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Abstract

A novel model-based dynamic distributed state estimator is proposed using sensor networks. The estimator consists of a
filtering step – which uses a weighted combination of sensors information – and a model-based predictor of the system’s
state. The filtering weights and the model-based prediction parameters jointly minimize both the bias and the variance of the
prediction error in a Pareto framework at each time-step. The simultaneous distributed design of the filtering weights and of
the model-based prediction parameters is considered, differently from what is normally done in the literature. It is assumed
that the weights of the filtering step are in general unequal for the different state components, unlike existing consensus-
based approaches. The state, the measurements, and the noise components are allowed to be individually correlated, but no
probability distribution knowledge is assumed for the noise variables. Each sensor can measure only a subset of the state
variables. The convergence properties of the mean and of the variance of the prediction error are demonstrated, and they hold
both for the global and the local estimation errors at any network node. Simulation results illustrate the performance of the
proposed method, obtaining better results than the state of the art distributed estimation approaches.
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1 Introduction

One of the fundamental applications of sensor networks
is to estimate and track the state of targets or processes
that are evolving in the sensing field. Useful in many
monitoring scenarios, such as for example, target track-
ing and environment and agriculture monitoring, in
sensor networks the estimations have to be distributed
at each sensor node. In this paper, 1 we address the
problem of distributed state estimation and prediction
over sensor networks in a multi-objective optimization

1 See [6–8] for some preliminary results: in [6] signal esti-
mation is considered, while in [8] the state is assumed to be
completely measured by each node.
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framework.
Given their importance, distributed estimators have
been the subject of many investigations in the area of
networked control (see, as example, [17,19,13]) and dis-
tributed fault diagnosis [18,5], among others. Generally,
in these papers it is assumed that distributed estima-
tion works according to the following procedure [19,16]:
each node in the network locally estimates the state
of a common dynamic system; then, it communicates
measurements and estimates only to neighboring nodes,
and filters the measurements by taking a linear combi-
nation of its own and neighboring’s measurements and
predictions; finally, each node uses the current filtered
measurements to implement a model-based predictor,
smoothing the previous prediction error. However, there
are several aspects in this general procedure that have
not yet been fully considered.
1) The first important aspect pertains the number of
accessible states. Due to geographic nodes distribu-
tions, technological constraints, etc., it can happen
that, although the overall network observes the entire
state, each node measures only a subset of the vari-
ables forming the overall state. We refer to this case as
partially-measurable state. Most of the existing results
have been obtained under the assumption of complete
measurement information, thereby bringing much con-
servatism in applications (see [16] for a survey about
distributed filtering over sensor networks). However, if
the state components are correlated, then a node could
still in principle perform an accurate estimation of the
state components it has not directly access to. How to
perform estimation and prediction of the overall state
at each node, despite partial measurement and incom-
plete information, has been investigated only recently
(see [34,21,38,36] as examples).
2) A second important aspect, is the presence of bias
in the measurements, which is often not considered in
existing approaches. Due to measurement errors, model
uncertainties, and message losses, the estimates are in
practice affected by bias. The bias leads to unknown
statistical distribution of the estimation error. If the
bias of the estimators is not considered, it may grow
unbounded. Nevertheless, the performance criterion of
the estimators in the literature is essentially based only
on the variance of the estimation error (see [33,10,24,37]
as examples), which leads to poor performance of the
distributed estimation process when biases are present.
Therefore, when designing distributed estimators, we
face at least two indicators of the quality of the estima-
tors: the mean of the estimation error (bias) and the
variance. To the best of our knowledge, in this paper we
present the first approach in which these two indicators
are simultaneously taken into account. Specifically, we
simultaneously minimize both the mean (the bias) and
the variance of the global prediction error by posing a
multi-objective Pareto optimization problem that can
be solved in a distributed way by each sensor without a
centralized coordination.
3) A third important aspect is related to the fact that

in the literature the filtering phase and the prediction
phase are designed independently, e.g., [11,1,34] for the
sake of tractability and ease of implementation. This
separation may lead to suboptimal solutions. Instead,
in the paper the filtering weights and model-based pre-
diction parameters are allowed to be time-varying and
are jointly optimized by each sensor at each step, thus
paving the way to improved prediction schemes com-
pared to the state of the art.
4) A fourth important aspect is the instantaneous per-
formance compared to the asymptotic one. Although
distributed estimators may asymptotically perform
well, in the transient bias and variance of the esti-
mation error may take on unacceptably large values.
In the proposed approach – even if we show that the
asymptotic convergence is achieved like in well-known
Kalman-based approaches (see [28])–the bias and the
variance of the prediction error are jointly optimized at
each time-step thus showing good instantaneous per-
formance. Convex sufficient conditions to guarantee
asymptotic convergence of the estimation error mean
are derived. Furthermore, the proposed approach only
assumes the knowledge of the mean and variance of the
process and measurement noises without need of any
further assumption on their probability distributions.

To sum up, the proposed distributed estimation tech-
nique is characterized by the following notable features:

(1) only a subset of the state variables are measured at
each node;

(2) the mean and the variance of the estimation error
are jointly minimized via Pareto optimization;

(3) the filtering and the prediction steps are jointly de-
signed;

(4) optimized performance at each estimation step,
and asymptotic convergence of the estimation error
mean;

(5) knowledge of mean and variance of process and
measurement noises only is required.

In the following, we further elaborate on the original con-
tributions brought about by these characteristics with
respect to the literature.

1.1 State of the art

Distributed Kalman Filtering is an active area of re-
search, see, e.g., [16] and [23], where a survey about
distributed filtering methods over sensor networks and
distributed Kalman filtering methods are presented,
respectively. Unlike Kalman filtering approaches (such
as [28]), in our study no Gaussian assumptions on the
probability distribution of the measurement and mod-
eling noises are made. Instead, we assume knowledge
of the mean and covariance matrix of the noise compo-
nents, without these being necessarily Gaussian. When
the estimation problem we are considering is solved by
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a centralized approach, the Kalman filter is optimal
under Gaussian assumption on the noises, and repre-
sents the best linear filter also when disturbances are
non-Gaussian [14]. However, the scenario we are facing
is more challenging because we consider a distributed
case, where the prediction is computed locally without
the coordination of a central agent, differently from [15].

Besides distributed Kalman filtering, roughly two dif-
ferent approaches have been proposed to the problem of
distributed state estimation and prediction. First, the
approaches based on diffusion strategies, such as the
ones proposed in [33,12], where the diffusion of the local
estimations across neighbors is applied after incremental
update. These are in contrast with the second approach:
consensus strategies, used, e.g., in [32], where consensus
is applied to obtain average observations or estimations
at each filtering step. Finally, Kalman-Consensus filter-
ing approaches have been designed (see [28] as example)
with the objectives of estimating the state of the system
and reaching a consensus with neighboring estimator
agents on the estimate.

In this paper, we consider a multi-objective optimiza-
tion case and we simultaneously take into account both
the mean and the variance of the prediction error. This
is in contrast to [11,33,10,24,37], where only minimum
variance solution is studied, and from [34], where the
consensus parameters minimize the steady-state mean-
square prediction error. In [26,35,29] distributed ob-
servers are designed for the case where the state is only
partially observable by each sensor, but the estima-
tion weights are designed to guarantee convergence and
state ominiscience properties, not optimizing bias and
error variance features. In [21], the considered problem
for distributed estimation is similar, dealing with the
design of the consensus parameters and local innovation
gains to optimize a different performance criterion. Dif-
ferently from the proposed method, in [21] a special case
is considered allowing to reformulate the problem so to
obtain a scalar gain estimator and a single-objective
optimization problem with a single scalar constant de-
cision variable is then analyzed. On the other hand,
in this paper we consider at each time-step a multi-
objective optimization, where the decision variables are
time-varying matrices.
Compared to [1,28,11], we do not assume that the distri-
bution of the disturbance is known. We only assume to
know the mean and variance of such disturbance, differ-
ently from [3], where it is necessary to know the PDFs
of measurement noises and modeling uncertainties.
Finally, an important aspect of our study is that we con-
sider the multi-dimensional state estimation (unlike [11]
that is for the scalar case), by taking into account cor-
relations between the different components of the state
and of the noises, which is a major analysis challenge.

