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Disinterested love for all living creatures, 
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RIASSUNTO  

La mia ricerca si è concentrata su due principali aspetti della simbiosi lichenica: la caratterizzazione 

delle risposte allo stress in fotobionti lichenici e la diversità fungina presente all’interno del tallo. 

Per lo studio dei meccanismi molecolari che sottendono alla tolleranza allo stress è stata 

analizzata una specie del genere più comune di alghe verdi lichenizzate, Trebouxia gelatinosa. I 

licheni possono far fronte a condizioni ambientali estreme e questa capacità è legata alla loro 

tolleranza al disseccamento, in particolare a quella dei fotobionti. In natura il tallo lichenico è 

continuamente sottoposto a cicli di disidratazione e reidratazione e nello stato disseccato è 

estremamente resistente. Il trascrittoma di T. gelatinosa è stato sequenziato e studiato in condizioni 

di controllo, nello stato disidratato e dopo la reidratazione. La disidratazione e la reidratazione hanno 

influenzato principalmente l'espressione genica di componenti dell'apparato fotosintetico, il sistema 

di scavenging delle specie reattive dell’ossigeno (ROS), le heat shock proteins (HSPs) e le desiccation 

related proteins (DRPs). I dati ottenuti sono stati utilizzati per indagare nel dettaglio la relazione tra 

l'espressione di geni di interesse e parametri fisiologici, importante per comprendere la risposta 

globale di T. gelatinosa agli stress ambientali. Sono stati analizzati sia lo stress ossidativo che il 

disseccamento. L’attività antiossidante del fotobionte è stata studiata tramite la quantificazione 

dell’espressione genica di enzimi ROS scavenging e correlati allo stress in campioni trattati con 

perossido di idrogeno (H2O2). I dati prodotti sono stati valutati in relazione all’analisi della 

fluorescenza della clorofilla a (ChlaF). I trattamenti con H2O2 hanno prodotto effetti ossidativi 

dipendenti sia dalla dose che dal tempo di esposizione. È stata anche studiata l'espressione genica in 

relazione al contenuto di acqua cellulare durante la disidratazione. Il contenuto idrico relativo (RWC) 

e il potenziale idrico (Ψ) sono stati monitorati nella transizione tra stato idratato e disseccato. Il 

momento chiave che innesca il cambiamento nella trascrizione genica in T. gelatinosa è stato 

individuato nella perdita di turgore cellulare. 

I licheni, poichè ospitano nei loro talli comunità fungine complesse formate da specie con 

strategie trofiche ed ecologiche divergenti, possono essere considerati micro-nicchie ecologiche. La 

complessità e la diversità dei micobiomi lichenici sono ancora in gran parte sconosciute, nonostante 

l’applicazione di approcci combinati di isolamenti e sequenziamenti ad alta resa (HTS). In questa 

ricerca è stata valutata la composizione tassonomica, tramite HTS della regione barcode ITS2, di una 

comunità di licheni epilitici alpini che comprendeva sia talli sintomaticamente infetti da funghi 

lichenicoli che talli privi di sintomi di infezione. La componente principale dei micobiomi osservati 

è rappresentata dall’ordine Chaetothyriales, mentre i basidiomiceti sono stati registrati in quantità 

ridotta. Sono state predette sequenze rappresentative di funghi lichenicoli morfologicamente 

caratterizzati e utilizzate per rilevarne la presenza asintomatica in altri talli.  
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ABSTRACT 

This research has focused on two main aspects of lichen symbioses: the characterization of stress 

responses in lichen photobionts and the fungal diversity present inside the lichen thallus.  

The study of the molecular mechanisms that underlie the stress tolerance considered a member 

of the most common genus of lichenized green algae, Trebouxia gelatinosa. Lichens can cope with 

extreme environmental conditions and this capacity is linked to the desiccation tolerance, in particular 

of their associated photobionts. In nature, lichen thalli continuously undergo cycles of dehydration 

and rehydration and in desiccated states they are extremely resistant. A transcriptome analysis on T. 

gelatinosa was performed under control conditions, in desiccated state and after rehydration. 

Desiccation and rehydration affected mainly the gene expression of components of the photosynthetic 

apparatus, the ROS-scavenging system, heat shock proteins (HSPs) and desiccation related proteins 

(DRPs). The obtained data were used to investigate in more detail the relationship between the 

expression of genes of interest and physiological parameters, important to understand the global 

response of T. gelatinosa under environmental stresses. Oxidative stress and desiccation were 

considered.  

 The antioxidant activity of the photobiont was studied by quantifying the gene expression of 

ROS scavenging and stress-related enzymes on samples treated with hydrogen peroxide (H2O2). The 

data produced have been evaluated in relation to the chlorophyll a fluorescence (ChlaF) activity. H2O2 

treatments produced dose and time dependent oxidative effects. The gene expression in dependence 

to the cell water content during desiccation was also evaluated. From the hydrated to the desiccated 

state, both relative water content (RWC) and water potential (Ψ) were monitored. The turgor loss 

point was found as a key moment that triggered changes in gene transcription. 

Lichens are regarded as ecological microniches as their thalli harbor complex fungal 

communities (mycobiota) consisting of species with divergent trophic and ecological strategies. 

Complexity and diversity of lichen mycobiomes are still largely unknown, despite surveys combining 

culture-based and high throughput sequencing (HTS) have been applied. This research assessed the 

taxonomic composition (species diversity) of a well-characterized, alpine rock lichen community 

which included both thalli symptomatically infected by lichenicolous fungi and asymptomatic thalli. 

Taxonomic composition was assessed by HTS of the ITS2 barcode. Chaetothyriales was the major 

component of the observed lichen mycobiomes; Basidiomycota were recorded in the least amount. 

Sequences representative of morphologically characterized lichenicolous fungi were predicted and 

were used to assess whether there was an asymptomatic presence of these taxa in other thalli. 
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INTRODUCTION 

 

The lichen symbioses 

Lichens are symbiotic organisms, traditionally recognized as composed of a fungal partner, the 

mycobiont, and one or more populations of photosynthetic partners, the photobionts (Nash, 2008; 

Hawksworth and Honegger, 1994). Though, more recent investigations have highlighted the presence 

of bacteria and other fungi likely playing metabolic, key roles in the symbioses (Grube et al., 2009, 

2015; Spribille et al., 2016). More than 90% of the 14,000 lichenized fungal species is represented 

by ascomycete (Eriksson et al., 2006); the mycobiont usually constitutes the majority (about 90%) of 

the biomass in the lichen body, the thallus (Dimijian et al., 2000). The photosynthetic partners (about 

150 species described so far) are populations of green algae (85% of the lichens), cyanobacteria 

(10%), or even both (4%) can be part in the symbioses (tripartite lichens, Ahmadjian, 1993; Honegger, 

2009).  

 The interdependent relationship between the two major symbionts is the basis of lichenization, 

which is required for both mycobiont and photobiont to preserve each other and receive mutual 

advantages (Ahmadjian, 1993; Wang et al., 2014), even if a predominant role of the fungal part has 

been proposed (Ahmadjian, 1993). In the thallus, the fungus receives photosynthetic products 

(carbohydrates) produced by the photobiont: green algal photobionts provide acyclic sugar alcohols 

(polyols) like ribitol and sorbitol, that are absorbed and used by the fungus as energy source 

(Richardson et al., 1967; Honegger, 1997). On the other hand, the fungal partner offers to the 

photosynthetic partner protection from the external environment, and provides water, moisture and 

nutrients (Nash, 2008). Green algal photobionts, whose cells are usually closely enveloped by the 

fungal hyphae, are protected from different biotic and abiotic stresses, such as drought, intense light 

radiations and mechanical damages (Wang et al., 2014).  

Lichens are also ecologically important organisms; they present a remarkable biodiversity in 

terms of colors, forms, sizes, and biochemistry. They have a global distribution: over 10% of 

terrestrial ecosystems is dominated by lichens (Honegger, 2009). They are pioneers on bare rock, lava 

flows, cleared soil, and dead wood (Dimijian et al., 2000); they are also typically found in high alpine, 

polar, and desert habitats, where vascular plants cannot grow due to physiological limitations 

(Honegger, 2009).  

Most of lichens are desiccation tolerant (DT, Kranner et al., 2008). Desiccation tolerance is 

the capacity of an organism to survive and recover metabolic activities even if its relative water 

content (RWC) decreases below 10%, corresponding to 0.1 g H20 g-1 of dry mass (Farrant et al., 

2012). Desiccation tolerance is a rare feature that appears in different animal and plant unrelated taxa 
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(Alpert, 2006), and usually occurs in organisms which colonize substrates or environments with little 

and unpredictable water availability (Berjak et al., 2006; Nardini et al., 2013). Despite numerous 

studies have been conducted (see Jenks and Wood, 2007 and Lüttge et al., 2011), the molecular 

mechanisms of this peculiar feature are still mostly unknown, especially in understudied organisms 

such as lichens. 

The lichen thallus is devoid of any structure, such as stomata or cuticles, that allows a 

regulation of the water content (WC). As in poikilohydric (from the Greek “poikilo”, meaning varied) 

organisms, the WC of lichens depends completely from the atmosphere; thalli can use different liquid 

water sources including rain, air humidity, fog, and dew (Büdel and Lange, 1991; Alpert et al., 2000; 

Lakatos, 2011).  

 During the day, the lichen thalli undergo cycles of dehydration and rehydration that can last 

even for few minutes (Alpert et al., 2000). In desiccated state, when they are metabolically inactive, 

most of lichens are highly resistant to environmental stresses (Dimijian et al., 2000) and can cope 

with severe conditions. Numerous field and laboratory studies have been conducted to test lichen 

responses to extreme environments (Gomez et al., 2012). Among them, desiccation (e. g. Lange et 

al., 2001; Candotto Carniel et al., 2015; Bertuzzi et al., 2017), oxidative stress (Kong et al., 1999; 

Català et al., 2010; del Hoyo et al., 2011), extreme temperatures, UV radiation and vacuum exposure 

(Bartàk et al., 2007). Lichens showed a remarkable resistance also in outer space (de la Torre et al., 

2010) and Mars-like conditions (Brandt et al., 2015).  

Despite the numerous studies, however, the ultrastructural, molecular and physiological bases 

that underlie the extraordinary capacity of lichen to tolerate environmental stresses are still not 

clarified.  

 

Molecular characterization of stress responses in the lichen photobiont Trebouxia gelatinosa 

The first part of my Ph.D. has focused on the characterization of stress responses in a representative 

lichen photobiont, the green alga Trebouxia gelatinosa. High-throughput-omic technologies, gene 

expression analysis and physiological parameters were combined in order to understand the global 

response of this species. Since photobionts, due to their photosynthetic activities, are more sensitive 

to environmental stresses and in general can be easily grown in cultures, studies on these organisms 

are the first step to understand the overall lichen response.  

 The genus Trebouxia belongs to the order Trebouxiales (Chlorophyta), which has been 

referred to as the “lichen algae group” (Leliaert et al., 2012). Trebouxia is the most common genus 

of lichenized algae, occurring in more than 50% of all lichen species (Ahmadjian, 1993). All 
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Trebouxias (c. 30 species; Friedl, 1989) are DT, and the mechanisms of their desiccation tolerance 

have not been entirely understood yet.  

 Beside lichens, green microalgae such as Trebouxia can be found on different substrates 

forming microfilms on soil, rocks, leaves, tree bark, and man-made substrata (Häubner et al., 2006; 

Lüttge and Büdel, 2010).  

 Trebouxia genus has long been investigated (Ahmadjian, 1960), and most of the studies has 

focused on taxonomy and ecophysiology (see Muggia et al., 2016a for a review). Researches on 

environmental stress responses and desiccation tolerance have also been conducted (Bačkor et al., 

2006; Gasulla et al., 2009; del Hoyo et al., 2011; Sánchez et al., 2014; Candotto Carniel et al., 2015; 

Petruzzellis et al., 2017), but its molecular characterization is far form be completed. 

 

The first work presented in this thesis is entitled “New features of desiccation tolerance in the 

lichen photobiont Trebouxia gelatinosa are revealed by a transcriptomic approach” (Candotto Carniel 

et al., 2016). Here, the first complete transcriptome of T. gelatinosa has been studied and changes in 

the gene expression have been analyzed in relation to dehydration and rehydration. Transcriptomics 

belongs to the high-throughput-omic technologies, of which the main purpose is the characterization 

and the quantification of the set of biological molecules which shape structures, functions and 

dynamics of cells and organisms (Simò et al., 2014). The transcriptome is the complete set of 

messenger RNA (mRNA) molecules generated by an organism in a given developmental stage or 

physiological condition (Wang et al., 2009). The main purpose in transcriptomics is to obtain a profile 

of global gene expression in relation to some conditions of interest (van der Spoel et al., 2015). In 

lichenology, transcriptomics has been mainly applied to study i) gene expression changes during the 

frequent drying and rewetting cycles experienced by lichens as poikilohydric organisms (Junttila and 

Rudd, 2012; Junttila et al., 2013), and ii) the air pollution tolerance (Nurhani et al., 2013).  

From this first analysis, it emerged that T. gelatinosa mostly relies on constitutive 

mechanisms, but also inducible mechanisms play a role in its desiccation tolerance. Dehydration and 

rehydration affected mainly the gene expression of components of the photosynthetic apparatus, the 

ROS-scavenging system, heat shock proteins (HSPs) and desiccation related proteins (DRPs). With 

the purpose to understand the global response of T. gelatinosa under environmental stresses, the data 

acquired were further used to investigate in more detail the relationship between the expression of 

genes and physiological parameters in this species. 

 

In this perspective, in the second work presented, “Relation between water status and 

desiccation-affected genes in the lichen photobiont Trebouxia gelatinosa” (Banchi et al., under 
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review), I assessed the gene expression in dependence to the cell water status during desiccation. Both 

the relative water content (RWC) and water potential (Ψ) were monitored during the transition from 

the hydrated into the desiccated state. 

 In the study on lichens and their symbionts, the water status is usually evaluated by RWC 

(Lange et al., 2007; Hartard et al., 2009), which prevents the discrimination of extra- and intracellular 

water loss. For this reason, Ψ was also considered, as it is used to assess the water status in terms of 

potential energy per unit volume. Ψ measurements are less applied because they are time-consuming 

and require dedicated laboratory equipment, but are essential for a precise description of the 

desiccation process (Nardini et al., 2013). Moreover, Ψtlp (the Ψ at which cells lose their turgor) was 

also assessed by the construction of pressure-volume (PV) curves (Tyree and Jarvis, 1982). Cell 

turgor loss, in fact, is considered the best indicator of water stress (McDowell, 2011; Dinakar et al., 

2016). To date, few studies have been carried out on the turgor loss response in DT non-vascular 

plants such as green algae (Holzinger and Karsten, 2013), and an estimation of Ψ in relation to water 

status is important to understand if and how this feature is involved in desiccation tolerance of these 

organisms. 

 Regarding Trebouxia, a single work was performed considering both Ψ and RWC, showing 

that, at metabolomic level, water status mainly affects cell wall, extracellular polysaccharides (EPS), 

polyols, and antioxidant protection (Centeno et al., 2016). 

 Once that the water status of T. gelatinosa at different time points during desiccation was 

finely assessed by physiological parameters, my study aimed at identifying how water status triggered 

changes in the expression of stress- and desiccation-related genes. This was used to determine which 

were the key moments that activate the response of these important groups during water loss.  

 

The third work presented, entitled “Effects of Graphene-Based Materials on the aeroterrestrial 

microalga Trebouxia gelatinosa: focus on internalization and oxidative stress” (Montagner et al., 

under review) aimed at detecting the effects that an exposure of Graphene-Based Materials (GBMs) 

and of the oxidant molecule hydrogen peroxide (H2O2) have on T. gelatinosa. 

 GBMs belong to the wide group of carbon-based nanomaterials and are widely researched 

(Novoselov et al., 2012) because of their potentials in the most diverse fields, such as electronics and 

biomedicine (Lalwani et al., 2016). Despite huge investments and wide applications at industrial 

level, the impact of GBMs on health and environment is not still clearly defined (Savolainen et al., 

2013).  

 We tried to understand antioxidant activity of T. gelatinosa by quantifying the gene expression 

of ROS scavenging and stress-related enzymes on samples treated with two different GMBs and 
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different concentrations of H2O2. The data were evaluated in relation to the chlorophyll a fluorescence 

(ChlaF), which was taken as a measure of photosynthetic activity. This is considered a proxy of cell 

vitality and is commonly applied in lichen and lichen symbionts studies, including Trebouxia 

(Tretiach et al., 2007; del Hoyo et al., 2011; Piccotto et al., 2011; Hájek et al., 2012). GBMs 

interaction with T. gelatinosa cell wall and their possible internalization were also investigated by the 

application of Confocal Laser Scanning Microscopy (CLSM) and Raman spectroscopy.  

 

Fungal diversity within lichen thalli 

The second part of my Ph.D. focused on the application of high-throughput-omic technologies for the 

characterization of lichen-associated fungi.  

 Under an ecological perspective, lichens can be regarded as miniature ecosystems or 

microniches (Nash, 2008), as their thalli harbor and are associated with complex bacterial and fungal 

communities, consisting of species with divergent trophic and ecological strategies (Arnold et al., 

2009; Grube et al., 2009, 2015; Muggia and Grube, 2010; U’Ren et al., 2012; Muggia et al., 2016b; 

Spribille et al., 2016; Fernandez-Mendoza et al., 2017; Moya et al., 2017). In particular, lichen-

inhabiting fungi are a successful and diversified ecological group of organisms. They have been 

distinguished into lichenicolous (Lawrey and Diederich, 2003) and endolichenic fungi (Arnold et al., 

2009). Lichenicolous fungi, of which about 1800 species have been phenotypically described 

(Lawrey and Diederich, 2003; www.lichenicolous.net), colonize the lichen thalli symptomatically, 

showing characteristic phenotypes or reproductive structures and expressing different degrees of 

specificity and virulence towards their hosts. Endolichenic fungi occur asymptomatically inside the 

host thalli (Arnold et al., 2009; U’Ren et al., 2010, 2012), and their presence can be detected only 

through culture-based and molecular techniques. 

 Despite the application of surveys using different approaches including microscopy, cultures, 

and molecular analyses, the complexity and the diversity of lichen microbiomes and mycobiomes are 

still largely unknown. 

 

 For this reason, in the fourth part of this thesis, “ITS2 metabarcoding analysis complements 

data of lichen mycobiomes” (Banchi et al., under review), the fungal diversity present inside lichens 

of a well characterized alpine rock-dwelling community (Fleischhacker et al., 2015; Muggia et al., 

2016b, 2017; Fernández-Mendoza et al., 2017) was studied. Lichen samples included both thalli 

symptomatically infected by lichenicolous fungi and uninfected thalli; fungal diversity and taxonomic 

composition was assessed by DNA metabarcoding, a particular application of metagenomics. 
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 Metagenomics is the sequencing of the total DNA extracted from an environmental sample, 

which may contain many different organisms (Bohmann et al., 2014). Nowadays these massive 

sequencing efforts are feasible by the implementation of a high throughput sequencing (HTS) 

supported by next generation sequencing (NGS) technologies. They allow the automated 

identification of the species present in an environmental sample (Taberlet et al., 2012) and they are 

an important tool for understanding evolutionary history, functional and ecological biodiversity 

(Shokralla et al., 2012). The sequencing targets either a species-specific region in the genome, the so 

called ‘DNA barcode’ (Hebert et al., 2003; Taberlet et al., 2012), for taxonomic purposes, or the 

whole genome. DNA metabarcoding, in particular, combines NGS/HTS and the classical DNA 

barcoding.  

In lichenology, these approaches allowed the exploration of lichen thalli as ecological niches, 

revealing the organization of complex symbiotic communities and, potentially, the presence of 

coherent patterns. The majority of the metagenomic studies on lichens refers to their associated 

bacteria (Sigurbjornsdottir et al., 2015; Grube et al., 2015; Cernava et al., 2017), but researches have 

extended also to the intrathalline fungal (U’Ren et al., 2012; Park et al. 2014; Fernández-Mendoza et 

al., 2017) and algal diversity (Moya et al., 2017).  

Here, the taxonomic diversity of lichen-associated fungi was assessed targeting the ITS2 

region as barcode, and special attention was driven to the identification of new fungal sequences 

potentially corresponding to lichenicolous fungi. The results were compared, in terms of amount and 

variation of shared, new, and missing taxa with data previously obtained by the analysis of the ITS1 

region (Fernández-Mendoza et al., 2017). 

 

Appendix I: DNA metabarcoding uncovers fungal diversity of mixed airborne samples 

In my Ph.D., I applied DNA metabarcoding also to the study of fungi outside the lichen symbiosis. 

The work included in the Appendix I presents the results of a study entitled “DNA metabarcoding 

uncovers fungal diversity of mixed airborne samples” (Banchi et al., under review). The aim of the 

survey was to asses, by DNA metabarcoding, the fungal diversity present in airborne samples used 

for environmental and human health monitoring, which are routinely analyzed only by microscopical 

inspection. For this analysis, the ITS2 fungal barcode was sequenced, and the results compared with 

those obtained by microscopy analyses, with special focus to the identification of plant and human 

pathogenic taxa and alien invasive species. 
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Abstract 

Trebouxia is the most common lichen-forming genus of aero-terrestrial green algae and all its species 

are desiccation tolerant (DT). The molecular bases of this remarkable adaptation are, however, still 

largely unknown. We applied a transcriptomic approach to a common member of the genus, T. 

gelatinosa, to investigate the alteration of gene expression occurring after dehydration and subsequent 

rehydration in comparison to cells kept constantly hydrated. We sequenced, de novo assembled and 

annotated the transcriptome of axenically cultured T. gelatinosa by using Illumina sequencing 

technology. We tracked the expression profiles of over 13,000 protein-coding transcripts. During the 

dehydration/rehydration cycle c. 92% of the total protein-coding transcripts displayed a stable 

expression, suggesting that the desiccation tolerance of T. gelatinosa mostly relies on constitutive 

mechanisms. Dehydration and rehydration affected mainly the gene expression for components of 

the photosynthetic apparatus, the ROS-scavenging system, Heat Shock Proteins, aquaporins, 

expansins, and Desiccation Related Proteins (DRPs), which are highly diversified in T. gelatinosa, 

whereas Late Embryogenesis Abundant Proteins were not affected. Only some of these phenomena 

were previously observed in other DT green algae, bryophytes and resurrection plants, other traits 

being distinctive of T. gelatinosa, and perhaps related to its symbiotic lifestyle. Finally, the 

phylogenetic inference extended to DRPs of other chlorophytes, embryophytes and bacteria clearly 

pointed out that DRPs of chlorophytes are not orthologous to those of embryophytes: some of them 

were likely acquired through horizontal gene transfer from extremophile bacteria which live in 

symbiosis within the lichen thallus. 

 

Key Message: we investigated the gene expression patterns in Trebouxia gelatinosa subjected to 

dehydration and rehydration. This species relies on both constitutive and inducible mechanisms to 

cope with desiccation. 

 

Key words: aero-terrestrial microalgae; Desiccation Related Proteins; gene expression; Illumina; 

lichenization; Trebouxiophyceae 

 

 

Introduction 

 

Poikilohydric organisms are able to colonize very harsh environments, such as hot and cold deserts, 

rock surfaces or tree barks, thanks to their ability to survive extreme desiccation states and to recover 

full metabolic activity within minutes to hours upon rewetting (Lidén et al. 2010). This ability is 
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commonly known as desiccation tolerance. It is documented in cyanobacteria (Büdel 2011), 

aeroterrestrial micro-algae (Trainor and Gladych 1995; Holzinger and Karsten 2013), intertidal algae 

(Büdel 2011), bryophytes (Richardson and Richardson 1981; Proctor 1990; Proctor et al. 2007), 

lichens (Mazur 1968; Kranner et al. 2008), and a few vascular plants, the so-called resurrection plants 

(Proctor and Tuba 2002). It also occurs among heterotrophs, such as tardigrades (Wright 2001), 

nematodes (Treonis and Wall 2005), and arthropods (Kikawada et al. 2005). This capability may be 

extended to the whole life cycle of the organism, or it may involve just some stages, as it happens in 

flowering plants, whose pollen grains and seeds are frequently desiccation tolerant (DT) (Hoekstra et 

al. 2001).  

The desiccation tolerance in photo-autotrophic organisms involves several essential adaptations to 

withstand the anatomical, physiological and biochemical alterations caused by water loss. The recent 

comparative studies on DT vs. desiccation sensitive species allowed to identify the most important of 

these adaptations, which are: (i) the accumulation of non-reducing sugars (sucrose, trehalose, etc.) 

and Late Embryogenesis Abundant proteins (LEAs) which help to preserve the correct protein 

conformation and to avoid membrane fusion by replacing hydrogen bonds between water and other 

molecules (Hoekstra et al. 2001; Yobi et al. 2013); (ii) the production of molecular chaperones, such 

as Heat Shock Proteins (HSPs), to aid the correct refolding of proteins upon rehydration (Gechev et 

al. 2013; Oliver et al. 2009); (iii) the production of antioxidant substances (e.g. ascorbic acid, 

glutathione, etc.) and ROS scavenging enzymes, to maintain the intracellular redox homeostasis 

(Kranner et al. 2002; 2008); (iv) the involvement of mechanisms, such as the activity of expansins, 

to allow a safe cell shrinkage upon turgor-loss (Jones and McQueen-Mason 2004). 

The analysis of transcriptome, proteome and metabolome have brought important advantages in the 

study of desiccation tolerance in phototrophic organisms, especially resurrection plants (Collett et al. 

2003; Collett et al. 2004; Le et al. 2007; Rodriguez et al. 2010; Gechev et al. 2013; Mitra et al. 2013; 

Lyall et al. 2014; Ma et al. 2015), seeds (Farrant and Moore 2011; Maia et al. 2014), and mosses 

(Oliver et al. 2004; Oliver et al. 2009; Stark and Brinda 2015). The development of the so-called 

second-generation sequencing technologies, which allow to collect a very large amount of data in a 

single analysis, has extended the transcriptomic approach to non-model vascular plants (Wang et al. 

2010; Fu et al. 2011; Garg et al. 2011), non-vascular plants (Xiao et al. 2011; Gao et al. 2015) and 

terrestrial algae. In particular, for the latter group, Holzinger et al. (2014) analysed the gene 

expression profile induced by dehydration in Klebsormidium crenulatum, a representative of 

Streptophytes, i.e. the ancestors of the land plants that were among the first organisms to colonize 

lands from aquatic environments (Becker 2013; Hori et al. 2014). Also Chlorophytes, the sister group 

of Streptophytes, experienced the transition to land. In some cases, as in some Trebouxiophyceae, 
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this passage led to the adoption of a symbiotic lifestyle. The most successful, in terms of both habitat 

extension and irradiative speciation, is lichenization, i.e. the capability of forming a stable 

extracellular symbiosis between one or more autotrophs (in this case green algae) and one heterotroph 

(fungi, mostly ascomycetes) (Lipnicki 2015). Intimately connected to this success was the acquisition 

of desiccation tolerance mechanisms, because lichens are de facto the prevailing organisms (in terms 

of biomass and species diversity) in several terrestrial macro- and micro-habitats where water is 

available in scarce and unpredictable quantities and/or soil is virtually absent (Nardini et al. 2013). 

Unfortunately, our knowledge on the desiccation tolerance mechanisms of lichen-forming algae is 

relatively poor, and they have never been investigated through a transcriptomic approach, 

notwithstanding some attempts made in the most recent years. Junttila and Rudd (2012), for instance, 

characterized the transcriptome of a lichen, Cladonia rangiferina, and bioinformatically assigned the 

expressed mRNAs either to the myco- or to the photobiont based on the comparison with sequence 

datasets obtained from separate axenic cultures. Later Junttila et al. (2013) also studied the effects of 

dehydration and rehydration on gene expression in the same lichen species. They discovered that 

these processes affect the expression of hundreds of genes, especially those related to short-chain and 

alcohol dehydrogenases, molecular chaperones and transporters. On the other hand, in the first and 

sole proteomic study on the desiccation tolerance of a lichen photobiont, the green alga Asterochloris 

erici, Gasulla et al. (2013) showed that this ability is mostly related to constitutive mechanisms, since 

only 11 and 13 proteins involved in glycolysis, cellular protection cytoskeleton, cell-cycle and 

targeting and degradation were up-regulated after dehydration and rehydration, respectively.  

In this study we describe the de novo assembly of the first complete transcriptome of the axenically 

cultured lichen photobiont Trebouxia gelatinosa Archibald (Trebouxiophyceae, Chlorophyta), 

chosen as a member of the most widespread genus of lichenized algae. Trebouxia Puymaly is present 

in about half of the estimated 15,000 chlorolichens known so far, and therefore it is the most common 

aeroterrestrial micro-algal genus worldwide (Ahmadjian 2004). As in the lichen symbiosis, free-

living Trebouxia spp. can withstand dehydrations to water contents below 10% of their dry weight, 

long periods in the desiccated conditions and recover metabolic activity within minutes upon 

rehydration (Kosugi et al. 2009; Candotto Carniel et al. 2015). The variation of gene expression 

profiles was studied in cultures kept fully hydrated, slowly dehydrated and subsequently rehydrated, 

with the aim of unravelling the key molecular processes involved in desiccation tolerance of lichen 

photobionts.  
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Materials and methods 

 

Culture isolation of Trebouxia photobiont  

Isolates of T. gelatinosa were obtained according to Yamamoto et al. (2002) from thalli of 

Flavoparmelia caperata (L.) Hale, collected in the Classic Karst plateau (NW Italy; 45°42'24.54"N; 

13°45'21.70"E). The isolates were inoculated in sterile plastic tubes filled with c. 5 ml of slanted solid 

Trebouxia medium (TM) (1.5 % agar) (Ahmadjian 1973). The tubes were kept in a thermostatic 

chamber at 20 °C, under a light regime of 18 2 μmol photons m-2 sec-1 with a photoperiod of 14 h:10 

h, light:dark until the colony reached a sufficient biomass. Cultures were re-inoculated every 30 days 

and were grown at the same conditions as the original inocula. The identity of the photobiont was 

checked by sequencing the nuclear ITS fragment (data available upon request) and by analysing the 

pyrenoid ultrastructure by TEM. Reference algal material was cryo-conserved according to Dahmen 

et al. (1983) and is available upon request. 

 

Dehydration and rehydration treatments 

Algal cultures were grown on hand-cut sterile filter paper discs (Whatman, 60±5 g m-2, diam. 25 mm), 

laid on solid TM (1.5 % agar) inside Petri dishes. In each Petri dish four discs were inoculated with 

100 μl of a water suspension of 3.5×106 cells mL-1. The Petri dishes were kept in a thermostatic 

chamber at the same controlled condition described above. On the 30th day of growth three discs 

representing the control samples (C) were randomly selected from the starting set of Petri dishes and 

promptly soaked in liquid nitrogen and stored at -80 °C. Six discs were slowly dehydrated on a thin 

layer of solid TM in a biological hood under air flow; complete dehydration took 10 hours. The time 

necessary to obtain a water content (WC, see below) of 0.1g H2O g-1 DW was assessed in a 

preliminary experiment by following the weight loss of the discs with a precision balance. 

After dehydration, three discs representing dehydrated samples (D), were soaked in liquid nitrogen 

and stored at -80 °C. The remaining three discs were wetted with a water drop and laid on solid TM 

inside a Petri dish for 12 hours to allow the full rehydration of the algae at the same, original growth 

conditions. After rehydration, the three discs representing rehydrated samples (R) were frozen in 

liquid nitrogen and stored at -80 °C.  

The water content (WC) was measured on a different set of samples grown over acetate-cellulose 

discs at the same conditions. The cultures were harvested from the discs, weighed, freeze-dried and 

then weighed again. The WC of cultures was calculated as (FWt−DW)/DW × 100, where FWt is the 

sample weight after each treatment (t: C, D, R) and DW is the sample weight after a freeze-drying of 

72 h. The WC of the samples was 4.92 (C), 0.10 (D), 4.35 (R) g H2O g-1 DW, respectively.  
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RNA sequencing and de novo transcriptome assembly 

Total RNA was extracted from the frozen culture discs, each one comprising c. 40 mg DW algal 

colonies, accounting for several millions T. gelatinosa individuals, using the PowerPlant® RNA 

Isolation Kit (MO BIO Laboratories, Inc.). RNA quality was assessed with Agilent 2100 Bioanalyzer 

(Agilent Technologies). All samples achieved a RNA Integrity Number > 8 and the absence of RNA 

degradation in dehydrated samples was further evaluated, in a later stage, by an analysis of the 3’ to 

5’ sequencing coverage drop on a subset of transcripts longer than 10 Kb (Online Resource 1). The 

RNA extracted from the three replicates prepared for each sample (C, D and R) were pooled together 

in equimolar quantities. The preparation of cDNA libraries and RNA-sequencing were carried out at 

the Institute of Applied Genomics (IGA) in Udine, Italy. Sequencing was performed on a single lane 

of an Illumina HiSeq2000 instrument, with a 100 cycles paired-end sequencing protocol. Raw 

sequencing reads were trimmed according to their base calling quality before proceeding with further 

analyses. Trimmed reads shorter than 60 bp were discarded. 

Trimmed reads were used for a de novo transcriptome assembly by Trinity (Grabherr et al. 2011), 

selecting the Jaccard-clip option to allow the splitting of chimeric contigs resulting from overlapping 

genes. Minimum allowed contig length was set at 201 bp. The complete assembly obtained, 

containing the transcript variants produced from each of the predicted gene models, was processed as 

follows, prior to the annotation and gene expression analysis steps. Only the longest transcript of each 

gene was selected in order to reduce sequence redundancy and to obtain a set of transcripts suitable 

for a gene expression analysis. A minimum threshold of the mean coverage was set to discard all low 

quality transcripts which cumulatively contributed to the back mapping of just the 2 % of the reads 

(including poorly expressed and highly fragmented transcripts). 

Contigs resulting from mitochondrial and plastidial mRNAs or from ribosomal RNA were detected 

by BLASTn search (Altschul et al. 1990) based on the Trebouxiophyceae sp. MX-AZ01 plastidial 

(GenBank: NC_018569) and mitochondrial (GenBank: NC_018568) genomes, and on the Trebouxia 

arboricola 5.8S, 18S and 26S rRNA genes (GenBank: Z68705.1) available at public databases. 

Matching sequences (e-value cut off = 1x10-30) were discarded prior to further analyses. 

The entire RNA-seq experiment was deposited at the NCBI Sequence Read Archive database (SRA 

accessions: SRX330016 (C), SRX330011 (D) and SRX330015 (R); Bioproject: PRJNA213702). 

 

Transcripts annotation and ORFeome definition 

To overcome the technical issues linked with the high compactness of T. gelatinosa genome (see 

infra), in the non-redundant reference transcriptome we identified all the regions corresponding to 

Open Reading Frames (ORFs). ORFs were predicted based on their protein-coding potential, assessed 



27 

 

either by a significant BLASTx similarity (e-value cutoff 1x10-5) with the available complete 

proteomes of other Trebouxiophyceae, namely Coccomyxa subellipsoidea C-169 (v2.0, 

http://genome.jgi.doe.gov/Coc_C169_1/), Chlorella variabilis (v1.0, 

http://genome.jgi.doe.gov/ChlNC64A_1/) or Asterochloris sp. Cgr/Dha1pho (v.1.0, 

http://genome.jgi.doe.gov/Astpho1/), by the presence of PFAM domains (e-value cutoff 1x10-5) or 

by a length of at least 300 codons (if none of the previous criteria were met). 

The resulting ORFs sequences were extracted from the assembled contigs and annotated with the 

Trinotate pipeline. Sequence similarities were identified by BLASTx (Altschul et al. 1990) performed 

against the UniProtKB/Swiss-Prot database; functional domains were detected by a HMMER (Finn 

et al. 2011) search against the PFAM domain database (Punta et al. 2012). ORFeome were also 

annotated based on eggNOG (Powell et al. 2012) and Gene Ontology (Ashburner et al. 2000) 

'biological process', 'molecular function' and 'cellular component' functional categories. These 

annotations were automatically extracted from BLASTx matches and linked to the corresponding 

assembled transcripts by Trinotate. 

The presence of orthologous sequences in the genomes of other representative Viridiplantae was 

assessed by reciprocal best BLASTp matches, comparing the proteins predicted from the T. 

gelatinosa transcriptome to the proteins encoded by those genomes. The e-value and identity cut-off 

used to consider two sequences as orthologous were set to 1x10-5 and 35%, respectively.  

The selected species comprised the three Trebouxiophyceae mentioned above (C. subellipsoidea, C. 

variabilis and Asterochloris sp.), Chlamydomonas reinhardtii (v.4.0, 

http://genome.jgi.doe.gov/chlamy/), Volvox carteri (v.1.0, http://genome.jgi.doe.gov/Volca1/), 

Klebsormidium flaccidum (ASM70883v1), Selaginella moellendorffii (v.1.0, 

http://genome.jgi.doe.gov/Selmo1/), Micromonas pusilla (v.2.0, 

http://genome.jgi.doe.gov/MicpuC2/), Ostreococcus tauri (v.2.0, http://genome.jgi.doe.gov/Ostta4/), 

Zea mays (B73 RefGen_v3) and Arabidopsis thaliana (TAIR10). 

 

Gene expression analysis 

Trimmed reads obtained from the sequencing of the three samples (C, D and R T. gelatinosa cultures) 

were mapped on the annotated ORFeome with the RNA-seq tool included in the CLC Genomics 

Workbench v.8.0. Length and similarity fractions parameters were set to 0.75 and 0.95, respectively; 

the maximum number of matching contigs was set to 10. Paired reads distance was assumed, based 

on fragment length data, to be comprised between 100 and 500 bp.  

