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ABSTRACT

The derivative estimation problem is addressed in this paper by using Volterra in-
tegral operators which allow to obtain the estimates of the time-derivatives with
fast convergence rate. A deadbeat state observer is used to provide the estimates
of the derivatives with a given fixed-time convergence. The estimation bias caused
by modeling error is characterized herein as well as the ISS property of the estima-
tion error with respect to the measurement perturbation. A number of numerical
examples are carried out to show the effectiveness of the proposed differentiator also
including comparisons with some existing methods.
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1. Introduction

The design of robust numerical differentiators is a long-standing problem due to its sig-
nificant role in applied mathematics and control engineering, for instance in parameter
estimation (Chai, Lin, & Fu, 2013), controller implementation (Fliess & Sira-Ramirez,
2004), (Levant, 2003) and so forth.

The methods available in the literature tend to form four mainstreams:

• least-squares polynomial fitting or interpolation (see Duncan, Mandl, and Pasik-
Duncan (1996) and Ibrir and Diop (2004)) which is a very classical method
regularizing the parameters through optimization showing efficiency in off-line
applications;

• digital filtering in frequency domain, which inherits, adopting a signal-processing
perspective, the use of the finite impulse response filter, see Chen and Lee (1995),
and infinite impulse response digital filter as proposed in Rader and Jackson
(2006) to capture the derivatives of the objective signal;
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• dynamic-based derivative estimation, which, as the name implies, making use of
the signal dynamics to track the unmeasurable derivatives dynamically, taking
the advantages of continuous-time differential algebra and operational calculus,
etc.

Finally, the Sliding Mode approach, based on discontinuous injection, is a powerful
tool that is widely resorted to. Examples can be found in (Bartolini, Pisano, & Usai,
2000) and (Levant, 2003). In the SM framework, high-gain injection is inevitable which
will degrade the performance while facing the disturbance. Moreover, SM methods
suffer from either the chattering problem (low-order SM such as Bartolini et al. (2000))
or high complexity in implementation (higher-order SM).

In the recent literature, the deadbeat estimation has gained increasing attention due
to its finite-time or fixed-time convergence properties. The algebraic methodology has
been applied to the differentiation problem in Fliess and Sira-Ramirez (2004) making
use of symbolic calculus and consecutive integrations to provide a good estimate of the
first derivatives. As a further improvement, Mboup, Join, and Fliess (2007) provides a
new efficient approach of derivative estimation, known as the Jacobian differentiator,
which solves the problem by means of parameter estimation. Further relevant contri-
butions are Liu, Gibaru, and Perruquetti (2011a) and Liu, Gibaru, and Perruquetti
(2011b). In Reger and Jouffroy (2009), the authors recast the derivative estimation
problem in an state observation fashion, making use of a deadbeat algebraic state
estimation method to provide the derivative estimates.

Inspired by the perspective of Reger and Jouffroy (2009), in this paper, we are
extending the application of the kernel-based observer to solve the numerical differen-
tiation problem. The kernel-based approach was first proposed to face the parameter
estimation problem (Pin, Assalone, Lovera, & Parisini, 2016), where taking advan-
tages of Volterra integral operational algebra and the non-asymptotic property of
the kernels, the effects of unknown initial conditions which cause transient process
are removed thus achieving instantaneous convergence. Remarkably, the kernel-based
deadbeat estimation methodology has been recently extended to the state observer de-
sign (Pin, Lovera, Assalone, & Parisini, 2013). Implemented with a series of Bivariate
Feedthrough Non-asymptotic Kernels (BF-NK), the kernel-based observer is able to
reconstruct the states of an observable LTI system in arbitrarily short time. Utilizing
the kernel-based observer, the main idea of the present paper consists in modeling the
signal as a truncated Taylor series, for which a trivial generator system (model) exists,
that can be used for the design of a deadbeat state observer.

This paper is organized as follows: The relationship between the derivative esti-
mation and the state observation is formulated with corresponding state-space real-
ization in Section 2. In Section 3, the algebra of the Volterra integral operator and
the non-asymptotic kernel are briefly reviewed. The ad-hoc algorithm of the kernel-
based derivative estimator and its implementation are presented in Section 4. Then,
in Section 5, the truncation error and the robustness of the proposed differentiator are
characterized and extensive numerical examples are carried out in Section 6. The last
section is devoted to conclusions.

