data analysis
that corresponds to the length of the experimental flume. The part which
serves for the dissipation of the current is omitted. This work aims to
perform wall resolved LES and avoid the use wall functions. In this regard,
the grid has to be fine enough in the vicinity of the walls (∆y+

1 ∼ 1 and
∆z+

1 ∼ 1) in order to correctly resolve the viscous sublayer of the flow [106].
In the streamwise direction to correctly capture the streaky structures of
the flow ∆x+ ∼ 60 is set to be ∼ 60 as proposed by Tolyay [140].

∆x+ =
u∗
ν

∆x, (6.8)

∆y+ =
u∗
ν

∆y, (6.9)

∆z+ =
u∗
ν

∆z, (6.10)

where u∗ represents the maximum spanwise-averaged bed shear velocity ob-
tained at specific time step (see Fig. 6.3). Given the unsteady nature of
the gravity currents it is not possible to have one constant value of the bed
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Figure 6.3: Instantaneous plots of the spanwise averaged bed shear velocity
for case A and C.

shear velocity as for example in case of channel flows. It is obvious in Fig. 6.3
that the maximum value of the bed shear stress does not significantly vary
with Gr. What differs is its distribution over the streamwise direction. In
particular, the values of the bed shear stress, in case of higher Gr, remains
relatively high for a longer distance upstream of the front of the current.

According to the aforementioned resolution restrictions, the computa-
tional grid used in this work is composed of 1336 × 128 × 80 points in the
main domain and 200 additional cells, gradually enlarged in the stream-
wise direction, for the region of the channel where the current is dissipated
(see Fig 6.2). Furthermore, stretching has been applied on the vertical and
spanwise directions following Vinokur’s algorithm which uses an hyperbolic
tangent law [152]. The grid spacing in the vicinity of the bottom and of
the lateral walls is equal to ∆x3 = ∆x2 = 0.0005H, whereas away from the
walls is equal to 0.01H − 0.04H, similar to the one adopted in [92]. Ta-
ble 6.3 shows the grid spacing in wall units. Moreover, the time step for the
simulations is imposed equal to ∆t = 0.001t∗.

The imposed boundary conditionas of the flow are no-slip at the walls
in the spanwise and streamwise directions, as well as at the bottom of the
channel. At the top surface of the flume a free-slip boundary condition is
applied. Concerning salinity, a zero normal gradient is imposed at each
boundary.

To reproduce the sediment exchange between the current and the bottom
wall, a Neumann type boundary condition for the sediment concentration
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Test
√

Gr ∆x+ ∆y+ ∆z+

A/B 56000 63 1 1

C/D 61000 62 1 1

Table 6.3: grid space in wall units in streamwise, vertical, and spanwise
direction calculated for the two different Grashof numbers.

(see Sec. 2.3.4) has been implemented in the LES-COAST model in the
framework of this thesis. The erosion rate is calculated by Eq. 2.17 whereas
the deposition by Eq. 2.19. It is worth noting that the approach proposed
by Luque and Van Beek [71] is adequate for particle diameter d < 200 µm
as the ones considered in this work.

The propagating salinity current, obtained by the LES simulations, is
validated with experimental data in terms of the current shape and the
time evolution of the front position above the mobile bed. The dynamics of
the flow in terms of velocity field, bed shear stress distribution and turbulent
structures have been evaluated before the currents starts propagating above
the mobile section of the bed. It is worth noting, that the dynamics of the
current have been studied upstream the mobile reach of the bed.

6.4 Results

In this section the numerical results obtained for the case A, B, C, and D
are presented. These results have been compared with experimental data in
terms of the current height, front position evolution and entrained sediment
distribution.

6.4.1 Current evolution

In the non-dimensional simulations the density field of the salinity current
is expressed as:

ρ′ =
ρ− ρw

ρlock − ρw
(6.11)

The ρ′ has been initial imposed equal to 1 in the lock and zero in the rest
of the flume. The evolution of the gravity current at three different time
instants, before the current reach the mobile bed (case A/B), is presented
in Fig. 6.4 using spanwise-averaged density contours. The symbol (〈 〉) is
used to illustrate spanwise-averaged quantities.

From the observation of the spanwised-averaged density field, it is possi-
ble to notice that, as the time advances, the Kelvin-Helmholtz instabilities
created behind the front of the current loose their two-dimensionality and
break in smaller eddies. In particular, in time t = 8t∗ 5 clearly 2D billows
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Figure 6.4: Spanwise averaged density contour of the gravity current with√
Gr = 56000 at time instant a) t = 8t∗, b) t = 18t∗, and c) t = 28t∗

.
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can be observed behind the front. On the other hand, in time t = 18t∗, only
the first two billows maintain their 2D character and at distance greater
than x/H ∼ 1 behind the front of the current the flow is highly three-
dimensional.In this region, the Kelvin-Helmholtz instabilities are rapidly
loose their coherence and break down into smaller turbulent eddies. The
shedding of the billows lead to important mixing and a stable, slightly tilted
stratified layer, extends in a long distance behind the front of the current.
This behavior is in accordance with the one reported in the literature for
gravity currents with high Grashof number [92, 19]. The mixing with the
ambient fluid that takes place on the interface between the two fluids de-
creases the density of the current. This can be confirmed by the salinity
distribution along the vertical. Specifically, the salinity concentration is
higher in the lower part of the current and decreases as we are getting closer
to the mixing interface.

6.4.2 Current height

In the lock-exchange configuration when the vertical gate that separates the
two fluids is removed, a gravity current is created in the bottom boundary,
whereas the ambient fluid forms a counter-current flowing in the opposite
direction. Between the two fluids a mixing interface is created. The position
of the mixing interface coincides with the height of the current. There are
two ways to identify this position. The first approach, defines the height of
the current based on the velocity measurements. Specifically, the interface
is defined by the points where the streamwise velocity changes sign (see
Fig. 6.5). The second approach determines the height of the current based on
a density threshold [94, 43]. In the literature, different density iso-contours
have been considered as threshold between the dense and the ambient fluid.
In this work, the limit value, ρ′lim = 0.02 as proposed by [94].

In this thesis, the first method is used only to compare the height of
the current obtained numerically with the one defined in the experiments
upstream the mobile bed. The reason is that in the experimental work only
velocity measurements are available in this part. Thus, the spatial visual-
ization of the shape of the current can be retrieved only by the time series of
velocity measurements assuming that the frozen turbulence hypothesis holds
true, and that the current is advected at nearly constant velocity. The ve-
locity measurements have been recorded in the probe presented in Fig. 6.2
and tprobe denotes the time at which the current arrives at the probe. In the
following sections, where the experimental results used for the validation of
the model have been derived by video and image analysis, the first approach
is considered more adequate.

The comparison between the numerical and experimental data with re-
spect to the current height is presented in Fig. 6.6. To identify experimen-
tally the position where the velocity is exactly zero is almost impossible.
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Figure 6.5: Vertical spanwise-averaged velocity profile at the head region
of the head. The red dashed line indicates the height where the velocity
change size

.

Therefore, the iso-velocity contour u = 0.01 m/s is chosen. It is noteworthy
to mention that the error of the experimental measurements depends on
the ADVP precision which is about ±4.5mm. In particular, the total fluid
height is divided in 44 equal spaced gates of about 4.5 mm each. The detec-
tion of the current height is therefore within this interval of error. Moreover,
the experimental results are based on instantaneous velocity measurements.
This may explain the differences that can be observed between the numerical
and the experimental values. However, in a qualitative sense, the compari-
son gives a good agreement.