We calculated gene expression levels as Transcript Per Million (TPM), a measure of RNA abundance 

which takes into account both transcript length and sequencing depth for normalization, thus being 

http://genome.jgi.doe.gov/chlamy/
http://genome.jgi.doe.gov/Volca1/
http://genome.jgi.doe.gov/Selmo1/
http://genome.jgi.doe.gov/MicpuC2/
http://genome.jgi.doe.gov/Ostta4/
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proportional to the relative molar RNA concentration (Wagner et al. 2012). TPM values were used 

for the differential expression analysis using a Kal’s Z-test on proportions (Kal et al. 1999) in the 

following comparisons: a) D vs C samples; b) R vs D samples; c) R vs C samples. Differentially 

expressed genes (DEGs) were identified with a False Discovery Rate-corrected p-value lower than 

0.01, applied according to the Benjamini and Hochberg procedure (1995), and a proportions fold 

change (FC) value higher than 2 for up-regulated genes, or lower than -2 for down-regulated genes. 

TPM gene expression values were transformed by log2 for the graphical representation in the scatter 

plot. 

Gene Ontology terms, PFAM domains and eggNOG functional categories over-represented in the 

subsets of differentially expressed genes were detected with a hypergeometric test on annotations. 

The sets of up-regulated and down-regulated genes were analysed separately. Significant over-

representation was detected at p-value < 0.01 and observed - expected > 3. The over-representation 

of annotations displaying p-values lower than 1x10-5 was considered highly significant. 

 

qRT-PCR analysis 

To further validate the expression profiles obtained with RNA-seq and to take into account biological 

variation across replicates, a qRT-PCR analysis was carried out on the three non-pooled samples for 

each experimental condition (C, D and R), targeting six representative differentially expressed 

transcripts. Primers were designed with Primer3Plus (Untergasser et al. 2007) (Online Resource 2). 

For this analysis, cDNA was synthesized using the iScript cDNA synthesis kit (Bio-Rad).  

Each reaction was performed in three technical replicates in a mix containing 1 µl cDNA (1:10 

template dilution), 8 µl SSOAdvanced™ SYBR® Green Supermix (Bio-Rad) and 200 nM of each 

primer. The PCR amplifications were performed with CFX 96™ Real-Time PCR System (Bio-Rad) 

using the following cycle: 98 °C for 30’ and 40 cycles at 95 °C for 10’and 60 °C for 20’. A melting 

curve analysis (65 °C to 95 °C, increment 0.5 °C each 5’) was performed to verify the absence of 

non-specific amplification products. Transcript levels were calculated with Bio-Rad CFX Manager 

software, based on the comparative Ct method (2-ΔΔC
T
 method) (Livak and Schmittgen 2001) and 

normalizing gene expression data using as housekeeping genes two transcripts showing steady 

expression levels in our RNA-seq experiment and frequently used for this purpose in literature: the 

ribosomal protein L6 (RPL6) and the translation elongation factor 1 beta (EF1b). 

 

Phylogenetic analysis of Desiccation Related Proteins (DRPs) 

Proteins pertaining to the Desiccation Related Proteins family (DRPs) predicted from T. gelatinosa 

and other 45 representative species of green algae, embryophytes and bacteria (Online Resource 3) 
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were aligned with MUSCLE (Edgar 2004) and the resulting alignment was trimmed to remove highly 

divergent and poorly informative regions with Gblocks v.0.91b (Castresana 2000). The Bayesian 

inference phylogenetic analysis was performed with MrBayes 3.2 (Ronquist et al. 2012) under a 

GTR+G+I model, identified by ProtTest 3.1 (Abascal et al. 2005) as the best-fitting our data, with 

two parallel runs with four chains each, for 1 million generations. Trees were sampled each 1,000 

generations; a 25% burnin was adopted and the convergence of the analysis was reassured by a 

standard deviation of split frequencies lower than 0.01. Nodes with low statistical support (posterior 

probability < 0.5) were collapsed in the graphical tree representation. 

 

Results 

 

High throughput sequencing, de novo assembly and annotation of T. gelatinosa transcriptome 

The output of the Illumina paired-end sequencing of the T. gelatinosa samples is summarized in Table 

1. The overall de novo transcriptome assembly generated 19,601 contigs, with almost null sequence 

redundancy (Table 2).  
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Table 1 Sequencing and trimming statistics of Trebouxia gelatinosa transcriptomic analysis. 

    Reads number 
Average 

length (bp) 

Sequenced 

data (Gbp) 

Raw data    
 

Control 60,409,470 100 6.0  
Dehydrated 92,783,850 100 9.3  
Rehydrated 90,569,258 100 9.1  
Total 243,762,578 100 24.4 

After trimming    
 

Control 58,604,069 97.6 5.7  
Dehydrated 90,464,518 97.6 8.8  
Rehydrated 88,336,044 97.6 8.6  
Total 237,404,631 97.6 23.0 

 

 

Table 2 De novo assembly and annotation statistics of Trebouxia gelatinosa transcriptomic analysis. 

  Number of non-redundant assembled contigs 19,601 
Total number of ORFs identified 13,648 

Average contig length 1,605 nt 
Contigs N50 3,594 

Contigs longer than 5 Kb 1,261 

Longest assembled contig 31,749 nt 
Number of residual chimeric contigs* 3,509 

Mapping rate** (contigs) 82.49% 
Average ORF length 1,261 nt 

Longest ORF 26,346 nt 
Mapping rate** (ORFs) 47.17% 

Sequence redundancy (non-specific matches) 0.57% 

ORFs with BLAST matches (UniProtKB/SwissProt) 7,311 (53.6%) 
ORFs with PFAM annotation 7,976 (58.4%) 

ORFs with eggNOG annotation 5,941 (45.5%) 
ORFs with Gene Ontology Cellular Component annotation 5,725 (41.9%) 

ORFs with Gene Ontology Biological Process annotation 5,497 (40.3%) 

ORFs with Gene Ontology Molecular Function annotation 5,576 (40.9%) 

  *chimeric contigs are identified as those comprising more than one ORF (Open Reading Frame).            

** Mapping rate is defined as the percentage of reads that match contigs or ORFs with the CLC 

Genomic Workbench RNA-seq tool, based on 0.75 and 0.95 length and similarity fraction parameters. 

N50: this value is calculated by summing the lengths of the longest contigs until 50% of the total 

assembly length is reached. The minimum contig length in this set of contigs is the number that is 

usually used to report the N50 value of a de novo assembly.  

 

The genomes of Trebouxiophyceae are highly compact with a relevant number of overlapping genes 

potentially leading to the de novo assembly of chimeric contigs (see Discussion section for details). 

This genomic peculiarity contributed to the generation of a high number of chimeric contigs in the 

assembly process of T. gelatinosa transcriptome (Online Resource 4). Non-directional sequencing 

reads originating from overlapping exons of different transcripts, either encoded by genes on the same 

or on the opposite DNA strand, were assembled de facto as belonging to a common transcript, 

generating chimeric contigs with multiple Open Reading Frames (ORFs). Despite the use of the 
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Jaccard-clip option of the Trinity assembler, we estimate that almost 2,000 assembled contigs 

included multiple transcripts originated from genes spatially close to each other (Online Resource 4). 

We therefore relied on predicted ORFs (see Materials and Methods) for the downstream gene 

expression analysis. Overall, we identified and annotated 13,648 ORFs, which likely correspond to 

c. 10,000 protein-coding genes. This set of protein-coding sequences is available as a multiFASTA 

file in Online Resource 5. This number is not far from those observed in the complete genome of 

other Trebouxiophyceae (Table 3), suggesting that the coverage applied in our RNA-sequencing was 

adequate to obtain a nearly-complete collection of T. gelatinosa transcripts.  

 

Table 3 Number of three Trebouxiophyceae predicted protein models showing significant similarity (tBLASTn vs 

genome, cutoff =1E-5) with Trebouxia gelatinosa and percentage. 

 

 Total similar to Ratio 
  T. gelatinosa (%) 

    Asterochloris sp. 7,159 6,233 87.1 
Chlorella variabilis 9,791 7,426 75.8 

Coccomyxa subellipsoidea 9,629 7,173 75.1 

     

Overall, the de novo assembled transcriptome potentially provides a good reference for large-scale 

comparative analyses within Viridiplantae, as we could detect over 3,000 bona fide orthologous 

sequences even in largely divergent model vascular plants (Online Resource 6). 

The annotation process permitted to assign a putative function to about 60% of the ORFs, due to the 

presence of conserved functional domains or significant BLAST similarity to proteins with known 

function deposited in the UniProtKB sequence database (Table 2). 

 

Global effect of the dehydration/rehydration cycle on the transcriptional profiles 

During the dehydration/rehydration cycle 12,533 protein-coding transcripts (91.83 % of the total) 

displayed a stable expression level (Fig. 1, group 5 in Online Resource 7), whereas 112 genes (0.82 

% of the total) were perturbed in both processes (groups 1, 3, 7 and 9 in Online Resources 7, 8). Both 

dehydration and rehydration modified the gene expression of T. gelatinosa, with a perturbation of 

7.01 % and 2.22 % of all genes respectively, with a more prominent effect triggered by dehydration 

(Fig. 1). 
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Fig. 1 Diagrams displaying the number of stable (grey), up-regulated (red) and down-regulated (green) transcripts in the 

dehydrated vs control and rehydrated vs dehydrated comparisons. The numbers displayed on the arrows indicate the 

number of transcripts. See Online Resources 7 and 8 for details. 

 

 

The Kal’s Z-test revealed 957 DEGs following dehydration: 530 DEGs were up-regulated and 427 

down-regulated (Fig. 1 and Online Resource 9) versus the C sample. In R samples, 270 DEGs were 

identified, 150 genes being up-regulated and 120 down-regulated (Fig. 1 and Online Resource 9) 

versus the D sample. A significant overlap of gene expression profiles between D and R samples was 

observed (Fig. 2).  
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Fig. 2 Principal Component Analysis and Hierarchical Clustering of control, dehydrated and rehydrated samples of 

Trebouxia gelatinosa. Principal Component Analysis based on TPM expression values (a), Hierarchical Clustering based 

on Euclidean distance and average linkage on TPM, with the gradient colour scheme where blue and red stand for high 

or low expression levels respectively (b). 

 

 

Compared to the control, 1,208 protein-coding genes were differentially expressed upon rehydration 

(Online Resource 9). Some genes, in particular during dehydration, experienced a highly significant 

induction by up to 100 folds (Online Resource 10).  
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qRT-PCR data validation 

We confirmed the gene expression changes observed in the RNA-seq experiment by qRT-PCR, which 

was performed on the three non-pooled samples for each experimental condition (C, D and R). The 

trends of expression of all the genes analysed were consistent, with a Pearson correlation index of 

0.77 (F-test of linear regression p-value = 0.01) (Fig. 3), although the FC values varied to some extent 

between qRT-PCR and RNA-Seq and among replicates. This slight discrepancy is compatible with 

the technical limitations and the differences of the two methodological approaches (SEQC/MAQC-

III Consortium 2014). 

 

Fig. 3 Comparison between the fold change of six differently expressed transcripts: Desiccation Related Protein 5 (DRP 

5), Expansin 1 (EXP1), Expansin 2 (EXP2), Photosystem II (PSII), Heat Shock Protein 20 (HSP20) and Heat Shock 

Protein 90 (HSP90) obtained with RNA-seq (on three pooled biological replicates) and with qRT-PCR (on the three non-

pooled biological replicates) in dehydrated (D) and rehydrated (R) samples of Trebouxia gelatinosa. Results of RT-PCR 

are given as the mean ±SD of three technical replicates. 

 

 

 

Gene set enrichment analysis 

The information gathered from the annotation of the predicted gene models was used for the 

identification of the main gene categories influenced by dehydration and by the following 

rehydration. The eggNOG assignments, Gene Ontology (GO) terms and PFAM domains over-

represented in each gene set are shown in Table 4 (D vs C and R vs D comparisons) and Online 

Resource 11 (R vs C comparison). 

The GO terms related to the photosynthetic apparatus stand out as the largest group of up-regulated 

genes in response to dehydration. The GO terms with the best p-value score in the hypergeometric 
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test were light-harvesting complex (GO:0009765), chlorophyll binding (GO:0016168), PSI 

(GO:0009522), and PSII (GO:0009523). The 70% and 52% of the genes encoding for structural 

components of PSI and PSII, respectively, were strongly over-expressed, together with five out of the 

five detected genes encoding for components of the PSI reaction centre, chlorophyll a/b binding 

proteins and their transcriptional regulator Tbc2. The massive up-regulation of the photosynthetic 

machinery is graphically summarized in Fig. 4, according to the “photosynthesis” and 

“photosynthesis - antenna proteins” KEGG reference pathways (Kanehisa and Goto, 2000). 

 

Fig. 4 Summary of the gene expression alterations which concern the photosynthetic machinery observed during 

dehydration. The KEGG reference pathway maps from “photosynthesis” and “photosynthesis - antenna proteins” are 

displayed. The genes involved are grouped in boxes below the figures and are coloured based on up- or down-regulation. 

Due to their very small size (< 100 aa) and high sequence divergence between the reference organism (Arabidopsis 

thaliana) and T. gelatinosa, several orthologous components, indicated by a gray colour, could not be identified. 
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The Major Intrinsic Protein family (PF00230 and COG0580) was also significantly up-regulated upon 

dehydration; the five over expressed members of this protein family were all TIP (Tonoplast Intrinsic 

Proteins) or PIP (Plasma membrane Intrinsic Proteins) aquaporins. A remarkable protein family 

whose expression was induced by dehydration was MAPEG (Membrane-associated, 

eicosanoid/glutathione metabolism, PF01124), with three out of its four members being glutathione 

S-transferases. Another large class of enzymes induced by dehydration was represented by a series 

of short chain dehydrogenases with various functions (PF00106 and COG1029) with their associated 

domains (PF01370, PF08659) which include, among the others, two dihydroflavonol-4-reductases 

(DFRs). The ferritin-like domain (PF13668) was the most up-regulated Protein Family term and a 

highly significant p-value in the hypergeometric test, with seven out of thirteen genes up-regulated 

by the dehydration process (Table 4).  

 

Table 4 Summary of the hypergeometric tests on annotations performed on the Trebouxia gelatinosa sets of differentially 

expressed genes in the dehydrated vs control and rehydrated vs dehydrated comparisons. *: significant; **: highly 

significant. 

 

 Category ID Description P-value Proportion 

Dehydrated vs Control 

 Up-regulated 

       eggNOG COG0580 Glycerol uptake facilitator and related permeases 3.91E-4* 4/9 
 eggNOG COG1028 Dehydrogenases with different specificities  1.38E-3* 8/50 

 GO_BP GO:0009765 photosynthesis, light harvesting 2.72E-14** 14/21 
 GO_BP GO:0018298 protein-chromophore linkage 3.67E-12** 14/27 

 GO_BP GO:0015979 photosynthesis 1.13E-5* 11/47 
 GO_BP GO:0009736 cytokinin mediated signaling pathway 9.32E-4* 4/10 
 GO_BP GO:0005975 carbohydrate metabolic process 1.09E-3* 10/65 

 GO_BP GO:0006950 response to stress 4.39E-3* 10/78 
 GO_CC GO:0009522 photosystem I 2.22E-16** 16/23 

 GO_CC GO:0009523 photosystem II 3.87E-12** 14/27 
 GO_CC GO:0009535 chloroplast thylakoid membrane 2.66E-10** 28/146 
 GO_CC GO:0009538 photosystem I reaction center 2.75E-7** 5/5 

 GO_CC GO:0016021 integral to membrane 8.95E-6** 96/1319 
 GO_CC GO:0009543 chloroplast thylakoid lumen 5.31E-5* 8/29 

 GO_CC GO:0009505 plant-type cell wall 9.95E-5* 5/11 
 GO_CC GO:0005615 extracellular space 4.46E-3* 5/23 

 GO_MF GO:0016168 chlorophyll binding 1.55E-15** 15/23 
 GO_MF GO:0008242 omega peptidase activity 2.51E-4* 4/8 
 GO_MF GO:0043169 cation binding 4.27E-3* 7/46 

 PFAM PF00504 Chlorophyll A-B binding protein 7.48E-11** 14/32 
 PFAM PF13668 Ferritin-like domain 1.61E-6** 7/14 

 PFAM PF01124 MAPEG family 5.63E-6** 4/4 
 PFAM PF00134 Cyclin, N-terminal domain 5.60E-5* 5/10 
 PFAM PF00230 Major intrinsic protein 1.62E-4* 5/12 

 PFAM PF01370 NAD dependent epimerase/dehydratase family 3.20E-4* 9/46 
 PFAM PF00106 short chain dehydrogenase 3.55E-4* 13/89 

 PFAM PF00168 C2 domain 3.81E-4* 6/21 
 PFAM PF13561 Enoyl-(Acyl carrier protein) reductase 4.41E-4* 10/58 

 PFAM PF08659 KR domain 2.47E-3* 10/72 
       Down-regulated 

       GO_BP GO:0006950 response to stress 1.14E-5* 12/78 
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 GO_BP GO:0009408 response to heat 1.38E-5* 10/55 
 GO_BP GO:0016485 protein processing 2.42E-4* 4/10 

 GO_CC GO:0005886 plasma membrane 6.14E-4* 33/575 
 GO_CC GO:0000502 proteasome complex 2.41E-3* 5/30 
 GO_CC GO:0009706 chloroplast inner membrane 7.70E-3* 5/39 

 GO_MF GO:0017111 nucleoside-triphosphatase activity 3.35E-3* 7/61 
 GO_MF GO:0043565 sequence-specific DNA binding 6.40E-3* 5/37 

 PFAM PF00012 Hsp70 protein 4.56E-6** 6/14 
 PFAM PF00320 GATA zinc finger 6.21E-4* 4/12 
 PFAM PF00004 ATPase associated with various cellular activities (AAA) 3.88E-3* 8/72 
      

Rehydrated vs Dehydrated 

 Up-regulated 

       GO_CC GO:0005886 plasma membrane 7.99E-3* 11/575 

       Down-regulated 

       GO_CC GO:0005788 Endoplasmic reticulum lumen 3.80E-4* 4/41 
      Up- and down-regulated genes were analyzed separately. eggNOG: evolutionary genealogy of genes: Non-supervised Orthologous Groups; 

GO_BP: Gene Ontology Biological Process; GO_CC: Gene Ontology Cellular Component; GO_MF: Gene Ontology Molecular Function; 

PFAM: Protein Family. The proportion column indicates the number of differentially expressed genes with respect to the total number of genes 

annotated with the same term in the entire Trebouxia gelatinosa transcriptome. 

 

These transcripts clearly belong to the same multigenic family, which displays remarkable sequence 

similarity with the Desiccation Related Proteins (DRPs) family previously described in some DT seed 

plants (Piatkowski et al. 1990; Zha et al. 2013). In total, 9 out of these 13 sequences were significantly 

responsive to at least one of the two treatments, either being up- or down-regulated. Most of them 

displayed a trend of expression that involved an increase during dehydration and a repression after 

rehydration. DRP1 and DRP2, however, followed a completely opposite trend, whereas the 

expression of DRP5 progressively increased during the experiment (Table 5).  

 

Table 5 Trebouxia gelatinosa Desiccation Related Proteins (DRPs) with the respective expression values shown as 

normalized read counts, proportion fold change values in the dehydrated vs control and rehydrated vs dehydrated 

comparisons and predicted cellular localization according to TargetP. 

ID Normalized expression values Fold Change Cellular Localization 

 Control  Dehydrated Rehydrated Dehydrated Rehydrated  
 

 

 

 

 

  vs 

 

vs 

 

 

    Control Dehydrated  

       Trebouxia_DRP1 4805.87 346.73 1647.46 -13.86* 4.75* S 

Trebouxia_DRP2 1893.78 79.53 420.01 -23.81* 5.28* S 
Trebouxia_DRP3 23.64 34.88 34.67 1.48 -1.01 S 

Trebouxia_DRP4 69.03 257.4 333.66 3.73* 1.3 S 
Trebouxia_DRP5 2.19 15.22 280.94 6.96* 18.45* P 

Trebouxia_DRP6 7.97 160.74 38.88 20.17* -4.13* S 

Trebouxia_DRP7 483.62 1889.74 971.5 3.91* -1.95 S 
Trebouxia_DRP8 20.86 39.42 45.78 1.89 1.16 S 

Trebouxia_DRP9 55.3 100.32 152.08 1.81 1.52 S 
Trebouxia_DRP10 179.13 568.66 351.74 3.17* -1.62 P 

Trebouxia_DRP11 286.36 1325.71 667.34 4.63* -1.99 T 
Trebouxia_DRP12 145.44 208.69 210.09 1.43 1.01 S 

Trebouxia_DRP13 2.02 17.73 4.77 8.78* -3.71 M or S 

        * significant difference in the statistical expression analysis; S: secreted, P: plastidial, T: transmenbrane, M: mitochondrial. 
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Other categories significantly up-regulated by dehydration were cytokinin-mediated signaling 

pathway (GO:0009736), carbohydrate metabolic process (GO:0005975), cyclins (PF00134), omega 

peptidase activity (GO:0008242) and C2 domain-containing proteins (PF00168). 

Due to the high similarity of the transcriptional profiles between rehydrated and dehydrated samples, 

just a few gene categories affected by the rehydration process were identified. However, their 

involvement remains questionable due to the low number of over-expressed genes compared to the 

total and to the poorly significant p-values (Table 4). 

 

Desiccation Related Proteins (DRPs): structure and phylogeny 

The ferritin-like domain denotes a taxonomically widespread structural fold, which characterizes 

different protein families including, among the others, ferritins, bacterioferritins and bacterial DNA-

binding proteins from starved cells (DPS). However, DRPs show low sequence homology to bona 

fide ferritins and other ferritin-like protein families available in GenBank. Furthermore, they all 

present a ~100 aa long conserved C-terminal region, here named DUF1 (Domain of Unknown 

Function 1), which is absent in other ferritin-like proteins. The structural architecture of green algae 

DRPs is not uniform: they all present a ferritin-like domain followed by DUF1, but additional long 

N-terminal or C-terminal regions with unknown function are present in several cases (Fig. 5a). 

A comparative genomic analysis revealed that DRPs are absent in most Chlorophyta genomes: no 

DRPs could be found in Ulvophyceae and they are present in a few Chlorophyceae (Monoraphidium 

spp. and Chlamydomonas spp.) as single-copy genes. However, the DRP gene family appears to have 

undergone expansion in some Trebouxiophyceae including, besides T. gelatinosa, other lichen 

photobionts, such as Asterochloris spp. and Coccomyxa spp. On the other hand, DRPs are absent in 

other genera of the same class (Chlorella, Helicosporidium and Picochlorum). The spread of DRPs 

within Charophyta, Chlorophyta’s sister group within which the Embryophyta emerged, is difficult 

to address due to the limited sequence resources available; only a single DRP gene was actually found 

in Klebsormidium flaccidum. Among Embryophyta, DRPs are present in the genomes of all the 

species analysed so far, from those belonging to basal groups such as bryophytes (e.g. Physcomitrella 

patens) and lycophytes (e.g. Selaginella moellendorffii), to seed plants. Differently to what observed 

for Chlorophyta, Embryophyta DRPs share a similar length (~300 aa) and a more uniform protein 

architecture, with a N-terminal leader peptide, followed by the central ferritin-like domain and always 

ending with the C-terminal DUF1 domain (Fig. 5a). The taxonomic distribution of DRPs, however, 

is not limited to Viridiplantae, since this protein family is also present in several phylogenetically 

distant groups of Bacteria, but not in heterotrophic Eukaryota. All bacterial DRPs display a similar 

length and a protein architecture identical to that of most DRPs of green algae and higher plants. 
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Fig. 5 Structure characteristics of the 13 Desiccation Related Proteins (DRP1-13) found in the transcriptome of Trebouxia 

gelatinosa in comparison to those found in bacteria, other green microalgae and embryophytes. DUF1 and 2, Domains of 

Unknown Function 1 and 2. Proteins length not in scale (a). Bayesian phylogenetic tree of Desiccation-Related Proteins 

(DRPs). Trebouxia gelatinosa DRPs are indicated by empty circles, whereas the full circle indicates the DRP belonging 

to the streptophyte Klebsormidium crenulatum (b). The full list of the DRP sequences used for the phylogenetic analysis 

and their accession IDs is reported in Online Resource 3. 

 

 

 

The Bayesian phylogenetic analysis divided higher plants and bacterial DRPs in two well distinct 

clades, but it surprisingly revealed that the DRPs of Chlorophyta are more closely related to bacterial 

proteins than they are to those of vascular plants. Although the remarkable sequence diversity did not 

permit to fully resolve the exact phylogenetic relationship among green algae DRPs, two major 

distinct subgroups could be identified. The first one is more closely related to bacterial DRPs and 

includes T. gelatinosa DRP1-DRP8 and DRP11, proteins with heterogeneous architecture and 

subcellular localization (Fig. 5b; Table 5). The second subgroup, which includes DRP9, DRP10, 

DRP12 and DRP13, is more distantly related to bacteria and comprises proteins characterized by a 

conserved C-terminal ~100 aa extension with unknown function (DUF2) located after DUF1 (Fig. 

5a,b). While basal land plants (bryophytes and lycophytes) DRPs are clearly clustered within the 

same clade of vascular plants, the placement of the K. flaccidum DRP is enigmatic, as it shows marked 

similarity with bacterial and green algae DRPs. 
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Expression of genes and gene families related to stress response 

We analysed in detail the expression profiles of specific genes or genes families which could be 

potentially involved in the responses to dehydration stress and rehydration, based on the recent 

literature concerning desiccation tolerance in Streptophyta and Embryophyta. This permitted us to 

comparatively investigate the regulation of molecular adaptive strategies to water stress. The 

comparison revealed that in T. gelatinosa there is a different regulation of genes included in the 

categories, “Aquaporins”, “Cell wall modifications”, “HSPs and other chaperones”, “Late 

Embryogenesis Abundant proteins”, “Oxidative stress response” and “Photosynthetic apparatus” 

(Table 6).  

 

Table 6 Expression profiles during dehydration and rehydration of gene categories commonly associated to desiccation 

tolerance in the green alga Trebouxia gelatinosa (Tg), the Streptophyte Klebsormidium crenulatum (Kc) (Holzinger et al. 

2014), the moss Syntrichya ruralis (Sr) (Oliver et al. 2004; Oliver et al. 2009), the club moss Selaginella lepidophylla 

(Sl) (Iturriaga et al. 2006), the dicots Craterostigma plantagineum (Cp) (Rodriguez et al. 2010; Mariaux at al. 1998; Jones 

and McQueen-Mason 2004), Myrothamnus flabellifolia (Mf) (Ma et al. 2015) and Haberlea rhodopensis (Hr) (Gechev 

et al. 2013), and in the monocot Xerophyta humilis (Xh) (Collet et al. 2004). ↑ up-regulated; ↓ down-regulated; ↑↓ 

contrasting results; = not affected. *the expression of most ROS-scavenging enzymes was not affected. 

 Dehydration  Rehydration 

 Tg Kc Sr Sl Cp Mf Hr Xh  Tg Sr Cp Mf Hr 

Aquaporins ↑ = = ↑ ↑↓ = = ↓  = ↑ ↑ = = 

Cell wall 

modifications 
= = = = ↓↑ = ↓ =  ↑ = ↑ = ↑ 

HSPs and other 

chaperones 
↓ = ↑ ↑ = = ↑ =  ↓ = = = = 

Late 

Embryogenesis 

Abundant proteins 

= ↑ ↑ ↑ ↑ ↑ ↑ ↑  = ↑ ↓ ↓ ↓ 

Oxidative stress 

response 
↑* ↑ ↑ ↑ ↓ ↑ ↑↓ ↑  = ↑ ↑ ↓ ↑↓ 

Photosynthetic 

apparatus 
↑ ↑ ↓ ↑ ↓ ↑ ↓ ↓  = ↑ ↑ = ↑ 

                          
 

 

Discussion 

 

Features of T. gelatinosa transcriptome 

The genomes of Trebouxiophyceae are generally small in size, with a 2C nuclear DNA content 

estimated between 0.01 and 1.06 pg (Kapraun 2007). For instance, the genome of Asterochloris sp. 
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has 56.1 Mbp (~0.06 pg, http://genome.jgi.doe.gov/Astpho1/), that of Coccomyxa subellipsoidea 49.0 

Mbp (~0.05 pg) (Blanc et al. 2012), and that of Helicosporidium sp. only 10.5 Mbp (~0.01 pg), being 

one of the smallest genomes among free-living eukariotes (Pombert et al. 2014). The small genome 

size, however, is not due to a functional reduction (e.g. through massive loss of gene families) and 

therefore results in high genomic compactness (Pombert et al. 2014). Asterochloris sp. shows 128 

gene models per Mbp, i.e. approximately 58% of its genome consists of coding genes, for the 

shrinkage of introns and non-coding intergenic regions. This is frequently associated to a 

transcriptional overlap (Williams et al. 2005), that potentially represents a problem in the de novo 

transcriptome assembly process. Unfortunately, the recently sequenced genome of a T. gelatinosa 

strain (ASM81890v1, see Bioproject PRJNA263654), with its 60.1 Mbp size, is not yet annotated. 

Furthermore, that strain differs genetically, on average, by 6.56% within ORFs from the isolate of 

this study, although the two strains have been given the same species name. This fact reflects the 

unsatisfactory taxonomy of the genus Trebouxia and the actual underestimation of genetic divergence 

within infrageneric taxa (Friedl 1989). The analysis of the nuclear ITS region have indeed already 

detected a high heterogeneity within other Trebouxia species (Piercey-Normore 2006; Leavitt et al. 

2013; Muggia et al. 2014), and in the near future new infrageneric taxa will likely be recognized for 

lineages now gathered under the same name (O'Brien 2013; Muggia et al. unpublished data). Also T. 

gelatinosa is evidently heterogeneous and certainly deserves further study from this point of view. 

 

Dehydration- and rehydration-induced gene expression changes in T. gelatinosa and 

comparison with other desiccation-tolerant (DT) photosynthetically active organisms 

RNA-seq analyses can only provide information concerning the relative abundance of different 

mRNAs in a sample, so one should take into account that the TPM values we used do not represent 

an absolute measure of the actual abundance of mRNAs in a sample, but they are rather proportional 

to the ratio of their molar concentration over the sum of those of all transcripts in the pool of mRNAs 

(Musser and Wagner 2015). 

The gene expression analysis showed that the D and R transcriptomes were unexpectedly very similar. 

This is an important feature which cannot be interpreted as a failure of the algae to recover from 

desiccation, which typically occurs within minutes or a few hours (Gasulla et al. 2009). The same 

conditions applied in this experiment should not be considered as particularly stressful for T. 

gelatinosa, for two reasons. First, Trebouxia species can withstand harsher conditions than those 

applied in this study, such as very long periods in the desiccated state (up to 45 days) under photo-

oxidative conditions (Candotto Carniel et al. 2015; Candotto Carniel et al. 2016). Second, we could 

not detect any significant degradation of mRNAs caused by dehydration (D samples) in comparison 
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to the hydrated situations (C and R samples). Maintenance of RNA stability has been previously 

demonstrated to be a key protective strategy in DT plants (Dinakar and Bartels 2012). Interestingly, 

the transcripts obtained from D displayed a lower drop in the 3’ to 5’ end sequencing coverage, which 

suggests the presence of an unknown mRNA protection mechanism activated in response to 

dehydration (Online Resource 1). On the other side, the choice of keeping cultures at full hydration 

for a long period of time was essential to single out those genes which are expressed under the best 

conditions, although these rarely occur in nature (Lange and Green 2008), and usually only in a 

limited period of the year (Tretiach et al. 2013). 

In T. gelatinosa, one of the major differences between C, D and R is the highly significant up-

regulation of most genes related to the photosynthetic apparatus. Its maintenance is a priority in 

homoiochlorophyllous DT organisms because photosynthesis must fully recover as soon as possible 

upon rehydration to gain a positive CO2 balance even when rehydration events are short and erratic. 

Several aeroterrestrial algae, all lichens and DT mosses can actually restore photosynthesis in a few 

minutes after rehydration (Veerman et al. 2007; Kosugi et al. 2009; Lüttge and Büdel 2010; Cruz de 

Carvalho et al. 2014; Holzinger and Karsten 2013; Candotto Carniel et al. 2015). The presence of 

abundant mRNA coding for components of the photosynthetic apparatus upon rehydration, such as 

photosystems (see Results session), may contribute to the fast re-establishment of photosynthesis. 

This pattern was also observed in the streptophyte Klebsormidium crenulatum by Holzinger et al. 

(2014), who argued that the up-regulation of genes related to the photosynthetic apparatus is aimed 

at preparing the organism for the next rehydration event. This hypothesis is supported by the findings 

of Aubert et al. (2007), who observed the increase of ribulose 1,5-diphospate to control levels after a 

few minutes upon rehydration of Xanthoria elegans (a lichen which has a species of Trebouxia as 

photobiont), meaning that the whole photosynthetic machinery is steadily maintained functional. 

Contrasting results have been collected in homoiochlorophyllous resurrection plants, displaying 

either a reduced (Rodriguez et al. 2010) or enhanced (Ma et al. 2015) production of photosynthesis-

related mRNAs (Table 6). The immediate synthesis of structural components of the photosynthetic 

apparatus upon rehydration could also be interpreted as a strategy to reduce the damage caused by 

prolonged periods in the desiccated status under high light. At these conditions PSI and PSII are, in 

fact, potential sources of ROS (Veerman et al. 2007) which may damage the photosystems themselves 

and also membranes and nucleic acids (Smirnoff 1993; Kranner et al. 2008). This damaging action is 

usually countered by non-enzymatic antioxidant molecules coupled with the activity of ROS 

scavenging enzymes (Kranner and Birtić 2005). The expression of genes coding for these 

mechanisms is usually up-regulated in DT plants (Mowla et al. 2002; Iturriaga et al. 2006; Rodriguez 

et al. 2010; Gechev et al. 2013) (Table 6). In our case, the expression of most of the primary ROS 
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scavenging enzymes remained steady but two DFR homologs were over-expressed (with a FC ~2 

times) in dehydrated samples. DFR is a crucial enzyme for the production of the flavonoid-like 

anthocyanins and proanthocyanidins, which is up-regulated in response to dehydration in drought-

tolerant cowpea as well as in loblolly pine seedlings (Iuchi et al. 1996; Watkinson et al. 2003). 

Interestingly, flavonoids are thought to act as a secondary ROS-scavenging system in plants subject 

to high light stress, especially when the chloroplast antioxidants are depleted and the ROS are free to 

diffuse in the cytosol (Fini et al. 2011). Considering that the synthesis of flavonoids and the up-

regulation of related enzymes have been reported in resurrection plants (Ma et al 2015; Moore et al. 

2005) subjected to water stress we cannot exclude that this secondary ROS-scavenging system might 

play a role in the intracellular redox homeostasis in Trebouxia, especially when dehydration occurs 

under light regimes/levels that can induce ROS production.  

Another important ROS source, especially upon metabolism reactivation, is the mitochondrion. We 

detected the over-expression of one mitochondrial manganese superoxide dismutase (MnSOD), an 

enzyme catalyzing the dismutation of superoxide anion to hydrogen peroxide. The up-regulation of 

this enzyme upon dehydration may be a way to build-up MnSOD mRNAs in preparation for 

rehydration, to replace the enzymes inactivated by ROS (Weissman et al. 2005). In addition, the up-

regulation of three microsomal glutathione S-transferases pertaining to the MAPEG family could also 

be part of a mechanism to keep the intracellular redox state under control. Although the role of these 

trans-membrane enzymes has not been elucidated yet in plants, their role in cellular protection against 

ROS damage in animals has been clearly documented (Shi et al.2012). 

In Trebouxia spp., loss and gain of water cause gross morphological modifications (Honegger 1995), 

with important effects on cell ultrastructure. Whenever cells experience dehydration, certain 

mechanisms need to be adopted to follow the shrinkage of the cell wall, avoiding the detachment of 

the plasma membrane. The regulation of expansins may possibly explain how this is achieved in T. 

gelatinosa. Expansins disrupt non-covalent polysaccharides bonds and are involved in cell wall 

flexibility (Cosgrove 2000). Their over-expression upon rehydration can thus be read as a preparation 

for the next dehydration event. Although their role in desiccation tolerance of the resurrection plant 

C. plantagineum has been recognized for a long time (Jones and McQueen-Mason 2004), this is the 

first evidence of their possible involvement in desiccation tolerance in an aero-terrestrial Chlorophyte.  

Gain of water can also be harmful since tearing of the membranes due to the sudden inrush of water 

is thought to be a cause of irreparable damage in many desiccation sensitive plants (Pammenter and 

Berjak 1999). The increase of membrane permeability to water can be seen as an adaptation to avoid 

damage to the membranes upon rehydration, especially if rehydration events are frequent. In T. 

gelatinosa, five TIP and PIP aquaporins were significantly up-regulated in dehydrated samples, but 
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their expression remained steady with rehydration. Plant aquaporins have been implicated in drought 

stress tolerance in several vascular plants, although their expression patterns largely vary depending 

on the isoform and tissue (Šurbanovski et al. 2013). For example, an enhanced expression of 

aquaporins has been observed in the desiccated resurrection plants C. plantagineum, Reaumuria 

soongorica and Sporobolus stapfianus, suggesting that they may have a regulatory role in maintaining 

cell turgor (Liu et al. 2014; Mariaux et al. 1998; Neale et al. 2000). More recent studies identified a 

Tonoplast Intrinsic Protein (TIP) in the small vacuoles of the bundle sheath cells of the resurrection 

grass Eragrostis nindensis, indicating that it may also cover an important role in the mobilization of 

solutes from the small vacuoles upon rehydration (Vander Willigen et al. 2004). On the other hand, 

aquaporins were strongly down-regulated in the dehydrated monocot resurrection plant Xerophyta 

humilis (Collett et al. 2004) (Table 6).  

Beside morphological and ultrastructural modifications, loss and sudden gain of water cause the 

alteration of the structure and interactions of molecules. Interestingly HSPs, which prevent the 

denaturation of proteins and avoid their aggregation (Bartels and Sunkar 2005; Prieto-Dapena et al. 

