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Abstract—Unmanned Aerial Vehicles (UAVs) are becoming
increasingly popular and the amount of UAV traffic in urban
environments will largely increase in the future, due to profitable
tasks which are particularly suited to UAVs, e.g., parcel delivery
and surveillance, in particular in the context of smart cities.
Trying to ensure the traffic safety and efficiency by acting on
the UAV controller alone might be challenging, since the set of
involved players (regulators, manufacturers, business users) is
large and diversified. In this work, we address this problem
by proposing a language for defining rules suitable for UAV
traffic which can be enforced in a decentralized way by the UAVs
themselves, without any need for communication and regardless
of the UAV navigation algorithm. The language allows to express
realistic rules, such as ‘“when cruising, keep a minimum altitude”,
concisely and such that they can be processed online by each
single UAV basing on its perception of the nearby environment.
We experimentally validate the ability of our proposal to impact
on the UAV traffic efficiency and safety by performing a large
number of simulations with and without a set of realistic rules.

Index Terms—Agents, Simulation, UAVs, Rules, Safety, Smart
Cities

I. INTRODUCTION AND RELATED WORK

Unmanned Aerial Vehicles (UAVs) are becoming increas-
ingly popular because of their wide variety of applications:
urban security, military use, traffic surveillance, and, recently,
goods delivery. Most of them well fit the scenario of smart
cities: in such an urban environment, an UAV must be able
to take a number of decisions in real time, with a limited and
possibly noisy perception of the environment. Such decisions
must take into account the need of avoiding collisions with
buildings and other physical objects while, at the same time,
trying to perform the UAV specific task (e.g., reaching a final
destination to deliver a parcel).

With the foreseeable increase of the UAV traffic, it is evident
that the goal of ensuring the efficiency and safety of the traffic
itself might not be pursued by working on the UAV controller
alone, mainly because the set of players involved in the UAV
scenario (regulators, manufacturers, business users) is large and
diversified. A different option consists in devising and enforcing
a common regulation, similarly to what has been done for the
case of road traffic at the dawn of its development. However,
currently there are no official, domain specific, and widely
adopted rule systems for which the UAVs have to comply
with; in fact different communities (e.g., big companies such
as Google, Amazon, etc., or specific commissions) are still
discussing about various scenarios where UAVs traffic could

be regulated either by a centralized management system or
independently on each UAV.

In this work, we attempt to address this problem and propose
a language for defining rules suitable for UAV traffic in an urban
environment which can be enforced by the UAVs themselves
without the need for mutual communication. Our contribution
is twofold. First, we propose and experimentally evaluate a
model for urban airspace traffic including buildings, UAVs,
and their controllers which try to abide by the rules. Second,
we propose a language (syntax and semantics) to define the
rules which can be enforced in our model: the compliance to
the rules can be evaluated online and on board, regardless of
the algorithm being used by the UAV controller for navigation
and without requiring communications with other UAVs, nor
with a centralized authority. Our language is expressive enough
to define concisely rules of realistic complexity such as “when
cruising, keep a minimum altitude” or “keep a minimum
distance from buildings”. Finally, we experimentally validate
our model (with and without rules) by performing a large
number of simulations: the results show that the introduction
of the rules impacts on the UAV traffic efficiency and safety
in a consistent way.

To the best of our knowledge, there is only one study which
propose a methodology for regulating UAV traffic in a fully
decentralized scenario, by means of Defeasible Logic [1]. The
cited work differs from our proposal since the proposed ruling
system requires the communication among UAVs (whenever
conflicts have to be solved) and is not fully agnostic w.r.t. the
navigation algorithm.

A language which is very close to our proposal, but focus
on road traffic instead of UAVs, has been proposed in [2], in
form of a context-free grammar, as in our case. The authors
also use the proposed language to generate automatically, by
means of Grammatical Evolution, new sets of rules which can
improve the traffic efficiency and safety.

Another attempt to rule the UAVs has been made in [3],
where the authors propose a method based on a Genetic
Algorithm (GA) for generating a set of instructions able to
guide the UAVs. The cited paper considers a military scenario
in which UAVs monitor enemies in an open environment, rather
than an urban environment.

