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Abstract

The present study concerns the evaluation of the e�ects of stable strati�ed condition
on turbine performance and wake development. The numerical analysis has been
carried out by means of Large Eddy simulation (LES) through the in-house LES-
COAST model coupled with a turbine module that computes the turbine induced
forces. The capability of the model in reproducing power and thrust characteristics
of a turbine has been proved from the comparison between the numerical results and
the experimental data supplied by literature. Since the strati�cation is an important
factor in the marine dynamics, the aim is to evaluate the interaction between the
strati�cation and the turbine. Moreover the overall power production of a tidal farm
and the power output of the single turbines can be in�uenced by the e�ects that
strati�cation entails on the �ow �eld. To the best of our knowledge, in the marine
�eld there is no research aimed at studying the in�uence of marine strati�cation
on wake recover and turbine performance. Tidal sites where marine turbines are
installed can be subject to the presence of density stable strati�ed conditions. The
density strati�cation is due to temperature and/or salinity variations between the
super�cial and the bottom water. In order to evaluate the in�uence of strati�cation
on power output and wake development and recover, we simulated two types of stable
strati�ed condition: a weak and a strong strati�cation. The weak strati�cation has
been simulated imposing a temperature jump in order to obtain a vertical density
pro�le with a step shape. For the strong strati�cation, we imposed a salinity jump
with a step shape which gives rise to an higher density variation compared to the
weak case. Then the turbine has been introduced into the strati�ed �elds and
the results have been compared. The analysis of the results highlights that the
strati�cation has an impact on turbine production and on wake development and
recover. Moreover the turbine mixing e�ect is analyzed.
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Chapter 1
Introduction

The development of e�cient renewable energy technologies is still a technological
challenge for engineers and scientists all over the world. In particular, oceans and
seas are a consistent source of kinetic energy that could be converted in electricity.
Areas characterized by high tidal stream potential have been identi�ed, where peak
�ow rates are around 4-5 m/s. Over the next 30 years, it seems possible that thou-
sand of turbines will be placed in situ, with a total installed capacity up to 3 GW [1].
Although research on marine turbines deal with several areas of interest, the most
investigated topic is de�nitely the power performance issue. As for wind farms, the
wakes behind the rotors cause a reduction of velocity and hence a decrease in energy
extraction. Finding the optimal con�guration is crucial in order to gather as much
energy as possible, thus making the technology competitive in the renewable energy
scenario. For this purpose, several studies have been carried out to evaluate e�-
ciency and energy production. Most of them concerns experimental investigations
and numerical simulations of a single turbine. In their study, Bai et al. [2] predicted
power performance of a marine current turbine under a free surface through a �nite
volume solver coupled with immersed boundary method. Two free surface meth-
ods have been applied and validated. Then the power coe�cient at di�erent tip
speed ratios was calculated and the results compared with reference experimental
data exhibiting a general good agreement. Noruzi et al. [3] carried out a numerical
simulations by means of Reynolds-averaged Navier-Stokes (RANS) with and with-
out gravity waves and the results were compared to experimental data. The results
showed that when the ratio between the installation depth and the total depth of
the domain is below a critical value, the installation depth of the rotor in�uences
the performance of the turbine. A few studies concern the investigation of power
performance of turbines arrays. Mycek et al. [4] carried out an experimental and
numerical study both for a single turbine and for two turbines. A three-dimensional
software was employed based on a Lagrangian vortex particle method for numerical
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1 � Introduction

simulations. The study showed that the turbine is deeply a�ected by the presence
of an upstream device in terms of power coe�cient and thus of power production.
Church�eld et al. [5] performed Large Eddy Simulation (LES) to study power pro-
duction and wake propagation of tidal turbines array. The LES model was coupled
with a rotating actuator line method for modeling the turbines. This work highlights
that the application of the tangential forces induced by the turbines is important
in reproducing the wake asymmetry that develops behind turbines. Moreover, it
shows that the in�ow turbulent characteristics a�ect signi�cantly the propagation
and power production of the turbine array.

As mentioned before, concerning turbine farm dynamics, the power production,
although in�uenced by many factors, is connected to the wake development down-
stream of rotors. If the downstream turbines are remarkably a�ected by wakes of
upstream turbines, both the e�ciency of the single turbine and the global array
e�ciency are subject to a decrease in terms of power that can be extracted. For
this reason, many studies focused on the investigation of wake characteristics and
development under di�erent �ow conditions. Maganga et al. [6] performed experi-
mental tests in order to study the �ow e�ects on marine turbine wake characteristics
and turbine performance. The aim of the study was also to supply an experimental
database available for the validation of numerical studies. In this work, the power
performance of a turbine was measured for di�erent �ow conditions and turbine
con�gurations: di�erent speed rates and in�ow �elds and three immersions of the
blades tip. Moreover, the impact of two levels of turbulence intensity rates on wake
development and behavior was investigated. The experimental results showed that
the velocity recovery is faster in the area of higher ambient turbulence intensity.
Moreover, the study indicates high loading �uctuations on the blades in the case of
higher ambient turbulence intensity. Other studies, both numerical and experimen-
tal, focused on the e�ects of turbulence intensity on wake recover [7] [8].

Although the working principle of a marine turbine is similar to the wind device,
comparatively, less research has been done in the marine �eld. This is de�nitely true
as concerns the environmental strati�cation issue. In the wind �eld, the e�ects of
atmospheric strati�cation has been taken into account. Zhang et al. [9] studied the
e�ects of thermal stability on the wind-turbine wakes. In their study, wind-tunnel
experiments were carried out with a simulated convective boundary layer and a
neutral boundary layer. The results highlight that the velocity de�cit is smaller in
the convective case compared to the neutral case, in particular the velocity de�cit at
the wake center is about 15% less than for the convective case. Church�eld et al. [10]
studied the e�ects of convective atmospheric turbulence on power performance of a
wind turbine. The numerical study was carried out through LES and the turbine
was modeled with an actuator line method coupled to a wind turbine structural and
system dynamic model. They simulated and computed the power performance of a
turbine placed 7 diameters downstream of another turbine. The results showed that
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under the unstable condition the power production of the downstream turbine was
15%-20% higher than under neutral condition. Abkar et al. [11] studied the in�uence
of thermal stability on a wind turbine wake. The study was performed by means
of LES coupled with the actuator disk model with rotation to compute the turbine
induced forces. The turbine wake behavior was studied under three atmospheric
conditions: neutral, convective and stable conditions. The results showed that the
wake recovers faster if it is subject to a convective atmospheric boundary layer
compared to neutral and stable conditions. Moreover, the study indicates that
the wake velocity de�cit is well characterized by an analytical model based on the
assumption of a self-similar Gaussian distribution.

Going back to the marine �eld, a few studies have been performed on the marine
strati�cation issue. They concern mainly the study at large scales of the turbine
extraction e�ects on strati�cation. Yang et al. [12] studied the e�ects of tidal en-
ergy extraction due to the presence of tidal turbines, on estuarine hydrodynamics
in a strati�ed estuary. The study was performed numerically by means of a 3-D
unstructured-grid Finite Volume Community Ocean Model (FVCOM) coupled with
a tidal turbine module. The sink term added to the momentum equations of the
FVCOM is computed through the turbine module as a function of the thrust coe�-
cient and drag of turbines. The idealized model domain consists of a semi-enclosed
bay that is forced by the upstream river discharge and tidal forcing through a nar-
row tidal channel. The annual cycle with seasonal variability of strati�cation and
two-layer estuarine circulation was simulated with forcing of tide, river in�ow, and
meteorological heat �ux. The main outcome of the study is that the e�ect of energy
extraction on the surface tidal current is the phase shift. Moreover the results show
that the power extraction has an e�ect on salinity/temperature strati�cation: the
di�erence between surface salinity/temperature and bottom salinity/temperature
decreases as the number of turbines installed increases. De Dominicis et al. [13]
studied numerically the potential e�ects on the hydrodynamics of Pentland Firth
site, caused by a realistic large arrays of tidal turbines. This investigation has been
carried out through FVCOM, whereas the turbines are parameterized with a sink
approach: the loss of momentum due to tidal energy extraction is calculated as a
function of the thrust coe�cient and it is added to the 3D momentum equations.
The authors studied the in�uence of the turbines array in far-�eld strati�cation: the
results shows that the energy extraction in the Pentland Firth in�uences bottom
temperature more than super�cial temperature, producing a larger decrease in the
bottom temperature than the increase in super�cial temperature. Moreover, they
showed that the turbine farm can produce remarkable far-�eld variations on tidal
elevation. To the best of our knowledge, in the marine �eld there is no research
aimed at studying the in�uence of marine strati�cation on wake recover and turbine
performance.

Concerning the numerical tools employed for the investigation of the interference
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1 � Introduction

between the �ow �eld and turbines, two methodologies are mainly used: RANS and
LES techniques. RANS solves the mean �ow �eld, it is de�nitely computationally
less expensive compared to LES, but on the other hand the disadvantage consists in
less accuracy in the results. Whereas LES allows a detailed analysis of the �ow �eld
and the transient e�ects may be captured, making LES one of the most promising
methodology for simulating turbulent �ows [14] [15]. A distinction should be done
if we consider the wind or the marine �eld, since the �rst is more investigated, both
RANS and LES studies has been widely carried out, in particular LES studies have
been performed for wind farm simulations [16][17]. Moreover LES validation studies
have been carried out [18][19] proving the capability of the model in capture the
main characteristics of the �ow in presence of turbines. Conversely in the marine
�eld, most of the numerical studies have been performed by means of RANS [3][20],
and only a few studies concern LES methodology [5].

The aim of this research is to provide an insight on the interaction between
the turbine and stable strati�cation, in particular evaluating the e�ects that ma-
rine strati�cation entails on turbine power performance, wake behavior and velocity
de�cit recover. It is of great importance to establish whether strati�cation might
bring changes in the �eld of a turbine, especially as regards the design of tidal farms.
For these reasons, the present study can provide a �rst step in the comprehension of
the e�ects of strati�cation. Moreover the in�uence of turbine mixing on strati�ca-
tion will be also evaluated. The numerical investigation is performed by means of the
in-house LES-COAST (IE-FLUIDS research group) model coupled with a turbine
module which computes the turbine induced forces. The LES-COAST model solves
the �ltered Boussinesq form of the unsteady three-dimensional Navier-Stokes equa-
tions and the two transport equations for temperature and salinity [21]. By means
of LES technique the large scales of motion are solved directly, whereas the smallest
scales are modeled using a sub-grid scale model [22]. The dissertation is organized
as follows. First the turbine module and the LES-COAST model are introduced,
then we show the validation of the model carried out comparing the experimental
data supplied by literature with the numerical results. After validation, the results
of a simulation in absence of strati�cation is illustrated and it will be useful for a
subsequent comparison. In order to take into account the e�ects of strati�cation,
two di�erent levels of strati�cation are simulated: a weak and a strong stable strati-
�ed condition. The results of the two cases are analyzed and �nally a summary and
conclusions are provided.
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Chapter 2
Actuator Disc Model

In order to take into account the presence of the turbine into the �ow �eld we decided
to take advantage of the Actuator Disk Model [23], [24], herein after called ADM.
As mentioned into the introduction section, the advancement in the marine energy
research is nowadays still trailing the more investigated �eld of wind energy technol-
ogy. The employment of the ADM method for modeling the turbine induced forces
is widely used in both sectors, however if we consider the variety of the investiga-
tions and also from a quantitative point of view, the methodology has been applied
and tested more extensively in the wind �eld. In the wind turbine �eld, numerical
studies based on LES coupled with the ADM have been performed, in particular
wind farm simulations [25][26]. Moreover validation studies [18][19][27][28], high-
lights that employing LES coupled with the ADM, allows to reproduce accurately
the spatial distribution of the main turbulent statistics like mean velocity, turbulence
intensity and turbulent kinetic energy and also supplies detailed information on �ow
�uctuations and eddies. Another method extensively used for modeling the pres-
ence of the turbines is the actuator line method (ALM). Comparison between the
ALM and ADM have been carried out, showing that the �rst method leads to more
accurate results in the near �eld of the wake, however it entails a more expensive
computational coast compared to the ADM [19][29]. Also in the marine �eld RANS
investigations has been carried out coupled with the ADM method [30][20][31]. For
what concerns the LES methodology only a few studies uses LES as a numerical
tool and employ the ALM for modeling the turbine presence [32][5]. The choice of
using the ADM as a tool for the current investigation, was made with the intention
of addressing our study not only toward the pure research but also to make this in-
strument of numerical simulation useful for the applied �eld. In fact, we could have
chosen to handle the problem for example by means of resolved geometry or through
the actuator line method, but compared to the ADM they are computationally much
more expensive, especially for what concerns the resolved geometry approach. The
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2 � Actuator Disc Model

simulation of a cluster of turbines through the above mentioned methods nowadays
is di�cult to achieve, due to computational limits. Even if it goes beyond the sub-
ject matter of the present work, the study of a multi-array turbines will be one of
the future objectives for IE-�uids research group, for these reasons we decided to
use the ADM.

Simplifying the function of the turbine module, it works in the following way:
physically the presence of the blades gives rise to normal and tangential forces that
act in opposition to the �ow, these forces are calculated through the ADM and
applied to the �ow �eld as body force. There are two versions of the ADM: the
ADM without rotation (ADM-NR) and the ADM with rotation (ADM-R). The
ADM-NR will be �rst introduced since is the simpler and quicker among the two two
methods. Before going into details about the mathematical model and its physical
interpretation, regardless if we consider the ADM-NR or the ADM-R, there are
two fundamental coe�cients that describe the thrust and the power characteristics
of a marine turbine: the thrust coe�cient and the power coe�cient. The thrust
coe�cient is the ratio between the trust force that is the force of the water on the
turbine and the dynamic force:

CT =
T

1
2
ρU2A

(2.1)

The power coe�cient is the ratio between the rotor power and the power in the
wind:

CP =
P

1
2
ρU3A

(2.2)

The power coe�cient is a key parameter since it is an esteem of the power that can
be extracted.

