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In the present paper a new concept of representability is introduced, which can be applied

to not total and also to intransitive relations (semiorders in particular). This idea tries to

represent the orderings in the simplest manner, avoiding any unnecessary information.
For this purpose, the new concept of representability is developed by means of partial

functions, so that other common definitions of representability (i.e. (Richter-Peleg) multi-

utility, Scott-Suppes representability,...) are now particular cases in which the partial
functions are actually functions. The paper also presents a collection of examples and

propositions showing the advantages of this kind of representations, particularly in the

case of partial orders and semiorders, as well as some results showing the connections
between distinct kinds of representations.

Keywords: partial representability; multi-utility; preorders; semiorders; intransitivity.

1. Introduction and motivation

Different kinds of representations of preferences have been recently proposed in the

literature in order to consider general situations when completeness is not required.

It is well known that in this case more than one function must be used. In some sense,

the best way of representing transitive preferences which are not necessarily total

is to invoke the multi-utility approach, since it provides a characterization of them.

∗Corresponding author.
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In this paper we generalize this classical approach in order to allow nontransitivity

of the preferences. This is done by simply allowing each function to be defined not

on the whole space of the alternatives but on some subset of it.

Given a preorder - on X, a real function u : X → R is said to be isotonic or

increasing if for every x, y ∈ X the implication x - y ⇒ u(x) ≤ u(y) holds true. In

addition, if it also holds true that x ≺ y implies u(x) < u(y), then u is said to be a

Richter-Peler utility representation.

In the case of a total preorder - on X, it is said to be representable if there is

a real-valued function u : X → R that is strictly isotonic or strictly increasing (also

known as order-preserving), so that, for every x, y ∈ X, it holds that x - y ⇐⇒
u(x) ≤ u(y). The map u is said to be an order-monomorphism (also known as a

utility function for -).

A (not necessarily total) preorder - on a set X is said to have a multi-utility

representation if there exists a family U of isotonic real functions such that for all

points x, y ∈ X the equivalence

x - y ⇔ ∀u ∈ U (u(x) ≤ u(y)) (1)

holds. This kind of representation, whose main feature is to fully characterize the

preorder, was first introduced by Vladimir L. Levin 22 (see also 23), who called

functionally closed a preorder admitting a multi-utility representation. However,

the first systematic study of multi-utility representations is due to Ozgur Evren

and Efe A. Ok 16, who presented different conditions for the existence of continuous

multi-utility representations.

While a multi-utility representation exists for every not necessarily total preorder

- on X (see Evren and Ok 16 ), its application is in some sense limited, since if we

start from a binary relation - on set X and it admits the representation above, then

it must be necessarily a preorder (i.e., a reflexive and transitive binary relation).

Nevertheless, it is interesting to search for a continuous multi-utility representation

of a preorder - when the set X is endowed with a topology τ (cf., for instance,

Evren and Ok 16, Bosi and Herden 5 and Alcantud et al. 1). The existence of a finite

multi-utility representation was studied by Ok 29 and Kaminski 20, who refers to

representation by means of multi-objective functions.

We recall that a particular case of the previous representation is the so called

Richter-Peleg multi-utility representation (see Minguzzi 26), which holds when all

the functions of the family U in representation (1) are order-preserving for the

preorder - (i.e., for all u ∈ U , and x, y ∈ X, x ≺ y implies that u(x) < u(y)). It

is well known that in this case the family U also represents the strict part ≺ of -
(see Alcantud et al. 1 ), in the sense that, for all x, y ∈ X, x ≺ y if and only if

u(x) < u(y) for all u ∈ U .

Therefore if we want to represent a binary relation - which is reflexive and not

necessarily transitive (like interval orders or semiorders, for example), we cannot

use the multi-utility approach. In order to remove this restriction, Nishimura and

Ok 28 introduced very recently the following representation of a necessarily reflexive
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binary relation -, which allows intransitivity: for a set U of sets U of real-valued

functions u on X, and all points x, y ∈ X,

x - y ⇔ sup
U∈U

inf
u∈U

(u(y)− u(x)) ≥ 0. (2)

While this maxmin multi-utility representation fully characterizes the binary

relation - in the general case when it is neither total nor transitive, we can consider

that this latter representation is much demanding and difficult to perform, since it

requires, in some sense, a lot of information, represented by a set of sets of real-

valued functions.

In this paper, we introduce the concept of partial multi-utility representation of

a preorder as a coherent and practical representation that characterizes the order

structure. This means that we refer to the multi-utility approach (1) in the much

more general case when the functions u are not required to be defined on the whole

set X, but they are only partial (in the sense that, generally speaking, they are

defined on subsets of X).

Needless to say, this generalization leads to a new representation which is com-

patible both with incompleteness and intransitivity. Indeed, the characteristic fea-

ture of the present work is to allow intransitivity in a multi-utility fashion.

Referring to the multi-utility representation (1), usually it is not easy or even

possible (when continuity or at least upper semicontinuity of the functions is re-

quired) to construct a representation of a binary relation through functions that

assign a value for each element of the set. Actually, since these relations fail to be

total in general, it has not too much sense to impose a value to each element by

each function. So, it seems consistent to provide the representation a degree of un-

certainty or ‘undefinition’: if we cannot compare a pair (x, y), maybe we can avoid

mapping x and y with each function of the representation (i.e., with each function

u ∈ U).

This uncertainty or ‘undefinition’ allows us to construct representations more

easily (even when the order structure is not representable in the usual manner),

and on the other hand it facilitates the continuity of the representation.

