
VizMal: A Visualization Tool for
Analyzing the Behavior of Android Malware

Alessandro Bacci1, Fabio Martinelli2, Eric Medvet1 and Francesco Mercaldo2

1Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Trieste, Italy
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Abstract: Malware signature extraction is currently a manual and a time-consuming process. As a matter of fact, security
analysts have to manually inspect samples under analysis in order to find the malicious behavior. From
research side, current literature is lacking of methods focused on the malicious behavior localization: designed
approaches basically mark an entire application as malware or non-malware (i.e., take a binary decision)
without knowledge about the malicious behavior localization inside the analysed sample. In this paper, with the
twofold aim of assisting the malware analyst in the inspection process and of pushing the research community
in malicious behavior localization, we propose VizMal, a tool for visualizing the dynamic trace of an Android
application which highlights the portions of the application which look potentially malicious. VizMal performs
a detailed analysis of the application activities showing for each second of the execution whether the behavior
exhibited is legitimate or malicious. The analyst may hence visualize at a glance when at to which degree an
application execution looks malicious.

1 Introduction

In recent years, mobile phones have become among
the favorite devices for running programs, browsing
websites, and communication. Thanks to their ever in-
creasing capabilities, these devices often represent the
preferred gateways for accessing sensitive assets, like
private data, files and applications, and to connectivity
services. On the other hand, this trend also stimulated
malware writers to target the mobile platform.

Effective mobile malware detection methods and
tools are needed in order to protect privacy and to en-
able secure usage of mobile phones and tablets. Many
detection methods rely on static analysis, i.e., they base
on the investigation of static features that are observed
before running the application (e.g., occurrences of
opcodes in disassembled code (Medvet and Mercaldo,
2016), API usage in code (Aafer et al., 2013)): these
techniques are effective under controlled conditions,
but may be often easily circumvented by means of
malware obfuscation techniques (Egele et al., 2012;
Moser et al., 2007). In order to evade current malware
detection techniques and in the context of an ongoing
adversarial game, malware writers in facts implement
increasingly sophisticated techniques (Zhou and Jiang,
2012; Canfora et al., 2014). During its propagation,

malware code changes its structure (Canfora et al.,
2015d), through a set of transformations, in order to
elude signature-based detection strategies (Maiorca
et al., 2017; Dalla Preda and Maggi, 2017; Cimitile
et al., 2017). Indeed, polymorphism and metamor-
phism are rapidly spreading among malware targeting
mobile applications (Rastogi et al., 2014).

Beyond limitations related to code obfuscation,
static analysis detection faces also some limitations
peculiar to the Android platform. Indeed, one of the
main problems is given by how Android manage ap-
plications permissions for observing the file system.
Common antimalware technologies derived from the
desktop platform exploit the possibility of monitoring
the file system operations: this way, it is possible to
check whether some applications assume a suspicious
behavior; for example, if an application starts to down-
load malicious code, it will be detected immediately by
the antimalware responsible for scanning the disk drive.
On the other hand, Android does not allow for an ap-
plication to monitor the file system: every application
can only access its own disk space. Resource sharing
is allowed only if expressly provided by the developer
of the application. Therefore Android antimalware
cannot monitor the file system: this allows applica-
tions to download updates and run new code without



any control by the operating system. This behavior
will not be detected by antimalware software in any
way; as a matter of fact, a series of attacks are based
on this principle (the so-called “update-attack” (Zhou
and Jiang, 2012)).

Despite its limitations, a rather trivial static de-
tection as signature-based detection is often the most
common technique adopted by commercial antimal-
ware for mobile platforms. Beyond its low effective-
ness, this method of detection is costly, as the process
for obtaining and classifying a malware signature is
laborious and time-consuming.

In order address the limitations of static analysis,
and hence to be able to cope with a variety of malware
that exists in the wild, detection based on dynamic
analysis is needed: in this case the detection is based
on the investigation of dynamic features, i.e., features
which can be observed while the application is run-
ning (e.g., device resource consumption (Canfora et al.,
2016), frequencies of system calls (Martinelli et al.,
2017a)).