2.1 Actuator Disk Model without rotation (ADM-

NR)

The ADM-NR doesn't take into account the rotation of the wake downstream the
rotor. It is based on the one-dimensional momentum theory for which the rotor is
ideally substituted by an actuator disk. The analysis is made considering a control
volume represented by a stream tube in which the actuator disk creates a jump of
pressure into the �uid that �ows throughout it, �gure 2.1. Before going into details
it is worth to list the assumptions that the theory implies:

• the �ow is homogenous, incompressible and steady

• there is no frictional drag
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2.1 � Actuator Disk Model without rotation (ADM-NR)

U
1

U
2
U
3

U
4

1

Stream tube boundary

Actuator

disk

2 3 4

Figure 2.1: Control volume for ADM-NR momentum analysis

• the trust force and velocity are uniform over the disk

• the far upstream static pressure is equal to the far downstream static pressure

• there is no rotation of the wake

Applying the conservation of momentum on the control volume, two expressions for
the thrust force are obtained:

T =
1

2
ρA2

(
U2
1 − U2

4

)
(2.3)

T = ṁ (U1 − U4) (2.4)

Equating (2.3) and (2.4) one obtains:

U2 =
U1 + U4

2
(2.5)

It follows that the velocity at the rotor is the average between the unperturbed
upstream velocity and far downstream velocity. The axial induction factor is de�ned
as the relative decrease between the far upstream velocity and the velocity at the
rotor:

a =
U1 − U2

U1

(2.6)

Then:

U2 = U1(1− a) (2.7)

U4 = U1(1− 2a) (2.8)
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2 � Actuator Disc Model

Rotor

rotation

Wake

swirl

Figure 2.2: Sketch of wake rotation

Combining equations (2.3), (2.7) and (2.8), the thrust results:

T =
1

2
ρAU2

∞ [4a(1− a)] (2.9)

where U1 is substituted by U∞. Substituting the thrust (eq. 2.9) in the thrust
coe�cient relation (eq. 2.1), CT is equal to:

CT = 4a(1− a) (2.10)

That leads to the following expression for a as a function of the thrust coe�cient:

a =
1

2

(
1−

√
1− CT

)
(2.11)

Finally for the actuator disk model without rotation the thrust force can be calcu-
lated by means of the following relation:

T = FADM−NR =
ρ

2
U2
∞CTA =

ρ

2

U2
2

(1− a)2
CTA (2.12)

Where A2 is substitued by A. The same procedure is applied for the computation
of the power:

P = PADM−NR =
ρ

2
U2
∞CPA =

ρ

2

U3
2

(1− a)2
CPA (2.13)
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2.2 � Actuator Disk Model with rotation (ADM-R)

U U(1-2a)

1

Stream tube boundary

Rotating

actuator

disk

2 3 4

U(1-a)
dr

r

Figure 2.3: Control volume for ADM-R momentum analysis

2.2 Actuator Disk Model with rotation (ADM-R)

In the previous analysis it was assumed that the �ow downstream the rotor is not
subject to rotation. Since the rotation of the wake causes a reduction of the power
coe�cient and then of the power that can be extracted, it's important to evaluate
such condition. The ADM-R takes into account the wake rotation thanks to the
evaluation of the tangential forces, besides as well as the normal forces. Physically
the �ow downstream the rotor spins in the opposite direction to the rotor rotation as
it is depicted in �gure 2.2. As logically expected the production of rotational kinetic
energy means a loss of energy that can be extracted, that in the case of ADM-NR
is not considered.

2.2.1 Blade Element Momentum theory (BEM)

For the ADM-R the method used to compute the turbine induced forces is the BEM
theory which merges the momentum theory with the blade element theory. The mo-
mentum theory is based on the analysis of forces over a control volume, the relations
for the normal and tangential force are calculated through the conservation of linear
and angular momentum. Whereas the blade element theory consists in an analysis
of forces at blade sections based on the blade section geometric characteristics.

Momentum Theory

For what concerns the one dimensional momentum theory, the analysis can be made
using a stream tube with a radius r and annular sections of dr thickness and area
equal to 2πrdr, �gure 2.3. Across the actuator disk, the normal velocity doesn't
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2 � Actuator Disc Model

change, however the angular velocity increases from Ω to Ω + ω, where Ω is the
rotor's angular velocity and ω is the angular velocity imparted to the �ow. It follows
that the thrust force at the annular section is:

dT = (p2 − p3)dA =

[
ρ

(
Ω +

1

2
ω

)
ωr2

]
2πrdr (2.14)

Introducing the angular induction factor as:

a
′
=

ω

2Ω
(2.15)

the thrust becomes:

dT = 4a
′
(1 + a

′
)
1

2
ρΩ2r22πrdr (2.16)

Another expression for the thrust can be derived using the axial induction factor, a:

dT = 4a(1− a)ρU2r2πrdr (2.17)

Applying the conservation of angular momentum is possible to determine the torque
as follows:

dQ = 4a
′
(1− a)ρUΩr2πrdr (2.18)

Blade Element Theory

For the blade element theory, the blade is divided into N sections or elements, �gure
2.4, where forces are calculated based on blade section geometry characteristics and
lift and drag features. The lift coe�cient is de�ned as:

CL =
L
l

1
2
ρU2c

(2.19)

where L is lift force, l the unit length, c the chord and U is the incoming velocity
at the blade element. The drag coe�cient is de�ned as:

CD =
D
l

1
2
ρU2c

(2.20)

where D is the drag force. The lift force is perpendicular to the unperturbed up-
stream �ow direction and it is due to the pressure di�erence between the lower and
upper surface of the blade. The drag force is parallel to the unperturbed upstream
�ow direction and is due to: 1) the friction force at the surface and 2) the pressure
di�erence between the surfaces that are hit by the incoming �ow and the surfaces at
the opposite side (outgoing �ow). The 2D drag and the lift coe�cients are usually
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2.2 � Actuator Disk Model with rotation (ADM-R)

Rr

 

dr

Figure 2.4: Blade element con�guration

expressed as a function of the angle of attack for a range of Reynolds number. In
�gure 2.5 is depicted the blade geometry with the interaction between the incoming
�ow and forces that act on the blade. The relative velocity is the sum of the �ow
velocity at the rotor which is U(1 − a) and the velocity due to the blade rotation
which is Ωr(1+α

′
), where r is the radius of the element that is the distance between

the center of the hub and the blade element. The relative velocity is de�ned as:

Urel =
U(1− a)

sin(φ)
(2.21)

The angle of relative �ow φ which is the angle between the rotor plane and Urel can
be derived from the following relation:

tan(φ) =
U(1− a)

Ωr(1 + α′)
(2.22)

Another important geometrical relation that could be determined from �gure 2.5 is:

φ = θp + α (2.23)

where θp is the pitch angle of the element and α is the angle of attack which is the
angle between the relative velocity and the chord line. The drag force is equal to:

D =

∫ R

0

1

2
ρU2

relCDcdr (2.24)

where dr is the length of the blade element. The lift force is:

L =

∫ R

0

1

2
ρU2

relCLcdr (2.25)
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2 � Actuator Disc Model

Figure 2.5: Blade section geometry and forces

The normal force is de�ned as:

Fx = L cos(φ) +D sin(φ) (2.26)

and the tangential force:

Fθ = L sin(φ)−D cos(φ) (2.27)

The blade element analysis leads to the following important result for the normal
force written in di�erential form and for a number of blades equal to B:

Fx =

∫ R

0

B
1

2
ρU2

rel [CL cos(φ) + CD sin(φ)] cdr (2.28)

which has been obtained substituting (2.24) and (2.25) into (2.26). The same pro-
cedure for the formulation of the di�erential torque which is obtained from the
substitution of (2.24) and (2.25) into (2.27) and multiplied for the radius, leads to:

Fθ =

∫ R

0

B
1

2
ρU2

rel [CLL sin(φ)− CD cos(φ)] cdr (2.29)
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2.2 � Actuator Disk Model with rotation (ADM-R)

Tip Loss Correction

The pressure di�erence between the two surfaces of a blade causes a circulation
around the tip from the lower to the upper surfaces which reduces the lift force.
This e�ect is more intense in presence of fewer and larger blades. For this reason
a correction factor must be applied to the momentum equations. The correction
factor F based on Prandtl's method is:

F =

(
2

π

)
cos−1

exp

−
(

B
2

)(
1−

(
r
R

) )(
r
R

)
sin(φ)

 (2.30)

where B is the number of blades and R is the rotor radius. Equations (2.17) and
(2.18) respecively becomes:

dT = 4Fa(1− a)ρU2r2πrdr (2.31)

dQ = 4Fa
′
(1− a)ρUΩr2πrdr (2.32)

2.2.2 Solution of BEM equations

The classic approach for the solution of BEM equations is to arrange the equations
as a function of two variables which are the axial induction factor and the tangential
induction factor. The relations for the two induction factors are derived equating
the formulas for the thrust and the power of the momentum theory and the blade
element theory. Equating the relation (2.28) with the relation (2.31) it can be
obtained the axial induction factor:

a =
1{

1 + 4F sin2(φ)

σ
′
[
CL cos(φ)+CD sin(φ)

]} (2.33)

Where the local rotor solidity is de�ned as σ
′
= Bc

2πr
. The axial induction factor is

derived equating the relation (2.29) with the relation (2.32):

a
′
=

1{
4F sin(φ) cos(φ)

σ
′
[
CL sin(φ)−CD cos(φ)

] − 1

} (2.34)

In order to compute the normal and tangential forces induced by the presence of
the turbine, the classic approach was �rst implemented. The method used to �nd the
solution of the axial and tangential induction factors and then compute the normal
and tangential forces is a �xed point iteration method. The algorithm realized for
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2 � Actuator Disc Model

the solution of BEM equation based on the classic approach, it is characterize by an
external loop for the convergence of the axial induction factor, preceded by a �rst
loop for the convergence of the tangential induction factor. The �xed point method
relates the current solution of the induction factors to the solution at the previous
iteration through a function or a coe�cient [33] [34]. We tested the algorithm in
view of the validation of the model and we found that this approach is not robust in
terms of convergence, both for the weakness of the method and also for the fact that
there are points of singularities in the solution. Moreover we found that applying
the �xed point iteration the errors of convergence can a�ect the results heavily, in
fact the relative errors in the solution of power and thrust coe�cients can reach
40%.

In order to solve BEM equations we �nally implemented the procedure proposed
by Ning [35] [36] which will be illustrated below. The approach indicated by Ning
consists in reducing the two variable, two set of equations into one equation problem,
namely the residual function. This procedure entails a remarkable advantage since
it avoids the resolution of the two nonlinear equations, simplifying the problem. To
solve the residual equation that is function of a single variable, it is employed a root
�nding method allowing the use of a robust method of convergence. Moreover in
order to have a guaranteed convergence it's fundamental to bracket a region where
to �nd a zero of residual function that does not contain any singularities in its
interior. In fact the turbine operates at di�erent working states that correspond to
di�erent regions of the solution. There are mainly three regions: the momentum,
the empirical and the propeller brake region. As it is possible to observe from �gure
2.6, a point of singularity lies between the empirical and the propeller brake region.
The method consists in solving this regions separately in order to keep singularities
at the boundaries and so avoiding the convergence issues connected to the presence
of points of discontinuity. We can arrange equation (2.22) to have the three variables
a, a

′
and φ related together:

tan(φ) =
1− a

(1 + a′)λr

(2.35)

This equation can be combined in di�erent forms to get a residual function, but
since the aim is to keep singularities at the boundaries, (1 − a) and (1 + a) should
be at the denominator, in this way singularities will be placed at speci�c locations,
that are φ = [0,± π]. Through this arrangement, these speci�c locations split the
regions where there is a change in the physic state. In this perspective the residual
function becomes the following equation:

f(φ) =
sin(φ)

1− a
− cos(φ)

(1 + a′)λr

= 0 (2.36)

This method solves the residual equation for the momentum region, the empirical
and the propeller brake region separately This regions are characterized by di�erent

14



2.2 � Actuator Disk Model with rotation (ADM-R)
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Figure 2.6: Thrust coe�cient as a function of the axial induction factor

local thrust coe�cient and consequently di�erent axial and tangential induction
factors.

The present method, compared to the classic approach above mentioned, over-
comes the need to compute the induction factors to update the lift and drag coe�-
cients. The solution of the angle of relative �ow is computed through the following
steps:

1. de�ne the angle of relative �ow

2. compute the angle of attack

3. compute the lift and drag coe�cients

4. estimate the normal and tangential force coe�cients

5. evaluate the induction factors

6. evaluate the error in the residual function

7. if the error is greater than the tolerance, specify again another angle of relative
�ow

As concerns the momentum region, the local thrust coe�cient from the blade ele-
ment theory is de�ned as:

CT =

(
1− a

sin(φ)

)2

cnσ
′

(2.37)
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2 � Actuator Disc Model

where the normal force coe�cient is equal to:

cn = CL cos(φ) + CD sin(φ) (2.38)

For the momentum theory the local thrust coe�cient is expressed as:

CT = 4a(1− a)F (2.39)

Equating (2.37) and (2.39) and solving for the axial induction factor:

a(φ) =
k(φ)

1 + k(φ)
(2.40)

where k is a parameter de�ned as:

k(φ) =
σ

′
cn(φ)

4F (φ) sin2(φ)
(2.41)

Since the blade element momentum theory is valid up to a maximum value of the
axial induction that varies from 0.3 to 0.5, relation (2.40) is valid for −1 < k ≤ β

(1−β)

where β is de�ned as the maximum axial induction factor.
The BEM theory is no longer applicable for axial induction factors between β

and 1. In this range an empirical relation for the local thrust coe�cient must be
employed. Buhl [37] derived the relation between the thrust coe�cient and the axial
induction factor as follows:

CT =

(
50

9
− 4F

)
a2 −

(
40

9
− 4F

)
a+

8

9
(2.42)

Equating (2.37) and (2.42) and arranging the equation to obtain the axial induction
factor:

a(φ) =
γ1 −

√
γ2

γ3
(2.43)

where γ1, γ2 and γ3 are parameters de�ned respectively as:

γ1 = 2Fk −
(
10

9
− F

)
(2.44)

γ2 = 2Fk − F

(
4

3
− F

)
(2.45)

γ3 = 2Fk −
(
25

9
− 2F

)
(2.46)

This parametrization is valid for 0.4 < a < 1.0 and k ≥ 2
3
.
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2.2 � Actuator Disk Model with rotation (ADM-R)

Finally the propeller brake region is characterized by induction factors higher
than 1, under this condition the formulation of the thrust coe�cient is given by the
change of sign of the momentum theory:

CT = 4a(a− 1)F (2.47)

Again equating (2.37) and (2.47) and solving for the axial induction factor:

a(φ) =
k(φ)

1 + k(φ)
(2.48)

This formulation is applicable only for k > 1.0.
As concerns the computation of the tangential induction factor, the same pro-

cedure is applied for the torque, in fact equating the torque derived from the blade
element theory (eq. 2.29) and the torque derived from the momentum theory (eq.
2.32), and arranging as a function of the tangential induction factor, the following
result is obtained:

a
′
(φ) =

k
′
(φ)

1 + k′(φ)
(2.49)

Where k
′
is a parameter de�ned as:

k
′
(φ) =

σ
′
ct(φ)

4F (φ) sin(φ) cos(φ)
(2.50)

where ct is the tangential force coe�cient is de�ned as:

ct = CL sin(φ)− CD cos(φ) (2.51)

The relations (2.49) and (2.50) are valid for all of three regions.
Moving from a formulation with two variables to one variable problem, we can

use a robust root �nding method of convergence. Among the most used root �nding
techniques, we decided to implement the Brent's method [38] which combines the
inverse quadratic interpolation with the bisection method. One of the simplest
root �nding methods is the bisection method that consists in bisect the interval
where it can be found the root of the function and at every iteration select the sub
interval that contains the root. Giving an interval [a,b] which contains a zero of the
function f , that is f(φ) = 0, where φ ∈ [a,b] or f(a) · f(b) < 0, the midpoint of
the interval is c = (a + b)/2, then (c,f(c)) will substitute (a,f(a)) or (b,f(b)) for a
new bisection of the interval depending on the sign of f(a) and f(b) product (if is
negative there is a root of the function inside the interval). Bisection method is a
robust method of convergence because it never diverges from the root, at any rate
the number of iteration could be very large and could be necessary long time for the
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2 � Actuator Disc Model

convergence. Instead the inverse quadratic interpolation method is generally much
faster especially when it gets close to the solution.

