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ABSTRACT1

In this paper we assess the joint impact of biometric and financial risk on the market val-
uation of life insurance liabilities. We consider a stylized, contingent claim based model
of a life insurance company issuing participating contracts and subject to default risk,
as pioneered by Briys and de Varenne (1994, 1997), and build on their model by explic-
itly introducing biometric risk and its components, namely diversifiable and systematic
risk. The contracts considered include pure endowments, deferred whole life annuities
and guaranteed annuity options. Our results stress the predominance of systematic over
diversifiable risk in determining fair participation rates. We investigate the interaction
of contract design, market regimes and mortality scenarios, and show that, particularly
for lifelong benefits, usually offered participation rates may not be sustainable even under

1Corresponding author: Anna Rita Bacinello, Department of Economics, Business, Mathemat-
ics and Statistics ‘B. de Finetti’, University of Trieste, Via Università 1, 34123 Trieste, Italy, email:
bacinel@units.it; tel: (+39) 040 558 7113; fax: (+39) 040 558 7033.
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moderate longevity improvements.

KEYWORDS: Solvency; Longevity risk; Investment risk; Fair valuation; Participating life in-
surance.
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1. Introduction
In the last decades, increasing volatility in investment returns coupled with low interest

rates regimes and increased expectation of life across all developed countries have impacted
on life insurance and pension markets, resulting in potential distress for some annuity
providers.

The adoption of fair value based accounting standards for insurers, e.g. the full imple-
mentation of the Solvency II framework in the European Union in 2016, has enhanced the
transparency of their balance sheets by tying assets and liabilities values to the actual (or
hypothetical) price they could be exchanged for in a liquid market. On the other hand,
the application of these accounting standards has stressed the exposure of life insurers’
balance sheets to a variety of financial and biometric factors, with a consequent effect
on capital requirements. This is particularly relevant for providers of long-term invest-
ment guarantees or lifelong benefits. Traditional life insurance products offering fixed
life contingencies have been replaced long ago by more competitive contract structures,
with-profits in the UK and participating policies in Europe and the US, where insurers
share part of their returns with policyholders. Usually, the policyholder is promised to
receive a minimum return even when market performance is poor. This minimum rate of
return is set at issuance on a very conservative basis, so that the implicit value of such a
guarantee is small. However, given the long-term nature of the contract, guarantees that
are initially far out of the money may become highly valuable due to adverse movements
in market rates of return and unexpected rise in the length of life. Therefore, an accurate
contract design and careful assessment of all the risks involved, along with the interaction
between them, are crucial.

The aim of this paper is to assess the joint impact of biometric and financial risk on
the market valuation of life insurance liabilities. We consider a stylized, contingent claim
based model of a life insurance company issuing participating contracts and subject to
default risk, as pioneered by Briys and de Varenne (1994, 1997). Among the many papers
extending this seminal contribution, it is worth mentioning Grosen and Jørgensen (2002);
Bernard et al. (2005); Chen and Suchanecki (2007), where the role of regulation and
early distress is considered, and Ballotta et al. (2006a,b); Ballotta (2005), where different
bonus distribution mechanisms are analysed. These papers focus on financial risks only,
as it is implicitly assumed that mortality risk can be completely eliminated by pooling a
large portfolio. We build on Briys and de Varenne (1994, 1997) by explicitly introducing
in their model biometric risk and its components, namely diversifiable and systematic
risk. The contracts considered include pure endowments, deferred whole life annuities
and guaranteed annuity options. Results are presented in terms of fair participation
rates. Our analysis shows that systematic longevity risk prevails over diversifiable risk in
the sense that, when homogeneous contracts are pooled together, diversification becomes
fully effective even with relatively small portfolio sizes. This result holds also when the
solvency capital or the pricing rule is adjusted to reflect the portfolio size. Focusing then
on systematic risk only, we explore in detail the interplay between guarantees, market
regimes and longevity scenarios. Our numerical investigation highlights that bonus dis-
tribution plans comparable to those adopted in years characterized by high market yields
are sustainable only if benefits are set according to very conservative basis. Policies that
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initially are issued on fair grounds may eventually turn out to be grossly imbalanced.
This is particularly true for contracts providing lifelong benefits such as deferred whole
life annuities, as they are heavily impacted by longevity risk.

Systematic biometric risk, commonly called longevity risk, has been emphasized as a
main factor affecting life insurance portfolios only in relatively recent years. Stochastic
mortality models have been developed to explicitly allow for the uncertainty surrounding
future survival rates, see Barrieu et al. (2012) for an overview. The pioneering model
of Lee and Carter (1992) has been successfully applied to forecast mortality of different
populations and has been extended and improved in several ways, see e.g. Cairns et al.
(2008) and references therein. In our stylized framework we follow a slightly different
approach and introduce a stochastic force of mortality obtained by randomly rescaling
a deterministic intensity. This relatively simple formulation allows to clearly separate
process risk, represented by the randomness in the times of death of policyholders, from
the systematic risk captured by the random rescaling factor.

The remainder of this article is structured as follows. Section 2 sets up the contract
structure, the modelling of insurance and financial risk and the extension to a large port-
folio. Section 3 focuses on the market valuation of the outstanding liabilities, unbundling
them into different components. Section 4 shows how ruin-probability-based capital re-
quirements can be set under our framework. Section 5 is devoted to the numerical analysis
and addresses the issue of fair pricing. Section 6 provides some concluding remarks and
a short outlook on possible extensions. Proofs and technical results are collected in the
Appendices.

2. Model setup
At time t = 0 the life insurance company’s capital structure can be synthesized through

the following simplified balance sheet:

Assets Liabilities
W0 E0 = (1− α)W0

L0 = αW0

W0 W0

Hence, the initial assets W0 of the firm are financed by two groups of stakeholders.
A share α of the assets (with 0 < α < 1) is contributed by N0 policyholders that are
homogeneous, with the same age x at inception, and are entitled to the same benefits.
Therefore, each policyholder pays a single premium L0/N0 = αW0/N0, where L0 is the
overall premium contribution. The remaining fraction 1−α is provided by equityholders,
whose total contribution is (1 − α)W0 = E0. Clearly, initial assets W0 and premium
income L0 are related to the portfolio size N0.

Since we explicitly allow for insurance risk, the outstanding liability at any given
time will depend, among other factors, on the demographic evolution of the population
of policyholders. However, if all insurance risk can be diversified, for instance when the
portfolio is large and there is no systematic risk, then the pool of homogeneous contracts
could be treated as a purely financial contract with initial contribution L0. This point
will be picked up again later.
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a. Contract Structure

Through their initial investment in the company, policyholders alive at the maturity T
of the contract have a claim on the firm’s assets. Moreover, we assume that the insurance
company issues no further debt, raises no capital and pays no dividends to equityholders
before the contract’s maturity. Since profits distribution is a common feature of many
life insurance contracts, we consider the following version of a participating policy. As we
will see, this apparently simple specification encompasses different types of guarantees.

Denote by L and W = W0eR the total liability, repectively the assets value, at time T ,
where R is the assets log-return over the period [0, T ]. At maturity, the total outstanding
liability the insurance company has to meet depends on the number of alive policyholders
N :

L =

{
Ψ if N > 0

0 if N = 0
= Ψ1{N>0},

where 1E is the indicator of the event E . Then, in the very unlikely case in which no poli-
cyholder survives the maturity T , i.e. N = 0,2 the company has no liability outstanding.
Otherwise, if N > 0, the liability depends on the assets value W and the global payoff G
guaranteed to surviving policyholders, and is defined as in Briys and de Varenne (1994,
1997) by

Ψ =


W if W < G

G if G ≤ W ≤ G
α

G+ δ (αW −G) if G
α
< W

,

or, more compactly, by

Ψ = G+ δα

[
W − G

α

]+

− [G−W ]+. (1)

Note that the global payoff G guaranteed to surviving policyholders is stochastic since it
is proportional to N , that is

G = NB,

where the individual guaranteed benefit B may depend on other financial or demographic
factors and therefore may be random as well. By suitably specifying G (i.e. B) we will
obtain different types of provisions payable in case of survival.