Most of the currently proposed dynamic detection
methods provide the ability to classify applications as
malicious or benign as a whole, i.e., without providing
any insight on which parts of the application execu-
tions are actually malicious. Moreover, trying to man-
ually inspect the features on the base of which those
tools take their decision is hard, mainly because of the
size of the data. For example, in the many approaches
of dynamic detection based on Machine Learning tech-
niques applied to execution traces, the raw data con-
sists of thousands of numbers which are very hard even
to be visualized, leaving aside the possibility of being
comprehended—this is, indeed, a common issue and
interesting line of research in the field of visualization
of big data (Fiaz et al., 2016). It follows that an analyst
who aims at gaining a better understanding of malware
behavior obtains little help from these methods.

Starting from these considerations, in this paper
we propose VizMal, a tool for assisting the malware
analyst and helping him comprehend the nature of the
malware application under analysis. VizMal operates
on an execution trace of an Android application and
visualizes it as a sequence of colored boxes, one box
for each second of duration of the execution. Each box
delivers two kinds of information to the analyst: first,
an indication, by means of box fill color, of the degree
to which the behavior performed by the application
during the corresponding second looks malicious; sec-
ond, an indication, by means of the shape of the box,
of how active was the application in the corresponding
second.

VizMal may be a valuable tool for Android mal-
ware analysts, researchers, and practitioners from

many tasks. For example, it can be used to easily
spot similarities of behavior between the analyzed ap-
plication and a well known samples. Or, it can be used
together with a tool for executing applications in a
controlled environment to find and understand the rela-
tion between injected events (e.g., an incoming SMS)
and observed behavior with the aim of, e.g., looking
for the payload activation mechanism. Or, finally, it
can be used to debug a malware detection method
by performing a fine-grained analysis of misclassified
applications.

Internally, VizMal analyzes the execution trace us-
ing a Multiple Instance Learning (MIL) framework.
Multiple Instance Learning (Carbonneau et al., 2016;
Zhou, 2004) is a form of weakly-supervised learning
in which instances in the learning set are grouped and
the label is associated with a group, instead of with
a single instance. The MIL framework fits our sce-
nario because labeling execution traces of Android
applications at the granularity of one or few seconds
(subtraces) is very costly: hence data for training a
classifier capable of classifying subtraces would be
hard to collect and even harder to keep updated. MIL
addresses this issue by considering each subtrace as
an instance and an entire trace as a group of instances
for which a label exist and is easily obtainable, e.g., by
running several known Android malware application
for a long enough time. To the best of our knowledge,
this is the first use of MIL in the context of Android
malware classification.

The remaining of the paper is organized as follows.
In Section 2 we briefly review the state-of-the-art on
malware Android detection; in Section 3 we describe
how the tool (VizMal) works; in Section 4 we discuss
the results of the experimental validation of VizMal,
including a comparison of some alternatives for the
main components of VizMal; finally, in Section 5, we
draw some conclusions and propose future lines of
research.

2 Related work

In this section we review the current literature re-
lated to the Android malware detection topic with par-
ticular regards to methods focused on, or possibly able
to perform, the localization of the malicious behav-
iors (overcoming the classic malware detector binary
output, i.e., malware/non-malware).

Amandroid (Wei et al., 2014) performs an inter
component communication (ICC) analysis to detect
leaks. Amandroid needs to build an Inter-component
Data Flow Graph and an Data Dependence Graph to
perform ICC analysis. It is basically a general frame-



work to enable analysts to build a customized analysis
on Android apps.

FlowDroid (Arzt et al., 2014) adequately models
Android-specific challenges like the application life-
cycle or callback methods. It helps reduce missed
leaks or false positives: the proposed on-demand algo-
rithms allow FlowDroid to maintain efficiency despite
its strong context and object sensitivity.

Epicc (Octeau et al., 2013) identifies a specifica-
tion for every ICC source and sink. This includes the
location of the ICC entry point or exit point, the ICC
Intent action, data type and category, as well as the
ICC Intent key/value types and the target component
name.

Mercaldo et al. (2016); Canfora et al. (2015f,e)
evaluate the effectiveness of the occurrences of a sub-
set of opcodes (i.e., move, if, jump, switch, and
goto) in order to discriminate mobile malware appli-
cations from non-malware ones. They apply six clas-
sification algorithms (J48, LADTree, NBTree, Ran-
domForest, RandomTree, and RepTree), obtaining a
precision equal to 0.949 in malware identification.

These methods consider static analysis in order to
identify the threats: as discussed into the introduction,
using static analysis it is possible to identify malicious
payloads without infect the device under analysis, but
these techniques exhibit a strong weakness with re-
spect to the code obfuscation techniques currently em-
ployed by malware writers (Canfora et al., 2015b).