The Brent's algorithm switches between the two methods, using the method that
guarantees better performance. It employes a robust method of convergence that
is the bisection method together with a faster but a less robust method (which can
go outside the bracket), like the inverse quadratic interpolation. In brief the inverse
quadratic algorithm follows the steps listed below:

• �t an inverse parabola by means of f(a),f(b),f(c):

φ =

[
f(φ)− f(b)

][
f(φ)− f(c)

][
f(a)− f(b)

][
f(a)− f(c)

] a+ [
f(φ)− f(a)

][
f(φ)− f(c)

][
f(b)− f(a)

][
f(b)− f(c)

] b
+

[
f(φ)− f(a)

][
f(φ)− f(b)

][
f(c)− f(a)

][
f(c)− f(b)

] c (2.52)

where a is the best guess root for the previous iteration aj = bj−1, b is the best
guess at the present iteration, c is at the opposite side of b, b and c are the
limits of the bracket.

• �nd the φ point at which the functions is equal to zero y = 0

• this point where y = 0 becomes b, and the previous value of b becomes a

• if c and b don't bracket a root for the function, then c = a

Regardless of the root �nding method employed to solve the residual function, a
successfully solution can be reached only if the bracket doesn't contain singularities
in its interior. To this purpose every region has to be limited by a speci�c bracket.
In this context we can consider two main regions: the momentum plus the empirical
range and the propeller brake region.

As concerns the momentum/empirical region, the angle of relative �ow inside this
range varies from 0 to π. Solutions larger than π/2 lead to a tangential induction
factor equal to -1 which means a reversed tangential �ow, that is mathematically
possible but occurs rarely. As we saw previously, the momentum theory is valid for
k > −1, instead for k < −1 where there is no solution there are two possibilities:
the �rst is to limit the bracket to k = −1, the second chance is to extend the use
of the momentum equation also for k < −1, which doesn't entail the introduction
of arti�cial solution as it is proved in [35]. The second option, that is to use the
momentum equation was chosen to deal with the range where k < −1. Finally the
bracket for the momentum/empirical region is [ϵ,π

2
] where ϵ is equal to 10−6.

Concerning the propeller brake region, angles of relative �ow vary from −π to 0
, but as for the momentum region we will consider a smaller range where solution
could be also physically feasible instead that only mathematically possible. The
bracket for the propeller brake region is [−π

4
,− ϵ].
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Chapter 3
LES-COAST Model

3.1 The governing equations

The LES-COAST model was �rst developed with the aim of studying close or semi-
closed area with complex geometry [21]. Petronio et al. [39] simulated the water
renewal and mixing in Muggia Bay and carried out the validation of the model
against �eld data. Galea et al. [40] studied the water mixing and circulation in
Barcelona harbour and in Taranto bay. Moreover the study carries out a comparison
between the observational data and the results proving that LES-COAST is reliable
for coastal modeling. Santo [41] studied the wind-driven circulation and mixing
in a alpine lake both in a neutral strati�ed condition and also in presence of a
thermal stable strati�cation. By means of the LES-WIND (a modi�ed version of
LES-COAST for atmospheric applications) Balog [42] simulated a theoretical wind
farm parameterizing the turbines through the ADM-NR. In this chapter an overview
of the LES-COAST model will be presented.

The Navier-Stokes equations describe and govern the motion of the �uids. For
many �uid dynamics problems the Navier-Stokes equations are written under the
Boussinesq approximation which allows to simplify the Navier-Stokes equations
without losing appreciable accuracy. The Boussinesq approximation assumes that
the variation of density ∆ρ due to �uid �uxes or temperature and/or salinity strat-
i�cation, is considered small compared to the reference value ρ0. Since the relative
variations of density are usually much less then the relative variations of the velocity
�eld, the density variations can be neglected in the continuity and momentum equa-
tion, except for the vertical momentum equation, where the variations of density
together with the gravity term give rise to the buoyancy term. Under this approxi-
mation the �uid is considered incompressible. By means of LES technique the large
scales of motion are solved directly, whereas the smallest scales are modeled using
a sub-grid scale model. The splitting of the two scales is carried out by a low-pass
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3 � LES-COAST Model

�lter which is applied to the variable:

u(x) =

∫
G(x,x′)u(x′)dx′; (3.1)

where x is the Cartesian coordinate vector, G is the �lter function, ∆ is the �lter
width. The top-hat function is used as �lter:

G(x) =

{
1/∆ if |x| < ∆/2;
0 otherwise;

(3.2)

where the �lter cuto� ∆ is proportional to the size of grid cells. The �ltering
procedure decomposes the variable into two components, one is resolved directly
and the other one is solved by the SGS model. The �ltering splits the scales at
high frequencies which are solved directly from the scales at lower frequency. In
a cartesian frame of reference, the �ltered form of the unsteady three-dimensional
Navier-Stokes equations under the Boussinesq approximation and the two transport
equations for temperature and salinity are:

∂uj

∂xj

= 0; (3.3)

∂ui

∂t
+
∂uiuj

∂xj

= − 1

ρ0

∂p

∂xi

+ν
∂2ui

∂xj∂xj

+Bi −
∆ρ

ρ0
gi∂i2−

∂τij
∂xj

; (3.4)

∂T

∂t
+

∂ujT

∂xj

= kT ∂2T

∂xj∂xj

−
∂λT

j

∂xj

; (3.5)

∂S

∂t
+

∂ujS

∂xj

= kS ∂2S

∂xj∂xj

−
∂λS

j

∂xj

; (3.6)

where ui is the velocity component in direction i, xi is the spatial coordinate in
direction i, t is time, ρ0 is the reference density, ∆ρ is the density anomaly, p is
the pressure, ν is the kinematic viscosity, g is the gravity acceleration, τij is the
SGS stress. Into the equations of transport for temperature and salinity, T is the
temperature, S the salinity, kT and kS are respectively the coe�cients of temperature
and salinity di�usion, λT

j and λS
j are respectively the SGS temperature and salinity

�uxes. The equation of state for density completes this set of equations:

∆ρ

ρ0
=

ρ− ρ0
ρ0

= −βT (T − T0) + βS(S − S0); (3.7)

The equation 3.7 assumes that the relation between density and temperature/salinity
is linear and that the density is independent of pressure.

LES-COAST was �rst developed with the aim of studying coastal dynamics
which are usually characterized by shallow waters, complex geometry and sharp
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3.2 � Equations set in discretized form

varying bathymetry. For this reason within the model, equations are transformed in
curvilinear coordinates. Equations (3.4)-(3.6) in the curvilinear frame of reference
become:

∂Um

∂ξm
= 0; (3.8)

∂J−1ui

∂t
+

∂Umui

∂ξm
= − 1

ρ0

∂

∂ξm

(
J−1∂ξm

∂xi

p
)
+

∂

∂ξm

(
νGmn ∂ui

∂ξn

)
+

+BiJ
−1− ρ

ρ0
J−1gi∂i2−J−1∂ξm

∂xj

∂τij
∂ξm

; (3.9)

∂J−1T

∂t
+

∂UmT

∂ξm
=

∂

∂ξm

(
kTGmn ∂T

∂ξn

)
− ∂ξm

∂xj

∂λT
j

∂ξm
; (3.10)

∂J−1S

∂t
+

∂UmS

∂ξm
=

∂

∂ξm

(
kSGmn ∂S

∂ξn

)
− ∂ξm

∂xj

∂λS
j

∂ξm
; (3.11)

where ξm, (m = 1,2,3) are the coordinates in transformed computational space(
ξ = (x,y,z),η = (x,y,z),ζ = (x,y,z)

)
, J−1 is the inverse of the Jacobian which is

the cell volume, Um is the volumetric �ux normal to the surface ξm =cost, it is
calculated as the product between the contravariant velocity and the inverse of the
Jacobian.

J−1 = det
(∂xi

∂ξj

)
; (3.12)

Um = J−1∂ξm
∂xj

uj; (3.13)

Gmn = J−1∂ξm
∂xj

∂ξn
∂xj

. (3.14)

3.2 Equations set in discretized form

The LES-COAST model employs a non-staggerd grid approach: pressure, Cartesian
velocity components and body forces are located at the cell centroid, whereas the
controvariant �ux at the midpoint of the cell boundary. The equations are integrated
using a semi-implicit fractional step method [43] [44], the Adams-Bashforth method
is applied for the explicit terms, whereas for the implicit terms is applied the Crank-
Nicholson method that allows to overcome the problem of viscous stability limit. The
spatial derivatives are discretized using a central second order di�erences method.
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3 � LES-COAST Model

The discretization of equations (3.8)-(3.11) leads to:

∂Um

∂ξm
= 0; (3.15)

J−1u
n+1
i − un

i

∆t
=

3

2

(
C(un

i ) +DE(u
n
i ) +Bn

i

)
− 1

2

(
C(un−1

i ) +DE(u
n−1
i )

+Bn−1
i

)
+Ri(p

n+1) +
1

2

(
DI(u

n+1
i ) +DI(u

n
i )
)
; (3.16)

J−1λ
n+1 − λ

n

∆t
=

3

2

(
C(λ

n
) +DE(λ

n
)
)
− 1

2

(
C(λ

n−1
) +DE(λ

n−1
)
)

+
1

2

(
DI(λ

n+1
) +DI(λ

n
)
)
; (3.17)

where:

Ci = − ∂

∂ξm
(Umui); (3.18)

Ri = − ∂

∂ξm

(
J−1∂ξm

∂xi

)
; (3.19)

DI =
∂

∂ξm

(
νGmn ∂

∂ξn

)
m = n; (3.20)

DE =
∂

∂ξm

(
νGmn ∂

∂ξn

)
m ̸= n; (3.21)

∂/∂ξm are the �nite di�erence operators in the computational space, the superscripts
represent the time steps, C de�nes the convective terms, DE and DI are respectively,
the o�-diagonal viscous terms treated explicitly, and the diagonal viscous terms
treated implicitly, Bi is the body force, Ri is the discrete operator for the pressure
gradient terms, λ are the scalars (temperature or salinity).

3.3 Fractional step method

The equations (3.15)-(3.17) are solved using the fractional step method [43] [44],
which is a procedure that consists in two steps: the predictor and the corrector.
The corrector step solves the equations for an intermediate velocity u∗

i which satis�es
advective and di�usive transport and body force processes:(

I − ∆t

2J−1
DI

)
(u∗

i − un
i ) =

∆t

J−1

[3
2

(
C(un

i ) +DE(u
n
i ) +Bn

i

)
− 1

2

(
C(un−1

i ) +DE(u
n−1
i ) +Bn−1

i

)
+DI(u

n
i )
]
; (3.22)
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3.4 � Subgrid scale model

where I is the identity matrix. To invert the matrix DI , the approximate factoriza-
tion method is applied and equation (3.22) becomes:(

I− ∆t

2J−1
D1

)(
I− ∆t

2J−1
D2

)(
I− ∆t

2J−1
D3

)
(u∗

i −un
i)=

∆t

J−1

[3
2

(
C(un

i )

+DE(u
n
i) + Bn

i

)
− 1

2

(
C(un−1

i )+DE(u
n−1
i ) +Bn−1

i

)
+DI(u

n
i )
]
; (3.23)

where:

Dk =
∂

∂ξk

(
νGkk ∂

∂ξk

)
k = 1,2,3. (3.24)

The corrector step computes the velocity un+1
i which satis�es the continuity equa-

tion, from the intermediate velocity u∗
i . Both velocities are related to the pressure

gradient by:

un+1
i − u∗

i =
∆t

J−1
[Ri(ϕ

n+1)]; (3.25)

where:

Ri(p) =
(
J−1 − ∆t

2
DI

)(Ri(ϕ)

J−1

)
. (3.26)

By interpolating the relation (3.25) on the cell face we obtain:

Un+1
m = U∗

m −∆t
(
Gmn∂ϕ

n+1

∂ξn

)
; (3.27)

where U∗
m is the intermediate volume �ux de�ned as: Un+1

m = J−1 (∂ξm/∂xj)u
∗
j .

Substituing equation (3.27) into the continuity equation, we obtain the Poisson
equation for the pressure ϕn+1:

∂

∂ξn

(
Gmn∂ϕ

n+1

∂ξn

)
=

1

∆t

∂U∗
m

∂ξn
(3.28)

The Poisson equation is solved using a SOR iterative technique combined with a
multigrid method.