The rest of the paper is organized as follows. In Section
2, we introduce the problem formulation. We describe

the distributed dynamic estimation method in Section 3.
We derive some convergence conditions in Subsection 3.3
and we then formulate in Section 4 the multi-objective
optimization problem to select the filtering-coefficients
and the prediction parameters. The optimal solution is
derived in Section 4.2. Finally, simulation results and
concluding remarks are provided in Sections 6 and 7.

Notation. Given a stochastic variable x, we represent
as Ex its expected value. By 1s and Is we denote the
vector (1, . . . , 1)> and the identity matrix with appro-
priate size s, respectively. Given a matrix M , we denote
diag(M) the vector collecting the diagonal elements
of M . Finally, ⊗ denotes the Kronecker product and
the operator ◦ represents the component-by-component
product.

2 Problem formulation

We aim at computing the one-step ahead prediction x̂(t+
1) of the state of a linear stochastic system described as

x(t+ 1) = Ax(t) + w(t), (1)

where t is the discrete time, x ∈ Rm denotes the state
vector and w ∈ Rm is modelled as w(t) = w̄(t) + w̃(t),
with w̄(t) denoting a known time-varying bias possibly
including some known non-linearities, while w̃(t) models
uncertainties and process noises.

Assumption 1 We assume that w̃(t) is a zero-mean
process with covariance matrix Σw(t). /

The state prediction x̂(t+1) is computed in a distributed
way by a sensor network, made of n nodes, that monitors
system (1) by taking measurements at each time-instant
t. More specifically, each sensor knows the model (1) of
the monitored system and may measure directly some,
possibly not all, state components, so that, for each sen-
sor node i, with i = 1, . . . , n, we have

yi(t) = Cix(t) + vi(t), (2)

where yi ∈ Rpi , with pi ≤ m, denotes the measure-
ments vector taken by sensor i, vi ∈ Rpi is a zero-mean
measurement noise, with Σvi as covariance matrix, and
Ci ∈ Rpi×m is the output matrix, each row having a sin-
gle element equal to 1 in correspondence with the mea-
sured state component, and 0 otherwise. Since each sen-
sor may measure directly one or more components of the
state vector, the matrixCi is defined so thatCi1m = 1pi .

Assumption 2 The measurement noise vi and process
disturbances w are not correlated, for each i = 1, . . . , n./

Each node of the network exchanges measurements and
predictions only with neighboring nodes. The associated

3



communication network is modeled as a directed graph
G = (V, E), where V is the set of the nodes and E is the
set of the edges connecting communicating nodes. We
denoteNi = {j ∈ V : (j, i) ∈ E}∪{i} the set of neighbors
of node i ∈ V plus the node itself.

Considering the entire sensor network, the global mea-
surement output equation becomes

y(t) = Cx(t) + v(t),

with y, v ∈ RpE , C ∈ RpE×m, pE =
∑
j∈1,...,n pj , where

vectors and matrices collect all the local vectors yj and
vj and matrices Cj , j = 1, . . . , n, of the sensor network.
The following assumption is needed

Assumption 3 The graph G is partitioned in strongly
connected subnetworks of sensors G̃ ⊆ G, characterized
by the output equation ỹ(t) = C̃x(t) + ṽ(t), where ỹ, ṽ ∈
Rp̃, C̃ ∈ Rp̃×m, p̃ =

∑
j∈G̃ pj, collect in a column all

the local vectors yj and vj and matrices Cj, respectively,

for j ∈ G̃. For each strongly connected subnetwork G̃, we
assume that C̃ satisfies the following conditions: C̃1m =
1p̃ and C̃>1p̃ ≥ 1m. /

The meaning of Assumption 3 is: each row of C̃ has one
entry equal to 1 all the other entries being set to ”0”,
i.e. each measurement refers to a state component, and
each state component is directly measured by at least
one node in each strongly connected subnetwork.

Assumption 3 is a sufficient condition for global observ-
ability from each strongly connected subnetwork of sen-
sors G̃ ⊂ G, i.e. it implies that each pair A, C̃ is com-
pletely observable. Note that this is less restrictive than
requiring local observability from each sensor; in fact, in
general the pairs (A,Ci) may be not observable for all i.
This assumption allows to write a simple expression for
the filtering estimation error (6) and to analytically for-
mulate and solve the optimization Problem in Section 4.

3 Distributed state dynamic estimation

In the proposed state estimator, each node i of the sen-
sor network implements a two steps dynamic estimator:
a filtering-merging step and a prediction step.
First, by communicating with neighboring nodes, the es-
timator at the i-th node filters the measurement noise in
a consensus-like fashion by computing a linear combina-
tion of its own and neighboring available measurements
and predictions:

x̄i(t) =
∑
j∈Ni

ki,j(t)x̂j(t) +
∑
j∈Ni

hi,j(t)C
>
j yj(t), (3)

where ki,j(t) and hi,j(t) ∈ Rm×m are time-varying filter
weights diagonal matrices that we intend to design. The
termC>j guarantees that the available measurements are
used for each node. By communicating with neighbors,
each node shares its available information and spreads it
through the network. The objective of this first step is for
each node to reduce its own measurement uncertainty,
without the use of centralized coordination. Sensors are
allowed to communicate only once per time-step.

After the filtering-merging step, each node implements
a model-based one-step-ahead prediction, using filtered
measurements (obtained from the first step):

x̂i(t+ 1) = Ax̄i(t) + w̄(t) + λ′i(t)(x̂i(t)− x̄i(t)), (4)

where λ′i(t) ∈ Rm×m is a matrix collecting time-varying
filter parameters that will be designed later on in the
paper. The term λ′i(t)(x̂i(t) − x̄i(t)) represents a local
correction of the previous prediction error, taking into
account the system dynamics. The estimates are initial-
ized with x̄i(0) = C>i yi(0) and x̂i(0) = x̄i(0).

To facilitate the analysis, a compact vector form is intro-
duced considering all the nodes in the sensor network:

x̄(t) = K(t)x̂(t) +H(t)C>E y(t)

x̂(t+ 1) = AE x̄(t) + w̄E(t) + λ′(t)(x̂(t)− x̄(t)),
(5)

where x̄, x̂ ∈ Rmn×1 and y ∈ RpE×1 are column vectors
collecting the local vectors x̄i, x̂i and yi, respectively,
with i = 1, . . . , n; AE is a diagonal block matrix, with
each block on the diagonal equal to A, and w̄E is a
column vector of appropriate dimension, where the pro-
cess disturbance vector w̄ is repeated n times. K(t) and
H(t) are block matrices, where each (i, j)-th block, with
i = 1, . . . , n and j = 1, . . . , n, is a diagonal matrix. The
(i, j)-th block is a null matrix if i and j are not neighbor-
ing nodes, whereas it collects the coefficients with which
the i-th nodes weights measurements or estimates com-
ponents developed by the j-th node, if they are neigh-
bors. CE and λ′ are block matrices having the matrices
Ci, λ

′
i respectively, on the diagonal, with i = 1, . . . , n.