2008; Sun et al. 2001), seem not to be involved in the desiccation tolerance of T. gelatinosa. Indeed, 

the high expression level of several HSPs in the control samples (Online resource 12) was followed 

by a highly significant reduction during dehydration, which in many cases further decreased upon 

rehydration. On the contrary the A. erici HSP90 expression increased during dehydration, remaining 

higher than controls also during rehydration (Gasulla et al. 2013). The same trend, but for other HSPs, 

was observed in mosses (e.g. Fontinalis antipyretica, Wang et al. 2004; Syntrichya ruralis, Cruz de 

Carvalho et al. 2014), lycophytes (e.g. Selaginella lepidophylla, Iturriaga et al. 2006) and resurrection 

plants as well (e.g. C. plantagineum, Alamillo 1995) (Table 6). We are still unable to explain this 

peculiar behaviour, and certainly further analyses are needed to clarify this pattern and to understand 

the role of chaperones in the desiccation tolerance of T. gelatinosa.  

Another unexpected result regards Late Embryogenesis Abundant proteins (LEAs). We found only 

few genes encoding for LEAs sensu stricto in T. gelatinosa: one dehydrin (group 2 LEAs) and two 

group 3 LEAs. More interestingly, the expression of these genes was constitutive and did not vary in 

relation to hydration. This expression pattern differs from those observed in other DT organisms 

(Table 6), where LEA proteins are commonly up-regulated during dehydration and/or rehydration. A 

constitutive expression of these proteins (i.e. in fully hydrated samples) was observed in the 

resurrection plant H. rhodopensis (Gechev et al. 2013), but in this case these genes were further up-

regulated during dehydration. In vascular plants LEAs form a heterogeneous class that can be 

subdivided into at least five major groups (Cuming 1999), with several dozen genes (Hundertmark 

and Hincha 2008; Du et al. 2013; Lan et al. 2013), whose precise mechanism of action is still unclear 
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(Goyal et al. 2005; Tunnacliffe and Wise 2007). The low number of LEAs in T. gelatinosa, consistent 

with the situation observed in the genomes of other Trebouxiophyceae, suggests that the gene family 

expansion observed in vascular plants did not occur in this lineage. However, we found seven genes 

coding for proteins similar to the cold regulated LEA-like proteins of the Antarctic strain NJ-7 of 

Chlorella vulgaris (Liu et al. 2011). While it is certainly noteworthy that four out of these seven genes 

were constitutively expressed at very high levels and that the remaining three were over-expressed 

upon dehydration, the involvement of this poorly known gene family in desiccation-tolerance in 

Trebouxia remains to be investigated. Overall, LEAs activation does not seem to play a relevant role 

in response to dehydration in T. gelatinosa, further corroborating the idea that this organism mostly 

relies on alternative strategies to deal with the effects of dehydration. 

The over-expression of cyclins (specifically of G2/mitotic-specific cyclins A) is a puzzling feature of 

the dehydration trascriptome of T. gelatinosa. Since the persistence of cyclin A prevents the 

stabilization of the kinetochore/microtubules complex (Kabeche and Compton 2013), this suggests 

that cell cycle progression has been blocked in dehydrated T. gelatinosa cells, similarly to what occurs 

in K. crenulatum (Holzinger et al. 2014). 

The gene expression patterns described here for T. gelatinosa subjected to dehydration and a 

subsequent rehydration supports the idea that desiccation tolerance in T. gelatinosa is mostly achieved 

through: (i) constitutive mechanisms, which confer a background protection (Oliver et al. 2005), as 

already hypothesized by Junttila and Rudd (2012) for the lichen C. rangiferina and by Gasulla et al. 

(2013) for the alga A. erici; (ii) inducible mechanisms similar to those observed in mosses and 

resurrection plants, e.g. cell wall modifications and aquaporins; (iii) inducible mechanisms typical of 

T. gelatinosa, i.e. those mediated by DRPs, that will be further discussed in the next section.  

 

DRPs: a peculiarity of Trebouxia gelatinosa transcriptome 

The most intriguing feature of the T. gelatinosa trascriptome probably regards the gene family 

encoding for Desiccation Related Proteins (DRPs), whose diversification finds no parallelism in other 

DT organisms investigated so far. DRPs were firstly described in C. plantagineum (Bartels et al. 

1990; Piatkowski et al. 1990) and later in other resurrection (Iturriaga et al. 1992; Collett et al. 2004; 

Ingle et al. 2007) and non-resurrection plants (Zha et al. 2013). However, although DRPs have been 

frequently implicated in desiccation tolerance (Bartels et al. 1990; Piatkowski et al. 1990; Battista et 

al. 2001), their mechanism of action is still unknown and several authors have pointed out that they 

may cover additional functions in higher plants (Zuo et al. 2005; Guo et al. 2008; Guo et al. 2011; 

Zha et al. 2013). As we have reported in the results section, DRPs are present also in several unrelated 

bacterial groups, including the Deinococcus/Thermus phylum, some sporigenous Actinobacteria, 
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Acidobacteria, some Betaproteobacteria (Burkholderiales) and some Alphaproteobacteria (mainly 

pertaining to Sphingomonadales and Rizhobiales). The function of DRPs has been unequivocally 

linked to DT in Deinococcus radiodurans, since the deletion of the locus DRB0118 determines a 75% 

loss in viability of desiccated cultures (Battista et al. 2001), and its expression is regulated by the 

crucial stress response regulator drRRA (Wang et al. 2008). Overall, it is certainly noteworthy that 

bacterial DRPs are mostly associated with taxa adapted to extreme environments or even tolerant to 

extreme desiccation (Mattimore and Battista 1996; Hiraishi et al. 2000; Farias et al. 2011; Quintana 

et al. 2013; Tatar et al. 2013). 

Despite the lack of functional evidence, the presence of the ferritin-like domain suggests that DRPs 

might be involved in the protection mechanisms against oxidative stress, since other protein families 

containing the ferritin-like domain have been implicated in this function. For example, DPS prevent 

oxidative damage in bacteria, by either oxidizing iron to avoid the formation of oxidative radicals or 

by physically protecting DNA chains. This behaviour has also been specifically linked to desiccation 

tolerance in Rhodococcus sp. (Haikarainen and Papageorgiu 2010) and to photo-oxidative stress 

related to rehydration in the cyanobacterium Nostoc flagelliforme (Liang et al. 2012). There is clear 

evidence that classical ferritins themselves have a fundamental role in oxidative stress protection in 

various vascular plants, due to their potential to detoxify excess iron and dioxygen in mitochondria 

(Ravet et al. 2009; Briat et al. 2010). Moreover, the up-regulation of ferritins has previously been 

described in response to dehydration in mosses and red algae (Wang et al. 2009; López-Cristoffanini 

et al. 2015). The possibility that Trebouxia DRPs are similarly involved in protection from oxidative 

stress is particularly intriguing, considering that several ROS-scavenging enzymes were expressed at 

a steady level during the dehydration/rehydration experiment. 

However, the sequence peculiarities of DPRs, including the presence of the DUF1 domain, leave their 

functional role still open to speculation. The 13 DRPs genes found in the T. gelatinosa transcriptome 

display a very different behavior in response to the water status of the alga (Table 5). This, together 

with their structural diversification (Fig. 5a) and different predicted subcellular localization, makes 

the understanding of the possible functions even more puzzling.  

It is evident that the DRPs gene family has undergone relevant expansion in T. gelatinosa. Two other 

lichen chlorobionts belonging to Trebouxiophyceae, Asterochloris sp. and C. subellipsoidea, have 

only 5 and 7 DRPs, respectively. Alternatively, in most other green algae DRPs are usually absent or, 

as in few cases, they are present in just single copy. Bayesian phylogenetic inference clearly pointed 

out that DRPs of green algae are unlikely to be orthologous to those found in Embryophytes, as they 

share a surprising sequence similarity to those found in Bacteria (Fig. 5b). In particular, bacterial 

DRPs and those belonging to green algae group I are virtually indistinguishable, whereas those 
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belonging to group II are well recognizable due to the presence of the C-terminal DUF2 domain. This 

unexpected result suggests a bacterial origin for Trebouxia DRP genes, which may have been 

ancestrally acquired by horizontal gene transfer (HGT) from bacterial species associated with lichens. 

Indeed, the recognition of bacterial communities as a “third partner” in lichen symbioses shows how 

the traditional concept of lichens needs to be expanded (Grube et al. 2009; Erlacher et al. 2015), as 

originally proposed by Farrar (1976). Several metagenomic studies have identified 

Alphaproteobacteria (Rizhobiales, Rhodospirillales and Sphingomonadales in particular) as the 

dominant group in lichen-associated bacterial communities, usually followed by extremophile 

Acidobacteria (Bates et al. 2011; Printzen et al. 2012; Erlacher et al. 2015). The overlap between 

lichen-associated bacteria and those which have DRPs genes is striking and suggests that the 

possession of DRPs represents an evolutionary advantage for bacteria associated with lichens. On the 

other hand, beneficial genes could be theoretically passed by HGT between any of the three 

components of the lichen symbiosis (the bacterial community, the photobiont and the mycobiont), 

enabling long-term adaptation to specific environmental conditions or stresses (Tunjić and Korac 

2013), possibly including water stress tolerance. HGT events between photobionts (including 

Trebouxia spp.) and fungi are well documented (Beck et al. 2014), as well as HGT from bacteria to 

fungi (Schmitt and Lumbsch 2009; McDonald et al. 2012). To the best of our knowledge, the 

acquisition of DRPs from symbiotic extremophile bacteria would be one of the first documented 

instances of HGT from bacteria to lichen photobionts. 

Regardless of the evolutionary origin of DRPs, the investigation of their function and diversification 

in other species of the genus Trebouxia will be the next challenge. 

 

Conclusions 

Our transcriptomic analysis of the green aero-terrestrial alga/lichen photobiont T. gelatinosa shed 

some light on the molecular mechanisms which are activated or repressed by changes in the water 

status. Some of them are similar to those observed in other DT organisms, including the regulation 

of aquaporins and genes involved in the photosynthetic apparatus or the steady expression of most 

genes related to the primary antioxidant defenses. In particular, the latter behaviour highlights how 

constitutive mechanisms are used by T. gelatinosa to cope with unpredictable, sudden water loss. 

This could be an additional explanation on how Trebouxia-bearing lichens can face photo-oxidative 

conditions (Kranner et al. 2005; Candotto Carniel et al. 2015) and specific photochemical pollutants, 

such as ozone (Bertuzzi et al. 2013). On the other hand, the differences observed with DT vascular 

plants (Table 6) might be attributed to the remarkable differences existing between these organisms. 

Trebouxia gelatinosa and vascular plants are indeed phylogenetically very distant (they diverged 



48 

 

approximately 700 mya). This results in pronounced morphological differences, which in particular 

determine the different speed of dehydration these organisms are subjected to: in the pluricellular, 

histologically complex DT vascular plants dehydration is completed in days, whereas in the 

unicellular lichen photobiont dehydration can occur even in less than one hour. Constitutively 

expressed physiological mechanisms could thus help the organism to better cope with frequent and 

fast dehydration/rehydration cycles. 

Our study also revealed novel, potentially important features of T. gelatinosa adaptation to water 

stress: the most relevant one is the expansion and diversification of the DRPs gene family, which 

finds no parallelism in other DT organisms investigated so far. Although the function of these proteins 

is currently unknown, their responsiveness to changes in the water status, and their similarity to 

proteins mostly found in extremophile bacteria offer important cues for future studies.  

The high completeness of the assembled T. gelatinosa transcriptome here presented, represents now 

a valuable standard reference for RNA-seq based gene expression studies and a new tool to investigate 

in more detail the mechanisms at the base of desiccation tolerance of aero-terrestrial microalgae and 

lichens.  
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Online resources 

 

 

 

Online Resource 1 We assessed the possibility that dehydration may have increased RNA degradation, introducing 

possible biases in the analysis, by evaluating the sequencing coverage of long mRNA (> 10 Kb). In this case, a much 

higher drop in sequencing coverage from the 3’ to the 5’ end would have been expected in dehydrated samples compared 

to control and rehydrated samples. On the contrary, we can report that not only the mRNAs of desiccated samples did not 

appear to be more subject to 5’ to 3’ degradation, but that the intensity of degradation was lower compared to controls. 

 

 

Online Resource 2 Primers used for qRT-PCR analysis. 

Gene Primer ID Forward sequence Reverse sequence 

Desiccation related protein 5 DRP5 GGAGGCTTCTTCCCTAATGG TCTGCAGTCACCTGAGATGG 

Expansin 1 EXP1 GACAGGACTCCAGCTTTTGC CTGAGGGGAGATGACGTTGT 

Expansin 2 EXP2 CTGCAACATGGTGATGGAAC GAGGCCATTACTCCACGGTA 

Photosystem II PSII CTGATGACCCAGATGCCTTT GGTCCTTTGCCTGTCACAAT 

Heat shock protein 20 HSP20 GCTGAGCATCAGTGGTGAAA GAATGTGCCAAACCGTCTTT 

Heat shock protein 90 HSP90 AGCACAATGATGACGAGCAG GGAGATGGGGTAGCTGATGA 

Ribosomal protein L6 RPL6 AGGAGCTAGCTAGGGGCATC TCTCGTGCTTTGGGAACTCT 

Elongation factor1-beta EF1b CAAGAAAAGGCCAAGCTGAC TTGGATTGACCCCAGAGAAG 
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Online Resource 3 Full list of the DRP sequences used for the phylogenetic analysis and their accession IDs. 

GREEN ALGAE 

Asterochloris sp. (pg00051, pg00071, pg00133) 

Auxenochlorella protothecoides (XP_011399816.1, XP_011395871.1) 

Chlamydomonas_acidophila (GBAH01011280.1) 

Chlamydomonas reinhardtii (XP_001689614.1) 

Coccomyxa subellipsoidea (XP_005651445.1, XP_005645257.1, XP_005645325.1, XP_005651481.1, 

XP_005651480.1, XP_005645326.1) 

Monoraphidium neglectum (KIZ05609.1) 

 

CHAROPHYTAE 

Klebsormidium flaccidum (JO255866.1) 

 

LAND PLANTS 

Arabidopsis thaliana (NP_564518.1, NP_191832.1) 

Craterostigma plantagineum (P22242.1) 

Glycine max (XP_003533131.1, NP_001241405.1, XP_003546306.2, XP_006597690.1, XP_003528608.1, 

XP_003528610.1, XP_006587989.1) 

Macuna sempervirens (AFD10411.1) 

Medicago truncatula (XP_003594696.1, XP_003594692.1, XP_003594693.1, KEH32354.1) 

Oryza sativa (EAY93988.1, NP_001050089.1, NP_001054671.2, AAU44142.1) 

Physcomitrella patens (XP_001771514.1, XP_001760386.1) 

Selaginella moellendorffii (XP_002977644.1, XP_002972030.1, XP_002965677.1) 

Sorghum bicolor (XP_002447761.1, XP_002465286.1, XP_002440607.1) 

Zea mays (NP_001150304.1, NP_001149373.1, XP_008663177.1, NP_001142402.1) 

 

BACTERIA 

Acidisphaera rubrifaciens (WP_048861735.1) 

Actinoplanes sp.N902109 (WP_041833689.1) 

Amycolatopsis azurea (WP_005154953.1) 

Amycolatopsis orientalis (WP_044854273.1) 

Comamonas sp.B9 (WP_021026695.1) 

Deinococcus deserti (WP_012692797.1) 

Deinococcus ficus (WP_027462050.1) 

Deinococcus frigens (WP_029479228.1) 

Deinococcus geothermalis (WP_011530456.1) 

Deinococcus misasensis (WP_034344700.1) 

Deinocossus pimensis (WP_045233845.1) 

Delftia tsuruhatensis (WP_047327845.1) 

Granulicella mallensis (WP_044178539.1) 

Granulicella tundricola (ADW70652.1) 

Kirrobacter mercurialis (WP_039097173.1) 

Kribbella catacumbae (WP_026162498.1) 

Massilia sp.9096 (WP_036177468.1) 

Meiothermus ruber (WP_013013224.1) 

Nocardiopsis synnemataformans (WP_017567992.1) 

Rhodococcus sp.AW25M09 (WP_008712540.1) 

Salinisphaera hydrothermalis (KEZ79181.1) 

Sinorhizobium meliloti (WP_028054988.1) 

Skermanella aerolata (WP_044435321.1) 

Sphingobium sp.C100 (WP_024019515.1) 

Sphingomonas echinoides (WP_010406016.1) 

Sphingomonas phyllosphaerae (WP_022685724.1) 
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Sphingomonas taxi (WP_038664756.1) 

Terriglobus roseus (AFL87044.1) 

 

 

 

Online Resource 4 Chimeric contigs report relative to Trebouxia gelatinosa transcriptomic analysis; the number of ORFs 

annotated on each contig is shown on the x axis and the number of contigs observed for each category is indicated on the 

y axis. 

 

 

Online Resource 5 Summary of the Trebouxia gelatinosa genes expression trends during dehydration and rehydration; 

genes were classified into 9 groups based on their up- or down-regulation in the dehydrated vs control and rehydrated vs 

dehydrated comparisons. 

 

 

 

 

 

 

: up-regulated;  : down-regulated; = : stable

 

 

Group

p 

Dehydrated Rehydrated 

Dehydrated 

D 

Number of genes % of the total 

 vs vs   
 Control Dehydrated   

 
 11313     1   12 0.09 

2  = 479 3.50 
3   39 0.28 
4 =  84 0.62 
5 = = 12533 91.83 
6 =  74 0.54 
7   54 0.40 
8  = 366 2.68 
9   7 0.05 

 

 

 

 

    
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Online Resource 6 Spaghetti plot showing the transcriptional signature of Trebouxia gelatinosa selected genes pertaining 

to gene expression trends 1, 3, 7, 9 (see Online Resource 3). Fold change values relative to the control sample are shown 

on the y axis. 

 

 

 

Online Resource 7 Scatter-plot summarizing the comparison of control vs dehydrated (a), dehydrated vs rehydrated (b) 

and control vs rehydrated (c) expression profiles of Trebouxia gelatinosa. Log2 TPM expression values are plotted on the 

x and y axis. Differentially expressed genes identified by the Kal’s Z-test on proportions (FDR corrected p-value < 0.01 

and proportion fold change > 2) are marked by red dots. Over-expressed genes following rehydration are located above 

the bisector line; down-regulated ones are located below. 
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Online Resource 8 List of the 10 Trebouxia gelatinosa genes showing the highest proportion fold change (FC) values in 

the dehydrated vs control and rehydrated vs dehydrated comparison. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Description Proportion FC 

Dehydrated vs Control   

 Over-expressed   

    Unknown (DUF1254 domain containing) 106.89 

 PRLI-interacting factor L (cobalamin biosyntheis related protein) 58.10 

 DRP6 20.17 

 PurA ssDNA and RNA-binding protein 13.50 

 Abscisic acid mediated signaling pathway  13.04 

 GDSL-like Lipase/Acylhydrolase 12.79 

 Unknown 11.52 

 Unknown 10.53 

 Histone H2A 9.24 

 Unknown  8.79 

     
 Under-expressed  
    Unknown -87.90 

 Glycosyltransferase-like protein (DUF604 domain containing) 

 

-53.54 

 Unknown -41.83 

 T-complex protein 11 -30.44 

 Unknown -29.66 

 T-complex protein 11 -26.72 

 Unknown -23.81 

 Unknown -22.34 

 Unknown -19.94 

 Unknown -19.54 

    
Rehydrated vs Dehydrated   

 Over-expressed   

    DRP5 18.45 

 Glycosyltransferase-like protein (DUF604 domain containing) 18.09 

 Unknown 17.00 

 Unknown 13.66 

 T-complex protein 11-like 12.31 

 Unknown 11.50 

 Expansin-like protein 8.59 

 Unknown 8.45 

 Proton phosphate symporter 8.38 

 3-oxoacyl ACP synthase 7.16 

     
 Under-expressed   

    GDSL-like Lipase/Acylhydrolase -9.66 

 Cold-regulated protein -8.03 

 Unknown -7.41 

 Beta-lactamase like -7.39 

 PRLI-interacting factor L (cobalamin biosyntheis related protein) -7.25 

 Unknown -6.71 

 Unknown -6.51 

 Glycosyl hydrolase catalytic core -4.44 

 Subtilase family -4.39 

 Unknown -4.39 
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Online Resource 9 Summary of the hypergeometric test on annotations performed on the Trebouxia gelatinosa sets of 

differentially expressed genes in the rehydrated vs control comparison.  

 Category ID Description P-value Proportion 

Rehydration vs Control 

 Up-regulated 

       eggNOG COG1523 Type II secretory pathway, pullulanase PulA and 

glycosidases 

1.47E-5 4/4 
 GO_CC GO:000952

2 

photosystem I 1.11E-16 19/23 

 GO_CC GO:000952

3 

photosystem II 8.87E-13 16/27 
 GO_CC GO:000953

5 

chloroplast thylakoid membrane 1.49E-11 35/146 

 GO_CC GO:000587

4 

microtubule 1.01E-6 24/120 
 GO_CC GO:000581

5 

microtubule organizing center 3.14E-3 7/30 

 GO_CC GO:003028

6 

dynein complex 4.27E-3 5/17 

 GO_CC GO:000592

9 

cilium 6.34E-3 9/51 
 GO_MF GO:001616

8 

chlorophyll binding 3.33E-16 17/23 

 GO_MF GO:004316

9 

cation binding 4.97E-7 14/46 
 GO_MF GO:000377

4 

motor activity 1.62E-5 7/15 

 GO_MF GO:000389

6 

DNA primase activity 4.80E-4 4/7 

 GO_MF GO:000028

7 

magnesium ion binding 4.56E-3 13/91 
 GO_MF GO:001711

1 

nucleoside-triphosphatase activity 4.60E-3 10/61 

 GO_BP GO:000976

5 

photosynthesis, light harvesting 0.00 17/21 
 GO_BP GO:001829

8 

protein-chromophore linkage 2.18E-12 16/27 

 GO_BP GO:005130

1 

cell division 5.14E-8 31/151 
 GO_BP GO:000706

7 

mitosis 6.05E-7 23/103 

 GO_BP GO:000627

0 

DNA replication initiation 5.24E-6 7/12 

 GO_BP GO:005125

8 

protein polymerization 2.11E-5 6/10 
 GO_BP GO:003017

4 

regulation of DNA-dependent DNA replication initiation 1.21E-4 4/5 

 GO_BP GO:000626

8 

DNA unwinding involved in replication 1.21E-4 4/5 
 GO_BP GO:001925

2 

starch biosynthetic process 1.43E-4 6/13 

 GO_BP GO:000598

3 

starch catabolic process 2.36E-4 6/14 

 GO_BP GO:001597

9 

photosynthesis 3.60E-4 11/47 
 GO_BP GO:000688

7 

exocytosis 4.11E-3 5/16 

 GO_BP GO:000597

5 

carbohydrate metabolic process 5.78E-3 11/65 
 GO_BP GO:000631

0 

DNA recombination 7.05E-3 9/49 

 GO_BP GO:000626

0 

DNA replication 7.91E-3 12/77 

 GO_BP GO:003024

5 

cellulose catabolic process 9.16E-3 5/19 
 PFAM GO:001616

8 

chlorophyll binding 3.33E-16 17/23 

 PFAM GO:004316

9 

cation binding 4.97E-7 14/46 
 PFAM GO:000377

4 

motor activity 1.62E-5 7/15 

 PFAM GO:000389

6 

DNA primase activity 4.80E-4 4/7 
 PFAM GO:000028

7 

magnesium ion binding 4.56E-3 13/91 

 PFAM GO:001711

1 

nucleoside-triphosphatase activity 4.60E-3 10/61 

       Down-regulated 

       eggNOG COG2217 Cation transport ATPase 4.27E-4 4/11 
 eggNOG COG5021 Ubiquitin-protein ligase 6.23E-4 4/12 

 GO_BP GO:000695

0 

response to stress 1.28E-6 14/78 
 GO_BP GO:000940

8 

response to heat 3.91E-5 10/55 

 GO_BP GO:006000

3 

copper ion export 1.36E-4 4/8 
 GO_BP GO:000675

4 

ATP biosynthetic process 2.36E-4 6/24 

 GO_BP GO:001648

5 

protein processing 3.83E-4 4/10 

 GO_BP GO:000645

7 

protein folding 1.79E-3 13/133 
 GO_BP GO:000650

8 

proteolysis 3.14E-3 17/211 

 GO_CC GO:000588

6 

plasma membrane 2.90E-3 34/575 
 GO_CC GO:000050

2 

proteasome complex 4.18E-3 5/30 

 GO_CC GO:000953

5 

chloroplast thylakoid membrane 6.79E-3 12/146 

 GO_MF GO:000400

8 

copper-exporting ATPase activity 1.15E-4 4/8 
 GO_MF GO:000425

2 

serine-type endopeptidase activity 8.53E-4 8/55 

 GO_MF GO:001688

4 

carbon-nitrogen ligase activity 1.06E-3 5/22 
 GO_MF GO:001711

1 

nucleoside-triphosphatase activity 1.70E-3 8/61 

 PFAM PF00012 Hsp70 protein 3.96E-7 7/14 
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 PFAM PF02374 Anion-transporting ATPase 3.45E-5 4/6 
 PFAM PF01425 Amidase 7.05E-4 5/19 

 PFAM PF00004 ATPase family associated with various cellular activities 

(AAA) 

2.07E-3 9/72 

      Up- and down-regulated genes were analyzed separately. eggNOG: evolutionary genealogy of genes: Non-supervised Orthologous Groups; 

GO_BP: Gene Ontology Biological Process; GO_CC: Gene Ontology Cellular Component; GO_MF: Gene Ontology Molecular Function; 

PFAM: Protein Family. The proportion column indicates the number of differentially expressed genes in respect with the total number of genes 

annotated with the same term in the entire Trebouxia gelatinosa transcriptome.  

 

 
Online Resource 10 List of the 30 most expressed genes in the control, dehydrated and rehydrated samples of Trebouxia 

gelatinosa. The rank of expression per sample, ordered by decreasing values from the most to the least expressed, is 

displayed.  

  Description Normalized means 

Control     

1 HSC70 12461.15 

2 Unknown Glycine-rich protein 7159.14 

3 C2-domain containing protein_1 6364.77 

4 HSP90 5778.33 

5 HSP20_1 5156.20 

6 Unknown protein_1 4942.85 

7 Unknown protein_2 4938.49 

8 Elongation factor 1-alpha 4878.50 

9 Oxygen evolving enhancer protein 1 4872.42 

10 DRP1 4805.87 

11 Cold regulated protein_1 4610.81 

12 DNAJ protein homolog 4340.36 

13 HSP20_2 4294.05 

14 Ribosomal protein S20 4178.63 

15 Elongation factor 3 3912.00 

16 Cyclophilin 3820.11 

17 Chaperon-protein ClpB 355.009 

18 Chlorophyll a/b binding protein_1 3413.93 

19 Ribosomal protein S8 3411.92 

20 RUBISCO small subunit 3305.77 

21 Cold shock protein_1 3267.37 

22 Unknown protein_3 3265.03 

23 Ribosomal protein S6 3223.03 

24 Polyubiquitin 3053.03 

25 Ribosomal protein L26 3017.48 

26 Ribosomal protein L15 3005.49 

27 Ribosomal protein S3A 2917.57 

28 Ribosomal protein S7 2868.57 

29 Ribosomal protein S19 2724.38 

30 Ribosomal protein L4 2699.97 
   

Dehydrated     

1 Chlorophyll a/b binding protein_1 6832.96 

2 Cold regulated protein_1 5277.19 

3 Elongation factor 1-alpha 4847.59 

4 Unknown Glycine-rich protein 4186.83 

5 RUBISCO small subunit 4184.43 

6 Plastocyanin 4049.36 

7 Unknown protein_3 3958.44 

8 C2-domain containing protein_1 3920.50 

9 MnSOD 3641.60 

10 Cyclophilin 3576.73 
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11 Elongation factor 3 3275.34 

12 Chlorophyll a/b binding protein_2 3189.53 

13 Photosystem I reaction center subunit 2 3091.57 

14 Oxygen evolving enhancer protein 1 3031.50 

15 Photosystem II reaction center W protein 2951.80 

16 HSC70 2861.11 

17 Tubulin alpha chain 2741.22 

18 Cold regulated protein_2 2712.48 

19 Unknown protein_4 2674.84 

20 GAPDH 2613.38 

21 Ribosomal protein S20 2608.67 

22 Cold shock protein_2 2595.60 

23 C2-domain containing protein_2 2527.03 

24 Chlorophyll a/b binding protein_3 2430.70 

25 Oxygen evolving enhancer protein 2 2425.39 

26 Photosystem I reaction center subunit XI 2417.85 

27 Ribosomal protein S8 2351.25 

28 Glutharedoxin 2291.79 

29 HSP90 2270.06 

30 Ribosomal protein L19 2261.68 
   

Rehydrated     

1 Chlorophyll a/b binding protein_1 10853.68 

2 RUBISCO small subunit 6605.84 

3 Elongation factor 3 5302.69 

4 Elongation factor 1-alpha 5257.89 

5 Unknown Glycine-rich protein 5254.13 

6 Cold regulated protein_1 4986.01 

7 Tubulin alpha chain 4104.74 

8 Plastocyanin 3840.00 

9 Chlorophyll a/b binding protein_2 3589.22 

10 GAPDH 3499.78 

11 C2-domain containing protein_1 3415.71 

12 Cold shock protein_1 3139.78 

13 C2-domain containing protein_2 3100.00 

14 Unknown protein 3 3065.82 

15 Carbonic anhydrase_1 2950.85 

16 MnSOD 2860.31 

17 Chlorophyll a/b binding protein_3 2857.11 

18 Unknown protein_1 2815.44 

19 Cyclophilin 2786.76 

20 Fructose-bisphosphate aldolase 2754.13 

21 Oxygen evolving enhancer protein 1 2680.95 

22 Chlorophyll a/b binding protein_4 2617.73 

23 Cold shock protein_2 2552.25 

24 Ribosomal protein S8 2520.30 

25 Ribosomal protein S20 2500.20 

26 Carbonic anhydrase_2 2457.34 

27 Chlorophyll a/b binding protein_5 2406.58 

28 Ferredoxin 2378.67 

29 Unknown protein_2 2347.22 

30 Ribosomal protein S3A 2286.08 
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PHOTOBIONT TREBOUXIA GELATINOSA 

 

Elisa Banchia*, Fabio Candotto Carniela, Alice Montagnera, Francesco Petruzzellisa, Valentino 

Giarolab, Dorothea Bartelsb, Alberto Pallavicinia, Mauro Tretiacha 

 

a Department of Life Sciences, University of Trieste, Via Giorgieri 10,34127 Trieste, Italy 

b Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, 

Kirschallee 1, D-53115 Bonn, Germany 

 

*Corresponding author: Elisa Banchi 

 

Main abbreviations  

APX: ascorbate peroxidase 

CAT: catalase  

DRP: desiccation related protein  

DT: desiccation tolerant 

DW: dry weight  

EXP: expansin 

FW: fresh weight  

HSP: heat shock protein 

LHCII:  chlorophyll a-b binding protein of the light harvesting complex II 

MnSOD: manganese superoxide dismutase  

Pt: turgor pressure  

qRT-PCR: quantitative real-time PCR  

ROS: reactive oxygen species  

RWC: relative water content  

TLP: turgor loss point 

WC: water content  

Ψ: water potential  

Ψtlp: water potential at turgor loss point 
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Highlights  

• In T. gelatinosa gene expression is modulated by cell water potential 

• The down-regulation of the HSP70 transcript is not reflected on the protein level 

• Desiccation related proteins are involved in T. gelatinosa response to desiccation 

• Turgor loss is a key time point for T. gelatinosa gene expression 

 

Abstract  

The relation between water status and expression profiles of stress- and desiccation-related genes has 

been studied in the desiccation tolerant (DT) aeroterrestrial green microalga Trebouxia gelatinosa, a 

common lichen photobiont. Algal colonies were desiccated in controlled condition. During 

desiccation, the water status was assessed by measuring water content, relative water content (RWC) 

and water potential (Ψ), and identifying the turgor loss point (Ψtlp). On a subset of samples, selected 

on the basis of their Ψ, Ψtlp and/or RWC, quantitative real-time PCR was performed to measure the 

expression of ten different transcripts related to photosynthesis, antioxidant defense, expansins, heat 

shock proteins (HSPs), and desiccation related proteins (DRPs). The HSP70 protein expression was 

also evaluated by immunodetection. Our analysis showed that the moments just before and after Ψtlp 

were key time points for T. gelatinosa gene expression. Each cell water potential stimulated a 

different response in terms of significant genes up- or down-regulation, and this implies a finely 

regulated perception of water stress. The strong down-regulation of HSP70 gene expression observed 

during desiccation was not reflected at the protein level. The study provides the first experimental 

evidence of the central involvement of DRPs in T. gelatinosa desiccation tolerance.  

 

Key words 

Water potential, relative water content, HSP70, DRPs, turgor loss. 

 

 

1. Introduction 

 

Desiccation tolerance [1] is the ability to survive and recover metabolism after drying to 0.1 

g H2O g-1 of dry mass [2]. This corresponds to the loss of more than 90 % of the relative water content 

(RWC) and to a water potential (Ψ) of ~ -100 MPa or even lower [3]. Desiccation tolerance implies 

the capacity of an organism to survive in this state for ecologically relevant periods of time, resuming 

a normal metabolism in a relatively short time (from minutes to days) as soon as water becomes 
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available again. Desiccation tolerance can be found in phylogenetically distant taxa, from lichens and 

bryophytes to nematodes, rotifers, and tardigrades [4] and is typical of organisms which colonize 

substrates or environments with little and unpredictable water availability [5]. Desiccation tolerant 

(DT) photoautotrophs include aero-terrestrial micro-algae, lichens, bryophytes, several clubmosses 

and ferns and a few hundred adult angiosperms plus most of the angiosperms at the embryo stage (as 

seeds) [4]. Aero-terrestrial microalgae, in particular, have a global distribution and typically occur in 

biofilms on soil, rocks, leaves, tree bark, and man-made substrata [6]. Some taxa form long-living, 

stable symbiosis with fungi, i.e. are lichen photobionts, including Trebouxia (Chlorophyta), which is 

the most common and widespread genus of lichen photobionts [7]. All Trebouxias (c. 30 species; [8]) 

are DT, and the mechanisms of their desiccation tolerance are not yet understood. 

To cope with the effects derived by water loss, DT photoautotrophs apply multiple strategies. 

In most DT vascular plants, in which desiccation usually occurs in terms of days, the protection/repair 

mechanisms are activated by desiccation itself [9, 10]. On the other hand, DT non-vascular plants are 

subjected to frequent cycles of desiccation/rehydration that can last even a few minutes and thus they 

mostly rely on constitutive protection mechanisms [3, 4, 11]. In DT non-vascular plants, the influence 

of the water status and desiccation on molecular, physiological and morphological responses is far 

from being completely understood [12]. 

When desiccation is moderate, DT photoautotrophs accumulate compatible osmolytes (i.e. 

amino-acids, sugars, polyols) that allow osmotic adjustments [3]. Furthermore, an increased 

expression and accumulation of dehydrins, late embryogenesis abundant proteins (LEA), and heat 

shock proteins (HSPs) is commonly observed [13].  

As desiccation is known to cause impairment of redox equilibrium, both vascular and non-

vascular DT photoautotrophs must avoid oxidative damage derived from the accumulation of reactive 

oxygen species (ROS) [14]. ROS are harmful to cellular components like nucleic acids, 

polysaccharides, proteins and lipids [14]. Anti-oxidant defenses include protective enzymes like 

superoxide dismutase, catalase, peroxidases, and non-enzymatic molecules like glutathione and 

ascorbic acid [15]. An effective antioxidant system seems to be one of the most important 

prerequisites for desiccation tolerance [16]. 

During desiccation, one of the major threats for photoautotrophs is the loss of cell turgor. With 

turgor loss, the cell membrane progressively detaches from the cell wall [17], and the cell is thus 

subjected to mechanical and biochemical injuries that impair its functionality [3, 18]. This causes 

strong morphological modifications to the cell ultrastructure that can lead to irreversible damage to 

organelles and possibly to cell death [3, 18]. For these reasons, cell turgor loss is considered the best 

indicator of water stress in plant science [18].  
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Turgor loss can be monitored by measuring the water potential (Ψ), a parameter used to assess 

the water status in terms of potential energy per unit volume. Ψ measurements are not regularly 

applied (e. g. in lichenological studies; [19, 20]) as they are more time consuming than weight 

measurements to quantify the water content. However, Ψ measurements are definitely more 

informative, because they allow a description of the water status derived on irreversible 

thermodynamics, and the discrimination between extra- and intracellular water loss [5].  

Ψ of distilled water is 0 MPa, and the potential of cells in equilibrium is slightly negative due 

to the solutes [21]. When the cells lose water during desiccation, the decrease of turgor pressure (Pt, 

MPa) and/or the increase of solutes concentration cause a drop in the water potential [21]. When Pt 

reaches 0, cell turgor is lost and the water potential is mostly determined by the osmotic potential (i.e. 

cell solutes concentration). This point, known as water potential at turgor loss point (Ψtlp), reflects the 

ability of an organism to maintain cell turgor in the face of fluctuating water supply [22]. Turgor 

maintenance during desiccation might extend time available to perform metabolic activities, 

including photosynthesis [23], and thus Ψtlp has been widely measured in vascular plants and recently 

also in poikilohydric organisms, such as lichens and algae [5, 23]. Water potential isotherms 

(pressure/volume curves, PV-curves), that take into account -1/Ψ and water loss (or RWC), are 

commonly used to measure different cell parameters, including Ψtlp [24, 25]. Lower Ψtlp values have 

been linked to higher water deficit tolerance in organisms adapted to arid environments, as seen in 

vascular plants [26] and lichens [5]. 

Generally, Ψtlp of vascular plants is between -1 MPa and -3 MPa [22, 27, 28], and the Ψ value at 

which non-DT species can be dried without triggering irreversible damage, also known as the critical 

water potential, occurs between -5 and -10 MPa, corresponding to ~ 20-30 % RWC [29]. The critical 

water potential of DT species is far lower than that of non-DT species. In DT vascular plants, it can 

reach values as low as ~ -200 MPa [30] whereas in lichens and their symbionts [31, 32] and in DT 

bryophytes [33] the critical Ψ can reach values below ~ -600 MPa. To date, few studies have been 

conducted on the turgor loss response in DT non-vascular plants [12], and an estimation of Ψ in 

relation to water status would be important to understand if and how this feature is involved in 

desiccation tolerance of these organisms. 