Although multi-utility representations deserve their interest in economics for

the aforementioned reasons, they also appear in computer science, especially in

distributed systems (see e.g Lamport 21, Estevan 11, Fidge 17, Raynal and Singhal 32

and Mattern 25) and even in physics (see e.g. Panangaden 30). In computer science

the terminology (labelings, random structures, clocks, ...) is quite different with

respect to the field of economics, but the ideas are essentially the same. Moreover,

the idea of partial functions is not strange at all in computation so, this new theory

may be quite useful for this field.

The structure of the paper goes as follows: After the introduction and the mo-

tivation, a section of notation and preliminaries is included. In Section 3 the new

concept of partial representability is introduced, as well as some examples and propo-

sitions showing its advantages for the case of preorders. In this section, we also show
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some connections between distinct kinds of representations. Finally, in Section 4 we

focus our attention on the usefulness of the partial representability for intransitive

relations, and in particular, we deepen the study of semiorders presenting a partial

version of the Scott-Suppes representation. A Section 5 of further comments closes

the paper. There, incidentally, it is shown that a Theorem of Evren and Ok 16 is

incorrect.

2. Notation and preliminaries

From now on X will denote a nonempty set.

Definition 1. A binary relationR on X is a subset of the Cartesian product X×X.

Given two elements x, y ∈ X, we will use the standard notation xRy to express that

the pair (x, y) belongs to R.

Associated to a binary relation R on a set X, we consider its negation (re-

spectively, its dual) as the binary relation Rc (respectively, Rt) on X given by

(x, y) ∈ Rc ⇐⇒ (x, y) /∈ R for every x, y ∈ X (respectively, given by

(x, y) ∈ Rt ⇐⇒ (y, x) ∈ R, for every x, y ∈ X). We also define the codual

Ra of the given relation R, as Ra = (Rt)c.
A binary relation R defined on a set X is said to be:

(i) reflexive if xRx holds for every x ∈ X,

(ii) irreflexive if xRcx holds for every x ∈ X,

(iii) symmetric if R and Rt coincide,

(iv) antisymmetric if R∩Rt ⊆ ∆ = {(x, x) : x ∈ X},
(v) asymmetric if R∩Rt = ∅,

(vi) total if R∪Rt = X ×X,

(vii) transitive if xRy and yRz ⇒ xRz for every x, y, z ∈ X.

In the particular case of a nonempty set where some kind of ordering (e.g.,

preorder, interval order, biorder, etc.) has been defined, the standard notation is

different. We include it here for sake of completeness, and we will use it throughout

the present manuscript.

In what follows - denotes a reflexive binary relation on X. Given a reflexive

binary relation -, then as usual we denote the associated asymmetric relation by

≺ and the associated indifference relation by ∼ and these are defined, respectively,

by [x ≺ y ⇐⇒ (x - y) and (y -c x)] and [x ∼ y ⇐⇒ (x - y) and (y - x)].

If two elements are not comparable, that is, if it holds true that x -c y as well as

y -c x for some x, y ∈ X, then we shall denote that by x ./ y.

Definition 2. A preorder - on X is a binary relation on X which is reflexive and

transitive. An antisymmetric preorder is said to be an order. A total preorder - on

a set X is a preorder such that if x, y ∈ X then (x - y) or (y - x). A total order is

also called a linear order , and a totally ordered set (X,-) is also said to be a chain.

Usually, an order that fails to be total is also said to be a partial order. If - is a
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preorder on X, then the associated indifference relation ∼ is actually an equivalence

relation. The asymmetric part of a linear order (respectively, of a total preorder)

is said to be a strict linear order (respectively, a strict total preorder). Usually, in

the case of partial orders (in particular dealing on finite sets), the relation - is also

denoted by v, and the corresponding strict part by @.

In case of not total relations defined on a set X, if one element is not related

or comparable to any other of the set, this element is said to be an isolated point
6. Given a preorder - on X, a set Y ⊆ X is called an antichain if ≺|Y = ∅. The

width (denoted by w(X,-)) of a preordered set is the cardinality of the largest

antichain Y contained in X. A partial order - on X is near-complete if and only if

w(X,-) <∞.

For every x ∈ X we define the following subsets of X:

l(x) = {y ∈ X | y ≺ x}, r(x) = {z ∈ X | x ≺ z},

d(x) = {y ∈ X | y - x}, i(x) = {z ∈ X | x - z}.

Definition 3. A preorder - on a topological space (X, τ) is regular if and only if

for each x ∈ X sets i(x) and d(x) are closed.

Next Definition 4 introduces the notion of representability1. The idea behind

representability corresponds to the possibility of converting qualitative scales (pref-

erences) into quantitative ones, comparing real numbers instead of, just, elements

of a nonempty set.

Definition 4. A total preorder - on X is called representable if there is a real-

valued function u : X → R that is order-preserving, so that, for every x, y ∈ X,

it holds that [x - y ⇐⇒ u(x) ≤ u(y)]. The map u is said to be an order-

monomorphism (also known as a utility function for -).

Now we introduce the definitions of some intransitive relations, namely interval

orders and semiorders 2,6,18,24,35.

Definition 5. An interval order - on a set X is a reflexive binary relation on X

which in addition satisfies the following condition for all x, y, z, w ∈ X:

(x - z) and (y - w)⇒ (x - w) or (y - z).

A semiorder - on a set X is a binary relation on X which is an interval order

and in addition verifies the following condition for all x, y, z, w ∈ X:

(x - y) and (y - z)⇒ (x - w) or (w - z).