In (1) three components can be identified: the stochastic guarantee G, the payoff of a
call option and that of a shorted put option. Both options are written on the assets of the
firm and have a stochastic exercise price depending on G. The call option corresponds to a
terminal bonus payment and is usually referred to as the bonus option. The participation

2The probability that a portfolio be completely extinct at maturity is negligible for usual ages and
maturities and reasonable portfolio sizes. For instance, with a survival probability of 95% (which may be
common for a 40-years old policyholder and a 20 years horizon), the probability of extinction is less than
10−6 for a group of 5 individuals. When the survival probability is only 50%, the extinction probability
is less than 10−6 for a group of 20 individuals.
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coefficient δ, with 0 ≤ δ ≤ 1, is the share of the surpluses the policyholders are entitled
to as bonus. The shorted put option results from the fact that equityholders have limited
liability and is usually known as the default option. Unlike the existing literature, this
payoff not only depends on the value of financial assets but also on the evolution of the
cohort of policyholders under scrutiny and possibly on the realization of demographic risk
factors that drive future survival probabilities. The assets W , if insufficient, i.e. W < G,
will be shared among surviving policyholders. If G ≤ W , each surviving policyholder will
be entitled to the guaranteed amount B and to an additional lump sum bonus if further
αW > G.

Note that the equityholders payoff at maturity is residually given by

W − L = W1{N=0} + [W −G]+1{N>0} − δα
[
W − G

α

]+

1{N>0}. (2)

In the present paper we discuss the following alternative specifications for the individual
guaranteed benefit B:

(a) B = b;

(b) B = ρ aT ;

(c) B = b+ [b ρg aT − b]+ = b max {1, ρg aT}.

Case (a) characterizes pure endowments, where the guarantee is fixed and the indi-
vidual benefit B is therefore deterministic. We could alternatively consider a stochastic
benefit depending on the assets values or some other market related variable.

In case (b) the contracts sold are deferred whole life annuities guaranteeing each sur-
vivor the continuous payment at rate ρ per year, starting at time T . The quantity aT is
the market value at time T of an immediate whole life annuity making continuous pay-
ments at unitary rate to a life then aged x+ T . If the market rate aT were deterministic,
from the valuation point of view the contract would be equivalent to that described in
case (a). However, the interesting case is when aT is stochastic as it depends on market
conditions prevailing at time T , see Appendix b where an expression for aT is worked out.
Note that B is then the amount the insurer would need at time T to purchase, on the
open market, an immediate annuity matching the future payments guaranteed to each
policyholder.

Case (c) describes pure endowments with attached a guaranteed annuity option. These
are contracts which provide policyholders with the right to convert, at maturity, a survival
benefit into an annuity at a fixed conversion rate ρg. Conditional on survival, the option
is exercised if the benefit b (specified as in case (a)) is less than the market value b ρg aT
of the guaranteed annuity. Indeed, in case the option is exercised, the policyholder will
receive an immediate whole life annuity making continuous payments at rate b ρg per year.
Alternatively, the individual benefit can be decomposed into a deferred whole life annuity,
as in case (b), making continuous payments at rate b ρg per year and, in addition, the
option to surrender the contract at time T . To see this, the individual benefit can be
rewritten as follows:

B = b ρg aT + [b− b ρg aT ]+ .
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If the surrender option is exercised, the policyholder receives a cash amount equal to b
(surrender value).

Although in cases (b) and (c) payments can occur after T , solvency and profit distri-
bution are only assessed at the maturity date by comparing the market values of assets
and liabilities, as in Briys and de Varenne (1994, 1997).

It is convenient, especially when analysing (infinitely) large portfolios, to consider
quantities at individual, rather than global, level. As policyholders are homogeneous in
terms of benefits, the individual liability at maturity T attributed to policyholder i is
defined by

`i =
L

N
1{τ i>T} =

Ψ

N
1{τ i>T} = ψ1{τ i>T}, i = 1, . . . , N0, (3)

where τ i denotes her residual lifetime.3 In particular, the liability attributed to each
policyholder surviving at time T is then, on the set {N > 0}, equal to

ψ = B + δα

[
w − B

α

]+

− [B − w]+ ,

with w = W
N
. The interpretation of the three liability components remains unchanged

upon considering as underlying of the options the individual share of the total assets, w,
pertaining to each surviving policyholder and, in the exercise price, the individual benefit
B instead of the global payoff G. Of course, adding up the individual liabilities recovers
the total liability: L =

∑N0

i=1 `
i.

b. Modelling Insurance Risk

We start this section by observing that the insurance risk affecting our portfolio of
homogeneous policyholders arises from the possibility of deviations between actual and
expected mortality (survival) rates. As it happens in the case of investment portfolios, this
risk can be split into two components. The first component is given by the hedgeable (also
called diversifiable, or unsystematic) risk, that can be diversified away through pooling,
as we will see in a moment. In other words, this risk component tends to disappear
for large enough portfolios. The second component is instead given by a systematic (or
unhedgeable) part, that hits all policies in the same direction. In our case, this second
component can be identified in the so called longevity risk, that is the risk of an overall
unanticipated decline in mortality rates, see Pitacco et al. (2009); Barrieu et al. (2012).
When it is present, even with a large portfolio there is a residual part of risk that cannot
be eliminated.

To model insurance risk, we consider the portfolio of N0 homogeneous policyholders,
each aged x at time 0, introduced in the previous section. The insurer chooses, for pricing
purposes, a risk neutral probability Q among the infinitely many equivalent martingale
measures existing in incomplete arbitrage-free markets. The probability Q then accounts
for both diversifiable and systematic risk inherent to this portfolio, and, in particular, can
depend on its size N0. Recall that τ i is the residual lifetime of the i-th policyholder in the

3Note that the indicator of the event {N > 0} can be omitted in presence of the indicator of the event
{τ i > T}.
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portfolio. The number of individuals alive in the group at time t is denoted by Nt and is
given by

Nt =

N0∑
i=1

1{τ i>t}. (4)

Therefore, with our previous notation, NT = N .

Assumption 1. Conditionally on a positive random variable ∆, the residual lifetimes
τ i, i = 1, . . . , N0, are independent, and

Q(τ 1 > t1, . . . , τ
N0 > tN0|∆) =

N0∏
i=1

Q(τ i > ti|∆) =

N0∏
i=1

e−∆
∫ ti
0 m(v)dv

for any ti ≥ 0, i = 1, . . . , N0, where m is a deterministic force of mortality.4

In other words, conditionally on ∆, the residual lifetimes τ i, i = 1, . . . , N0, are the
first jump times of independent inhomogeneous Poisson processes with common stochastic
intensity µt = ∆m(t), t > 0. This framework goes under the name of Cox (or doubly-
stochastic) model, see Biffis et al. (2010); Brémaud (1981). The positive random variable
∆ is a common factor affecting all lifetimes at once and can therefore be interpreted as
systematic risk. Its effect is to rescale by a random percentage the deterministic force of
mortality m relative to a life aged x at time 0.

Assumption 2. The random variable ∆ is part of the information available at the ma-
turity date T .5

While the random rescaling amount is unknown at the valuation date (time 0), it is
revealed to market participants at time T . In other words, information on demographic
risk accumulated by observing mortality experience in this and similar portfolios and/or
at national population level allows insurers to resolve the uncertainty related to the sys-
tematic risk relative to this specific cohort of individuals. This static and relatively simple
parametrization could be extended to a dynamic stochastic mortality model which is up-
dated as new information becomes available.

We remark that a similar multiplicative framework for the force of mortality is some-
times used, although in a different context, in frailty models in order to describe the
heterogeneity among individuals in a life insurance portfolio, see for instance Haberman
and Olivieri (2008). Our problem, instead, involves completely homogeneous individuals
whose lifetime is subject to two layers of uncertainty: a common one due to the random-
ness of the force of mortality and a specific one resulting from the policyholder’s own
Poisson process.

From Assumption 1, the t-years survival probability for each individual is

tpx = Q(τ i > t) = E
[
e−∆

∫ t
0 m(v)dv

]
4The function m is nonnegative, continuous, and satisfies

∫ +∞
0

m(u)du = +∞.
5Formally, the random variable ∆ is measurable with respect to the σ-algebra containing the infor-

mation available to market participants at time T .
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for t ≥ 0 and i = 1, . . . , N0. In the following we define, for y ≥ x and u ≥ 0,

up
∗
y = e−

∫ u+y−x
y−x m(v)dv

so that in particular, for 0 ≤ t ≤ s, we have s−tp
∗
x+t = e−

∫ s
t m(v)dv. The latter quantity

can be thought as the conditional survival probability of a fictitious lifetime τ ∗ of an
individual aged x at 0 having deterministic force of mortality m. More precisely, it is
the probability that such individual is still alive at time s conditional on survival at t.
When E[∆] < 1 we have E[µt] < m(t) and, by Jensen inequality, tpx > tp

∗
x. Further, each

lifetime τ i is greater than τ ∗ in the hazard rate order, see Denuit et al. (2006). This and
other properties are proved in Appendix a.