2. From state observer to time-derivative estimation

Let y(t) be a real-valued analytic signal whose derivatives are expected to be estimated
from its observation on a finite-time interval. At t = 0, the signal y(t) admits the Taylor
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series expansion

y(t) =

∞
∑

i=0

y(i)(0)

i!
ti, (1)

where y(i)(t) denotes its i-th derivative. Consider the truncated approximation of the
Taylor expansion

yN (t) = yN(0) + y
(1)
N (0)t+

y
(2)
N (0)

2
t2 + · · ·+

y
(N−1)
N (0)

(N − 1)!
tN−1, (2)

which verifies the differential equation y(N)(t) = 0. The truncated signal yN (t) can be
assumed generated by the following LTI system

{

ẋ(t) = Ax(t),
yN (t) = cx(t), t ∈ R≥0,

(3)

where

A=















0 1 0 . . . 0

0 0 1
. . .

...
...

...
. . .

. . . 0
0 0 . . . 0 1
0 0 . . . 0 0















∈ R
N×N , c=

[

1 0 . . . 0
]

∈ R
N , (4)

with the state vector x(t) = [yN (t), y
(1)
N (t), . . . , y

(i)
N (t), . . . , y

(N−1)
N (t)]⊤.

Remarkably, the system (3) is completely observable. In turn, replacing yN (t) with
y(t), state observation of system (3) provides the possibility to estimate the derivatives
up to (N − 1)-th order of the signal y(t) from its measurements.

3. Volterra linear integral operator’s theory and non-asymptotic kernel

The kernel-based observer, as the key tool of the present derivative estimator, is based
on the Volterra linear integral operator. For the readers’ convenience, the basic con-
cepts and useful algebra are briefly recalled here. For detailed operational theory,
readers may refer to Burton (2005).

Let r(t) ∈ R, ∀t ≥ 0 be an i-th order differentiable signal. Given a Hilbert-Schmidt
(HS) kernel function K(·, ·), in two variables, its i-th order derivative with respect to
the second argument is denoted as K(i)(·, ·), i ∈ Z≥0. The Volterra integral operator
induced by the kernel function is

[VKr] (t) ,

∫ t

0
K(t, τ)r(τ)dτ, t ∈ R≥0 . (5)

Remarkably the transformed signal [VK r](t), for t ≥ 0, can be obtained as the output
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of the following LTV dynamic system:







ζ(1)(t) = K(t, t)r(t) +

∫ t

0

(

∂

∂t
K(t, τ)

)

r(τ)dτ

[VKr] (t) = ζ(t)
(6)

where ζ(0) =

∫ 0

0
K(0, τ)r(τ)dτ = 0 and ζ(1)(0) = 0.

Lemma 3.1. Pin et al. (2016) For a given i ∈ Z≥0, consider a signal r(·) ∈ L2(R) that
admits i-th derivative and a HS kernel function K(·, ·), admitting the i-th derivative
with respect to the second argument. Then, it holds that:

[

VKr(i)
]

(t) =

i−1
∑

j=0

(−1)i−j−1r(j)(t)K(i−j−1)(t, t) +

i−1
∑

j=0

(−1)i−jr(j)(0)K(i−j−1)(t, 0)

+(−1)i
[

VK(i) r
]

(t)
(7)

Non-asymptotic properties of the Volterra operator can be achieved by designing a
class of kernel functions according to the following definition.

Definition 3.2. If a HS kernel K(·, ·) which is at least (i− 1)-th order differentiable
with respect to the second argument, verifies the condition

K(j)(t, 0) = 0, ∀j ∈ {0, 1, . . . , i− 1} (8)

then, it is called an i-th order non-asymptotic kernel.

Definition 3.3. (BIBO-stability of Volterra operator (Pin et al., 2016)) A Volterra
operator VK is said to be BIBO-stable if

sup
t∈R>0

{
∫ t

0
|K(t, τ)|dτ

}

> ∞.