Definition 6. An asymmetric relation ≺ defined on a set X is called regular with

respect to sequences if there are no x, y ∈ X, and sequences (xn)n∈N, (yn)n∈N ⊆ X,

1The notion of representability of some orderings is not unique (see 2,27,13).
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such that x ≺ . . . ≺ xn+1 ≺ xn ≺ . . . ≺ x1 happens, or, dually, y1 ≺ . . . ≺ yn ≺
yn+1 ≺ . . . ≺ y holds.

Definition 7. A semiorder - defined on a nonempty set X, is said to be regular

(with respect to sequences) if its corresponding strict preference ≺ is regular with

respect to sequences in the sense of Definition 6.

Definition 8. A semiorder - defined on X is said to be SS-representable (that

is representable in the sense of Scott and Suppes) if there exists a real-valued map

u : X → R (now again called a utility function) such that x - y ⇐⇒ u(x) ≤
u(y) + 1 (x, y ∈ X) (see Scott and Suppes 35).

(In this case, the pair (u, 1) is said to be a Scott-Suppes representation of the

semiorder ≺).

Remark 1. It is well known that regularity is a necessary condition for the exis-

tence of a Scott-Suppes representation (see e.g. 7).

3. Partial representability of preorders

In the present section we introduce the main definitions and some propositions

illustrating the advantages of dealing with partial representability instead of the

usual representability. Now we focus our attention on preorders, leaving a further

study concerning intransitive relations to the next section. We also recover some

results (Proposition 1 and Proposition 3) introduced in 1, but now adapting and

proving them for this new theory of partial representability.

The knowledge on preorders, in particular in finite partially ordered sets, is a

strong tool in computer sciences. That is the reason why we include some notions

(e.g. labelings, random structure, ... 34) related to this field. Furthermore, these con-

cepts are strongly related to similar ideas on economics (e.g. utilities, Richter-Peleg

multi-utility representations, ... 1,5,16,31,33). Besides, partial functions are quite com-

mon in computing so, dealing with partial functions in order to represent orderings

could be a good technique.

In the following lines we introduce some basic definitions.

Definition 9. A partial function from X to Y (written as f : X 9 Y ) is a function

f : X ′ → Y , for some subset X ′ of X. It generalizes the concept of a function

f : X → Y by not forcing f to map every element of X to an element of Y (only

some subset X ′ of X). If X ′ = X, then f is called a total function and is equivalent

to a function.

Definition 10. A partial function f : (X, τX) 9 (Y, τY ) is continuous if the corre-

sponding total function f : (X ′, τX′)→ (Y, τY ) is continuous (here X ′ is the biggest

subset of X where the partial function f is defined and τX′ is the topology on X ′

inherited from (X, τX)).
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Definition 11. Let - be a preorder on a nonempty set X. We will say that the

preorder is partial multi-utility representable (or multi-utility representable through

partial functions) if there exists a family of real partial functions U on X such that

for any pair x - y there exists u ∈ U such that u(x) ≤ u(y), as well as v(x) ≤ v(y)

for any v ∈ U which is defined on both x and y.

Remark 2. With definition above, notice that:

(i) x ≺ y if and only if there exists u ∈ U such that u(x) < u(y), as well as

v(x) ≤ v(y) for any v ∈ U which is defined on both x and y.

(ii) x ∼ y if and only if there exists u ∈ U such that u(x) = u(y), as well as

v(x) = v(y) for any v ∈ U which is defined on both x and y.

(iii) x ./ y if and only if there exists u, v ∈ U such that u(x) < u(y) and v(x) > v(y),

or there is no v ∈ U defined on both x and y.

Definition 12. Let - be a preorder on a nonempty set X. We will say that the

preorder is partial Richter-Peleg multi-utility representable (or Ritcher-Peleg multi-

utility representable through partial functions) if there exists an isotonic partial

multi-utility representation U on X. This means that there exists a partial multi-

utility representation U on X such that for any pair x ≺ y there exists u ∈ U such

that u(x) < u(y), as well as v(x) < v(y) for any v ∈ U which is defined on both x

and y.

Remark 3. With definition above, notice that the corresponding indifference and

incomparability are characterized like in the previous case of partial multi-utility.

Remark 4.

(1) In the definitions above we say ‘partial’ because the representation is made by

means of partial functions, but this kind of representations totally characterizes the

order structure.

(2) If the partial functions of the definition above are functions (that is, all of them

are defined on all the set X) then we recover the definition of (Richter-Peleg) multi-

utility representation. That is, the partial representation generalizes the concept of

representability.

(3) Notice that, given a partial (Richter-Peleg) multi-utility representation and an

element x of the set, if there is no function defined on this point x, then this element

is an isolated point.

Proposition 1. Let - be a preorder on X and A the set of all isolated points.

Assume that there exists a (continuous) partial multi-utility representation {vi}i∈I .

If there exists a (continuous) Richter-Peleg utility of the preorder on a subset Y such

that X \A ⊆ Y , then there exists a (continuous) partial Richter-Peleg multi-utility

representation.

Proof. Let V = {vi}i∈I be a (continuous) partial multi-utility representation of -,

and let f be a (continuous) Richter-Peleg representation of -|Y . Then it is easily
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checked that U = {v+αf : v ∈ V, α ∈ Q, α > 0}2 is a (continuous) partial Richter-

Peleg multi-utility representation of -. The continuity of the functions of U arises

from the continuity of the functions of V and from the continuity of f (see 36).

This argument serves for the corresponding equivalence under upper/lower semi-

continuity too.

These new partial utilities migth be useful for dealing with random structures

(see Schellekens 34). These structures are studied in computation, with several ques-

tions unsolved yet. In the following lines we include some basic definitions related

to this topic.

Definition 13. Let (X,v) be a finite partially ordered set with |X| = n. We define

a labeling of the partial order as a function u : (X,v)→ {1, ..., n} such that for any

x @ y it holds that u(x) < u(y), x, y ∈ X.