Up to date, a single work was performed considering both Ψ and RWC in the lichen 

photobiont, Trebouxia sp. TR9 [34], showing that, at metabolomic level, water status affects mainly 

cell wall, extracellular polysaccharides (EPS), polyols and antioxidant protection. Candotto Carniel 

et al. [11] showed that desiccation tolerance of a further Trebouxia species, T. gelatinosa Archibald, 

mostly relies on constitutive mechanisms, but desiccation and rehydration affect also the gene 

expression of components of the photosynthetic apparatus, the ROS-scavenging system, HSPs, 
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expansins, and desiccation related proteins (DRPs) [11]. DRPs were first described in the resurrection 

plant Craterostigma plantagineum and have purportedly been linked to desiccation tolerance [35]. 

One of these DRPs, predicted to exist as small gene family (pcC13-62, [36]), presents similarities 

with T. gelatinosa DRPs. In T. gelatinosa the DRP family is highly expanded, exhibits high 

diversification in terms of cellular localization and structure, and the response to the water status is 

heterogeneous [11], a fact that asks for further investigations.  

In this study, we monitored the response of T. gelatinosa during desiccation describing the 

water status in terms of water content (WC), relative water content (RWC) and Ψ. We aimed to 

identify how the water status of T. gelatinosa triggers changes in the expression of stress- and 

desiccation-related genes, i.e. which are the key moments that activate the transcription of these 

important genes during water loss.  

 

1. Materials and methods 

 

1.1.Cultures of Trebouxia photobiont 

Trebouxia gelatinosa was isolated following Yamamoto et al. [37] from thalli of 

Flavoparmelia caperata (L.) Hale collected in the Classical Karst plateau (NW Italy). The algal 

cultures were subcultured on solid Trebouxia Medium (TM; 1.5 % agar) [38] every 30-45 days and 

kept in a thermostatic chamber at 18  1 °C and 20  2 μmol photons m-2 s-1 with a light/dark regime 

of 14/10 hours and a relative humidity of 53 %.  

Axenic cultures of T. gelatinosa were inoculated with 100 μl of a water suspension of 

approximately 3.5 × 106 cells mL-1 on cellulose acetate membranes (25 mm diameter, pore size 0.45 

µm, Sartorius Lab Holding GmbH), which were laid on 25 mL of solid TM (1.5 % agar) [38] at the 

bottom of Microbox Junior 40 vessels (Duchefa Biochemie), equipped with a micro-filter strip on the 

cover which allows gas exchange while keeping the internal volume in sterile conditions. The vessels, 

each containing six membranes, were kept in the thermostatic chamber at the same conditions 

reported above. On the 30th day of growth, a number of colonies (4 and 63 respectively) were used 

for Ψtlp assessment and desiccation treatment. 

 

1.2.Trebouxia gelatinosa Ψtlp assessment  

Four 30-days-old colonies (weight 0.22 ± 0.01 g) were taken from the vessels and used for the 

PV-curve measurements. Fresh colonies were progressively desiccated on a laboratory bench while 

maintained in the dark, at 21 ± 1 °C and with relative humidity ranging between 40 % and 55 %. 

Water potential (Ψ) measurements were performed using a dew point water potential meter (WP4, 
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Decagon Devices, Inc.) as the average of three subsequent values in the range below the error of the 

instrument (0.1 MPa), and coupled with measurements of sample fresh weight (FW). The experiment 

continued until the relationship between 1/Ψ and the cumulative amount of water loss by samples 

became linear (r2 > 0.98). PV-curves were finally processed according to Tyree and Hammel [24] to 

obtain Ψtlp. 

 

1.3.Desiccation treatment 

Sixty-three 30-days-old T. gelatinosa colonies (weight 0.22 ± 0.01 g) were randomly (Lehmer 

Pseudo random number generator) selected from the vessels and placed in groups of seven along the 

border of single filter paper discs (Whatman, 60±5 g m-2, 25 mm diameter) wetted with 100 µl of 

distilled water inside plate lids and left to desiccate at the air of the thermostatic chamber, at the same 

conditions described above. 

During desiccation, 9 sampling points were selected as defined in a preliminary experiment 

performed at the same conditions, in which the decreasing weight of fully-hydrated T. gelatinosa 

colonies was followed over time with a precision balance. In the final experiment, at each sampling 

point (T0-T8), one plate lid with seven colonies was randomly selected and one of its colonies was 

placed in a dew point water potential meter (WP4, Decagon Devices, Inc.) to measure the water 

potential (Ψ), calculated as the average of three subsequent values in the range below the error of the 

instrument (0.1 MPa). Then the colony was gently transferred from the membrane to a pre-weighed 

labeled 1.5 mL tube, soaked in liquid nitrogen and freeze-dried for 48 h. After freeze-drying, the tube 

was weighed on a precision balance to obtain the dry weight (DW) of the colony. 

Just before finishing the Ψ measurement, the other six colonies were transferred on the plate lid from 

the membrane to pre-weighed labeled 1.5 mL tubes, weighed on a precision balance for water content 

(WC) estimation, soaked in liquid nitrogen and stored at -80 °C. For the last time point (T8), colonies 

were kept in silica-gel for 24 h. The six colonies of each plate lid represent six replicates of the same 

sampling point (sample), which were referred to the specific Ψ measured on the seventh replicate. 

The water content (WC) was expressed as g H2O g -1 dry weight and calculated as WC = [(FW – DW) 

/ DW], where the fresh weight (FW) was the weight at the sampling point, and the dry weight (DW) 

was the average weight of the freeze-dried colonies. The relative water content was calculated as 

RWC = [(FW – DW) / (IFW - DW)] × 100 following Nardini et al. [5], where the water lost until the 

decline of Ψ was interpreted as extracellular, and subtracted from the T0 fresh weight to get the initial 

fresh weight (IFW), which was considered the weight at full turgor Nardini et al. [5]. 

Subsequent analyses, i.e. quantitative real-time PCR (qRT-PCR) of ten genes and immunodetection 

of HSP70, were performed on a subset of samples, selected on the basis of their Ψ, Ψtlp and/or RWC. 
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This subset consisted of samples in the fully-hydrated state (T0), after loss of most extracellular water 

(T1), before (T4) and after (T5) turgor loss, and immediately before (T7) and after (T8) reaching the 

desiccated state (RWC <10 %). 

 

1.4.RNA isolation and cDNA synthesis 

RNA was extracted with PowerPlant® RNA Isolation Kit (MO BIO Laboratories Inc.) from 

three out of six random chosen replicates of all the selected samples. RNA quality was verified with 

NanoDrop® 2000 (Thermo Fisher Scientific), followed by a denaturing 1 % agarose gel. cDNA was 

synthesized using IScript cDNA synthesis kit (Bio-Rad). 

 

1.5.Quantitative real-time PCR (qRT-PCR) 

qRT-PCR was performed to measure the expression of ten different transcripts, five encoding 

stress-related proteins and five desiccation-related proteins. The former were ascorbate peroxidase 

(APX), expansin I (EXPI), manganese superoxide dismutase (MnSOD), heat shock protein 70 

(HSP70) and the chlorophyll a-b binding protein of the light harvesting complex II (LHCII); the latter 

were the desiccation related proteins 1 (DRP1), 2 (DRP2), 6 (DRP6), 11 (DRP11) and 13 (DRP13).  

Primers (Table A.1) were chosen following Candotto Carniel et al. [11], Montagner et al. [39], 

or custom-designed with Primer3Plus [40]. Each reaction was performed in three technical replicates 

in a mix containing 1 µL cDNA (1:10 template dilution), 8 µL SSOAdvanced™ SYBR® Green 

Supermix (Bio-Rad) and 200 nM of each primer. The PCR amplifications were performed with CFX 

96™ real-time PCR System (Bio-Rad) using the following cycle: 98 °C for 30 minutes and 40 cycles 

at 95 °C for 10 minutes and 60 °C for 20 minutes. A melting curve analysis (65 °C to 95 °C increment 

0.5 °C for 5 minutes) was performed to verify the absence of non-specific amplification products. 

Transcript levels were calculated with Bio-Rad CFX Manager software (Bio-Rad), based on the 

comparative Ct method (2-ΔΔ Ct method) [41] and gene expression data were normalized using as 

housekeeping gene the ribosomal protein L6 (RPL6) [11, 39]. 

 

1.6.Proteins isolation 

Three out of six random chosen replicates of all the selected samples were grinded in liquid 

nitrogen, transferred to 1.5 mL tubes and resuspended in 100 µL of 1× Laemmli buffer [62.5 mM 

Tris–HCl pH 6.8, 10 % (v/v) glycerol, 2 % (w/v) SDS, 0.2M dithiothreitol (DTT) and 0.1 % (w/v) 

bromophenol blue [42]. Samples were then vortexed and incubated at 95 °C for 5 minutes. After a 3 

minutes centrifugation at 14000 r.p.m., protein extracts were recovered from the upper phase of the 

tube and transferred to a new tube. Samples were stored at -20 °C and incubated 5 minutes at 95 °C 
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before loading on the gel, when not immediately used for the analysis. To check the quality and 

quantity of the total proteins extracted, 12 % sodium dodecyl sulphate - polyacrylamide gel 

electrophoresis (SDS-PAGE) was performed according to Laemmli [42] and the gel was stained with 

Coomassie brilliant blue R250 [43]. 

 

1.7.HSP70 immunodetection 

To perform 12 % SDS-PAGE, 15 µg of proteins were used. Proteins were then transferred on 

a Hybond™ nitrocellulose membrane (Amersham) using the Criterion™ blotter apparatus (Bio-Rad, 

USA) [44]. The transfer of the proteins was obtained after 1 hour at 70 V with pre-chilled buffer. 

Before immunodetection, the membrane was stained for 30 minutes with Ponceau S red to check 

equal protein transfer. The membrane was incubated at 4°C overnight in blocking solution [3 % (w/v) 

skimmed milk in Tris-buffered saline] to prevent unspecific binding of antibodies. The membranes 

were incubated for 1 hour with HSP70/HSC70 primary antibody ([45], 1:1000 dilution), and for 45 

minutes with secondary antibody (anti-rabbit IgG-peroxidase, 1:5000 dilution, Sigma-Aldrich). 

Antigen-antibody complexes were detected with the ECL kit (Amersham) and a lumi-imager (LAS 

1000, Fujifilm). Densitometry of protein bands was done with Image J software 1.37 V (National 

Institute of Health). 

 

1.8.Statistics 

Statistics were performed with R version 3.2.0 [46]. A one-way Anova followed by a Fisher's 

LSD post-hoc test was applied to verify significant differences between the relative abundancy of 

transcripts and HSP70 protein content among samples. Figures were produced with Sigmaplot 10.0 

(Systat Software). 

 

2. Results 

 

2.1.Water relations  

 Complete desiccation of the T. gelatinosa colonies (RWC ~ 1 %) occurred in approximately 

10 hours (Fig. 1, Table A.2). Water loss was faster at the beginning of the desiccation: after the first 

four hours (T1), WC was halved (Fig. 1, Table A.2) and reached 0.01 g H2O g-1 DW in T8. 

Water potential decreased slowly from T0 to T4, and strongly decreased between T4 and T5 

(Fig. 1, Table A.2). Ψtlp assessed trough PV-curves measurement was ~ -3.62 ± 0.62 MPa, 

corresponding to a point between T4 and T5 of the desiccation process (Fig. 1). 
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Fig. 1. Water content (WC, n = 6) and water potential (Ψ) during desiccation in Trebouxia gelatinosa colonies (T0-T8). 

Those marked with an asterisk were used for the subsequent analyses. Ψtlp according to PV-curves. #according to 

Candotto Carniel et al. [32]. 

 

2.2. Effects of desiccation on genes expression at transcript level 

 Significant changes in the expression of all tested genes were observed during desiccation. 

Regarding anti-oxidant enzymes, both APX and MnSOD increased their expression at T1 (~ 40 % 

and 100 %, respectively), then decreased (from ~ 110 % to ~ 180 %) from T4 to T6 and increased 

again at T8 around initial levels (Fig. 2). EXP1 had an opposite expression pattern; it increased four 

times from T0 to T4, remaining high at T5 and then it decreased to less than one tenth of the T0 level 

at T7 and T8 (Fig. 2). HSP70 and LHCII had a different expression pattern as well: they remained 

stable until T2, to significantly decrease between T4 and T7 (~ 90 %) and increase again to the T0 

levels between T7 and T8 (Fig. 2). 

 The expression of DRP1 significantly increased to 40 % between T0 and T4, then it decreased 

back to T0 levels between T4 and T5 and increased again between T7 and T8 (Fig. 2). DRP2 and 

DRP6 shared a similar pattern, with the major increase (~ 50 %) of their expression at T4 and then a 

decrease of ~ 20 % from T5 to T8 (Fig. 2). DRP11 had the major increase at T4 (~ 40 %), then the 

expression decreased to the initial level from T5 to T8 (Fig. 2). DRP13 had also a major increase at 

T4 (~ 60 %), then it returned to initial levels at T5, decreased ~ 30 % at T7 and then it returned to 

initial levels at T8 (Fig. 2). 
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Fig. 2. Fold change in the expression of the 10 selected transcripts. Gene expression was determined using qRT-PCR for 

RNA of colonies of Trebouxia gelatinosa during desiccation. Different letters on the top of the bars indicate significant 

differences among samples (p < 0.05, n = 3). APX: ascorbate peroxidase; EXP1: expansin 1; MnSOD: manganese 

superoxide dismutase; HSP70: heat shock protein 70; LHCII: chlorophyll a-b binding protein of the light harvesting 

complex II; DRP: desiccation related protein. 

 

2.3. Effects of desiccation on the HSP70 protein level 

Desiccation did not affect the HSP70 protein level: no significant differences were found 

among the sampling points (Fig. 3). 
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Fig. 3. Fold change in the level of HSP70 protein. The level was assessed using immunodetection on 15 µg of proteins 

extracted from colonies of Trebouxia gelatinosa during desiccation. No significant differences were found among samples 

(p < 0.05, n = 3). 

 

 

3. Discussion 

 

Transcriptional activation or repression in plant cells involves a stress-sensor at the cell wall 

or plasma membrane, the generation and release of second messengers (including calcium ions, Ca2+) 

and the activation/inhibition of protein kinases (PKs) and phosphatase (PPs) [47]. A possible signal 

for the activation of the cascade of messengers is the modification of the environment surrounding 

the cells and/or a mechanical modification of the cell wall. Such stimuli might be the trigger for a 

gene expression change connected to the inducible mechanisms at the basis of Trebouxia gelatinosa 

response to desiccation. The aim of this study was to deepen the knowledge on T. gelatinosa 

desiccation tolerance. 

In studying plant responses to desiccation, the assessment of the water status is essential as 

most of the anatomical, physiological and biochemical alterations occur when the water content 

decreases below a certain level. Hence, in this work, WC, RWC and Ψ were used to describe the 

water status of the T. gelatinosa cells. WC provides a measurement of the quantity of water available 

per unit of dry mass [48], RWC expresses WC in % at a given time as related to the WC at full turgor 

[49], while Ψ is important for the assessment of the water deficit and turgor loss point [29]. 

 Part of the WC of fully hydrated T. gelatinosa is extracellular/apoplastic [50]; a similar water 

storage is commonly found in lichens [51] and in Trebouxia sp. [32]. In these organisms, considerable 

water can be lost before the water potential falls sufficiently to affect metabolism [52]. Based on the 

PV curves, Ψtlp of T. gelatinosa was ~ -4 MPa, a value also recorded by Petruzzellis et al. [23], when 

studying the lichen Flavoparmelia caperata and its isolated photobiont, i.e. the same alga studied 

here. The authors suggested that the turgor state influences the functionality of photosynthetic process 

in lichens and algae, and thus it might have a role also in the desiccation tolerance of T. gelatinosa.  
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In this work, ten and eight out of ten genes showed significant expression changes right before 

and after the turgor loss, respectively. Seven and five out of ten genes showed significant expression 

changes right before and after reaching the desiccated state (RWC ~ 1 %), respectively. 

Regarding the turgor loss, the major change in terms of up-regulation in the proximity of this 

moment was recorded in the expression of the gene coding for the cell wall protein expansin. When 

a plant cell loses water, the most evident result is a reduction of cell volume [53]: this can lead to a 

mechanical stress [53], due to the tension between the cell wall and the plasma membrane, occurring 

when turgor pressure is lost [54]. Tackling this stress efficiently seems to be decisive for DT plants 

[55]. Cell wall features, like composition, thickness, and presence of extracellular polysaccharides 

(EPS), are found to play a significant role in the desiccation tolerance of green algae, Trebouxia 

included [34, 56], as they avoid or retard desiccation [52]. When a cell shrinks, cell wall plasticity 

has a crucial role for the maintenance of its integrity. Cell wall extensibility depends on the underlying 

structure and on the activity of wall-modifying proteins, like expansins [57]. These proteins disrupt 

the bonds between non-covalent wall polysaccharides and have a role in the loosening of the cell wall 

[54, 58]. Expansin genes in general have been found to be up-regulated by abiotic stress conditions 

such as desiccation, osmotic stress and salinity [59]; an up-regulation of expansin expression was 

found in the DT plant C. plantagineum during both desiccation and rehydration [58]. Candotto 

Carniel et al. [11] proposed that expansins have a key role also in desiccation tolerance of T. 

gelatinosa, since they found a significant up-regulation in rehydrated T. gelatinosa colonies, while in 

the desiccated state the expression was stable. The flexibility of the cell wall is particularly important 

to prevent the mechanical stress at turgor loss [60]. The connection between water loss and cell wall 

has been investigated both in higher plants (see [54] and reference within) and in green algae [61]. In 

green algae desiccation leads to a shrinkage process, which is particularly spectacular in the sub-

spherical cells of Trebouxia with important effects on cell ultrastructure [12].  

In the alga investigated here, the major down-regulation before turgor loss occurred for the 

HSP70 gene. The expression of HSP70 significantly increased when RWC diminished under the 

threshold of 10 %. In higher eukaryotes, including plants, HSP70s are stress-inducible proteins [62]. 

They have a crucial role in protecting living organisms from environmental stresses and support 

correct protein folding under stress conditions [63]. A down-regulation of HSP70 gene expression in 

desiccated T. gelatinosa was already documented [11]. Decreased expression of members of the 

HSP70 gene family was also recorded during desiccation in the DT moss Physcomitrella patens [64], 

and for oxidative stress and heavy metal exposure in Trebouxia sp. [39, 65, 66]. Although the 

mechanisms of HSP70 function under stress conditions are not fully understood [62], the up-

regulation of HSP70 genes generally determines higher tolerance to abiotic stress in plants [62, 67]: 
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for this reason, HSP70 down-regulation as observed in T. gelatinosa still needs to be clarified. A 

change in plant HSP70 expression has been linked to the induction of Ca2+/calmodulin (CaM) genes 

[68]. Another pathway could include mitogen activated protein kinases (MAPK) that are involved in 

signal transduction and in signaling of plant abiotic stress [69]. Despite significant changes in mRNA 

level, the HSP70 protein levels remained stable during desiccation (Fig. 3): it is known that mRNA 

abundance and protein level may have a low correlation [70]. The accumulation/reduction of mRNA 

during water deficit may indicate gene induction or repression, but further regulatory mechanisms, 

such as translational and post-translational modifications, could be necessary [71]. Moreover, while 

it has been shown that in DT dry seeds low WC does not inhibit transcription, for translation 

contrasting results have been obtained [72]. Further investigations are required to clarify the role of 

molecular chaperones in T. gelatinosa; however, the constitutive protein expression of HSP70 seems 

to be required during water stress. 

Generally, in plants and green algae photosynthesis is suppressed by desiccation as a 

protective mechanism [12]. A decrease in photosynthesis was recorded in Trebouxia sp. at low (15-3 

%) RWC [32]. Furthermore, Petruzzellis et al. [23] found that in T. gelatinosa desiccation, 

photosynthesis decreased more markedly after Ψtlp. At transcriptomic level, however, an increase of 

photosynthesis-related transcripts (including LCHII) in the desiccated state was detected in T. 

gelatinosa [11]. In our study, LCHII was down-regulated before turgor loss, and in the desiccated 

state it returned to the T0 level (Fig. 2). This different behavior could be due to the different 

desiccation rate, which is important for the recovery of photosynthesis in another lichen photobiont 

species, Asterochloris erici [73], taxonomically near to the genus Trebouxia. 

In both vascular and non-vascular plants including green algae, one of the most important 

effects of desiccation is the oxidative burst related to reactive oxygen species (ROS) production, 

which damage cellular structures [1, 12]. In Trebouxia sp., an increased ROS production during 

desiccation was demonstrated by histochemical localization [44, 74]. In lichens and their photobionts, 

the anti-oxidant protection seems to be constitutive [1, 11]. In our work, the transcript level, both 

MnSOD and APX were up-regulated at the beginning of desiccation, when extracellular water was 

still present, but then they were down-regulated immediately before and after turgor loss. 

Interestingly, the expression increased when the RWC had reached ~ 1 % (Fig. 2). A decrease of 

antioxidant enzyme activities including SOD, catalase (CAT), and APX was recorded during 

desiccation in both lichens [75] and their photobionts [73]. 

 Among the numerous and highly diversified DRPs found in T. gelatinosa [11], here we 

analyzed the most desiccation-responsive ones in terms of fold change. The response of these genes 

showed all the same trend, as all the five analyzed transcripts (DRP1, DRP2, DRP6, DRP11, DRP13) 
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remained stable at the beginning of desiccation and had a peak of expression before turgor loss (Fig. 

2). DRP1 and DRP2 expression profiles differ from the one found in Candotto Carniel et al. [11], as 

their expression was not down- but up-regulated in the desiccated state. It could be possible that in 

Candotto Carniel et al. [11] these genes were early and transiently up-regulated; DRPs and other 

stress-induced genes can show highest expression in partial desiccation stages. Furthermore, as the 

predicted cellular localization of these proteins is “secreted” [11], the secretory pathways involved 

could have a role in the different regulation of these DRPs. DRPs in plants are involved in numerous 

processes, including drought tolerance [35, 36], and their transcripts are frequently up-regulated 

during desiccation [76]. Even if a clear explanation for the role of DRPs during desiccation is still 

missing, the presence of the ferritin-like domain suggests a relation with oxidative stress protection 

[77]. Expression of DRPs in T. gelatinosa was not responsive to oxidative stress caused by hydrogen 

peroxide (H2O2; [51]); the hypothesis of a stress specific response is intriguing, and deserves more 

investigations. If the role of the T. gelatinosa DRPs is at the cell wall or apoplast level, early activation 

of gene expression should permit the protein to accumulate in the apoplastic space to carry out 

biochemical functions, such as the protection of cell wall from mechanical stress generated late during 

desiccation.  

 

Conclusions 

Plants respond to stress with specific changes in gene expression, metabolism, and physiology, and 

this indicates the ability to sense environmental stress conditions [78]. From our analysis it is clear 

that the time points just before and after the turgor loss and the desiccated state (RWC ~ 1 %) are key 

points in terms of gene expression in the response of T. gelatinosa. Each of them induced a response 

in terms of up- or down-regulation of specific genes, which implies a finely regulated perception of 

water stress. The study provides important evidence for the involvement of DRPs in desiccation 

tolerance of the green microalga, which is one of the most common lichen photobionts. 
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Supplementary material 

 

Table A.1. Primers for quantitative real-time PCR analysis. 

Gene Primers  Forward sequence Reverse sequence Reference 

Ascorbate peroxidase APX CAGGGTTCACAAGGACAGGT TCAGCAAACAGGCACTCATC [39] 

Desiccation related protein 1 DPR1 CAAAATGGCGATGTTGTCAC CAACGTTGAAGATGCCAATG This study 

Desiccation related protein 2 DPR2 AAATTGCCCACGTCAACTTC GAGGAGCAGCACCCTTGTAG This study 

Desiccation related protein 6 DPR6 CCAGATCGACCTCTCTGCTC GCCAACAGGGTCTTGTCAGT This study 

Desiccation related protein 11 DPR11 CATATGGCGAGGGTATTGCT TGTGCGATTTCATTCTCAGC [39] 

Desiccation related protein 13 DPR13 AGGACATCAGACAGGGATGG AATTGCCAACAAAGCCAAAC This study 

Expansin 1 EXP1 GACAGGACTCCAGCTTTTGC CTGAGGGGAGATGACGTTGT [11] 

Heat shock protein 70 HSP70 CAGTCACCACTGCCTTCTCA CAAGTCAGCCAATGCAAAGA [39] 

Light harvesting complex II LHCII CTGATGACCCAGATGCCTTT GGTCCTTTGCCTGTCACAAT [11] 

Mn-superoxide dismutase MnSOD CACCCAGCTTGCTGACTACA GGTCAAACTGTGCCTGGAAT [39] 

Ribosomal protein L6 RPL6 AGGAGCTAGCTAGGGGCATC TCTCGTGCTTTGGGAACTCT [11] 

 

 

 

 

 

 

  



86 

 

EFFECTS OF GRAPHENE-BASED MATERIALS ON THE AEROTERRESTRIAL MICROALGA TREBOUXIA 

GELATINOSA: FOCUS ON INTERNALIZATION AND OXIDATIVE STRESS 

 

Alice Montagner1†, Elisa Banchi1†, Fabio Candotto Carniel2, Cristina Martín3,4, Susanna Bosi2, 

Alberto Pallavicini1, Ester Vázquez3,4, Mauro Tretiach1* and Maurizio Prato2,5,6 

 

1Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Trieste, Italy  

2Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, 34127, Trieste, 

Italy 

3Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Universidad de 

Castilla-La Mancha, 13071, Ciudad Real, Spain 

4Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La 

Mancha, 13071, Ciudad Real, Spain 

5Carbon Nanobiotechnology Laboratory, CIC biomaGUNE, 20009, San Sebastian (Spain) 

6Basque Fdn Sci, Ikerbasque, 48013, Bilbao, Spain  

 

†These authors contributed equally to this work. 

 

*Corresponding author: Mauro Tretiach 

 

Main abbreviations 

APX: ascorbate peroxidase 

CAT: catalase 

ChlaF: chlorophyll a fluorescence 

CLSM: confocal laser scanning microscopy 

DRP: desiccation related protein 

FLG: few-layers graphene 

Fv/Fm: maximum quantum yield of PSII photochemistry 

GBM: graphene-based material 

GO: graphene oxide 

GR: gluthatione reductase 

H2O2: hydrogen peroxide 

HSC: heat shock cognate 

HSP: heat shock protein 
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LHCII: chlorophyll a-b binding protein of the light harvesting complex II 

Mn-SOD: manganese superoxide dismutase 

PS: photosystem 

qRT-PCR: quantitative real-time PCR 

ROS: reactive oxygen species 

RPL6: ribosomal protein L6 

 

Key words: graphene, green algae, internalization, oxidative stress, ecotoxicity, HSP70, cell wall. 

 

Originality – Significance Statement 

This work contributes new knowledge on the interaction between Graphene-Based Materials (GBMs) 

and aeroterrestrial green microalgae. It is the first to assess the effects on GBMs on a lichen 

photobiont, Trebouxia gelatinosa, integrating different disciplines and approaches. The work is 

significant, as it demonstrates non-harmful interaction between T. gelatinosa and both few-layers 

graphene (FLG) and graphene oxide (GO). Our results are important in the view of the environmental 

safety assessment and management of GBMs in terrestrial ecosystems. 

 

Summary 

The exposure effects of two Graphene-Based Materials (GBMs), few-layers graphene (FLG) and 

graphene oxide (GO), have been studied in the aeroterrestrial green microalga Trebouxia gelatinosa. 

Algal suspensions without GBMs and with FLG or GO at the concentration of 50 μg mL-1 were 

shaken for 10 and 30 minutes. After exposure, GBMs internalization was investigated with confocal 

microscopy and Raman spectroscopy. Potential oxidative effects of GBMs in comparison to H2O2, 

used as positive controls, were studied analyzing (i) the quantum yield of primary photochemistry in 

the dark-adapted state (Fv/Fm), (ii) changes of gene expression of eight genes of interest, and (iii) 

quantification of heat shock protein 70 (HSP70). GO was not clearly detected inside the cells, despite 

it was observed in close contact with them, whereas FLG was detected within the cells when different 

laser power densities were used. While H2O2 treatments produced dose- and time-dependent oxidative 

effects, GO was ineffective, and FLG caused the down-regulation of a single gene (HSP70). 

However, this did not correspond to a decrease in the quantity of HSP70 protein. The results suggest 

that harmless interactions occurred between GBMs and plasma membrane inside the algal cell wall, 

which were more intense for FLG than for GO.  
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Introduction 

In the recent years, the rapid advancement in the field of nanomaterials has increased their 

development and consequently their production and commercialization. Among nanomaterials, the 

carbon-based ones are the most widely researched because of their potential on the most diverse fields 

(Lalwani et al., 2016), with a predominant role occupied by Graphene-Based Materials (GBMs) 

(Novoselov et al., 2012). Graphene is a two-dimensional crystal composed of monolayers of carbon 

atoms arranged in a honeycombed network with six-membered rings (Geim and Novoselov, 2007). 

Since its discovery, the attention of researchers was focused on its unique and exceptional properties, 

such as mechanical stiffness, strength, elasticity, very high electrical and thermal conductivity. This 

led to the development of multiple applications in electronics, photonics, composite materials, energy 

generation and storage, sensors and metrology and biomedicine (Novoselov et al., 2012). The huge 

investments brought to an incredible advancement in the industrial field, unfortunately accompanied 

by a slower progress in the understanding of the impact on human health and the environment, hence 

making nanosafety a priority (Savolainen et al., 2013). 

So far, the effects of GBMs have been evaluated mostly on animal and bacterial model 

organisms (Montagner et al., 2017), highlighting that GBMs toxicity seems to depend on various 

physiochemical properties such as shape, size, oxidative state and presence of functional groups 

(Sanchez et al., 2011; Jastrzębska et al., 2012; Seabra et al., 2014). In particular, these properties 

affect also the graphene ability to cross cell membranes. 

In animal cells, GBMs were frequently observed being internalized through many different 

endocytosis pathways. For example, graphene oxide (GO) sheets were found either surrounded by 

membranes into endosome-like structures or free in the cytoplasm (Russier et al., 2013). Furthermore, 

internalization of graphene quantum dots (GQD) by caveolae-mediated endocytosis have been 

observed in breast cancer MCF-7 cells (Wu et al., 2013). Despite GBMs uptake in both the previously 

mentioned studies led to toxicity, a carboxyl functionalization allowed graphene to enter the cells 

without causing any toxic effect (Sasidharan et al., 2011). For this reason, GBMs could also be 

successfully used as nano-carriers for selective drug delivery (Bitounis et al., 2013). 

Differently from animals, bacteria, fungi and plants have cells surrounded by a cell wall of 

different nature which is the first site of interaction with GBMs but also the primary barrier preventing 

GBMs uptake (Navarro et al., 2008). 

The most widely used species for studying GBMs and bacteria interactions is certainly 

Escherichia coli (Akhavan and Ghaderi, 2010; Akhavan and Ghaderi, 2012), although more recently 

also Pseudomonas putida (Combarros et al., 2016) and Staphylococcus aureus (Palmieri et al., 2017) 

have been investigated. During the interaction with GO, different inhibition levels are provoked 
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(Szunerits and Boukherroub, 2016). Physical interactions between bacteria and GBMs include 

surface adhesion and membrane piercing (Romero-Vargas Castrillón et al., 2015). Cell internalization 

has been shown to be the key mechanism that leads to cell intoxication (Akhavan and Ghaderi, 2010; 

Kostarelos and Novoselov, 2014). GO characteristics, including concentration, incubation time, type 

of bacteria (Gram − or Gram +), influence the degree of inhibition (Combarros et al., 2016). In 

general, bacterial inhibition caused by this GBM were mainly due to oxidative stress and/or damage 

of the cell membrane (Combarros et al., 2016). 

Regarding plants, it has been shown that nanoparticles smaller than the pore size of the cell 

wall are able to enter into the plant cell (Navarro et al., 2008) and that GO with a lateral dimension 

of 500 nm is internalized in Arabidopsis thaliana T87 cells by a non-energy dependent endocytosis, 

while larger sheets of about 1 μm by phagocytosis (Begum and Fugetsu, 2013). In both cases, 

internalization caused decreased mitochondrial function and eventually cell death (Begum and 

Fugetsu, 2013). By contrast, in another research, GO internalization did not influence A. thaliana 

germination, seed development, shoot and root development of seedlings and flowering time (Zhao 

et al., 2015). Obviously, GBMs internalization plays a key role in cell toxicity (Zhou and Gao, 2014), 

although in plant cells this phenomenon has not been investigated in detail. 

Aeroterrestrial microalgae are a cosmopolitan cluster naturally occurring on a variety of 

substrates (wet soils, rocks, man-mane substrata, tree bark) (Lüttge and Büdel, 2010), colonizing the 

most diverse environments (Belnap et al., 2001; Freystein and Reisser, 2010). Some of them (e.g. the 

genus Trebouxia - Chlorophyta) are able to form a stable symbiotic association with fungi (usually 

ascomycetes) through lichenization (Hawksworth et al., 1995; Candotto Carniel et al., 2015). 

Microalgae in general have been broadly employed to study nanoparticles toxicity, turning 

out to be important organisms to study internalization and its effects. The cell walls of these organisms 

are very different in thickness and composition, often with peculiar species-specific characteristics 

(Domozych et al., 2012). Some of them may have very thick cell walls, like that of Apatococcus 

lobatus, which can be more than 2 μm thick (Gärtner and Ingolić, 1989). Cell wall has an important 

role in the control of algal water status, and contributes in their desiccation tolerance (Popper et al., 

2011). So far, GBMs internalization has been reported in the green algae Chlorella pyrenoidosa (Zhao 

et al., 2017) and C. vulgaris (Hu et al., 2014; Hu et al., 2015; Ouyang et al., 2015). In the former 

study, the authors claimed that only multi-layer graphene (MG) and reduced graphene oxide (rGO) 

entered the cells, while GO did not. Some researchers demonstrated that internalization of GBMs in 

general is linked to the production of ROS or to the increase of oxidative stress (Ouyang et al., 2015). 

Oxidative stress is one of the main toxic effects induced by GBMs on microorganisms (Zhang et al., 

2012; Yan et al., 2013), together with mechanical damage (Akhavan and Ghaderi, 2010) and cell 
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wrapping by the GBMs flakes (Akhavan et al., 2011; Hu et al., 2015). Normal cellular redox 

homeostasis is a balance between ROS generation and their elimination or reduction by the 

antioxidative defences. Most stress factors have in common that they increase the ROS 

production/development in organisms, hence unbalancing the cell redox status. Thus, an uncontrolled 

ROS accumulation can cause membrane peroxidation, protein cleavage, and DNA strand breakage 

(Yan et al., 2013), which in the worst case can lead to cell death. The studies conducted so far had 

showed that poikilohydric aeroterrestrial microalgae, i.e. those algae which are able to survive deep 

desiccation, resuming the normal metabolism in some minutes as soon as water becomes available 

again, possess a constitutive antioxidant machinery which is able to scavenge the “oxidative burst” 

in minutes after its insurgence (Weissman et al., 2005; Candotto Carniel et al., 2016); however, 

oxidative stress response on these ecological important organisms has been still poorly investigated. 

The aim of the study was to analyze GBMs internalization and the effects on physiology and 

gene transcription of a short-term exposure to two GBMs, few-layers graphene (FLG) and graphene 

oxide (GO), selected as reference materials by the Working Package 4, Health and Environment, in 

the framework of the European Project Graphene-Flagship. Among photoautotrophic organisms, we 

selected the aeroterrestrial microalga Trebouxia gelatinosa Archibald, which is a member of the most 

widespread genus of lichenized algae (Ahmadjian, 2004), which can be found also living in the free 

state in complex algal biofilms on tree bark (Lüttge and Büdel, 2010), demonstrating its relevant 

ecological importance. T. gelatinosa proved to be a resistant organism towards several stresses 

including desiccation (Candotto Carniel et al., 2016). Moreover, T. gelatinosa transcriptome was 

recently published (Candotto Carniel et al., 2016), allowing to design specific primers for the analysis 

of gene expression. After a short-term exposure, we evaluated whether (i) GBMs are internalized by 

T. gelatinosa cells, (ii) GBMs exposure induces oxidative stress response and (iii) increases algal 

mortality, through confocal laser scanning microscopy (CLSM) observations, physiological 

measurements, gene expression analyses at transcript and protein level. 

 

Results 

Characterization of GBMs 

Elemental analysis was performed to determine carbon, hydrogen, nitrogen and oxygen content in 

the two GBMs (Fig. 1c). The value of %N in FLG corresponds to a melamine content of 0.84 wt %. 

The results of the elemental analysis agree with those of the thermogravimetric analysis (TGA) for 

both materials: a weight loss of 6.4 % was observed in the case of FLG, corroborating the low quantity 

of oxygen groups generated by the exfoliation process, while a weight loss of 46 % was obtained 

from TGA analysis of GO (Fig. 1a). The differences between the Raman spectra of FLG and GO 
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evidence the contrast between these derivatives (Fig. 1b). The Raman spectrum of FLG shows the 

two most intense peaks of graphene, the G band and the 2D peak, which appear at around 1580 cm-1 

and 2700 cm-1, respectively. The average I(2D)/I(G) ratio is 0.49, proving the samples to be few-layer 

graphene, usually assigned for I(2D)/I(G) < 1 (Ferrari et al., 2006; Mogera et al., 2015). When 

graphene is affected by defects, a peak appears at around 1345 cm-1 (D band). In this case, the average 

spectrum of FLG shows an I(D)/I(G) ratio about 0.36, confirming a low level of defects which are 

attributed to the edges of the micrometer flakes (Torrisi et al., 2012). The average Raman spectrum 

of GO, in contrast, shows broad D and G bands. In addition, a bump can be observed in this spectrum 

instead of the usual 2D band common to graphene structures. TEM analysis showed higher lateral 

dimensions for FLG sheets compared to GO sheets. Lateral size distributions of both GBMs are 

shown in Fig. 1d (n = 100), with representative TEM images of FLG and GO in Fig. 1e and Fig. 1f, 

respectively. 