3.4 Subgrid scale model

As mentioned above, the LES technique is based on the resolution of the large scales,
whereas small scales are parametrized through a sub-grid scale model. The �ltering
of Navier-Stokes equations, in particular the �ltering of the non linear term gives
rise to the residual stress tensor:

τRij = uiuj − ūiūj (3.29)
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3 � LES-COAST Model

The residual tensor can be considered as the sum of an isotropic and an anisotropic
term:

τRij = τSGS
ij +

1

3
τRkkδij (3.30)

The isotropic term or deviatoric part of the stress tensor, is added to the �ltered
pressure which becomes the modi�ed kinematic pressure:

P = p+
1

3
τRkkδij (3.31)

The deviatoric part is usually modeled by means of eddy-viscosity models which
approximate the SGS processes by analogy with the e�ects of molecular viscosity.
The eddy viscosity models relate the deviatoric part to the resolved strain rate tensor
Sij through a SGS eddy viscosity:

τSGS
ij = −2νSGSSij = −νSGS

(∂ui

∂xj

+
∂uj

∂xi

)
(3.32)

The eddy viscosity is modeled throught the Smagorinsky [22] approach, by which
the eddy viscosity is the product between a lengh scale lnr and a velocity scale νnr
related to the unresolved scales of motion. Through the Smagorinski model the eddy
viscosity is the following:

νt = lnr · νnr = C2∆2
∣∣Sij

∣∣ (3.33)

where C is the Smagorinsky coe�cient, ∆ is a characteristic lengh scale proportional
to the cell dimension and

∣∣Sij

∣∣ is the contraction of resolved strain rate tensor.

3.5 Boundary conditions on solid walls

The direct solution of the viscous sub-layer of the boundary layer becomes unfeasible
at hight reynold number because of the expensive computational costs [45]. In order
to model the solid boundaries a wall function is used to skip the direct solution of
the viscous sub-layer. In the inner layer a logaritmic pro�le for the velocity can be
de�ned as:

v+ =
1

κ
logy+ +B (3.34)

where v+ is the non-dimensional tangential velocity scaled with the friction velocity
uτ =

√
τw/ρ, where τw is the shear stress at the wall. The wall normal coordinate is

y+ = y/lτ , with lτ = ν/uτ . The von Karman constant κ is 0.41, while B is equal to
5.1. The classical approach requires that the centroid of the �rst cell lies within the
logaritmic layer, then the wall shear stress τw is computed using equation (3.34).
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3.6 � Turbine induced forces

3.6 Turbine induced forces

The turbine induced forces computed by the turbine module are applied to the �ow
�eld as a body force (B in the previous governing equations). In order to obtain a
smooth solution and to avoid problems of singularities and numerical instabilities
the turbine induced forces are distributed using a Gaussian approach [23] [27]. So
far we applied the Gaussian distribution in the streamwise direction. The Gaussian
approach consists in taking the convolution of the local force f and a regularization
kernel ηϵ as:

f
ϵ = f⊗ ηϵ (3.35)

where:

ηϵ =
1

ϵ3π3/2
exp

[
−d2

ϵ2

]
(3.36)

where d is the distance between grid points and the blade elements, ϵ is a constant
parameter that adjusts the distribution of the regularized load; the value that has
been chosen for ϵ is proportional to the dimensions of the grid cells.
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Chapter 4
Turbine Module Validation

The turbine module computes the normal and tangential forces induced by the
presence of the turbine through the ADM-R model. Within the turbine module,
besides the ADM-R it is also implemented the ADM-NR. As we said in chapter 2,
the ADM-NR doesn't take into account the rotation of the wake and computes only
the normal force. At the end of the chapter there will a comparison between the
results obtained from the two models, whereas the validation of the ADM-R will be
illustrated in the next sections.

The ADM-R is based on the BEM equations; in order to solve the BEM's equa-
tions and compute the turbine induced forces, it is necessary to implement an iter-
ative method. In order to avoid the well known BEM's equation convergence issue
we followed the procedure proposed by Ning [35]. The ADM-R model was imple-
mented and integrated into the LES-COAST model environment. In this chapter
experimental data of Bahaj et al. [46] [47] have been used with the purpose of
evaluating the capability of the model in reproducing the thrust and power charac-
teristics of a turbine. This goal has been achieved �rst simulating numerically the
experimental case and then comparing the numerical results with the experimental
data. The large collection of data supplied in the above mentioned paper gave us the
possibility to validate the model in particular against the blade pitch angle. In the
�rst section there will be a description of the data available from the Bahaj study,
then the numerical setup will be presented and �nally the comparison between the
experimental data and the numerical results will be shown and discussed.

4.1 Experimental data

In order to evaluate the reliability of the ADM-R implementation coupled with the
LES-COAST model, experimental data of Bahaj et al. [46] [47] have been used to
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4 � Turbine Module Validation

Figure 4.1: Sketch of the experimental towing tank

validate the model. In the tests carried out in the Southampton laboratory towing
tank, a three-blade horizontal axis turbine of D = 0.8 m diameter was employed.
The towing tank has a free surface on the top and the turbine blades are completely
immersed into the �uid, in particular two types of tip immersion have been adopted:
a shallow tip immersion of 0.19D and a deep tip immersion of 0.55D. The dimensions
of the towing tank, which measures 60 m in length, 3.7 m in width and with a depth
of 1.8 m, are shown in �gure 4.1.

The blade shape and geometric characteristics were developed from the interpo-
lation of the airfoil shape of NACA 63-812, 63-815, 63-818, 63-821 and 63-821 for
17 sections along the blade. Radius, chord, pitch angle and thickness, the geometric
characteristics of the 17 blade sections, are shown in table 4.1. In the experimental
study of Bahaj et al., measurements of thrust and power characteristics have been
collected for di�erent types of �ow conditions and blade settings. The wide set of
measurements reported in the study provide the thrust and the power coe�cient as
a function of tip speed ratio (TSR). The employed TSR range is not �xed, the upper
and the lower bands of TSR change based on the experimental setup conditions.
In the experimental tests the range of TSR was obtained varying the rotor angular
velocity, and at the same time keeping constant the in�ow velocity. The variation
of the rotor angular velocity was achieved applying a variable load on the rheostat.
The tests were carried out in order to study the in�uence of pitch angle, yaw angle,
tunnel velocities and tip immersion depth on power and thrust characteristics of the

28



4.1 � Experimental data

Element Radius c/R Pitch t/c
No. [mm] [-] [deg] [%]
1 80 0.1250 15.0 24.0
2 100 0.1203 12.1 22.5
3 120 0.1156 9.5 20.7
4 140 0.1109 7.6 19.5
5 160 0.1063 6.1 18.7
6 180 0.1016 4.9 18.1
7 200 0.0969 3.9 17.6
8 220 0.0922 3.1 17.1
9 240 0.0875 2.4 16.6
10 260 0.0828 1.9 16.1
11 280 0.0781 1.5 15.6
12 300 0.0734 1.2 15.1
13 320 0.0688 0.9 14.6
14 340 0.0641 0.6 14.1
15 360 0.0594 0.4 13.6
16 380 0.0547 0.2 13.1
17 400 0.0500 0.0 12.6

Table 4.1: Section blade characteristics: from left to right the columns respectively
refer to the number of element, the element radius, c is the chord divided
by R that is the rotor radius, the pitch section angle and �nally t is the
element thickness divided by the chord.

turbine as a function of TSR. As regards the towing tank, power and the thrust
coe�cients were computed from the measurements performed under the following
test conditions:

• pitch angle of 20 degrees with a velocity of 1.5 m/s, zero yaw angle and a
shallow and a deep tip immersion

• pitch angle of 25 degrees with a velocity of 1.4 m/s for the deep tip immersion
and a velocity of 1.2 m/s for the shallow tip immersion, at zero yaw angle

• pitch angle of 20 degrees with a velocity of 1.4 m/s for four di�erent yaw
angles: 0◦, 15◦, 22.5◦, 30◦

• pitch angle of 25 degrees with a velocity of 1.4 m/s for four di�erent yaw
angles: 0◦, 15◦, 22.5◦, 30◦
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4 � Turbine Module Validation

Figure 4.2: Vertical section of the domain of simulation

4.2 Numerical simulation characteristics

LES coupled with ADM-R have been performed with the aim of reproducing numeri-
cally the experimental data. The experimental setup has been recreated numerically
with the domain and �ow characteristics illustrated below. First of all, the domain
of the simulation was reduced compared to the experimental domain as concerns
the length in the streamwise direction. This choice has been made since we wanted
to limit the number of grid cells and maintain approximately equal the dimensions
of the cell for the three spatial directions. The domain of the simulation measures
L=8 m in the streamwise direction x, W=3.7 m in the spanwise direction z and
H=1.8 m in the vertical direction y.

The computational grid is uniform and the number of the grid cells are Nx=64,
Ny=32 and Nz=64 respectively for the streamwise, spanwise and vertical direction.
The grid resolution has been de�ned based on the studies of Wu and Porté-Agel
[19] and Abkar and Porté-Agel [11]. Wu and Porté-Agel investigated the charac-
teristics of a wake behind a wind turbine using LES coupled with the ADM-R.
They compared the streamwise velocity and the turbulence intensity results with
the high-resolution wind tunnel measurements obtained in the wake of a miniature
wind turbine. The comparison is made for four di�erent grid resolutions and it
highlights that the model shows small sensitivity to grid resolution, both in the near
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4.2 � Numerical simulation characteristics
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Figure 4.3: Lift coe�cient as a function of the angle of attack

and far wake. In particular in the far wake region the results are nearly identical
using the four resolutions, whereas in the near wake the results start to underes-
timate values when the number of cells within the rotor are around 7 both in the
spanwise and vertical direction. The study highlights that there is very little grid
resolution dependence when the number of cells inside the rotor are at least eight
in spanwise and vertical direction. Abkar and Porté-Agel studied the in�uence of
three atmospheric conditions on wake development and behavior of a wind turbine.
They tested two grid resolutions and they found that the results are subject to little
grid sensitivity between the coarse grid of 10 and 5 cells and the �nest grid of 16
and 8 cells that cover the rotor area, respectively for the vertical and spanwise direc-
tion. Fernandez [31] performed a numerical simulation of the wakes behind 5 marine
turbines. The numerical results were compared to the experimental data for three
di�erent grid resolutions. The resolution study carried out by Fernandez indicates
that a grid independence is observed when the number of points per turbine diam-
eter are equal or more than 48. In this perspective and in order to avoid problems
of grid sensitivity, we set the number of grid cells within the rotor area to 14 and
13, respectively for the vertical and spanwise direction. The free stream velocity at
the rotor hub height is equal to U∞ = 1.4 m/s, consequently the Reynolds number
based on the rotor diameter can be expressed as:

ReD =
U∞ ·D

v
=

1.4 · 0.8
10−6

= 1.12 · 106 (4.1)
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4 � Turbine Module Validation

The blade tip immersion is set to 0.55D and the rotor is placed at center of the
transversal section (in the spanwise direction) and at the coordinate xrot=3.2 in the
streamwise direction. Figure 4.2 shows a sketch of the domain of simulation with
the turbine for a vertical section. As regards the boundary conditions, we consider
the presence of solid walls at the bottom of the domain as well as at the lateral
walls. Here a wall-layer model is considered to skip the solution of the near-wall
part of the boundary layer.

A stress-free condition is applied at the free surface. The in�ow was obtained
from a previous simulation, over the same domain but imposing periodicity along the
streamwise direction and collecting dataset at a �xed transversal plane, moreover
in the streamwise direction the �ow was driven by a constant pressure gradient
dp/dx = 2.252 · 10−6 m/s2. Concerning the blade settings, the blade pitch angle is
set to 25 degrees with a zero yaw angle. The computation of normal and tangential
forces requires the knowledge of the lift drag coe�cients. The 2D lift and drag
coe�cients are function of the angle of attack and the Reynolds number. In the
present study we use the data supplied by Bahaj et al. for the computation of the
lift and drag coe�cients. In their study they provide the two coe�cients for all of �ve
NACA 63-8xx airfoil shapes. The computation has been made by means of XFOIL,
a software for the design and the analysis of airfoils. Specifying the geometric
characteristics of the airfoil section and the Reynolds number, XFOIL computes the
lift and drag coe�cient as a function of the angle of attack. As regards the lift and
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Figure 4.4: Drag coe�cient as a function of the angle of attack
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4.3 � Comparison between the experimental data and numerical results

drag coe�cients, �gures 4.3 and 4.4, which have been used in the present study,
they have been derived from the interpolation of the curves supplied in the Bahaj
el al. investigation.

4.3 Comparison between the experimental data and

numerical results

Based on the above mentioned characteristics of the domain and blade settings,
LESs were performed coupled with the ADM-R model in order to test the mod-
ule capability in reproducing the experimental measurements in terms of extracted
power and the entity of loads that the turbine is subject to. The key parameters
that have been compared with the experimental data are the power coe�cient and
the thrust coe�cient. The evaluation of the two coe�cients have been done for a
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Figure 4.5: Power coe�cient as a function of tip speed ratio. Comparison between
experimental data (blue diamond) and numerical results (red circles),
error bars of 5%

range of tip speed ratios that varies from 4.5 to 8.5. Figure 4.5 shows the comparison
between the experimental data and the simulation results of the power coe�cient as
a function of tip speed ratio. The �gure 4.5 shows that there is a good agreement
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4 � Turbine Module Validation

between the experimental data and the results for the esteem of the power that
can be extracted, except for hight values of TSR. Figure 4.6 shows the comparison
between the measured thrust coe�cient and the numerical results. Figure 4.6 in-
dicates that the thrust coe�cient is a bit underestimated except for high values of
TSR. Nevertheless the maximum relative error is below 5%. The underestimation
of the thrust coe�cient might be ascribed to the fact that in our simulation we do
not consider the generation of surface waves, which might have been present in the
laboratory experiments. However, this aspect needs further investigation.
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Figure 4.6: Thrust coe�cient as a function of tip speed ratio. Comparison between
experimental data (blue diamond) and numerical, e results (red circles),
error bars of 5%

4.4 Comparison between ADM-R and ADM-NR for

wake modeling

In the previous section the ADM-R module was validated against experimental data.
The comparison between the experimental data and the numerical results shows the
capability of the ADM-R model in reproducing the thrust and power coe�cients of
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4.4 � Comparison between ADM-R and ADM-NR for wake modeling

Figure 4.7: ADM-R model - contour plot of time averaged streamwise velocity U
[m/s] for a vertical plane (x-y), across the turbine center. The white
rectangle represent the turbine rotor.

a turbine. Besides the evaluation of the loads that act on the turbine and the en-
ergy production, another important characteristic that is fundamental to take into
consideration is the wake, produced by the interference of the turbine over the �ow
�eld. In this section the results of the modeling of the rotor's wake will be shown. A
comparison between the wake modeled by the ADM-R and the wake modeled by the
ADM-NR will be analyzed. The presence of the turbine in�uences the �ow �eld since
the extraction of energy causes a reduction of velocity downstream the rotor. The
wake region is also a�ected by characteristic phenomena like the increasing level of
turbulence, the rotation of the wake and pressure di�erence. Downstream the rotor
there is a spreading of the wake which moving downwards recovers to the free stream
conditions. The expansion of the wake is in�uenced by the ambient turbulence, the
turbine induced turbulence, the stream velocity, and the distance where the wake
hits the ground, and as we will see in chapter 5 by marine strati�cation conditions.
The wake is usually considered split into two parts: the near and the far wake. The
near wake is characterized by a remarkable decrease of velocities and high levels of
shear and pressure gradients and turbulence intensity. The turbulent intensity mov-
ing downward tends to decrease and the velocity de�cit progressively recovers. The
velocity de�cit in the near wake is remarkably in�uenced by the momentum jump
across the rotor. As concerns the far wake, it is characterize by a turbulent mixing
between the wake and the surrounding �ow �eld. This mechanism is mainly respon-
sible for the dissipation of the wake that gradually expands moving downstream,
where the edges of the wake are entrained into the surrounding �eld. Modeling ac-
curately the wake and its recover is particularly signi�cant for turbines farms. If the
wake of an upstream turbine a�ects remarkably the �eld of a subsequent turbine,
the global production decreases. A solution could be to distance enough the spacing
between upstream and downstream turbines, however some practical restrictions like
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4 � Turbine Module Validation

Figure 4.8: ADM-R model - contour plot of time averaged streamwise velocity U
[m/s] for a horizontal plane (x-z), across the turbine center.