As already mentioned, the main goal of the paper is
to devise a local design principle of the time-varying
weights H(t), K(t) and λ′(t) in order to minimize bias
and variance of the global prediction error at each time-
instant t. In particular, we aim at establishing whether
the filtering weights H(t) and K(t) can be designed
separately with respect to the prediction weight λ′(t).
We address this issue in the following subsections.

3.1 Estimation error

Let us introduce the filtering error ē(t) = x̄(t) − xE(t)

and the prediction error Ê(t) = x̂(t) − xE(t), with xE
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being a column vector of appropriate length, where the
process state vector x is repeated n times. The following
condition is introduced for ease of computation:

Condition 3.1 (K(t) +H(t)C>ECE)1mn = 1mn. /

Thanks to Assumption 3, Condition 3.1 is not restrictive
since C>ECE is a diagonal matrix with ones and zeros
on the diagonal. The filtering estimation error can be
computed as

ē(t) = K(t)Ê(t) +H(t)C>E v(t), (6)

where we use Condition 3.1 so that H(t)C>ECExE(t) +
K(t)xE(t) = xE(t). For the sake of simplicity, we express
the prediction parameter as λ′(t) = AEλ(t), with λ(t)
being a diagonal matrix. Consequently,

Ê(t+ 1) =AE [(I − λ(t))K(t) + λ(t)] Ê(t)

+AE(I − λ(t))H(t)C>E v(t)− w̃E(t).
(7)

Let us compute mean and variance of the global estima-
tion and prediction errors at time t. The expected values
are

Eē(t) = K(t)EÊ(t), (8)

EÊ(t+ 1) = AE [(I − λ(t))K(t) + λ(t)]EÊ(t). (9)

The covariance matrices can be computed, with respect
to the stochastic variable ē(t) at time t, as

E
[
(ē(t)− Eē(t))(ē(t)− Eē(t))>

]
=K(t)ΓÊ(t)K(t)> +H(t)C>EΣv(t)CEH(t)>,

(10)

where ΓÊ(t) = E
[
(Ê(t)− EÊ(t))(Ê(t)− EÊ(t))>

]
and Σv(t) = E

[
(v(t)− Ev(t))(v(t)− Ev(t))>

]
, not-

ing that the covariance between the two vectors of
stochastic variables Ê(t) and v(t) computed at time t

is Cov(Ê(t), v(t)) = 0, since Ê(t) depends on the state
x(t) (not depending on v(t)) and the prediction x̂(t)
which is a deterministic quantity at time t, being com-
puted at time t − 1 based on the measurements and
estimates available at time t− 1. We can thus compute
the covariance matrix ΓÊ(t+ 1) as

E
[
(Ê(t+ 1)− EÊ(t+ 1))(Ê(t+ 1)− EÊ(t+ 1))>

]
=

= W1(t)ΓÊ(t)W1(t)> +W2(t)Σv(t)W2(t)> + ΣwE (t),
(11)

with W1(t) = AE [(I − λ(t))K(t) + λ(t)],

W2(t) = AE(I − λ(t))H(t)C>E ,

ΣwE (t) = E
[
(wE(t)− EwE(t))(wE(t)− EwE(t))>

]
,

being Cov(Ê(t), v(t)) = 0, Cov(Ê(t), w̃E(t)) = 0 and
Cov(v(t), w̃E(t)) = 0, owing to Assumption 2.

3.2 Local estimation and prediction errors

In this section, we show that the global estimation and
prediction errors can be computed in a distributed way.
In the following we derive the local expressions for the
estimation and prediction errors, which are needed to
design the optimal estimator in a distributed way. Each
node computes locally a filtered estimation and a model-
based prediction as follows:

x̄i(t) = κi(t)x̂
reg
i (t) + ηi(t)C

>
iEy

reg
i (t)

x̂i(t+ 1) = Ax̄i(t) + w̄(t) +Aλi(t)(x̂i(t)− x̄i(t)),
(12)

where x̂regi and yregi are two column vectors collecting the
prediction and the measurements vectors respectively
available at node i, ordered according to their indexes.
Moreover, κi(t) and ηi(t) are the time-varying block ma-
trices corresponding to the non–zero matrices related to
the i-th node of matrices K(t) and H(t) respectively;
λi(t) is a diagonal matrix collecting the local compo-
nents of matrix λ(t). CiE is a block matrix having on
the diagonal the matrices Cj , with j ∈ Ni.
Let us now define the local filtering error ēi(t) = x̄i(t)−
x(t) and the local prediction error Êi(t) = x̂i(t)− x(t).
They can be computed similarly as their global form as

ēi(t) = κi(t)ε̂i(t) + ηi(t)C
>
iEvεi(t), (13)

Êi(t+ 1) =A(I − λi(t))κi(t)ε̂i(t) +Aλi(t)Êi(t)

+A(I − λi(t))ηi(t)C>iEvεi(t)− w̃(t),
(14)

where ε̂i and vεi collect the prediction error and the
measurement noise vectors, respectively, related to the
measurements available at node i, both ordered following
their indexes. Now, the expressions of the bias and the
variance for the local estimation and prediction errors
can be computed: Eēi(t) = κi(t)Eε̂i(t) and

EÊi(t+ 1) = A[(I − λi(t))κi(t) + λ0i (t)]Eε̂i(t), (15)

being λ0i (t) a m × mNi block matrix having the sub-
matrix λi(t) in the block position corresponding to the
i-th index in the neighboring set Ni, and all the other
blocks components equal to 0. A cumbersome algebra
gives the expression of the variance as

E[(Êi(t+ 1)− EÊi(t+ 1))(Êi(t+ 1)− EÊi(t+ 1))>]

=W1i(t)Γε̂i(t)W1i(t)
> +W2i(t)Σvε̂iW2i(t)

> + Σw(t),

(16)
where

W1i(t) = A[(I − λi(t))κi(t) + λ0i (t)], (17)

W2i(t) = A(I − λi(t))ηi(t)C>iE , (18)

Γε̂i(t) = E[(ε̂i(t)− Eε̂i(t))(ε̂i(t)− Eε̂i(t))>] (19)
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and Σvε̂i is the measurement noise covariance matrix,
including correlations between neighboring sensors.

3.3 Stability of the estimation error

In this subsection, we show that the mean of the global
prediction error given by (9) converges to zero under
some local sufficient conditions on the time-varying es-
timation weights κi, ηi and λi

2 .

Proposition 1 Consider the global prediction error
mean given by (9). The following local conditions are
sufficient to guarantee its asymptotic stability. For each
l-th row of each i-th block row of the global matrices K,
H and λ, with i = 1, . . . , n and l = 1, . . . ,m:

n∑
j=1

∣∣kli,j∣∣ < 1

‖A‖∞
AND (20)

- if 1/‖A‖∞ > 1,

− 1
‖A‖∞

+
∑n
j=1

∣∣kli,j∣∣
1 +

∑n
j=1

∣∣kli,j∣∣ < λli <

1
‖A‖∞

+
∑n
j=1

∣∣kli,j∣∣
1 +

∑n
j=1

∣∣kli,j∣∣ ;

(21)
- if 1/‖A‖∞ = 1,

− 1
‖A‖∞

+
∑n
j=1

∣∣kli,j∣∣
1 +

∑n
j=1

∣∣kli,j∣∣ ≤ λli < 1; (22)

- if 1/‖A‖∞ < 1,

− 1
‖A‖∞

+
∑n
j=1

∣∣kli,j∣∣
1 +

∑n
j=1

∣∣kli,j∣∣ < λli < 1−
1− 1

‖A‖∞
1−

∑n
j=1

∣∣kli,j∣∣ .
(23)