To shorten notation, in the following we let π = Tp
∗
x, so that, conditional on ∆, N ∼

Binomial(N0, π
∆), while the actual T -years survival probability is Q(τ i > T ) = E[π∆].

The following figures exemplify the versatility of the model in characterizing, despite
its simplicity, longevity risk. Figure 1 displays the survival probability tp40, as a func-
tion of t, for different choices of the moments of the distribution of ∆. In particular,
the following values of E[∆] are considered: E[∆] = 0.4, corresponding to an extreme
longevity improvement, E[∆] = 0.8, corresponding to a moderate longevity improvement,
and E[∆] = 1.2, which could be interpreted as a slight mortality worsening. The exact
details on the law of ∆ and the deterministic force of mortality m employed are provided
in Section 5. Note that an increase in var[∆] has the same effect (at least in the case
E[∆] < 1) as a decrease in E[∆], although survival probabilities are affected mostly at
old ages.
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Figure 1: Survival probability tp
∗
40 (continuous line) and tp40 (other lines). The baseline case includes

E[∆] = 0.8 and var[∆] = 0.1 .

Figure 2 displays the percentage change in the expected residual lifetime, E[τ i], of a
40-year policyholder with respect to the expectation of the fictitious lifetime τ ∗ (equal
to 41.73 under the same assumptions previously used to construct Figure 1). Note that
in the scenarios E[∆] = 0.8, 0.4, relative to longevity improvements, the expected life-
time increases by approximately 3 and 13 years respectively. In the worsening mortality

11



DEAMS Research Paper ?/2017

scenario, E[∆] = 1.2, the expected residual lifetime decreases by approximately 1 year.
Moreover, the effect of var[∆] on the expected residual lifetime is almost linear.
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Figure 2: Percentage change in E[τ i] with respect to E[τ∗] = 41.73 as E[∆] and var[∆] varies. The
baseline case includes E[∆] = 0.8 and var[∆] = 0.1 .

Finally, in Figure 3 we display the density of π∆ = exp(−∆
∫ 25

0
m(v)dv), that can be

interpreted as the 25 years stochastic survival probability for an individual aged 40 at
time 0. Although the dependence of this probability on the stochastic reduction factor ∆
is not linear, a change in E[∆] seems to correspond to a shift in the distribution of π∆,
except when E[∆] is small, in which case the distribution is compressed towards its upper
bound.
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Figure 3: Density of π∆ = exp(−∆
∫ 25

0
m(v)dv), the 25 years stochastic survival probability at age 40.

The vertical line represents the deterministic survival probability 25p
∗
40. The baseline case includes

E[∆] = 0.8 and var[∆] = 0.1 .
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c. Modelling Large Portfolios Risk

To represent a portfolio with a large number of homogeneous policyholders, we consider
the insurance risk model introduced in the previous section as the portfolio size diverges.
More precisely, we assume there are now infinitely many policyholders and, consistently
with the previous notation, we denote by τ i the residual lifetime of the ith policyholder.
The risk neutral measure Q now contains an adjustment for systematic risk only, as the
portfolio size is large and mortality risk has been diversified away.

For each finite sub-portfolio of size N0, we assume the same contract and capital
structure introduced in Section 2a. In particular, initial assets W0 and premium income
L0 depend on N0. It follows that all quantities derived from assets and premiums such as
individual and global liabilities, leverage ratio and assets value at time T depend on the
sub-portfolio size as well.

The definition of Nt = N is still given by (4) and provides the number of survivors at
time t among the sub-portfolio of policyholders with index i = 1, . . . , N0. For each N0 we
keep Assumptions 1-2 under Q, so that the infinitely many random times τ i, i = 1, 2, . . .,
are independent conditionally on ∆. It follows that

N

N0

→ π∆ as N0 → +∞

almost surely under Q, see Schervish (1995).6
Note that the pricing measure Q, deterministic force of mortality m and random

rescaling factor ∆ could differ from those introduced in Section 2b, relative to a finite
portfolio. However, in this section and whenever there is no risk of misunderstanding,
we stick to this notation. Instead, in Section 5, we will stress the dependence of these
quantities and of the corresponding symbols on the portfolio size.

With an infinite portfolio, it only makes sense to consider quantities at individual
level. The individual liability for the large portfolio can then be defined by taking the
limit in (3) as N0 → +∞. In order to do so, an assumption on how capital requirements
and premium ratings behave as the portfolio size grows is needed. Let then w0 = W0

N0
and

`0 = L0

N0
be the individual assets per contract, respectively individual single premium.

Assumption 3. As N0 → +∞,

w0 → w0(∞) positive and finite (5)
`0 → `0(∞) ≤ w0(∞). (6)

It is natural to expect that, in a finite portfolio, the initial assets per contract w0 de-
crease with N0, since they must cover not only the expected individual liability but also
its fluctuations. Then, Assumption 3 means that, once the portfolio is large enough for
pooling to be fully effective, the assets per contract and the individual single premium sta-
bilize around asymptotic values representing the individual assets and individual premium
required in a large portfolio.

6This result also holds under any probability measure equivalent to Q, in particular under the physical
measure.
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The inequality `0(∞) ≤ w0(∞) will be strict whenever, as in our case, there is sys-
tematic risk. The extra capital w0(∞)− `0(∞) provides then a buffer to cover the impact
of such risk.

Property (5) is satisfied if the initial assets W0 are set according to a capital require-
ment criterion guaranteeing a given ruin probability, see Section 4. Property (6) holds for
many premium calculation principles where the safety loading decreases with the portfo-
lio size. In particular, it is automatically satisfied if one sets premiums using a portfolio
based ruin criterion with a higher ruin probability than that used to compute the assets,
see Section 4. Of course, the case `0(∞) < w0(∞) might occur in a large portfolio without
systematic insurance risk because of systematic financial risk. It also follows from (5) and
(6) that α = L0

W0
→ α(∞) = `0(∞)

w0(∞)
≤ 1. The fraction α(∞) represents the leverage ratio

for an insurer supporting a large portfolio.
Under Assumption 3, the individual liability in the large portfolio case for the generic

policyholder i is given, on the set {τ i > T}, by

`i(∞) = lim
N0→+∞

`i

=B + δα(∞)

[
w0(∞)eR

π∆
− B

α(∞)

]+

−
[
B − w0(∞)eR

π∆

]+

, i = 1, 2, . . . .

(7)

We conclude this section by observing that, if no systematic insurance risk affects our
portfolio so that ∆ is certain, then, by the law of large numbers,

N

N0

→ Tpx as N0 → +∞

almost surely. As all the insurance risk has been diversified away, there is no reason
to allow for it when adjusting the physical measure in order to obtain the risk-neutral
measure. Therefore, in the absence of both systematic and diversifiable insurance risk,
these measures would coincide on events involving insurance risk only, while they may
differ on financial related events. Furthermore, if the individual benefit is deterministic,
as in case (a), our model could be framed within the original one by Briys and de Varenne
(1994, 1997).

d. Modelling Financial Risk

Since we are primarily concerned with demographic and asset risk, we disregard
stochasticity in interest rates and assume that the market short rate is a constant, de-
noted by r. Then, the financial uncertainty in our model is only due to assets randomness.
Beyond the natural requirement that financial and demographic related variables are in-
dependent, we do not make any specific assumption on the distribution of the assets value
of the firm W under the pricing measure Q.

Assumption 4. The assets value W is independent of ∆ and the residual lifetimes τ i, i =
1, . . . , N0.

In the large portfolio case, Assumption 4 holds for each sub-portfolio size N0.
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3. Valuation
a. Finite portfolio case

Since all policyholders are homogeneous both in terms of benefits and survival prob-
abilities, we consider now the individual liability of the generic policyholder and denote
by V `

0 its (initial) market value, given by:

V `
0 =E

[
e−rT `i

]
=E[e−rTB1{τ i>T}]

+ δαE

[
e−rT

[
w − B

α

]+

1{τ i>T}

]
− E

[
e−rT [B − w]+ 1{τ i>T}

]
=V g

0 + δαV b
0 − V d

0 , i = 1, . . . , N0.