Remarkably, the non-asymptotic property suppresses the effect of unknown initial
conditions, getting the differentiator rid of the transient to achieve a fast convergence.
Compared to the mono-variate modulating functions adopted by modulating function-
based observers (e.g. Pin, Chen, and Parisini (2015)), the proposed bivariate non-
asymptotic kernels add to the non-asymptoticity also the BIBO stability property,
which permits to avoid the periodic resetting that is mandatory for the modulating-
function methods. As a result, the Volterra operators induced by the said kernels can
be implemented as stable dynamical systems.
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4. Fast-convergent derivative estimator

The proposed derivative estimation consists in estimating the internal states of a linear
dynamic system

{

˙̂x(t) = Ax̂(t),
y(t) = cx̂(t), t ∈ R≥0,

(9)

with A and c defined in (4).
Induced by an N -th or higher order non-asymptotic kernel function Kh(t, τ), recall-

ing (7) and considering (8), the Volterra operator will map the output signal y(t) and
its derivatives into the transformation space as

[

VKh
y(i)

]

(t)=

i−1
∑

j=0

(−1)i−j−1y(j)(t)Kh
(i−j−1)(t, t) + (−1)i

[

VKh
(i) y

]

(t), i ∈{1, . . . , N − 1}.

(10)
As a result, the effect of the unknown initial conditions y(j)(0),∀j ∈ {0, . . . , i− 1} are
annihilated.

Consider the i = 1 case, the above equation writes

[V
K

(1)
h

y](t) = y(t)Kh(t, t)− [VKh
y(1)](t). (11)

Similarly, the transformation also holds for y(N−1)(t) and takes the form

[V
K

(1)
h

y(N−1)](t) = y(N−1)(t)Kh(t, t)− [VKh
y(N)](t). (12)

Recall the fact that y(N)(t) = 0, ∀t ∈ R>0 and consider the definition in (5), (12)
reduces to

[V
K

(1)
h

y(N−1)](t) = y(N−1)(t)Kh(t, t),

which, according to (10) is equivalent to

(−1)N−1[V
K

(N)
h

y](t) =

N−1
∑

j=0

(−1)N−j−1y(j)(t)K
(N−j−1)
h

(t, t)

=

N−1
∑

j=0

(−1)N−j−1K
(N−j−1)
h

(t, t)x̂j(t),

(13)

where x̂j(t) denotes jth element of x̂(t).

Defining γh,j(t) , (−1)N−j−1K
(N−j−1)
h (t, t), (13) can be written in a compact form

(−1)N−1[V
K

(N)
h

y](t) =

N−1
∑

j=0

γh,j(t)x̂j(t) = γ⊤h x̂(t), (14)

with γh = [γh,N−1(t), γh,N−2(t), . . . , γh,0(t)]
⊤.

5



We augment the above linear constraint by stacking N equations in the form of
(13) induced by an array of Bivariate Feedthrough Non-asymptotic Kernel (BF-NK
defined in Pin et al. (2013)) having the form

Kh(t, τ) = e−ωh(t−τ)
(

1− e−ω̄τ
)N

, h ∈ {0, . . . , N − 1}, (15)

sharing the same ω̄ ∈ R>0 but with different ωh ∈ R>0, h ∈ {0, . . . , N−1}. Indeed, the

condition (8) up to the N -th order is met by the factor
(

1− e−ω̄t
)N

. Therefore, the
derivative estimation problem translates into solving for x̂(t) the following algebraic
system

ν(t) = Γ(t)x̂(t), (16)

where

ν(t) =

[

(−1)N−1
[

V
K

(N)
0

y
]

(t), (−1)N−1
[

V
K

(N)
1

y
]

(t), . . . , (−1)N−1
[

V
K

(N)
N−1

y
]

(t),

]⊤

,

and

Γ(t) = [γ0(t), γ1(t), . . . , γN−1(t)]
⊤.

Note that in (16), except the unknown state vector x̂(t), all the other terms consist

of known functions of the kernels derivatives K
(j)
h (t, t), j ∈ {0, . . . , N − 1}. More-

over, the transformed signal ξ(t) ,

[

[

V
K

(N)
0

y
]

(t),
[

V
K

(N)
1

y
]

(t), . . . ,
[

V
K

(N)
N−1

y
]

(t)

]⊤

=

(−1)N−1ν(t), thanks to the shape of the kernel and (6), can be calculated by a LTV
dynamic system

{

ξ(1)(t) = Gξ(t) + E(t)y(t),
ξ(0) = 0,

(17)

where

G = diag
(

− ωh, h ∈ {0, . . . , N − 1}
)

∈ R
(N−1)×(N−1),

E(t) =
[

K
(N)
0 (t, t),K

(N)
1 (t, t), . . . , K

(N)
N (t, t)

]⊤
.