Proof: Eq. (9) represents the dynamics of a linear
time-varying system. Asymptotic stability is ensured [4]
if there exists a finite k > 0 such that∥∥∥∥∥

k∏
t=1

AE [(I − λ(t))K(t) + λ(t)]

∥∥∥∥∥
∞

< 1. (24)

This is implied by the satisfaction, at each t, of the con-
dition ‖AE [(I − λ(t))K(t) + λ(t)]‖∞ < 1. Recall that
λ(t) and I − λ(t) are two diagonals matrices; by defi-
nition K(t) is a block matrix, where each block is a di-
agonal matrix; therefore also (I − λ(t))K(t) + λ(t) is a
block matrix with all diagonal blocks. Using the submul-
tiplicative property of the norm, the convergence condi-
tion is satisfied if, for each l-th row of each i-th block

2 For the sake of notation simplicity, we omit the dependence
on t of the matrices.

row of matrix (I − λ(t))K(t) + λ(t), with i = 1, . . . , n
and l = 1, . . . ,m, we have

∣∣1− λli∣∣ n∑
j=1

∣∣kli,j∣∣+
∣∣λli∣∣ < 1

‖A‖∞
, (25)

since ‖AE‖∞ = ‖A‖∞. The analysis of (25) in all possi-
ble different scenarios concerning the value of λli imme-
diately leads to prove the statement of the proposition.

�

Note that different less conservative convergence condi-
tions may be derived, but the sufficient conditions pro-
posed in Prop. 1 have the notable advantage that they
can be computed in a distributed way, using only lo-
cal information available at each time t and so they can
be used for the on-line computation of the time-varying
prediction weights.

4 Filtering weights and prediction parameters
optimization

The goal of the proposed distributed method is to pre-
dict the state minimizing the bias and variance of the
global prediction error at each time-instant. To do that,
we propose that each sensor at each step computes the
local optimal time-varying weights by solving a multi
objective optimization problem, where the first objec-
tive is the squared bias, given in (15), and the second
objective is the variance of the estimation error given in
(16). Since these two objectives are convex 3 in the deci-
sion variables (namely the filtering coefficients and the
prediction parameter), then we can consider the trace of
the multi-objective optimization problem [9] and pose
the following Pareto optimization problem:

min
κi,ηi,λi

tr [ρiB
2
i + (1− ρi)Vi] (26a)

s.t. (κi(t) + ηi(t)C
>
iECiE)1mi = 1m, (26b)

Eq.(20) ∧ ((21) ∨ (22) ∨ (23)), (26c)

where mi = mNi, 0 ≤ ρi ≤ 1 is the Pareto parameter,
Bi = EÊi(t+1) is the prediction error bias given in (15),

Vi = E[(Êi(t+1)−EÊi(t+1))(Êi(t+1)−EÊi(t+1))>]
is the variance of the prediction error given in (16). The
first constraint is the local condition 3.1; the other con-
straints are the convergence conditions derived in Sec-
tion 3.3, depending on matrix A norm.

Since the mean and the variance of the local prediction
error can be computed in a distributed way as shown in

3 The objective functions in (26) and (30) are convex be-
cause they are sum of quadratic terms and matrices Mi, M

loc
i

and Si are positive definite. Convexity of quadratic functions
is discussed in [9].
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Section 3.2, then the minimization of mean and variance
of the local prediction error implies the minimization of
mean and variance of the global prediction error, noting
that the trace of the global objective function is equiv-
alent to the sum of the local objective functions. Note
that (21), (22), (23) are non convex expressions which
complicate the derivation of the solution for what con-
cerns the use of necessary optimality conditions. We now
analyze problem (26) to obtain a convex approximation
problem that can be solved in an optimal way.

4.1 Constraints approximation

We start by analyzing the convergence condition (20).
Since the absolute value would make the problem more
difficult to solve, we substitute (20) with the following
more restrictive conditions:

κ>i (t)1m ≥ 0mi

κi(t)1mi <
1

‖A‖∞
1m.

(27)

Moreover, as regards the expressions (21), (22), (23), we
note that if (20) holds, then

− 1
‖A‖∞

+
∑n
j=1

∣∣kli,j∣∣
1 +

∑n
j=1

∣∣kli,j∣∣ < 0;

if, in addition, 1/‖A‖∞ > 1, then

1
‖A‖∞

+
∑n
j=1

∣∣kli,j∣∣
1 +

∑n
j=1

∣∣kli,j∣∣ > 1

while if 1/‖A‖∞ < 1, then

0 < 1−
1− 1

‖A‖∞
1−

∑n
j=1

∣∣kli,j∣∣ < 1.

We use the above relations to approximate the sufficient
convergence conditions for the definition of convex con-
straints. Using the element-wise inequality, we obtain
the following conditions, implying Eqs. (21), (22), (23):
- if 1/‖A‖∞ > 1,

0 ≤ λi ≤ I, (28)

- if 1/‖A‖∞ ≤ 1,
0 ≤ λi < I. (29)

We then formulate a convex approximation of (26):

min
κi(t),ηi(t),λi(t)

tr [A(I − λi(t))κi(t)Mi(t, ρi)κi(t)
>·

(I − λi(t))>A> +Aλi(t)Mi(t, ρi)
locλi(t)

>A>

+A(I−λi(t))ηi(t)C>iESi(t, ρi)CiEηi(t)>(I−λi(t))>A>

+ (1− ρi)Σw(t)] (30a)

s. t. (κi(t) + ηi(t)C
>
iECiE)1mi = 1m, (30b)

κ>i (t)1m ≥ 0mi (30c)

κi(t)1mi <
1

‖A‖∞
1m (30d)

λi(t)1m + ϕ1m ≤ 1m, (30e)

λi(t)1m ≥ 0m, (30f)

where we have rewritten the objective function of (26)
by using the derived expressions (15) and (16) for the
bias and the variance of the prediction error and the
definitions ofW1i andW2i given in (17) and (18), and by
substituting the following expressions (that are data of
the problem or can be computed on-line using samples)
in order to highlight the dependencies on the decision
variables κi(t), ηi(t) and λi(t):

Mi(t, ρi) = ρiEε̂i(t)Eε̂>i (t) + (1− ρi)Γε̂i(t),

Mi(t, ρi)
loc = ρiEÊi(t)EÊ>i (t) + (1− ρi)ΓÊi(t),
Si(t, ρi) = (1− ρi)Σvε̂i (t).

Moreover, ϕ is a small positive constant, where the last
two constraints are equivalent to Eq. (28), if ϕ = 0,
or (29) if ϕ 6= 0, depending on matrix A norm. It is
important to note that problem (26) and problem (30)
share the same cost function and the first constraint,
but problem (30) is constrained by more conservative
conditions, which are anyway sufficient conditions for
the convergence of the local prediction error mean. This
gives an optimization problem which is tractable. In fact,
problem (30) is convex since the objective function has a
quadratic form andMi,M

loc
i and Si are positive definite

matrices, and the constraints are convex. Coherently, we
can use Lagrangian duality to solve problem (30).