More research have been done instead on building new
controllers—e.g., fuzzy controllers [4], by means of GA [5],
for optimal path-finding [6], [7]—or centralized/decentralized
systems for managing UAVs traffic [8], [9]: both this wealth of



research and our work share a common high-level goal, which
is to shape how the UAV traffic will develop in order to ensure
its effectiveness and safety.

II. THE MODEL

We consider a scenario with discrete space and discrete time
in which buildings exist and a number of UAVs move, possibly
colliding with other UAVs or buildings.

A. Space, buildings, and UAVs

The space is a finite, discrete set S = [0,15] x [0,15] X
[0,15] € N3. We call cell a point of S: a cell is defined by its
coordinates (z,y, 2).

A building is a subset of the space corresponding to a
parallelepiped with the bottom face lying on the plane with
z = 0, i.e., on the ground. The building is defined by a position
x0, Yo and three sizes I ,1l,,1,: a cell (z,y,z) belongs to a
building if and only if = € [z, zo + 2], ¥ € [Yo, Yo + 1], and
z € [0,1,]. We denote by B the set of all the buildings in the
space S.

An UAV is an agent which can move in the space. The UAV is
defined by its position (x,y, z), its status s € {alive, collided},
its controller, and its target cell (xy,yy,0). At each time step,
an UAV may stochastically be involved in a collision, which
results in its status being set to collided. In particular, a collision
occurs if any of the following conditions is met:

« the UAV position belongs to a building (i.e., 3B € B |
(z,y,2) € B) and a random number in [0,1] is lower
than pp insides

« the UAV position is adjacent to a cell belonging to a
building (i.e., such that the Manhattan distance between
the position and the building cell is exactly 1) and a
random number in [0, 1] is lower than pp ciose;

o for each other UAV in the same position, a random number
in [0, 1] is lower than py same;

o for each other UAV in an adjacent cell, a random number
in [0,1] is lower than py ciose-

In the latter two cases (collisions with other UAVs), the status
of the other UAV is set to collidedtoo.

Upon the check for collisions, each UAV position is updated
according to the following procedure. If the UAV status is
s = collided and z > 0, then (z,y,z2) — (z,y,z — 1)—
i.e., the UAV falls. If the UAV status is s = alive, the new
position is determined by the controller output m € M =
{+1,,-1,,+1y,-1,,+1.,—1,,@}, where m = +1, results
in (z,y,2) = (x+1,y,2), m = =1, results in (z,y,2) —
(x = 1,9,2), ..., m = @ results in (x,y,2) — (x,y,2).
Otherwise (i.e., if the UAV is collided and already on the
ground), the position remains unchanged. In other words, the
speed of an UAV is at most 1 cell for each time step.

B. UAVs controller

The UAV controller is an algorithm which, at each time
step, processes an input corresponding to the UAV view of the
space around it in order to produce an output m € M which
itself determines how the UAV position will be updated (see

Section II-A). The controller may be stateful (that is, its output
may depend also on an internal state which is the result of
previous processing) and non-deterministic.

More in detail, the input of the controller of a UAV w consists
of:

1) the set B of buildings and the size I5,15,15 of space S;

2) the positions of all the other UAV's whose positions belong
to the cube with side length equal to 2v 4+ 1 and center
in u position (i.e., the position (2/,y’, z’) of each UAV
such that 2’ € [t —v,z +v], ¥ € [y — v,y + v], and
2 elz—v,z+0]);

3) the target cell (xy,yy,0) of u;

4) a function r : § — {allowed, denied} which maps each
cell of the space to a binary value representing if that cell,
at the current time step and by the UAV u, may (allowed)
or may not (denied) be occupied.

The four components of the input represent, respectively: (i) an
unlimited knowledge of the non-moving objects in the space
(i.e., buildings)—in other words, we assume that a map of
the space is available to the controller; (ii) the goal of the
controller itself; (iii) a limited knowledge of moving object
(i.e., other UAVs) around the UAV; (iv) the knowledge of the
current effects of the rules, from the point of view of the UAV
itself.

With respect to the function r defining allowed and denied
regions of the space, we remark three considerations—the
description about how 7 is determined is given in Section II-C.