Figure 4.9: ADM-NR model - contour plot of time averaged streamwise velocity U
[m/s] for a vertical plane (x-y), across the turbine center.

cabling costs and overall site limitation space makes it unfeasible. Moreover, within
a farm site, more turbines are installed and more energy can be extracted. In this
perspective a compromise between the spacing and the number of turbines has to be
�nd in order to reach the maximum global e�ciency of the farm. For these reasons
it's important to predict accurately the development of the wake and its recover.

Within the ADM model, we can choose to employ the ADM-R or the ADM-NR
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4.4 � Comparison between ADM-R and ADM-NR for wake modeling

Figure 4.10: ADM-NR model - contour plot of time averaged streamwise velocity U
[m/s] for an horizontal plane (x-z), across the turbine center.

to simulate the presence of the turbine and model the wake. For the ADM-NR the
advantage consists in the simple theory and consequently the implementation be-
comes straightforward. The drawback lies in the need to specify the thrust coe�cient
to determine the normal force that in this case is distributed uniformly over the ro-
tor cells. Concerning the ADM-R, aside a more complex implementation, problems
of convergence for the solution of BEM equation (as we saw in section 2.2.2) can
arise, moreover forces must be distributed appropriately to obtain smooth results.
These characteristics make the ADM-R more demanding compared to the ADM-
NR. In this section we are going to compare the results in terms of mean velocity
�eld between the two models. The simulation concerns the data of the experimental
case that have been used for the validation of ADM-R for the thrust and power
coe�cient. In the case of the ADM-NR tabulated values for the thrust coe�cient
expressed as a function of the velocity magnitude have been employed. LES cou-
pled with the ADM-R based on the characteristic mentioned in section 4.2 has been
performed. The non-dimensional lapse of time of the simulation is t = 80.25, long
enough to reach a steady state condition, and to obtain convergent statistics.

The results in terms of streamwise mean velocity averaged in time are showed
in �gures 4.7 and 4.8. As it was expected, looking at �gures 4.7 and 4.8 a wake
forms downstream the rotor as a result of the energy extraction. The streamwise

37



4 � Turbine Module Validation

velocity de�cit is larger closer to the rotor and it is subject to a decrease as the
wake moves downwards expanding and entraining the surrounding �ow. Figures 4.9
and 4.10 show the streamwise mean velocity, averaged in time, for the ADM-NR
model respectively for a vertical and horizontal plane. As for the ADM-R a wake
forms beyond the rotor which tends to recover downstream. Comparing the wake
shape between the two models, it's evident that in the case of the ADM-R the wake
has an approximately symmetric behavior. This result is more consistent to the
measurements data [6] [48]. For a qualitative analysis of the wake modeling between
the two models we refer to the study of Wu and Porté-Agel [19]. As reported in [19],
the ADM-NR it's not able to reproduce accurately the mean velocity �eld in the wake
of a rotor. The study points out that the discrepancy between the measurements
and the results occurs in the near wake, in particular the mean velocity within this
region is over predicted at the center of the wake. Instead there is a good agreement
between the mean streamwise velocities measured and the results of ADM-NR in the
far region of the wake. This lack of capability of the ADM-NR in reproducing the
experimental data is due in particular to the assumptions that are at the basis of the
ADM-NR theory. The �rst assumption is that the wake rotation is not taken into
account, then the tangential forces induced by the presence of the turbine are not
computed. The second assumption is that the normal force is distributed uniformly
over the rotor area. This last simpli�cation is the main reason because the ADM-NR
it is not able to reproduce the wake as accurately as the ADM-R.

Considering the above analysis, the ADM-R will be employ as the tool for the
subsequent investigation, since it has been demonstrated its capability to reproduce
thrust and power characteristics and moreover it is able to model accurately the
characteristics of the rotor's wake.
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Chapter 5
Results

5.1 Stable strati�cation

Stable strati�cation is ubiquitous of the marine environment, associated to vertical
gradient of either salinity or temperature along the water column. Stable strati�ca-
tion produces variation along the vertical direction of the horizontal velocity pro�le
and turbulent kinetic energy. Moreover where density gradient is sharp, for example
at the interface between two layers with di�erent densities, the development of in-
ternal waves transfers energy in the vertical direction. Since the presence of marine
strati�cation entails an e�ect on the �ow �eld, it is important to assess the in�uence
of strati�cation on the turbine e�ciency and on rotor wake. The esteem of wake
extent is particularly signi�cant for the arrangement of a cluster of turbines, since
the global e�ciency and the energy production could be a�ected if the distances
between the turbines are not enough to allow the recovery of the velocity de�cit.
Beyond the turbine performance issue, another important aspect to take into con-
sideration is the turbine impact on strati�cation. The presence of the turbine may
produce vertical mixing and, locally alter the features of the stable strati�ed ambi-
ent, increasing vertical mixing in a region typically characterized by internal waves.
The tidal sites where marine turbines are usually installed, can be characterized by
the presence of stable strati�ed �ow conditions, where temperature and/or salinity
are the stratifying agents. Mainly there are two types of sites associated to speci�c
marine dynamics and strati�cation conditions: the shelf seas and the estuarine en-
vironment. Shelf seas are characterized by seasonal temperature strati�cation that
occurs when super�cial heating is enough to overcome the vertical mixing process.
The sharp seasonal thermocline, which takes place in the summer season, keeps an
abrupt separation between the super�cial water, warm and less dense, from the deep
water, denser and colder. The temperature thermocline moreover determines the
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5 � Results

biological marine dynamics of the site, where usually the super�cial layer is charac-
terized by high light and low nutrient content and the deeper layer by high nutrient
�uid. The temporal evolution between mixing and seasonal strati�cation is an im-
portant cycle that controls the biological process of the shelf seas [49]. Besides the
shelf seas, the other environment where turbines can be installed is the estuarine
two layer circulation. Strati�cation within the estuary dynamics is one of the most
important characteristics since it has a control on vertical mixing and in�uences the
vertical distribution of chemical and biological substances. Strati�cation in an estu-
arine environment is due to the input of fresh water from the mouth of a river into
the saline basin forming a sharp halocline between the upper layer of freshwater and
the bottom layer of saline water. Also temperature variations can be an agent of
strati�cation but in the estuarine environment the salinity contribution dominates.
In order to form, the strati�cation must overcome the mixing process due to the
tidal streams; this is possible if the tidal stream is weak or if the freshwater input is
strong. For example as regards the salt wedges, which are classi�ed as highly strat-
i�ed estuaries [50], strati�cation occurs even in presence of strong tidal streams, as
long as the freshwater input from the river is enough to renew the strati�cation.

Considering the importance of the strati�cation in the �ow dynamics, the aim
of this chapter is to evaluate whether stable strati�cation could entail an impact on
turbine e�ciency and on wake development and extent. On the other side we want
to estimate the e�ect of turbine mixing on stable strati�ed conditions. Two types of
stable strati�ed conditions have been taken into account: a weak strati�cation and
a strong strati�ed condition. The weak strati�cation has been simulated imposing
a temperature jump in order to obtain a vertical density pro�le with a step shape.
The same has been done for the strong strati�cation, but imposing a salinity jump
which originates a higher density variation between the two layers compared to the
weak case. Then the turbine was introduced into the two strati�ed �elds and the
analysis of results of the two cases will be illustrated. At the end of the chapter a
comparison between the two strati�ed cases will be shown, evaluating the di�erence
in terms of turbine power characteristics and wake recovery. Before introducing
the two strati�ed cases, in the next section, the results of a simulation without the
strati�ed �eld will be analyzed. This analysis will be useful as a benchmark.

5.2 LES of a turbine in a non-strati�ed �eld

5.2.1 Simulation setup and �eld analysis

In this section the results of a simulation performed in absence of density strati�ca-
tion will be presented. First we introduce the simulation without strati�cation, since
it will be used later in the dissertation as a reference. In the next sections the present
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5.2 � LES of a turbine in a non-strati�ed �eld

case will be compared to the simulations with a strong and a weak stable strati�ed
condition. The comparison will be useful to determine whether the strati�cation
might bring changes in the results, in particular for what concerns the power output
and wake development and retrieve. Moreover the common practice in the numeri-
cal simulation �eld of marine turbines is to perform simulations without considering
the strati�cation. For these reasons it's important to evaluate if the strati�cation
should be taken into account to reach results more congruent with the real scenario.
Before introducing the turbine inside the domain, it's necessary to analyze the �eld
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Figure 5.1: Vertical pro�le of non-dimensional mean streamwise velocity
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Figure 5.2: Vertical pro�le of rms of non-dimensional velocities �uctuations

41



5 � Results

���

���

���

�

��	


��
������


���������


��
������

�����


��
����
�
�


�������
�
�


��
����
�
�

�

���

���� ���� ���� ���� ���� ���� ��� ���

Figure 5.3: Vertical pro�le of non-dimensional Reynolds shear stresses

without the turbine to better understand the mechanisms that occurs in presence of
the rotor. A �rst LES has been performed without the turbine. The domain of the
simulation and the computational grid is the same used for the numerical validation
of the ADM-R model. The velocity boundary conditions remain the same used for
the ADM-R validation, except for the lateral walls where periodic condition is ap-
plied. Also the blade settings employed have the characteristics illustrated in section
4.2. The free stream velocity at the rotor hub height is equal to U∞ = 1.5 m/s with
a Reynolds number of Re = 1.2 ·106, based on the rotor diameter. In the streamwise
direction the �ow was driven by a constant pressure gradient dp/dx = 1.28 · 10−6

m/s2. The simulation has been run till the �ow reached the steady state condition.
The non-dimensional time needed to obtain the steady state condition is t = 80.25.
The non-dimensional time has been calculated by means of the free stream velocity
and the characteristic length which is H, the vertical dimension of the domain. The
statistics have been calculated averaging in time, and over the horizontal planes
of homogeneity. Figure 5.1 shows the vertical pro�le of the non-dimensional mean
streamwise velocity. The vertical pro�les of rms of velocity �uctuations are depicted
in �gure 5.2, the behavior of the rms near the free surface is consistent with the
boundary condition imposed, where the shear is set to zero. Figure 5.3 shows the
vertical pro�les of the shear stresses: as expected, the shear components < v′w′ >
and < u′w′ > both tend to zero; the shear component < u′v′ > is not negligible
compared to the other components.
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5.2 � LES of a turbine in a non-strati�ed �eld

Figure 5.4: Contour plot of time averaged streamwise velocity U [m/s] for a vertical
longitudinal plane (x−y) which crosses the turbine center, non-strati�ed
case.

5.2.2 Interaction between the turbine induced forces and the
non-strati�ed �eld

During the above mentioned simulation data set at a �xed transverse plane have been
collected, then a new LES has been performed with periodicity along the spanwise
direction and with a non-periodic condition along the streamwise direction. The
data set collected during the previous simulation are used as in�ow data. Then the
turbine was introduced into the domain and a LES was performed coupled with the
ADM-R model. The simulation was run for a time equal to the previous simulations
and the statistics has been made averaging the variables in time. In �gure 5.4 it is
shown the contour plot of time averaged streamwise velocity U for a vertical plane.
The drop of velocities downstream the rotor is evident from �gure 5.4. The wake
gradually starts to recover moving downstream as the wake expands and entrains
the surrounding �eld. The expansion of the wake is more evident analyzing �gure
5.5, where the contour plot of the time averaged streamwise velocity is plotted for
vertical spanwise planes at di�erent downstream distances from the rotor. It can
also be observed that as the wake spreads, the velocity de�cit starts to recover. In
�gure 5.6 it is shown the contour plot of time averaged streamwise velocity for an
horizontal plane, where it can be observed the lateral spreading of the wake and
the velocity de�cit. Figure 5.7 shows three velocities iso-surfaces which highlights
the three dimensional deformation of the streamwise velocity �eld due to the rotor
in�uence.