Remark 1. The transformation system (17) is internally stable thanks to the chosen
shape of the kernel (15) where there is no need for periodically re-initialization as in
Fliess and Sira-Ramirez (2004) nor moving the time horizon as proposed in Reger and
Jouffroy (2009).

Lemma 4.1. (Invertibility) Given the kernels in the form of (15) tuned by a common
ω̄ and different ωh, h ∈ {0, . . . , N − 1}, the matrix Γ(t) will be invertible ∀t ∈ R>0.

Proof. Recall (15), the BF-NK can be rearranged as

Kh(t, τ) = e−ωht

N
∑

q=0

(−1)q
(

N

q

)

e(ωh−qω̄)τ . (18)
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Its i-th derivative with respect to the second argument takes the form

K
(i)
h (t, τ) = e−ωht

N
∑

q=0

(−1)q
(

N

q

)

(ωh − qω̄)ie(ωh−qω̄)τ . (19)

Therefore, the vector γh(t)
⊤ becomes













(−1)N−1
(

N
0

)

(ωh−qω̄)N−1 (−1)N
(

N
1

)

(ωh−qω̄)N−1 . . .
(

N
N

)

(ωh−qω̄)N−1

(−1)N−2
(

N
0

)

(ωh−qω̄)N−2 (−1)N
(

N
1

)

(ωh−qω̄)N−2 . . . −
(

N
N

)

(ωh−qω̄)N−2

...
...

...
(

N
0

)

−
(

N
1

)

. . . (−1)N
(

N
N

)























1
e−ω̄t

...
e−Nω̄t











.

(20)
Moreover, each element of γh(t) is persistently exciting, i.e. ∃ǫh ∈ R>0 and Th ∈ R>0

such that

∫ t

t−Th

γh(τ)γh(τ)
⊤dτ ≥ ǫhI, ∀t ≥ 0.

By taking different values of ωh ∈ R>0, referring to (20), Γ(t) has a nonsingular
determinant for any t > 0. In other words, the matrix Γ(t) is invertible ∀t ∈ R>0.

Finally, with the persistently invertible Γ(t), the estimated derivatives can be ob-
tained by

x̂(t) =











ŷ(t)

ŷ(1)(t)
...

ŷ(N−1)(t)











= Γ(t)−1ν(t), t ∈ R>0. (21)

5. Derivative estimation error analysis

5.1. Analysis of the Estimation error due to Taylor-expansion
truncation

Compared to the simplified N-dimensional linear system (9) used for the design of
the observer (considered as the generator for the truncated Taylor expansion of the
observed signal), the full-model (exact) extension can be modeled by augmenting (9)
with a further unknown input, that represents the overall contribution of higher-order
derivatives.

{

ż(t) = Az(t) + buN (t)
y(t) = cz(t), ∀t ∈ R>0,

(22)

where b = [0, . . . , 0, 1]⊤ ∈ R
N and uN (t) , R

(N)
N (t) ∈ R with RN (t) denoting the

truncation error of the Taylor series, i.e. RN (t) = y(t)− yN (t). In (22), the state vector
z(t) = [y(t), y(1)(t), . . . , y(N−1)(t)] is made up of the true derivatives of the signal y(t).
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By applying the Volterra operators to the full-order dynamical system (22), we get
an extended version of (12), that accounts for the additional input

[V
K

(1)
h

y(N−1)](t) = y(N−1)(t)Kh(t, t)− [VKh
y(N)](t)

= y(N−1)(t)Kh(t, t)− [VKh
uN ](t)

(23)

Therefore, after some tedious algebra, the linear constraint for the full order system
can be expressed in the operators domain as:

(−1)N−1[V
K

(N)
h

y](t) + [VKh
uN ](t) =

N−1
∑

j=0

(−1)N−j−1K
(N−j−1)
h (t, t)zj(t). (24)

The augmentation by N BF-NKs gives

ν(t) + eu(t) = Γ(t)z(t), (25)

where

eu(t) ,

[

[VK0
uN ] (t), [VK1

uN ] (t), . . . ,
[

VKN−1
uN

]

(t)

]⊤

is an unknown input vector due to the Taylor truncation.
In turn, the derivative estimation-error vector can be expressed as a function of eu

ea(t) , z(t)− x(t) = Γ(t)−1eu(t). (26)