 

Figure 1. Thermogravimetric analysis of few-layer graphene (FLG), produced by ball milling, and graphene oxide (GO), 

produced by oxidation of carbon fibres (a); average Raman spectra of FLG and GO (b); elemental analysis of FLG and 

GO, (c); lateral size distribution (n = 100) of FLG and GO (d); representative TEM images of: FLG (e, scale bar = 200 

nm) and GO (f, scale bar = 500 nm). 
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GBMs internalization assessment  

The cell wall of Trebouxia gelatinosa observed at CLSM reflected a faint light when illuminated by 

the laser (Fig. 2a), especially with the setup used for the visualization of GO (Fig. 2b). In the 

autospores (diam. < 7 μm) light was reflected also from a single defined spot which was observed in 

both controls and treated samples (Figs. 2b, 2d), not present in adult cells. For this reason, it was 

impossible to distinguish very small GBMs flakes (c. 500 nm) from the light-reflecting spots of the 

cell walls. On the other hand, the GBMs flakes with a lateral dimension bigger than 1 μm were clearly 

distinguishable by the more intense light reflection (Figs. 2c, 2d) and they were observed adhering to 

the cell wall whenever they got in contact with the algae (Figs. 2c, 2d). FLG flakes were also observed 

within the cell wall (Fig. 3), but never in the cytoplasm of the cells. 

GBMs internalization in T. gelatinosa was verified also by Raman spectroscopy. In the Raman 

spectrum of algae two peaks were observed, one at around 1200 cm-1 and a second at around 1525 

cm-1 (Fig. 4a), both corresponding to β-carotene (Samek et al., 2010), an accessory photosynthetic 

pigment typical of oxygenic photosynthetic organisms. In the samples exposed to GMBs, the typical 

Raman bands of FLG (Fig. 4b) were observed together with the peak of β-carotene, indicating the co-

occurrence of both algae and graphene in the same measurement spot (Fig. 4c, ). The Raman bands 

of FLG became more prominent when the power density was increased up to 3 or 6 mW µm-2 in the 

same cell point (Fig. 4c, , ), which could mean that FLG was present at deeper levels within the 

cytoplasm. No typical Raman bands of GO (Fig. 4d) were observed at any power density in any part 

of the samples that had been treated with this nanomaterial, when properly rinsed in distilled water 

(Fig. 4e). 
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Figure 2. Cells of the green microalga Trebouxia gelatinosa observed with confocal laser scan microscopy in reflection 

mode. Cells before exposure observed with FLG setting (a) and GO setting (b); after exposure to FLG (c) or GO (d). Red 

signal emitted by chlorophyll a; weak green signal reflected by algal cell walls (b, d); strong green signal reflected by 

FLG (c) or GO (d). 
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Figure 3. 3D reconstruction of cells of the green microalga Trebouxia gelatinosa observed with confocal laser scan 

microscopy in reflection mode after the exposure to FLG. Red signal emitted by chlorophyll a; weak green signal reflected 

by algal cell walls; strong green signal reflected by FLG. 

 

 

Figure 4. Raman spectra and respective Raman images (scale bars = 10 µm) of the green microalga Trebouxia gelatinosa. 

Representative Raman spectrum of GBMs-free algae (a); few-layers graphene (FLG) (b); water-washed, FLG exposed 

algae (c); graphene oxide (GO) (d); water-washed, GO exposed algae (e). Power density (mW µm-2):  = 0.6;  = 3;  = 

6. 
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Effects of GBMs and H2O2 on the quantum yield of primary photochemistry (Fv/Fm) 

Fv/Fm values were consistent in pre-treatment and control samples, suggesting that the shaking 

treatment applied in the GBMs exposure treatment did not affect cell viability. Fv/Fm of pre-treatment 

samples was 0.514±0.068, which slightly increased to 0.522±0.075 and 0.518±0.079 in control 

samples after 10 and 30 minutes (Fig. 5), respectively. The samples exposed to H2O2 at concentrations 

higher than 0.05 M had significantly lower Fv/Fm. At 0.5 M and 0.8 M, after 10 minutes it decreased 

to 80 % (p = 0.00132) and to 50 % (p = 4.5e-06) of the control values, respectively, while after 30 

minutes Fv/Fm further decreased to 50 % (p = 6.3e-06) in the former and to 30 % (p = 6.6e-09) in the 

latter. No significant differences were observed in samples exposed to FLG or GO with respect to 

control values 

 

Figure 5. Maximum quantum yield of PSII photochemistry (Fv/Fm) measured in Trebouxia gelatinosa resuspended for 

10 (a) and 30 (b) minutes in dH2O (Ctrl), different H2O2 solutions (0.05 M, 0.5 M and 0.8 M) and GBMs suspensions 

(FLG or GO; 50 μg mL-1). * p ≤ 0.05, ** p ≤ 0.01, non-parametric Kruskal-Wallis test and non-paired Wilcoxon post-

hoc test (n = 18). 

 

Effects of GBMs and H2O2 on stress-related genes expression at transcript level 

Samples exposed to GBMs for 10 minutes did not modify the expression level of any of the genes 

considered (Fig. 6), whereas after 30 minutes the exposure to FLG significantly affected the 

transcription level of a single gene, heat shock protein 70 (HSP70), which was reduced to 35 % of 

the control value (Fig. 6). 
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Samples exposed to H2O2 had their ascorbate peroxidase (APX) and HSP70 transcripts levels 

significantly reduced after 10 minutes; the former transcript was reduced to ~35 % of its control value 

by the highest H2O2 concentration whereas the latter was significantly reduced to 50 % at 0.5 M and 

to 15% at 0.8 M H2O2. Transcripts levels of H2O2 treated samples further decreased after 30 minutes 

of exposure. Among antioxidant enzymes, APX transcription decreased to ~30 % and 15 % at 0.5 

and 0.8 M H2O2, respectively (Fig. 6). At the same concentrations, the transcription level of catalase 

(CAT) was significantly reduced to 70 % and 65 % whereas that of gluthatione reductase (GR) 

remained steady independently of the H2O2 concentrations (Fig. 6). Differently, H2O2 had an inverse 

effect on the manganese superoxide dismutase (Mn-SOD) transcription levels, with the strongest 

decrease (down to ~25 %) observed at the lowest H2O2 concentration. Among the stress related 

proteins, the transcription levels of the desiccation related protein 11 (DRP11) and heat shock cognate 

(HSC70) remained steady throughout the experiment. Those of HSP70, instead, had the most severe 

decrease among all the transcripts, i.e. the highest H2O2 concentration completely inhibited the 

transcription of HSP70, reducing it to 1 %. Furthermore, the chlorophyll a-b binding protein of the 

light harvesting complex II (LHCII) transcript showed a significant dose-dependent reduction (to ~50 

% up to ~20 %) in the expression. 
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Figure 6. Fold change in the expression of 8 transcripts obtained with qRT-PCR in cultures of the green microalga 

Trebouxia gelatinosa treated with various concentrations of H2O2 and GBMs compared to the respective controls (dotted 

line) after 10 (a) and 30 (b) minutes of exposure. *p ≤ 0.05, **p ≤ 0.01 (n = 3). 

 

 

Effects of GBMs and H2O2 on the HSP70 protein level 

The HSP70 protein level was not affected by any GBMs treatment, while a significant decrease was 

detected at the highest H2O2 concentration after both exposure times (Fig. 7). 
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Figure 7. Levels of HSP70 protein in colonies of the green microalga Trebouxia gelatinosa exposed to various 

concentrations of H2O2 and GBMs compared to the respective controls after 10 (a) and 30 minutes (b) exposure. HSP70 

bands of representative experiments after 10 (c) and 30 minutes (d) exposure. *p ≤ 0.05, **p ≤ 0.01 (n = 3). 

 

Discussion 

Internalization of GBMs is a controversial issue, depending both on the different characteristics of 

the material itself (Dallavalle et al., 2015) and on the investigated organism. In our study, there are 

evidences suggesting a possible internalization of GBMs by the thick-walled cells of T. gelatinosa: 

small FLG flakes, but not GO, were observed by CLSM at the boundaries between cytoplasm – 

plasma membrane and plasma membrane – cell wall interfaces. The lateral size of these flakes 

observed by CLSM ranges around 1 μm, which is close to the limit of precise measurability of GBMs 

flakes (0.5 μm) with that technique (Fig. 3). The natural light reflection observed at the cell wall level, 

especially with the settings needed for the observations of GO (Figs. 2b, 2d), might have prevented 

the detection of the light reflected by the smaller flakes. Moreover, the small brilliant spots observed 

in the autospores, which reflect light more intensely than the surrounding cell wall, might be 

misleadingly recognized as GBMs flakes (Fig. 3). They are provisionally identified here, on the basis 

of observations in transmitted light microscopy, as the nucleolus. However, considering that both the 

GBMs batches tested in this study are made of graphene flakes with lateral dimensions that can be as 

small as 100 nm for FLG and 50 nm for GO (Fig. 1), it is possible that only the fractions of the 

graphene with the smallest sizes reached and/or crossed the plasma membrane. 

These hypotheses are supported by the Raman spectroscopy observations (Fig. 4) since they 

allowed the detection of FLG flakes inside the algal cells. Raman spectroscopy is commonly used to 

determine the nature and the location of GBMs, i.e. if the flakes are inside a tissue or even a cell 

(Huang et al., 2012).  
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The observation of the down-regulation of the HSP70 transcript (Fig. 6), which is interestingly 

the unique significant change in the gene expression induced by a 30 minutes FLG exposure, suggests 

that a functional interaction with the algae at the plasma membrane or even at the cytoplasm level 

might have been occurred. We hypothesize that the presence of FLG at the interface between the 

plasma membrane and the cell wall or in the cytoplasm could have activated/deactivated the signal 

pathways leading to changes in the HSP70 expression. HSP70 proteins can be activated by receptors 

at the plasma membrane level, starting a signal cascade involving intracellular changes in calcium 

ions (Ca2+): the induction of Ca2+/calmodulin (CaM) genes followed by transcriptional changes of 

different HSPs, including HSP70, were already recorded in plants (Liu et al., 2003; Wu et al., 2012). 

CaM genes can be regulated during abiotic stress by the activation of plasma membrane receptors 

like the cyclic nucleotide gated channels (CNGCs) (Virdi et al., 2015), or by others, still unidentified 

(Liu et al., 2003), that could respond to the interaction with GBMs at plasma membrane level. 

Furthermore, changes in HSP70 expression triggered by the presence of FLG inside the cell could 

involve the interaction of the nanomaterial with the filamentous proteins of the cytoskeleton, i.e. 

microtubules and actin filaments, causing deformation of cytoskeletal networks and the displacement 

in the cytoplasm fluid (Wu et al., 2012). Molecular chaperones, as HSP70, have been proposed not 

only to facilitate the formation of the cytoskeleton and to regulate its function, but also to protect it 

during stress (Liang and MacRae, 1997). However, the reason why HSP70 was down-regulated is 

still unknown since HSP70 are considered stress-inducible proteins (Hartl and Hayer-Hartl, 2002; 

Wang et al., 2004). As chaperones, they are important in protein stabilization, folding, assembly, 

translocation and degradation especially under stress conditions (Wang et al., 2004) such as heat, 

drought, salinity, acidity, and cold (Yu et al., 2015). Generally, the over-expression of HSP70 genes 

results in enhanced tolerance to abiotic stress in plants (Wang et al., 2004; Bartels and Sunkar, 2015). 

Interestingly, a down-regulation of HSP70 at protein level was recorded after cumene hydroperoxide 

(CuHP) exposure in another member of the genus Trebouxia, the lichen photobiont TR1, while in 

TR9 (an alternative photobiont of the same lichen species, Ramalina farinacea), the oxidative 

treatment caused a strong increase in the amounts of this protein (del Hoyo et al., 2011). In our case, 

instead, the down-regulation of the HSP70 gene expression did not correspond to a decrease in the 

quantity of the protein itself (Fig. 7); low correlations between mRNA abundance and protein level 

are common (Maier et al., 2009), and are usually attributed to post-transcriptional regulations (Day 

and Tuite,1998). 

Some authors demonstrated that internalization of GBMs in general is linked to the production 

of ROS (Sasidharan et al., 2011) or to the increase of oxidative stress (Ouyang et al., 2015), which 

eventually led to cell death. In our experimental design, we investigated the expression changes of 
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some gene of interest, among which antioxidant enzymes and proteins related to stress. Gene 

expression changes in general are a major component of stress responses, which in some cases are 

activate by intracellular signaling pathways. Interestingly, the control of gene expression has fast 

response kinetics, even within minutes in the presence of stress, and is able to return to basal state 

after the removal of the stress (de Nadal et al., 2011). 

 The potential changes in gene expression after GBMs exposure were here compared to the 

ones induced by H2O2 treatments, a substance which is known to induce reactive oxygen species 

production (Russier et al., 2013). From the gene expression analysis of antioxidant enzymes (Fig. 6), 

it can be concluded that these are not involved in the response to GBMs exposure. Interestingly, 

Trebouxia species are known to be oxidative stress tolerant because they own a strong constitutive 

antioxidant machinery which is able to scavenge an “oxidative burst” in minutes after his potential 

insurgence (Candotto Carniel et al., 2016). However, H2O2 treatments produced dose- and time-

dependent oxidative effects, evidenced by significant changes in the transcripts level of APX, CAT, 

and Mn-SOD. This response is in agreement with ChlaF measurements (Fig. 5), which showed a dose- 

and time- dependent decrease in Fv/Fm and therefore a corresponding algal vitality decrease after 

H2O2 treatments, while Fv/Fm after GBMs exposures was not impaired. 

Studies focused on microalgae reported GBMs internalization, in particular in Chlorella 

pyrenoidosa and C. vulgaris (Hu et al., 2014; Hu et al., 2015; Ouyang et al., 2015). Comparing these 

species with T. gelatinosa, the main differences are thickness and composition of the cell walls. In T. 

gelatinosa the cell wall is c. 1 µm thick (Archibald, 1975), while that of both Chlorella species is 

only c. 20 nm thick (Northcote et al., 1958; Yamamoto et al., 2004). In comparison, the latter is 

therefore considerably thinner, and represents a weaker barrier against GBMs, which may easily be 

internalized, also because the -cellulose microfibrils are present as an irregular network over the 

cell wall, lying approximately in two directions at right angles to one another (Northcote et al., 1958), 

although a wide variability has been documented in the cell wall composition of other members of 

the genus Chlorella (Loos and Meindl, 1982). The cell wall of T. gelatinosa, on the contrary, is 

relatively stable in composition, and highly differentiated (König and Peveling, 1984). It consists of 

five different layers, mostly composed by highly packed cellulosic fibrils, non-cellulosic species-

specific polysaccharides and a three-dimensional web of sporopollenin, which is highly resistant and 

chemically stable. Moreover, T. gelatinosa develops a gelatinous sheath 1.5 – 2 μm thick outside the 

cell wall (Archibald, 1975), which is sticky, with species-specific sugar-acids, such as uronic acids, 

and proteins (Casano et al., 2015), and may support a close contact with GBMs. 

Hence, all these evidences reported herewith allow us to hypothesize that the interaction 

between FLG and T. gelatinosa cells which eventually occurs after 30 minutes of exposure is 
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harmless, as confirmed by further unpublished results concerning short-term K+ release and long-

term colonial growth. At this moment, we do not know, however, which pathway is involved in the 

reaction which led to the down-regulation of the HSP70 gene expression, caused interestingly only 

by FLG. GO, in respect to FLG, is considered to be more toxic, but no generalizations can be made 

because of the contradictory results available in the literature (Montagner et al., 2017). In general, 

however, GO is more stable in suspension thanks to the carboxyl groups on the periphery, which 

make the sheets more hydrophilic, and probably also more prone to be immobilized by the outer 

gelatinous sheath of T. gelatinosa.  

 

Experimental procedures  

GBMs preparation and characterization 

Two types of GBMs were used in this study, few-layers graphene (FLG) and graphene oxide (GO). 

FLG was prepared by ball-milling treatment, according to previous published procedures (León et 

al., 2016). In general, a mixture of graphite and melamine (1,3,5-Triazine-2,4,6-triamine) (7.5 mg of 

SP-1 graphite powder, purchased from Bay Carbon, Inc. (USA), and 22.5 mg of melamine (Sigma-

Aldrich, D) was ball-milled at 100 rpm for 30 minutes using a Retsch PM 100 (Retsch Technology 

GmbH, D) planetary mill under air atmosphere. The resulting solid mixture was dispersed in 20 mL 

of water and sonicated for 1 minute to produce a dark suspension. Melamine was afterwards 

eliminated by dialysis. The precipitate, consisting in poorly exfoliated graphene, was removed from 

the liquid fraction after stabilization for 5 days. The FLG water dispersions were lyophilized and the 

final graphene powder was thoroughly characterized. 

GO was purchased from Grupo Antolin Ingeniería (Burgos, S), which produced it by oxidation 

of carbon fibers (GANF Helical-Ribbon Carbon Nanofibres, GANF®) and sodium nitrate in sulfuric 

acid at 0 °C. 

TGA of FLG and GO were performed with a TGA Q50 (TA Instruments, USA) at 10 ºC per 

minute under nitrogen atmosphere, from 100 ºC to 800 ºC. In addition, the dispersions of both GBMs 

were drop-cast onto a Si wafer and dried on a hot plate in order to study the Raman spectra. At least 

30 Raman measurements on both materials were collected in different locations using a inVia Raman 

Microscope (Renishaw plc, UK) at 532 nm with a 100 objective and an incident power of 1 % (1 

mW µm-2). Quantitative elemental analyses on FLG and GO were then performed with a LECO 

CHNS-932 (LECO Corporation, USA) elemental analyzer. Lateral dimension distribution of GBMs 

was calculated by using Fiji software. GBMs were studied by transmission electron microscopy 

(TEM). Stable dispersions of both materials were drop-cast on nickel grids (3.00 mm, 200 mesh) and 
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dried under vacuum. The samples were studied by a JEM 2100 (JEOL Ltd, JP) high-resolution 

transmission electron microscope (HRTEM) at an accelerating voltage of 200 kV. 

 

Cultures of T. gelatinosa apophotobiont 

Trebouxia gelatinosa Archibald was isolated following Yamamoto et al. (2002) from thalli of 

Flavoparmelia caperata (L.) Hale collected in the Classical Karst plateau (NW Italy). The algal 

cultures were subcultured on solid Trebouxia Medium (TM; 1.5 % agar) (Ahmadjian, 1973) every 

30-45 days and kept in a thermostatic chamber at 181 °C and 202 μmol photons m-2 s-1 with a 

light/dark regime of 14/10 hours. Reference algal material has been cryo-conserved according to 

Dahmen et al. (1983) and is available upon request. 

 

GBMs exposure and oxidative stress treatments 

Algal cells of T. gelatinosa from 4 weeks-old colonies were resuspended in distilled water and gently 

pressed with a syringe through a filter net (mesh size = 40 μm). This procedure was used to 

disaggregate the clusters of cells in order to obtain a homogeneously dispersed algal suspension. 

Thirteen 1.5 mL Eppendorf tubes (with pierced lids) were filled with algal suspension (samples); one 

was left untreated representing the pre-treatment whereas the other twelve were spin-centrifuged to 

separate the cells from the supernatant, of which 1.3 mL were discarded. Thereafter, the treatments 

were conducted in the dark to induce the complete oxidation of the reaction centers, that allows to 

measure the maximum quantum efficiency of PSII immediately after the treatments. To the samples 

were then added, two by two, 1.3 mL of: distilled water (controls), distilled water plus aqueous 

suspensions of GBMs (FLG or GO) to reach the final concentration of 50 µg mL-1 and distilled water 

plus H2O2 to reach the final concentrations of 0.05 M, 0.5 M, 0.8 M. The samples were then placed 

on a shaker and one sample of each couple per treatment was taken for the analyses after 10 and 30 

minutes, respectively. The procedure was repeated six times and for each repetition three biological 

replicates were processed. The exposure times were defined based on a preliminary experiment in 

which the effect of H2O2 on T. gelatinosa was evaluated in order to have an increasing oxidative 

effect. The experiment was implemented in the dark to prevent possible phototoxic effects. 

 

In-vivo GBMs internalization assessment by CLSM 

A sub-aliquot (10 μL) of the algal suspension for each treatment was put on PolysineTM Microscope 

Adhesion Slides (Thermo Fisher Scientific, USA) immediately after the GBMs treatments, covered 

with coverslips and then observed in-vivo with a CLSM Nikon C1-si (Nikon, JP). To visualize GBMs 

flakes, the microscope was used in reflection mode: samples were illuminated with a 514 nm laser 
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set at an intensity of 0.2 % and 0.5 % for the observation of FLG and GO, respectively, since they 

have different light reflection capacity, higher in the former than in the latter. Light reflected by 

GBMs was detected by a 525/50 band pass filter. Algal cells were visualized by illuminating samples 

with a 488 nm laser (12 % intensity) and acquiring the autofluorescence of chlorophylls with a 650 

long pass filter (λ > 650 nm). One to three fields were acquired for each replicate (n = 4). A variable 

number of focal planes (stacks), depending on the algal abundance and the dimension of the GBMs 

flakes were acquired for each field. In total, more than 1300 cells were analysed. Acquisitions were 

elaborated with the Nikon EZ-C1 FreeViewer software (Nikon, JP) and with the freeware suite 

ImageJ 1.46r (NIH, USA). A unification algorithm (Z-projection) was applied to merge stacks into 

bi-dimensional images, and 3D reconstruction were obtained by using the ImageJ 3D viewer plugin. 

 

GBMs internalization assessment by Raman spectroscopy 

Algal samples without GBMs and with FLG or GO were prepared as explained above. After 30 

minutes of shaking each suspension was vacuum filtered on a membrane (10 µm pore size), and the 

algae were gently washed with 50 mL of distilled water in order to remove the GBMs floating or 

attached outside the cells. Algal cells were then immediately resuspended with 500 µL of distilled 

water; three distinct drops of 40 µL each were put on PolysineTM Microscope Adhesion Slides 

(Thermo Fisher Scientific, USA) which were then put into a 50 mL Falcon tube and immediately 

frozen in liquid nitrogen. Thereafter, the samples were freeze-dried for 24 hours. Raman spectra were 

recorded with an inVia Raman Microscope (Renishaw plc, UK) equipped with a 532 nm point-based 

laser. At first, confocal mode was used to collect Raman spectra between defined X Y coordinates 

and at different depths within the samples. However, during the acquisition of a series of spectra on 

the same coordinates, cells were progressively destroyed by the laser. To overcome this issue, the 

operation mode was changed; samples were measured with a fixed exposure time of 1 second using 

the objective 50, 10 accumulations and three different laser power densities (0.6, 3 and 6 mW µm-

2) in order to penetrate at different levels into the cell.  

 

Chlorophyll a fluorescence (ChlaF) measurements 

After the treatments, each sample was collected by vacuum filtration on a cellulose acetate membrane 

(25 mm diameter, pore size 0.45 µm, Sartorius Lab Holding GmbH, D) and measurements of 

chlorophyll a fluorescence (ChlaF) emission were taken with a photosynthetic efficiency analyzer 

fluorimeter Handy-PEA (Hansatech, UK). A modified clip was positioned right over the sample on 

the membrane. A saturating red light pulse of 1500 μmol photons m-2 s-1 for 1 second was emitted to 

obtain the Kautsky induction and thus Fm (transient maximum ChlaF level). F0 (minimal ChlaF level), 
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which is needed to calculate Fv (variable ChlaF level, i.e. Fm−F0) and thus Fv/Fm (maximum quantum 

efficiency of PSII photochemistry), was calculated a posteriori by an algorithm that determines a line 

of best fit through the data points recorded immediately after the start of illumination. Afterwards, 

each sample was put inside an Eppendorf tube, soaked in liquid nitrogen and stored at -80 °C for 

downstream applications. 

 

RNA isolation and cDNA synthesis 

Three replicates per treatment from three distinct experiments were randomly selected and pooled 

together for three times to obtain three samples for RNA extraction. PowerPlant® RNA Isolation Kit 

(MO BIO Laboratories Inc., USA) was used to extract total RNA. RNA quality was verified with 

NanoDrop® 2000 (Thermo Fisher Scientific, USA), followed by a denaturing 1 % agarose gel. cDNA 

was synthesized using IScript cDNA synthesis kit (Bio-Rad, USA). 

 

qRT-PCR 

The expression of eight different transcripts, four coding for antioxidant enzymes and four for stress-

related proteins was measured by qRT-PCR. The former were APX, CAT, GR, and Mn-SOD, the 

latter were DRP11, HSC70 and HSP70, and LHCII. Primers were designed with Primer3Plus 

(Untergasser et al., 2007) (Table S1) or following Candotto Carniel et al. (2016). Each reaction was 

performed in three technical replicates in a mix containing 1 µL cDNA (1:10 template dilution), 8 µL 

SSOAdvanced™ SYBR® Green Supermix (Bio-Rad, USA) and 200 nM of each primer. The PCR 

amplifications were performed with CFX 96™ Real-Time PCR System (Bio-Rad, USA) using the 

following cycle: 98 °C for 30 minutes, 40 cycles at 95 °C for 10 minutes and 60 °C for 20 minutes. 

A melting curve analysis (65 °C to 95 °C increment 0.5 °C for 5 minutes) was performed to verify 

the absence of non-specific amplification products. Transcript levels were calculated with Bio-Rad 

CFX Manager software (Bio-Rad, USA), based on the comparative Ct method (2-ΔΔ Ct method) 

(Livak and Schmittgen, 2001) and gene expression data were normalized using as housekeeping gene 

the ribosomal protein L6 (RPL6) (Candotto Carniel et al., 2016). 

 

Proteins isolation 

Three pooled samples of T. gelatinosa frozen cultures prepared as mentioned in the “RNA isolation 

and cDNA synthesis” section, were pulverized in liquid nitrogen, transferred in 1.5 mL Eppendorf 

tubes and resuspended in 100 µl of 1× Laemmli buffer (62.5 mM Tris–HCl pH 6.8, 10 % (v/v) 

glycerol, 2 % (w/v) SDS, 0.2M dithiothreitol (DTT) and 0.1 % (w/v) bromophenol blue) (Laemmli, 

1970). Samples were then vortexed and incubated at 95 °C for 5 minutes. After a 3 minutes 
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centrifugation at 14000 r.p.m., protein extracts were recovered from the upper phase of the tube and 

transferred in a new Eppendorf. When not immediately used for analysis, the samples were stored at 

-20 °C and incubated 5 minutes at 95 °C before loading on the gel. To check quality and quantity of 

the total proteins extracted, 12 % sodium dodecyl sulphate - polyacrylamide gel electrophoresis 

(SDS-PAGE) was performed according to Laemmli (1970). The gel was stained with Coomassie 

brilliant blue R250 (Zehr et al., 1989). 

 

HSP70 immunodetection 

To perform 12 % SDS-PAGE, 15 µg of proteins were used. Proteins were then transferred on a 

Hybond™ nitrocellulose membrane (Amersham, UK) using the Criterion™ blotter apparatus (Bio-

Rad, USA) as explained in Dinakar and Bartels (2012). Transfer was obtained after 1 hour at 70 V 

with pre-chilled buffer. Before immunodetection, the membrane was stained for 30 minutes with 

Ponceau S red to visualize the samples and check their equal amount. 4 °C overnight incubation with 

blocking solution [3 % (w/v) skimmed milk in Tris-buffered saline] was performed to prevent 

unspecific binding of antibodies. The membranes were incubated for 1 hour with HSP70/HSC70 

primary antibody (1:1000 dilution) (Ulbricht et al., 2013), and for 45 minutes with secondary 

antibody (anti-rabbit IgG-peroxidase, 1:5000 dilution, Sigma-Aldrich, USA). Antigen-antibody 

complexes were detected with the ECL kit (Amersham, UK) and a lumi-imager (LAS 1000, Fujifilm, 

JP). Densitometry of protein bands was with Image J software 1.37 V (National Institute of Health, 

USA). 

 

Statistics 

Descriptive statistics were performed with R version 0.99.441 (The R Foundation for Statistical 

Computing, 2012). The non-parametric Kruskal-Wallis test and Wilcoxon non-paired test were 

applied to verify the significance of differences for ChlaF measurements (Lazár and Nauš, 1998; 

Baruffo and Tretiach, 2007). A one-way ANOVA followed by a Fisher's LSD post-hoc test was 

applied to verify significant differences between the relative abundancy of transcripts and HSP70 

protein content in treated versus control samples. Figures were produced with Sigmaplot 10.0 (Systat 

Software, USA). 
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Supplementary Information 

 

Table S1. Primers custom designed for quantitative Real-Time PCR analysis. 

 

Gene Primer 

ID 

Forward sequence Reverse sequence 

    
Ascorbate peroxidase APX CAGGGTTCACAAGGACAGGT TCAGCAAACAGGCACTCATC 

Glutathione reductase GR TTCGAACAGCAGACATCGAC CCTCCAGTCTTTTCGTCAGC 

Mn-superoxide dismutase MnSOD CACCCAGCTTGCTGACTACA GGTCAAACTGTGCCTGGAAT 

Catalase CAT ACTACTTCCCATCCCGCTTT CCTGGTGATGAACCTGTCCT 

Light Harvesting Complex 

II* 

LHCII CTGATGACCCAGATGCCTTT GGTCCTTTGCCTGTCACAAT 

Desiccation Related Protein 

11 

DPR11 CATATGGCGAGGGTATTGCT TGTGCGATTTCATTCTCAGC 

Heat Shock Protein 70 HSP70 CAGTCACCACTGCCTTCTCA CAAGTCAGCCAATGCAAAGA 

Heat Shock Cognate 70 HSC70 AGGAGCAGACCTTCTCCACA GACCACAATTTGGGGAACAC 

Ribosomal protein L6* RPL6 AGGAGCTAGCTAGGGGCATC TCTCGTGCTTTGGGAACTCT 

    
*from Candotto Carniel et al. (2016)  
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Abstract  

Lichen thalli harbor complex fungal communities (mycobiomes) of species with divergent trophic 

and ecological strategies. The complexity and diversity of lichen mycobiomes are still largely 

unknown, despite surveys combining culture-based methods and high-throughput sequencing (HTS). 

The results of such surveys are strongly influenced by the barcode locus chosen, its sensitivity in 

discriminating taxa, and the depth to which public sequence repositories cover the phylogenetic 

spectrum of fungi. Here, we use HTS of the ITS2 spacer to assess the taxonomic composition and 

diversity of a well-characterized, alpine rock lichen community that includes thalli symptomatically 

infected by lichenicolous fungi as well as asymptomatic thalli. Taxa belonging to the order 

Chaetothyriales are the major components of the observed lichen mycobiomes. We predict sequences 

representative of lichenicolous fungi characterized morphologically, and assess their asymptomatic 

presence in lichen thalli. We show how the estimation of species diversity widely differs when ITS1 

or ITS2 are used as barcode, and particularly biases the detection of Basidiomycota. The 

complementary analysis of both ITS1 and ITS2 loci is therefore required to reliably estimate the 

diversity of lichen mycobiomes. 
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Introduction 

The traditional view of lichens as mutualistic, symbiotic associations between one fungus, the 

mycobiont, and a population of algae, the photobionts (Hawksworth and Honegger 1994), has been 

reviewed in a more comprehensive and integrative context in which lichens act as microhabitats 

where multiple fungi (representing diverse classes of Dikarya), algae and bacteria coexist and likely 

contribute to the functions of the symbiotic system as a whole (Arnold et al. 2009; Grube et al. 2009; 

Muggia and Grube 2010; U’Ren et al. 2012; Grube et al. 2015; Spribille et al. 2016; Moya et al. 

2017). The high diversity of lichen-associated fungi, and the fact that many species are found in 

different hosts and habitats, suggested that lichens act as “cradles of symbiotrophic fungal 

diversification” (Harutyunyan et al. 2008; Arnold et al. 2009; U’Ren et al. 2010, 2012). Recently, the 

diversity of lichen-associated fungi, hereafter referred to as lichen mycobiomes, has been emphasized 

by both culture-based methods and high-throughput amplicon sequencing techniques (U’Ren et al. 

2010, 2012; Muggia et al. 2016; Fernández-Mendoza et al. 2017).  

Multiple ecological guilds of fungi can be found growing associated with lichen thalli (Arnold et al. 

2009; Bates et al. 2012; Fernández-Mendoza et al. 2017). One group of lichen-associated taxa are 

readily recognizable by their phenotypic characters and the conspicuous symptoms of infection 

shown by their hosts. Such taxa have long been referred to as lichenicolous fungi (Hawksworth 1979, 

1981; Lawrey and Diederich 2003, 2016; Hafellner 2015). While the symptomatic occurrence of 

lichenicolous fungi is restricted to a few lichen hosts, we have recently observed that some 

lichenicolous fungi are present in other lichens without producing visible symptoms (Fernández-

Mendoza et al. 2017). A second component of the lichen mycobiome is formed by species that cannot 

be detected morphologically, but are widely present within lichen thalli and are abundantly isolated 

using culture methods (Petrini et al. 1990; Girlanda et al. 1997; Harutyunyan et al. 2008; Muggia et 

al. 2016). These fungi have been collectively termed endolichenic fungi due to their relatedness to 

plant endophytes (Arnold et al. 2009); many others are also related to plant pathogens and rock-

inhabiting fungi (RIF; Selbmann et al. 2015; Muggia et al. 2016). Finally, a third component is 

represented by extraneous fungi or fungal propagules found upon or incorporated within lichen thalli 

without playing any definite ecological role in the lichen community (Fernández-Mendoza et al. 

2017). This third component can be derived from other lichen mycobionts present in the community 

under focus, or from fungi known from different niches. Lichens may act in this way as complex 

banks of spores and mycelia and would function as suboptimal habitats or reservoirs where the 

regeneration of local fungal communities can be potentially boosted (Fernández-Mendoza et al. 
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2017). In this regard, lichen thalli may serve as refuges where such fungi can remain in an immature 

state until an opportunity arises to occupy more favorable habitats (Muggia et al. 2010; Fernández-

Mendoza et al. 2017). 

The ITS region has been selected as formal DNA barcode for fungi due to its high interspecific 

variability, conserved primer sites and presence in multiple copies (Blaalid et al. 2013; Schoch et al. 

2012). Its length, up to 800 base pairs (bp), is suitable for traditional (Sanger) DNA barcoding, but 

exceeds the read length required by most second-generation sequencing platforms for DNA 

metabarcoding, which averages 200-400 bp. For this reason, only one of the two spacers, either ITS1 

or ITS2, has been sequenced so far. Even though diversity studies using these new technologies have 

become more and more common in the last years (Bellemain et al. 2013; Abdelfattah et al. 2015; 

Miller et al. 2016), it is still debated whether ITS1 or ITS2 has the best taxonomic resolution. 

Few studies have dealt with the taxonomic resolution obtained using both the ITS1 and the ITS2 

barcodes on the same dataset (Mello et al. 2011; Blaalid et al. 2013; Bazzicalupo et al. 2013; Monard 

et al. 2013; Orgiazzi et al. 2013). They have been carried out on both Ascomycota (Nilsson et al. 

2009; Bellemain et al. 2013) and Basidiomycota (Badotti et al. 2017). Taxonomic bias can be 

introduced by the choice of primers, as these cause a higher number of mismatches in different taxa 

(Bellemain et al. 2013; Tedersoo et al. 2015; Tedersoo and Lindahl 2016). Some studies also reported 

that the two spacers are prone to preferential amplification at different level (Nilsson et al. 2009; 

Mello et al. 2011; Bellemain et al. 2013; Bazzicalupo et al. 2013; Monard et al. 2013). Basidiomycetes 

have on average longer amplicon sequences for the ITS2, and since the shorter sequences are 

preferentially sequenced with HTS, the use of ITS2 would favor the detection of ascomycetes 

(Bellemain et al. 2013). On the other hand, ITS1 often contains an intron that extends its sequence at 

the 5'-end (Martin and Rygiewicz 2005), thereby promoting an over-representation of those 

sequences that lack the intron (Bazzicalupo et al. 2013). Because ITS2 is more frequently represented 

in public databases, has a higher number of available sequences, and offers a better taxonomic 

resolution, it has been proposed as the better choice for parallel sequencing (Nilsson et al. 2009). In 

some cases, however, no substantial differences between ITS1 and ITS2 were recovered (Blaalid et 

al. 2013; Badotti et al. 2017). Finally, there are numerous studies that consider a single spacer, either 

the ITS1 or ITS2 (Bellemain et al. 2013; Langarica-Fuentes et al. 2014; U’Ren et al. 2014; Miller et 

al. 2016; Fernández-Mendoza et al. 2017).  

As fungal metabarcoding studies have used different HTS platforms (see Cuadros-Orellana et al. 2013 

for a review), different bioinformatic pipelines have been proposed (White et al. 2013; Bálint et al. 

2014; Gweon et al. 2015). These have been developed based on experience gained from data analyses 

of prokaryote datasets (Hibbett 2016). However, no standard procedure has been established so far 
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for fungal sequence data. The analyses seem strongly dependent on the working hypotheses of each 

study and on the type of sequence at hand. As the majority of studies target fungal communities to 

uncover unknown diversity, an important and ongoing problem is the definition of those sequences 

lacking an assigned taxonomy (Nilsson et al. 2016). For this reason, many sequences still remain 

identified as “uncultured fungus”. In addition, many fungi have not yet been sequenced and cannot 

offer reference sequences for ongoing studies (Hibbett 2016). Both cases emerge as main issues in 

investigations of lichen mycobiome(s) where unidentified fungi represent the largest proportion.  

Previous studies processed high-throughput amplicon sequencing data from lichens, considering 

thalli of different growth forms and others infected by symptomatic lichenicolous fungi (Bates et al. 