Let introduce the dual variables ξi1, ξi2, ξi4 and νi, which
are m × 1 vectors, and the mi × 1 vector ξi3. Then we
have the following result:

Lemma 1 Consider optimization problem (30). Let ε1
be a positive constant. Then, the optimal values of the
primal (κi(t), ηi(t) and λi(t)) and dual (ξi1, ξi2, ξi3, ξi4
and νi) variables satisfy the following conditions:

(κi(t) + ηi(t)C
>
iECiE)1mi − 1m = 0m, (31)
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λi(t)1m + ϕ1m − 1m ≤ 0m, (32)

−λi(t)1m ≤ 0m, (33)

ξ>i1(t)(λi(t)1m + ϕ1m − 1m) = 0 ξi1(t) ≥ 0, (34)

ξ>i2(t)(−λi(t)1m) = 0 ξi2(t) ≥ 0, (35)

−κi(t)1m ≤ 0m, (36)

κi(t)1mi −
1

‖A‖∞
1m + ε1 ≤ 0m, (37)

ξ>i3(t)(−κi(t)1m) = 0 ξi3(t) ≥ 0, (38)

ξ>i4(t)(κi(t)1mi−
1

‖A‖∞
1m+ε1) = 0 ξi4(t) ≥ 0, (39)

2[Mi(t, ρi)κi(t)
>(I − λi(t))>A>A(I − λi(t))] ◦ (1⊗ I)

+ [1miν
>
i ] ◦ (1⊗ I) + [1miξ

>
i4] ◦ (1⊗ I)

− [ξi3(t)1>m] ◦ (1⊗ I) = 0,
(40)

2[C>iESi(t, ρi)CiEηi(t)
>(I − λi(t))>A>A(I − λi(t))]

◦ (1⊗ I) + [C>iECiE1miν
>
i ] ◦ (1⊗ I) = 0,

(41)
2[[κi(t)Mi(t, ρi)κi(t)

> + ηi(t)C
>
iESi(t, ρi)CiEηi(t)

>

+Mi(t, ρi)
loc]λi(t)A

>A

− [κi(t)Mi(t, ρi)κi(t)
> + ηi(t)C

>
iESi(t, ρi)CiEηi(t)

>]A>A]

◦ I + [1mξ
>
i1(t)] ◦ I − [1mξ

>
i2(t)] ◦ I = 0,

(42)

Proof: Problem (30) is convex. Therefore the
Karush Kuhn Tucker conditions are both necessary and
sufficient for optimality. In Eqs. (31)–(33) we derive
the canonical form of the constraints. Since κi(t), ηi(t)
and λi(t) are composed by diagonal blocks, the Eqs.
(40)–(42) are obtained by using matrix derivatives for
diagonal and symmetric matrices [30,25]: given block-
diagonal matrix κ, positive semidefinite matrix M and
matrix A,

d tr(AκMκTAT )

d κ
= 2(MκTATA) ◦ (1⊗ I). (43)

This concludes the proof. �

4.2 The optimal weights for the approximated problem

We analyze the KKT conditions to derive the optimal
values for the decision variables κi(t), ηi(t) and λi(t).
We need the following preliminary result:

Lemma 2 Consider square matrices M , A and X with
dimension n×n, whereA is symmetric andX is diagonal.
Then, diag(MXA) = (M ◦A)diag(X).

Proof: Omitted due to space constraints. �

We use this lemma in the following proposition to solve
Eqs. (40) - (42). We define the mi × 1 vector κveci (t) =

κ>i (t)1m, collecting all the decisional variables of the di-
agonals of κi(t) on a column vector. Similarly, we de-
fine ηveci (t) = η>i (t)1m, λveci (t) = λ>i (t)1m and νEi (t) =
[1miν

>
i ] ◦ (1 ⊗ I)1m, collecting Ni times the vector νi.

We provide the optimal solution for problem (30).

Proposition 2 The optimal solution for problem (30),
for each node i at each time step, is given by ξi1 = ξi2 =
ξi3 = ξi4 = 0,

κveci (t, ρi) =−
(
2Mi(t, ρi) ◦ (1Ni1

T
Ni ⊗Di)

)−1
νEi (t, ρi) ,

(44a)

ηveci (t, ρi) =−
(
2C>iESi(t, ρi)CiE ◦ (1Ni1

T
Ni ⊗Di)

)−1
C>iE

(44b)

CiEν
E
i (t, ρi) ,

νi(t, ρi) =− 2(Im×mi((Mi(t, ρi) ◦Di)
−1

+ C>iECiE
(44c)(

C>iESi(t, ρi)CiE ◦Di

)−1
C>iECiE)ITm×mi)

−11m ,

λveci (t, ρi) =(2(M loc
i (t, ρi) + κiMi(t, ρi)κ

>
i (t, ρi)

(44d)

+ ηi(t, ρi)C
>
iESiCiEη

>
i (t, ρi)) ◦ (ATA))−1

(diag(2(κi(t, ρi)Miκ
>
i (t, ρi)

+ ηi(t, ρi)C
>
iESi(t, ρi)CiEη

>
i (t, ρi))A

TA)) ,

with Di(t, ρi) := (I − λi(t, ρi))
TATA(I − λi(t, ρi)), if

κi(t, ρi) and λi(t, ρi) so computed in addition satisfy
(32), (33), (36), (37).

Proof: In the following we omit the dependence on
time and on the ρi Pareto parameter. We observe that
Eq. (42) is equivalent to

diag
(
2(M loc

i + κiMiκ
T
i + ηiC

>
iESiCiEη

T
i )λiA

TA
)

= diag
(
2(κiMiκ

T
i + ηiC

>
iESiCiEη

T
i )ATA

)
+ξi2−ξi1 .

(45)

By using the result from Lemma 2, we have

λveci =
(
2(M loc

i + κiMiκ
T
i + ηiC

>
iESiCiEη

T
i ) ◦ (ATA)

)−1(
diag

(
2(κiMiκ

T
i + ηiC

>
iESiCiEη

T
i )ATA

)
+ ξi2 − ξi1

)
.

(46)

Let us now analyze KKT conditions in Eqs. (40) and
(41). We find a solution with ξi3 = 0 and ξi4 = 0. Let
note that Eq. (40) holds if and only if it holds

2(Miκ
T
i (I − λi)TATA(I − λi)) ◦ (1⊗ I)1m

= −1miνTi ◦ (1⊗ I)1m = −νEi (47)

Let denote κi = [κi1 , · · · , κiNi ], where κij is the (j)-th
m×m diagonal block of κi, with j = 1, . . . , Ni. Similarly
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we consider Mipq , which is the m × m block of matrix
Mi. Then, we use the block operations and we achieve

2(
∑Ni
k=1Mi1kκikDi) ◦ I 1m = −νi

...

2(
∑Ni
k=1MiNik

κikDi) ◦ I 1m = −νi

,

withDi := (I−λi)TATA(I−λi). Thus by using block by
block the result in Lemma 2: and remembering that by
definition κveci is the vector that collects all the elements
from κi, we obtain

κveci = −
(
2Mi ◦ (1Ni1

T
Ni ⊗Di)

)−1
νEi ,

and similarly

ηveci = −
(
2C>iESiCiE ◦ (1Ni1

T
Ni ⊗Di)

)−1
C>iECiEν

E
i ,

as in the statement of the proposition. According to the
first KKT condition, we have

(κi+ηiC
>
iECiE)1mi = 1TNi⊗I(κveci +C>iECiEη

vec
i ) = 1m ,

(48)
which implies that

νi = −2(Im×mi((Mi ◦Di)
−1

+C>iECiE
(
C>iESiCiE ◦Di

)−1
C>iECiE)ITm×mi)

−11m ,

where Im×mi denotes 1TNi ⊗ Im, and Di = 1Ni1
T
Ni
⊗Di.