In order to assess the velocity de�cit induced by the turbine and to de�ne a quan-
tity that is not dependent on the incoming velocity, we compute a non-dimensional
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(a) x/D = 0.75 (b) x/D = 2

(c) x/D = 3 (d) x/D = 4.25

(e) x/D = 5.375 (f) x/D = 6

Figure 5.5: Contour plot of time averaged streamwise velocity U U [m/s] for vertical
traversal planes (y−z), at di�erent downstream distances, non-strati�ed
case.

velocity de�cit as follows [11]:

∆U

Uhub

=
(U∞ − U)

Uhub

(5.1)

where U∞ is the time averaged in�ow velocity, Uhub is the time averaged in�ow ve-
locity at the hub height and U is the time averaged velocity at a speci�c downstream
distance from the rotor. Through this quantity we can also evaluate the recovery
of the wake as a function of the downstream distance from the turbine. Moreover
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5.2 � LES of a turbine in a non-strati�ed �eld

Figure 5.6: Contour plot of time averaged streamwise velocity U [m/s] for an hor-
izontal plane (x − z) which crosses the turbine center, non-strati�ed
case.

using a non-dimensional velocity de�cit, it is possible to make a comparison between
cases that have di�erent incoming velocities. Figure 5.8 shows the non-dimensional
velocity de�cit vertical pro�les at speci�c rotor distances de�ned as x/D, where x is
the coordinate in the x direction minus the xrot, that is the coordinate of the rotor
center in the streamwise direction. Figure 5.9 shows the non-dimensional velocity
de�cit horizontal pro�les at two speci�c rotor distances. Figures 5.8 and 5.9 can
help to understand more in detail the velocity de�cit and wake recover illustrated
in �gures 5.4 and 5.6. As we move downstream the maximum non-dimensional ve-
locity de�cit, which is located near the center of the rotor, recovers from 0.437 at
a distance of x/D = 1, up 0.3 at a distance of x/D = 5. The pro�les for x/D = 1
and x/D = 3 exhibit a less regular shape compared to the one for x/D = 5, this is
due to the proximity to the rotor of the two closer pro�les. As concern the power
characteristics, we found that the power output that the turbine can extract from
the �ow �eld is around 292 W with a power coe�cient of CP = 0.35.

An important physical quantity to take into account is the turbulent intensity
that is responsible for the fatigue on the turbine structures [51] [52]. Besides the
ambient turbulence which in�uences the development of the wake [8], turbulence
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intensity induced by the presence of the rotor can have a remarkable e�ect on down-
stream turbines. In fact within a turbine farm, the downstream turbine hit by the
wake of an upstream turbine could be subject to an increase of loads due to the
high turbulence levels induced by the upstream rotor. Moreover, as we will see, the
turbulence intensity represents an important factor in the development of the wake.
The common practice suggests to analyze the behavior of streamwise turbulence
intensity, however as reported by Abkar et al. [11] in the case of strati�cation the
streamwise turbulence intensity is not enough to evaluate the impact of strati�ca-
tion on turbine wake. In order to take into consideration all turbulence intensity
components, the total turbulence intensity is de�ned as:

TI =

√
1

3
(I2u + I2v + I2w) (5.2)

where:

I2u =
urms

Uhub

I2v =
vrms

Uhub

I2w =
wrms

Uhub

urms is the root mean square of turbulent streamwise velocity �uctuations, vrms is
the root mean square of turbulent spanwise velocity �uctuations, wrms is the root
mean square of turbulent vertical velocity �uctuations and Uhub is the time averaged
of the streamwise in�ow velocity.

Figures 5.10 and 5.11 show the total turbulence intensity respectively for a verti-
cal plane and for an horizontal plane. From �gures 5.10 and 5.11 it can be observed
an enhancement of the total turbulence intensity in the wake of the rotor. Moreover
it can be seen that the magnitude of the total turbulence intensity doesn't change
signi�cantly for the horizontal and vertical plane. To better understand the behav-
ior of the turbulence intensity, in �gures 5.12 and 5.13, the vertical and spanwise
pro�les of the total turbulence intensity are plotted for two distances downstream
the rotor. Figure 5.12 shows that the total turbulence intensity has a peak at the
top tip in the plane that crosses the turbine center. Instead observing �gure 5.13,
the total turbulence intensity shows a double peak at the top and bottom tip of
the rotor. These results are qualitatively consistent with the outcome illustrated in
the study of Abkar et al. [11]. The high values of turbulence intensity at the top
tip for the streamwise pro�le and at the bottom and top for the spanwise pro�le,
are connected to the strong production of turbulent kinetic energy associated with
high level shear at those location. As it can be seen from �g 5.12 and 5.13, the
pro�les of the total turbulence intensity are not subject to damping between the
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5.2 � LES of a turbine in a non-strati�ed �eld

two downstream location, this is due to the fact that the far downstream location
of the simulation domain is relatively short compared to the total wake extension.

In �gures 5.14 and 5.15 shows respectively the contour plot of the < u′v′ > shear
stress for a vertical plane and the contour plot of the < u′w′ > shear stress for an
horizontal plane. These variables measure the entrainment of mean kinetic energy
from the surrounding �eld into the wake. From �gure 5.14 it can be observed that
the presence of the turbine gives rise to a localized shear stress that forms at the
wake edge. The < u′v′ > shear stress has a negative value at the upper edge and
a positive value at the lower edge. As for < u′v′ >, the < u′w′ > shear stress is
localized at the edge of the wake, with a positive value at one side of the wake
edge and a negative magnitude at the other side of the wake edge. This behavior
is qualitatively consistent with Abkar et al. and it is due to the strong entrainment
from the adjacent �eld into the wake. The magnitude of the < u′v′ > shear stress
is higher than the < u′w′ > shear stress, this means that there is a more intense
lateral momentum �ux that implies an higher entrainment of mean kinetic energy
from the lateral edged of the wake.
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Figure 5.7: Iso-surfaces of time averaged streamwise velocity U [m/s], non-strati�ed
case. Top: 1.17 m/s, middle: 1.29 m/s and bottom: 1.42 m/s
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Figure 5.8: Non-dimensional velocity de�cit pro�les at di�erent downstream dis-
tances from the rotor, for a vertical plane across the turbine center,
non-strati�ed case.
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Figure 5.9: Non-dimensional velocity de�cit pro�les at di�erent downstream dis-
tances from the rotor, for an horizontal plane across the turbine center,
non-strati�ed case.
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Figure 5.10: Contour plot of time averaged total turbulence intensity for a vertical
longitudinal plane (x-y) which crosses the turbine center, non-strati�ed
case.

Figure 5.11: Contour plot of time averaged total turbulence intensity for an hori-
zontal plane (x-k) which crosses the turbine center, non-strati�ed case.
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Figure 5.12: Time averaged vertical pro�les of total turbulence intensity at two rotor
distances for a vertical longitudinal plane that crosses the turbine center
(x-y), non-strati�ed case.
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Figure 5.13: Time averaged spanwise pro�les of total turbulence intensity at two
rotor distances for an horizontal plane that crosses the turbine center
(x-k), non-strati�ed case.
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Figure 5.14: Contour plot of time averaged shear stress < u′v′ > for a vertical
longitudinal plane (x-y) which crosses the turbine center, non-strati�ed
case.

Figure 5.15: Contour plot of time averaged shear stress < u′w′ > for an horizontal
plane (x-k) across the turbine center, non-strati�ed case.
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5.3 LES of stable strati�ed conditions

The aim of this chapter is to investigate the in�uence of stable strati�ed conditions
on wake characteristics and turbine performance. As we said before, we will study
the �ow and the interaction with the turbine in presence of two types of strati�ed
conditions: a weak and a strong stable strati�ed condition. In order to simulate a
weak stable condition, we imposed a temperature step, while in the case of strong
strati�ed condition a salinity step is set. The salinity jump generates an higher
density variation compare to the temperature jump. Before showing the charac-
teristics of the two strati�ed �elds we introduce below the characteristics of the
simulations. The domain of the simulation is the same used for the numerical val-
idation of the non-strati�ed case. Adiabatic boundary conditions are imposed for
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Figure 5.16: Vertical pro�le of non-dimensional mean density, weak strati�cation

temperature and salinity at the bottom of the domain and at the free surface im-
plying absence respectively of heat �uxes and salinity �uxes at the boundaries. The
velocity boundary conditions remain the same used for the non-strati�ed case. The
simulation setup has been scaled in order to obtain a real-case value of the bulk
Richardson number. The Richardson number is the ratio between potential and
kinetic energy, where the numerator represents the potential energy barrier that the
mixing must overcome and the denominator the kinetic energy that the shear �ow
should supply to maintain turbulence. It is de�ned as:

Rib =
g∆ρh

ρ0U2
∞

(5.3)

where h is the domain height, g is gravity, ∆ρ is the vertical density gap and ρ0 the
reference density. For the real case we set an height of h = 36m, as it can measure
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Figure 5.17: Vertical pro�le of non-dimensional mean streamwise velocity, weak
strati�cation

the seabed or ocean �oor depth, where the turbines are installed, and the velocity
is set to U∞ = 1.5 m/s. For the weak strati�ed case the temperature jump between
the super�cial and the deeper water was set to ∆T = 6.67 degrees and consequently
the ratio between ∆ρ and ρ0 is ∆Tα = 0.001 where α is the thermal expansion
coe�cient. As concerns the strong strati�ed case the salinity jump between the
super�cial and the deeper water was set to ∆S = 8 ppt and consequently the ratio
between ∆ρ and ρ0 is ∆Tβ = 0.00632 where β is the saline contraction coe�cient.
The resulting Richardson number for the real case and thus for the simulation is
Ribw = 0.118 for the weak case and Ribs = 0.992 for the strong strati�ed case. As
mentioned above, the dimensions of the simulation domain are the same of the non
strati�ed case, and since the free stream velocity at the hub is set to U∞ = 1.5
m/s, the value of g is 147 for the weak case simulation and 196.2 for the strong case
simulation. These values are obtained from the equivalence of the bulk Richardson
number of the simulation and the one of the real case. The Prandtl number employed
in the weak strati�ed simulation is the typical value for thermal strati�ed oceanic
�ows and it is equal to Pr = 6.5, as regards the strong strati�ed condition induced
by the salinity jump the Prandtl number is equal to 542.6. Under the conditions
above mentioned, LESs have been performed in order to generate the two strati�ed
�elds characterized by a step-like jump of density. As reported in the study of
Armenio and Sarkar [53], the transient development of the �ow in presence of stable
strati�cation, follows di�erent steps in its evolution to turbulence and mixing. An
initial transient is characterized by a sudden decrease of the wall shear stress, due
to the sudden transformation of kinetic energy into potential energy and by �ow
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Figure 5.18: Vertical pro�le of rms of non-dimensional velocities �uctuations, weak
strati�cation
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Figure 5.19: Vertical pro�le of non-dimensional Reynolds shear stresses, weak strat-
i�cation

re-laminarization. Since the pressure gradient is constant, the unbalance between
driving and drag force accelerates the �ow, up to a new transition to turbulence,
where the shear stress starts to increase again. The two strati�ed �elds are obtained
during the transient phase since this allows to obtain a mild smoothing of the step-
like density pro�le; otherwise the mixing process would untied the step density
pro�le advancing in time. However the data are collected and all the statistics are
computed during a time window where the �ow is nearly steady in a statistical sense.
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Figure 5.20: Vertical pro�le of non-dimensional temperature �ux, weak strati�cation

���

���

���

�

��	


��
��


�

���

� ���� ���� ���� ���� ��� ���� ���� ����

Figure 5.21: Vertical pro�le of non-dimensional temperature �uctuations, weak
strati�cation

In order to make a comparison between the two strati�ed cases, the starting times
of data collection (in�ow �eld) for both cases is equal to 150. The time window for
the two strati�cation cases has been chosen equal to t ·N = 8, where N is the Brunt
Väisälä frequency [54], long enough for statistical convergence. The Brunt Väisälä
frequency is de�ned as:

N =

√
− g

ρ0

dρ

dy
(5.4)
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Figure 5.22: Vertical pro�le of non-dimensional Brunt Väisälä frequency, weak strat-
i�cation

Figure 5.23: Contour plot of instantaneous non-dimensional density �eld for a ver-
tical longitudinal (x-y) plane, weak strati�cation

The Brunt Väisälä frequency is the frequency of oscillation of a parcel when it is
displaced from its equilibrium state. In fact in case of a stable strati�ed condition,
if a parcel is displaced upward, the parcel will be surrounded by lighter �uid and so
it will fall down gaining velocity, when reached again the initial equilibrium state it
will go further down subject to the inertial force; then the parcel will be surrounded
by heavier �uid and will be pushed upward and this oscillations will persist around
the equilibrium state.
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Figure 5.24: Contour plot of instantaneous non-dimensional density �eld for a ver-
tical spanwise (z-y) plane, weak strati�cation

5.3.1 Analysis of weak strati�ed �eld

In this section the weak strati�ed �eld is analyzed. First it will be described the mean
�eld and then the instantaneous characteristics of the �eld will follow. The statis-
tics are calculated averaging in time, and over the horizontal planes of homogeneity.
Figure 5.16 shows the vertical pro�le of the non-dimensional mean density, which
exhibits a sharp gradient in the interface region. Figure 5.17 shows the mean stream-
wise velocity vertical pro�le that indicates that turbulence is completely suppressed
in the upper area of the domain, whereas in the lower part a turbulence production
an be observed due to the vertical velocity gradient coupled with the Reynolds stress
showed in the next �gures. he suppression of turbulence is con�rmed analyzing the
vertical pro�les of rms of velocity �uctuations, �gure 5.18, and pro�les of the shear
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Figure 5.25: Vertical pro�le of non-dimensional mean density, strong strati�cation
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Figure 5.26: Vertical pro�le of non-dimensional mean streamwise velocity, strong
strati�cation
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Figure 5.27: Vertical pro�le of rms of non-dimensional velocities �uctuations, strong
strati�cation

stress, �gure 5.19. Figure 5.20 shows the mean vertical temperature �ux that be-
fore the interface reaches the maximum value and then toward the interface tends to
zero. As expected the pro�le of root mean square of temperature �uctuations, �gure
5.21, has its maximum at the centre of the channel, where the temperature gradient
is maximum, while at the boundaries it tends to zero. The vertical pro�le of the
Brunt Väisälä frequency, �gure 5.22, reaches the maximum value at the interface
where the density gradient and then the parcels frequency oscillation is maximum.
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During the above mentioned simulation data set at a �xed transverse plane have
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Figure 5.28: Vertical pro�le of non-dimensional Reynolds shear stresses, strong
strati�cation
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Figure 5.29: Vertical pro�le of non-dimensional temperature �ux, strong strati�ca-
tion

been collected, then a new LES has been performed removing periodicity in the
streamwise direction and imposing the data set collected before as in�ow. Figures
5.23 and 5.24 show the contour plot of instantaneous temperature respectively for
a vertical longitudinal and a vertical transversal plane. A core region is detected
characterized by Kelvin-Helmotz dynamics and internal waves, wrapping the inter-
face where the step-like density pro�le is present. Turbulent structures are visible
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in the bottom region, where the solid wall supplies turbulent production; the top
region appears less energetic in particular going up toward the free surface, where
production of turbulence is absent. The internal waves depicted in �gures 5.23 and
5.24, convert forth and back potential energy into kinetic energy.