Definition 14. Let (X,v) be a finite partially ordered set. The collection U =

{ui}i∈I of all possible labelings is called the random structure of the partial order,

and it is also denoted by RL(X,v)3.

Remark 5. (1) Notice that a labeling is simply a linear order extending the strict

preference and the random structure is simply the set of all such extensions.

(2) There is a unique correspondence between partial orders and random structures:

each of ones defines the other (see 34).

(3) Notice that the concept of random structure implies a Richter-Peleg multi-utility

representation.

Example 1. Let (X,v) be the partially ordered set defined by {x1 @ x2 @ x4,

x3 @ x4}. The corresponding random structure is shown in Figure 1, whereas a

partial multi-utility Richter-Peleg representation is shown in Figure 2.

x2

x1

x3

x4

2

1

3

4

3

1

2

4

3

2

1

4

Fig. 1. Partially ordered set with its corresponding labelings.

2Here, if a function v or f is not defined on an element x, then we define the sum between v
and f on x by (v + f)(x) = ∅, that is, as not defined. Otherwise, the sum is defined as usual:

(v + f)(x) = v(x) + f(x).
3Here, L denotes the set of labels where labeling functions take values. In this paper, L will be
the set {1, ..., n}, where n = |X|. Therefore, we will omit this subscript.
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x2

x1

x3

x4

2

1

∅

3

∅

∅

1

2

Fig. 2. Partially ordered set with a partial Richter-Peleg multi-utility.

Definition 15. Let v be a finite partial order on X. The Scott topology τS is

defined by means of the basis {Uv(x)}x∈X = {{y ∈ X | x v y}}x∈X .

Remark 6. The Scott topology generated by a partial order is T0
8.

The following proposition is well known 8.

Proposition 2. Let (X,v) and (Y,v′) be two finite partially ordered sets endowed

with the corresponding Scott topologies. Then, a function f : X → Y is continuous

if and only if it is an order-preserving function, that is, if and only if x v y implies

that f(x) v′ f(y), for any x, y ∈ X.

Corollary 1. Let (X,v) be a finite partially ordered set (|X| = n). Then, a func-

tion u : X → {1, ..., n} is a labeling if and only if it is continuous with respect to the

corresponding Scott topologies.

Remark 7. Let - be a preorder on X. Notice that if - is partially (Richter-Peleg)

multi-utility representable by a family of partial functions U , then the number of

partial functions needed is less or equal than the number of functions needed for an

hypothetical (Richter-Peleg) multi-utility representation U ′: |U| ≤ |U ′|.
Since a (Richter-Peleg) multi-utility representation is also a partial (Richter-

Peleg) multi-utility representation, the inequality |U| ≤ |U ′| is trivial. Moreover,

Example 2 shows that in some cases the number of partial functions needed is

strictly less than the number of functions needed for an hypothetical (Richter-Peleg)

multi-utility representation, so |U| < |U ′|.

Example 2.

Let (X,v) be the partially ordered set defined by {x1 @ x2}. The corresponding

representations are shown in Figure 3.

x2

x3
•

x1

3

1
•

2

2

3
•

1

2

∅
•

1

Fig. 3. The random structure and a partial Richter-Peleg multi-utility representation of a poset.
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Remark 8.

(1) In the example and proposition before, it is shown that the partial multi-utility

representations could be used in order to reduce the cardinal of the family of func-

tions. This reduction may be interesting in other applied fields as computation, for

example, dealing with distributed systems in order to reduce the number of clocks
25.

(2) The partial (Richter-Peleg) multi-utility representations can be studied too

through permutations as it was done in 15. This study searches properties of the

order structure by means of the group properties of the corresponding set of per-

mutations (which is directly defined by the corresponding partial (Richter-Peleg)

multi-utility representation of the order structure).

(3) Moreover, partial multi-utility not only reduces the amount of functions needed,

but also it allows us to represent some structures that cannot be represented by the

usual multi-utility. That is, the set of orderings (and also for the particular case of

partial orders) that can be represented through partial (Richter-Peleg) multi-utility

is strictly bigger than this that can be represented through (Richter-Peleg) multi-

utility. Since a (Richter-Peleg) multi-utility representation is also a partial (Richter-

Peleg) multi-utility representation, the inequality is trivial. Moreover, Example 3

shows that there are partial Richter-Peleg multi-utility representable orderings that

cannot be represented just through Richter-Peleg multi-utility.

Example 3. Let - be the following preorder defined on X = Q× {0, 1}:

(q, i) ≺ (p, j) ⇐⇒




q < p ; p, q ∈ X,∀i, j.
q = p ; i = 0, j = 1.

So, (p, i) ∼ (q, j) if and only if p = q and i = j.

Then, since there is an infinite number of jumps, ((q, 0), (q, 1)) for each q ∈ Q, it

is well known (see Bridges and Mehta 6) that there does not exist a Richter-Peleg

utility and, therefore, the preorder - (that actually is a total order) fails to be

Richter-Peleg multi-utility representable.

However, we are able to construct a partial Richter-Peleg multi-utility represen-

tation by means of –at least– a countable number of partial functions:

Let φ be a bijection from Q to N. Now, for each n = φ(q) ∈ N we define the

following two partial functions on X:

un((p, i)) =





p− 1 ; p ≤ q, i = 0.

p ; q < p, i = 0.

q ; p = q, i = 1.

vn((p, i)) =





p ; p < q, i = 1.

p+ 1 ; q ≤ p, i = 1.

q ; p = q, i = 0.