Thus we have obtained the optimal value of the dual
variable νi and, by substituting the result in Eq. (44a)
and (44b), we obtain the optimal values of κi and ηi
depending on λi. This is an optimal solution for the
Pareto optimization problem (30), if, once computed the
solutions on-line, in addition they satisfy the constraints
(32), (33), (36) and (37), which concludes the proof. �

The solution given by the previous proposition, is the
optimal solution of problem (30), the approximated con-
vex version of problem (26). In order to use the result
in Prop. 2, we propose a computational method (Algo-
rithm 1) to find at each step the time-varying optimal
values κ∗i , η

∗
i and λ∗i . In order to guarantee constraints

satisfaction, we project at each iteration the computed
values of κi and λi in the corresponding sets defined
by the constraints. This method can be used with any
matrix A norm, since the convergence conditions con-
straints are not active.

Proposition 3 Alg. 1 converges to the optimal solutions
κ∗i , η∗i and λ∗i .

Algorithm 1 Optimal weights computation

Set λ+
i = Im/2, ε

Im×mi = 1TNi ⊗ Im
repeat

λi = λ+
i

Di = 1Ni1
T
Ni
⊗ (Im − λi)TATA(Im − λi)

νi = −2[Im×mi ((Mi ◦Di)
−1 +

C>iECiE
(
C>iESiCiE ◦Di

)−1
C>iECiE)I>m×mi ]

−11m (Eq.
(44c))

κvec
i = PK

(
− (2Mi ◦Di)

−1 1Ni ⊗ Im νi

)
ηvec
i = −

(
2C>iESiCiE ◦Di

)−1
1Ni ⊗ Im C>iECiEνi (Eq.

(44b))
Ri = κiMiκ

T
i + ηiC

>
iESiCiEη

T
i

λvec
i = PΛ

(
(M loc

i +Ri) ◦ (ATA)
)−1

diag
(
RiA

TA
)

λ+
i = diag(λvec

i )

until |λi − λ+
i | ≤ ε

return κi(t) = diag(κvec
i ), ηi(t) = diag(ηvec

i ), and λi(t) = λ+
i

Proof: In this proof, we first show that Alg. 1
converges, then we show that it converges to the opti-
mal solution. Let note that the optimization problem in
Eq.(30) fulfills Slack’s conditions, which implies that the
optimal solution have finite optimal value. Furthermore,
the two iterative sub-optimization steps in Alg. 1 ensure
that the intermediate solutions improve (decrease) the
current optimal value. Thus it is sure that Alg. 1 con-
verges. Moreover, let recall that the cost function is con-
vex on all the variables. Suppose that Alg. 1 converges
to a point (κ′i, η

′
i, λ
′
i) different from (κ∗i , η

∗
i , λ
∗
i ). Then we

have f(κ′i, η
′
i, λ
′
i) ≤ f(κ∗i , η

∗
i , λ
′
i) ≤ f(κ∗, η∗i , λ

∗
i ), where

f(κi, ηi, λi) is the cost function. Since κ∗i , η
∗
i and λ∗i are

the optimal solutions, κ′i, η
′
i and λ′i must be equal to κ∗i ,

η∗i and λ∗i respectively, which completes the proof. �

We now provide an analytical solution for problem (30).

Proposition 4 The solution for problem (30), for each
node i, is given by ξi2 6= 0, ξi1 = ξi3 = ξi4 = λi = 0,

κveci (t, ρi) =−
(
2Mi(t, ρi) ◦ (1Ni1

T
Ni ⊗Di)

)−1
νEi (t, ρi) ,

(49a)

ηveci (t, ρi) =−
(
2C>iESi(t, ρi)CiE ◦ (1Ni1

T
Ni ⊗Di)

)−1
C>iECiEν

E
i (t, ρi) , (49b)

νi(t, ρi) =− 2(Im×mi((Mi(t, ρi) ◦Di)
−1

+ C>iECiE(
C>iESi(t, ρi)CiE ◦Di

)−1
C>iECiE)ITm×mi)

−11m ,
(49c)

where Im×mi := 1TNi ⊗ Im, Di := ATA and Di =

1Ni1
T
Ni
⊗ Di if κi(t, ρi) so computed satisfies the con-

straints (36)-(37), depending on the norm of matrix A.

Proof: The proof follows the procedure used for
Prop. 2. We then impose ξi2 6= 0, ξi3 = 0, ξi4 = 0.
We observe that the KKT conditions hold by imposing
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ξi2 6= 0 only if λi is null because of Eq. (35) and therefore
ξi1 = 0 because of Eq. (34). Therefore, we obtain the
expressions in closed form for κi and ηi by substituting
λi = 0 in Eq. (44a), (44b) and (44c). �

This analytical solution is given to provide a simpler so-
lution to (30) than the computational solution given in
Prop. 2. We cannot guarantee in general that the solu-
tion proposed in Prop. 4 satisfies the convergence condi-
tions and that it is optimal at each time step. Moreover,
in the analytical solution given by the previous propo-
sition, the convergence conditions constraint (33) is ac-
tive. Since in problem (30) we have imposed more re-
strictive conditions than the ones obtained in Section 3.3
for (26), so the proposed solution could be sub–optimal
w.r.t. problem (26). In Section 6, the solutions proposed
in Prop. 2 and 4 are compared.

Finally, we propose here a computational solution of the
original non convex problem (26), using the original con-
straints (20), (21), (22) or (23).

Proposition 5 A solution for problem (26), for each
node i, is given by (44a), (44b), (44c), (44d), with
Di(t, ρi) := (I−λi(t, ρi))TATA(I−λi(t, ρi)), if κi(t, ρi)
and λi(t, ρi) so computed in addition satisfy the conver-
gence constraints (20) and (21), or (22) or (23).

Proof: Problem (26) is non convex so the KKT con-
ditions cannot be used as sufficient conditions for opti-
mality. Nevertheless, KKT conditions are necessary con-
ditions also in the non convex case. We can then compute
the KKT conditions for problem (26). These are equal
to the conditions obtained in Lemma 1, with exception
of Eqs. (32)-(39), which change according to the differ-
ent constraints, and Eq. (40) and (40), where the final
terms are slightly different, but continue to depend lin-
early on the dual variables. By imposing the dual vari-
ables all null so that the constraints related to the con-
vergence conditions are all non active, we can follow the
same procedure as in proof of Prop. 2. This is a solution
for the Pareto optimization problem (26), if, once com-
puted the solutions, in addition they satisfy the conver-
gence constraints. �

The obtained solution can be a local minimum or a sad-
dle point for Problem (26). The results obtained by Algo-
rithm 1 are optimal for the approximated problem (30)
and represent a local solution for the original problem
(26), if in addition they satisfy the original non convex
constraints (21), or (22) or (23), depending on A norm.

4.3 On the separability of the consensus and prediction

In the previous subsection, we have proposed two meth-
ods to obtain the values of the optimal time-varying
weights for the proposed distributed dynamical estima-
tor. A question that may rise concerns the possible sep-
arability of the consensus and prediction.

Consider the optimization problem (30). The separate
design of the consensus-filtering weights κi and ηi and of
the model-based prediction parameters λi leads to sub-
optimal solutions. In fact, from Prop. 2, it follows that
the optimal value of λi depends on the optimal values
of κi and ηi, and vice versa. Therefore, the computa-
tion of the solution of two separate optimization prob-
lems would certainly lead to a suboptimal solution unless
additional assumption on the optimization problem are
introduced. The proposed joint optimization approach
may lead to improved solutions.
In this respect, in Section 6 simulation results show that
choosing a constant fixed value for λi is in general sub-
optimal, since at some time steps the parameters and
weights values proposed in Proposition 4 with λi = 0 do
not satisfy the convergence constraints (36)-(37), and so
the solution is not optimal. Even considering only er-
ror variance minimization, thus choosing ρi = 0 in the
proposed method, the choice of the filtering weights and
prediction parameters has to be jointly designed. This is
an important result, since in many works of the state of
the art (see [1], [12] and [11], as examples) the two steps
(filtering and prediction) are designed separately, thus
possibly causing suboptimal performances.