It can be observed in Fig. 6.6 that the height of the current is initially
around h ∼ 0.1 m and then remains constant equal to h ∼ 0.06 m. The
increase of the Grashof number does not seem to have any significant effect.
The curve h presented in Fig. 6.6 can be also used to roughly estimated
the head region of the current [90]. Specifically, the head region is extended
until the first minima that follows after the maximum value of the height
line. For both cases studied in this work, this minima is observed around
(t− tprobe)/t

∗ = 5.

6.4.3 Front evolution

The temporal evolution of the front of the current for the cases B and C is
presented in Fig. 6.7. In this figure, case B is represented by circles whereas
case D by square markers. The dashed and solid lines stands for the fitting
lines at each case respectively. The position of the front, xf is calculated
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Figure 6.6: Representation of the current height. The numerical results
(dashed line) are compared with experimental results (solid lines). a) cor-
respond to

√
Gr = 56000 and b) to

√
Gr = 61000

.

with respect to the vertical gate,

xf = x− xlock, (6.12)

where xlock stands for the position of the lock gate. Numerically, the front
position is identified by recording the evolution of the foremost point of
the current located at height y = 0.1H form the bottom of the flume [92].
The boundary of the current has been defined following the first approach
described in the previous section. The influence of the Grashof number on
the propagation of the current is obvious, as the slope of the line for case
D is higher than the one of case B. The monotonically increase of the xf

over time indicates that the current is in the slumping phase. By definition,
in this phase the front velocity of the current remains constant and can be
calculated by the slope of the graph as:

ufront =
dx

dt
. (6.13)

The values of front velocity for each case are are about 0.45ub and are
presented in Table 6.4.

The temporal evolution of the front of the current above the mobile reach
of the bed are compared with the experimental results in the Fig. 6.7(b).
Above the mobile reach of the bed, the identification of the current in the
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Test
√

Gr ufront [m/s] ub[m/s] Fr

A/B 56000 0.125 0.28 0.46

C/D 61000 0.14 0.31 0.45

Table 6.4: Froude numbers, calculated based on the channel height, for the
two different Grashof numbers.

experiments was carried out by subtracting an initial image with ambient
fluid to the images of the experiments. The precision of this method is in
the order of the pixel resolution, i.e., 0.5 mm/pixel. The numerical results
are presented by black color whereas the experimental results by gray. This
comparison presumes a very good agreement between numerics and exper-
iments. It is remarkable that the presence of entrained bed material, when
the gravity current flows above the mobile section of the bed, does not in-
fluence the propagation of the current. Specifically, it can be observed in
Figs. 6.7(a) and (b) that the slope of the lines does not change when the
current is propagating over the mobile bed. The influence of the suspended
sediment on the dynamic of the current is going to be studied in more details
subsequently.

The front velocity of the current can be used to estimate the Froude
number of the flow, Fr, with respect to the height of the channel,

Fr =
ufront

ub
. (6.14)

The calculated values are also presented in Table 6.4. These values are in
the range of 0.45± 0.05, which is in agreement with what is reported in the
literature for inviscid currents [6, 89]. This dimensionless quantity shows
that, for all the cases, the currents can be considered sub-critical. This
result justifies the use of the non-deformable slip boundary condition on
the top of the flume. Furthermore, the values of the Froude number reflect
the influence of the Grashof number on the propagation of the current. In
particular, an increase in the Grashof number of the order of 8− 10% leads
to a Froude number increase of approximately 2− 3%.

6.4.4 Velocity fields

The numerical results of the streamwise and vertical velocity distribution as
the gravity current passes from the probe, located upstream the mobile bed,
are presented in Fig. 6.8. The propagation of the dense gravity current is
illustrated by positive streamwise velocities at the lower part of the flume.
The counter current that propagates in the opposite direction in the upper
part of the flume, is characterized by negative streamwise velocities. The
density difference across the interface between the two fluids, as well as the
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Figure 6.7: (a) Time evolution of the distance between the front and the lock
for cases B and D. The dashed square indicates the time period that the
current propagates above the mobile reach of the bed. (b) Time evolution
of the front position above the mobile reach of the bed and comparison of
numerical results with experimental data. tprobe indicates the time instant
that the current arrives at the probe.
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Figure 6.8: Numerical results of the instantaneous velocity contours. The
measurements are taken in the Eulerian frame at the middle of the channel
before the mobile section of the bed. The time is made dimensionless using
t∗ = H/ub. Plots (a) and (b) represent the streamwise and vertical velocities√

Gr = 56000, and (c) and (d) for
√

Gr = 61000.

presence of velocities with different sign lead to the formation of a shear layer
that induces the creation of Kelvin-Helmholtz instabilities. Furthermore, in
Fig. 6.8(b) and (d) high positive values of the vertical velocities can be
noticed. These values correspond to the upward movement of the ambient
fluid which is displaced as the dense current arrives at the probe. The initial
high positive values of the vertical velocities are followed by a sharp drop.
This pattern repeats in the whole mixing area behind the head. It is worth
mentioning that the periodic presence of vertical velocity stripes at the lower
boundary of the current. It is assumed that these features will have an effect
on the entrainment of bed material and they are going to be studied in detail
in the next sections. The recirculation of the flow can been clearly seen in
Fig. 6.9 that represents the instantaneous vector velocity field.

The streamwise velocities in the core of the gravity current are constantly
higher than the estimated front velocities that have been presented in the
previous section. This has been also reported in the works of [60, 4]. More-
over, the vertical profiles of the streamwise velocity at different parts of the
currents are shown in Fig. 6.5. It can be observed that the max values of
u are mainly observed at distance around y = 25mm from the bottom that
roughly corresponds to 0.25 − 0.3 of the current height. These results are
in accordance with those reported in the literature for experimental gravity
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Figure 6.9: Instantaneous velocity vector field for
√

Gr = 56000 and
√

Gr =
61000. The red vector show the billows created behind the front of the
current.

currents [59, 60]. Furthermore, it can be observe in Fig. 6.5 that the velocity
profiles of a gravity current are similar to those observed in turbulent plane
wall jets, as mentioned in work of Kneller [58]. Specifically, in both cases
the profiles are characterized by an inner and outer region divided by the
velocity maximum. In the inner region the velocity gradients are positive,
whereas the outer region has negative velocity gradient.

The instantaneous velocity measurements, presented above, have been
used to compute consecutive time-window averages 〈U〉t and 〈V 〉t. The size
of the time window is chosen to be equal to (t − tprobe)/t

∗ = 0.7 according
to [59, 4]. This time window has been chosen to avoid the the elimination
of small frequency peaks and corresponds to 16 velocity recordings. The
turbulent quantities, urms and vrms computed as,

urms(y) =

√
〈u′2〉t(y) =

[
1

n

n∑
m=1

[
um(y)− 〈U〉t(y)

]2
]0.5

, (6.15)

vrms(y) =

√
〈v′2〉t(y) =

[
1

n

n∑
m=1

[
vm(y)− 〈V 〉t(y)

]2
]0.5

, (6.16)

where n represents the number of points used for the time average, and um ,
vm are the values of the streamwise and vertical velocity at each time instant
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Figure 6.10: Instantaneous vertical velocity profiles at different positions
plotted along with the shape of the current for

√
Gr = 56000 and

√
Gr =

61000.

m. The Reynolds stresses, τRe are also estimated as,

τRe(y) = −ρ〈u′v′〉t(y), (6.17)

where

〈u′v′〉t(y) =
1

n

n∑
m=1

[
um(y)− 〈U〉t(y)