(8)

The three components, V g
0 , V b

0 and V d
0 , correspond to the values of the guaranteed amount,

bonus option and default option, respectively. We derive the above expectations in Ap-
pendix c. The value of the total liability is

V L
0 = E

[
e−rTL

]
= E

[
e−rT

N0∑
i=1

`i

]
= N0V

`
0 ,

hence V `
0 =

V L0
N0

.
A manipulation of the formulae in (8), see Appendix c, shows that the values of the

liability components can be expressed in an alternative, yet meaningful, way:

V g
0 = E

[
e−

∫ T
0 r̂(v) dvB

]
,

V b
0 = E

[
e−

∫ T
0 r̂(v) dv

[
W

N (i)
− B

α

]+
]
,

V d
0 = E

[
e−

∫ T
0 r̂(v) dv

[
B − W

N (i)

]+
]
,

(9)

where r̂(v) = r+ ∆m(v) can be interpreted as the mortality adjusted discount rate while
N (i) = 1 +

∑
h6=i 1{τh>T} is the number of survivors at time T on the set {τ i > T}. Here

W
N(i) represents the fraction of assets pertaining to the i-th policyholder, assumed to be
alive at time T . The value of each liability component is obtained as an expectation,
under the risk-neutral measure Q, of its adjusted final payoff discounted at the rate r̂, see
also Biffis (2005); Biffis et al. (2010).

A contract is fair for the policyholders if the initial market value of the outstanding
liabilities equates their initial investment. Alternatively, the contract is fair whenever the
equity issuing price is equal to its market value. Fair contracts are then those for which

V L
0 = αW0 or, equivalently, V `

0 = αw0,
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i.e., using (8), V g
0 + δαV b

0 − V d
0 = αw0. Fairness can therefore be defined at global or

individual level.
It is particularly relevant to analyse the trade-off between contract parameters that

implicitly define a fair policy. These parameters include the participation coefficient
and, depending on the type of contract, the survival benefit, the annuity rate and the
guaranteed annuity rate. Note that we can explicitly display the participation coefficient
δ associated with a fair contract as

δ =
αw0 − V g

0 + V d
0

αV b
0

, (10)

while other fair parameters have to be searched for numerically. The fair participation
coefficient δ attains its maximum value Q(N > 0)−1 when the individual guaranteed
benefit B is 0, see Equation (16). Then, in principle, the participation coefficient given by
(10) could exceed 100%, in order to compensate for the low benefit and for the fact that,
in the unlikely event that no policyholder survives maturity, the whole assets are passed
to the equityholders, see (2). On the other hand, if the individual benefit is too high, the
default option may be insufficient to compensate the high value of the guarantee and the
right hand side of (10) could return a negative coefficient. However, we only consider fair
contracts for which the participation coefficient δ lies within the interval [0, 1].

b. Large Portfolio Case

Recalling from (7) the expression of the individual liability for the generic policyholder
in an infinite portfolio, its value is given by

V `
0 (∞) =E[e−rT `i(∞)]

=E[e−rTB1{τ i>T}]

+ δα(∞)E

[
e−rT

[
w0(∞)eR

π∆
− B

α(∞)

]+

1{τ i>T}

]

− E

[
e−rT

[
B − w0(∞)eR

π∆

]+

1{τ i>T}

]
=V g

0 (∞) + δα(∞)V b
0 (∞)− V d

0 (∞).

The three liability components are computed in Appendix d. Again, it is possible to
express them in an alternative way:

V g
0 (∞) = E

[
e−

∫ T
0 r̂(v) dvB

]
,

V b
0 (∞) = E

[
e−

∫ T
0 r̂(v) dv

[
w0(∞)eR

π∆
− B

α(∞)

]+
]
,

V d
0 (∞) = E

[
e−

∫ T
0 r̂(v) dv

[
B − w0(∞)eR

π∆

]+
]
.
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We remark that fairness of a contract in an infinitely large portfolio can only be defined
at individual level. Fair contracts are then those for which

V `
0 (∞) = α(∞)w0(∞).

The fair participation coefficient has a similar expression to that in (10), namely

δ(∞) =
α(∞)w0(∞)− V g

0 (∞) + V d
0 (∞)

α(∞)V b
0 (∞)

. (11)

Once again, δ(∞) reaches its maximum when B = 0. However, this maximum is now equal
to 1 as the extinction probability is 0. Then, if the guaranteed benefit is 0, policyholders
and equityholders have proportional claims on the firm’s assets according to their initial
contribution.

4. Ruin Probability Capital Requirements
In this section we show how capital requirements and premiums can be calculated,

under the physical measure, using a criterion based on the probability of ruin, and discuss
their behaviour as the portfolio size diverges. To this end, denote by Q̃ the physical
probability measure and recall that Q̃ and the pricing measure Q are equivalent. We
suppose that Assumptions 1, 2, 4 now hold under Q̃, with the deterministic force of
mortality m replaced by m̃. We have therefore assumed that the stochastic force of
mortality multiplicative structure is preserved under the change of measure, so that µ̃t =
∆m̃(t) for t > 0. Although, in principle, we may have allowed both the deterministic force
of mortality and the rescaling factor under Q to be different than those under Q̃, here, for
simplicity, we have maintained the same rescaling factor ∆ and modified the deterministic
force of mortality only. For a general discussion of change of measure and intensities in
Cox processes, see Brémaud (1981) and, in the context of stochastic mortality, see Biffis
et al. (2010).

Assume that the initial assets W0 are set according to the following ruin probability
criterion (see e.g. Pitacco et al. (2009)):

Q̃(W < G) = ε, (12)

where ε is the ruin probability, G = NB is the global benefit and W = W0eR, with R the
assets log-return over the period [0, T ]. Hence initial assets are set by forcing the default
event — the guaranteed global payoff cannot be covered by the final assets — to have a
given confidence level ε.

Denote now by F̃R and Ẽ the cumulative distribution function of R, respectively
the expectation operator, under Q̃, and assume that R has a continuous distribution
with support the real line. The ruin probability Equation (12) can be rewritten, upon
conditioning on ∆ and N , as

Ẽ

[
F̃R

(
log

NB

W0

)]
= ε. (13)
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It is immediate to check that for each 0 < ε < 1 there exists a unique positive solution
of (12), denoted W ε

0 . The following proposition establishes some properties of W ε
0 as a

function of the portfolio size N0.

Theorem 1. The solution W ε
0 of (12) satisfies the properties:

i. W ε
0 is an increasing function of N0, limN0→+∞W

ε
0 = +∞,

ii. limN0→+∞
W ε

0

N0
= w0(∞), with 0 < w0(∞) <∞.

The proof of Theorem 1 is reported in Appendix e1.
In the infinite portfolio case, the individual asset allocation can be computed by solving

with respect to w0(∞) the equation obtained by taking the limit in (13), namely

Ẽ

[
F̃R

(
log

π̃∆B

w0(∞)

)]
= ε, (14)

with π̃ = e−
∫ T
0 m̃(v)dv.

To fix the initial overall contribution L0 (or `0(∞)), one can choose a ruin probability
ε′ > ε and let L0 = W ε′

0 . Hence, the capital provided by equityholders allows to lower the
ruin probability from the level ε′ to ε.

Expressions for the expectations in (13) and (14) are provided in Appendix e2.

5. Numerical analysis
This section carries out a sensitivity analysis of the various contract components’

values as well as of the fair participation rates δ and δ(∞) computed according to (10)
and (11). The different contract features introduced in Section 2a are considered and
compared.

We begin our analysis with the large portfolio case. In particular, we are working under
the pricing measure Q ≡ Q(∞). We assume a deterministic Gompertz law of mortality
m ≡ m(∞),

m(t) = λcx+t, t ≥ 0,

from which
s−tp

∗
x+t = e−λc

x(cs−ct)/ log c, 0 ≤ t ≤ s.

We set
x = 40, λ = 2.6743 · 10−5, c = 1.098 .

The values of λ and c were obtained by fitting the survival probabilities tp
∗
40 to the

corresponding probabilities implied by the projected life table IPS55 in use in the Italian
annuity market. The random variable ∆ ≡ ∆(∞) is assumed to be Gamma distributed
with var[∆] = 0.1 while E[∆] will take one of the following values:

• E[∆] = 0.4 – extreme longevity improvement;

• E[∆] = 0.8 – moderate longevity improvement;
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• E[∆] = 1.2 – slight mortality worsening.

We assume that R, the assets log-return over the interval [0, T ], is normally distributed
with mean (r − σ2/2)T and standard deviation σ

√
T , so that σ is the assets volatility.