Moreover, it can be proved that, if X is endowed with the order topology τ≺,

then the partial representation is continuous.
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In the Example 4 it is shown that, even not continuous partial orders may be

continuously represented through a finite partial Richter-Peleg multi-utility repre-

sentation. This is impossible with multi-utility, as it was shown in Kaminski 20.

Furthermore, the partial order of Example 4 is connected, and since it is not total,

it cannot be continuously multi-utility represented (see Proposition 5.2 of 1). We

summarize this idea in the following remark:

Remark 9. There are partial orders that fail to be continuously (Richter-Peleg)

multi-utility representable, but that they can be continuously represented by means

of a partial (Richter-Peleg) multi-utility representation. Since a (Richter-Peleg)

multi-utility representation is also a partial (Richter-Peleg) multi-utility represen-

tation, then it is clear that any ordering that is continuous (Richter-Peleg) multi-

utility representable it is also continuously representable by means of a partial

(Richter-Peleg) multi-utility. The converse is not true, as it is shown in Example 4

(as well as in Example 5).

Example 4. Let (X,v) be the partially ordered set of Example 1 defined by {x1 @
x2 @ x4, x3 @ x4}. The corresponding random structure is shown in Figure 2. Now

we endow the codomain {1, 2, 3, 4} with the Scott topology but, instead of endowing

the set X with the corresponding Scott topology, assume that it is endowed with the

topology τ1 = {∅, {x4}, {x2, x3, x4}, {x1, x2, x4}, {x2, x4}, X} or with τ2 = {∅, {x4},
{x2, x4}, {x3, x4}, {x2, x3, x4}, X}, which are coarser than the corresponding Scott

topology. Notice that, as it is shown in Figure 5, τ1 and τ2 are related to two partial

orders that refine the partial order v of the example.

x2

x1

x3

x4

2

1

∅

3

∅

∅

1

2

Fig. 4. A continuous partial Richter-Peleg multi-utility representation of a poset.

Since the topology on X is coarser than the corresponding Scott topology, by

Corollary 1 the partially ordered set cannot be continuously Richter-Peleg multi-

utility representable. However, it is continuous partial Richter-Peleg multi-utility

representable (with respect to topology τ1 and also with respect to topology τ2)

through the functions shown in Figure 4.

Remark 10. A study on the relations between partially ordered finite sets, T0 finite

topologies and permutations of the symmetric group is done in the paper 15 of Este-
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x2

x1

x3

x4

x2

x1

x3

x4

x3x1

x2

x4

τS

x4 x3

x2

x1
τ2

x4 x1

x2

x3

τ1

x4 x2

x3

x1

Fig. 5. Three partial orders and the corresponding Scott topologies.

van et al. entitled Approximating SP-orders through total preorders: incomparability

and transitivity through permutations.

The following lemma of Schmeidler (1971) is well known in literature.

Lemma 1. Let - be a nontrivial preorder on a connected topological space (X, τ).

If for every x ∈ X the sets d(x) and i(x) are closed and the sets l(x) and r(x) are

open, then the preorder - is total.

Proposition 3. Let - be a preorder on a connected topological space (X, τ) with-

out isolated points. If there exists a continuous partial Richter-Peleg multi-utility

representation U = {u1, ..., un}, then - is total on X.

Proof. It can be proved that if a preorder - on a topological space (X, τ) has a

continuous partial multi-utility representation then both d(x) and i(x) are closed

subsets of X for all x ∈ X. This proof is similar to the proof of Theorem 3.1 in

Kaminski 20 (see also Proposition 5 in Bosi and Herden 5) and it is included in

the appendix with a lemma. Therefore, by using Lemma 1, it suffices to show that

under our assumptions, both l(x) and r(x) are open subsets of X for all x ∈ X. To

prove this fact we observe that, from Definition 12,

l(x) = {y ∈ X | y ≺ x} = {y ∈ X | vi(y) < vi(x), for all i ∈ {1, ..., n} s.t. vi is

defined on both} =
⋂n
i=1 v

−1
i ((−∞, vi(x))),

r(x) = {y ∈ X | x ≺ y} = {y ∈ X | vi(x) < vi(y), for all i ∈ {1, ..., n} s.t. vi is

defined on both} =
⋂n
i=1 v

−1
i ((vi(x),+∞))

for each x ∈ X. From these equalities and continuity of the functions vi, the con-

clusion follows immediately.

Remark 11. In the proposition above, if we allow the existence of isolated points,
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then the statement is false. We see that through the following example:

Let - be a preorder defined on X = [0, 1]∪{2} by x - y if and only if x ≤ y for

any x, y ∈ [0, 1], and 2 ./ x for any x ∈ [0, 1]. Now, we endow the set with a topology

τ such that it coincides with the usual topology on [0, 1] and such that the open

neighbourhoods of 2 are the same of 0′5 (that is, O2 = {(0′5− ε, 0′5 + ε)∪{2}}ε>0).

Therefore, (X, τ) is a connected topological space. Under these assumptions, the

function v defined by v(x) = x (for any x ∈ [0, 1]) and v(2) = ∅ is a continuous

partial Richter-Peleg multi-utility representation. However, the preorder is not total.

By the way, notice that this preorder fails to be continuously multi-utility repre-

sentable. To see that, observe that the constant sequence {0′5} converges to 2 so, any

function v of a continuous multi-utility must satisfy that v(2) = v(0′5). Therefore,

we arrive to the contradiction 0′5 ∼ 2. We can argue similarly for semicontinuity.

The following example shows another case in which it is not possible to achieve a

continuous Richter-Peleg multi-utility, but which can be easily represented through

a continuous partial Richter-Peleg multi-utility. In fact, it is proved that the preorder

of this example does not admit a continuous multi-utility representation.