The approach presented by Ferrante et al. (2016)
exploits supervised and unsupervised classification
in order to identify the moment in which an applica-
tion exhibits a malware behavior. Despite the general
idea and aim are similar to those of the present work,
the cited paper lacks the visualization component and
hence can hardly be used directly by the analyst.

The Andromaly framework (Shabtai et al., 2012)
is based on a Host-based Malware Detection System
able to continuously monitor features (in terms of CPU
consumption, number of sent packets through the Wi-
Fi, number of running processes and battery level) and
events obtained from the mobile device and consider
machine learning to classify the collected data as nor-
mal (benign) or abnormal (malicious). The proposed
solution is evaluated on four applications developed
by authors.

BRIDEMAID (Martinelli et al., 2017b) is a tool
able to combine static and dynamic analysis in order
to detect of Android Malware. The analysis is based
on multi-level monitoring of device, app and user be-
havior with the aim to detect and prevent at runtime
malicious behaviors.

AndroDialysis (Feizollah et al., 2017) considers
Android Intents (explicit and implicit) as a distinguish-

ing feature for malware identification. The results
show that the use of Android Intent achieves a bet-
ter detection ratio if compared with the permission
analysis.

TaintDroid (Enck et al., 2014) is an extension to
the Android operating system that tracks the flow of
privacy sensitive data through third-party applications.
TaintDroid assumes that downloaded, third-party ap-
plications are malware, and monitors in realtime how
these applications access and manipulate users’ per-
sonal data.

Researchers in (Tam et al., 2015) consider system
call extraction with the aim to generates behavioral
profiles of Android applications. The developed frame-
work, i.e. CopperDroid, is able to automatically recon-
struct system call semantics, including IPC, RPC, and
Android objects.

Lindofer et al. (Lindorfer et al., 2015) discuss the
MARVIN tool, an analysis tool able to assess the mali-
ciousness of Android applications. MARVIN consid-
ers machine learning techniques to classify Android
mobile applications using an extended feature set ex-
tracted from static and dynamic analysis of a set of
known malicious and benign applications.

These techniques consider dynamic analysis in or-
der to label Android samples as malware or trusted:
in detail the methods presented in (Tam et al., 2015)
and Ferrante et al. (2016) exploit the syscall traces
as discriminant between malware and legitimate sam-
ples as VizMal. The main difference between VizMal
and the methods designed in (Tam et al., 2015) and
Ferrante et al. (2016) is the visualization component
that make our method useful to malware analyst in
order to automatically and quickly find the malicious
behaviour.

3 The proposed tool: VizMal

We consider the visual evaluation of malware An-
droid apps for fast and precise individuation of mali-
cious behaviors during the execution. To reach this
goal, we built a visualization tool that takes as input
an execution trace t of an app and outputs an image
consisting of a sequence of colored boxes.

Each box corresponds to a period lasting T seconds
of the execution trace t; the value of T is a parameter of
the tool: in this work we focused on the case of T = 1s
which is a good trade-off between informativeness and
easiness of comprehension. The color of the box is
related to the degree to which the behavior performed
by the application during the corresponding second
looks malicious. The shape of the box (in particular,
its height) is related to how active was the application



Figure 1: Examples of the images obtained by VizMal on 4
execution traces of malware apps: only the first 18 s are here
depicted.

in the corresponding second.
VizMal is composed by two components: an image

builder, which builds the image, and a trace classifier,
which processes the trace t and decorates it with its ma-
liciousness and activity levels. As briefly introduced
in Section 1, the trace classifier is based on MIL: be-
fore being able to process execution traces, it has to be
trained on a set of labeled execution traces (one label
in {malware, non-malware} for each trace). In the
following sections, we describe the two components.

3.1 Image builder

The input of the image builder is a sequence L =
{(m1,a1),(m2,a2), . . .} of pairs of values. The i-th
pair refers to the subtrace of the trace t starting at
(i− 1)T second and ending at iT second: mi ∈ [0,1]
is the maliciousness level of that subtrace (0 means no
maliciousness) and ai ∈ [0,1] represents the activity
level of that portion (0 means no activity).