Unless otherwise mentioned, we fix the following parameter values, which we refer to as
baseline case, and, for ease of notation, we suppress all dependencies on ∞:

• maturity T = 25;

• initial individual assets per contract w0 = 100;

• initial contribution ratio α = 0.7;

• riskless rate r = 0.03;

• assets volatility σ = 0.15;

• in cases (a) and (c), individual survival benefit b = 150;

• in case (b), instantaneous annuity amount ρ = 10;

• in case (c), guaranteed conversion rate ag .
= 1/ρg = 15.

Tables 1-3 report the sensitivity of case (b) (deferred annuity) with respect to the
parameters ρ, r and σ. Tables 4-7 report sensitivities in cases (a) and (c) (pure endowment
and guaranteed annuity option) with respect to the parameters b, ag, r and σ.

In case (a), we only display the fair participation rate and the value of the guaranteed
individual benefit. Recall that the individual benefit in case (c) can be decomposed into
two parts: a pure endowment benefit as in case (a), and a guaranteed annuity option,
see Section 2a. This decomposition carries over to the values of such liabilities. We call
therefore V g1

0 the value of the pure endowment component and V g2
0 that of the guaranteed

annuity option.
Tables 1-3 show how the different contract components are affected by systematic

mortality changes. As mortality rates shift downward, both the value of the guaranteed
amount and the default option increase, while a reversed impact is observed on the value of
the bonus option. Indeed, under longevity improvement scenarios, the insurance company
is expected to pay a higher guaranteed amount because both survival probabilities and
the annuity value aT are higher. This in turn implies a lower bonus payment. Overall,
for the chosen parameters, the effect of a decrease in E[∆] on the value of the guaranteed
payment V g

0 dominates the other components appearing in (11), resulting in a lower
participation rate. Furthermore, the impact of such a change becomes much more evident
when combined with high annuity payments (see Table 1). When too generous annuity
rates are offered under moderate or extreme longevity scenarios, the insurance company
may be forced to provide less appealing participation rates, e.g. δ = 66.14% when E[∆] =
0.8 and ρ = 10. Note that participation coefficients in the range 80% − 100%, often
practised in the past,7 turn out to be only compatible with either very conservative annuity
rates or slight longevity improvements. Fair contracts may not even exist as, no matter

7See for instance Briys and de Varenne (1994, 1997).
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how low is the participation rate, the value of the liabilities cannot match the initial
policyholders’ contribution. The right hand side of Equation (11) produces then a negative
value, implying that policyholders should actually transfer part of their assets to the
equityholders to compensate for the increased risk. When this happens, the value of the
fair participation coefficient δ in the tables is not displayed.

E[∆] = 0.4 E[∆] = 0.8 E[∆] = 1.2
ρ δ% V g

0 V b
0 V d

0 δ% V g
0 V b

0 V d
0 δ% V g

0 V b
0 V d

0

5.0 90.28 43 48 3 95.69 33 57 1 97.65 28 63 1
7.5 69.16 65 33 11 85.11 50 42 5 91.33 42 49 3

10.0 32.76 87 23 22 66.14 67 31 11 79.64 56 38 7
12.5 — 108 17 36 37.33 84 24 20 61.63 70 30 13
15.0 — 130 12 52 — 100 18 30 36.41 84 24 20

Table 1: Case (b) for a large portfolio, different annuity rates ρ and values of E[∆].

Regardless of the mortality scenario, the higher the annuity payment ρ the lower the
fair participation coefficient δ, as the insurance company is forced to compensate for the
increasing cost of the deferred annuity V g

0 , which is proportional to ρ. The extent of this
variation prevails on the increased value of the default option V d

0 and the decreased bonus
option value V b

0 . For conservative annuity rates, the bonus portion αδV b
0 overweighs the

other components and constitutes the most sizeable part of the total liability αw0, espe-
cially when E[∆] is high. For instance, with ρ = 5, the bonus component is about 43% of
the total liability in the extreme longevity improvement scenario, about 54% in the mod-
erate longevity improvement scenario, and about 61% when no longevity improvements
are expected.

E[∆] = 0.4 E[∆] = 0.8 E[∆] = 1.2
r% δ% V g

0 V b
0 V d

0 δ% V g
0 V b

0 V d
0 δ% V g

0 V b
0 V d

0

1 — 196 6 108 — 140 10 59 — 113 15 39
2 — 129 13 52 8.17 97 19 28 45.47 79 25 17
3 32.76 87 23 22 66.14 67 31 11 79.64 56 38 7
4 76.54 59 36 8 87.93 47 45 4 92.75 40 51 2
5 92.21 40 50 3 95.96 33 57 1 97.60 28 62 1

Table 2: Case (b) for a large portfolio, different risk free rates r and values of E[∆].

When analysing the dependence on the market interest rate (see Table 2) similar pat-
terns arise, although the effect of r on the different contract components is reversed. The
value of the deferred annuity V g

0 and that of the default option V d
0 are depressed by an

increase in the risk free rate, while the bonus (call) option value V b
0 increases. Once again,

the effect of the guaranteed component outweighs the other components, resulting in more
attractive participation coefficients. On the other hand, under low interest rate regimes
comparable to those currently observed in many markets, the insurance company should
offer rather uncompetitive participation rates. Fairness may not even be achievable for
some combination of low market rates and longevity improvement scenarios. This high-
lights the danger arising from the combination of different risks affecting such contracts,
as witnessed by the extremely high value of the default option, that exceeds the total
liability value αw0 = 70 when E[∆] = 0.4 and r < 2%.
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E[∆] = 0.4, E[∆] = 0.8 E[∆] = 1.2
σ δ% V b

0 V d
0 δ% V b

0 V d
0 δ% V b

0 V d
0

0.100 — 14 14 53.37 22 5 78.76 30 2
0.125 9.36 18 18 60.23 27 8 78.58 34 5
0.150 32.76 23 22 66.14 31 11 79.64 38 7
0.175 48.01 28 26 71.08 36 15 81.21 42 10
0.200 58.61 33 30 75.19 40 18 82.93 46 12

Table 3: Case (b) for a large portfolio, different volatilities σ and values of E[∆]. The values of the
guaranteed amount are V g

0 = 87 for E[∆] = 0.4, V g
0 = 67 for E[∆] = 0.8, V g

0 = 56 for E[∆] = 1.2.

A change in the assets volatility only affects the option values V b
0 and V d

0 , both in-
creasing with σ (see Table 3). However, in most instances the prevailing effect is that on
the default option, resulting in richer fair participation coefficients. The opposite only oc-
curs when no longevity improvements are expected and the assets volatility is extremely
low. In this case, as the company starts to take some (financial) risk, the change in
the bonus component overshadows the increase in the default option, driving down the
value of the outstanding liability and hence, to preserve the fairness, the participation
coefficient must be (slightly) lowered. It should be noted that, under a slight mortality
worsening, the range of participation coefficients is in line with those offered by insurance
companies. When moderate to extreme longevity improvements are expected, the insurer
may be tempted to seek highly volatile investment opportunities in order to keep the
participation rate within reasonable bounds.
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The results reported in Tables 4-7 help understanding the difference between cases (a)
and (c). In general, the cost of adding a guaranteed annuity option to a pure endowment
contract translates into lower participation coefficients, and the spread δ(a)−δ(c) measures
the extra ‘premium’ required to purchase such option. The values of the different liability
components and the fair participation coefficients qualitatively share the same compar-
ative statics observed in case (b) with respect to the mortality scenario. In particular,
the guaranteed annuity option value V g2

0 is negligible unless some substantial longevity
improvements are foreseeable. Exceptions hold when exceedingly generous annuity con-
version rates are offered or, more notably, under low interest rate regimes. When the
guaranteed annuity option is valueless, there is practically no difference between cases (a)
and (c) and the gap between the corresponding fair participation coefficients vanishes.

E[∆] = 0.4 E[∆] = 0.8 E[∆] = 1.2

ag δ(c)% V g2
0 V b

0 V d
0 δ(c)% V g2

0 V b
0 V d

0 δ(c)% V g2
0 V b

0 V d
0

10.0 — 62 12 52 — 36 18 30 36.41 22 24 20
12.5 — 36 18 33 43.72 16 25 18 64.88 6 31 12
15.0 31.28 19 23 22 62.89 4 30 12 72.04 0 34 9
17.5 50.86 9 27 16 67.97 0 32 10 72.39 0 34 9
20.0 59.64 3 29 13 68.56 0 32 10 72.40 0 34 9

Table 5: Cases (a) and (c) for a large portfolio, different guaranteed conversion rates ag and values of
E[∆]. In case (c), δ(c), V g2

0 , V b
0 and V d

0 are respectively the fair participation rate and the values of the
guaranteed annuity option, bonus and default option. The fair participation rate in case (a) and the

value of the guaranteed survival benefit in cases (a) and (c) are δ(a) = 64.29 and V g1
0 = 68 for

E[∆] = 0.4; δ(a) = 68.59 and V g1
0 = 65 for E[∆] = 0.8; δ(a) = 72.40 and V g1

0 = 62 for E[∆] = 1.2.