][
vm(y)− 〈V 〉t(y)

]
. (6.18)

Fig. 6.11 shows the averaged velocities 〈U〉t and 〈V 〉t along with the
turbulent quantities, urms and vrms, and τRe for both Grashof numbers. The
results are displayed at two different points in the vertical. One in the sub-
layer of the flow y+ = 11 and one in the outer region of the flow y+ = 100.
The passage of the current from the probe is characterized by an abrupt
increase of the streamwise and the vertical velocity. The mean streamwise
velocity increases until (t − tprobe)/t

∗ = 5, where reaches the maximum
value. As mentioned in Sec. 6.4.2 this region corresponds to the head of the
current. After this point, the value of the mean streamwise velocity remains
quasi constant since the flow has entered in the quasi-steady phase that
characterised the body of the current [59]. On the other hand, the mean
vertical velocity at the time period (t− tprobe)/t

∗ = 0−5 is characterized by
a sequence of important upward and downward fluxes. These upward and
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Figure 6.12: Vertical profiles of urms (dashed line) and vrms (solid line) at
the time instant t = 1s for a)

√
Gr = 56000 and b)

√
Gr = 61000.

downward flow movements continue also upstream of the front, but their
amplitude its much lower.

The head of the current is strongly turbulent and is the region where the
stronger mixing between the current and the ambient fluid occurs. This can
be confirmed by the peaks of the 〈U〉t and 〈V 〉t which are followed by peaks
of urms and vrms (see Figs. 6.11(b,d)). It is note worthy that in contrast to
shear bounded flows, the higher urms and vrms are recorded in the upper part
of the current, away from the wall, Fig. 6.12. These values certify the fact
that in gravity currents turbulence is mostly generated by the instabilities
present at the upper boundary of the current.

In a turbulent flow, like the one reproduced in the present work, the
total shear stresses can be modeled as the the sum of the Reynolds shear
stresses, dominant in this case at the mixing layer created in the interface
between the two fluids, and the viscous shear stresses, dominant at the
vicinity of the wall. The Reynolds shear stresses, plotted in Figs. 6.11(e),
are related to the instantaneous transfer of momentum in the current by the
fluctuating field. Consequently, they follow the trends of urms and vrms and
their values decrease closer to the wall (see Figs. 6.12). On the other hand,
the viscous shear stresses are related to the sharp velocity gradient in the
viscous sublayer. Hence, their maximum is expected in the vicinity of the
bottom wall. The bed shear stress distribution is studied in details in the
following sections.

6.4.5 Turbulent structures

The Grashof number studied in this thesis is of order 104. For such high
values of the Grashof number, the flow in the head of the current is expected
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to be strongly turbulent. Moreover, 3D coherent structures are expected to
be created in the interface between the two fluids (front of the current and
mixing interface) as well as at the turbulent boundary layer close to the
bottom [11]. For the visualization of those turbulent structures, the λ2

criterion [55] is used. This method identifies vortex cores as regions where
high vorticity and pressure minima are present.

An instantaneous side view of the isosurface λ2 = −500 for cases A and
C is shown in Fig. 6.13. At the specific time instant, the front of the current
is located exactly before the mobile bed. Four different regions can be iden-
tified according to different turbulent characteristics [11]. The first region is
located in the upper boundary of the flow directly behind the front and it
is dominated by two-dimensional turbulent structures. These area coincides
with the part mentioned in Sec. 6.4.1 where the billows are still coherent.
The second region includes the viscous sublayer in the bottom boundary of
the flow. There, the flow is characterized by quasi-streamwise vortices and
hairpin vortices inclined in the flow direction. The third region represents
the area where the billows behind the front break down into smaller eddies
and three dimensional structures are created. The turbulent structures in
this region are slightly tilted, as it has also been mentioned previously for
the mixing layer between the two fluids. Finally, the fourth region includes
the remaining part of the flow, that devoid of strong turbulent structures.
Increasing the Grashof number of the flow the first region becomes smaller.
This means that turbulent structures loosing their coherence faster. More-
over, the three-dimensional structures of the third region are extended longer
downstream. The presence of turbulent structures shown in Fig. 6.13 cin-
firm the statement made in the previous section, according to which the
head region is characterized by more intense turbulence compared to the
body of the current.
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Our interest in this thesis is focused on the turbulent structures of the
second region. In Fig. 6.14 is displayed the top view of the turbulent struc-
tures in this region for both Grashof numbers. The majority of the quasi-
streamwise vortices and hairpin vortices are concentrated at the head of the
current (x/H > 23). Exactly on the front of the current the distribution of
the structures can be associated with the lobes and clefts instabilities [11].
However, away of the front the structures loose their correlation with the
lobes and their distribution is more dispersed. It is noteworthy that the
spacing between the streamwise vortices decreases by increasing the Grashof
number of the flow. It is known that these quasi-streamwise vortices and
hairpin vortices, formed in the viscous sublayer, are associated with the
streaky distribution of velocity in the vicinity of the wall [11].

6.4.6 Bed shear stress

The spatial and temporal distribution of the bed shear stress has a significant
effect of the erosive capacity of the flow. Main years of research in the
field of sediment transport have shown that bed material start to move
when the bed shear stress exceed a critical value τcr. In nature and in
laboratory experiments the exact estimation of the critical shear stress is a
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very challenging task and is usually based in empirical estimations. However,
in numerical simulations the sediment entrainment is imposed as function
of the excess bed shear stress τ−τcr

τcr
. Therefore, an accurate estimation of

the bed shear stress is of primary importance in the numerical modeling.

In this thesis, wall resolved LES have been performed. The grid has been
stretched in the vicinity of the wall (∆y+ ∼ 1) to fully resolve the viscous
sublayer of the flow. This allows to calculate the bed shear stress as:

τ = µ
u1

y1
, (6.19)

where µ is the molecular viscosity of the fluid. y1 and u1 stands for the first
grid point away from the wall and the velocity at this point respectively.

The top view of the instantaneous excess bed shear stress distribution for√
Gr = 56000, exactly before the gravity current starts propagating above

the mobile section of the bed, is shown in Fig. 6.15(a). In this figure, the
read line indicates the position of the front of the current. It can be clearly
observed the streaky pattern that follows the bed shear stress over the whole
extend of the gravity current. Similar patterns have been also reported in
the literature [92]. These streaks are related to the high and low streamwise
velocities. High values of the excess bed shear stress are mainly located
behind the front of the current at distance up to x/h = 1.5 away from the
front. Further upstream, the values of the bed shear stress decrease but
nevertheless the streaky pattern is maintained.

The temporal evolution of the excess bed shear stress at two different
points in the spanwise direction is displayed in Fig. 6.15(b). Position z1

corresponds to the middle of the channel, whereas position z2 corresponds
to a point located a quarter of the width away from the right lateral wall
(see Fig. 6.15(a)). The bed shear stress have been recorded as the gravity
current passes from the Eulerian framework located upstream the mobile
reach of the bed. The differences between position z1 and z2 can be justified
due to the presence of the streaks. It is remarkable that the initial high
values of the excess bed shear stress, observed as the front of the current
arrives on the probe, are followed by a sudden drop and then are increasing
again. The position of the drop can be related to the position of the billows
observed in Fig. 6.8. Thus, it can be assumed that the instabilities present
at the mixing interface leave a footprint in the temporal evolution of the
bed shear stress.