First, the function itself may be different for different UAVs
or even for the same UAV at different time steps: for instance,
a rule stating, informally, that “a minimum safety distance
should be kept to the closest UAV” will result in different
denied regions at different time stamps, if the closest UAV is
moving.

Second, since we chose to model the concept of regulation
with a function r which, basically, marks some regions of the
space as denied, instead of marking the actions themselves
as denied (e.g., “you cannot move up”), our choice may be
easily extended to more sophisticated abstractions, such as,
e.g., continuous space, or UAVs moving at different speeds.

Third, the denied regions defined by r are indeed just an input
of the controller: a specific controller may actually ignore this
input. This allows to model, and hence investigate, interesting
interactions involving the controller trade-off between need to
reach the target cell and will of complying with the rules and
global indexes such as traffic efficiency and safety.

In the present study, we considered two different controllers,
whose descriptions follow.

1) A* controller: A¥* is an algorithm commonly used for
path-finding [10], which is an extension of the Dijkstra’s
algorithm. Given a start position, A* explores all the possible
paths leading to the target position, considering at first the ones
which have lower costs. Because of this reason, this algorithm
is able to find the shortest path avoiding obstacles, so it is a
good candidate as a controller for the UAVs in our model.

In our case, A* considers as an obstacle a cell which belongs
to a building, or is occupied by one or more other UAVs, or



is denied by the rules. Since, according to this definition, the
obstacles could change with time, this controller re-applies the
A* algorithm at each time step.

2) Square-arc (SA) controller: This controller is a simpler
controller which realizes the following behavior: (i) reach a
safe altitude by moving only up (m = +1,); (ii) if already
at a safe altitude, reach the z-coordinate x; of target cell by
moving only on the x axis (m € {+1,,—1,}); (iii) if already
at a safe altitude and with x = x ¢, reach y; by moving only
on the y axis; (iv) if above the target cell, reach the ground
by moving only down (m = —1,).

The safe altitude z, is determined by considering all the
buildings, cells occupied by one or more other UAVs and
denied regions whose projection intersect the planned path on
the x, y-plane (which is always an “L-shaped” path): z; is set
to the lowest free cell or, in case such definition would lead
to zs > n,, to n,. Since denied regions could change over the
time, the safe altitude is recomputed at each time step: note,
however, that the UAV will not go down unless already above
the target cell.

C. The rules

We here describe how the function r is built which de-
termines the regions of the space that are denied, at the
current time step and for a specific UAV w. In brief, r is
built starting from a set R of rules, expressed according to a
predefined language, and evaluated on the base of the UAV
context (position, building, other close UAVs).

A rule is a pair R = (P, c¢), where P is a non-empty set
of boxes and c is a condition. A box is defined by a tuple
(0, Yo, 20,1, t,1), where x¢, yo, 2o represent the position of the
center of the box, [ > 0 determines the side length 2] + 1
of the box, t € {full, +,, —, +y, —y, +2, —»} represents the
shape of the box, and i € {incl, excl} represents the fact that
the center is included or not in the box. The actual shape of
the resulting box derives from a cube with side length equal
to 2] + 1 and center in zq, Yo, 29, as follows. The cube is full,
if ¢ = full, or halved, otherwise: ¢ = +, means the half with
T > xg or x > xg, with ¢ equals to incl or excl, respectively,
and similarly for the other values of t—: does not impact
the box when ¢ = full. For example, (5,5,5,2, +,, excl) is
the parallelepiped going from (3,6, 3) to (7,7,7), both cells
included.

A condition is a predicate operating on a set of variable
concerning the UAV position, its target cell, the closest other
UAV, and close buildings. More in detail, a condition is the
constant true or a conjunction of one or more basic conditions
or negated basic conditions. A basic condition is a coordinate
condition or a distance condition, which respectively operate
on (possibly separately) coordinates of the target cell, the UAV,
or closest UAV, and distances to the closest UAV or building.

Figure 1 shows the context-free grammar, in the Backus-
Naur Form, which defines the language of all possible rules.