We recall that the guarantee components V g1
0 and V g2

0 are proportional to the lump
sum b and decrease with E[∆] (see Table 4). As just pointed out, the guaranteed annuity
option only becomes sizeable when longevity improvements are important and, in this
case, the participation coefficient spread widens as the lump sum benefit grows. Unlike
case (a), fairness is not achievable in case (c) when a huge lump sum benefit is offered, as
the default option value cannot compensate the guaranteed annuity option cost. A similar,
more striking situation arises when too generous conversion conditions are used (low levels
of ag = 1/ρg, see Table 5). Clearly, the pure endowment component of the contract is
independent of the conversion rate. Again, combining too favourable contract conditions
with systematic longevity improvements leads to unsustainable financial environments. It
should be noted how the participation coefficient spread reacts to changes in the conversion
rate. As soon as the annuity conversion option becomes valuable, the premium required
to purchase such option takes off and reaches unbearable levels. When extreme longevity
improvements are in place, even offering very low conversion rates still incurs a cost. For
instance, when ρg = 1/ag = 5% the participation premium is δ(a) − δ(c) = 4.65%.
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The market interest rate affects directly annuity prices and therefore it is the most
important factor when discussing guaranteed annuity options. Table 6 is particularly
interesting as it helps to single out the scenarios under which the effect of interest rates
is most relevant. First, as for the deferred annuity, when the market interest rate is 1%
(or lower) and even if longevity improvements are not expected, fairness of the contract
cannot be achieved for both the pure endowment and the guaranteed annuity option no
matter how low is the share of profits which is released to policyholders. When longevity
improvements are in place and low to moderate interest rate regimes operate, then the
‘perfect storm’ scenario is created as fairness can only be obtained at a huge cost in
terms of lost share of profits passed back to policyholders. This is much more the case
when the conversion option is present; for instance, when E[∆] = 0.8 and r = 2% then
δ(a) − δ(c) = 30.65%, while an even higher participation spread holds when E[∆] = 0.4
and r = 3%. Both guarantee components strongly react to changes in r, and so do
the option components. When interest rates are higher, instead, the guaranteed annuity
option becomes valueless and the different contract components become insensitive to
further interest rate movements.

E[∆] = 0.4 E[∆] = 0.8 E[∆] = 1.2
σ δ(a)% δ(c)% V b

0 V d
0 δ(a)% δ(c)% V b

0 V d
0 δ(a)% δ(c)% V b

0 V d
0

0.100 49.43 — 13 14 58.63 46.37 21 6 66.21 65.51 25 4
0.125 57.57 6.80 18 18 63.72 55.55 25 9 69.02 68.53 29 6
0.150 64.29 31.28 23 22 68.59 62.89 30 12 72.40 72.04 34 9
0.175 69.75 47.07 28 26 72.87 68.74 35 16 75.67 75.41 38 12
0.200 74.21 57.98 32 30 76.53 73.46 39 19 78.65 78.45 42 15

Table 7: Cases (a) and (c) for a large portfolio, different volatilities σ and values of E[∆]. δ(a) and δ(c)
are the fair participation rates for cases (a) and (c). V b

0 and V d
0 are the values of the bonus and default

option in case (c). The values of the guaranteed survival benefit in cases (a) and (c) and of the
guaranteed annuity option in case (c) are V g1

0 = 68 and V g2
0 = 19 for E[∆] = 0.4; V g1

0 = 65 and V g2
0 =

4 for E[∆] = 0.8; V g1
0 = 62 and V g2

0 = 0 for E[∆] = 1.2.

Both option components of the liability V b
0 and V d

0 increase when the assets volatility
does, while the guarantee components V g1

0 and V g2
0 are unaffected by such a change. As

in (b), the major effect in both cases (a) and (c) comes from the default option. Overall,
the fair participation coefficient increases with the assets volatility, at least for the set
of parameters considered here. The guaranteed annuity option is negligible when no
longevity improvements are expected. This is reflected in the participation spread being
very small and insensitive to volatility changes. As soon as the mortality level shifts
downward, then the relative cost of the conversion option becomes important, especially
when volatility is low, as the weight of the default option increases. This is dramatically
exemplified when E[∆] = 0.4: for a pure endowment, low potential asset returns and
high lump sum benefits still result in reasonable participation coefficients. If instead the
guaranteed annuity option is added to the contract, the corresponding cost in terms of
missed participation to profits can be substantial. When σ = 0.125 it is δ(a)−δ(c) = 50.77%
and even if the volatility increases to σ = 0.2 the spread is still huge at δ(a)−δ(c) = 16.23%.
When the assets volatility is too low, σ = 0.1, the bonus option cannot compensate the
default option, preventing the contract from attaining fairness.
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Figure 4 displays the sensitivity of the fair participation rate δ with respect to the
initial contribution ratio α for the three contracts. We recall that case (c) differs from (a)
due to the presence of the guaranteed annuity option, while (c) differs from (b) due to the
surrender option. Then the spreads δ(a) − δ(c) and δ(b) − δ(c) give the extra cost, in terms
of missed return of profits, required to add the corresponding option to the contract.
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Figure 4: Fair participation coefficient δ in cases (a), (b) and (c) for different values of α and E[∆].

In all cases (a)-(c), the participation rate increases with the leverage ratio. This is
intuitive, as the single premium contributed by policyholders is proportional to the lever-
age ratio α and therefore fairness is re-established by returning them a larger proportion
of profits. Equityholders, on the other hand, not only are entitled to a full participation
on their quota 1−α of the assets, but also to an extra participation, at rate 1− δ, of the
quota of assets α held by policyholders; hence, the higher the leverage ratio, the smaller is
the extra surplus participation rate yield by them. In the limiting case of α = 1 (a mutual
company) then δ = 1 as policyholders are entitled to share all profits after benefits have
been paid, and the bonus and default option perfectly offset each other.

In the extreme longevity improvement scenario there is practically no difference be-
tween cases (b) and (c), as keeping the guaranteed annuity provides a higher value com-
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pared to swapping for a lump sum payment. The surrender option is therefore negligible.
On the other hand, the possibility of converting a lump sum into an annuity at a guar-
anteed rate is greatly valuable. This situation is completely reversed when mortality is
expected to worsen slightly, and cases (a) and (c) practically coincide, so that the guaran-
teed annuity option is almost valueless, as previously pointed out. The surrender option
instead is valuable as at maturity, if the mortality level has not improved, or even wors-
ened, it may be convenient to give up the annuity and obtain a cash payment. When
E[∆] ≤ 0.8, the participation premium δ(a) − δ(c) dominates the corresponding premium
δ(b)− δ(c) for any given level of α, while the situation is reversed when E[∆] = 1.2. There
are no fair contracts for low levels of α, meaning that, as the guaranteed benefit is fixed,
there is no way to compensate the low policyholders’ contribution by reducing their share
of profits. When α increases, the implied cost of the annuity conversion and surrender
options decrease as a greater part of the benefits comes from participation to profits.

We move now to the case of finite portfolios. As the qualitative behaviour of the
liability components with respect to contractual and market parameters follows the same
pattern observed for large portfolios, we limit ourselves to report the fair participation
coefficient for different portfolio sizes and longevity scenarios in the baseline case (unless
otherwise mentioned).

In Table 8, fair participation coefficients are calculated assuming that the pricing
measure Q and the leverage ratio α are independent of N0, that is Q ≡ Q(N0) = Q(∞).

E[∆] = 0.4 E[∆] = 0.8 E[∆] = 1.2
N0 δ(a)% δ(b)% δ(c)% δ(a)% δ(b)% δ(c)% δ(a)% δ(b)% δ(c)%

1 75.20 44.04 42.68 91.91 89.58 86.92 — — —
2 65.49 35.21 33.86 71.18 68.82 65.87 76.81 83.27 76.49
5 64.56 33.56 32.13 69.00 66.58 63.46 72.84 79.77 72.50

10 64.43 33.16 31.70 68.80 66.37 63.18 72.63 79.71 72.28
100 64.30 32.80 31.32 68.61 66.17 62.92 72.42 79.65 72.07
∞ 64.29 32.76 31.28 68.59 66.14 62.89 72.40 79.64 72.04

Table 8: Cases (a), (b) and (c) for a finite portfolio, different portfolio sizes and values of E[∆]. δ(a),
δ(b) and δ(c) are the fair participation rates for cases (a), (b) and (c).