In the view of the structure of Γ(t), its inverse writes

Γ(t)−1 =
1

det(A)
adj(Γ(t)), (27)

where adj(Γ(t)) denotes the adjoint matrix of Γ(t). It is worth noting that in adj(Γ(t)),
the elements on the j-th row are functions of derivatives of the kernel having order
higher than that on the (j − 1)-th row, for all j ∈ {2, . . . , N}. For instance, let us
consider the N = 3 case 1

adj(Γ) =







K1K
(1)
2 −K

(1)
1 K2 −K0K

(1)
2 +K

(1)
0 K2 K0K

(1)
1 −K

(1)
0 K1

K1K
(2)
2 −K

(2)
1 K2 −K0K

(2)
2 +K

(2)
0 K2 K0K

(2)
1 −K

(2)
0 K1

K
(1)
1 K

(2)
2 −K

(2)
1 K

(1)
2 −K

(1)
0 K

(2)
2 +K

(2)
0 K

(1)
2 K

(1)
0 K

(2)
1 −K

(2)
0 K

(1)
1






,

(28)
By choosing ωh as large as to verify the inequality

ωh − qω̄ > 1, ∀q ∈ {0, . . . , N}, ∀h ∈ {1, . . . , N − 1},

the absolute value of elements on the same column in Γ(t)−1 increases row by row. As a
result, recall (26), the estimation error will become larger for higher-order derivatives.
Some instances will be given in the simulation section in the present paper.

1For the sake of clarity, we eliminate the time-dependence of the time-varying matrix Γ(t), the kernels K(t, t)

and their derivatives K
(i)
h

(t, t), ∀t ∈ {1, 2}, ∀h ∈ {1, 2}.
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5.2. Perturbed scenario

Assume now that y(t) is affected by a bounded additive measurement perturbation

yn(t) = y(t) + dy(t),

where |dy(t)| ≤ d̄y.
Due to the linearity of the Volterra operator, defining

ey(t) , (−1)N−1
[

[V
K

(N)
0

dy](t), [VK
(N)
1

dy](t), . . . , [VK
(N)
N−1

dy](t)
]⊤

,

the image vector of the perturbed measurements yn(t) can be expressed as

ξn(t) = ξ(t) + ey(t), (29)

where ey(t) admits the dynamics

{

e
(1)
y (t) = Gey(t) + E(t)dy(t),
ey(0) = 0,

(30)

with previously defined G and E(t), for h ∈ {0, . . . , N −1}. Consequently, in this case,
the estimate is given by

x̂n = Γ(t)−1

[

ν(t) + ey(t)

]

(t). (31)

Referring to (25), the estimation error in the perturbed scenario takes the form

en(t) , z(t)− x̂n(t) = Γ(t)−1

(

eu(t)− ey(t)

)

. (32)

5.3. Boundedness of the estimation error

Considering the estimation based on the perturbed measurements yn(t), let us explore
the boundedness of the derivative estimation error en(t) in (32).

As far as the truncation error is concerned, the following result shows the bound-
edness of the derivative error.

Proposition 5.1. Let |y(N)(t)| ≤ M , for some finite M ∈ R>0, then one can con-
clude that the estimation bias ea(t) (recall (26)) of the signal derivatives given by the
estimator (21) has a global bound ēa ∈ R>0 , i.e.

|ea(t)| ≤ ēa, ∀t ∈ R>0. (33)

Proof. The truncation error RN can be rewritten in the Lagrange form (Abramowitz
& Stegun, 1964)

RN (t) =
y(N)(c)tN

(N)!
, (34)
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for some c ∈ (0, t). Moreover, if the N -th derivative |y(N)(t)| ≤ M, ∀t ∈ R>0, the
Taylor remainder admits an upper bound that

RN (t) ≤ R̄N =
MtN

(N)!
. (35)

In turn, the input of (22) verifies that |uN (t)| ≤ M . Recall the BIBO stable transfor-
mation system (6),

|[VKh
uN ] (t)| =

∣

∣

∣

∣

∫ t

0
e−ωh(t−τ)K(τ, τ)uN (τ)dτ

∣

∣

∣

∣

≤

∫ t

0
e−ωh(t−τ) sup

0≤τ≤t

|K(τ, τ)|Mdτ

=
1

ωh

sup
0≤τ≤t

|K(τ, τ)|M , ζh, h ∈ {0, 1, . . . , N − 1}.