The image is composed of a vertical sequence (i.e.,
a row) of boxes, one for each element in the input
sequence P. Boxes have the same width w and, for
the sake of clarity, are separated by a small empty gap.
The height of the i-th box is aiw, where w is the box
width and ai is the activity level of the corresponding
subtrace. The fill color of the box is solid and deter-
mined basing on mi: for mi = 0, it is green, for mi = 1
it is red, and for intermediate values, it is given by the
point on a line connecting green and red in the HSL
color space whose distance from green is mi assuming
than the length of the line is exactly 1.

Figure 1 shows 4 images obtained with VizMal
applied to execution traces of malware apps: different
maliciousness and activity levels can be seen in the
color and height of the boxes.

3.2 Trace classifier

The trace classifiers operates in two phase. First, it
must be trained in a learning phase which takes as
input a set of labeled execution traces; then, it can be
used in the classification phase for actually generating
a sequence L of maliciousness and activity levels out
of an execution trace t. In both phases, each execution
trace is preprocessed in order to extract some features:

in this work, we were inspired by the approach pro-
posed by Canfora et al. (2015c) where features are
frequences of n-grams of the system calls occurred
in the trace. We remark, however, that any other ap-
proach able to provide a sequence L of maliciousness
and activity levels out of an execution trace t could
also apply.

In detail, the preprocessing of a trace t is as follows.
The trace classifier (i) splits the trace t in a sequence
{t1, t2, . . .} of subtraces, with each subtrace lasting ex-
actly T seconds; (ii) considers subsequences (n-grams)
of at most N consecutive system calls (discarding the
arguments), where N is a parameter of the trace classi-
fier; (iii) counts the number o(ti,g) of each n-gram g
in each subtrace ti.

In the learning phase, the trace classifiers trains
a MIL-based binary classifier using substraces as in-
stances, the label (non-malware or malware) of their
enclosing trace as group label, and the counts o(ti,g)
of n-grams as features.

In the classification phase, the trace classifiers first
preprocesses the input trace t obtaining the subtraces
and the corresponding feature values. Then, it classi-
fies each subtrace using the trained MIL-based clas-
sifier and obtaining a label with a confidence value.
Finally, it sets the value of the maliciousness level mi
for each subtrace ti according to the assigned label and
corresponding confidence value; and it sets the value
of the activity level to ai =

|ti|
maxi |ti| , i.e., to the ratio

between the number of system calls in the subtrace
and the maximum number of system calls in a subtrace
of t.

According to the findings of Canfora et al. (2015c),
in this work we set N = 1: in other words, we con-
sidered the absolute frequencies of unigrams—we re-
mark, however, that more sophisticated features could
be used. Concerning the MIL-based classifier, we used
miSVM (Andrews et al., 2003) with a linear kernel and
the parameter C parameter set to 1.

4 Validation

We performed a set of experiments to validate our
proposal, i.e., to verify that VizMal may actually help
the analyst in better understanding malware (and non
malware) apps behavior.

To this end, we considered a dataset of 200 An-
droid apps (a subset of those used in (Canfora et al.,
2015a)), including 100 non-malware apps automat-
ically downloaded from the Google Play Store and
100 malware apps from the Drebin dataset (Arp et al.,
2014). For each app in the dataset, we obtained 3 ex-
ecution traces by executing the app for (at most) 60 s



on a real device with the same procedure followed by
Canfora et al. (2015c).

In order to simulate the usage of VizMal to analyze
new, unseen malware, we divided the dataset in a set
of 180 and a set of 20 apps. We first trained the tool
on the 180×3 traces corresponding to the former set
and then applied it to the 20× 3 traces of the latter
obtaining several images. We repeated the procedure
several times by varying the dataset division and ob-
tained consistent results: we here report a subset of the
images obtained in one repetition.

Figures 2 and 3 show the images obtained by Viz-
Mal applied to the 3 traces of 3 malware and 3 non-
malware app, respectively. Several interesting obser-
vation may be made.

Concerning the malware traces in Figure 2, it can
be seen that the images present several red boxes rep-
resenting seconds classified as malware with a high
confidence, but also some green ones, which indicate
seconds with no malware behaviors recognized. Fur-
thermore, some yellow and orange boxes show uncer-
tain seconds of execution: these seconds are classified
as non-malware (in yellow) and as malware (in orange)
with a lower confidence. The height of the boxes shows
a variable activity during the execution, going from
seconds with a very high number of system calls to
seconds with almost no activity. Finally, the different
number of boxes in the images in Figure 2 indicates
that in many cases malware apps stopped the execution
before the 60 s time limit: we verified that this finding
is due to the machinery used to collect the execution
traces, in which random user interaction events were
simulated by means of an ad hoc tool (Canfora et al.,
2015c).