We notice that diversifiable risk can be eliminated even by pooling relatively small
groups of policyholders, as large portfolios’ fair participation rates are achieved very soon.
Although the portfolio sizes considered here may appear, at first sight, much lower than
actual book dimensions, they are in line with the sizes of completely homogeneous sub-
portfolios. The fair participation coefficients decrease with N0 for all types of benefits,
with sizeable change when passing from N0 = 1 to N0 = 2. In fact, if all policyholders die
before maturity, the assets are entirely transferred to equityholders, see Equation (2). In
a small portfolio, the likelihood of such event is not completely negligible and, to achieve
fairness, equityholders must agree to release a larger share of profits to policyholders.
In particular, in the limiting case of a single policyholder’s pool and slight mortality
worsening, fairness cannot be achieved as, no matter how high the participation rate is,
the initial contribution exceeds the market value of liabilities. The right hand side of
(10) then produces a value greater than 100%. As the portfolio size grows, the extinction
probability decreases and, therefore, fairness can be obtained through lower participation
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rates.
For the next example, we choose, as before, a pricing measure Q independent of the

portfolio size N0, but we set the initial individual assets w0 and liabilities `0 according
to the ruin probability criterion described in Section 4. To this end we assume that
the deterministic mortality intensity m̃ driving survival probabilities under the physical
measure Q̃ is such that m = γm̃, with γ = 0.9. The risk neutral force of mortality
m is then obtained through a proportional reduction of m̃. Moreover, the systematic
risk factor ∆ has a Gamma distribution with variance ṽar[∆] = 0.1 and expectation
Ẽ[∆] = 1. Therefore, Ẽ[µ̃t] = m̃(t) and m̃ can be seen as a best estimate force of
mortality. The instantaneous assets return is normally distributed with mean 5%, and
standard deviation 15%. Finally, to compute the initial assets per contract we fix a ruin
probability, over the T = 25 years horizon, of 12.5% and, for the initial premium, of 25%.
Roughly, if solvency were monitored on an yearly basis, these figures would correspond to
an annual ruin probability of 0.53% for the assets and 1.14% for the initial contribution.
In Table 9 we display the initial assets w0, contributions `0, leverage ratios α = `0/w0 and
fair participation coefficients δ for different portfolio sizes N0. The latter are computed
assuming for the rescaling factor ∆, under the pricing measure Q, a Gamma distribution
with mean E[∆] = 0.8 and variance var[∆] = 0.1 and same assets volatility as under the
physical measure Q̃.

Case (a) Case (b) Case (c)
N0 w0 `0 α% δ% w0 `0 α% δ% w0 `0 α% δ%

1 127 88 68.74 — 123 84 68.53 — 130 89 68.70 —
2 123 84 68.72 82.54 118 81 68.45 78.17 125 86 68.66 80.25
5 120 83 69.38 80.81 116 80 69.05 76.27 123 85 69.30 78.43

10 120 83 69.66 80.91 115 80 69.31 76.33 122 85 69.58 78.52
100 119 83 69.92 81.04 115 80 69.55 76.44 122 85 69.83 78.65
∞ 119 83 69.95 81.05 115 80 69.58 76.45 122 85 69.86 78.66

Table 9: Cases (a), (b) and (c) for different portfolio sizes, individual assets w0 and liabilities `0
computed using a ruin probability criterion, leverage ratio α = `0/w0 and fair participation rate δ.

As expected, both initial assets and contributions decrease with portfolio size, reflect-
ing the diversification benefit. The corresponding leverage ratio appears to be remarkably
stable, even for small portfolios. Adjusting capital and premiums to the size of the pool
implies smoother fair participation rates as compared to those in Table 8. Again, in the
limiting case of a single policyholder’s pool, fair contracts cannot be achieved even under
a moderate longevity improvement scenario.

Finally, as a last example, we fix assets and liabilities as in the baseline case, but
adjust the pricing measure Q(N0) to reflect the portfolio size. To keep things simple,
we assume that under Q(N0) the stochastic force of mortality is µ(N0)

t = m(t)∆(N0), so
that we keep the same deterministic intensity as in the large portfolio case and adjust
the systematic rescaling factor ∆(N0). More precisely, under Q(N0), we take for ∆(N0) a
Gamma distribution with the same variance as in the baseline case and expectation tied
to the portfolio size according to the following specification:

E(N0)[∆(N0)] = E(∞)[∆(∞)]φ(N0),
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where φ(N0) = N0

N0+1
. This formulation allows for an adjustment of the systematic risk

factor that vanishes as the portfolio size increases. The correction with respect to Q(∞)

is stronger for small portfolios, where diversifiable longevity risk weighs more. In the
limiting case of a single policyholder, the effect of the adjustment is to halve the (expected)
stochastic mortality, resulting in an extremely prudential liabilities assessment. Then, as
N0 (and E(N0)[∆(N0)]) increases, there are, in all cases (a)-(c), two opposite effects on the
fair participation rate. On one hand, as the portfolio size grows the participation rate is
pushed down, as it happens in Table 8 when we move downward along a given column.
On the other hand, the increase in E(N0)[∆(N0)] has a positive effect on δ, as it happens
in Table 8 when we move rightward along a given row.

N0 φ(N0)% δ(a)% δ(b)% δ(c)%
1 50 75.20 44.04 42.68
2 67 67.40 50.89 49.32
5 83 67.59 59.30 57.08

10 91 68.05 62.64 60.00
100 99 68.53 65.79 62.60
∞ 100 68.59 66.14 62.89

Table 10: Fair participation rates δ for cases (a), (b) and (c) with different portfolio sizes and
size-adjusted risk neutral measures, E(∞)[∆(∞)] = 0.8.

In particular, the single policyholder portfolio case in Table 10 corresponds to the
leftmost columns, top row, of Table 8. Conversely, the large portfolio case corresponds
to the central columns, bottom row, of Table 8. Looking at cases (b) and (c) in Table
10, as the portfolio size grows the adjustment to the survival rates prevails over the
decrease in the extinction probability, resulting in higher fair participation coefficients.
The opposite pattern occurs in case (a) for N0 ≤ 2, while, for larger pools, the gain in
probability extinction exhausts its effects and the fair participation rate remains stable.
This different behaviour of cases (b) and (c) with respect to case (a) is due to the fact that
individual benefits of the annuity-type highly depend on the mortality assumption, unlike
pure endowment-type benefits. This is apparent from Table 8 when comparing the results
in cases E[∆] = 0.4 and E[∆] = 0.8. The percentage increase in the fair participation
coefficients in (b) and (c) is substantial and remarkably stable for any portfolio size. In
case (a) the corresponding increase is moderate and comparatively low for N0 > 2.

6. Concluding remarks
This paper aims at shedding some light on the interplay between two key risk factors

affecting most life insurance products, namely biometric and investment risk. We enhance
the pioneering model by Briys and de Varenne (1994, 1997), featuring a stylized partici-
pating life insurance company by explicitly tying benefits to the survivorship of a cohort
of policyholders. In particular, we allow for the two main components of biometric risk,
that is systematic (longevity) risk and diversifiable (process) risk. The former stems from
the uncertainty surrounding future survival rates affecting all policyholders at once, the
latter is due to the specific mortality risk associated with each policyholder and can be
eliminated after pooling together portfolios of homogeneous contracts.
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A first result of our analysis is that systematic risk overshadows process risk even for
small portfolios. This fact is not surprising since longevity risk has been recognized as one
of the most challenging factors affecting the life insurance business. During the last few
decades, demographers and actuaries have made a great effort in trying to develop sound
stochastic mortality models that capture trend and variability of survival rates over time.
Our base mortality model could then be enhanced by employing a more realistic, dynamic
approach. However, we feel that the qualitative nature of our findings will be preserved.

One of the main consequences of the credit crunch crisis has been the transition to
a long-lasting phase of extremely low interest rate regimes in many developed countries.
This has put some severe strain on life insurers’ balance sheets by sensibly inflating the
market value of liabilities (see Berdin and Gründl (2015)), even though interest rates
are expected to rise again in the near future. We have decided, mostly to preserve the
simplicity of the model, to consider constant non-random interest rates. Nonetheless,
our results are quite worrying as they show that, under low interest rate levels, yet not
even close to those currently experienced, the cost of guarantees offered may be hardly
sustainable. A further dimension could then be added by allowing for fluctuations in
interest rates through one of the many stochastic term structure models available.

