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Università degli Studi di Trieste,

34127 Trieste, Italy
zimmer@units.it

Received 20 March 2017
Accepted 13 February 2018
Published 20 March 2018

ABSTRACT

Let G be a finite group acting orthogonally on a pair (Sd, Γ) where Γ is a finite,
connected graph of genus g > 1 embedded in the sphere Sd. The 3-dimensional case
d = 3 has recently been considered in a paper by C. Wang, S. Wang, Y. Zhang and
the present author where for each genus g > 1, the maximum order of an orientation-
preserving G-action on a pair (S3, Γ) is determined and the corresponding graphs Γ are
classified (an upper bound for the order of G is 12(g − 1)). In the present paper, we
consider arbitrary dimensions d and prove that the order of G is bounded above by a
polynomial of degree d/2 in g if d is even and of degree (d + 1)/2 if d is odd; moreover,
the degree d/2 is best possible in even dimensions d. We discuss also the problem, given
a finite graph Γ and its finite symmetry group, to find the minimal dimension of a sphere
into which Γ embeds equivariantly as above.
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1. Introduction

We study large finite groups G of automorphisms of a finite, connected graph Γ
which embeds smoothly into a sphere Sd of some dimension d such that the G-action
on Γ extends to an orthogonal action of G on Sd. In other words, we study large
finite groups G of orthogonal transformations of pairs (Sd, Γ) where Γ denotes a
finite, connected graph smoothly embedded in a sphere Sd. All actions considered
in the present paper will be faithful on both Sd and Γ, and all finite graphs Γ will
be hyperbolic, i.e. connected, of genus g > 1 (the rank of its free fundamental group)
and without free edges (edges with one vertex of valence 1; note that free edges can
be deleted in a G-equivariant way without changing the genus of a graph); we allow
closed and multiple edges.

The case of dimension d = 3 is considered in [7]. For a finite subgroup of the
orthogonal group SO(4) acting on a pair (S3, Γ), a regular neighborhood of Γ in
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S3 is a 3-dimensional handlebody V 3
g of genus g > 1 on which G acts orientation-

preservingly, and by [1, 8] there is the linear bound |G| ≤ 12(g− 1) for orientation-
preserving actions on 3-dimensional handlebodies. In [7], for each genus g > 1, the
maximal possible order of a G-action on (S3, Γ) is determined and the corresponding
graphs Γ are classified (on the basis of analogous results in [6] for the case of closed
surfaces embedded in S3); the maximal possible order 12(g − 1) is obtained only
for finitely many values of g.

Concerning dimension d = 4, supppose that G acts orthogonally on a pair
(S4, Γ); now a regular neighborhood of Γ is a 4-dimensional handlebody V 4

g whose
boundary ∂V 3

g is a connected sum �g(S2 × S1) of g copies of S2 × S1. Finite group
actions on such connected sums are considered in [12] whose results imply the
quadratic upper bound |G| ≤ 24g(g− 1), for g ≥ 15; moreover, there does not exist
a linear bound in g for the order of G.

In the following main result of the present paper, we consider the case of arbi-
trary dimensions d ≥ 4.

Theorem 1. Let G be a finite subgroup of the orthogonal group O(d+1) acting on
a pair (Sd, Γ), for a finite hyperbolic graph of genus g > 1 embedded in Sd. Then,

the order of G is bounded above by a polynomial of degree d/2 in g if d is even and
of degree (d + 1)/2 if d is odd. The degree d/2 is best possible in even dimensions,
whereas in odd dimensions the optimal degree is either (d − 1)/2 or (d + 1)/2.

So the optimal degree in odd dimensions remains open at present (except for
d = 3, where it is (d − 1)/2 = 1). The proof of Theorem 1 will be reduced to an
analogous result in [2] about finite group actions on d-dimensional handlebodies
(see Theorem 2 in Sec. 2).