2012; U’Ren et al. 2012, 2014; Fernández-Mendoza et al. 2017). These studies demonstrated that 

lichens and their mycobiomes are suitable subjects for implementing bioinformatic analyses of fungal 

metabarcoding. Nonetheless, individual environmental specimens have rarely been used for the 

characterization of fungal assemblages (Yahr et al. 2016); this approach was initiated only recently 

by Fernández-Mendoza et al. (2017). The authors highlighted the suitability of single lichen thalli for 

reliable estimation of the mycobiome diversity within. Fernández-Mendoza et al. (2017) studied the 

mycobiome diversity by applying 454-pyrosequencing to a well characterized set of lichens 

(Fleischhacker et al. 2015; Muggia et al. 2016), comparing thalli visibly infected by lichenicolous 

fungi to others devoid of detectable infections. The authors expected fungal diversity within the lichen 

community and sought to determine whether lichenicolous fungi were asymptomatically present in 

typical and atypical lichen hosts, and whether the presence of symptomatic lichenicolous fungi 

correlated with the diversity of the other intrathalline, asymptomatically occurring fungi. They also 

attempted to gauge the potential specificity of thallus mycobiomes among different lichen hosts 

(Fernández-Mendoza et al. 2017).  

As studies of lichen mycobiomes may fail to recover the complete taxonomic profile when using 

either the ITS1 or ITS2 regions individually, both regions should be examined to obtain more accurate 

estimates of species diversity. Here, we re-evaluate the fungal communities (Fig. 1) studied by 

Fernández-Mendoza et al. (2017) by sequencing the ITS2 fragment using the Ion Torrent (Thermo 

Fisher Scientific) platform. We assess the taxon diversity detected with the ITS2 barcode, focusing 

on new fungal sequences potentially corresponding to lichenicolous fungi, and compare the new ITS2 

dataset with the previously analyzed ITS1 results. Because Fernández-Mendoza et al. (2017) used the 

454-pyrosequencing method, we also evaluate the performance of high-throughput amplicon 

sequencing approaches in the analyses of lichen mycobiomes.  
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Material and methods  

Sampling 

Lichen samples and their DNA extractions correspond to those recently analyzed by Fernández-

Mendoza et al. (2017) as part of a comprehensive study on fungi associated with lichens in alpine 

rock communities (Fleischhacker et al. 2015; Muggia et al. 2016, 2017). Samples (Table 1) were 

collected in ten plots (each about 300 m2) at an altitude of 1800-1900 m on the Koralpe mountain 

range in Eastern Austria as reported in Fleischhacker et al. (2015). DNA was extracted from 26 

samples, including 25 crustose and one foliose lichens, using the DNeasy Plant Mini Kit (Qiagen, 

Austria). Crustose lichens were predominant in the selected community; thalli consisted of contiguous 

areoles tightly adhering to the substrate. The single foliose thallus was represented by Umbilicaria 

cylindrica, which is attached to the substrate by a central holdfast (umbilicus). Half of the samples 

(13) were symptomatically infected by lichenicolous fungi, including, teleomorphic and anamorphic 

ascomycetes (Fig. 1 and Table 1). This means that lichenicolous fungi could be observed on the 

thallus and identified using light microscopy. The other 13 thalli were devoid of symptomatic fungal 

infections; we refer to them as 'asymptomatic samples,' without ruling out the cryptic presence of 

lichenicolous fungi within the thalli. The dataset includes a total of 10 species of symptomatic 

lichenicolous fungi and 13 species of lichen hosts (Table 1). 
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Figure 1. A) Alpine community of rock inhabiting lichens on siliceous boulders. B-E) Symptomatically infecting 

lichenicolous fungi on lichen host thalli: B) Muellerella atricola on Tephromela atra, C) Sphaerellothecium atrinae on 

Lecanora swartzii, D) Sagediopsis fissurisedens on Aspilidea myrinii. Arrows indicate the recognizable, phenotypic 

characters of the lichenicolous fungi: B, D) perithecia immerse at the margins of thallus areoles, C) dark, melanized 

discoloration in which perithecia are present, E) conidiomata (pycnidia) containing conidiospores immerse in the thallus 

areoles. Scale bars: A = 15 cm, B = 1 mm, C = 2 mm, D, E = 0.5 mm. 

 

 

 

 

 

 

 

Table 1. Summary of dataset description and sequencing results. The table includes: sample numbers, name of the lichen 

host and of the symptomatic lichenicolous fungus, the total number of reads (Tot), the number of reads that passed quality 

filter (Qf), the number of reads (ITS2 extracted and chimera filtered) of the three datasets analyzed (complete, “no host”, 

no myco”). The number of observed OTUs in each sample is given for the entire sample, whereas values of Chao1 and 

Shannon diversity indexes are calculated on datasets rarefied to 7133 for the complete, to 1073 for the “no host” and to 

1060 reads for the “no myco”. The diversity indexes are not reported where sequencing depth was not sufficient (/).
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Reads OTUs Chao1 estimate Shannon diversity index 

Sample Lichen host Infecting fungus Tot Qf Complete 

"No 

host" 

"No 

myco" Complete 

"No 

host" 

"No 

myco" Complete 

"No 

host" 

"No 

myco" Complete 

"No 

host" 

"No 

myco" 

A032 Umbilicaria cylindrica - 16,964 13,049 11,898 217 166 111 35 19 111 ± 24 / / 

2.19 ± 

0.05 / / 

A138 Candelariella vitellina - 16,544 12,822 12,285 1,348 1,213 372 172 131 374 ± 57 

185 ± 

32 140 ± 24 3.6 ± 0.09 

4.06 ± 

0.67 3.57 ± 0.6 

A172 

Rhizocarpon 

geographicum - 20,395 14,775 14,329 1,901 1,898 221 175 172 215 ± 44 

177 ± 

41 172 ± 36 

2.67 ± 

0.07 

4.85 ± 

0.72 4.85 ± 0.7 

A194 

Rhizocarpon 

geographicum 

Endococcus 

macrosporus 18,682 15,256 14,643 1,073 1,060 229 117 109 224 ± 44 

120 ± 

23 116 ± 20 

1.71 ± 

0.07 

3.97 ± 

0.56 3.9 ± 0.55 

A227 Lecanora swartzii - 16,328 13,409 12,360 86 54 549 22 9 568 ± 75 / / 3.32 ± 0.1 / / 

A229 Psorinia conglomerata - 21,095 15,997 14,283 3,453 160 417 332 64 414 ± 107 

299 ± 

99 / 

2.99 ± 

0.07 

4.21 ± 

0.57 / 

A243 Lecanora polytropa - 16,726 13,489 13,176 224 40 135 64 18 137 ± 29 / / 

0.58 ± 

0.04 / / 

A280 Tephromela atra Skyttea tephromelarum 11,074 7,805 7,140 863 854 201 90 87 242 ± 54 / / 2.6 ± 0.05 / / 

A360 Lecanora intricata - 18,643 13,619 12,329 5,671 5,326 179 127 77 183 ± 41 90 ± 38 57 ± 37 

1.89 ± 

0.06 

1.29 ± 

0.27 

0.83 ± 

0.17 

A361 Tephromela atra - 13,883 11,180 11,040 44 43 141 26 25 161 ± 49 / / 

1.14 ± 

0.03 / / 

A368 Lecanora bicincta - 14,797 12,120 11,836 36 4 220 17 2 223 ± 54 / / 

1.52 ± 

0.07 / / 

A405 

Rhizocarpon 

geographicum 

Muellerella pygmaea-

Rg 18,630 11,455 10,963 1,377 1,363 265 232 228 267 ± 40 

235 ± 

31 238 ± 26 

1.96 ± 

0.08 

6.16 ± 

1.02 

6.14 ± 

1.02 

A418 Lecanora polytropa 

Lichenoconium 

lecanorae 17,149 13,200 12,196 588 305 208 147 80 215 ± 53 / / 

2.75 ± 

0.05 / / 

A420 Aspilidea myrinii - 13,490 8,955 8,147 593 435 295 61 51 313 ± 45 / / 

3.43 ± 

0.06 / / 

A434 Lecanora polytropa 

Lichenoconium 

lecanorae 16,335 12,172 11,296 7,370 7,223 557 526 491 579 ± 73 

426 ± 

148 

400 ± 

158 

5.06 ± 

0.11 

4.53 ± 

0.59 

4.46 ± 

0.62 
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A440 Tephromela atra Muellerella atricola 14,501 11,034 9,276 1,371 1,321 215 129 114 244 ± 60 

139 ± 

35 128 ± 31 

2.06 ± 

0.07 

4.14 ± 

0.52 

3.95 ± 

0.49 

A476 Psorinia conglomerata - 16,627 13,164 12,803 2,939 655 417 352 132 456 ± 117 

325 ± 

98 / 

2.98 ± 

0.09 

4.64 ± 

0.7 / 

A482 Lecanora polytropa 

Cercidospora 

epipolytropa 11,479 9,472 9,171 471 446 166 79 67 168 ± 28 / / 

1.28 ± 

0.06 / / 

 
Aspilidea myrinii 

Sagediopsis 

fissurisedens 16,780 13,002 12,326 7,964 7,858 362 158 146 370 ± 71 

105 ± 

51 105 ± 60 

2.52 ± 

0.07 

0.76 ± 

0.19 0.65 ± 0.2 

A622 Varicellaria lactea Stigmidium eucline 25,805 12,400 12,068 5,296 4,822 326 204 143 323 ± 61 

149 ± 

64 107 ± 45 

3.84 ± 

0.06 

2.57 ± 

0.37 

2.06 ± 

0.33 

A623 Acarospora fuscata - 19,532 16,069 15,939 38 32 96 19 13 97 ± 34 / / 1.1 ± 0.03 / / 

A636 Lecidea lapicida 

Muellerella pygmaea 

s.s. 3,499 496 454 230 230 52 37 37 / / / / / / 

A670 Lecanora polytropa 

Muellerella pygmaea-

Lp 12,531 9,404 8,923 6,447 6,192 360 308 277 361 ± 49 

247 ± 

92 228 ± 81 3.41 ± 0.1 

2.33 ± 

0.47 2.1 ± 0.4 

A792 Lecidea lapicida - 17,241 13,683 12,326 863 79 184 128 27 183 ± 38 / / 

1.38 ± 

0.06 / / 

A809 Tephromela atra 

Taeniolella 

atricerebrina 24,994 20,106 19,353 7,980 7,964 304 198 190 290 ± 81 

181 ± 

114 143 ± 68 

1.99 ± 

0.06 

0.94 ± 

0.22 

0.91 ± 

0.25 

A832 Lecanora bicincta Arthonia varians 9,016 7,403 7,133 85 68 164 23 9 216 ± 54 / / 

1.11 ± 

0.05 / / 

Symptomatically infected samples 200,475 143,205 134,942 41,115 39,706 3,409 2,248 1,978 244 ± 95 

238 ± 

125 

215 ± 

118 

2.56 ± 

1.10 

3.46 ± 

1.88 

3.29 ± 

1.93 

Uninfected samples 222,265 172,331 162,751 17,413 10,105 3,337 1,530 740 216 ± 115 

259 ± 

120 133 ± 43 

2.25 ± 

0.99 

4.14 ± 

1.40 

3.34 ± 

1.84 

Total 422,740 315,536 297,693 58,528 49,811 6,746 3,778 2,718 229 ± 107 

246 ± 

123 

193 ± 

110 

2.40 ± 

1.06 

3.72 ± 

1.74 

3.31 ± 

1.91 
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Molecular analysis and sequencing  

The fungal nuclear ribosomal ITS2 region was amplified with the forward primer ITS3 and the 

reverse primer ITS4 (White et al. 1990). The amplicons for HTS were obtained by performing two 

PCR amplifications. The first PCR amplification used the forward and the reverse primers ITS3 and 

ITS4 modified with GC rich universal tails on the 5’-end (Carew et al. 2013). The 5’-end tail was 

identical to the tail applied on the 3’-end of the barcodes used in the second PCR. The first PCR 

reaction mix contained 3 μl DNA template (10-20 ng), 3 μl HotMasterMix (5PRIME, Fisher 

Scientific), 0.5 μl BSA 10X (Sigma-Aldrich), 0.75 μl EvaGreen™ 20X (Biotium), 0.5 μl forward 

primer ITS3 (10 µM), 0.5 μl reverse primer ITS4 (10 µM) in a final volume of 15 μl. The PCR 

amplifications were performed with CFX 96™ PCR System (Bio-Rad) with the following cycling 

profile: 94 °C for 2 min and 30 cycles at 94 °C for 20 sec, 55 °C for 20 sec, 65 °C for 40 sec followed 

by a final extension at 65 °C for 2 min. A negative control was used to verify the absence of non-

specific amplification products along the whole amplification and sequencing process.  

The second PCR amplification (switch PCR) was required for the multiplex sequencing and the 

attachment of the barcodes. It used primers modified with an 'A' adaptor and a sample-specific 10 bp 

barcode to the 5’-end of the forward primer, and a P1 adaptor to the 5’-end of the reverse primer. The 

reaction was performed in a mix containing 5 μl of the first PCR product, 20 μl HotMasterMix 

(5PRIME), 2.5 μl EvaGreen™ 20X (Biotium), 1.5 μl forward primer (10 µM), and 1.5 μl reverse 

primer (10 µM) in a final volume of 50 μl. PCR conditions were the same as for the first PCR 

amplification but were repeated for 8 cycles. All the amplicons were checked for their quality and 

size by agarose gel electrophoresis and normalized using Mag-Bind® Normalizer Kit (Omega 

Biotek). Product concentrations were checked with NanoDrop® 2000 (Thermo Fisher Scientific). 

The amplicons of the different samples were pooled together in equimolar amounts and the resulting 

barcoded library was measured with Qubit™ Fluorimeter (Thermo Fisher Scientific) and sequenced 

with an Ion Torrent Personal Genome Machine™ (PGM, Thermo Fisher Scientific) using a 314™ 

chip (Thermo Fisher Scientific) for a maximum read length of 400 bp. 
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Data analysis  

QIIME v.1.8.1 (Caporaso et al. 2010) was used to process the sequence data (Fig. 2).  

 

 

Figure 2. Flowchart of the analytical pipeline implemented in QIIME and performed for the analyses of the fungal ITS2 

dataset. The programs used are reported in parentheses.  

 

High quality sequences were demultiplexed (minimum length 150 bp, maximum length of 

homopolymer 8, maximum number of primer mismatches 3). Minimum average quality score was 

set to 20 (Kemler et al. 2013; Tang et al. 2015). Reverse primers and barcodes were removed, and 

reads that did not pass through the filtering were discarded. In order to retain only fungal reads, the 

ITS2 region was extracted with ITSx v.1.0.11 (Bengtsson-Palme et al. 2013) selecting the fungal (F) 

profile option. Chimeric reads were identified and filtered out with UCHIME v.4.0 algorithm using 

the reference dataset updated on 01.01.2016 (Edgar et al. 2011; Nilsson et al. 2015) to obtain the 

final, high quality dataset, here referred as complete dataset. Operational Taxonomic Units (OTUs) 

were picked at 97% similarity with open reference strategy and UNITE database, updated on 

November 2016 (Kõljalg et al. 2013). OTUs taxonomy was assigned using NCBI public nucleotide 

database implemented with the blastn algorithm (max E-value 1e-30). Singletons, intended as reads 

present once in the entire sequence dataset (Zhang et al. 2015; Fernández-Mendoza et al. 2017; Moya 

et al. 2017) were removed. Our workflow (Fig. 2) was organized into three steps in which we analyze 

progressively more reduced datasets of reads. All the reads representing the mycobiont hosts of each 

samples at genus level (e.g. Lecanora, Rhizocarpon) were subtracted from the initial complete 

dataset. This reduced second dataset was named 'no host'. From the 'no host' dataset, all reads 

corresponding to lichen mycobionts (i.e. Caloplaca, Parmelia), independently from their presence in 
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the lichen community under study, were further filtered out and the obtained third dataset was named 

'no myco'. 

Due to the lack or the limited number of reference sequences in the NCBI database for certain lichen 

host species, such as Aspilidea myrinii, Psorinia conglomerata and Varicellaria lactea, the automatic 

blast search resulted in an incorrect taxonomic assignment of these taxa. They matched with 

sequences of the genera Cladonia, Lecania and Mycosphaerella, respectively. Furthermore, the 

automatic blast search resulted in “no blast hit, unclassified” for a number of OTUs corresponding to 

the lichen host Rhizocarpon; these biases were manually corrected. Our dataset included 13 samples 

that were symptomatically infected by ten species of lichenicolous fungi (Fig. 1, Table 1 and Table 

2). However, ITS reference sequences were available in NCBI database for only four genera, 

Arthonia, Endococcus, Skyttea and Taeniolella, and corresponded to the following hits: Arthonia 

sardoa (AF138813), Endococcus fusigera (FJ645262), Skyttea gregaria (KJ559537), S. radiatilis 

(KJ559536, KJ559538), S. lecanorae (KJ559539), S. cismonicae (KP984783), Taeniolella 

stilbospora (AY843127), T. phialosperma (GU966521, KF703925, LC053497) and T. rudis 

(JQ429152). Read identity of the three lichenicolous fungi Endococcus macrosporus, Skyttea 

tephromelarum and Taeniolella atricerebrina in the respective symptomatically infected samples 

(Table 2) could be confirmed according to the reference sequences.  

Statistics and ecological indices were performed with QIIME (Caporaso et al. 2010). The alpha and 

beta diversity analyses were conducted on the three datasets (i.e. complete dataset, 'no host', 'no 

myco') each rarefied to the lowest reads count, considering samples with at least 1000 reads. Alpha 

diversity was calculated using Chao1 (Chao et al. 2009) and Shannon indices (Spellerberg and Fedor 

2003). The non-parametric Kruskal-Wallis test was applied to verify the significance of differences 

in alpha diversity between symptomatically infected and asymptomatic samples with R v.3.2.0 (R 

Core Team 2015). The distribution of beta diversity was explored using Principal Coordinate 

Analysis (PCoA) on Bray-Curtis distance matrices; the uncertainty in PCoA plots was estimated using 

jackknife replicates. Rarefaction was applied by taking a random subset of reads for each sample, 

corresponding to the 80% of the total read number of those samples with the lowest number of reads 

in each dataset. The PCoA axes were visualized with EMPeror (Vazquez-Baeza et al. 2013) in two-

dimensional plots. Spearman’s correlation on the samples was performed using the software package 

Statistica v.10 (StatSoft Inc.) to verify the linear relationship between the taxonomic composition 

detected by ITS1 (Fernández-Mendoza et al. 2017) and by ITS2 (this study) barcodes. 

Shared OTUs were visualized using the software Circos v.0.63-9 (Krzywinski et al. 2009). We 

compared: i) the amount of shared OTUs among samples, considering the complete, the 'no host' and 

the 'no myco' datasets; ii) the mycobiomes in the 'no myco' dataset among samples of the same lichen 
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host genus or species (Lecanora spp., Rhizocarpon geographicum and Tephromela atra) which were 

either symptomatically infected by different lichenicolous fungi or asymptomatic; iii) the presence of 

the main orders of lichen-associated fungi in symptomatically infected and asymptomatic samples. 

 

DNA extraction, amplification and sequencing of fungal isolates 

To determine whether any fungus isolated in culture from lichen samples within the same community 

was also detected in the amplicon dataset, we selected ten fungal isolates available from the previous 

analyses of Muggia et al. (2016). The ten isolates (A572, A899, A923, A930, A931, A951, A985, 

A993, A1022, A1033) represent those strains of Dothideomycetes and Eurotiomycetes which were 

most frequently isolated from the studied lichen community. The DNA was extracted with the Plant 

DNeasy Kit (Qiagen) following manufactures instructions. The fungal nuclear ribosomal ITS2 region 

was amplified with the forward primer ITS3 and the reverse primer ITS4 (White et al. 1990). The 

PCR reaction mix contained 3 μl DNA template (10-20 ng), 5 μl Taq Buffer A (10X, Kapa 

Biosystems), 0.2 μl Taq DNA Polymerase (5 U/μl, Kapa Biosystems), 1 μl dNTPs (10 mM), 2 μl 

forward primer ITS3 (10 µM), 2 μl reverse primer ITS4 (10 µM) in a final volume of 50 μl. The PCR 

amplifications were performed with the following cycling profile: 95 °C for 3 min and 38 cycles at 

95 °C for 30 sec, 55 °C for 30 sec, 72 °C for 1 min followed by a final extension at 72 °C for 1 min. 

A negative control was used to verify the absence of non-specific amplification products along the 

whole amplification and sequencing process. Sanger sequencing of PCR products (one for each 

culture) was performed at the Applied Genomic Institute (IGA) in Udine (Italy). 

 

Results  

 

DNA sequencing and data analysis  

A total of 422,740 raw reads with an average length of 342 bp were generated after quality filtering 

(Table 1); raw data can be accessed at the NCBI short reads repository under the accession number 

SRR5750451. After the extraction of ITS2 and checking for chimera sequences, 297,693 reads were 

retained to constitute the complete dataset. The sequencing depth was not even among samples, 

ranging between 7,133 to 19,353 reads, with only one sample with less than 1000 reads (Table 1). 

After excluding reads belonging to the mycobiont host in each sample, 58,528 reads were retained to 

constitute the 'no host' dataset. The subsequent exclusion of reads belonging to any lichen mycobionts 

from all the samples, retained 49,811 reads to form the 'no myco' dataset (Fig. 2, Table 1).  
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 Rarefaction curves of the three datasets showed large variation in the total number of OTUs 

among samples; not all of them leveled off and approached saturation, indicating that detection of 

additional OTUs may be possible (Supplementary Fig.1).  

 

Comparison between symptomatically infected and asymptomatic samples 

The complete dataset was rarified to 7133, the 'no host' to 1073 and the 'no myco' to 1060 reads. This 

led to the progressive exclusion of one (A636), thirteen (A032, A227, A243, A280, A361, A368, 

A418, A420, A482, A623, A636, A792 and A832) and fourteen samples (A032, A227, A243, A280, 

A361, A368, A418, A420, A476, A482, A623, A636, A792 and A832) from the three datasets, 

respectively. Sample A434 (Lecanora polytropa infected with Lichenoconium lecanorae) presented 

the highest fungal diversity in all three datasets (579±73, 426±148 and 400±158 in the complete, 'no 

host' and 'no myco' dataset, respectively) according to the Chao1 index, and the highest diversity only 

in the complete dataset, according to the Shannon diversity index (5.06 ± 0.11). No significant 

differences between infected and asymptomatic samples were found in the three datasets (Chao1 p-

values: 0.302, 0.685, 0.540; Shannon p- values: 0.625, 0.306, 0.882 for the complete, 'no host' and 

'no myco' datasets respectively; Table 1) when the indexes were compared with the Kruskal-Wallis 

test. 

 The beta diversity analysis showed that, in the complete dataset, samples were grouped mostly 

according to the lichen host species. Here, samples of Psorinia conglomerata and Tephromela atra 

distinctly separate from the other samples (Supplementary Fig. 2). In the PCoA analyses of the 'no 

host' (Fig. 3A) and 'no myco' (Fig. 3B) datasets the maximum percentage of variation explained by 

PC1 axis was 15.4% and 13.7%, respectively (Fig. 3 and Supplementary Fig. 3). The two dimensional 

plots in both datasets do not separate the samples according to the lichen host, the lichen associated 

fungi, or the symptomatic fungal infection.  
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Figure 3. Principal Coordinate Analysis (PCoA) plots of Bray-Curtis distances based on the rarefied datasets of “no host” 

(A) and “no myco” (B). Symptomatically infected samples are represented by squares, asymptomatic samples are 

represented by circles. The percentage of variation explained by each axis is reported in parentheses. The colors indicate 

different lichen hosts: Aspilidea myrinii (pink), Candelariella vitellina (violet), Lecanora intricata (green), L. polytropa 

(red), Psorinia conglomerata (orange), Rhizocarpon geographicum (light blue), Tephromela atra (yellow) and 

Varicellaria lactea (blue). 
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Figure 4. Summary of the taxonomic assignment up to family level of the complete (A), the "no host" (B) and the "no 

myco" (C) datasets. Taxa accounting for <1% (in A and B) and <0.1% (in C) of reads are grouped as “Other”. “Unc.” 

stays for “uncultured”. Bars reflect the proportion of reads from the ITS2 dataset for each sample.  
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Detection of fungal diversity: lichen mycobionts and lichen-associated fungi 

Almost all the reads assigned at kingdom level were ascomycetes (99.9%, Fig. 4); basidiomycetes 

(mostly Tremellomycetes) were detected in a very low proportion and in 12 samples only. In 12 

samples, over 90% of the reads corresponded to the lichen mycobiont (Fig. 4A, Table 1 and Table 2). 

The three samples that were symptomatically infected by lichenicolous fungi (A434, A608 and A670) 

also had the lowest proportion of mycobionts reads (<35%). In each sample, multiple OTUs were 

found to correspond to the same mycobiont host (as similarly recovered by Fernández-Mendoza et 

al. 2017), whereas for the lichenicolous fungi this was the case only for Taeniolella atricerebrina, for 

which three OTUs were recovered (Table 2).    

 

 



128 

 

Table 2. Number of OTUs and corresponding number of reads identified as the lichen host and the symptomatic lichenicolous fungi (in bold). (°) Samples in which reads 

corresponding to more than one lichenicolous fungus were recovered. (#) Samples without reads corresponding to any lichenicolous fungi. (*) Lichenicolous fungi for which the 

identity was confirmed with GenBank BLAST search. 

 

Sample Lichen host 
OTUs 

(reads) 

Infecting 

fungus 
A.varians* 

C. 

epipolytropa 
E. macrosporus* L. lecanorae M. atricola 

M. 

pygmaea 
S. eucline S. fissurisedens S. tephromelarum* T. atricerebrina* 

A032# 
Umbilicaria 

cylindrica 

76 

(11,681) 
-           

A138 
Candelariella 

vitellina 

200 

(10,937) 
-          OTU52 (3) 

A172# 
Rhizocarpon 

geographicum 

46 

(12,428) 
-           

A194 
Rhizocarpon 

geographicum 

112 

(13,570) 

Endococcus 

macrosporus 
  OTU6656 (48)        

A227 
Lecanora 

swartzii 

527 

(12,274) 
-          OTU52 (1) 

A229 
Psorinia 

conglomerata 

85 

(10,830) 
-        OTU43 (2)   

A243# 
Lecanora 

polytropa 

71 

(12,952) 
-           

A280° 
Tephromela 

atra 

111 

(6,277) 

Skyttea 

tephromelarum 
       OTU43 (1) OTU3878 (2)  

A360 
Lecanora 

intricata 

52 

(6,658) 
- -         OTU52 (4) 

A361# 
Tephromela 

atra 

115 

(10,996) 
-           

A368 
Lecanora 

bicincta 

203 

(11,800) 
-       OTU45 (1)    

A405 
Rhizocarpon 

geographicum 

33 

(9,586) 

Muellerella 

pygmaea-Rg 
     - OTU45 (1)    

A418° 
Lecanora 

polytropa 

52 

(11,608) 

Lichenoconium 

lecanorae 
   OTU15 (36)    OTU43 (2)   
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A420 
Aspilidea 

myrinii 

234 

(7,554) 
-        OTU43 (238)   

A434° 
Lecanora 

polytropa 

22 

(3,926) 

Lichenoconium 

lecanorae 
   

OTU15 

(1,208) 
   OTU43 (1)  OTU52 (1) 

A440° 
Tephromela 

atra 

86 

(7,905) 

Muellerella 

atricola 
    

OTU4764 

(111) 
    OTU52 (7) 

A476 
Psorinia 

conglomerata 

65 

(9,864) 
-       OTU45 (1)    

A482 
Lecanora 

polytropa 

87 

(8,700) 

Cercidospora 

epipolytropa 
 

OTU8283 

(123) 
        

A608 
Aspilidea 

myrinii 

204 

(4,362) 

Sagediopsis 

fissurisedens 
       OTU43 (7312)   

A622° 
Varicellaria 

lactea 

122 

(6,772) 

Stigmidium 

eucline 
      

OTU45 

(3,288) 
  OTU52 (3) 

A623 
Acarospora 

fuscata 

77 

(15,901) 
-          OTU52 (1) 

A636 
Lecidea 

lapicida 
15 (224) 

Muellerella 

pygmaea s.s. 
     

OTU38 

(40) 
    

A670° 
Lecanora 

polytropa 

52 

(2,476) 

Muellerella 

pygmaea-Lp 
     

OTU38 

(4,633) 
   OTU52 (1) 

A792 
Lecidea 

lapicida 

56 

(11,463) 
-        OTU43 (1)   

A809 
Tephromela 

atra 

106 

(11,373) 

Taeniolella 

atricerebrina 
         

OTU52 (7,093), 

OTU3 (214), 

OTU1403 (49) 

A832 
Lecanora 

bicincta 

141 

(7,048) 

Arthonia 

varians 
-          
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 Taeniolella atricerebrina was detected asymptomatically in samples of the same lichen host 

(Tephromela atra A440) symptomatically infected by the lichenicolous fungus Muellerella atricola, 

and in other four lichen hosts (Acarospora, Candelariella, Lecanora, Varicellaria; Table 2). 

Taeniolella atricerebrina was identified by three OTUs, the most abundant represented by 7,093 

reads (OTU52), the second and the third most abundant ones by 214 and 49 reads (OTU3 and 

OTU1403), respectively. All three OTUs were present in the symptomatically infected sample 

Tephromela atra A809, while only the most abundant OTU52 was recovered in the other samples, 

though with a number of reads ranging from 1 to 7 (Table 2). 

Based on the abundance and taxonomic assignment, we predicted the identity of the reads 

corresponding to the symptomatically infecting lichenicolous fungi Cercidospora epipolytropa 

(A482), Stigmidium eucline (A622), Lichenoconium lecanorae (A418, A434), Sagediopsis 

fissurisedens (A608) and Muellerella atricola (A440). For each of these fungi, a blast search 

recovered a single OTU matching with “uncultured Ascomycota” or “unclassified”. The OTUs 

corresponding to Sagediopsis fissurisedens (OTU43) and Stigmidium eucline (OTU45) were also 

found in lichen samples other than their known hosts (Table 2). The lichenicolous fungus Muellerella 

pygmea was symptomatically present in three lichen samples (A405, A636, A670); however, OTU38, 

which we tentatively assigned to M. pygmaea because it matched with Chaetothyriales in a blast 

search, was found only in two of them (in A636 with 40 reads, 9%; in A670 with 4633 reads, 52%). 

This result suggests that the identification of Muellerella could be correct, as previous studies reported 

the fungus in this order (Muggia et al. 2015; Triebel and Kainz 2004). In the single case of the sample 

Lecanora bicincta A832 infected by Arthonia varians, we could not detect any OTU assignable to 

the lichenicolous fungus. Finally, we did not recover any OTU assignable to lichenicolous fungi in 

four specimens (A032, A172, A243, A361) whereas we recovered OTUs of different lichenicolous 

fungi co-occurring in seven specimens, of which six were symptomatically infected (A280, A418, 

A434, A440, A622, A670) and one was without visible infection (A360; Table 2). 

In the 'no host' dataset, 23% of the reads belonged to the orders Chaetothyriales (Eurotiomycetes, 

Ascomycota) and Lecanorales (Lecanoromycetes, Ascomycota) (Fig. 4B). The most represented 

families were Herpotrichiellaceae (Chaetothyriales), Parmeliaceae and Ramalinaceae (Lecanorales); 

30% of the reads could be assigned up to the kingdom level (Fig. 4B). Reads blasting as “uncultured 

fungi” and “unclassified” represented 13% and 15% of the dataset, respectively. 

 In the 'no myco' dataset (Fig. 4C) up to 37% of the reads could be assigned to the order level 

within Ascomycota and they belonged again to Chaetothyriales (Eurotiomycetes), Capnodiales 

(Dothideomycetes) and Lecanorales (Lecanoromycetes). The most represented families were 
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Herpotrichiellaceae (Chaetothyriales) and Catillariaceae (Lecanorales). About 0.12% belonged to 

Tremellales (Basidiomycota), 22% to “uncultured fungi” and 17% remained unclassified (Fig. 4C). 

  The relative abundances of Ascomycota and Basidiomycota among the lichen-associated 

fungi was compared (Fig. 5) between the ITS1 (Fernández-Mendoza et al. 2017) and ITS2 datasets 

(this study). Spearman’s correlation was calculated for the most represented orders Capnodiales, 

Chaetothyriales and Tremellales. The relative abundances were 0.24, 0.07 and -0.036 respectively, 

and indicated no significant (P<0.05) linear relationship between ITS1 and ITS2 datasets. The relative 

abundance of these orders differs between the two barcodes, being 25.6% and 0.3% for Capnodiales, 

10.1% and 9.6% for Chaetothyriales and 44.5% and 0.2% for Tremellales in the ITS1 and ITS2 

datasets, respectively.  
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Figure 5. Comparison between the taxonomic composition of ITS1 (Fernández-Mendoza et al. 2017) and ITS2 based on 

the most recovered fungal orders in Ascomycota (Capnodiales and Chaetothyriales) and Basidiomycota (Tremellales). 

Bars reflect the proportion of reads assigned to the respective taxa in the two datasets. “Other” comprehends other fungal 

divisions, uncultured and unidentified fungi. 

 

Shared OTUs among samples  

Though each sample is characterized overall by a high proportion of sample-specific OTUs, 

lichen mycobiomes are quite interconnected due to many shared OTUs (Fig. 6; Supplementary Tables 

1-9). The main orders of lichen-associated fungi in which shared OTUs are recovered are 

Capnodiales, Chaethotyriales and Tremellales (Fig. 7; Supplementary Tables 7-9). 

In the complete dataset (Fig. 6A; Supplementary Table 1) and in the 'no host' dataset (Fig. 6B; 

Supplementary Table 2), the two samples A229 and A476 of Psorinia conglomerata share a 

maximum of 307 and 250 OTUs, respectively. The 250 shared OTUs in P. conglomerata belong 

mainly to mycobiont genera of Ramalinaceae and Parmeliaceae, and are responsible for the strong 

similarity of the two samples (as in Fig. 3A). No OTUs were shared by 26 pairs of samples in the 

complete dataset, nor by 102 pairs of samples in the 'no host' dataset. 
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Figure 6. Circos plots showing shared OTUs among lichen mycobiomes. Symptomatically infected samples (as in Table 

1) are in bold. The length of the sample-ribbons is directly proportional to the number of OTUs identified in each sample. 

The width of each connector between two samples is directly proportional to the number of shared OTUs. Shared OTUs 

among all samples in the complete dataset (A), “no host” (B) and “no myco” (C) dataset are presented. Shared OTUs 

calculated on the “no myco” dataset among samples of the same mycobiont genus or same species are shown for the 

lichens Lecanora spp. (D), Rhizocarpon geographicum (E) and Tephromela atra (F).  
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Figure 7. Circos plots showing shared OTUs among lichen mycobiomes. Symptomatically infected samples (as in Table 

1) are in bold. The length of the sample-ribbons is directly proportional to the number of OTUs identified in each sample. 

The width of each connector between two samples is directly proportional to the number of shared OTUs: (A) 

Capnodiales, (B) Chaetothyriales and (C) Tremellales.  
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In the 'no myco' dataset (Fig. 6C; Supplementary Table 3), a maximum of 60 shared OTUs between 

the two samples A418 and A434 of Lecanora polytropa was recorded. This redundancy was seen 

also in the analysis comparing the OTUs diversity among Lecanora spp. samples only (Fig. 6D). The 

60 OTUs belong mostly to unclassified and uncultured fungi, and include reads that we predict to be 

the lichenicolous fungus Lichenoconium lecanorae (Table 2; Supplementary Table 4). This is 

supported by the symptomatic presence of Lichenoconium lecanorae on both A418 and A434 L. 

polytropa samples. In the 'no myco' dataset, no OTUs were shared by 132 pairs of samples.  

 In the three samples of Rhizocarpon geographicum (Fig. 6E), the asymptomatic sample A172 

shared two OTUs with sample A405 symptomatically infected by M. pygmaea, and five OTUs with 

sample A194 symptomatically infected by E. macrosporus. The two symptomatically infected 

samples A194 and A405 shared only one OTU (Supplementary Table 5). 

 Tephromela atra A361 without symptomatic infection shared OTUs with all the other 

symptomatically infected thalli of T. atra (Fig. 6F): seven OTUs with sample A280 infected by S. 

tephromelarum, 12 OTUs with sample A440 infected by M. atricola, and 11 OTUs with A809 

infected by T. atricebrina. The three symptomatically infected T. atra were connected with a 

minimum of 7 and a maximum of 30 shared OTUs. Samples A280 and A809 shared the same OTU 

of T. atricebrina, which is therefore detected as asymptomatic in A280 (Table 2). Samples A280 and 

A440 share 30 OTUs mostly belonging to “uncultured Ascomycota” (Supplementary Table 6). 

 Capnodiales (Fig. 7A) were present in five samples, of which five infected symptomatically 

and two asymptomatically. No more than two shared OTUs were detected between the two 

symptomatically infected samples A280 (T. atra infected by S. tephromelarum) and A440 (T. atra 

infected by M. atricola).  

 Chaethotyriales (Fig. 7B) were present in 17 samples (eight symptomatically infected and 

nine asymptomatic) and a maximum of 26 OTUs were recorded between samples A476 (P. 

conglomerata) and A670 (L. polytropa infected by M. pygmaea).  

 Tremelalles (Fig. 7C) were present in 12 samples (seven symptomatically infected and five 

asymptomatic) and a maximum of 3 OTUS were shared between the symptomatically infected sample 

A482 (L. polytropa infected by C. epipolytropa) and the asymptomatic sample A792 (Lecidea 

lapicida).  
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Amplicon sequencing vs fungal isolates results 

The ten selected fungal strains were all amplified for the ITS fragment; however, ITS2 sequences 

could be successfully obtained only for four of them (NCBI accessions MF276907-MF276910), and 

were queried against the complete dataset. ITS2 sequences of the strains A930 and A1022 

successfully matched (≥ 97%) with a total of five OTUs (Supplementary Table 10). The cultured 

strain A923 is a Dothideomycete (Lichenostigmatales; Muggia et al. 2016) isolated from a thallus of 

T. atra symptomatically infected by M. atricola; it matched with two OTUs of "uncultured 

Ascomycota" in 14 samples. These included both multiple lichen hosts and the sample A440, which 

represents the same combination of mycobiont-lichenicolous fungus (T. atra infected by M. atricola) 

of the thallus used for the isolation of this fungus. The strain A1022 is an Eurotiomycete 

(Chaetothyriomycetidae; Muggia et al. 2016), and was isolated from a thallus of R. geographicum 

symptomatically infected by E. macrosporus. The three matching OTUs were assigned to the group 

of “fungal endophyte” and were present in two samples (Supplementary Table 10). In this case, 

however, there is no correspondence with the lichen used for the isolation, as the detected OTUs came 

from two Lecanora spp. specimens (A360 and A832). 