5.3.2 Analysis of strong strati�ed �eld

The results of a LES simulation performed in order to obtain the strong stable
strati�ed �eld are below described. As for the weak simulation case, the statistics
are calculated averaging in time and over the horizontal planes of homogeneity.
Figure 5.25 shows the vertical pro�le of the mean non-dimensional density, which
is the result of the smoothing of the step-like density due to the vertical di�usion
of momentum. Figure 5.26 shows the mean velocity vertical pro�le that compared
to the weak strati�ed case, �gure 5.17, exhibits a steeper gradient. As for the weak
strati�cation, the turbulence is suppressed in the upper area of the domain. The
turbulence production occurs in the lower region due to the vertical velocity gradient
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Figure 5.30: Vertical pro�le of non-dimensional temperature �uctuations, strong
strati�cation

coupled with the Reynolds stress which are shown in the next �gures. Analyzing the
vertical pro�les of rms of velocity �uctuations, �gure 5.27, it can be seen that at the
core of the channel, where internal waves occur, there are high values of rms. Figure
5.28 shows the pro�les of the shear stress, where again toward the free surface the
turbulence is suppressed. In �gure 5.29 it shown the vertical salinity �ux which as
expected has negative values and its minimum is located at the core of the channel.
The pro�le of root mean square of salinity �uctuations, �gure 5.30, has its maximum
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Figure 5.31: Vertical pro�le of non-dimensional Brunt Väisälä frequency, strong
strati�cation

at the center of the channel, where the salinity gradient is maximum. The vertical
pro�le of the Brunt Väisälä frequency, �gure 5.31, reaches the maximum value at the
interface where the density gradient and then the parcels frequency oscillation are
maximum. Since in the case of strong strati�cation the density di�erence is much
higher compared to the weak strati�ed case, as a consequence the Brunt Väisälä
frequency of the strong condition, �gure 5.31, is higher than the weak condition,
�gure 5.22. As for the previous case we removed the periodicity in the streamwise
direction and we performed a LES with the dataset collected at �xed transversal
planes as in�ow. Analyzing the contour plot of the instantaneous salinity �eld for

Figure 5.32: Contour plot of instantaneous non-dimensional density �eld for a ver-
tical longitudinal (x-y) plane, strong strati�cation
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Figure 5.33: Contour plot of instantaneous non-dimensional density �eld for a ver-
tical spanwise (y-k) plane, strong strati�cation

a vertical longitudinal plane and a vertical spanwise plane, �gures 5.32 and 5.33,
we observe the dynamics already detected for the weak case: the development of
Kevin-Helmotz instabilities and internal waves at the interface.
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5.4 In�uence of strati�cation on the turbine �eld

5.4.1 Interaction between turbine induced forces and weak
strati�cation

After the simulation and the analysis of the weak stable strati�ed case, the turbine
was introduced into the domain and a LES was performed coupled with the ADM-R
model. As a result of the simulation, in presence of weak stable strati�cation, �gure
5.34 shows the contour plot of the time averaged streamwise velocity for a vertical
plane. Figure 5.34 shows the wake development downstream the turbine. It can
be observed that the wake is de�ected downward, especially when compared to the
wake of the non-strati�ed case of �gure 5.4. Moreover, the velocity de�cit shape

Figure 5.34: Contour plot of time averaged streamwise velocity U [m/s] for a ver-
tical longitudinal plane (x− y) which crosses the turbine center, weak
strati�ed condition.

is not symmetric as in the non-strati�ed case. From �gure 5.35 which shows the
contour plot of the time averaged streamwise velocity U for an horizontal plane,
it can be observed the downstream lateral spreading and entrainment of the wake
and the consequently partial recovery of the velocity de�cit. The contour plot of
the time averaged streamwise velocity U for transverse vertical planes at di�erent
downstream distances, �gure 5.36, helps us to understand the downstream develop-
ment of the wake. As we move downstream, the wake is pushed downward by the
above �uid, while the velocity de�cit recovers gradually. As we will see, the recov-
ery of the velocity de�cit is due to the entrainment of �uid mainly from the bottom
and laterally. The three dimensional streamwise velocity iso-surfaces, highlights the
deformation of the streamwise velocity �eld caused by the rotor, �gure 5.37. Com-
pared to the non-strati�ed �eld, �gure 5.7, the velocity iso-surface of 1.51 m/s shows
that the wake spreads more laterally and less vertically than the non-strati�ed case.
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Figure 5.35: Contour plot of time averaged streamwise velocity U [m/s] for an hor-
izontal plane (x − z) which crosses the turbine center, weak strati�ed
condition.

In fact analyzing �gures 5.37 and 5.7 it can be observed that the vertical spreading
of the wake is restricted and the vertical deformation of the �ow �eld is constrained
by the stable strati�cation. The development of the wake above illustrated, can be
ascribed to the so called meandering behavior [55] [56] [57]. This phenomenon has
been investigated in literature since it assumes a particular importance in turbine
farms. The meandering phenomenon consists in the lack of alignment between the
center of the rotor and the trajectory of the wake center. The meandering behavior
of the wake is here caused by the stable strati�cation e�ect. The total turbulence
intensity for a vertical and an horizontal plane are respectively shown in �gures
5.38 and 5.39. It can be noticed that the turbulence intensity is subject to an in-
crease due to the presence of the turbine. The turbulence intensity behavior can be
analyzed in detail from �gures 5.40 and 5.41 where we show respectively the vertical
and spanwise pro�les of the total turbulence intensity at two distances downstream
the rotor. As concerns the vertical pro�les, �gure 5.40, the maximum value of the
total turbulence intensity is not located at the top tip as in the non-strati�ed case,
�gure 5.12, since here the wake is subject to vertical meandering and is pushed
downward by the above �uid. For this reason, the maximum level of turbulence
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(a) x/D = 0.75 (b) x/D = 2

(c) x/D = 3 (d) x/D = 4

(e) x/D = 4.75 (f) x/D = 6

Figure 5.36: Contour plot of time averaged streamwise velocity U [m/s] for verti-
cal transverse planes (y − z), at di�erent downstream distances, weak
strati�ed condition.

intensity is located at a lower position. As regards the �gure 5.41, the total turbu-
lence intensity at x/D=1 shows a double peak at the top and bottom tip of the
rotor respectively, as for the non-strati�ed case, �gure 5.13; this behavior is related
to the intense production of turbulent kinetic energy and associated high level of
shear at those locations. The horizontal turbulence intensity is slightly higher than
the vertical. In �gures 5.42 and 5.43 we show respectively the contour plot of the
< u′v′ > shear stress for a vertical plane and the contour plot of the shear stress
component < u′w′ > for an horizontal plane. Figure 5.42 shows that immediately
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beyond the rotor there is a momentum �ux from the boundary layer toward the
wake, this implies that the wake entrain �uid from the �eld located below. This is
consistent with the fact that the wake is forced into a region (the lower part of the
domain) where turbulence is sustained by the bottom wall and is more intense than
the surrounding �eld. Farther downstream, the momentum �ux is from the above
�eld toward the wake and consequently the wake entrain mean kinetic energy from
the above �eld. Figure 5.42 shows that the lateral shear stress is located at the edge
of the wake. These results are consistent to the development of the wake showed in
�gures 5.34 and 5.35. Figures 5.44, 5.45 and 5.46 show, respectively, the contour
plot of the non-dimensional mean density �eld for a vertical longitudinal plane, for
an horizontal plane and for vertical transverse planes at di�erence downstream dis-
tances. From �gure 5.44 it can be observed that beyond the turbine, the interface is
subject to a mixing and it grows vertically. This phenomenon is ascribed to the wake
impact on the �eld: lower density �uid is transported toward a region with higher
density. This gives rise to instabilities at the interface. Instabilities grow till they
overturn and break up mixing the two �uids, as illustrated in �gure 5.46. Figure
5.47 shows the contour plot of the instantaneous non-dimensional density �eld for a
vertical plane, where it can be seen the internal waves and the temperature mixing.
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Figure 5.37: Iso-surfaces of time averaged streamwise velocity U [m/s], weak strat-
i�ed condition. Top: 1.19 m/s, middle: 1.29 m/s and bottom: 1.51
m/s
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Figure 5.38: Contour plot of time averaged total turbulence intensity for a verti-
cal longitudinal plane (x − y) which crosses the turbine center, weak
strati�ed condition.

Figure 5.39: Contour plot of time averaged total turbulence intensity for an hori-
zontal plane (x − z) which crosses the turbine center, weak strati�ed
condition.
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Figure 5.40: Vertical pro�les of time averaged total turbulence intensity at two rotor
distances for a vertical longitudinal plane that crosses the turbine center
(x− y), weak strati�ed condition.
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Figure 5.41: Transverse pro�les of time averaged total turbulence intensity for an
horizontal plane (x−z) which crosses the turbine center, weak strati�ed
condition.
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5.4 � In�uence of strati�cation on the turbine �eld

Figure 5.42: Contour plot of time averaged shear stress < u′v′ > for a vertical longi-
tudinal plane (x− y) which crosses the turbine center, weak strati�ed
condition.

Figure 5.43: Contour plot of time averaged shear stress < u′w′ > for an horizontal
plane (x−z) which crosses the turbine center, weak strati�ed condition.
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Figure 5.44: Contour plot of time averaged non-dimensional density for a vertical
longitudinal plane (x−y) which crosses the turbine center, weak strat-
i�ed condition.

Figure 5.45: Contour plot of time averaged non-dimensional density for an hori-
zontal plane (x − z) which crosses the turbine center, weak strati�ed
condition.
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5.4 � In�uence of strati�cation on the turbine �eld

(a) x/D = 0.25 (b) x/D = 0.75

(c) x/D = 3 (d) x/D = 6

Figure 5.46: Contour plot of time averaged non-dimensional density for vertical
transverse planes (y−z) at di�erent downstream distances, weak strat-
i�ed condition.

Figure 5.47: Contour plot of instantaneous non-dimensional density �eld for a verti-
cal transverse plane (x-y) which crosses the turbine center, weak strat-
i�ed condition.
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5.4.2 Interaction between the turbine induced forces and the
strong strati�cation

Subsequently to the simulation of the strong strati�ed case, the turbine was then
introduced into the domain and a LES was performed coupled with the ADM-R
model. The simulation was run for a non-dimensional time equal to t = 80.2, as
for the non-strati�ed case and the weak strati�ed case. The statistics illustrated
below have been calculated averaging the variables in time. Figures 5.48 and 5.49
show the contour plot of the time averaged streamwise velocity U respectively for a
vertical and horizontal plane. The wake that forms behind the rotor loses its own
typical shape (see the analogous contour plot for the non-strati�ed case of �gure
5.4). Here, the wake is subject to the phenomena of meandering mentioned in
section 5.4.1. This particular behavior of the wake can be explained because of the
di�erent relative speeds of the two layers. The strati�cation causes the development
of two layers with di�erent velocities, and the stronger strati�cation intensi�es the
relative motion between the two layers. Figure 5.50 shows the contour plot of the
instantaneous velocity �eld and the velocity vectors which can help to understand
the �ow dynamics depicted in �gure 5.48. Looking at the �gures 5.48 and 5.50,

Figure 5.48: Contour plot of time averaged streamwise velocity U [m/s] for a verti-
cal longitudinal plane (x− y) which crosses the turbine center, strong
strati�ed condition.

we observe that when the freestream �uid of top layer reaches and goes beyond
the turbine location, it �nds the wake that moves at a slower velocity. Since the
top �uid bumps into a �uid much slower in a region where the �uid should be
faster, it is forced to glide over the surface of the wake pushing the wake downward.
Figure 5.51 shows the contour plot of the time averaged streamwise velocity U for
vertical spanwise planes at di�erent downstream distances. From �gure 5.51 it can
be observed that as the faster �uid penetrates the bottom layer, an eddy forms and
entrains the �uid of the top layer. The eddy blends the �uid of the bottom layer into
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5.4 � In�uence of strati�cation on the turbine �eld

Figure 5.49: Contour plot of time averaged streamwise velocity U [m/s] for an hor-
izontal plane (x− k) which crosses the turbine center, strong strati�ed
condition.

the �uid of top layer that previously penetrated the bottom layer. In �gure 5.52, the
velocity vectors are plotted for vertical planes at two downstream distances, where
the eddy is evident. From �gure 5.52, it can be seen that as we move downward
the eddy enlarges and the mixing between the two �uids increases. This process of
mixing increases instabilities and generates large waves at the interface. Figure 5.53
shows three streamwise velocities iso-surfaces which highlights the three dimensional
deformation of the wake. Compared to the weak strati�ed case, it can be noticed
that the lateral deformation of the wake is more pronounced. Immediately beyond
the rotor, the increase of strati�cation prevents the wake to grow vertically toward
the top of the domain. Moreover looking at the 1.32 m/s iso-surface the vertical
meandering of the wake and the decreases of velocities are well captured.