The maximum order of a finite group of automorphisms of a finite hyperbolic
graph of genus g > 2 is 2gg! ([5]), obtained for a graph with one vertex and g

closed edges (a “bouquet of g circles”) whose automorphism group is isomorphic
to the semidirect product (Z2)g

� Sg (with normal subgroup (Z2)g on which the
symmetric group Sg acts by permutation of coordinates). At present, we don’t know
the minimal dimension of a sphere which admits an equivariant embedding of the
bouquet of g circles (i.e. invariant under an orthogonal action of (Z2)g

�Sg), see the
question at the end of Sec. 2. For some other graphs with large symmetry groups
instead, we determine this minimal dimension of an equivariant embedding in the
examples of Sec. 2.

2. Proof of Theorem 1

See [2] for the following. A d-dimensional handlebody V d
g of genus g can be defined

as a regular neighborhood of a finite connected graph Γ of genus g embedded in
Sd. Such a handlebody V d

g can be uniformized by a Schottky group Sg, a free
group of rank g of Möbius transformations of Sd−1 which extends naturally to
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the disk Bd (“Poincaré extension”); the interior of Bd is the Poincaré-model of
hyperbolic space H

d on which Möbius transformations act as hyperbolic isometries.
The handlebody V d

g is obtained as the quotient (Bd − Λ(Sg))/Sg where Λ(Sg) ⊂
Sd−1 denotes the set of limit point of the action of Sg on Bd (a Cantor set), in
particular Bd −Λ(Sg) is the universal covering of V d

g . This gives the interior H
d/Sg

of V d
g the structure of a complete hyperbolic manifold, and we say that the Schottky

group Sg uniformizes the hyperbolic handlebody V d
g . In particular, there is the notion

of an isometry of such a hyperbolic handlebody meaning that it acts as an isometry
on the interior of V d

g ; equivalently, each lift to the universal covering Bd −Λ(Sg) of
V d

g extends to a Möbius transformation of Bd.
The following is proved in [2].

Theorem 2. Let G be a finite group of isometries of a hyperbolic handlebody V d
g

of dimension d ≥ 3 and of genus g > 1 which acts faithfully on the fundamental
group. Then, the order of G is bounded by a polynomial of degree d/2 in g if d is
even and of degree (d + 1)/2 if d is odd.

Since a handlebody of dimension d ≥ 4 admits S1-actions, there is no upper
bound for the order of finite group actions which are not faithful on the fundamental
group (however, there is a Jordan-type bound for such actions, see [2, Corollary]).
On the other hand, finite faithful actions on finite hyperbolic graphs are faithful
on the fundamental group, that is injected into the outer automorphism group of
the fundamental group ([11, Lemma 1]); conversely, it is observed in [9, p. 478]
(as a version of the Nielsen realization problem for free groups) that every finite
subgroup G of the outer automorphism group of a free group can be realized by an
action of G on a finite graph.

Starting with the Proof of Theorem 1 now, let G be a finite group acting orthog-
onally on (Sd, Γ), for a finite hyperbolic graph Γ of genus g > 1 embedded in Sd.
A G-invariant regular neighborhood of Γ in Sd is homeomorphic to a handlebody
V d

g of dimension d and genus g. Since we are assuming that the action of G on the
graph Γ is faithful, by [11, Lemma 1] also the induced action of G on the funda-
mental group of Γ and, hence, of V d

g is faithful and defines an injection of G into
the outer automorphism groups of the fundamental groups of Γ and V d

g . The first
part of Theorem 1 is now a consequence of Theorem 2 and the following:

Proposition. Let G be a finite group acting orthogonally on a pair (Sd, Γ), for
a finite hyperbolic graph of genus g > 1 embedded in Sd, and hence, also on a
handlebody V d

g in Sd obtained as a G-invariant regular neighborhood of Γ. Then, V d
g

can be uniformized by a Schottky group such that V d
g admits an isometric G-action

(inducing the same injection into the outer automorphism group of the fundamental
group as the original G-action).