6.4.7 Flow sediment interaction

In the Sec. 1.2.1, it has been mentioned that the propagation of a gravity
current over loose beds can trigger the transport of sediment. In this sec-
tion, the innovation of the present work, which consists of the investigation
of the bed material entrainment induced by salinity currents is presented.
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In particular, the entrained sediment distributions for two different Grashof
numbers and two different sediment diameter is illustrated, compared with
experimental data obtained by the work of Zordan [165]. Furthermore, the
main mechanisms that lead to bed material entrainment are reported along
with the influence of the suspended sediment on the dynamics and the sta-
bility of the current. It is worth noting that the deposition of the entrained
material and the investigation of the bed forms, created downstream of the
mobile reach of the bed, is out of the scope of this thesis.

Entrained sediment distributions

When the gravity currents, described in the previous sections, propagate
over the mobile reach of the bed induces the transport of sediment into sus-
pension. Snapshots of the spanwise-averaged suspended sediment concne-
tration, as result from the numerical simulations, are presented in Fig. 6.16.
These snapshots are taken for a small interrogation window over the mobile
bed. Each line in Fig. 6.16 corresponds to one of the cases A, B, C, and D.
Moreover, each column illustrates a different time instant. The three time
instants considered are t1 = (t − tprobe)/t

∗ = 1, t2 = (t − tprobe)/t
∗ = 1.2,

and t3 = (t − tprobe)/t
∗ = 1.4. The shape of the current obtained numeri-

cally is illustrated by the grey solid line, whereas the sediment distribution is
represented by the contour plot. Lw corresponds to the length pf the inter-
rogation window and is equal to 0.24, whereas xw stands for the streamwise
position of the starting point of the interogation window, with respect to
the position of the lock. This distance is equal to 2.7m.

The specific visualization of the numerical results is chosen in order to
ease the comparison with the experimental data, which where taken by side
view. It is noteworthy to mention that the experimental work of Zordan [165]
does not provide exact measurements of suspended sediment concentration.
Concentration measurements are a challenging task in the laboratory, es-
pecially in the case that two different substances are present (salinity and
suspended sediment). This is one of the reasons that motivated this nu-
merical work, to compliment the experimental results and investigate the
aspects that cannot be addressed in the laboratory.

In the experiments, the propagation of the current above the mobile bed
is recorded by a high-speed camera with acquisition frequency 25 Hz and
resolution of 500 × 180 pixels. The obtained images are converted to grey-
scale matrices and subtracted by an the initial image that contains only the
ambient fluid. Following this procedure the current and the ambient fluid
can be separated by a sharp interface. Furthermore, the limit between the
current and sediment is identified by an analysis of the recorded shades.
This method is based on the fact that the current corresponds to a high lu-
minescence whereas the sediment forms darker areas. However, a threshold
for the identification of the pixels needed to be estimated. Therefore, the
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pixel value associated to the sediment is annotated, at the beginning of the
experiments, and used as reference to identify pixels characterized by the
presence of sediment. It is important to mention that the precision of this
method is based on the pixel resolution, i.e., 0.5 mm/pixel. The outlines of
the regions covered by the current and sediment, obtained in the laboratory
by the aforementioned procedure, are also illustrated in Fig. 6.16 by a grey
and black line with circles, respectively. The red line plotted in Fig. 6.16
represents the iso-contour Cth = 2.0 × 10−6 of the numerical data and is
used to ease the comparison. The presented results show a qualitatively
good agreement between the numerical and the experimental data. The bed
material is mainly entrained in the head region of the current and diffuses
over the whole current height. In the vicinity of the wall the concentra-
tion of the suspended sediment is higher due to the high shear present in
this region. Moreover, it is noted that the suspended sediment distribution
obtains a shape similar to the head recirculation. The exact prediction of
the sediment region in the experiments is becoming more challenging in the
upper boundary of the current. This is due to the intense mixing, present
in this region, that leads to low luminescence in the experimental images.
This can explain the discrepancy between the numerical and experimental
data, that mainly occurs at the upper boundary. Nevertheless, the upward
movement of the entrained material behind of the front of the current is also
captured in the experiments to some extend.

The validation of the numerical results with respect to the bed material
entrainement has been done also quantitatively by comparing the time evo-
lution of the total area covered by sediment. The challenge of this procedure
is the determination of a threshold value for the spanwise-averaged concen-
tration, that marks the boundary above which the sediments are visible in
the experimental images. The identification of this concentration threshold,
Cth, requires calibration and is one of the main limitations of this study. To
avoid this limitation, a relation that could connect the image luminescence
to the concentration should exist. Unfortunately, this is not the case. The
threshold value used in this work is Cth = 2.0×10−6. This value is chosen to
obtain an agreement with the physical evidence of the experiments. Apart
of the sediment, the time evolution of the total area covered by the current is
also calculated. However, the visible threshold, Salth, in this case is chosen
to be equal to 0.02 as proposed in [94].

The total areas covered by the sediment as function of time is calculated
by the following procedure. Once the threshold value has been determined,
the cells on the xy plane that contain a spanwise-averaged suspended sedi-
ment concentration higher than the threshold parameter are identified and
added. The same procedure is adopted to calculate the total area covered
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(a)

(b)

Figure 6.16: Numerical and experimental sediment concentration and cur-
rent shape at different time instants. The black solid lines shows the the
shape of the current, and the contour plots illustrate the spanwise-averaged
sediment concentration, both calculated numerically. The experimental
shape of the current and area covered by sediment are shown with gray
and black circles, respectively. The read solid line illustrates the iso-contour
Cth = 2×10−6 of the numerical data. Each line of figures correspond to the
cases A, B, C, and D, respectively.
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by the current. This procedure is expressed mathematically as:

Ased(t) =
M∑
i

∆xi∆yiζi(t), Asal(t) =
M∑
i

∆xi∆yiξi(t), (6.20)

where M corresponds to the number of the cells, and ∆xi and ∆yi are
the size of each cell in the streamwise and vertical direction, respectively.
Moreover,

ζi(t) =

{
1 if 〈Csed,i(t)〉 ≥ Cth

0 otherwise,
ξi(t) =

{
1 if 〈Csal,i(t)〉 ≥ Salth
0 otherwise.

(6.21)

The calculated areas are presented in Fig. 6.17 and are compared with
experimental data. The areas have been made dimensionless using the area
of the interrogation window (Lw = 0.24 m × Hw = 0.2 m). These results
illustrate that, the time instant that the current enters in the interrogation
window Asal starts to increase. The same time corresponds to the moment
that the current arrives the mobile section of the bed. Thus, bed material is
entrained due to erosion and Ased is also increased. Moreover, it is observed
that after (t − tprobe)/t

∗ = 5 the Asal remains constant. This period corre-
spond to the time that the front needs to cross the interrogation window and
can be calculated by the front velocity of the current, presented in Sec. 6.4.3,
and the length of the window. The area covered by the sediment starts to
increase a bit after the moment in which the current appears in the inter-
rogation window. This area exhibits its peak value when the front of the
current is still inside the window. At (t − tprobe)/t

∗ > 2.5 the area covered
by the sediment start to decrease and for (t− tprobe)/t

∗ > 5, when the front
exits the window, this area is almost dropped to zero. These results lead to
the conclusion that the entrained sediment is advected downstream by the
head of the current. The aforementioned results are in good agreement with
the experimental data.