4.4 Bounds and stability of the mean and of the variance
of the prediction error

Basing on the results obtained in the previous subsec-
tion, it is possible to derive a time-varying bound on the
prediction bias. For the sake of simplicity, the result is
derived using the optimal weights in Prop. 4, but it can
easily be extended to the case in Prop. 2.

Proposition 6 The mean of the global prediction error
vector can be bounded as follows, with γ < 1:∥∥∥EÊ(t+ 1)

∥∥∥
∞
≤ γt

∥∥(AEC
>
ECE − I)xE(0)

∥∥
∞ . (50)

Proof: By considering the global prediction bias in
Eq. (9) and being λi = 0, ∀i due to Prop. 4, we have

EÊ(t+ 1) = AEK(t)EÊ(t).

Let us then consider the infinity norm, representing the
maximum value of the bias vector, and apply the sub-
multiplicative property. Since, thanks to the convergence
conditions (21), ‖K(t)‖∞ < 1/‖AE‖∞ and 1/‖AE‖∞ >
1, we can say that there exists a scalar γ < 1 for which,
for each t

γ′(t) = ‖AE‖∞ ‖K(t)‖∞ ≤ γ.
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We can then write that

∥∥∥EÊ(t+ 1)
∥∥∥
∞
≤

t∏
h=0

γ′(h)
∥∥∥EÊ(0)

∥∥∥
∞
≤ γt

∥∥∥EÊ(0)
∥∥∥
∞
.

Finally, by noting that the algorithm is initialized so
that x̂i(0) = AC>i yi(0), we have EÊ(0) = (AEC

>
ECE −

I)xE(0), thus obtaining the statement of the proposi-
tion. �

This result proves that at each time step the bias is
bounded and confirms its convergence to zero. We have
then the following result.

Proposition 7 The sequence of the variance terms of
the global prediction error ΓÊ(t+1) in Eq. (11) is bounded
and converges.

Proof: In [2] (Theorem 4.3), it is stated that if a
time-varying system x(t+1) = F (t)x(t) is exponentially
stable, and if the matrices F (t) and G(t) are bounded,
then there exists a unique bounded nonnegative definite
matrix sequence satisfying the following relation:

P (t+ 1) = F (t)P (t)F (t)> +G(t)G(t)>. (51)

We note that Eq. (11) has the form of Eq. (51), by sub-
stituting P (t) := ΓÊ(t), F (t) := AEK(t) and Q(t) :=

G(t)G(t)> = W2(t)Σv(t)W2(t)>+ΣwE (t). We have then
to demonstrate that the time-varying system x(t+ 1) =
F (t)x(t) is exponentially stable. In Prop. 6 we have
shown that ‖F (t)‖∞ ≤ ‖AE‖∞ ‖K(t)‖∞ ≤ γ < 1.
Therefore, ‖x(t+ 1)‖ = ‖F (t)x(t)‖ ≤ γt ‖x(0)‖. For
t→∞, the sequence converges to zero. Moreover, in [31]
it is proved that, given a system x(t+1) = F (t)x(t), with
A(t) ∈ conv(A1, . . . ,AN), it is exponentially stable iff ∃ a
sufficiently large integer k such that ‖At1 . . . Atk‖ ≤ γ <
1 ∀(t1, . . . , tk) ∈ {1, . . . , N}k, where conv(A1, . . . ,AN)
is the convex matrix polyhedron of the set of constant
matrices {A1, . . . , AN} and ‖·‖ is any vector induced
matrix norm. In our case, the hypothesis are satisfied.
Then the exponentially stability of the system x(t+1) =
F (t)x(t) is demonstrated and we use the above result in
[2] to prove the statement of the proposition. Further-
more, by iterating Eq. (51), we obtain

P (t) = Φt,0Σv(0)Φ>t,0 +

t−1∑
l=0

Φt,l+1Q(l)Φ>t,l+1,

where Φt,l := F (t−1) . . . F (l), with l < t, and Φt,t := I,
which concludes the proof. �

5 Implementation of theDistributedPrediction
Algorithm

In this section, we address how to implement the pro-
posed distributed prediction method. Each node has to
implement Algorithm 2. In the literature, it is common
to determine the best value of ρi by building the Pareto
trade–off curve and selecting the “knee–point” of this
curve, that is, choosing ρ∗i such thatBi and Vi, computed
with the optimal values κ∗i (ρ

∗
i ), η

∗
i (ρ∗i ) and λ∗i (ρ

∗
i ), are

Vi = B2
i . This can be obtained by solving the following

further problem:

min
ρi

(Vi(κ
∗
i (ρi), η

∗
i (ρi), λ

∗
i (ρ
∗
i ))−B2

i (κ∗i (ρi), η
∗
i (ρi), λ

∗
i (ρ
∗
i )))

2.

This problem is highly non–linear. Numerical methods
can be used to compute the optimal value. In this and
previous papers, we tested different approaches for the
definition of the Pareto parameter. It is possible to
choose it locally, using the Nelder-Mead simplex algo-
rithm as described in [22], to minimize the cost function
(1 − ρi)Vi + ρiB

2
i with the values of parameters and

weights obtained at the previous step. Note that the
values of Vi and Bi are function of ρi. Once the param-
eter ρi has been set, the optimal weights κi(t), ηi(t)
and λi(t) are computed using the result in Prop. 4 or
the result in Prop. 2 (following Algorithm 1) and so
the local prediction of the state xi(t + 1) can be ob-
tained. The nodes are not required to on-line solve the
optimization problem (26) formulated in the previous

sections. After that, the values of the estimates of Γ̂i(t)
and m̂εi(t) can be updated using new signal estimates
and measurements samples (see [33] and [6] for details).

5.1 Computational complexity

The computational complexity of the proposed dis-
tributed estimator is given mainly by two components:
the computational complexity of matrices inverse and
that needed for the estimation of the covariance matrix.
The computation of matrices inverse has complexity
O((m × |Ni|)3) and is required to compute the opti-
mal weights κi(t), ηi(t) and λi(t). In the simulation,
the typical number of iterations NIter1 of Algorithm
1 at each step is less than 10. The computation of
the covariance matrix is required to compute the ap-
proximate estimates Γ̂i(t) and Λ̂i(t): the complexity is
O(Tablesize log(Tablesize)), where the Tablesize is the
size of a look-up table used to speed up the computation
of a quadratically constrained least-square problem [33].
We set Tablesize = 100.
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Fig. 1. Performance comparison in terms of MSE of the six considered estimation methods, with different standard deviation
values for the measurement noises and the process disturbance. The first three rows consider the Gaussian case. In the fourth
row, the Gaussian case is represented by solid lines, while the dashed lines show the non-Gaussian noise case performance.
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Fig. 2. The distance between the performance of the
proposed approach Ep1 and the Centralized Steady-state
Kalman Predictor in terms of ratio of respective MSE val-
ues for the 30 different noise scenarios, both in the Gaussian
and in the non-Gaussian case.

6 Simulation results

In this section, simulation results are given with the pur-
pose of illustrating the analysis. We consider two differ-

ent examples.

6.1 Example 1

In the first case, we consider a linear system, whose dy-
namics are described by the matrix:

A =


0.8 0.1 0 0.05

0.1 0.55 0 0.2

0.04 0 0.7 0.2

0 0.15 0.3 0.5

 .