Very likely, the original G-action on V d
g is in fact conjugate to an isometric G-

action; however, in order to apply Theorem 2, we just need some isometric G-action
on V d

g which is faithful on the fundamental group, so we don’t follow this here.
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Proof of the Proposition. The group G acts as a group of automorphisms of
the finite graph Γ. Let Γ̃ be the universal covering tree of Γ; the group of all lifts
of all elements of G to Γ̃ defines a group E of automorphisms of the tree Γ̃ and a
group extension 1 → Fg ↪→ E → G → 1, where Fg denotes the universal covering
group, a free group of rank g isomorphic to the fundamental group of Γ.

By possibly subdividing edges by a new vertex, we can assume that G acts on
Γ without inversions of edges; then the quotient Γ̄ = Γ/G is again a finite graph.
Choose a maximal tree in Γ̄ and lift it isomorphically first to Γ and then to Γ̃, then
lift also the remaining edges of Γ̄ to Γ and Γ̃. Associating to the vertices and edges
of Γ̄ the stabilizers in G or E of the lifted vertices and edges in Γ and Γ̃, this defines
a finite graph of finite groups (Γ̄,G), with inclusions of the edge groups into the
adjacent vertex groups. The fundamental group π1(Γ̄,G) of the finite graph of finite
groups (Γ̄,G) is the iterated free product with amalgamation and HNN-extension of
the vertex groups amalgamated over the edge groups, first taking the iterated free
product with amalgamation over the chosen maximal tree of Γ and then associating
an HNN-generator to each of the remaining edges. By the standard theory of groups
acting on trees, graphs of groups and their fundamental groups (see [3, 4] or [10]),
the extension E is isomorphic to the fundamental group π1(Γ̄,G) of (Γ̄,G) and we
have a group extension

1 → Fg ↪→ E = π1(Γ̄,G) → G → 1.

We will assume in the following that the graph of groups (Γ̄,G) has no trivial
edges, i.e. no edges with two different vertices such that the edge group coincides
with one of the two vertex groups (by collapsing trivial edges, i.e. by amalgamating
the two vertex groups into a single vertex group). We will realize the extension
E = π1(Γ̄,G) as a group of isometries of hyperbolic space H

d, the interior of the d-
ball Bd, or equivalently as a group of Möbius transformations of Bd or Sd−1 = ∂Bd,
such that the subgroup Fg is realized by a Schottky group Sg. Then, G acts as a
group of isometries of the hyperbolic handlebody V d

g = (Bd−Λ(Sg))/Sg proving the
Proposition. The realization of E = π1(Γ̄,G) is by standard combination methods
as described in [2, p. 247] and [9, p. 479–482]. As an illustration, we discuss the
case of a graph of groups (Γ̄,G) with a single, nonclosed edge. We lift the edge
to an edge B of Γ, with vertices A1 and A2. The corresponding edge and vertex
groups of (Γ̄,G) (which we denote by the same letters) are defined as the stabilizers
of the edge B and its vertices in the group G acting orthogonally on Γ ⊂ Sd, and
E = π1(Γ̄,G) is the free product with amalgamation A1 ∗B A2.

For i = 1 and 2, the vertex group Ai ⊂ G acts orthogonally on Sd and fixes the
corresponding vertex Ai of the edge B of Γ. A regular invariant neighborhood of the
fixed point Ai is a ball Bd

i with an action of Ai. The edge group B is a subgroup
of both A1 and A2 which fixes both vertices A1 and A2 and pointwise the edge
B. We can assume that the intersection ∂Bd

1 ∩ ∂Bd
2 of the two boundary spheres

Sd−1 is nonempty and hence a sphere Sd−2. We conjugate A2 by the reflection in
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this sphere Sd−2 and obtain a group A′
2 fixing the vertex A1; since the reflection

commutes with each element of B, both A1 and A′
2 act on Bd

1 now with a common
subgroup B.