The function r : § — {allowed, denied} marking each cell
of the space as allowed or denied is defined by a set R of rules
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Fig. 1. Backus-Naur Form of the context-free grammar for the traffic rules.

basing on the coordinates x,y, z of the UAV being controlled,
its target cell xy,yr, zy = 0, its Manhattan distances dp,ciosest
and dp closest to the closest other UAV and building, respectively,
and the coordinates T closests YU,closests ZU,closest Of the closest
other UAVs—in case two or more other UAVs are at the
same shortest distance, a random one of them is considered.
Note that the distances and the closest UAV coordinate can be
obtained by processing the controller input which includes (see
Section II-B) the set of all buildings B and the coordinates
of all other close UAVs. The subset of S to be set to denied
is determined as follows: for each R € R, if the condition is
met, all the cell belonging to the boxes are set to denied.

D. Examples of rules

In order to ease the comprehension of the rule syntax and
semantics, we provide here three examples of (set of) rules
which express realistic limitations or constraints that can be con-
cisely, yet ambiguously, expressed using the natural language.
The examples also allow to appreciate the expressiveness and
conciseness of the our proposed language.

P ={(z,y,2,1,—,,excl), (z,y, 2, 1, —, excl),
(x,y,2,1,+4,excl), (z,y, 2,1, —, excl),
(x,y,2,1, 44, excl) }

Ry =(P,z <4N—-x=uy)

Ry =(P,z <4 N—-y=vyy)

The two rules above express together the constraint saying
“flight at a min altitude of 4”. Intuitively, the rules enforce a
minimum altitude of z = 4 by combining 5 half boxes, the only
excluded box (among the 6 possible halves) being the above
half (t = +.), which results in all the cells “around” the UAV



to be denied, with the exception of those being above the UAV.

The constraint takes two rules, which differ in the condition,
to be expressed. This reflects the fact that the constraint has
not to be applied when the current z of the UAV is already
> 4, nor when the UAV is currently above its target cell (i.e.,
when x =2 Ay = yy).

R :({mU,closestv YU ,closesty 2U closests 1, full, il’lCl}, true)

The rule above expresses the concept of “keep a min distance
of 2 from other UAVs”. This rule is simple since it has no
condition (i.e., the boxes are always present, provided that at
least one other UAV is viewed by the current UAV) and the
denied region is determined by a single box.

z,Y, =z, ]- X GXCD} dB ,closest S 2)
z,Y,z, 17 +z, excl } dB closest — < 2>
<2)

2)

2)

(
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(
(
(
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{
{
{
{
{

( $7y727177276XC1 } dg’

B, closest —

Finally, the 5 rules above express together the constraint saying
“keep a min distance of 2 from buildings”. The key idea is to
impose a denied half cube on a given direction and centered
(with center excluded) on the UAV whenever the UAV is too
close to a building in that direction. The rules are 5 instead of
6 because our model for the buildings makes impossible the
event of an UAV moving below a building.

II1. EXPERIMENTAL EVALUATION

We performed a thorough set of experiments with a twofold
aim. First, validate our model for the space, buildings, UAVs,
and collisions. Second, verify the ability of our proposed rules
syntax and semantics to express a set of rules which can
effectively impact on the (simulated) UAV traffic.

To this end, we implemented a simulator and run a number
of simulations by varying the conditions and the amount of
injected traffic. In particular, we considered a single space S
with [$ = lf =1$ =10 and 4 sets B of buildings, such that

the ratio of space occupied by buildings was v = M €

{0.01,0.05,0.1,0.15}. Each simulation lasted 7' = 3000 steps
and was run as follows, at each time step.

1) The current number n of UAVs in the simulation (initially,

n = 0) and a predefined target number ny,,x of UAVs

are compared: if npew = Tnew(Mmax — 1) > 0, @ number

nnew Of UAV are generated and added to the simulation.

For each new UAY, the initial position is set at z = 0
and randomly concerning x and y, avoiding all the cells
belonging or adjacent to buildings; the target cell is chosen
randomly with the same criteria.

2) Then, the position of each UAV is updated according to
the procedure described in Section II-A.