Example 5. Let X be the Cartesian product R × {0, 1} (or interpret that as the

union of two real lines: R0 and R1) endowed with the following preorder:

(x, i) ≺ (y, j) ⇐⇒





x < y, and i = j;

x ≤ 0 and 1 < y, with i 6= j;

R0 0• 1•

R1 0• 1•

Fig. 6. Preorder defined on R× {0, 1}.

It is trivial that the width of the preorder is two. We endow the set X with the

order topology τ arised from the preorder -, except for the points (0, 0) and (0, 1),

whose open neighbourhood are as follows:

O(0,0) = {(x, 0);x ∈ (−ε,+ε)} ∪ {(y, 1); y ∈ (1, 1 + ε)}
O(0,1) = {(x, 1);x ∈ (−ε,+ε)} ∪ {(y, 0); y ∈ (1, 1 + ε)}

It is easy to check that this topology has a countable basis. Moreover, the contour

set i((0, 0)) is not closed (as well as i((0, 1))), so the preorder is not regular and

therefore, by Theorem 3.1. of 20, the preorder does not admit a continuous and finite
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multi-utility representation. Furthermore, l((1′5, 0)) is not open either (as well as

l((1′5, 1))).

However, the following family of functions is a continuous partial Richter-Peleg

multi-utility representation of the preorder:

u1((x, i)) =




x ; i = 0

∅ ; otherwise.
u2((x, i)) =




x ; i = 1

∅ ; otherwise.

u3((x, i)) =





x ; x ≤ 0 and i = 0

x ; 1 < x and i = 1,

∅ ; otherwise.

u4((x, i)) =





x ; x ≤ 0 and i = 1,

x ; 1 < x and i = 0,

∅ ; otherwise.

Furthermore, it is possible to prove that there is no continuous Richter-Peleg

multi-utility representation of this preorder, even through an infinite number of

functions. To see that we can argue by contradiction.

If there was a continuous Richter-Peleg multi-utility representation {ui}i∈I ,
since (0, 0) ≺ (1 + 1

n , 1) for any n ∈ N, then each function would satisfy that

ui((0, 0)) < ui((1 + 1
n , 1)) for any n ∈ N. Notice that the sequence {(1 + 1

n , 1)}n∈N
converges to (0, 0) (as well as to (1, 1)) so, applying the limits we have that

limn→+∞{ui((1 + 1
n , 1))}n∈N = ui(1, 1) = ui(0, 0) for each function of the represen-

tation. Since (0, 1) ≺ (0′5, 1) ≺ (1, 1) and {ui}i∈I is a Richter-Peleg multi-utility

representation, we conclude that ui(0, 1) < ui(0, 0) for any function of the repre-

sentation, arriving to the desired contradiction, because (0, 0) ./ (0, 1).

In fact, it is also impossible to obtain a continuous multi-utility, even through

an infinite number of functions4. To see that we recover the sequence before and

argue again by contradiction. If there was a continuous multi-utility representa-

tion {ui}i∈I , since (0, 0) ≺ (1 + 1
n , 1) for any n ∈ N, then each function would

satisfy that ui((0, 0)) ≤ ui((1 + 1
n , 1)) for any n ∈ N. Notice that the sequence

{(1 + 1
n , 1)}n∈N converges to (0, 0) (as well as to (1, 1)) so, applying the limits

we have that limn→+∞{ui((1 + 1
n , 1))}n∈N = ui(1, 1) = ui(0, 0) for each function

of the representation. Therefore, since ui(1, 1) = ui(0, 0) for each function of the

representation, we conclude that (0, 0) - (0, 1) - (0, 0), arriving to the desired

contradiction, because (0, 0) ./ (0, 1).

4. Partial representability of intransitive relations

In the present section we study the partial representability of intransitive relations.

If a relation has a multi-utility representation, then it must be transitive (see the

4As we said, by Theorem 3.1. of 20, it is known that the preorder does not admit a continuous
and finite multi-utility representation.
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introduction). Therefore, multi-utility is not useful dealing with intransitive rela-

tions. But this is not the case of partial multi-utility, which allows us to characterize

intransitive relations too, as it can be seen in Example 6 and Example 7.

In this section we also include a subsection related to the particular case of

semiorders and Scott-Suppes representations. It is well known that semiorders fail

to be transitive, and they are usually represented through a Scott-Suppes repre-

sentation 2,6,24,35. In this subsection we introduce the new concept of a partial

Scott-Suppes representation, which generalizes the classical one. Before this new

definition, in the following lines we show some examples of semiorders which are

represented through a partial Richter-Peleg multi-utility representation.

Example 6. Let - be a semiorder on Z defined by n - m if and only if n ≤ m+1.

Then, the family of functions {u, v, w} (see Figure 7) is a partial Richter-Peleg

multi-utility representation:

u(m) =





n ; m = 3n

n ; m = 3n+ 1

∅ ; else

v(m) =





n ; m = 3n+ 1

n ; m = 3n+ 2

∅ ; else

w(m) =





n , m = 3n+ 2

n ; m = 3n+ 3

∅ ; else,

where m and n are numbers from Z.

u(m) 0 0 ∅ 1 1 ∅• • • • • •
0 1 2 3 4 5

v(m) ∅ 0 0 ∅ 1 1• • • • • •
0 1 2 3 4 5

w(m) −1 ∅ 0 0 ∅ 1• • • • • •
0 1 2 3 4 5

Fig. 7. A partial Richter-Peleg multi-utility representation of the semiorder.

Example 7. Let - be a semiorder defined on R as follows:

x - y ⇐⇒ x ≤ y + 1.