Identifying Bd
1 with the standard ball Bd, with the center A1 corresponding

to the origin 0, we have orthogonal actions of A1 and A′
2 on Bd with a common

subgroup B. The orthogonal action of B on Bd fixes two diametral points in ∂Bd

which are not fixed by any other element of A1 and A′
2 (corresponding to the

intersection of the edge B with ∂Bd
1), and hence, B fixes pointwise the hyperbolic

line L in hyperbolic space H
d (the interior of Bd) connecting these two diametral

points. We conjugate A′
2 by a reflection in a hyperbolic hyperplane orthogonal of

the line L far from the origin 0 ∈ Bd. The group generated by A1 and the reflected
group A′′

2 is then isomorphic to the free product with amalgamation A1 ∗B A′′
2 and

realizes E = A1 ∗B A2 as a group of hyperbolic isometries of H
d, or equivalently

of Möbius transformations of Sd−1 = ∂Bd (by standard combination methods, see
[2, p. 247] and [9, p. 480] for more details and some figures).

In a similar way, inductively edge by edge in finitely many steps, one realizes
the group E = π1(Γ̄,G) also in the general case (see again [9, p. 479–482]).

This concludes the proof of the Proposition and, by Theorem 2, also of the first
statement of Theorem 1.

For the second statement of Theorem 1, we construct an infinite series of orthog-
onal actions of finite groups G on finite graphs Γ embedded in Sd which realize the
lower bounds for the polynomial degrees in Theorem 1.

Example 1. For k > 1, let G = C1 × . . . × Ck
∼= (Zm)k, of order n = mk, be

the product of k cyclic groups Ci
∼= Zm of order m. Choose an orthogonal action

of G on R
2k as follows. Decomposing R

2k = P1 × . . . × Pk as the product of k

orthogonal planes Pi, each Ci acts on Pi faithfully by rotations and trivially on the
k − 1 orthogonal planes. This G-action on R

2k extends to an orthogonal G-action
on the one-point compactification S2k of R

2k, with two global fixed points 0 and ∞.

We consider a graph Γ in S2k with two vertices 0 and ∞ and km connecting
edges divided into k groups of m edges. We embed the first group of m edges into
P1 such that C1 permutes these edges cyclically, then the next m edges into P2, etc.,
defining an orthogonal action of G on the graph Γ embedded in S2k. The graph Γ
has genus g = km − 1, hence

|G| = mk = (g + 1)k/kk,

which is a polynomial of degree k = d/2 in g.
Suppose that m > 2; then, d = 2k is the minimal dimension of a sphere which

admits a G-equivariant embedding of the graph Γ. In fact, in such an embedding
into a sphere Sd, the group G ∼= (Zm)k has a global fixed point and, hence, acts
orthogonally on the boundary Sd−1 of an invariant regular neighborhood of a global
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fixed point, and d− 1 = 2k− 1 is the minimal dimension of a sphere with a faithful
orthogonal action of (Zm)k; equivalently, the minimal dimension of a faithful, real,
linear representation of (Zm)k is 2k.

In odd dimensions d = 2k + 1, we extend the orthogonal action of G on R
2k

to an orthogonal action on R
2k+1, trivial on the last coordinate, and then proceed

as before; we get a polynomial of degree k = (d − 1)/2 in g for the order of G. As
noted in the Introduction, the optimal degree in dimension d = 3 is (d − 1)/2 = 1;
for odd dimensions d > 3, the optimal degree is either (d − 1)/2 or (d + 1)/2 but
at present we do not know which of these two values occurs.

This completes the proof of Theorem 1.
We present some other infinite series of finite orthogonal group actions on

finite graphs embedded in spheres which realize the minimal dimension of such
an embedding.

Example 2. (i) Let Γ be the complete graph with d+2 vertices, or the 1-skeleton
of a (d+1)-simplex. We embed the regular (d+1)-simplex into Bd+1, with vertices
in Sd = ∂Bd+1, and project its edges radially to Sd; this defines an embedding of
Γ into Sd. The automorphism group of the graph Γ is the symmetric group Sd+2

which extends to an orthogonal action on the sphere Sd. Again d is the minimal
dimension of such an equivariant embedding since it is the minimal dimension
of a sphere with a faithful, orthogonal action of Sd+2 (equivalently, the minimal
dimension of a faithful, real, linear representation of the symmetric group Sd+2 is
d + 1).