It can be seen that, with the proposed tool, it is
immediately observable when an app exhibits a gen-
eral malicious behavior (e.g., last 2 on 3 traces for the
second malware app in Figure 2b) or when it behaves
“normally” (e.g., second trace of third malware app
in Figure 2c) or “borderline” (e.g., first trace of first
malware app in Figure 2a). Moreover the exact mo-
ments during which the malware behavior occurs and
its intensity can be easily identified. These information
allows for a detailed analysis of the app.

Similar considerations can be made for the images
obtained for non-malware apps of 3. A row of green
boxes indicates that the app behavior was normal dur-
ing the entire period of execution of 60 s. It can also
be seen, from second row of Figure 3b, that it may
happen that an non-malware app behavior looks sus-
picious from the point of view of the sequences of
system calls. This can be an opportunity, for the ana-
lyst, to gain more insights in the execution trace or on
the classification machinery.

We remark that VizMal applies to a single execu-
tion trace: hence, issues related to the representative-
ness of such a single trace of the behavior of an app
in general (e.g., code coverage) are orthogonal to the
goal of VizMal. However, since VizMal allows the an-
alyst to quickly analyze a single execution trace, it may
also enable a faster analysis of several traces collected
from the same app, perhaps in order to maximize the
generality of findings, e.g., w.r.t. code coverage.

4.1 Alternative image builders

Before converging on the final proposed visualization
(visible in Figure 1), we explored many design options
for the image builder, progressively adding elements
to enrich the information displayed while keeping the
image easily readable. We here present the most sig-
nificant variants.

We started with the simplest configuration, i.e.,
where boxes delivered a binary indication (green or
red) for the maliciousness level and no indication for
the activity level. The result is shown in Figure 4 for 3
execution traces of malware apps (top) and one trace
of a non-malware app (bottom). The first three apps
can be correctly recognized as malware. The last one
instead might look like a malware app (even though
the malware activity is much shorter compared with
the others apps), but it is actually a non-malware app.
This example shows that using only two colors for
describing all the information makes the analysis very
limited.

To display more information, we decided to in-
clude in the visualization also an indication of the
activity level, as the number of system calls executed
during each subtrace. An example of this visualization
is shown in Figure 5, for the same traces of Figure 4.
With this visualization, it is easy to see that in the non-
malware app the malware activity is in fact lower, i.e.,
fewer system calls were executed during the seconds
classified as malware with respect to the actual mal-
ware apps. This might suggest an erroneous evaluation
from the underlying classifier, but it the claim would
be very weak.

We tried another approach and encoded the confi-
dence of the classification using the fill color of the
boxes, i.e., basing on mi as described in Section 3.1.
Figure 6 shows the result for the same traces of Fig-
ure 4. The fill color shows that the confidences of mali-
ciousness are lower in the non-malware app, for which
there are no red boxes. Malware apps instead contain
many boxes with a high confidence of maliciousness.
This consideration can lead to the hypothesis of a false
positive of the trace classifier or, from another point of
view, of borderline behavior.



(a) Malware app 1.

(b) Malware app 2.

(c) Malware app 3.

Figure 2: Images obtained from the traces of 3 malware apps.

(a) Non-malware app 1.

(b) Non-malware app 2.

(c) Non-malware app 3.

Figure 3: Images obtained from the traces of 3 non-malware apps.

Figure 4: Examples of the images obtained by the VizMal
variant with binary maliciousness level and no activity level
for 3 malware traces and one non-malware trace.

Figure 5: Examples of the images obtained by the VizMal
variant with binary maliciousness level and activity level
related to number of system calls for the same execution
traces of Figure 4.

Eventually, we converged to the proposed solution
for the image builder component of VizMal. The fill
color is related to the maliciousness level mi in a con-
tinuous way and the box shape is related to the activity
level ai. Figure 7 shows the image obtained in this
(final) variant for the same traces of Figure 4. The
non-malware app representation is different enough
from the malware apps to indicate a probable wrong
classification and the necessity to perform a deeper
analysis to clarify the nature of the app.

Figure 6: Examples of the images obtained by the VizMal
variant with continuous maliciousness level and no activity
level for the same execution traces of Figure 4.