Finally, to keep the transparency of our model to a reasonable level, we have focused
on a static, one period approach involving a closed cohort of policyholders and a terminal
bonus rate which is decided at the onset. Clearly, a deeper analysis would result from
considering the life insurance company as a going concern, including features such as
writing new business, setting reversionary bonuses, checking dynamically solvency and
updating pricing rules and capital requirements. However, all these aspects could be
introduced at the cost of missing some clarity in the results and are left for future research.

7. Appendix
a. Properties of τi and Nt.

1) Law of τi.

The survival probability of a policyholder is given by

tpx = Q(τ i > t) = E
[
e−∆

∫ t
0 m(v)dv

]
= L∆ (log tp

∗
x) ,

where L∆ is the moment-generating function of ∆, i.e. L∆(y) = E[e∆y].

2) Ordering between τi and τ ∗

Proposition 1. If E[∆] ≤ 1 then τi is greater than τ ∗ in the hazard rate order.

Proof. We need to show that the ratio tpx/tp
∗
x is nondecreasing with t. For t < s, we have

spx

sp∗x
− tpx

tp∗x
=M(sp

∗
x)−M(tp

∗
x) ≥ 0,

since the function M(z) = L∆(log z)/z, 0 < z ≤ 1, is nonincreasing when E[∆] ≤ 1 as
can be seen by inspecting its derivative:

z2M′(z) = E[z∆(∆− 1)] = Cov
(
z∆,∆

)
+ E[z∆]E[∆− 1] ≤ 0.
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3) Law of Nt.

The number of survivors has a conditionally binomial distribution: for s > t ≥ 0,
conditionally on ∆ and Nt, we have

Ns ∼ Binomial
(
Nt, e

−∆
∫ s
t m(v)dv

)
.

Consequently, the unconditional law of N = NT is a mixture of binomial distributions.
Denoting by F∆ the cumulative distribution function of ∆, we have, for j = 0, 1, . . . , N0,

Q(N = j) = E
[
bin
(
j;N0, π

∆
)]

=

∫ ∞
0

bin
(
j;N0, π

l
)
F∆(dl),

where bin(j;M, p) =
(
M
j

)
pj(1−p)M−j is the mass function of a Binomial random variable

with parameters M ≥ 1 and 0 < p < 1.

b. Market value of the unitary annuity

Under Assumptions 1 and 2, the market value of the unitary annuity aT is

aT = E

[∫ ∞
T

e−r(s−T )1{τ i>s}ds
∣∣∣τ i > T, ∆

]
=

∫ ∞
T

e−r(s−T )Q
(
τ i > s

∣∣∣τ i > T, ∆
)

ds

=

∫ ∞
T

e−r(s−T )e−∆
∫ s
T m(v)dvds

= a(∆),

where the function a is given by:

a(l) =

∫ ∞
T

e−r(s−T )
(
s−Tp

∗
x+T

)l
ds.

Note that a(l) is the value of a continuous annuity with force of mortality l m.

c. Valuation Formulae in the Finite Portfolio Case

We denote by C(A, r, T,K) and P (A, r, T,K) the values at time 0 of a European call,
respectively put, option written on the assets of the firm, when time to maturity is T ,
initial assets value is A, (fixed) interest rate is r and strike is K.

Note that the individual benefit B is a function of ∆, say B = β(∆), where

β(l) =


b in case (a)
ρ a(l) in case (b)
bmax{1, ρga(l)} in case (c)

.
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1) Market value of the guaranteed amount.

Conditioning on ∆, it follows that

V g
0 = E[e−rTB1{τ i>T}]

= e−rTE
[
Bπ∆

]
= e−rT

∫ ∞
0

β(l)πlF∆(dl).

(15)

2) Market value of the bonus option.

Recalling that N (i) = 1 +
∑

h6=i 1{τh>T} is independent of τ i conditionally on ∆ and
that W is independent of all biometric related factors, we have

V b
0 = E

[
e−rT

[
w − B

α

]+

1{τ i>T}

]

= E

[
π∆E

[
e−rT

[
W

N (i)
− B

α

]+ ∣∣∆]] .
By further conditioning on N (i) the inner expectation and exploiting again Assumption
4,

V b
0 = E

[
π∆E

[
C

(
W0

N (i)
, r, T,

B

α

)
|∆
]]

=

∫ ∞
0

πl
N0∑
j=1

C

(
W0

j
, r, T,

β(l)

α

)
bin
(
j − 1;N0 − 1, πl

)
F∆(dl).

=
1

N0

∫ ∞
0

N0∑
j=1

C

(
W0, r, T,

jβ(l)

α

)
bin
(
j;N0, π

l
)
F∆(dl),

(16)

where the last equation is obtained after multiplying and dividing by j
N0

.
Note that Equation (16) immediately highlights the valuation formula for the aggregate

bonus option N0V
b

0 .

3) Market value of the default option.

Manipulations similar to those in Appendix c2 can be used to obtain the following
expression for the default option value:

V d
0 = E

[
e−rT [B − w]+ 1{τ i>T}

]
=

1

N0

∫ ∞
0

N0∑
j=1

P (W0, r, T, jβ(l)) bin
(
j;N0, π

l
)
F∆(dl).

d. Valuation Formulae in the Large Portfolio Case

Recall that now F∆ and E refer to the cumulative distribution function, respectively
expectation operator, under the probability Q = Q∞.
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1) Market value of the guaranteed amount

This is formally the same expression as in the case of a finite portfolio, Equation (15):

V g
0 (∞) =E[e−rTB1{τ i>T}]

=e−rT
∫ ∞

0

β(l)πlF∆(dl).

2) Market value of the bonus option.

Conditioning on ∆ and exploiting the independence between financial and demo-
graphic factors, we obtain

V b
0 (∞) = E

[
e−rT

[
w0(∞)eR

π∆
− B

α(∞)

]+

1{τ i>T}

]

= E

[
C

(
w0(∞)

π∆
, r, T,

B

α(∞)

)
π∆

]
=

∫ ∞
0

C

(
w0(∞), r, T,

β(l)πl

α(∞)

)
F∆(dl).

3) Market value of the default option.

Similarly as in Appendix d2, we have:

V d
0 (∞) = E

[
e−rT

[
B − w0(∞)eR

π∆

]+

1{τ i>T}

]

=

∫ ∞
0

P
(
w0(∞), r, T, β(l)πl

)
F∆(dl).

e. Results relative to Section 4

1) Proof of Theorem 1

i. Write N (N0) to stress the dependence of N = NT on N0. Note that N (N0+1) ≥ N (N0)

almost surely and Q̃
(
N (N0+1) > N (N0)

)
> 0. It follows that W ε

0 increases with N0.
If the limit of W ε

0 as N0 → +∞ were finite, then, as N (N0) → +∞ a.s., we would
have

Ẽ

[
F̃R

(
log

NB

W0

)]
→ 1,

contradicting (13).

ii. Recall first that N (N0)/N0 → π̃∆ > 0 and note that B > 0. If W ε
0/N0 → w0(∞)

then the expectation in (13) converges to

Ẽ

[
F̃R

(
log

π̃∆B

w0(∞)

)]
.

33



DEAMS Research Paper ?/2017

As this limit is also equal to ε ∈ (0, 1), it follows that 0 < w0(∞) < +∞.

Denote explicitly W ε
0(N0) the solution of (13) with respect to N0. To prove that

the limit of W ε
0(N0)/N0 exists, suppose there are two subsequences (N ′0) and (N ′′0 )

such that
W ε

0(N ′0)

N ′0
→ w′0(∞),

W ε
0(N ′′0 )

N ′′0
→ w′′0(∞)

with 0 < w′0(∞) < w′′0(∞) < ∞. Taking the limit in the expectation (13) under
the two subsequences leads to two different limits while (13) states that both limits
should coincide with ε.

2) Calculation of W ε
0 .

For a finite portfolio, the expectation in (13) can be computed by

Ẽ

[
F̃R

(
log

NB

W0

)]
=

∫ ∞
0

N0∑
j=0

F̃R

(
log

jβ(l)

W0

)
bin(j;N0, π̃

l)F̃∆(dl).

In the infinite portfolio case, the expectation in (14) can be calculated by

Ẽ

[
F̃R

(
log

π̃∆B

w0(∞)

)]
=

∫ ∞
0

F̃R

(
log

π̃lβ(l)

w0(∞)

)
F̃∆(dl).
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