 

 

Discussion 

 

Lichen mycobiome diversity  

Though the comparison between ITS1 and ITS2 barcoding markers is not novel for fungal 

communities, it has not been tested for lichens yet, and it gives here pioneering insights for 

methodological approaches in studying lichen mycobiomes.  

 Because the two datasets of the ITS1 and the ITS2 were gained independently, using two 

different sequencing approaches and clustering algorithms, we have refrained from comparing them 

more closely. Alternatively, we opted to compare the taxonomic diversity as far as possible and to 

comment on the differential detection of taxa. Our approach, which considers the lichen thallus as 

distinctive and still largely unexplored niche for unknown fungal assemblages, further strengthens 

the perception that diversity estimates based on metabarcoding are limited by the barcode locus 

selected (Tedersoo et al. 2015; Tedersoo and Lindahl 2016).  

 Our workflow (Fig. 2) was organized into three steps that analyzed a progressively more 

reduced dataset of reads. With this method, we succeeded in reliably assessing the fungal diversity of 

each sample at different taxonomic levels, and in predicting which reads potentially correspond to 
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the symptomatically infecting lichenicolous fungi. This enabled comparison of symptomatically 

infected and asymptomatic samples using alpha and beta diversity indexes.  

Alpha diversity in symptomatically infected samples is not higher than that in lichens devoid of fungal 

infections. Beta diversity was characterized by the low percentage of variation explained by the three 

major axes (around 35% in total for both 'no host' and 'no myco' datasets). Moreover, due to the 

rarefaction of the datasets, the results are impaired by the number of retained samples. Indeed, 

symptomatically infected and asymptomatic samples are unequally represented, being the 

asymptomatic samples only three out of 11 samples in the 'no myco' dataset. Overall, the beta 

diversity analyses showed no tendency among samples to group according to presence/absence of 

symptomatic infection nor according to lichen host species. This observation is in congruence with 

the results presented by Fernández-Mendoza et al. (2017). 

The presence of different haplotypes derived from different fungal individuals could explain why 

multiple OTUs for the same mycobiont species were recovered. On rocks, lichen thalli develop side 

by side, and hyphae from one mycelium could penetrate into neighboring thalli. The multicopy nature 

of the ITS region (Schoch et al. 2012) may also result in overestimation of diversity if divergent 

paralogs or non-orthologous gene copies are sequenced (Simon and Weiß 2008). However, this 

intragenomic variation does not compromise the taxonomic identification value of the ITS region 

(Hollingsworth 2011). Another, more parsimonious explanation that cannot be ruled out in any 

sequencing approach is that errors may be introduced by sequencing.  

The main orders of lichen-associated fungi detected by the ITS2 barcode were Capnodiales, 

Chaethotyriales and Tremellales (Basidiomycetes), which closely agrees with the results obtained 

previously by analyzing the ITS1 fragment. The order Capnodiales includes endophytes, pathogens 

and, like Tremellales, parasites of fungi (Crous et al. 2009; Lindgren et al. 2015). Chaethotyriales are 

saprobic, rock-inhabiting, lichenicolous and epiphytic fungi (Réblová et al. 2013; Lawrey and 

Diederich 2016). In our dataset, these orders are distributed differently among the samples and do not 

show any correlation with the lichen host species or the presence of symptomatic infections. The 

same pattern is observed for the relevant fraction of unidentified taxa (i.e. uncultured Ascomycota, 

uncultured fungus, unidentified), which could belong to parasymbiontic or commensal fungi 

occurring incidentally on lichen thalli, as hypothesized by Fernández-Mendoza et al. (2017).  

 

ITS barcodes capture unequal taxon diversity in lichen mycobiomes  

Lichen mycobiomes are still uncharted terrains for investigating patterns of fungal specificity and 

ecological adaptations, and have recently become the subjects of metabarcoding analyses (Bates et 

al. 2012; U’Ren et al. 2014; Zhang et al. 2015; Mark et al. 2016). In our sequencing of the ITS2 locus, 
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the proportion of reads belonging to the lichen hosts is higher (min 27.7%, max 99.8%) than when 

those obtained previously from ITS1 (min 3.5%, max 97.7%; Fernández-Mendoza et al. 2017). 

Although we could not assign any reads to two lichenicolous fungal species, M. pygmaea and A. 

varians, using either ITS1 (Fernández-Mendoza et al. 2017) or ITS2, with ITS2 we were able to detect 

reads assignable to other lichenicolous taxa in asymptomatic thalli. Chaetothyriales and Capnodiales 

are the most highly represented orders detected in lichen mycobiomes using both ITS1 and ITS2 

barcodes.  

Basidiomycetes are known to be common partners in lichen symbioses (Spribille et al. 2016; 

Oberwinkler 2017). The previous study, performed with 454 pyrosequencing and based on the ITS1 

barcode, demonstrated a high proportion of Tremellomycetes in the samples, with basidiomycetes 

present in 23 and representing the main component of 11 samples (Fernández-Mendoza et al. 2017). 

On the other hand, basidiomycetes were the least detected in our dataset: they were represented by 

less than 1% of all the reads and were found in only 12 samples. Other studies reported a variable 

fraction of basidiomycetes in lichen mycobiomes: about 15% of the complete dataset in arctic lichens 

(Zhang et al. 2015; analyzing the whole ITS region), less than 1% of rock-inhabiting foliose lichens 

(Bates et al. 2012; 18S rRNA) and less than 3% among endolichenic fungi in a comprehensive study 

(U’Ren et al. 2012; analyzing the complete ITS region). It is important to note that these studies 

considered lichens with growth forms (foliose and fruticose) different from those in the community 

we studied (epilithic and crustose thalli). Implicitly, lichen growth forms likely influence the presence 

of certain fungal taxa within the thalli.  

 

ITS1 vs. ITS2 as barcode for lichenicolous fungi 

Given that the selected samples harbored symptomatic lichenicolous fungi and a high proportion of 

other asymptomatic fungi (Fleischhacker et al. 2015; Fernández-Mendoza et al. 2017; Muggia et al. 

2016), particular attention was paid in predicting which sequences, based on their read abundance 

and taxonomic assignment, could represent the symptomatic lichenicolous fungi. Fernández-

Mendoza et al. (2017) succeeded in identifying three taxa also found in our analyses.  

We identified sequences of potentially five additional lichenicolous fungi (Table 2). We also could 

detect the same OTUs of three lichenicolous fungal species (T. atricebrina, S. eucline and S. 

fissurisedens) in other samples which did not correspond with the known lichen host and occurred 

asymptomatically. The corresponding reads were found in the samples devoid of symptoms in a much 

smaller fraction (<10 reads) than in the symptomatically infected thalli (Table 2); the exception is the 

high number of reads of S. fissurisedens on the asymptomatic host A. myrinii. Furthermore, it seems 

that many lichenicolous fungi can be present in a thallus where only one of them is symptomatically 
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detectable. In this case, the lichenicolous fungus, recognized within the first group of lichen-

associated taxa (sensu Fernández-Mendoza et al. 2017) in the symptomatic sample, could be part of 

the third fungal fraction (sensu Fernández-Mendoza et al. 2017) when its corresponding reads are 

recovered in the mycobiome of any asymptomatic samples. 

Interestingly, the number of reads for each OTUs recovered for lichenicolous fungi using ITS2 as 

barcode is much higher than those recovered using ITS1. As reported by Fernández-Mendoza et al. 

(2017), also in our analyses the presence of symptomatic lichenicolous fungi does not affect the 

composition of the individual lichen mycobiomes in general, but it still remains unexplained if the 

presence of a lichenicolous fungus may inhibit the symptomatic development of a second one.  

 The differences in taxonomic composition that emerge when data for either ITS region are 

analyzed separately suggests that both ITS1 and ITS2 barcodes should be considered together for a 

more reliable estimation of lichen mycobiome diversity. Monard et al. (2013) reached a similar 

conclusion for other fungal communities. The application of sequencing platforms that allow analysis 

of larger fragments, such as PacBio (Pacific Bioscience) or MinION (Oxford Nanopore 

Technologies), are likely to make the metabarcode sequencing of the whole ITS region feasible in the 

near future. 

 

HTS platforms for the analyses of lichen mycobiomes  

In the most common environmental samples, such as those from soil or water, the DNA detected and 

amplified usually contributes evenly to the overall taxonomic composition, regardless of whether 

animal, plant, fungal or bacterial barcodes are used (Taberlet et al. 2012; Bálint et al. 2014; Sunagawa 

et al. 2015; Bell et al. 2016; Vences et al. 2016). Lichen thalli, however, consist mainly of one fungus; 

when fungal barcodes are analyzed, a high fraction of the reads belong to the lichen mycobiont (Bates 

et al. 2012; Zhang et al. 2015; Fernández-Mendoza et al. 2017), affecting the sampling depth of the 

other fungi. This shallow and uneven sampling depth of lichen-associated fungi causes a substantial 

loss of information, and biases the interpretation of species diversity patterns. This is clearly 

exemplified by the alpha and beta diversity analyses in our study. About half of the samples in the 

'no host' and 'no myco' datasets had to be excluded due to the low number of reads (<1000), and the 

remaining samples did not always approach saturation. This condition is independent from the HTS 

platform used, and could be partially prevented by increasing the complete sampling depth of the 

analysis, for example with use of larger PGM chips such as 318TM. However, the fraction of lichen 

mycobiont reads is never predictable. One potential solution would be the use of species-specific 

blocking primers, which prevent the amplification of non-target DNA. This strategy would 

substantially increase the cost of the analyses, especially when multiple lichen hosts are excluded 
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from the amplifications. Using multiple blocking primers might further bias the library preparation, 

as specific blocking oligonucleotides can block closely related non-target sequences at the same time 

(Leray et al. 2013a; Piñol et al. 2015). This approach has already been used in DNA metabarcoding 

dietary studies (Deagle et al. 2010; Leray et al. 2013b), where samples are often enriched with the 

DNA of the host organism (Piñol et al. 2015). If the sequencing depth of the lichen-associated fungi 

could be selectively increase in metabarcoding studies, it will allow us to significantly deepen the 

taxonomic and functional analysis of lichen mycobiomes. 
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Supplementary material 

 

Supplementary Fig. 1 Rarefaction curves of the complete (A), “no host” (B) and “no myco” (C) datasets.  
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Supplementary Fig. 2 Principal Coordinate Analysis (PCoA) plots of Bray-Curtis distances calculated among the lichen 

mycobiomes considering the complete dataset.  

 

 

 

 

Supplementary Fig. 3 Jackknifed Principal Coordinate Analysis (PCoA) plots of Bray-Curtis distances based on the “no 

host” (A) and “no myco” (B) datasets. The statistical confidence of the results is presented by ellipsoids around the 

samples.  
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Supplementary Table 1 Matrix of the shared OTUs among samples in the complete dataset used for Fig. 6A. 

  A229 A138 A792 A194 A440 A361 A280 A809 A032 A360 A622 A172 A227 A832 A405 A670 A418 A636 A623 A482 A476 A434 A243 A608 A368 A420 

A229 417 0 5 3 7 5 8 3 3 10 41 4 4 3 3 3 6 2 3 3 307 4 2 5 1 4 

A138 0 372 3 3 13 3 20 5 7 12 14 5 1 2 1 17 2 0 4 7 14 2 7 0 2 1 

A792 5 3 184 1 5 1 9 3 3 4 6 1 1 2 2 7 11 1 8 6 4 6 3 7 1 5 

A194 3 3 1 229 8 1 6 2 6 10 13 7 1 1 2 3 2 0 6 6 1 0 0 1 0 0 

A440 7 13 5 8 215 69 73 60 14 27 29 8 2 5 3 8 10 1 5 8 7 4 3 4 0 2 

A361 5 3 1 1 69 141 66 76 3 9 8 1 1 1 1 1 1 1 1 3 3 1 0 1 0 1 

A280 8 20 9 6 73 66 201 58 12 19 23 11 4 6 3 17 9 1 6 7 8 7 6 4 3 4 

A809 3 5 3 2 60 76 58 304 8 10 12 2 5 3 2 3 4 1 5 5 2 3 1 1 3 3 

A032 3 7 3 6 14 3 12 8 111 12 16 9 2 5 4 6 3 1 3 4 3 1 2 1 5 2 

A360 10 12 4 10 27 9 19 10 12 179 30 10 4 7 4 9 9 1 6 9 10 5 2 1 3 2 

A622 41 14 6 13 29 8 23 12 16 30 326 9 4 7 9 11 7 3 5 15 42 4 4 17 4 18 

A172 4 5 1 7 8 1 11 2 9 10 9 221 3 3 5 4 4 1 4 2 2 0 1 0 0 0 

A227 4 1 1 1 2 1 4 5 2 4 4 3 549 3 4 3 7 1 4 2 0 2 2 1 2 1 

A832 3 2 2 1 5 1 6 3 5 7 7 3 3 164 2 4 7 2 3 3 1 2 1 5 131 4 

A405 3 1 2 2 3 1 3 2 4 4 9 5 4 2 265 4 4 1 3 3 1 0 1 0 1 1 

A670 3 17 7 3 8 1 17 3 6 9 11 4 3 4 4 360 10 2 5 7 55 6 2 2 3 2 

A418 6 2 11 2 10 1 9 4 3 9 7 4 7 7 4 10 208 2 5 5 3 120 2 9 1 7 

A636 2 0 1 0 1 1 1 1 1 1 3 1 1 2 1 2 2 52 1 0 0 0 0 1 0 0 

A623 3 4 8 6 5 1 6 5 3 6 5 4 4 3 3 5 5 1 96 5 1 6 1 2 1 3 

A482 3 7 6 6 8 3 7 5 4 9 15 2 2 3 3 7 5 0 5 166 8 3 2 4 2 5 

A476 307 14 4 1 7 3 8 2 3 10 42 2 0 1 1 55 3 0 1 8 417 1 2 0 1 0 

A434 4 2 6 0 4 1 7 3 1 5 4 0 2 2 0 6 120 0 6 3 1 557 1 4 1 6 

A243 2 7 3 0 3 0 6 1 2 2 4 1 2 1 1 2 2 0 1 2 2 1 135 2 3 2 

A608 5 0 7 1 4 1 4 1 1 1 17 0 1 5 0 2 9 1 2 4 0 4 2 362 3 231 

A368 1 2 1 0 0 0 3 3 5 3 4 0 2 131 1 3 1 0 1 2 1 1 3 3 220 2 

A420 4 1 5 0 2 1 4 3 2 2 18 0 1 4 1 2 7 0 3 5 0 6 2 231 2 295 
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Supplementary Table 2 Matrix of the shared OTUs among samples in the “no host” dataset used for Fig. 6B. 

  A032 A138 A172 A194 A227 A229 A243 A280 A360 A361 A368 A405 A418 A420 A434 A440 A476 A482 A608 A622 A623 A636 A670 A792 A809 A832 

A032 35 7 8 6 1 2 0 9 9 1 0 1 2 1 0 10 3 4 0 11 1 0 5 2 4 3 

A138 7 172 5 3 1 0 4 19 10 2 0 1 2 1 2 13 13 7 0 13 3 0 16 3 4 2 

A172 8 5 175 5 1 1 0 8 6 0 0 2 1 0 0 6 1 2 0 7 1 0 3 0 0 3 

A194 6 3 5 117 0 1 0 5 8 0 0 1 1 0 0 6 0 6 1 11 4 0 3 1 0 1 

A227 1 1 1 0 22 2 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 1 2 

A229 2 0 1 1 2 332 0 2 5 2 0 1 2 2 2 3 250 1 2 33 0 0 1 2 1 1 

A243 0 4 0 0 0 0 64 3 1 0 2 0 1 0 0 3 2 0 0 3 1 0 1 2 0 0 

A280 9 19 8 5 0 2 3 90 14 7 0 1 5 2 3 31 8 5 1 18 4 0 14 5 8 3 

A360 9 10 6 8 1 5 1 14 127 2 1 1 5 0 4 21 6 7 0 24 3 0 8 2 3 4 

A361 1 2 0 0 0 2 0 7 2 26 0 0 0 0 0 12 2 2 0 3 0 0 0 0 11 0 

A368 0 0 0 0 0 0 2 0 1 0 17 1 0 0 0 0 1 0 0 4 0 0 0 0 1 6 

A405 1 1 2 1 0 1 0 1 1 0 1 232 1 0 0 1 1 2 0 5 1 0 2 0 0 1 

A418 2 2 1 1 0 2 1 5 5 0 0 1 147 4 94 7 2 4 5 5 2 0 6 5 0 3 

A420 1 1 0 0 0 2 0 2 0 0 0 0 4 61 3 1 0 2 44 3 1 0 1 3 2 1 

A434 0 2 0 0 1 2 0 3 4 0 0 0 94 3 526 2 1 2 1 3 5 0 3 2 1 0 

A440 10 13 6 6 1 3 3 31 21 12 0 1 7 1 2 129 5 7 3 23 3 0 7 4 12 3 

A476 3 13 1 0 0 250 2 8 6 2 1 1 2 0 1 5 352 7 0 38 0 0 55 4 2 0 

A482 4 7 2 6 1 1 0 5 7 2 0 2 4 2 2 7 7 79 0 12 4 0 6 5 5 2 

A608 0 0 0 1 0 2 0 1 0 0 0 0 5 44 1 3 0 0 158 2 1 0 1 1 1 1 

A622 11 13 7 11 1 33 3 18 24 3 4 5 5 3 3 23 38 12 2 204 3 1 10 4 8 6 

A623 1 3 1 4 1 0 1 4 3 0 0 1 2 1 5 3 0 4 1 3 19 0 3 1 2 1 

A636 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 37 0 0 0 0 

A670 5 16 3 3 1 1 1 14 8 0 0 2 6 1 3 7 55 6 1 10 3 0 308 5 1 2 

A792 2 3 0 1 0 2 2 5 2 0 0 0 5 3 2 4 4 5 1 4 1 0 5 128 1 1 

A809 4 4 0 0 1 1 0 8 3 11 1 0 0 2 1 12 2 5 1 8 2 0 1 1 198 1 

A832 3 2 3 1 2 1 0 3 4 0 6 1 3 1 0 3 0 2 1 6 1 0 2 1 1 23 
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Supplementary Table 3 Matrix of the shared OTUs among samples in the “no myco” dataset used for Fig. 6C. 

 

  A032 A138 A172 A194 A227 A229 A243 A280 A360 A361 A368 A405 A418 A420 A434 A440 A476 A482 A608 A622 A623 A636 A670 A792 A809 A832 

A032 19 6 6 6 0 0 0 8 9 1 0 1 2 0 0 10 2 3 0 9 1 0 5 1 3 1 

A138 6 131 5 3 1 0 4 18 10 2 0 1 2 0 2 12 13 6 0 12 3 0 16 2 3 1 

A172 6 5 172 5 0 0 0 8 6 0 0 2 1 0 0 6 1 2 0 6 1 0 3 0 0 1 

A194 6 3 5 109 0 0 0 5 8 0 0 1 1 0 0 6 0 5 1 10 3 0 3 0 0 1 

A227 0 1 0 0 9 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 

A229 0 0 0 0 0 64 0 2 3 2 0 1 2 1 2 3 51 0 1 3 0 0 1 1 1 0 

A243 0 4 0 0 0 0 18 3 0 0 0 0 0 0 0 2 1 0 0 1 1 0 1 2 0 0 

A280 8 18 8 5 0 2 3 87 14 7 0 1 4 1 3 30 8 4 1 16 4 0 14 4 7 1 

A360 9 10 6 8 1 3 0 14 77 2 0 1 4 0 4 21 4 6 0 21 3 0 8 2 3 4 

A361 1 2 0 0 0 2 0 7 2 25 0 0 0 0 0 12 2 2 0 3 0 0 0 0 11 0 

A368 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 1 0 0 1 0 0 0 0 0 1 

A405 1 1 2 1 0 1 0 1 1 0 1 228 1 0 0 1 1 2 0 5 1 0 2 0 0 1 

A418 2 2 1 1 0 2 0 4 4 0 0 1 80 3 60 4 2 3 1 2 1 0 4 4 0 1 

A420 0 0 0 0 0 1 0 1 0 0 0 0 3 51 3 0 0 0 38 1 0 0 0 1 0 0 

A434 0 2 0 0 1 2 0 3 4 0 0 0 60 3 491 2 1 2 1 3 5 0 3 2 1 0 

A440 10 12 6 6 1 3 2 30 21 12 0 1 4 0 2 114 5 6 2 21 3 0 6 3 12 2 

A476 2 13 1 0 0 51 1 8 4 2 1 1 2 0 1 5 132 6 0 14 0 0 55 3 2 0 

A482 3 6 2 5 1 0 0 4 6 2 0 2 3 0 2 6 6 67 0 9 4 0 4 3 4 1 

A608 0 0 0 1 0 1 0 1 0 0 0 0 1 38 1 2 0 0 146 1 0 0 0 1 0 0 

A622 9 12 6 10 1 3 1 16 21 3 1 5 2 1 3 21 14 9 1 143 2 1 8 2 6 1 

A623 1 3 1 3 1 0 1 4 3 0 0 1 1 0 5 3 0 4 0 2 13 0 3 0 1 1 

A636 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 37 0 0 0 0 

A670 5 16 3 3 1 1 1 14 8 0 0 2 4 0 3 6 55 4 0 8 3 0 277 4 1 1 

A792 1 2 0 0 0 1 2 4 2 0 0 0 4 1 2 3 3 3 1 2 0 0 4 27 0 0 

A809 3 3 0 0 1 1 0 7 3 11 0 0 0 0 1 12 2 4 0 6 1 0 1 0 190 0 

A832 1 1 1 1 1 0 0 1 4 0 1 1 1 0 0 2 0 1 0 1 1 0 1 0 0 9 
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Supplementary Table 4 Matrix of the shared OTUs among samples of Lecanora spp. in the “no myco” dataset used for 

Fig. 6D. 

 

  A227 A243 A360 A368 A418 A434 A482 A670 A832 

A227 9 0 1 0 0 1 1 1 1 

A243 0 18 0 0 0 0 0 1 0 

A360 1 0 77 0 4 4 6 8 4 

A368 0 0 0 2 0 0 0 0 1 

A418 0 0 4 0 80 60 3 4 1 

A434 1 0 4 0 60 491 2 3 0 

A482 1 0 6 0 3 2 67 4 1 

A670 1 1 8 0 4 3 4 277 1 

A832 1 0 4 1 1 0 1 1 9 

 

Supplementary Table 5 Matrix of the shared OTUs among samples of Rhizocarpon geographicum in the “no myco” 

dataset used for Fig. 6E. 

 

  A172 A194 A405 

A172 172 5 2 

A194 5 109 1 

A405 2 1 228 

 

Supplementary Table 6 Matrix of the shared OTUs among samples of Tephromela atra in the “no myco” dataset used 

for Fig. 6F. 

 

  A280 A361 A440 A809 

A280 87 7 30 7 

A361 7 25 12 11 

A440 30 12 114 12 

A809 7 11 12 190 

 

 

 

Supplementary Table 7 Matrix of the shared OTUs belonging to Capnodiales in the complete dataset used for Fig. 7A.  

 
 

A280 A360 A440 A622 A809 

A280 7 1 2 1 0 

A360 1 1 0 1 0 

A440 2 0 2 0 0 

A622 1 1 0 9 0 

A809 0 0 0 0 21 
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Supplementary Table 8 Matrix of the shared OTUs belonging to Chaetothyriales in the complete dataset used for Fig. 

7B.  

 

  A032 A138 A172 A243 A280 A360 A368 A405 A418 A434 A440 A476 A482 A622 A623 A670 A792 

A032 1 1 1 0 1 1 0 0 0 0 1 1 0 0 0 1 0 

A138 1 14 2 1 6 1 0 0 0 0 3 5 0 2 0 5 1 

A172 1 2 5 0 4 1 0 0 0 0 2 1 0 0 0 1 0 

A243 0 1 0 2 1 0 0 0 0 0 0 1 0 1 0 1 1 

A280 1 6 4 1 25 2 0 0 0 0 4 2 1 1 2 3 1 

A360 1 1 1 0 2 3 0 0 0 0 1 1 0 0 0 1 0 

A368 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 

A405 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 

A418 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 

A434 0 0 0 0 0 0 0 0 1 11 0 0 0 0 0 0 0 

A440 1 3 2 0 4 1 0 0 0 0 9 1 0 0 0 1 0 

A476 1 5 1 1 2 1 1 1 0 0 1 28 0 4 0 26 1 

A482 0 0 0 0 1 0 0 0 0 0 0 0 5 0 1 0 0 

A622 0 2 0 1 1 0 1 1 0 0 0 4 0 4 0 3 1 

A623 0 0 0 0 2 0 0 0 0 0 0 0 1 0 2 0 0 

A670 1 5 1 1 3 1 0 0 0 0 1 26 0 3 0 36 1 

A792 0 1 0 1 1 0 0 0 0 0 0 1 0 1 0 1 1 

 

Supplementary Table 9 Matrix of the shared OTUs belonging to Tremellales in the complete dataset used for Fig. 7C.  

 

  A138 A280 A360 A418 A434 A440 A476 A482 A608 A622 A623 A670 A792 

A138 1 1 0 0 0 1 0 0 0 0 0 0 0 

A280 1 3 1 0 0 2 0 0 0 0 1 1 0 

A360 0 1 4 2 1 1 1 1 0 2 1 2 1 

A418 0 0 2 4 1 0 2 2 0 1 0 1 2 

A434 0 0 1 1 1 0 1 1 0 1 0 1 1 

A440 1 2 1 0 0 2 0 0 0 0 1 1 0 

A476 0 0 1 2 1 0 2 2 0 1 0 1 2 

A482 0 0 1 2 1 0 2 3 0 1 0 1 3 

A608 0 0 0 0 0 0 0 0 0 0 0 0 0 

A622 0 0 2 1 1 0 1 1 0 3 0 1 1 

A623 0 1 1 0 0 1 0 0 0 0 1 1 0 

A670 0 1 2 1 1 1 1 1 0 1 1 2 1 

A792 0 0 1 2 1 0 2 3 0 1 0 1 4 

 

 

 

 

 

 



152 

 

Supplementary Table 10 Number of OTUs and corresponding reads of two cultured fungi (A930 and 1022, Muggia et 

al. 2016), found in the complete dataset. The reads found in samples with the same lichen-lichenicolous fungus 

combination from which culture was isolated are highlighted in bold. 

 

  Cultured fungus 

  A930 A1022 

Sample     

A032 OTU47 (116) - 

A138 OTU47 (11) - 

A172 OTU47 (57) - 

A194 OTU47 (426) - 

A227 - - 

A229 - - 

A243 - - 

A280 OTU47 (37) - 

A360 OTU47 (246) OTU9873 (37), OTU3048 (1), OTU10383 (1) 

A361 - - 

A368 - - 

A405 OTU47 (3) - 

A418 OTU47 (2) - 

A420 - - 

A434 - - 

A440 OTU47 (131) - 

A476 - - 

A482 OTU47 (12) - 

A608 - - 

A622 OTU47 (572), OTU8759 (2) - 

A623 OTU47 (1) - 

A636 - - 

A670 OTU47 (1) - 

A792 - - 

A809 - - 

A832 OTU47 (1) OTU9873 (57), OTU3048 (1), OTU10383 (1) 
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CONCLUSIONS 

 

The presented research provides new insights in lichen photobionts stress responses and in the 

intrathalline fungal diversity. This was achieved through the application of high-throughput-omic 

technologies transcriptomics and DNA metabarcoding; information acquired from analyses of gene 

expression, protein quantification and physiological parameters were also integrated.  

 The outstanding stress tolerance of lichen photobionts was one of the objects of my Ph.D.: the 

analysis of the photobiont Trebouxia gelatinosa allowed the understanding of the stress-related 

mechanisms in this green alga.  

While some mechanisms were found to be stress-specific (i.e. DRPs response to desiccation), 

common traits in the T. gelatinosa responses could be identified, such as the involvement of the 

photosynthetic apparatus and molecular chaperones.  

A fundamental feature of T. gelatinosa at molecular level is a conspicuous, powerful and constitutive 

machinery that gives to the alga the capacity to promptly cope with sudden changes in the external 

environment, including high oxidative stress and extremely low water content. These results represent 

further explanations of the reasons why the genus Trebouxia occurs as the most common lichen 

photobiont, adapted to the “life at the extremes” that lichens can have.  

In this perspective, further studies could be performed to elucidate some, still unclear aspects 

of stress tolerance in T. gelatinosa.  

For instance, the importance of DRPs in T. gelatinosa and other lichen photobionts could be 

investigated, in particular in terms of structural diversification and phylogenetic analysis. The 

relationship between DRPs and lichenization is intriguing, especially in the view of the hypothesized 

horizontal gene transfer (HGT) involving the lichen-associated bacteria. 

Regarding water stress, different desiccation rates could be tested to understand how gene expression 

of photosynthesis-related transcripts change, and how it is reflected in terms of decrease and recover 

of photosynthetic activity after rehydration.  

Moreover, given the peculiar behavior of T. gelatinosa molecular chaperones (i.e. HSP70), it will be 

interesting to monitor their response (both at transcript and protein level) when the alga is subjected 

to a range of other environmental stresses beside the ones already tested (desiccation and oxidative 

stress), such as heat shock, high light radiation, or combinations of them.  

As T. gelatinosa mRNA extraction was successfully applied also from lichen thalli (i.e. the epiphytic 

Flavoparmelia caperata, from which it was isolated), the experiments could be performed also in 

vivo, to verify how lichenization influences the molecular and physiological response of the 

photobiont.  



154 

 

 

 The great intrathalline diversity that was detected in lichens during this Ph.D. showed how the 

knowledge of these small and complex ecosystems is still at the beginning, and how high-throughput-

omics technologies are and will be inestimable tools to assess previously unknown biodiversity. 

Chaethothyriales are here confirmed as principal component of the lichen mycobiomes. The 

possibility to investigate and compare symptomatic with asymptomatic thalli proved successful to 

understand the ecological importance of lichen mycobiomes. The asymptomatic presence of 

lichenicolous fungi further supports the role of lichen as reservoir of biodiversity. 

The lack of representative sequences in databases only allows a shallow taxonomic 

assignment of most of the lichen-associated fungal taxa, and more efforts are needed to recover this 

information. The integration with classical techniques, such as cultures and DNA barcoding, is still 

pivotal to increase the genetic information and make it available. It has been shown that the fungal 

studies are affected from the choice of the DNA barcode. Also, bioinformatic pipelines developed ad 

hoc for fungi will be helpful to standardize the analyses and favor the integration of data from 

different studies.  

 More researches should be conducted for the study of lichen mycobiome, and different 

research questions could be addressed, including their role in lichen symbioses. For instance, lichens 

with a wide geographical distribution could own locally differentiated fungal communities. These 

could present individual responses to local drivers, such as pollutants, humidity, temperature, and 

likely have a role in the distribution pattern of the lichen species itself.  

 The interaction between lichen myco- and microbiomes would be also of extreme interest in 

the view of lichens as microniches, that integrate genetics, physiology and metabolism of different 

organisms. The composition of lichen myco- and microbiomes could be studied in thalli subjected to 

different environmental stresses, to evaluate if and how the composition changes.  

 

 We know a lot about lichens, but it is even more what we still do not know. Lichens give 

researchers the possibility to integrate new and classical approaches, different disciplines and 

expertise. The opportunity to study the lichen thallus in terms of both bi- (mycobiont and photobiont) 

and multi-partite systems (lichen myco- and microbiomes) is unique and represents a stimulating and 

exciting challenge in science.  
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IAS: invasive alien species 

 

Abstract 

Fungal spores and mycelium fragments are particles which become and remain airborne and 

have been subjects of aerobiological studies. The presence and the abundance of certain taxa in 

aerobiological samples can be very variable and impaired by changeable climatic conditions. Because 

many fungi produce mycotoxins and both their mycelium fragments and spores are regarded as 

potential allergens, monitoring the presence of these taxa is of key importance. So far data on 

exposure and sensitization to fungal allergens are mainly based on the assessment of few, easily 
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identifiable taxa and focused only on certain environments. This is due in part to the traditional 

methodologies used to analyze aerobiological samples and the inconspicuous fungal characters which 

allow only a shallow taxonomical identification. Here we present a first assessment of fungal diversity 

from airborne samples using a DNA metabarcoding analysis. The region ITS2 was selected as fungal 

barcode to catch fungal diversity in mixed airborne samples gathered for two weeks in four sites of 

North-Eastern and Central Italy. We assessed the taxonomic composition and diversity within and 

among the sampled sites and compared the molecular data with those obtained by traditional 

microscopy. The molecular analyses provide a tenfold more accurate determination of the taxa than 

the traditional morphological inspections. Our results prove that the metabarcoding analysis is a 

promising approach to increases quality and sensitivity of the aerobiological monitoring. The 

laboratory and bioinformatic workflow implemented here is now suitable for routine, high-

throughput, regional analyses of airborne fungi. 

 

 

Introduction 

Fungi are ubiquitous and are among the most important and widespread groups of organisms 

which play key roles in multiple environments. Fungal spores and mycelium fragments are usually 

so small, that they belong to the group of particles that becomes and remains airborne (average size 

of 10 µm) and have been investigated by aerobiologists since the early years of this field [1]. 

Aerobiology has been acknowledged in the 1930s as the study of biological particles in the air, 

including the diversity and the processes involved in the movement of microorganisms in the 

atmosphere between different geographical locations [2]. The long-distance dispersal of fungal spores 

is especially relevant for many crop plants pathogens, such as the obligatory, biotrophic fungi 

producing huge numbers of spores and causing rust, blight, powdery and downy mildew diseases. 

Wind dispersal over hundreds or thousands of kilometers has caused the spread of these severe crop 

diseases on continental and even global scales [3, 4]. 

 Besides being parasites of plants, fungi with their multiple life styles are also of general 

interest as they are some of the most common, important and also severe human and clinical 

pathogens (e.g. [5-11]). Allergenic properties of spores, tissue fragments and metabolites released by 

fungi have been studied plentifully [5, 12-17].  

 Researches on aerobiological samples have been performed in indoor and outdoor 

environments and have focused both on airborne pollen grains and fungal spores [18-23]. Studies on 

pollen grains have developed into established monitoring networks over several countries worldwide 

[i.e. Italy (http://www.pollnet.it), United Kingdom (http://www.worc.ac.uk/discover/national-pollen-

http://www.worc.ac.uk/discover/national-pollen-and-aerobiology-research-unit.html
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and-aerobiology-research-unit.html), USA (http://www.aaaai.org/global/nab-pollen-counts)]. Also, 

thanks to the established application of DNA barcodes in the identification of organisms, 

aerobiological analyses of plant diversity based on pollen grains have proceed much further [24-27]. 

In the past few years studies on pollen diversity have seen a large application of high throughput 

sequencing (HTS) technologies in palinology, melissopalinology and nutritional biology researches 

[28-34]. Recently Kraaijeveld et al. [34] accurately identified pollen from mixed airborne samples, 

including species that could not be recognized microscopically, by sequencing them with the Ion 

Torrent HTS platform.  

 On the contrary, the knowledge about fungal diversity in airborne samples is still very poor in 

comparison to plant data. Limitations to determine airborne fungal diversity are in part due to the 

very variable daily and seasonal loads of fungal (dia)spores, and to the limitations of the traditional 

methodologies used in aerobiological analysis [35, 36]. Still, aerobiology mostly employs 

morphological analyses of volumetric samples (usually spores/m3) collected with spore trapping and 

differentiated in non-viable and viable air sampling [18, 36, 37]. The collection of volumetric samples 

keeps costs low and allows the quantifications of the results. However, it usually provides only a 

shallow taxonomical identification of the few most abundant and recognizable taxa, as morphological 

analyses suffer from being highly dependent on human expertise (it needs highly trained personnel). 

Indeed, routine assessments of fungal spores in pollen bulletin usually report only on a few genera, 

such as Alternaria and Cladosporium (e.g. www.pollenwarndienst.at/en/current-data/current-

charts.html; www.isac.cnr.it/aerobio/ai/6bulletins.htm; www.arpa.umbria.it/pagine/spore).  

In the last decade, molecular approaches (DNA barcoding, RFLP) have also been 

implemented to assess fungal diversity in airborne samples and have strengthen the perception that 

the majority of the genera were mostly overlooked by morphological inspections of either viable or 

non-viable samples [35]. Among the few existing studies, Pashley et al. [35] used PCR amplifications 

of the ITS and LSU regions coupled with cloning and sequencing of RFLP-types to show that more 

than three third of all genera sequenced were not detected by morphology, and that the rates were 

highly variable on daily basis. It was also highlighted that meteorological data, time of year, and 

length of the sampling period should be taken into account when comparing studies of seasonal fungi 

[34, 38].  

 Despite the wide popularity of HTS approaches in monitoring and uncovering microbial 

fungal diversity from diverse environments [39-44] so far very few researches applied HTS for fungal 

aerobiological studies. Recently, a DNA sequencing analysis was successfully implemented to 

identify airborne microorganisms in a hospital to control and supervise hospital infections [22]. Few 

other studies have assessed the composition of outdoor, aerial microbial communities (including 

http://www.worc.ac.uk/discover/national-pollen-and-aerobiology-research-unit.html
http://www.aaaai.org/global/nab-pollen-counts
http://www.pollenwarndienst.at/en/current-data/current-charts.html
http://www.pollenwarndienst.at/en/current-data/current-charts.html
http://www.arpa.umbria.it/pagine/spore
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fungi) with Illumina MiSeq [45-47] or with Roche 454 [14], showing potential for the monitoring of 

air pollution and human health. 