(36)

Due to the invertibility of Γ(t) for all t ∈ R>0, the derivative estimation error caused
by truncation can be bounded with

|ea(t)| ≤

∣

∣

∣

∣

sup
0≤τ≤t

Γ(τ)−1

∣

∣

∣

∣

∣

∣

∣

[

ζ0, ζ1, . . . , ζN−1

]⊤
∣

∣

∣
, ēa. (37)

We are characterizing the error introduced by the measurement perturbation ey(t)
in the following proposition.

Proposition 5.2. (ISS property) Given the perturbed measurement yn(t) with a
bounded measurement disturbance dy(t) such that |dy(t)| ≤ d̄y, ∀t ∈ R, the estima-
tion error ey(t) is ISS with respect to dy(t).

Proof. Referring to the dynamics of ey(t) (30), being G Hurwitz, there exists a posi-
tive definite matrix P satisfying the identity PG+G⊤P = −I. Therefore, we consider
the Lyapunov function candidate V (ey) = e⊤y Pey, then there exist two positive con-

stant α1 and α2 verifying2

α1‖ey‖
2 ≤ V (ey) ≤ α2‖ey‖

2, ∀ey.

Differentiating the Lyapunov function V (ey) along the trajectory of the error dy-
namic, we get

V̇ (ey) =
∂V

∂ey
ėy ≤ −‖ey‖

2 + 2‖E‖|dy |. (38)

For any 0 < ǫ < 1, define a function

χ(|dy|) ,

(

2‖E‖

1− ǫ
|dy|

)
1

2

.

2For notation simplicity, we eliminate the time-dependence of ey(t) and E(t).
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Figure 1. Pure signal y(t) and the perturbed measurement yn(t).

It is obvious that

V̇ ≤ −ǫ‖ey‖
2, ∀ ‖ey‖

2 ≥ χ(|dy|).

Thereby, it is straightforward to show that the estimation error caused by the mea-
surement disturbance ey(t) is ISS with asymptotic gain

γey(|dy |) = α−1
1 α2χ(|dy|), (39)

indicating that for any arbitrary µ ∈ R>0, ey(t) will enter a close ball of radius
γey(d̄y) + µ in finite-time.

6. Numerical examples

In this section, we are going to verify the effectiveness of the proposed differentiator
with extensive numerical experiments involving comparisons with some well-known
differentiation methods.

6.1. First order differentiator (N = 2)

We consider, as first example, the derivative estimation of the drifting sinusoidal signal

y(t) = 5t+ sin(t),

in both ideal and perturbed scenario where the measurements are corrupted by a
bounded random perturbation simulated as a uniformly distributed sequence ranging

within [−0.3, 0.3] (in this case the signal-to-noise ratio is SNR , 10 log10

∑
|y(k)|2∑
|dy(k)|2 =

42.85).
The perturbed measurement yn(t) = y(t)+dy(t) and the pure signal y(t) are shown

in Fig. 1. The simulations are executed in Matlab/Simulink with a sampling interval
Ts = 10−3s.
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Figure 2. Estimates of first derivative y(1)(t) in perturbation-free scenario with N = 2.

We are estimating the first derivative of the signal from the observation y(t) and
its perturbed counterpart yn(t) using the estimator proposed in (21) with N = 2,
tuned with parameters ω̄ = 2.5 and [ω0, ω1] = [1, 2]× 20. The estimation results of the
proposed method are compared with some renowned approaches:

• (0, 0)-Algebraic Numerical Differentiator (AND) (Mboup, Join, & Fliess, 2009),
with M = 600.

• Implicit Lyapunov Function (ILF) method (Polyakov, Efimov, & Perruquetti,
2014), with

P =

[

20.0608 −2.6724
−2.6724 0.3744

]

, k =

[

−14.0872
−52.2407

]

, µ = 0.5;

• 2-sliding mode method (Levant, 1998) with α = 8 and λ = 6;
• High-gain observer (HGO) method (Ibrir, 2004) with ǫ = 0.1, λ = 0.95.

All the parameters are chosen by the criteria that all the estimators have similar
convergence time (activation time for the deadbeat methods).