Mechanisms that influence sediment entrainment

Ooi [91] studying the bed shear stress distribution of high Grashof gravity
currents assumed that such flows are able to entrained sediments over a
large distance behind the front. However, the results presented in this work
have shown that sediment entrainement into suspension mainly occurs in
the head region of the current. The entrainment of the bed material into
suspension requires the action of three different mechanisms. Initially, the
material is set in motion due to shear. Secondly, the sediment is detached
from the bed due to turbulent structures formed in the vicinity of the bed.
Finally, upward turbulent fluxes move the particles away of the bed and
keep them into suspension. Those mechanisms can be associated to the bed



Results 91

5 10 0 5
0

0.01

0.02

0 5 10
0

0.2

0.4

0.6

0 5 10
0

0.2

0.4

0.6

0 5 10
0

0.2

0.4

0.6

0 5 10
0

0.2

0.4

0.6

Figure 6.17: Time evolution of the cumulative areas covered by the gravity
current (black) and the sediment (gray) for cases A, B C, and D. The
numerical results are compared with experimental data: black circles for
the gravity current and gray circles for the sediment.

shear stress, vertical velocity, vertical velocity fluctuations, and Reynolds
stresses.

The streamwise distribution of the spanwised-averaged of those param-
eters is presented in Figs. 6.18 and 6.19, for both Grashof numbers, respec-
tively. The position of the front of the current is also indicated by a vertical
blue line. The excess bed shear stress, for both cases, takes values higher
than 1 (that correspond to the initiation of motion) in an area that roughly
corresponds to half the length of the current. However, the remaining quan-
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tities are significant only in small area behind the front. Confronting these
results with the suspended sediment distribution, it is confirmed that sedi-
ment is transported into suspension only in the regions of the flow that the
high values of bed shear stress, vertical velocity, vertical velocity fluctua-
tions, and Reynolds stresses coexist. In case of gravity current, the head is
the region where this requirement is fulfilled. The body of the current is less
powerful in terms of upward turbulence. In this region, the sediment may
move within the small shear layer in the vicinity of the wall.

This Fig. 6.20 displays the top view of the excess bed shear stress distri-
bution, for case A (at the time instant t3 mentioned above) along with the
top view of the sediment concentration very close to the bed. It is clearly
observed that the sediment follows closely the excess bed shear stress dis-
tribution and forms the same streaky pattern that has been mentioned in
Sec. 6.4.6. The results for the other cases are following the same pattern.
It is worth noting that the dominant process in this stage is erosion and
settling does not influence the sediment distribution.

After the bed material has been set to motion, due to the bed shear stress,
it is expected to be trapped by the quasi-streamwise and hairpin vortices,
present in the vicinity of the bed, and detached from the bottom boundary.
This behavior has been already observed in channel flows [88]. To investigate
this interaction, the top view of the near bed concentration isocontour equal
to 0.0005 is presented, in Fig. 6.21 for case A. The created patters in this
Figure are comparable with the turbulent structures presented in Fig. 6.14.
Specifically, in the area behind the front, the sediment isocontour follow the
hairpin vortices and is inclined versus the outer region of the flow. This
indicates the tendency of the sediment to move upward. Moreover, farther
upstream the sediment correlate with the quasi-stream wise vortices until
those vortices loose their coherence. As mentioned in Sec. 6.4.5 the majority
of the quasi-streamwise vortices is observed at distance x/H = 0.2 behind
the front. The same happens for the sediment.

Additionally, the influence of the upward flow movements and the tur-
bulent fluctuations on the transport of the sediment is investigated. For this
purpose, the time-signals of v, vrms, and τRe presented in Fig. 6.11 are used.
In Sec 6.4.4 it has been mentioned that these signals vary over the vertical.
To obtain a unique signal over the height of the current a depth average
of those quantities has been calculated. Following this procedure the peak
values at the upper and bottom boundary of the current are smoothed out.
Once the depth averaged time-signal have been calculated, the contribution
of each of those quantities on the sediment transport is estimated by calcu-
lating its correlation, RAsedφ(lag), with the time evolution of the total area
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Figure 6.18: Instantaneous plots for case A, at time instant t3 = (t −
tprobe)/t

∗ = 1.4, of (a) spanwise averaged bed shear stress, (b) spanwise-
averaged vertical velocity at height y+ = 11, (c) vrms at height y+ = 11
and (d) Reynolds shear stresses at height y+ = 11.
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Figure 6.19: Instantaneous plots for case C, at time instant t3 = (t −
tprobe)/t

∗ = 1.4, of (a) spanwise averaged bed shear stress, (b) spanwise-
averaged vertical velocity at height y+ = 11, (c) vrms at height y+ = 11
and (d) Reynolds shear stresses at height y+ = 11.
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(a)

(b)

Figure 6.20: (Top view of (a) the excess bed shear stress and (b) the sus-
pended sediment concentration above the mobile bed for case A (at the time
instant t3 mentioned in Sec. 6.4.7).
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Figure 6.21: Top view of the suspended sediment concentration, isocontour
c = 0.0005, for case A. Only the region above the mobile bed is displayed,
at the time instant t3 mentioned in Sec. 6.4.7.

covered by the sediment, Ased. The cross correlation is calculated as:

RAsedφ =


N−m−1∑
n=0

(Ased)n+mφn, if m ≥ 0

RAsedφ(−m), if m < 0,

(6.22)

where N stands for the total time steps, m is the time lag, and φ represents
the signal that is correlated with the sediment area. The values of the
correlation are normalized so that the autocorrelation at the zero lag to be
equal to 1, obtaining Rnorm. This normalized correlation, for all the cases,
is presented in Fig. 6.22. Such normalization eliminates the influence of the
numerical values of the signals and allows the correlation coefficient, Rnorm
to vary between 1 and −1.

Using the aforementioned correlations, the integral quantity of the sus-
pended sediment concentration, over the whole interrogation window, Ased

is related to time-signals recorded in the probe located before the mobile
reach of the bed (see Fig. 6.2). Different signals in various streamwise posi-
tion have been investigated, and it has been concluded that every x-position
inside the window is expected to register an equivalent signal. The correla-
tion presented in Fig. 6.22 reveal an important relation between the sediment
and the investigated quantities (v, vrms, and τRe). However, a time lag of
tlag/t

∗ = 2 is noted. This time lag is also observed in Fig. 6.17, where it was
mentioned that Ased starts to increase a bit later than Asal. Moreover, it is
observed in Fig. 6.11 that, (t − tprobe)/t

∗ = 2 corresponds to the moment
when the first billow as well as the first group of large peaks of vrms and
τRe have entered in the interrogation window. Consequently, it is the mo-
ment in which the sediment experiences the quickest diffusion upwards. It is
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Figure 6.22: Cross-correlations between the time signals of the hydrody-
namic variables, v, vrms and τRe, and the time evolution of the cumulative
area covered by sediment for cases A, B, C, and D, respectively.

noteworthy to mention that the initially important increase of the vertical
velocities is followed by equally important drop. Therefore, negative cor-
relations observed in Fig. 6.22. These negative correlations illustrate that,
the sediment continuous to increase even if the upward movements are not
important anymore. This can be explained by the fact that the head of
the current is still inside the interrogation window so the strong upward
diffusion is still active.

Stability conditions of the gravity current

As mentioned in Sec. 6.4.7 the presence of suspended sediment in the fluid
column may influence the dynamics of the flow by creating density variation
over the vertical. However, Fig. 6.7 shows that the evolution of the front does
not change as the gravity current passes over the mobile reach of the bed.
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This is an indication that the concentration of the entrained material is not
strong enough to alter the dynamics of the current. To farther investigate
this aspect the gradient Richardson number for both salinity and suspended
sediment is calculated.