Then, the family of functions {ur}r∈[0,2) is a partial Ritcher-Peleg multi-utility

representation (see Figure 8):

ur(x) =





4n ; x ∈ [4n+ r, 4n+ r + 1)

∅ ; x ∈ [4n+ r + 1, 4n+ r + 2)

4n+ 2 ; x ∈ [4n+ r + 2, 4n+ r + 3)

∅ ; x ∈ [4n+ r + 3, 4n+ r + 4)
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where x ∈ R and n ∈ Z.

u0(x) ∅ 0 ∅ 2 ∅ 4
[ ) [ ) [ )
0 1 2 3 4 5

u0.5(x) ∅ 0 ∅ 2 ∅ 4
[ ) [ ) [ )

0 0.5 1.5 2.5 3.5 4.5 5.5

u1(x) 0 ∅ 2 ∅ 4 ∅
[ ) [ ) [ ) [

0 1 2 3 4 5

Fig. 8. Three partial functions of the partial Richter-Peleg multi-utility representation {ur}r∈[0,2).

Remark 12. Notice that, since regularity of the semiorder is not necessary for

this kind of partial multi utility representations, there are semiorders that cannot

be represented by means of a Scott-Suppes representation but that they can be

represented through a partial multi-utility Richter-Peleg representation.

4.1. Partial Scott-Suppes representations

As it has shown, partial (Richter-Peleg) multi-utility may be useful in order to repre-

sent intransitive relations and, in particular, semiorders. However, dealing with these

last orderings, to keep the threshold could be a good technique if we want to simplify

the representation (e.g. reduce the number of functions of the representation and

facilitate their construction), but always trying to represent as much semiorders as

possible. For this purpose (simplicity and usefulness), mixing partial representabil-

ity and the threshold seems a plausible answer: partial SS-representability.

Since we keep the threshold, by means of this partial SS-representation we do

not renounce at all to the usual Scott-Suppes representation, but now (as it is shown

by means of examples) we can achieve some properties (mainly representability or

(semi)continuity) in cases for which that was impossible in the usual manner.

In the following lines we introduce two new concepts of partial SS-represen-

tability: one in a ‘multi-utility’ manner (the weak one) and the other one in a

‘Richter-Peleg’ manner (the strict one).

Definition 16. Let - be a semiorder defined on a set X. Then, we say that

the semiorder is partially Scott-Suppes representable (partially SS-representable for

short) if there exists a family of partial functions U such that:
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(i) x - y if and only if there exists u ∈ U such that u(x) ≤ u(y) + 1 and, v(x) ≤
v(y) + 1 for any v ∈ U defined in both x and y.

(ii) x ≺ y if and only if there exists u ∈ U such that u(x) + 1 < u(y) and, v(x) ≤
v(y) + 1 for any v ∈ U defined in both x and y.

Definition 17. Let - be a semiorder defined on a set X. Then, we say that

the semiorder is partially Richter-Peleg Scott-Suppes representable (partially RPSS-

representable for short) if there exists a family of partial functions U such that:

(i) x - y if and only if there exists u ∈ U such that u(x) ≤ u(y) + 1 and, v(x) ≤
v(y) + 1 for any v ∈ U defined in both x and y.

(ii) x ≺ y if and only if there exists u ∈ U such that u(x)+1 < u(y) and, v(x)+1 <

v(y) for any v ∈ U defined in both x and y.

Since the functions of a partial RPSS-representation U are isotonic, that is,

for any partial function u ∈ U defined in a pair x, y ∈ X such that x ≺ y it

must hold that u(x) + 1 < u(y), it migth seem more successful to obtain a partial

RPSS-representation instead of a partial SS-representation. However, notice that

both kind of representations totally characterize the order structure and, since the

concept of partial RPSS-representation is more restrictive, there are simple cases

(as it is shown in Example 8) in which this representation is less ‘comfortable’ or

useful than the partial SS-representation.

Example 8. Let - be a semiorder on X = { 1n}n∈N ∪ {0} defined as follows:

1 ≺ 1

2
≺ · · · ≺ 1

n
≺ 1

n+ 1
≺ · · · ≺ 0, n ∈ N.

It is trivial that the semiorder is actually a total order. It is trivial too that

this semiorder fails to be regular and so, it cannot be represented through a SS-

representation.5

Nevertheless, it is easily partial SS-representable just by means of the following

two partial functions:

u(x) =





2n ; x = 1
n , n ∈ N

∅ ; x = 0
v(x) =





0 ; x ∈ { 1n}n∈N
2 ; x = 0

The example before proves that, since regularity is not a necessary condition for

the partial SS-representability, then there are partial SS-representable semiorders

that fail to be SS-representable.

Proposition 4. A SS-representable semiorder is also partial (Richter-Peleg) SS-

representable. The converse is not true since there are partial (Richter-Peleg) SS-

representable semiorders that fail to be SS-representable.

5See 7,13,14 for more necessary conditions for representability and also for continuity.
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However, as the following proposition shows, it is impossible to obtain a partial

RPSS-representation through a finite number of partial functions of a non regular

semiorder.

Proposition 5. Let - be a non regular semiorder on X. If there exists a partial

RPSS-representation U of the semiorder, then the cardinal of U is infinite.

Proof. Since it is not regular, we may assume that there is a sequence {xn}n∈N
and an element x ∈ X such that x1 ≺ x2 ≺ · · · ≺ xn ≺ xn+1 ≺ · · · ≺ x, n ∈ N.