The estimates of the first order derivative of y(t) provided by the four estimators
are reported in Figure 2 based on the perturbation-free measurements. In Figure 2,
one can conclude that the HGO method and the sliding mode approach have obvious
overshoots during the transient time and reach the steady state at approximately t =
0.6s. Remarkably, after entering the steady state, the sliding mode method reconstructs
the first derivative with the highest exactness among the methods. The ILF method,
with comparatively tedious overshoot, provides steady estimates at around t = 0.6s.
The deadbeat methods, (0, 0)-AND and the proposed kernel-based approach, activated
at t = 0.6s, are able to track the variation of y(1)(t), albeit there is an obvious delay
in the estimates from (0, 0)-AND), where the delay is not adjustable for fixed shape of
annihilator and activation time (see Mboup et al. (2009)). However, the delay can be
calculated. Generally speaking, all the differentiation approaches are able to provide
acceptable estimates of the first derivative of y(t) in steady state.

Under the disturbance of dy(t), the estimators perform the first derivative estima-
tion as shown in Figure 3. The SM method has heightened fluctuation on its estimation
results since the impact of the disturbance is amplified by the high-gain injection. The
kernel-based and the HGO methods provide the estimates with bounded fluctuations
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Table 1. Steady-state RMSE and V ar(En) of the differentiators in the per-
turbed scenario (SNR=42.85).

Method HGO Sliding mode Kernel-based ILF (0, 0)-AND

RMSE 37.084 164.21 28.689 9.3639 14.187
Variance 0.7541 5.8822 0.6444 0.5571 0.5324
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Figure 3. Estimates of first derivative y(1)(t) in perturbed scenario with N = 2.

within comparatively smaller ranges subsuming the true value, while the large over-
shoot in the transient phase of HGO method still exists. Notably, with the chosen
parameters, the ILF method and the (0, 0)-AND perform the estimations smoothly,
although the (0, 0)-AND has a computable delay.

In order to show the perturbation immunity of the simulated differentiators in
a more intuitive way, we resort to the root mean square error (RMSE) defined as

RMSE ,

√∑Mk
i (y(1)(i)−ŷ(1)(i))2

Mk
, where Mk denotes the number of data points consid-

ered and the variance of the estimation error V ar(en) in the steady state. The RMSE
and the variance of estimates given by the differentiators on the time-interval t ∈ [3, 8]
are listed in Table 1, from which one can conclude that, with the present parameter
settings, the ILF method and the algebraic method provide comparatively accurate
and concentrated estimates in the presence of the perturbation on the measurements.

6.2. Second order differentiator (N = 3)

Increasing the dimension of the observer to 3, we are going to examine the perfor-
mance of the proposed differentiator for simultaneously estimating the first and sec-
ond derivatives of the signal. Moreover, in the previous simulation example, we observe
that the kernel-based derivative estimator behaves mediocrely in disturbance attenu-
ation. Thanks to the theoretical formulation in Section 5, estimation error caused by
the measurement perturbation is tunable with different parameter settings. Thereby,
in this example, we also focus on the tuning rules of the parameters in the sense of
the estimation bias and the robustness.
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Figure 4. Estimates of first derivative y(1)(t) and the second derivative y(2)(t) in perturbation-free scenario
with N = 3.

Consider a dual-sinusoidal signal

y(t) = 4 sin(t) + 0.2 sin(5t),

as depicted in Figure 5. The estimates of both the second order derivative ŷ(2)(t) and
the first order derivative ŷ(1)(t) are depicted in Figure 4. The simulation is based on
MATLAB/Simulink environment with the sampling interval Ts = 10−3s.

In Figure 4, the derivative estimations of the proposed kernel-based differentiator
are presented with different parameter configurations without consideration of the
measurement perturbation. We choose two sets of parameters for [ω0, ω1, ω2]: [1, 2, 3]×
10 and [1, 2, 3] × 50 to show the effect of the parameter configuration.

In Figure 4, more evident in the estimates of y(2)(t), the differences between the
estimates and the true values increase with the decreasing value of [ω0, ω1, ω2] which is
coincide with (26) where larger ωh, h ∈ {0, 1, 2}, which can be also regarded as forget-
ting factors, will reduce the effect of the past data and thus provide more instantaneous
and accurate estimates.

In the perturbed scenario, with a bounded perturbation dy(t) uniformly distributed
in [−0.2, 0.2] corresponding to an SNR = 24.47 (see Figure 5), the kernel-based dif-
ferentiator gives the estimation results of y(1)(t) and y(2)(t) as shown in Figure 6. To
observe the effect of ωh on the estimation error clearly, in this example we consider
more parameter settings: [1, 2, 3] × 10, [1, 2, 3] × 20, [1, 2, 3] × 30 and [1, 2, 3] × 50.