3) Finally, each UAV which meets at least one of the
following conditions is removed from the simulation:
(a) the UAV is in its target cell; (b) the UAV status is

collided and its position belongs to a building; (c) the UAV

status is collided and its z = 0 (i.e., it hit the ground).
In other words, after a “slow start” aimed at avoiding to crowd
the ground at the beginning of the simulation, the number n
of UAVs, i.e., the injected traffic, is kept constant.

We experimented with 1oy = 0.2, v = 2, PBinside = 1,
DPB.cose = 0.25, pysame = 0.75, and pycose = 0.5 and
performed 30 simulations (with different random seed) for
each of the value of nnx € {1,5,10,...,75,80}.

Moreover, in order to investigate the impact of the controller
algorithm, we experimented with 3 different policies for the
choice of the controller algorithm when generating a new
UAV: always A*, always SA, A* or SA with equal probability
(we denote this case by “Mix”). Finally, we repeated the
experiments by considering the case of no rules (R = 0)
and a case with R including the example rules of Section II-D.
We hence performed a total of 30 x 17 x 4 x 3 x 2 = 12240
runs.

After each simulation, we measured the overall number
Neollision Of collisions and the overall ground traveled distance
d;: the latter is the sum of the Manhattan distances between the
starting cell and the target cell for each UAV which reached
the target in the alive status during the simulation. The two
indexes represent the safety and the efficiency of the transport
system as a whole and depend on the amount 7, of injected
traffic—clearly, the greater the number of circulating UAVs, the
longer the distance, the more frequent the collisions. In order
to mitigate this dependency, hence allowing for a different
perspective in analyzing the results, we derived two other

1 Z”auu\l Potision
j=1 kI

Tactual

and the average ground speed AGS = M — Z?““{" zj where
Ngcual 1 the number of all UAVs which lived in the simulation,
N ision 18 the number of collisions in which the j-th UAV
was involved, k7 is the number of time steps it lived in the
simulation, and di is its ground travelled distance (set to O for

collided UAVs).
A. Results

Figures 2 and 3 present the results of our experimental
analysis: for both, each point is the result of the average of
the index across the 30 simulations in the same conditions.

Figure 2 shows the average ground speed AGS (above) and
average accidentality AA (below) vs. injected traffic 1y, in
different conditions. Two interesting considerations may be
done. First, it can be seen that, as expected, the introduction
of the example rules causes a decrease in the accidentality and
in the average ground speed: this confirms that our proposed
model and rules allow to impact on the trade-off between
efficiency and safety of the simulated UAV traffic in a consistent
way. Second, it can be seen that, in particular for the AA
index, the differences among the three controller policies tend
to become negligible when using the rules: in other words,
ruling the system appear as a way for making the traffic safety
more predictable, regardless of the actual UAV controller.

Figure 3 shows the overall ground travelled distance dy vs.
overall number Tieoision Of collisions for the Mix controller

indexes: the average accidentality AA =
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Fig. 2. Average ground speed AGS (above) and average accidentality AA (below) vs. injected traffic nmax for different controllers (line color), rate of buildings

vB (plot column), and rules (line style).
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Fig. 3. Overall ground travelled distance dy vs. overall number Teeollision Of collisions for the Mix controller policy, different rate of buildings vp (plot column),

and rules (line style).

policy, for different values of the rate of buildings yg. It can
be seen that there is a point (i.e., a value for the injected
traffic nmax) after which adding more UAVs does not result in
an increased cit, whereas it leads to an increased number of
collisions. This point is the point of congestion of the space
and, as expected, the overall ground travelled distance (a proxy
for the traffic efficiency) decreases with the increase of yp:
in other words, the lower the free flight space, the lower the
overall ground travelled distance a swarm of UAV can serve,
regardless of the swarm size.

IV. CONCLUDING REMARKS

We have proposed a language (syntax and semantics) for
defining rules for UAV traffic in an urban environment, a
scenario whose importance is going to greatly increase in the
near future, in particular for smart cities. The language builds
on a model for space, buildings, UAV controllers, and collisions
which we proposed and validated experimentally through a
large number of simulations. The experiments show that the
introduction of a small set of hand-written rules of realistic
complexity, which can be concisely written using our proposed
language, leads to consistent and predictable effects on UAV
traffic efficiency and safety.
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