By contradiction, we suppose that the cardinal of U is finite. Since xn ≺ x for

any n ∈ N, for any n ∈ N there must exist a partial function un ∈ U such that

un(xn) + 1 < un(x). But, since the cardinal of U is finite, it implies that there must

exists a partial function u defined on a infinite number of elements {xmk
}mk∈M⊆N

such that xm1
≺ xm2

≺ · · · ≺ xms
≺ xms+1

≺ · · · ≺ x, s ∈ N, as well as on x.

Therefore, we arrive to the desired contradiction, since the existence of this function

implies that u(x) > n for any n ∈ N, what is not possible.

Remark 13. Therefore, partial SS-representations allow us to represent not reg-

ular semiorder even through a finite number of functions, whereas they cannot be

represented by means of the usual SS-representation. Not regular semiorders may

be represented too by means of a partial RPSS-representation, but in this case an

infinite number of partial functions is needed.

Moreover, the advantages of the partial (RP)SS-representations can be found

dealing with continuity too:

Remark 14. Since any SS-representation of a semiorder is also a partial (Richter-

Peleg) SS-representation, any continuous SS-representation of a semiorder is also

continuous partial (Richter-Peleg) SS-representation. The converse is not true since

there are continuous partial (Richter-Peleg) SS-representations of semiorders that

fail to be continuously SS-representable (see Example 9).

Example 9. Let - be the usual semiorder on X = R \ (0, 0.5] defined as:

x - y ⇐⇒ x ≤ y + 1, x, y ∈ X.
If we endow the set X with the corresponding order topology τ< of the euclidean

order ≤ on X, it is well known 6 (see also 14 for more necessary conditions for

continuity) that this semiorder is not continuously representable. However, we can

construct a continuous partial RPSS-representation by means of the following three

continuous partial functions:

u(x) =




x ; x 6= 0

∅ ; x = 0
v(x) =




x ; x /∈ (0.5, 1]

∅ ; else,
w(x) =





0.5 ; x = 0

x ; x ∈ (0.5, 1]

∅ ; else.
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5. Further comments

In this paper a new concept of representability has been introduced, always trying to

match simplicity with usefulness as well as generalizing the classical ones. Through

this partial representability the ordering is totally characterized and, besides, the

amount of data needed for doing that is reduced. At the same time, we achieve to

represent more orderings than by means of the usual concept of representability.

In particular, this may be remarkable in the case of semiorders, where the usual

Scott-Suppes representation seems to be too restrictive, since non regular simple

semiorders cannot be represented.

Several recent papers have studied the problem of representability
1,2,13,7,16,20,26,29, as well as the corresponding continuity 4,5,14,12. Although new

results and some characterizations have been achieved, some questions are still

open.

This new concept of partial representability increases the set of orderings that

are now (continuously) representable (by means of partial functions) and so, it opens

an analogue study in order to identify that set, as it was done in the papers cited

before by using the classical approach.

Remark 15. We have shown in the example of Remark 11 that Theorem 3 in 16 is

incorrect. It is easy to check that the preorder of Remark 11 satisfies the hypothesis

of the theorem, however, it does not admit a semicontinuous multi-utility. The

statement of this Theorem 3 is as follows:

Theorem 3 16: Let X be a topological space with a countable basis. If - is a

near-complete upper (lower) semicontinuous preorder on X; then it has an upper

(lower) semicontinuous finite multi-utility representation.

In particular, if we go into the details of the proof of Theorem 3 in 16 we notice

that, after applying Dilworth’s theorem in order to guarantee the existence of a

partition {X1, ..., Xn} of X such that - ∩(Xi × Xi) is a total preorder for each

i ∈ {1, ..., n}, the authors define n total preorders -i on X as follows: x -i y if and

only if {z ∈ X : z - x} ∩Xi ⊆ {z ∈ X : z - y} ∩Xi. If - is lower semicontinuous

(i.e. {z ∈ X : z - x} is a closed subset of X for all x ∈ X), then -i is a lower

semicontinuous (not upper semicontinuous as the authors claim) total preorder on

Xi, not on X in general, and therefore, when applying Rader’s theorem to -i on

Xi, one can only guarantee the existence of a lower semicontinuous utility function

ui on Xi, so that {u1, ..., un} is no longer a lower semicontinuous representation of

- on X, and the theorem cannot be proven.

Appendix

As we said, a similar proof –but for usual functions, not partial– of the following

lemma was done in 20.

Lemma 2. Let - be a preorder without isolated points defined on a topological space
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(X, τ). If there exists a continuous partial multi-utility representation {u1, ..., un},
then both d(x) and i(x) are closed subsets of X for all x ∈ X.

Proof. First, notice that d(x) = {y ∈ X; y - x} coincides with the set {y ∈
X;uk(y) ≤ uk(x),∀uk defined in both}.

Consider an arbitrary net (yi)i∈I convergent in X, such that yi ∈ d(x) for any

i ∈ I. Let g be the limit of this net: (yi)i∈I −→ g. In order to show that d(x) is

closed it suffices to prove that g ∈ d(x).

By definition there is no isolated points. Therefore, since the number of func-

tion is finite, there must be –at least– a function ul defined in all the points of

a subnet (yj)j∈J⊆I (otherwise, there exists an index i0 ∈ I such that there is no

function defined in yi for any i > i0, arriving to a contradiction). It is well known

that the subnet converges to the same point of the net, that is, (yj)j∈J⊆I −→ g.

Since functions uk –in particular ul– are continuous, {ul(yj)}j∈J⊆I −→ ul(g). But

ul(yj) ≤ ul(x) for any j ∈ J so, we deduce that ul(g) ≤ ul(x). Thus, g ∈ d(x).

Therefore, d(x) is closed.

Analogous proof is done for i(x).
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