 In this study, we assessed the fungal diversity from airborne samples by implementing a DNA 

metabarcoding analysis using the Ion Torrent technology. We targeted the nuclear internal transcribe 

spacer region ITS2 and used it as fungal barcode [48-50] in mixed airborne samples gathered from 

four sites of North-Eastern (NE) and Central Italy (Fig 1).  

 

 

Fig 1. Geographical location of the sampling sites in the North-Eastern and Central Italy: region and city names are 

reported (FVG: Friuli Venezia Giulia). The map has been retrieved and modified from http://www.d-maps.com.  

 

 

With this approach we aimed at i) implementing a laboratory and bioinformatic workflow suitable 

for routine, high-throughput, regional analyses of airborne fungi; ii) assessing taxonomic composition 

and diversity within and among the sampled sites; iii) comparing the molecular data with the ones 

obtained by microscopy determination. We found correspondence between morphological and 

molecular analyses and provide a much more accurate determination of the taxa in comparison with 

the traditional morphological inspections.  

 

 

 

http://www.d-maps.com/
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Materials and Methods 

Sampling 

The sampling was carried out in four sites of the Italian peninsula (Fig 1) in the following 

regions (city): Friuli Venezia Giulia (FVG, Pordenone), Marche (Ascoli Piceno), Umbria (Terni) and 

Veneto (Vicenza). In each site, the sampling was performed on the roof of a building at 15-20 m from 

the ground using a volumetric sampler (VPPS 2010, Lanzoni) mounted with a sticky tape (Melinex®). 

The sampling was performed during two whole weeks (starting on Mondays), during the time periods 

5th-12th and 19th-26th September 2016.  

 

Microscopy analysis and comparison with molecular data  

Eight fragments, corresponding to two incomplete sampled Mondays for each site, were used 

to screen the presence of fungal spores and perform a taxonomical comparison with the 

metabarcoding results. The sampling tapes were placed on a glass slide, mounted in water and 

observed at a light microscope Olympus BH-2. Fungal spore determination was based on the 

illustration manual [51]. 

 

DNA extraction  

The tape was detached from the sampling drum under a sterile hood and cut in eight segments. 

Two segments were the margins of the tape which belonged to two incomplete Mondays of the weeks 

(the day at which the tape was weekly changed); these pieces were excluded from molecular analyses 

but were used for microscopy analyses only. The remaining six segments corresponded each to one 

day of the week (24 h) starting from Tuesday to Sunday. Each segment was further split into two 

half-day parts, and each of them was fit into a 1.5 ml tube, taking care that the sticky surface with the 

air samples glued on it was facing the internal part of the tube. The total DNA was extracted using 

the ZR Fungal/Bacterial DNA MicroPrep™ Kit (Zymo Research), with five minutes of beat-beater 

processing. The half-day sections were processed individually and pooled at the last step of the 

protocol to obtain a single DNA extraction for each day. This resulted in 48 samples, 12 for each site. 

 

Molecular analysis and sequencing  

The fungal nuclear ribosomal ITS2 region was amplified with the forward primer ITS3 and 

the reverse primer ITS4 [52]. The amplicons were obtained in two PCR amplifications. The first PCR 

uses the ITS2 forward and reverse primers modified with GC rich universal tails on the 5’-end [53], 

which was identical to the tail applied on the 3’-end of the barcodes used in the second PCR. The first 
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PCR reaction mix contained 3 μl DNA template (10-20 ng), 3 μl HotMasterMix (5PRIME), 0.5 μl 

BSA 10X (Sigma-Aldrich), 0.75 μl EvaGreen™ 20X (Biotium), 0.5 μl forward primer ITS3 (10 µM), 

0.5 μl reverse primer ITS4 (10 µM) in a final volume of 15 μl. The PCR amplification was performed 

with CFX 96™ PCR System (Bio-Rad) with the following cycling profile: 94 °C for 2 min and 35 

cycles at 94 °C for 20 sec, 55 °C for 20 sec, 65 °C for 40 sec followed by a final extension at 65 °C 

for 2 min. A negative control was used to verify the absence of non-specific amplification products 

and was carried out for the whole sequencing process. The second PCR (switch PCR) was required 

for multiplex sequencing through attachment of the barcodes. This amplification used primers 

modified with an 'A' adaptor and a sample-specific 10 bp barcode to the 5’-end of the forward primer, 

and a P1 adaptor to the 5’-end of the reverse primer. The reaction was performed in a mix containing 

5 μl of the first PCR product, 20 μl HotMasterMix (5PRIME Fisher Scientific), 2.5 μl EvaGreen™ 

20X (Biotium), 1.5 μl forward primer (10 µM), and 1.5 μl reverse primer (10 µM) in a final volume 

of 50 μl. PCR conditions were the same as for the first PCR but were run for 12 cycles. All the 

amplicons were checked for their quality and length by agarose gel electrophoresis and pooled in 

equimolar amount. The resulting barcoded library was run on a E-Gel Precast Agarose 

Electrophoresis System (Thermo Fisher Scientific). The 400 bp product was recovered, measured 

with Qubit™ Fluorimeter (Thermo Fisher Scientific) and sequenced with an Ion Torrent Personal 

Genome Machine (PGM, Thermo Fisher Scientific) provided with a 400 bp reads length 314™ chip 

(Thermo Fisher Scientific). 

 

Sequence data analysis  

Data analysis was performed in QIIME 1.9.1 [54]. High quality sequences were 

demultiplexed, reverse primers and barcodes were removed, and reads that did not pass through the 

filtering (minimum length 150 bp, minimum average quality score 20, maximum length of 

homopolymer 8, maximum number of primer mismatches 3) were discarded. The ITS2 region was 

extracted with ITSx v1.0.11 [55] by selecting the fungal (F) profile option. Chimeric reads were 

identified and filtered out with UCHIME v4.0 algorithm using the reference dataset updated on 

01.12.2016 [50, 56] to obtain the final, high quality dataset. Operational Taxonomic Units (OTUs) 

were picked at 97% similarity with open reference strategy and UNITE database, updated on 

November 2016 [57]. The method used for the taxonomic assignment was blast (max E-value 1e-30). 

Singletons were removed from the dataset. Statistics and ecological indexes were performed with 

QIIME [54]. 

The alpha and beta diversity analyses were conducted on the rarefied dataset. Rarefaction 

threshold was set at 1284 reads, which corresponds to the number of reads in the first sample over 
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1000 reads. Alpha diversity in terms of OTUs richness and diversity was calculated using Chao1 [58] 

and Shannon indexes [59]. A one-way analysis of variance (ANOVA) followed by a Duncan’s new 

multiple range test was applied to verify the significance of differences in alpha diversity among the 

sites with R version 3.2.0 [60]. The beta diversity was calculated with Bray-Curtis principal 

coordinate analysis (PCoA); the robustness of the sequencing depth was evaluated with a jackknifing 

analysis as suggested in qiime1 tutorial for de novo OTU picking. The PCoA was visualized with 

EMPeror [61].  

The sequence data are available at the NCBI short read repository under the accession number 

SRR6080480. 

 

 

Results  

Traditional microscopy analysis 

The morphological analyses of fungal spores resulted in the identification of 22 genera (S1 

Table); for the four genera Alternaria, Cladosporium, Stemphylium and Torula, morphological and 

molecular results fully correspond. Also spores of the lichen genus Caloplaca and of the lichen family 

Physciaceae (including the genera Hyperphyscia, Physcia and Rinodina as detected by sequencing, 

S2 Table) were observed on the tapes. The genus Caloplaca, however, was not recovered by 

sequencing. 

 

Sequencing and data analysis 

A total of 328,929 raw reads were generated, 176,054 passed the quality filter and had an 

average length of 385 bp. After ITS2 extraction and chimera checking a total of 152,418 reads, 

ranging from 496 to 6,356 reads per sample, were retained and represented the final dataset used for 

the taxonomic assignment and the statistical analyses (Table 1).  

  

Table 1. Summary of sequencing data and diversity estimation. Sample ID, sampling provenience and number of reads 

(after ITS2 extraction and chimera removal) are reported. The number of detected OTUs is assessed for the entire sample, 

values of Chao1 and Shannon diversity indexes are calculated on the dataset rarefied to 1284 reads. (/) Alpha diversity is 

not calculated due to a number of reads lower than 1284. SD: standard deviation. 

 

ID Site Reads  OTUs Chao1 (SD) Shannon (SD) 

F2 FVG 3,330 379 416 (174) 4.35 (0.22) 

F3 FVG 2,074 212 330 (151) 3.57 (0.17) 

F4 FVG 2,374 242 353 (166) 3.66 (0.17) 
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F5 FVG 3,076 289 337 (170) 3.7 (0.19) 

F6 FVG 2,959 308 370 (168) 3.81 (0.2) 

F7 FVG 3,015 343 428 (184) 3.92 (0.2) 

F9 FVG 4,211 323 352 (217) 3.33 (0.17) 

F10 FVG 3,066 254 314 (153) 3.42 (0.16) 

F11 FVG 4,982 454 408 (188) 3.86 (0.19) 

F12 FVG 5,008 403 353 (169) 3.74 (0.18) 

F13 FVG 5,749 429 332 (177) 3.57 (0.17) 

F14 FVG 6,151 509 379 (173) 3.84 (0.17) 

M2 Marche 1,369 312 492 (151) 5.58 (0.3) 

M3 Marche 1,284 306 556 (227) 5.67 (0.31) 

M4 Marche 2,142 381 472 (172) 5.33 (0.3) 

M5 Marche 2,025 266 351 (135) 4 (0.22) 

M6 Marche 1,935 307 511 (194) 4.37 (0.23) 

M7 Marche 2,303 389 507 (174) 4.64 (0.29) 

M9 Marche 1,915 307 502 (187) 4.31 (0.2) 

M10 Marche 2,849 401 455 (193) 4.62 (0.27) 

M11 Marche 1,847 314 523 (232) 4.42 (0.24) 

M12 Marche 2,446 338 432 (172) 4.11 (0.23) 

M13 Marche 2,434 331 463 (197) 4.09 (0.22) 

M14 Marche 2,664 346 434 (183) 3.95 (0.21) 

U2 Umbria 4,549 569 467 (195) 4.68 (0.27) 

U3 Umbria 2,998 342 406 (178) 3.77 (0.18) 

U4 Umbria 1,886 248 347 (127) 3.93 (0.23) 

U5 Umbria 2,919 311 406 (185) 3.64 (0.2) 

U6 Umbria 3,671 417 408 (171) 4.01 (0.22) 

U7 Umbria 1,627 301 465 (174) 4.84 (0.3) 

U9 Umbria 4,270 480 483 (210) 3.85 (0.22) 

U10 Umbria 2,519 367 476 (200) 4.2 (0.27) 

U11 Umbria 2,047 328 487 (184) 4.31 (0.25) 

U12 Umbria 3,218 376 452 (201) 3.68 (0.23) 

U13 Umbria 3,585 402 443 (195) 3.99 (0.22) 

U14 Umbria 3,871 420 429 (201) 3.88 (0.22) 

V2 Veneto 4,278 358 343 (150) 3.57 (0.17) 

V3 Veneto 6,356 447 328 (147) 3.34 (0.19) 

V4 Veneto 3,435 302 352 (164) 3.48 (0.15) 

V5 Veneto 496 120  /   /  

V6 Veneto 1,783 183 306 (124) 3.43 (0.17) 

V7 Veneto 558 80  /   /  

V9 Veneto 5,681 392 386 (204) 2.82 (0.19) 
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V10 Veneto 3,935 304 324 (158) 2.96 (0.15) 

V11 Veneto 4,086 327 320 (152) 3.27 (0.16) 

V12 Veneto 5,029 406 378 (174) 3.32 (0.16) 

V13 Veneto 4,192 308 305 (150) 3.21 (0.15) 

V14 Veneto 4,221 301 275 (129) 3.34 (0.16) 

 

Rarefaction curves showed a large variation in the total number of OTUs among samples. The curves 

did not reach saturation (S1 Fig), suggesting that an increased sequencing depth would detect 

additional OTUs.  

 

 

Comparison within and among sites 

Alpha and beta diversity of samples were estimated from the rarified dataset with a minimum 

value of 1,284 reads. Two samples from Veneto, V5 and V7, resulted in only 496 and 558 reads, 

respectively, and were therefore excluded (Table 1).  

The alpha diversity was estimated using Chao1 and Shannon diversity indexes (Table 1). A 

significant difference (p-value <0.05) was recorded in comparing the two indexes between sites 

(Table 1, Fig 2).  

 

 

Fig 2. Box plots of Chao1 and Shannon diversity indexes estimated for each site. Significant differences among sites 

were calculated with Anova and Duncan’s new multiple range test and are indicated by different letters (p-value < 

0.05). 

 

Both Chao1 and Shannon indices were significantly higher (Duncan’s new multiple range test 

p < 0.05) for the two sites from the Central Italy, Marche and Umbria, in comparison with the two 

sites from the NE Italy, FVG and Veneto. Further, Veneto showed the lowest diversity values (Table 

1, Fig 2). 

 The beta diversity was assessed from Bray-Curtis distance matrices and presented with PCoA 

plot. The maximum percentage of variation explained by a single PC axis was 35.64% (Fig 3).  
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Fig 3. Jackknifed Principal Coordinate Analysis (PCoA) plot of Bray-Curtis distances between the samples of the four 

sites. Ellipsoids show the statistical confidence of the analysis.  

 

The samples are grouped mostly according to their geography: samples from NE Italy (FVG and 

Veneto) are well separated between each other and also from the samples from the Central Italy, while 

these (Marche and Umbria) were clustered together. Within the Central Italian samples, only three 

samples from Marche (M2, M3 and M4) are distinctly segregated from the others (Fig 3), likely due 

to a higher presence of Phaeosphaerales and Pleosporales and a lower presence of Capnodiales (S2 

Fig). 

 

 

Taxonomic composition  

The ITS2 analysis of airborne fungi allowed a taxonomic assignment for more than the 99% 

of the reads by clustering them to OTU at 97% similarity (S2 Fig). At division level, in all sampling 

sites the vast majority of reads belonged to Ascomycetes (Fig 4A).  
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Fig 4. Doughnut charts showing taxonomic composition at division (A) and class (B) level in the four sampling sites. 

Abundances of taxa are reported with the percentage values of reads. Taxa accounting for <0.1% of reads are grouped as 

“Other”.  

 

However, between the different sites the distribution at division level is not homogenous. The 

two sites in NE Italy (FVG and Veneto) present a lower proportion of Ascomycetes (71.1 and 80.1%, 

respectively) but a higher proportion of reads that could be assigned only at kingdom level (Fungi sp. 

28.2% and 19.1%, respectively) than the two sites of Central Italy. These latter, Marche and Umbria, 

are more similar to each other in the amount of Ascomycetes, of which they have 90.2% and 89.8% 

reads, respectively, and in the amount of Fungi sp., 7.3% and 7.9%, respectively (Fig 4A). 

Basidiomycetes are present in very low proportions, representing less than 1% in FVG and Veneto 

and between 1.5% to 2% in Marche and Umbria. The most dominant class is Dothideomycetes, 

followed by Leotiomycetes, Sordariomycetes and Eurotiomycetes (Fig 4B). Basidiomycetes are 

represented by Tremellomycetes and Agaricomycetes (Fig 4B). 

The order Capnodiales was the most represented order in all the sites, followed by 

Pleosporales. The most represented genera in all the sites were Mycosphaerella, Alternaria, Botrytis 

and Periconia (Fig 5A).  



166 

 

 

 

Fig 5. A) Bar charts showing the taxonomic composition up to genus level in the four sampling sites. Abundances of taxa 

are reported with the percentage values of reads. Taxa accounting for <0.5% of reads are grouped as “Other”. B) Venn 

diagram shows the number of unique and shared taxa identified at the genus level among sites (as in S2 Table). 

 

At species level, in all four sites the most represented species was Mycosphaerella tassiana 

(the teleomorph synonym of Cladosporium herbarum). In FVG, M. tassiana (5.59%) was followed 

by Botrytis cinerea (1.25%), Alternaria eichhorniae (0.64%), Exserohilum oryzicola (0.6%), 

Periconia pseudobyssoides (0.46%), Hannaella luteola (0.24%), Alternaria alternata (0.13%), 

Bipolaris sorokiniana and Aspergillus intermedius (0.12% each). In Marche, M. tassiana (14.35%) 

was followed by B. cinerea (1.55%), Stemphylium herbarum (0.81%), Phaeosphaeria juncophila 

(0.39%), A. eichhorniae (0.39%), Angustimassarina acerina (0.37%), Lanzia echinophila (0.32%), 

Lophiostoma macrostomum (0.27%). In Umbria, M. tassiana (18.71%) was followed by B. cinerea 

(1.03%), Parastagonospora avenae (0.43%), P. juncophila (0.41%), L. echinophila (0.33%), A. 

eichhorniae (0.31%), S. herbarum (0.31%), L. macrostomum (0.22% each). In Veneto, M. tassiana 

(9.46%) was followed by A. eichhorniae (0.84%), B. cinerea (0.39%), H. luteola (0.27%), Periconia 

pseudobyssoides (0.22%), Aspergillus intermedius (0.18%), A. alternata (0.14%). 

Eighty taxa identified up to the genus level, comprising about 99% of the total reads, are 

shared by the four sites (Fig 5B; being Capnodiales, Fungi sp., Mycosphaerella, Ascomycota sp., 

Pleosporales, Alternaria, Botrytis and Periconia the most abundant). FVG, Marche and Umbria 

shared 29 taxa (being Naevala and Vuilleminia the most abundant genera, both representing >0.1% 

of the reads). Low represented taxa (<0.1% of the reads) are shared among two or three out of four 

sites (S2 Table). In each site, we also recover unique taxa (<0.1% of the reads) which were otherwise 

not detected in the other three sites: three for FVG and Veneto, 23 for Marche and 26 for Umbria (S2 

Table).  
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Discussion 

Fungal diversity in airborne samples  

In this study, we characterized the taxonomic composition of airborne fungi across four Italian 

sites using the ITS2 region as barcode and the Ion Torrent sequencing platform. The two sites from 

Central Italy, Marche and Umbria, showed higher species richness and diversity than the two sites in 

NE Italy, FVG and Veneto. Beta diversity analyses evidenced the tendency of the samples to group 

on the base of their geography, as a subtle different taxonomic composition was recovered between 

the sites. This is partially explained by a higher (twice to three times) presence of reads assigned only 

to kingdom level (Fungi sp.) in the NE Italian sites. Alternatively, the fungal composition during the 

two sampling weeks remain rather constant within each site (S2 Fig). 

The presence and distribution of fungal communities and therefore their spores, are influenced 

by spatial contexts [62], climatic [63, 64 and reference therein] and meteorological conditions [65-

68]. Spatial contexts (such as pedology, land use and vegetation) determine the availability of 

substrates and plant hosts on which certain fungi can develop [62]. Mean air temperature, relative 

humidity and wind speed are additional factor shaping the distribution of fungal spores, such as those 

of Alternaria, Cladosporium, Drechslera-type, Epicoccum and Torula [69]. Here, we do not correlate 

the overall diversity observed with the meteorological parameters, as our data were collected over a 

short period and cannot be generalized in a broader context. However, we do consider that sites in 

NE and Central Italy are under the influence of different climatic conditions as they are located about 

500 km apart from each other on a latitudinal distance. Therefore, the variability of climatic and 

environmental conditions (e.g. temperatures, precipitations, humidity and elevation) between the 

sampled sites could partially explain the detected fungal diversity. This expectation is corroborated 

by a high proportion of Mycosphaerella/Cladosporium and Stemphylium spores in both sites from the 

Central Italy as, according to literature [5, 69], these spores require high mean air temperature, low 

relative humidity and low amount of rain, which are known for these areas. 

The main classes of fungi detected by the ITS2 barcode belonged to ascomycetes, whereas 

basidiomycetes were present in very low proportions. The low proportion of basidiomycetes might 

be impaired by multiple factors. About 15% of the reads could not be identified (Fungi sp.); these 

reads might indeed hide further asco- or basidiomycetes taxa as well. In outdoor airborne samples the 

amounts of the two fungal divisions was often reported to vary during the year, but it can also highly 

differ within shorter periods of time (i.e. daily; [35, 47]), making the comparison of different surveys 

difficult. Notwithstanding this bias, the low proportion of recovered basidiomycetes could be 

attributed to spore dimensions, dispersal ability, weather conditions (as humidity, precipitations), 

seasonality, availability of substrate or geographical factors. Previous studies report that ascomycetes 
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are more common than the basidiomycetes during dry days [35, 70]. One other study based on ITS 

sequencing of airborne fungi captured throughout a year [20] reported that ascomycetes were 

prevailing (>90%) among larger particles (>9 µm), while the opposite trend was recorded for smaller 

particles (>3 µm). Among spores, ascomycetes are more often reported in higher abundances than 

basidiomycetes – e.g. Fierer et al. [71] reported as much as 97% of ascomycetes using cloning and 

sequencing of the universal marker SSU, while Yang et al. [14] reported abundances reaching over 

90% when sequencing fungal ITS1 in a study where haze and non-haze days in Beijing were analyzed 

based of the particulate matters fraction (PMs). The selection of the barcode primers can also affect 

the detection of certain taxa [72, 73]; it has been observed that ITS1 barcode captures a higher 

proportion of basidiomycetes than of ascomycetes [74-76]. 

Our results also report the presence of eight lichen genera (Caloplaca, Cladonia, 

Flavoparmelia, Lecidella, Physcia, Hyperphyscia, Rinodina, Umbilicaria) of which the spores of 

only two taxa, the genus Caloplaca and the family Physciaceae (which includes Physcia, 

Hyperphyscia and Rinodina), were identified during the morphological inspections of the samples. 

The majority of the detected taxa are epiphytic lichens commonly distributed in Italy, and can occur 

also in urban environment if not highly polluted. The only exception is the genus Umbilicaria which 

comprise only epilithic species of montane to alpine environments. This is, however, to the best of 

our knowledge, the first report of the detection of lichen spores and lichen sequence data in airborne 

samples.  

The genus Schizoxylon is one of the 70 genera shared by Marche and Umbria. Interestingly 

this fungus, known to be both saprotrophic and optionally lichenized [77-79], has been reported only 

for Scandinavian countries so far [78]. Its presence in our dataset lets us speculate on its possible 

distribution in the Mediterranean region but further researches are necessary to support this 

hypothesis.  

 Surprisingly, also rock inhabiting fungi (RIF) were identified, though in low amounts. Some 

of them belong to widespread genera, such as Knufia, while sequences corresponding to 

extremophilic genera, such as the Friedmanniomyces [80], were also retrieved. It is likely that either 

their presence in the airborne samples is due to long distance dispersal, or that their identities 

corresponded to closely related taxa which colonize rock surfaces in or close to the urban 

environments. The distribution of epilithic and endolithic RIF assemblages is still poorly known, and 

whether they would be repeatedly recovered in airborne samples should be investigated further. 

 The sequencing results are characterized by a relatively high percentage of reads here referred 

as Fungal sp. (about 7% for Central and 25% for Northern sites). These correspond to about 100 

OTUs which blasted in NCBI mainly as “Fungal sp.” or “Uncultured fungus” derived from other air 
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surveys (i.e. FJ820545, KP724985, KF800623), confirming the importance of further studies on this 

pool of still unknown ecological components. 

The genera Cladosporium, Alternaria, Epicoccum and Stemphylium of which the sequencing 

reads represented the highest percentage, were also abundantly found in the samples inspected at the 

microscope. These genera have their peak of spore dispersal at late summer and early autumn [5, 81, 

82] and indeed their spores were spread all over the collecting tapes. Five taxa out of the 22 

morphologically identified genera, were detected only by microscopy analyses (S1 Table): 

Pithomyces (soil fungus), Oidium, Peronospora, Leptosphaerulina (it was present only in FVG), and 

Polythrincium (single spores found in Marche and Veneto, respectively). The remaining taxa were 

detected both by sequencing and morphological analyses. 

 

Fungal pathogens and invasive alien species (IAS) 

A number of fungi are known to be the source of allergenic particles in form of spores and/or 

thallus fragments. Allergenic taxa belong to Ascomycota, Basidiomycota and anamorphic fungi can 

act as agents for a multiplicity of diseases, such as infections, toxicosis, allergic asthma, allergic 

rhinitis, allergic sinusitis, broncho-pulmonary mycoses, and hypersensitivity pneumonitis [5, 16, 35, 

83]. Because fungal aerosol in indoor environments depends in most cases from outdoor 

concentrations [18], the presence and distribution of allergenic fungi represents an important issue 

for public health [16, 84]. 

 In the most frequently detected fungal order Capnodiales (Ascomycota, Dothideomycetes) the 

main allergenic genus identified in our study was Cladosporium; Alternaria, Aspergillus, Epicoccum, 

Exserohilum were found in lower amount. Human and animal pathogens (Acremonium, Candida, 

Cryptococcus, Torula), as well as plant pathogen (Botrytis, Bipolaris, Periconia, Phaeosphaeria, 

Parastagonospora, Ramularia, Stemphylium) have been sequenced from all four sites. 

Invasive alien species (IAS) are recognized as a major threat of diverse ecosystems [85]. Due 

to their inconspicuous nature and the fact that they are still poorly studied also in terms of bio- and 

phylogeography, fungal reports in IAS databases is still very scarce, with the exception of few 

important plants and animal pathogen [86]. The DAISIE European Invasive Alien Species Gateway 

(www.europe-aliens.org) lists about 40 alien fungal species for Italy. Among these, Discula 

destructiva was sequenced from the sampling site in Umbria. This fungus is a pathogenic, causal 

agent of the dogwood anthracnose, which is one of the major diseases affecting Cornus tree species 

[87]. First observed in North America [88], the disease has been reported also in Germany since 2002 

[89] and in Italy since 2003 [90]. 

 

http://www.europe-aliens.org/
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HTS technology for the study of airborne fungi 

In our survey, species accumulation curves did not reach saturation, indicating an even more 

remarkable richness and diversity of taxa. A more exhaustive sampling could be obtained if the 

sequencing depth would be increased, for example by using a larger PGM chips (such as 316TM) 

Another possibility would be to use other HTS approaches that allow the sequencing of the whole 

ITS fragment.  

 The application of HTS technologies is nowadays among the new, standard approaches for 

environmental studies. Despite the great advantages offered by HTS, e.g. the high taxonomic 

resolution, reproducibility and short processing time [91], DNA metabarcoding is still affected by 

some pitfalls. Among them, the possibility to quantify the abundance of the taxa with higher accuracy 

(stochasticity of the PCR amplifications and also sequencing the HTS results are semi-quantitative at 

best) and primer bias impair sequencing results at the most [91-93]. Further, the underestimation of 

species diversity is unpredictable in several fungal taxa, although primers have been designed ad hoc 

for certain groups [93-95]. The low proportion of basidiomycetes (see previous section) detected in 

this survey might be attributed to the selected primers (ITS3/ITS4), as they were shown to 

preferentially amplify ascomycetes [74-76]. One of the reasons for this could be that the ITS2 

amplicon is longer in basidiomycetes than in ascomycetes (30-50 bp longer, [76]) and therefore the 

selected primer pair may preferentially amplify the shorter ITS2 in the ascomycetes [75, 76], 

explaining the higher proportion of ascomycetes reads in our dataset. As the application of HTS to 

fungal communities studies is increasing, there is a general need to develop primers that minimize 

the taxonomic biases so far persisting [73, 96]. 

 The identities of the generated sequences are still hardly comparable with reference databases 

and this represent a drawback in such surveys. We expect that the establishment of site-specific 

reference databases would implement in the future the identification of airborne fungal particles and 

further improve the air monitoring.  

 

 

Conclusions 

Intraspecific morphological variation, low quantity and lack of distinctive morphological 

characters have been the major constraints for the microscopy identification of fungal spores in 

airborne samples. In the present study we have showed that the great number of taxa identified with 

DNA metabarcoding is ten-fold higher than the one identified by microscopy analyses (238 vs. 22 

genera). This strengthens the perception that HTS analyses are tools of key importance to increase 

the sensitivity of air biomonitoring and our knowledge on airborne fungal diversity. The 
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standardization of HTS techniques in aerobiology will make the monitoring of pathogenic fungal 

agents and their distribution affordable in shorter time and with higher reliability. The prompt 

identification of new or potential allergenic substances from plant and fungal tissues, as well as 

invasive species, is essential for an effective prevention and management of diverse environments. A 

long-scale monitoring extended on a wider geographic area in Italy is taking into account seasonal 

variation and meteorological conditions (Muggia et al. in prep.). Further, the development of regional 

database for airborne fungi and the ongoing implementation of existing worldwide fungal database 

[97, 98] represents a ‘must’ to reliably asses the identity of new sequence data.  
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Supporting information 

 

 

S1 Fig. Rarefaction curves of the complete dataset. 

 

 

S2 Fig. Bar charts showing the taxonomic composition up to class level in the 48 samples. Abundances of taxa are 

reported with the percentage values of reads. Taxa accounting for <0.1% of reads are grouped as “Other”. 
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S1 Table. List of the taxa recovered by microscopy analysis in the sampling sites. For each taxon, presence (√) or 

absence (-) in each sampling sites is shown for both microscopy (micr) and amplicon sequencing (DNA).  

 

  FVG   Marche   Umbria    Veneto   

  Micr DNA Micr DNA Micr DNA Micr DNA 

Alternaria   √   √   √   √   √   √   √   √ 

Amphisphaeria  -    √   √   √  -   -   -   -  

Bipolaris   √   √  -    √   √   √   √   √ 

Caloplaca  -   -    √  -   -   -   -   -  

Cladosporium   √   √   √   √   √   √   √   √ 

Curvularia   √   √  -    √  -    √   √   √ 

Drechslera   √   √  -   -    √   √   √  -  

Epicoccum   √   √   √   √   √   √   √  -  

Exserohilum   √   √  -    √   √   √   √   √ 

Keissleriella  -    √  -    √  -    √   √   √ 

Leptosphaeria   √   √   √   √   √   √  -    √ 

Leptosphaerulina   √  -   -   -   -   -   -   -  

Lophiostoma   √   √   √   √   √   √  -    √ 

Massarina  -    √   √   √   √   √   √   √ 

Oidium  -   -   -   -    √  -   -   -  

Periconia   √   √  -    √  -    √   √   √ 

Peronospora   √  -    √  -   -   -    √  -  

Pithomyces   √  -   -   -   -   -    √  -  

Pleospora   √   √   √   √  -    √  -    √ 

Polythrincium  -   -    √  -   -   -    √  -  

Stemphylium   √   √   √   √   √   √   √   √ 

Torula   √   √   √   √   √   √   √   √ 

 

S2 Table. List and presence of taxa down to genus level in the Venn diagram of Fig. 5B. The letters before the taxon 

name indicate the taxonomic level: “k”: kingdom, “p”: phylum, “c”: class, “o”: order, “f”: family, “g”: genus. The taxa 

represented by more than 0.1% of the reads are highlighted in bold. 
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Taxa (up to genus level) 

√ √ √ √ 80 k_Fungi sp., p_Ascomycota, c_Dothideomycetes, c_Sordariomycetes, 

c_Tremellomycetes, o_Capnodiales, o_Helotiales, o_Pleosporales, o_Xylariales, 

f_Diatrypaceae, f_Leptosphaeriaceae, f_Nectriaceae, f_Phaeosphaeriaceae, 

f_Pleosporaceae, f_Pleosporales_fam_Incertae_sedis, f_Pseudeurotiaceae, 

f_Xylariaceae, g_Acremonium, g_Alternaria, g_Angustimassarina, g_Arthrinium, 

g_Ascochyta, g_Aspergillus, g_Aureobasidium, g_Biatriospora, g_Bipolaris, 

g_Botrytis, g_Bullera, g_Candida, g_Cercospora,g_Chalastospora,g_Ciboria, 

g_Cladosporium,g_Coprinellus,g_Cryptococcus,g_Curvularia,g_Dendryphion, 

g_Didymella, g_Dioszegia, g_Exserohilum, g_Fusarium, g_Ganoderma, 

g_Gibberella, g_Hannaella, g_Hansfordia, g_Hymenoscyphus, g_Hyphodermella, 

g_Hyphodontia, g_Hypoxylon, g_Keissleriella, g_Lanzia, g_Leptosphaeria, 

g_Leptospora, g_Lophiostoma, g_Massarina, g_Monographella, g_Mycosphaerella, 

g_Myrmecridium, g_Nigrospora, g_Paraconiothyrium, g_Parastagonospora, 

g_Passalora, g_Penicillium, g_Periconia, g_Phaeosphaeria, g_Phoma, g_Pleospora, 

g_Podosphaera, g_Pseudodidymosphaeria, g_Sawadaea, g_Septoria, 
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g_Setophaeosphaeria, g_Sordaria, g_Stagonospora, g_Stemphylium, g_Teichospora, 

g_Torula, g_Xenobotryosphaeria, g_Xylaria, Unidentified 

√ √ √ 
 

29 p_Basidiomycota, o_Agaricales, o_Rhytismatales, f_Pyronemataceae, 

f_Rhytismataceae, g_Bulleribasidium, g_Cladophialophora, g_Comoclathris, 

g_Coniothyrium, g_Epicoccum, g_Eutypa, g_Extremus, g_Lachnum, g_Lentithecium, 

g_Naevala, g_Neoascochyta, g_Neodevriesia, g_Neofusicoccum, g_Neokalmusia, 

g_Phialocephala, g_Plectania, g_Pleurophragmium, g_Pyrenochaetopsis, 

g_Rinodina, g_Sphaerellopsis, g_Sporobolomyces, g_Truncatella, g_Vuilleminia, 

g_Xylodon  
√ √ √ 14 c_Agaricomycetes, f_Corticiaceae, g_Basidiodendron, g_Coriolopsis, g_Dactylaria, 

g_Incrucipulum, g_Lophodermium, g_Preussia, g_Pyrenophora, 

g_Rachicladosporium, g_Rutstroemia, g_Schizopora, g_Scirrhia, g_Umbilicaria 

√ 
 

√ √ 6 o_Botryosphaeriales, f_Polyporaceae, g_Endoconidioma, g_Peniophorella, 

g_Phaeodactylium, g_Pilidium 

√ √ 
 

√ 6 o_Sporidiobolales, f_Capnodiales_fam_Incertae_sedis, g_Cladonia, g_Coprinopsis, 

g_Golovinomyces, g_Physisporinus 

√ √ 
  

5 f_Amphisphaeriaceae, g_Annulohypoxylon, g_Blumeria, g_Datronia, g_Uwebraunia  
√ √ 

 
70 c_Leotiomycetes, o_Auriculariales, o_Chaetothyriales, o_Diaporthales, o_Polyporales, 

f_Acarosporaceae, f_Peniophoraceae, g_Acicuseptoria, g_Auricularia, 

g_Botryosphaeria, g_Byssomerulius, g_Cadophora, g_Capnobotryella, g_Chalara, 

g_Ciborinia, g_Clathrosphaerina, g_Cryptosphaeria, g_Cryptovalsa, 

g_Cyphellophora, g_Diaporthe, g_Diatrypella, g_Dichomitus, g_Discosia, 

g_Dissoconium, g_Exidia, g_Exidiopsis, g_Friedmanniomyces, g_Fuscoporia, 

g_Glarea, g_Gloeophyllum, g_Gnomoniopsis, g_Graphostroma, g_Hypholoma, 

g_Knufia, g_Laetiporus, g_Lenzites, g_Melanconium, g_Mollisia, g_Mycoacia, 

g_Nemania, g_Neocladophialophora, g_Neosetophoma, g_Noosia, g_Penidiella, 

g_Peniophora, g_Perenniporia, g_Pezicula, g_Phaeosphaeriopsis, g_Phlebia, 

g_Phlebiella, g_Physcia, g_Plenodomus, g_Populocrescentia, g_Pringsheimia, 

g_Protodontia, g_Ramularia, g_Resupinatus, g_Reticulascus, g_Schizoxylon, 

g_Sclerotinia, g_Seimatosporium, g_Sistotremastrum, g_Spiroplana, 

g_Toxicocladosporium, g_Tremella, g_Trichopezizella, g_Valdensinia, 

g_Volucrispora, g_Xenasma, g_Xeropilidium   
√ √ 3 o_Hypocreales, g_Clohesyomyces, g_Hysterium 

√ 
  

√ 5 g_Hyphopichia, g_Paraphoma, g_Pichia, g_Setosphaeria, g_Xenodidymella 

√ 
 

√ 
 

7 g_Adisciso, g_Camarosporium, g_Drechslera, g_Fomes, g_Fomitopsis, 

g_Neophaeomoniella, g_Phaeomollisia  
√ 

 
√ 6 f_Halosphaeriaceae, g_Abortiporus, g_Catenulostroma, g_Menispora, g_Radulidium, 

g_Sclerostagonospora 

√ 
   

3 g_Colletotrichum, g_Lecidella, g_Paramycosphaerella  
√ 

  
23 o_Sordariales, f_Sporormiaceae, g_Allophaeosphaeria, g_Austroafricana, g_Calycina, 

g_Cylindrium, g_Derxomyces, g_Dinemasporium, g_Eutypella, g_Hirsutella, 

g_Inocybe, g_Leuconeurospora, g_Mycena, g_Periconiella, g_Phialemoniopsis, 

g_Physalospora, g_Pluteus, g_Psathyrella, g_Roseodiscus, g_Sydowia, 

g_Torrendiella, g_Trametes, g_Trichopeziza   
√ 

 
26 o_Sebacinales, o_Tremellales, f_Ceratobasidiaceae, f_Russulaceae, f_Sclerotiniaceae, 

f_Teratosphaeriaceae, g_Ampelomyces, g_Candelariella, g_Celosporium, 

g_Ceriporia, g_Cordyceps, g_Discostroma, g_Discula, g_Flavoparmelia, 

g_Gregarithecium, g_Helicoma, g_Hexagonia, g_Hyperphyscia, g_Letendraea, 

g_Neurospora, g_Pestalotiopsis, g_Phacidium, g_Podospora, g_Stereum, g_Terana, 

g_Tetracladium    
√ 3 g_Kodamaea, g_Lentinus. g_Wallemia 
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