Figure 7: Examples of the images obtained by the VizMal
variant with continuous maliciousness level and activity level
related to number of system calls for the same execution
traces of Figure 4

4.2 Alternative trace classifiers

In order to explore different options for the MIL-based
classifier on which the trace classifier is built, we con-
sidered 4 other algorithms able to work in the consid-
ered scenario. We remark that the reason for which
VizMal internally bases on a MIL framework is that
because obtaining a dataset of traces annotated with
a malware/non-malware label with the granularity of
one or few seconds is costly. Instead, using MIL, Viz-



Mal can train on traces obtained by malware and non-
malware apps without particular constraints, under the
assumption that the malware behavior eventually oc-
curs if the execution is long and varied enough.

We experimented with sMIL (Bunescu and
Mooney, 2007), miSVM (Andrews et al., 2003), and
an ad hoc variant of “single instance” SVM (SIL-
SVM) which we modified in order to act as a MIL
framework. For the latter, we built a learning set in
which we applied a malware label to each subtrace
of a trace corresponding to a malware app and a non-
malware label to each subtrace of a trace correspond-
ing to a non-malware app. For sMIL and miSVM,
instead, a label is associated with an entire trace, with
the semantic that a malware label means that at least
one subtrace is malware, whereas a non-malware label
means that all the subtraces are non-malware.

In order to assess the 3 variants, we performed the
following procedure:

1. we divided the dataset of 3×100+3×100 execu-
tion traces (see Section 4) in a balanced learning
set composed of 90% of the traces and a testing set
composed of the remaining traces;

2. we trained the three classifiers on the learning set;

3. we applied the trained classifiers on the traces in
the testing set.

We repeated the above procedure 5 time by varying the
learning and testing set compositions and measured
the performance of the classifiers as False Positive
Rate (FPR), i.e., ratio between the number of subtraces
of non-malware apps classified as malware and the
number (30× 60) of all the non-malware subtraces,
and False Negative Rate (FNR), i.e., ratio between the
number of subtraces of malware apps classified as non-
malware and the number of all (30×60) the malware
subtraces. Since all the considered MIL variants base
on SVM, for a fair comparison we used the linear
kernel and C = 1 for all.

Table 1 presents the results, averaged across the 5
repetitions. We remark that (a) our experimentation
was not aimed at performing a comparison among MIL
frameworks—the interested reader may refer to (Ray
and Craven, 2005)—and (b) the shown figures should
not be intended as representative of the accuracy of
malware detection for the considered approaches. In
facts, while it is fair to consider a false positive (i.e.,
a subtrace of a non-malware app classified as a mal-
ware) as an error, the same cannot be done for a false
negative (i.e., a subtrace of a malware app classified as
a non-malware): it may actually occur, possibly with
high probability, that even a malware app does not
exhibit a malicious behavior for some seconds during
its execution.

Table 1: FPR and FNR (in percentage) for three considered
variants of MIL classifiers.

Classifier FPR FNR

SIL-SVM 75.80 11.28
SIL-SVM (near EER) 40.24 38.48
miSVM 26.44 42.44
sMIL 9.80 69.28
sMIL (near EER) 30.84 36.36

It can be seen from Table 1 that miSVM (the vari-
ant which we used in VizMal) outperforms both SIL-
SVM and sMIL. The values of FPR and FNR for the
latters suggest that their output is biased towards the
malware (SIL) and non-malware (sMIL) labels. To
mitigate this effect, we tuned the threshold of the to
classifiers in order to obtain their effectiveness indexes
in a working point close to the Equal Error Rate (EER),
also reported in Table 1. However, it can be seen that
miSVM still appears as the most effective variant.

5 Concluding remarks

In this paper we introduced VizMal, a tool that
presents in a graphical way the results of a dynamic
malware analysis of Android applications. VizMal
takes an execution trace of an Android application and
shows a row of colored boxes, one box for each second
of duration of the execution: the color of the box repre-
sents the maliciousness level of the app during the cor-
responding second, whereas the box shape represents
the app activity level during the corresponding second.
VizMal may be a valuable tool in the Android malware
analysts’ and researchers’ toolboxes, allowing them to
better comprehend the nature of malware application
and debug other, maybe more sophisticated, detection
systems. Along this line, we intend to explore the use
of VizMal together with tools for controlled execution
of Android apps in order to investigate the possibility
of relating the injected user and system events to the
maliciousness and activity levels measured by VizMal,
possibly resulting in an interactive tool for malware
analysis.
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