(ii) Let Γ′ be a graph with two vertices and d + 2 edges. Then, Γ′ has an
embedding into Sd+1 which is “dual” to the embedding of Γ into Sd ⊂ Sd+1 in part
(i) in the following sense: the sphere Sd separates Sd+1 into two balls Bd+1; the
two vertices of Γ′ are the centers of these two balls, and each of the d+2 connecting
edges intersects exactly one of the d + 2 faces of the projected (d + 1)-simplex in
Sd in its center.

The symmetric group Sd+2 acts orthogonally on (Sd+1, Γ′) with two global fixed
points (the double suspension of the action of Sd+2 on Sd), in particular it acts on
Sd and it follows as in (i) that d + 1 is the minimal dimension of a sphere with an
equivariant embedding of Γ′.

(iii) Let Γ be the 1-skeleton of the (d + 1)-dimensional hypercube now, with
a projection to Sd = ∂Bd+1 as in (i). The graph Γ has an automorphism group
(Z2)d+1 which extends to an orthogonal action on Sd (inversion of coordinates),
and d is the minimal dimension of a sphere with an orthogonal action of (Z2)d+1

(the minimal dimension of a faithful, real, linear representation of (Z2)d+1 is d+1).
Dualizing as in (ii) we get a graph Γ′ in Sd+1 with two vertices connected by

2(d+1) edges (each intersecting exactly one of the faces of the hypercube), with an
action of (Z2)d+1 with two global fixed points, and d + 1 is the minimal dimension
of such an embedding (since d is the minimal dimension of an orthgonal action of
(Z2)d+1 on a sphere). Note that this realizes the minimal dimension in the case
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m = 2 of the group (Z2)k in Example 1, replacing each plane Pi with a rotation by
a line with a reflection.

Question. As noted in the introduction, the maximum order of a finite group of
automorphisms of a finite hyperbolic graph of genus g > 2 is 2gg! ([5]), obtained
for a graph Γ with a single vertex and g closed edges whose automorphism group
is the semidirect product (Z2)g

� Sg (the symmetric group Sg acts by permuta-
tion of the edges, the normal subgroup (Z2)g by inversion of the edges). What
is the minimal dimension of a sphere with an equivariant embedding of this
graph?

Note that the graph Γ embeds equivariantly into R
2 × · · · × R

2 = R
2g, by

embedding each of the g closed edges into a different plane R
2 (the unique vertex

corresponds to the origin of R
2g and also of each plane R

2); the group (Z2)g acts
by reflections in lines through the origin on the g planes, inverting the g embedded
closed edges, the symmetric group Sg acts by permutation of the planes. Then,
Γ admits an equivariant embedding also into the one-point compactification S2g

of R
2g. On the other hand, the minimal dimension of a sphere with an orthogonal

action of (Z2)g
�Sg is g−1 (since g is the minimal dimension of a faithful, real, linear

representation of (Z2)g). It seems reasonable, however, that the minimal dimension
of an equivariant embedding of Γ into a sphere is 2g (as described above), but this
minimal dimension, between g − 1 and 2g, remains open at present.
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[9] B. Zimmermann, Über Homöomorphismen n-dimensionaler Henkelkörper und
endliche Erweiterungen von Schottky-Gruppen, Comment. Math. Helv. 56 (1981)
474–486.

[10] B. Zimmermann, Generators and relations for discontinuous groups, Generators and
Relations in Groups and Geometries, eds. Barlotti, Ellers, Plaumann, Strambach,

1840011-7



April 5, 2018 11:14 WSPC/S0218-2165 134-JKTR 1840011

B. P. Zimmermann

NATO Advanced Study Institute Series 333 (Kluwer Academic Publishers, 1991),
pp. 407–436.

[11] B. Zimmermann, Finite groups of outer automorphism groups of free groups, Glasgow
Math. J. 38 (1996) 275–282.

[12] B. Zimmermann, On finite groups acting on a connected sum of 3-manifolds S2×S1,
Fund. Math. 226 (2014) 131–142.

1840011-8