In order to analyze the behavior of the turbulence intensity, �gures 5.54 and 5.55
show the total turbulence intensity respectively for a vertical and a horizontal plane.
Figure 5.54 shows that the region where total turbulence intensity has maximum
values is located downstream the rotor in the lower part of the domain, as it can
be seen also from �gure 5.56 for x/D = 5. Here the wake, pushed downward by
the faster �uid, entrains the surrounding �eld. In �gure 5.55 it can noticed that
the maximum total turbulence intensity has maximum values at the edge of the
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Figure 5.50: Contour plot of instantaneous streamwise velocity �eld and projection
of velocity vectors on a vertical longitudinal plane (x−y), which crosses
the turbine center, strong strati�ed condition.

wake. This behavior already seen in particular for the non-strati�ed case, �gure
5.13, can be observed in detail in �gure 5.57, where the transverse pro�les of total
turbulence intensity are plotted for two di�erent downstream distances. Comparing
�gures 5.54 and 5.55, we can deduce that the horizontal turbulence intensity is higher
than the vertical. The high level of turbulence intensity can be associated to the
intense production of turbulent kinetic energy and turbulent mixing, which are more
intense laterally compared to the vertical direction. In �gures 5.58 and 5.59 we show
respectively the contour plot of the < u′v′ > shear stress for a vertical plane and the
contour plot of < u′w′ > shear stress for an horizontal plane. In this case the analysis
of the shear stresses is more di�cult since the wake of the turbine is subject to a
strong vertical meandering. As mentioned before, these quantities are responsible for
the entrainment of mean kinetic energy into the wake. Because of the development
of the eddy that mixes the rotor's wake with the faster �uid, there is a strong
exchange of momentum �ux and entrainment, as can be seen from �gures 5.58 and
5.59. Besides the analysis of the velocity �eld, we want now to evaluate the impact
of the turbine induced forces on the density �eld in case of strong stable strati�ed
condition. Looking at �gure 5.60, where the contour plot of time averaged non-
dimensional density for a vertical plane is displayed, we observed that the density
step is subject to mixing due to the presence of the turbine. This result was expected
from the analysis of the mean velocity since the faster �uid which has a lower density,
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5.4 � In�uence of strati�cation on the turbine �eld

sliding over the wake brings the lower density �uid into the region of high density
�uid. Substantially the turbulent eddy raises dense �uid above the less dense �uid.
The development of the eddy and the consequent overturn accelerated the mixing
process. Figure 5.61 shows the contour plot of mean non-dimensional density for
vertical planes at di�erent downstream positions, where it can be observed that
the mixing region expands as we move downward. Moreover, the maximum vertical
mixing takes place at the center of the wake. Figures 5.62 and 5.63 show respectively
the contour plot of the instantaneous �eld for a vertical longitudinal plane and for
transverse planes localized at di�erent downstream distances. From the analysis of
the instantaneous �eld it can be observed the intense local instabilities that lie at
the interface between the two layers which are subject to mixing.
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(a) x/D = 0.25 (b) x/D = 0.5

(c) x/D = 1 (d) x/D = 1.25

(e) x/D = 1.5 (f) x/D = 1.75

(g) x/D = 2 (h) x/D = 2.25

(i) x/D = 2.75 (j) x/D = 3.25
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(k) x/D = 3.75 (l) x/D = 4.25

(m) x/D = 4.75 (n) x/D = 6

Figure 5.51: Contour plot of time averaged streamwise velocity U [m/s] for vertical
transverse planes (y − z), strong strati�ed condition.

79



5 � Results

(a) x/D = 0.77

(b) x/D = 2.25

Figure 5.52: Projection of instantaneous velocity vectors on vertical transverse
planes (y − k), strong strati�ed condition.
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Figure 5.53: Iso-surfaces of time averaged streamwise velocity U [m/s], strong strat-
i�ed condition. Top: 1.32 m/s, middle: 1.45 m/s and bottom: 1.54
m/s
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Figure 5.54: Contour plot of time averaged total turbulence intensity for a verti-
cal longitudinal plane (x− y) which crosses the turbine center, strong
strati�ed condition.

Figure 5.55: Contour plot of time averaged total turbulence intensity for an hori-
zontal plane (x− z) which crosses the turbine center, strong strati�ed
condition.
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Figure 5.56: Vertical pro�les of time averaged total turbulence intensity at two rotor
distances for a vertical longitudinal plane that crosses the turbine center
(x− y), strong strati�ed condition.
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Figure 5.57: Transverse pro�les of time averaged total turbulence intensity at two
rotor distances for an horizontal plane (x−k) which crosses the turbine
center, strong strati�ed condition.
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Figure 5.58: Contour plot of time averaged shear stress < u′v′ > for a vertical longi-
tudinal plane (x− y) which crosses the turbine center, strong strati�ed
condition.

Figure 5.59: Contour plot of time averaged shear stress < u′w′ > for an horizontal
plane (x− z), strong strati�ed condition.
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Figure 5.60: Contour plot of time averaged non dimensional density for a vertical
longitudinal plane (y−z) which crosses the turbine center, strong strat-
i�ed condition.

(a) x/D = 0 (b) x/D = 1.75

(c) x/D = 3 (d) x/D = 3

Figure 5.61: Contour plot of time averaged non-dimensional density for vertical
transverse planes (y − z) at di�erent downstream distances, strong
strati�ed condition.
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Figure 5.62: Contour plot of instantaneous non-dimensional density �eld for a ver-
tical plane (y − z) which crosses the turbine center, strong strati�ed
condition.

(a) x/D = 0.75 (b) x/D = 1.75

(c) x/D = 2.75 (d) x/D = 6

Figure 5.63: Contour plot of time averaged non-dimensional density for vertical
transverse planes (y − z) at di�erent downstream distances, strong
strati�ed condition.
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5.5 Comparison of the results

In this section a comparison between the impact of the weak and the strong strat-
i�cation on power performance and wake characteristics will be carried out. The
power that can be extracted has been computed for the two strati�cation cases.
For the weak strati�ed case, the power obtained is equal to 333 W and the power
coe�cient is CP = 0.358. Instead, for the strong strati�cation, the power is equal
to 373.3 W and the power coe�cient is CP = 0.365. The turbine produces more
energy in case of strong strati�cation since velocities increase more than in the weak
strati�cation case. This is particularly true if we compare the strong strati�ed case
with the non-strati�ed case where the di�erence amounts to 28%. The main result
is that comparing the turbine performance in terms of power coe�cient for the two
strati�cation cases, it turns out that the power coe�cient is not subject to substan-
tial changes, actually it experiences a relative increase of 2%. If we compare the
power coe�cient of the non-strati�ed case with the strong strati�ed case, it experi-
ences a slight increase of 4%. Analyzing the mean streamwise velocity, we observe
that in the case of weak strati�cation the wake is subject to a moderate vertical
meandering. The wake entrainment is supplied mainly from the underneath and
lateral �ow �eld. Instead, in case of strong strati�cation, the vertical shifting of
the wake center is rather remarkable. The wake is pushed downward and the �uid
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Figure 5.64: Non-dimensional velocity de�cit pro�les at di�erent downstream dis-
tances from the rotor, for a vertical plane across the turbine center,
weak strati�cation.

87



5 � Results

is mixed by a large scale eddy. From the comparison of the contour plot of the
mean streamwise velocity, �gures 5.34 and 5.48, we observe that the wake recov-
ers faster in the case of strong stable strati�ed condition. This result is con�rmed
analyzing the non-dimensional velocity de�cit for the weak strati�ed case and for
the strong strati�cation. Figures 5.64 and 5.65 show the non dimensional velocity
de�cit pro�les for the weak strati�ed case respectively for a vertical plane and for
an horizontal plane. The pro�les in �gures 5.64 and 5.65 refer to speci�c distances
downstream the rotor. As we move downstream, the velocity de�cit reduces grad-
ually and recovers from 0.431 at a distance of x/D = 1, up to 0.260 at a distance
of x/D = 5. The non-dimensional velocity de�cit pro�les for the strong strati�-
cation case are shown in �gures 5.66 and 5.67, respectively for a vertical and for
an horizontal plane. From �gure 5.66 we observe that velocity recovers quickly and
increases near the bottom as expected from �gure 5.51, since the faster �uid sliding
toward the bottom is mixed by means of the eddy into the slower �uid. At x/D = 1
the maximum velocity de�cit is equal to 0.218 and at x/D = 5 is 0.073. Therefore
a remarkable di�erence between the weak and the strong strati�ed cases is detected
as regards the velocity de�cit recover. The faster recover of the wake in the case of
strong strati�cation is consistent with the analysis of turbulence intensity. In fact
the turbulence intensity of the strong case, �gures 5.54 and 5.55, is higher than the
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Figure 5.65: Non-dimensional velocity de�cit pro�les at di�erent downstream dis-
tances from the rotor, for an horizontal plane across the turbine center,
weak strati�cation.
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Figure 5.66: Non-dimensional velocity de�cit pro�les at di�erent downstream dis-
tances from the rotor, for a vertical plane across the turbine center,
strong strati�cation.
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Figure 5.67: Non-dimensional velocity de�cit pro�les at di�erent downstream dis-
tances from the rotor, for an horizontal plane across the turbine center,
strong strati�cation.
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turbulence intensity of the weak strati�ed case, �gures 5.38 and 5.39. The same
holds for the shear stress which is higher for the strong case, �gures 5.58 and 5.59,
compared to the weak case, �gures 5.42 and 5.43. Finally, it clearly appears that
the density mixing is more intense in case of strong strati�cation; this is consistent
with the results previously analyzed.
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Chapter 6
Conclusions

The present study was mainly focused on the evaluation of the impact of marine
stable strati�cation on turbine performance and wake characteristics. Strati�cation
can characterize the sites where turbines are installed, this is the case of estuarine
basins and shelf seas where marine strati�cation is an important factor for the
marine environment dynamics. For this reason and also because the e�ects of marine
density strati�cation is an issue that hasn't been yet investigated, there was the need
to provide an insight on the interaction between the turbine and stable strati�ed
conditions.

The present study was carried out by means of LES, in particular simulations
were performed using the in-house LES-COAST model which solves the �ltered
form of three dimensional Navier-Stokes equations and the two equations for tem-
perature and salinity. The capability of LES-COAST in describing the phenomena
of coastal areas under strati�ed conditions have been demonstrated by literature.
LES methodology is nowadays a powerful tool in the investigation of detailed tur-
bulent �ows, in particular turbulence is signi�cantly in the wake of turbines and
moreover turbulence intensity plays an important role in wake development. The
LES-COAST model is coupled with a module for the turbine which computes the
turbine induced forces. To model the normal and tangential forces that the turbine
generates, we employed the ADM-R model, which takes into account the rotation
of the wake downstream the rotor. Forces computed through the ADM-R model
are then applied to the �ow �eld as a body force. The ADM-R was validated using
experimental data supplied by literature. From the comparison between numerical
results and experimental data, it has been proved the capability of the model in
reproducing the thrust and power characteristics of a turbine. In order to evalu-
ate the interaction between the turbine and the strati�cation, two types of stable
strati�ed conditions have been simulated: a weak and a strong strati�ed condition.
The weak strati�cation has been simulated imposing a temperature jump in order
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to obtain a vertical density pro�le with a step shape. The same has been done for
the strong strati�cation, but imposing a salinity jump which gives rise to higher
density variation compared to the weak case. Then the turbine was introduced into
the strati�ed �elds. We also performed a simulation of a turbine in a non-strati�ed
�eld, which has been used as a benchmark for the analysis of the interaction between
the turbine and the two strati�ed cases. Finally the results of the non-strati�ed case
and the two strati�ed cases have been analyzed and compared.

As regards the power e�ciency, the main outcome is that the power coe�cient
is not subject to substantial variations, actually it experiences an increase of 2% be-
tween the weak and the strong strati�cation cases. Comparing the power coe�cient
of the non-strati�ed case with the strong strati�ed case, it experiences at any rate a
slight increase of 4%. Since the streamwise velocity increases due to the strati�ca-
tion e�ect and the power coe�cient is subject a slight increase, this implies that the
turbine produces more energy in the case of strong strati�cation. Speci�cally, the
power that can be extracted in the weak case is equal to 333 W, against the value of
373.3 W obtained in the strong strati�cation case. The di�erence is more substantial
if we compare the non-strati�ed case with the strong strati�ed case, where there is
a relative increase of power that amounts to 28%.

Concerning the wake development and recover, the results of the weak strati�ed
case show that the wake is de�ected downward by the strati�ed �eld. Moving
downstream, the wake retrieves the velocity de�cit mainly entraining the lateral
and the underneath �ow �eld. As concerns the strong strati�cation, the wake is
subject to a remarkable vertical meandering. The wake is pushed downward by the
faster �uid of the top layer and the eddy causes the mixing of the two �uids in
the bottom area of the domain. The comparison of the velocity de�cit between the
two cases, highlights that the recovery of the wake is faster for the strong strati�ed
condition. The faster recover of the wake is consistent with the analysis of the total
turbulence intensity and shear stresses, indeed these quantities reach higher values
in the case of strong strati�cation. Analyzing the wake shape, it can be observed
that as the strati�cation intensi�es, the lateral spreading of the wake increases.
The esteem of the wake extent is particularly signi�cant for the arrangement of a
cluster of turbines. The assessment of the total power extraction of an array has a
substantial dependence on the recovery of velocities wakes de�cits. If the wake of
an upstream rotor a�ects remarkably the �eld of the subsequent turbine the power
extracted will be subject to a decrease that is related to the amount of the velocity
de�cit. Vice versa if the wakes recover faster the turbines can be arranged at lower
distances from each other. In this perspective, the faster recover of the wake in case
of strong strati�cation is an important result since it points out that in order to
estimate adequately the extent and the recovery of the wake, it's necessary to take
into account the strati�cation characteristics of the sites where marine turbines are
installed.
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Concerning the e�ects of the turbine on strati�cation, we observed that the
mixing e�ect due to the turbine induced forces is more intense in the case of strong
strati�cation. This e�ect is due to the vertical meandering of the wake and the strong
mixing supplied by the eddy that overturns high density �uid over lower density �uid.
This is an important result, since indicates that the presence of turbines can modify
the environmental dynamics controlled by the strati�cation and, as a consequence,
might in�uence the development of chemical and biochemical processes.

Since this research represent a �rst insight into the evaluation of the e�ects of
stable strati�ed condition on turbine performance and wake characteristics, further
studies should be carried out, for example the dimension of the simulation domain
might be extended, in particular in the streamwise direction both upstream and
downstream. As it can be noticed, in particular analyzing turbulence intensity
contour plots of the strati�ed �elds, the presence of the rotor together with the
strati�cation entail an upstream propagation of the disturbance. On the other side
increasing the domain downstream extent from the rotor allows to investigate the
behavior of the wake in the far region. Another aspect that could be taken into
account is the placement of the rotor center in the vertical direction. In the current
study we decided to place the rotor center in the middle of the domain were the
density pro�le has the maximum gradient. The relocation of the rotor toward the top
or the bottom could alter the dynamics of the wake development. This arrangement
should be made according to the conditions of the sites where the turbines should
be installed and also in order to identify the best con�guration in view of a general
e�ciency of a turbine farm. Although in the present study, to reach a grid resolution
independence, the number of grid cells which covers the rotor area are set widely
greater than the threshold indicated by literature, in a future work, in order to assess
qualitatively the accuracy of the results, a grid re�nement study might be carried
out together with a comparison with real site measurement. The achievements above
mentioned would be a step toward a forthcoming use of the model as a tool for the
application �eld.
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