However, the suspended sediment concentration is not homogeneously
distributed inside the body of the current (the entrainment is higher in
the head of the current compared to the body). Thus, a layer Richardson
number (see [157]) at different cross sections in the streamwise direction is
calculated as:

Rigx =
− g
ρw

∂〈ρk〉
∂y

(∂〈uk〉∂y )2
, (6.23)

where k denotes each cross section in the streamwise direction.

The values of Rigx are shown in Fig. 6.23, for all the cases studied.
The first column corresponds to the Rigx calculated based only to density
differences due to salinity. The second column shows the Rigx only for
suspended sediment and the third column illustrate Rigx taking into account
both salinity and suspended sediment.

A gravity current flow can be characterized by poorly stratified regions
(in the vicinity of the wall) and stable stratified regions (in the mixing
interface) [58]. These areas are highlighted in the first column of Fig. 6.23.
In particular, in the upper region of the current where intense mixing occurs
the values of Rigx are higher than 0.25. It is worth noting that close to the
velocity maximum of the current, the gradient of the velocity is almost zero
thus the Richardson number goes to infinity. In the vicinity of the wall the
negative values of the salinity Richardson number indicate the presence of
unstable density gradients with active concective overturning.

As regards the sediment Richardson number it can be observed that Rigx
obtains values higher than 0.25 only locally and mainly in case A. This leads
to the conclusion that, due to the small suspended sediment concentration
induced by the gravity currents the stratification effects due to sediments
can be considered negligible. This conclusion is also confirmed by the total
Richardson number, plotted in the last column, which does not show any
particular difference with respect to the first column. However, the presence
of suspended sediment may contribute to the reduction of the convection
observed a the lower part of the current.

It is assumed that, the stratified conditions observed in the gravity cur-
rent flow have an influence of the distribution of the suspended sediment
over the vertical. Specifically, Turner [141] has stated that, in case where
Ri > 0.25 there is not vertical transport. As mentioned before, in case of
the gravity currents stable stratification is observed in the vicinity of the
mixing interface between the current and the ambient fluid. Therefore, the
dispersion of the suspended particles is suppressed and enclosed into the



Conclusions 99

height of the current. The limit on the distribution of the sediment, for each
case, is defined by the gray solid line plotted in Fig. 6.16.

Figure 6.23: Gradient Richardson number at different streamwise positions,
at the time instant t3 mentioned in Sec. 6.4.7. The first column correspond
to the gradient Richardson number Rigx based on salinity, for cases A, B, C,
and D, respectively. The second column corresponds to the Rigx based on
the suspended sediment, for the same cases. The third column corresponds
to the Rigx based on both salinity and suspended sediment.

6.5 Conclusions

In this chapter the results of three-dimensional LES for high Grashof salinity
currents flowing over a mobile bed are shown and discussed. Four different
numerical simulations have been performed varying the Grahof number of
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the flow and the sediment size on the mobile reach of the bed. These results
aim to improve our knowledge on what concerns the interaction of gravity
current with the bed material and the transport of sediment into suspension.
In particular, the net fluxes of entrained bed material induced by gravity
currents are presented and the flow features that involve into the sediment
pick-up are investigated. Furthermore, the influence of the entrained sedi-
ment in the stability conditions of the current is examined along with the
role of the stratification condition of the current on the distribution of the
suspended sediments.

The description of the current and the analysis of the flow dynamics are
presented in the first part of this chapter. The main features of the flow,
such as the current height and the evolution of the front, are also compared
with experimental data obtained by the work of Zordan [165], showing a
good agreement. The velocity filed, the bed shear stress distribution, and
the turbulent structures formed at the vicinity of the wall are studied in or-
der to determined the region of the flow where strong turbulence is present.
From those results, its is observed that the region called head of the current
is characterized by high peaks of velocity fluctuations, Reynolds stresses,
and excess bed shear stress as well as strong quasi-streamwise and hairpin
vortices. Thus, it is assumed that bed material is transported in to suspen-
sion mainly in this region. In the body of the current the observed upward
diffusion is weak. Thus, the sediment that has been set into motion in this
area may move within a thin layer close to the bottom.

In the second part of the chapter, the spanwise-averaged suspended sed-
iment distribution, in an interrogation window located above the mobile
reach of the bed, are presented. Additionally, the total areas covered by the
current and sediment in the same interrogation window are plotted versus
time. These results confirm the aforementioned assumption. Specifically,
suspended sediment mainly appears just behind the front of the current and
there is almost no suspended load further upstream. Moreover, it has been
indicated that the bed material entrained above the mobile bed is advected
downstream by the head of the current, and settling seems to have a minor
role in this stage of the flow. Bed forms may created downstream the mobile
bed but their investigation is out of the scope of the present study.

The combination of the results obtain by the study of the flow dynamics
and the suspended sediment distributions highlights the main mechanisms
that contribute to the sediment entrainment in gravity currents. In par-
ticular, the bed material set in motion due to the excess bed shear stress,
which is higher than 1 in an area that corresponds to the half of the current
length. However, high values of excess bed shear stress do not imply that
the sediment will be moved to the outer region of the flow. Particles detach
from the bottom due to turbulent structures formed in the viscous sublayer
as shown in Fig. 6.21. Once the sediment is detached, it is transported in
the outer region of the flow due to upward turbulent fluxes that are able
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to counteract its settling velocity. The specific contribution of the upward
flow movements and turbulent fluctuations is also investigated. In order to
quantify this effect, the time-evolution of the areas covered by sediment, in
the interrogation window, are correlated with the time-signals of v, vrms, and
tauRe. These correlations show that all three variables plays an important
role in the sediment suspension. However, a time lag equal to tlag/t

∗ = 2 is
observed.

Finally, the feedback of the suspended sediment on the dynamic of the
current is examined. The observation of the front evolution upstream and
above the mobile reach of the bed illustrates that the entrained material
does not influence the propagation of the current. This aspect is further
investigated by calculating the Richardson number of the flow due to both
salinity and sediment. The results show that the presence of the suspended
sediment is not strong enough to alter the stability condition of the current.
On the other hand, it is indicated that the stable stratification conditions,
that appear in the upper boundary of the current, inhibit the transfer of
suspended sediment in the ambient fluid. In other words, the diffusion of
the sediment over the vertical is confined by the current height.
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Chapter 7

Numerical simulation of bed
forms generated by gravity
currents

The study presented in the previous chapter analyzes the sediment entrain-
ment induced by gravity currents. in that case, the bed deformation due to
erosion and deposition processes is considered small compared to the scale
of the model. Thus, a stationary bottom boundary has been imposed as
boundary condition in the numerical simulations. However, this assumption
does not always hold true in nature. In particular, it has been reported in
literature that multiple events of strong gravity currents can lead to impor-
tant bed deformations which in turn may influence the dynamics of the flow.
The aim of this chapter is to reproduce numerically and study the bed forms
generated at the mobile reach of the bed by similar gravity currents. This is
accomplished using the coupled hydro-morphodynamic model presented in
Ch. 4. Moreover, the deposition patterns directly downstream of the mobile
reach of the bed are analyzed. The numerical domain used in this study is
described in Sec. 7.1 and the results are presented in Sec. 7.2.