In this perturbed scenario, the estimator provides the estimates with fluctuations,
where the range of the fluctuations are tunable with different parameters settings. As
shown in Figure 6, the fluctuations are amplified as the value of [ω0, ω1, ω3] increases,
which verifies the robustness analysis in Subsection 5.2 due to ascending γey recall
(39). According to (32) the value of ey(t) will be magnified with increasing value of
ωh, h ∈ {0, 1, 2}, thus enlarge en(t).

In general, the parameters
{

ωh, h ∈ {0, 1, 2}
}

should be selected considering the
trading off between the bias and the disturbance immunity.
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Figure 5. Pure signal y(t) and the perturbed measurement yn(t).
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Figure 6. Estimates of first derivative y(1)(t), the second derivative y(2)(t) and error bound in perturbed
scenario with N = 3 and different parameter settings

15



0 1 2 3 4 5 6 7 8
Time[s]

-30

-20

-10

0

10

20

30

ŷ
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ŷ(t)

True y(t)
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Figure 7. Estimates of derivatives of y(i)(t), i ∈ {0, 1, 2, 3} in perturbation-free scenario with N = 4.
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Figure 8. Derivative estimates error e
a,y(i)(t), i ∈ {0, 1, 2, 3} in perturbation-free scenario with N = 4.

6.3. Third order differentiator (N = 4)

In this example, the same signal as in Subsection 6.2 is used to estimate up to the
third derivative by using a fourth-order kernel-observer. From Figure 4, readers may
notice that, with fixed parameter settings, the estimation bias depends on the different
orders of derivatives. Thereby, this example will examine the value of estimation error
with respect to the derivative levels, corresponding to Subsection 5.1. The parameters
of the kernel-based differentiator are chosen as [ω0, ω1, ω2] = [1, 2, 3] × 20, ω̄ = 2.5
simulated in Matlab/Simulink with a sampling interval Ts = 10−3s.

The perturbation-free derivative estimation results are reported in Figure 7 and cor-
responding estimation errors are shown in Figure 8. For further analysis, we consider
the steady state value

Γ̄ , lim
t→∞

Γ(t) =









−8000 400 −20 1
−64000 1600 −40 1
−216000 3600 −60 1
−512000 6400 −80 1









. (40)
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Figure 9. Estimates of derivatives of y(1)(t) in perturbed scenario with N = 4.

In turn, its inverse is

Γ̄−1 =









0 −0.0001 0.0001 0
0.0038 −0.0100 0.0088 −0.0025
0.2167 −0.4750 −0.3500 −0.0917

4 −6 4 −1









. (41)

Right multiplying Γ̄−1 to the modeling error vector eu(t), the values of the estimation
bias of the derivatives (elements of vector ea(t) = [ea,y, ea,y(1) , ea,y(2) , ea,y(3) ]⊤) rank in
the following order

ea,y(3) > ea,y(2) > ea,y(1) > ea,y. (42)

Similarly as in Subsection 6.2, in the perturbation case, the differentiator provides
robust estimates with bounded fluctuations as reported in Figure 9 where, for simplic-
ity and clearness, only the estimates of y(1)(t) are plotted. As we can see, the kernel-
based numerical differentiator is able to give the derivative estimates with bounded
error.

7. Concluding remarks

In this work, we have shown that the kernel-based observer methodology (Pin et al.,
2013) can be applied to solve the numerical differentiation problem, obtaining fixed-
time convergence of the estimated derivatives. Making use of the Volterra integral
operators, induced by suitably shaped kernel functions, the derivatives of the signal
can be tracked based on the measurements with a rapid convergence. Estimation bias
and the robustness against the measurement perturbation are characterized herein. It
can been proved that the estimation error is ISS with respect to the signal derivatives
per se and the bounded perturbation.

Extensive numerical examples have been presented to examine the effectiveness of
the proposed numerical differentiation method involving comparisons with existing
renowned differentiation methods and echoing the theoretical analysis and derivation.

Further research efforts will concentrate on more comprehensive analysis on the
robustness issue and improve the immunity of the proposed differentiator from the
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aspects of parameter tuning and the shape of the kernel functions and potentially the
numerical realization.
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