To manage the non-completely measureable case, we as-
sume only 2 or 3 states can be measured by each node.
We then randomly choose the matrix C on the basis of
this assumption and the conditions in Section 2.
We analyzed the state of the art and we selected the fol-
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Algorithm 2 Prediction algorithm for node i
t := 0

m̂εi (0) := 0

Γ̂i(0) := Σvi
ρi := 0.5

x̄i(0) := C>i yi(0)

x̂i(1) := Ax̄i(0)

repeat

Ni := |Ni|
t := t+ 1

Collect predictions x̂i(t) := (x̂i1 (t), . . . , x̂iNi
(t))T

where {i1, . . . , iNi} ∈ Ni
Collect measurements yi(t) :=

(C>i1yi1 (t), . . . , C>iNi
yiNi

(t))T where {i1, . . . , iNi} ∈ Ni
Compute ρi
Si := (1− ρi)Σvεi (t)

Mi := ρi(m̂εi (t)m̂
>
εi

(t)) + (1− ρi)Γ̂i(t)
Compute κi(t)
Compute ηi(t)
Compute λi(t)
x̄i(t) = κi(t)x̂i(t)(t) + ηi(t)yi(t)(t)

x̂i(t+ 1) = Ax̄i(t) + w̄(t) + λi(t)(Ax̂i(t)−Ax̄i(t))
ε̂i := x̂i

1+ν
− ν1>x̂i+(1+ν)1>yi

Ni(1+2ν)(1+ν)
1

m̂εi (t) := t−1
t
m̂εi (t− 1) + 1

t
ε̂i(t)

Γ̂i(t) := t−1
t

Γ̂i(t− 1) + 1
t
(ε̂i(t)− m̂εi (t))(ε̂i(t)− m̂εi (t))>

until forever

lowing prediction methods for comparison 4 :

ECKF: Centralized steady-state Kalman predictor. The
estimator collects all the measurements yi available
at the entire sensor network and the related output
matrices Ci, for all i = 1, . . . , n and implements the
classical steady-state Kalman predictor.

EDKF: Decentralized Kalman filter as in [27].
EDE1: Distributed state estimation approach as in [3].

The estimator is adopted by formulating consensus on
probability density functions of the states.

EDE2: Distributed state estimation with event trig-
gered communication protocols as in [24]

Ep1: The proposed estimator using the computational
solution proposed in Algorithm 1.

Ep2: The proposed estimator using the analytic solu-
tion in Prop. 4.

The use of the centralized Kalman predictor is included
to provide a baseline performance index and, for the
sake of simplicity, the steady-state Kalman predictor
has been considered. This latter predictor, in specific
scenarios may show suboptimal performance during the
transient when compared to time-varying algorithms
like the proposed one. For all the methods, we compare
the one-step ahead prediction error.

4 The distributed estimation methods in [10], [37] consider
a non-completely measured state case, but require the as-
sumption of a strongly connected sensor network and so we
can not use them for comparison.

A 15-nodes network is obtained by distributing the
nodes randomly over a squared area of size N/2 and the
graph by letting two nodes communicate if their relative
distance is less than 1.7

√
N . We investigate the per-

formance of the proposed methods with different noise
probability distributions and different standard devia-
tions for the measurement and modeling disturbance
noises. We repeat the experiment 80 times with differ-
ent random network topologies for each scenario. After
many simulation experiments, we decided to fix ρi = 0.5
for each node i in the simulations, in order to reduce the
computational complexity, since the obtained perfor-
mances were similar to the knee-point method described
in Section 5. The evaluated performance metric in one
experiment is the mean square error of the predictions
at each node, that is then averaged over all the nodes of
the network. We then average this value over 80 experi-
ments for each noise scenario (in the figures we use the
term MSE to refer to this final average).

We firstly consider Gaussian white noise for both the
measurement noise and system disturbance. The results
are presented in the first three rows of Fig. 1. Each fig-
ure shows the performance of the considered prediction
methods with different noise scenarios, letting varying
the standard deviation of the measurement noise from
1 to 3 on the x axis and the standard deviation of the
disturbance noise from 1 to 2.6 (different figures on
the same row). In the first row, all the six considered
methods are illustrated. The second row shows the per-
formances of only four of the considered methods in
order to appreciate, with the different scale, how the
prediction error increases as the standard deviation
values increase. The third row is needed to properly
compare the performances of the four best methods,
using different scales for each figure. We see that the
proposed estimators always have better results than
all the other distributed methods, in all the considered
scenarios. Compared with the centralized steady-state
Kalman predictor, which is optimal in the Gaussian case
compared to steady-state linear estimators, the error of
the proposed algorithms is lower than that of the cen-
tralized Kalman predictor in a single scenario, when the
standard deviation of measurement noise is far larger
than that of the process disturbance (as it is possible to
see in Fig. 1, third row, first column). This is due to the
fact that the time-varying proposed algorithm optimizes
the used information at each step, also in the transient.

We then tested our method on a more challenging sce-
nario with non-Gaussian distribution of the noises (see
fourth row in Fig. 1). We consider the Tri-Gaussian
noise, which is a non-Gaussian noise introduced in [20],
both for the measurement and the process noises. From
Fig. 1, last row, we see the performance of the best four
estimation methods in each of the 30 noise scenarios,
for both the probability distributions (Gaussian and
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non-Gaussian). Obviously in the Gaussian case all the
methods perform better than in the non-Gaussian case.
It is anyway interesting to see that the distance between
our method and the centralized Kalman predictor per-
formance decreases in the non-Gaussian case, as shown
in Fig. 2, where the ratios between Ep1 MSE and CKF
MSE are illustrated for all the considered noise scenar-
ios. We have similar results for Ep2.

We can see from simulation results that the two pro-
posed methods have similar performance. Sometimes
the analytical solution Ep2 has better results than Ep1.
This is due to computational convergence problems:
the convergence of the proposed algorithm is guaran-
teed but the convergence time is unknown and in the
simulations we had a maximum number of iterations.

6.2 Example 2

In this second example, in order to show the effectiveness
of the proposed approach also for non-asymptotically
stable systems, we consider a network of N = 20 sensor
nodes monitoring a system representing a moving object
on a plane, as described in [18]. The dynamics of the
system can be represented as: x(t + 1) = Ax(t) + ξ(t),
where

A =



1 δ 0 0 0 0

0 1− δµ
m

δ
m 0 0 0

0 0 1 0 0 0

0 0 0 1 δ 0

0 0 0 0 1− δµ
m

δ
m

0 0 0 0 0 1


,

where δ = 0.1s is the sampling time, m = 0.75kg is the
mass of the vehicle and µ = 0.15 is the friction coef-
ficient; the process noise ξ(t) is a zero-mean Gaussian
noise with σ2

ξ = 10−4diag(1, . . . , 1). As in [18], the state

vector is initialized as x(0) = col[0, 0, 0.1, 0, 0, 0.1]. In
Fig. 3 we show the performance of the best four estima-
tion methods applied to this second simulation example
for 30 different Gaussian noise scenarios. We see that the
proposed estimators always have better results than the
other distributed methods, also in this scenario.

7 Concluding remarks

In this paper, we proposed a novel distributed predic-
tion method for dynamic systems using sensor networks,
able to minimize both the mean and the variance of the
prediction error. The optimal filtering weights and pre-
diction parameters were computed locally at each step
by each sensor node. We do not require Gaussian dis-
tribution for the noises. The state may be not entirely
measured by each node. We showed that the filtering
weights and the prediction parameters have to be jointly
optimized.

As a future work, the adoption of the proposed work
for distributed fault diagnosis purposes will be consid-
ered. Furthermore, we will consider time-varying net-
work topologies and unreliable communication networks
affected by delays and packet losses.
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