7.1 Case study for the investigation of bed forms

Similarly to the previous chapter, a 3D large eddy simulation of a grav-
ity current flowing over a partially mobile bed is simulated using the lock-
exchange configuration. However, there are three main differences between
the two cases. First, the gravity current simulated here has higher erosive
capacity (the Grashof number is almost double than those considered in the
previous chapter). Second, the length of the lock and the entire domain is
smaller. Third, the mobile reach of the bed is located closer to the lock gate.
Specifically, the dimensions of the scaled domain are L1 = 17H, L2 = H,
L3 = 0.67H. The lock-gate is located at a distance xlock = 2.67/H from
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Figure 7.1: Zoom-in of the computational grid along with the initial bed
interface.

the rear wall and the mobile reach of the bed is at distance 2.53/H from
the gate and is 2/H long. It is worth noting here that the mobile reach
of the bed has the same length as in the previous study. This domain has
been discretized by a Cartesian grid that consists of 1024 × 128 × 64 grid
cells. The grid has been stretched in the vertical direction around the bed
interface in order to fully resolve the viscous sublayer of the flow.

The bed interface is initially considered flat and is tread by the immersed
boundary methodology. The evolution of the bed interface is tracked by the
level-set method. It should be mentioned that, in this case, the hydro-
morphodynamic model is fully coupled. In other words, the ∆t used for the
morphodynamic model is the same with the ∆t of the flow. A zoom-in of
the computational grid and the bed interface is presented in Fig. 7.1.

A Full-depth release is considered in this numerical study and the initial
aspect ratio of the lock fluid is equal to R = H/x0 = 0.4. The Grashof
number is equal to 115000 and the sediment characteristics are the same
with those considered for case A in Table 6.1.

7.2 Results

According to the conclusion drawn in the previous chapter, the propagation
of the gravity current above a mobile bed leads to the bed material entrain-
ment. This process is expected to generate bed deformations due to scour,
when the gravity current flows over the mobile bed. On the other hand,
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downstream the mobile bed, bed forms are expected to be generated due
to deposition of the entrained material. In this section, the instantaneous
bed contours, above and downstream the mobile reach of the bed are pre-
sented. Furthermore, the feedback of the bed deformation on the flow field
is analyzed.

7.2.1 Scouring

The bed contour at two different time instants, in which the head of the
current is propagating over the mobile bed are illustrated in Fig. 7.2. These
contours have been amplified for visualization purposes and tprobe illustrates
the time instant in which the front of the current arrives at the mobile bed.
The observed bed forms follow a streaky pattern similar to that discussed in
Sec. 6.4.6. As it has been mentioned, this pattern correlates with the lobes
and clefts instabilities present in the front of the current. Moreover, these
results show that the evolution of the current above the mobile reach of the
bed increases the observed scour, however the shape of the bed deformation
does not change significantly. Fig. 7.2 can also confirmed the assumption
made in the previous chapter according to which the particle deposition plays
a minor role above the mobile reach of the bed. In particular, the positive
elevation of the bed in this section is almost two orders of magnitude lower
than scour. Thus, the sediment is entrained above the mobile reach of the
bed then advected downstream by the flow.

The time evolution of the bed profile in the zy plane for a specific stream-
wise position is plotted in Fig. 7.3. The chosen streamwise position is equal
to x/H = 6, that roughly corresponds to the middle length of the mobile
bed. t′ = 0 corresponds to the time instant when the front of the current
arrives in this position. At that moment the bed is flat. As the current
propagates downstream, scour streaks start to appear and this scour pat-
tern does not changes significantly with time. What is changing is the total
elevation of the profile. However, it is worth noting that the bed is eroded
faster in the time period 0 − 4 than in the time period 4 − 6. Thus, ac-
cording to the conclusions drawn in the previous chapter, it can be assumed
that in the time period 0 − 4 the head of the current passes over the loca-
tion x/H = 6. The maximum scour observed in Fig. 7.3 at time t′ = 6 is
around ∆y/H = 0.004 that corresponds to the 0.4% of the total height of the
flume. It should be noted here that at time instant t′ = 6 the current is still
propagating above the mobile bed. This means that the scour may slightly
increase. However, as it has been mentioned above, the body of the current
does not significantly change the bed deformation. Assuming that the height
of the current is roughly equal to 0.5H, then the maximum scour observed
corresponds to 0.8% of the current height. At the same section and at the
same time instant the average value of the scour is about ∆y/H = 0.0025
that corresponds to 0.5% of the current height. These results indicate that
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(a)

(b)

Figure 7.2: Bed deformation at two different time instants when the head of
the current propagates above the mobile bed. a) corresponds to time instant
(t− tprobe)/t

∗ = 2 s and b) to (t− tprobe)/t
∗ = 4 s

Figure 7.3: Time evolution of the bed profile, in the zy plane, at the stream-
wise position equal to x/H = 6. The time instant t′ = 0 correspond to the
moment that the front of the current arrives in this position.
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Figure 7.4: Bed deformation at the time instant equal to t− tprobe/t
∗ = 10

that the head of the current has passed the mobile reach of the bed.

the scour generated by a single event is relatively small and it is expected
to have no influence on the flow field. This matter is going to be studied in
the following section.

Finally, the bed contour of the mobile reach of the bed at time instant
t− tprobe/t

∗ = 10 is presented in Fig. 7.4. Although the gravity current has
not passed through the mobile reach of the bed, the morphology presented
in Fig. 7.4 can be considered in equilibrium. This is due to the fact that,
the part of the current that plays an important role on the bed scouring has
already passed this region.

7.2.2 Flow field above the deformed bed

As mentioned before, the scour observed in the mobile reach of the bed due
to the propagation of a single current is relatively small compared to the
height of the flow and it is expected to not have any significant feedback
on the coherence of the flow. To confirm this assumption the turbulent
structures formed at the viscous sublayer above the mobile reach of the bed
are shown in Fig. 7.5. These results indicate that there is not any visible
difference between the structures formed above and upstream the mobile
reach of the bed. This means that the slight deformation of the mobile bed
offers little modulation on the flow structures. This is in accordance with
the observations of [121].

Moreover, the velocity field over the deformed bed is plotted in Fig. 7.6.
In this case, it can be noted that the velocity distribution is modulated by
the presence of the scour and the streamwise streaks of high and low velocity
have been shortened. However, overall picture has not changed.
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Figure 7.5: Turbulent structures in the flow sublayer above the mobile reach
of the bed at the time instant t− tprobe/t

∗ = 4.

Figure 7.6: Streamwise velocity contour above the mobile reach of the bed
at the time instant t− tprobe/t

∗ = 4.
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7.2.3 Deposition

In this section the bed deformation due to the sediment deposition down-
stream to the mobile reach of the bed is analyzed. The bed elevation is
presented in Fig. 7.7(a). Higher values of positive bed elevation that covers
the whole width of the channel are observed in the region directly down-
stream of the mobile bed (from x/H = 7.2 to x/H = 7.5). This is due
to the small jump between the eroded section and the flat bed. After this
region the sediment deposition also follows a streaky pattern. It is notewor-
thy to mention that also in this part the bed deformation due to sediment
deposition is quite small. As it has been mentioned in Ch. 1.2.1, gravity
currents are able to transport sediment at considerable distances from their
initial location.

The sediment deposition downstream of the streamwise position x/H =
7.5 can be related to low-speed streaks of streamwise velocity. The contour
plot of the instantaneous streamwise velocity distribution close to the bed
is shown in Fig. 7.7(b). To ease this comparison the bed elevation has been
plotted in Fig. 7.8 along with the streamwise velocity iso-contours equal to
u/ub = 0.02. Specifically, these iso-contours enclose the areas where the
streamwise velocity is higher than u/ub = 0.02. In these low-speed regions
the velocity conditions can not counteract the falling velocity of the particles,
so sediment deposition occurs.

Finally, Fig. 7.9 shows the streamwise vorticity close to the of the bed
downstream of the mobile reach. The black lines shown in the same figure
correspond to the bed isoypses. These results indicate that bed valleys are
correlated to positive vorticity, whereas mountains are related to negative
vorticity. As shown in Fig. 7.10 negative vorticity is connected to clockwise
motion of the flow and positive vorticity to anticlockwise motion. Thus,
in the regions where the vorticity obtains negative values the suspended
sediment are forced by the flow to move downwards and are deposited in
the low-speed region. On the other hand, in regions that vorticity is positive
the sediment are moving upwards into suspension.

7.2.4 Conclusions

In this chapter a three-dimensional LES of a high Grashof salinity current
propagating over a deformable bed has been performed, using the fully cou-
pled hydro-morphodynamic model implemented in this thesis. Bed defor-
mation due to erosion is allowed only over a part of the bed, whereas in the
remaining domain bed deformation is created only due to deposition. The
aim of this simulation is to provide a detailed description and analysis of the
different processes (scour and deposition) induced by such flows. Moreover,
the flow field above the deformed bed is presented.

The first part of the chapter deals with the scour of the mobile reach
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(b)

(a)

Figure 7.7: (a) Bed elevation and (b) Streamwise velocity contour on the
bed interface, at the part downstream the mobile reach of the bed at the
time instant equal to t− tprobe/t

∗ = 10.

Figure 7.8: Bed elevation along with the streamwise velocity iso-contour
equal to u/ub = 0.02 at the part downstream the mobile reach of the bed
at the time instant equal to t− tprobe/t

∗ = 10.
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Figure 7.9: Streamwise vorticity contour in the part downstream the mobile
section of the bed, at the time instant t − tprobe/t

∗ = 10. The solid lines
indicate the bed isohypses.

Figure 7.10: Sketch that demonstrate the meaning of positive and negative
vorticity.
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of the bed. Instantaneous contour plots of the bed elevation and the time
evolution of the bed deformation in a specific section are presented. These
results indicate that the scour patter correlates with the lobe and clefts
instabilities of the front of the current and follows a streaky distribution.
Moreover, it is observed that the mobile reach of the bed is mainly deformed
by the head of the current while the body of the current does not signifi-
cantly change the bed elevation. This observation is in accordance with the
conclusions drawn in the previous chapter. The turbulent structures formed
in the viscous sublayer of the flow point out that the bed deformation is
small compared to the scale of the flow and does not influence the coherence
of the flow. This conclusion enforce the assumption made in the previous
chapter with respect to the fixed boundary condition.

In the second part of the chapter, the sediment deposition downstream
of the mobile reach of the bed is examined. The areas where deposition is
observed are characterized by low-speed velocity and negative streamwise
vorticity. Specifically, particles are forced to move downstream due to the
negative vorticity of the flow and settle in the areas in which the flow con-
ditions are not able to counteract their settling velocity. It is worth-noting
that the bed deformation due to deposition is relatively small, which means
that the flow is able to carry sediment into suspension for long distances.



Chapter 8

Conclusions

This thesis is focused on the numerical simulation of sediment transport
processes induced by gravity currents propagating over erodible beds. The
objective is to improve the understanding of flow-sediment and flow-bed in-
teraction in buoyancy driven flows. The numerical model used stems from
the coupling between the Large Eddy Simulation and the Level-set method,
and is able to reproduce suspended sediment transport problems with both
stationary and moving boundaries. For the approximate representation of
complex bed forms as flow boundaries the immersed boundary method is
used, whereas the sediment exchange between the flow and the bed is rep-
resented by a Neumann boundary condition.

The implemented level-set method is numerically integrated using the
forward Euler scheme in time and the space derivatives described in the
curvilinear coordinate system, are linearized with a second order essentially
non-oscillatory (ENO) scheme. To assess this implementation, the coupled
hydro-moprhodynamic model is used to simulate the ripple migration prob-
lem, and the obtained results are compared with those reported in the work
of Kraft et al. [62].

The first case studied in this thesis deals with the sediment entrainment
induced by gravity currents. In particular, large eddy simulations of salinity
currents propagating over a partially mobile bed have been performed. Four
different simulations have been done varying the Grashof number of the
current and the sediment diameter. However, the bed deformation of the
mobile bed due to erosion and deposition processes for those cases has been
considered negligible and stationary bottom boundaries have been used. The
results obtained in this study have been validated against experimental data
taken for the dynamics of the current and the sediment entrainement.

It was observed that sediment entrainment mainly occurs when the head
of the current is propagating above the mobile section of the bed, whereas
the body of the current is less important in terms of erosion. The entrained
material is then advected downstream by the head. An analysis of the flow
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field indicates that the features that are responsible for the motion of the
bed material and its transport in the outer region of the flow are the highly
intermittent vertical velocities, the excess bed shear stress peaks, and the
increasing mixing provided by the turbulent structures formed close to the
bed, behind the front of the current. The influence of the entrained sediment
on the stability condition of the current is also studied. These results show
that the suspended sediment concentration is relatively small and does not
affect the current stratification. However, the stability conditions provided
by the gravity current play an important role on the sediment distribution.
Specifically, the stable stratification observed in the mixing interface between
the heavier and the ambient fluid constrain the vertical distribution of the
entrained material.

To analyze the evolution of the bed forms generated by gravity currents
and examined their influence on the dynamic of the flow an additional case
is simulated. This case makes use of the coupled hydro-morphodynamic
model developed in this work. The simulated gravity current is considered
to have a higher erosive capacity than the one considered in the previous
study. Nevertheless, the characteristics of the sediment material are the
same of the studied in Ch. 6. The time evolution of the deformable bed
show that, at the mobile reach of the bed, settling plays a minor role and
most of the deformation is due to erosion. The observed scour follows a
streaky pattern that correlates with the lobe and cleft instabilities present
in the front of the current. As expected, scour increases when the head of
the current propagates above the mobile reach of the bed. The body of the
current does not significantly influence the bed deformation. In this study,
the bed deformation due to deposition is also studied downstream of the
mobile reach of the bed. Although the bed elevation due to deposition is
quite small, the generated bed forms can be related to low-speed velocity
streaks and negative streamwise vorticity. Finally, it is indicated that the
flow coherence is not strongly perturbed by the bed deformation induced
by a single gravity current. These results confirm the assumption on the
stationary boundaries made in the first study, that was also characterized
by a lower Grashof number.

The results presented in this thesis aim to encourage the further explo-
ration of sediment-laden flows over moving boundaries. It is worth noting
here that the results presented in Ch. 7 are the first steps towards a deeper
understanding of bed forms created by gravity currents. However, a wider
range of simulations and longer simulation time could provide a better in-
sight of the observed phenomena. Moreover, future work can be dedicated
to the influence of the entrained material on the dynamic of the gravity
current. This can be accomplished by simulating the propagation of the
current over a mobile reach much longer than the one considered in this
study and by changing the sediment characteristics (e.g. density, diame-
ter). Another aspect that may be interesting to be further studied is the
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bed deformation generated by gravity currents and its influence on the flow
field after the occurrence of multiple events. Furthermore, the developed
hydro-morphodynamic model works in a parallel environment, and therefore
may be applied to study the topological changes due to sediment transport
processes in large-scale systems, like river and lakes. With respect to the
level-set method, the implementation of a higher order temporal discretiza-
tion scheme (e.g., the Runge–Kutta method) can be considered in the future
numerical developments.
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