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Abstract

Fungal spores and mycelium fragments are particles which become and remain airborne

and have been subjects of aerobiological studies. The presence and the abundance of taxa

in aerobiological samples can be very variable and impaired by changeable climatic condi-

tions. Because many fungi produce mycotoxins and both their mycelium fragments and

spores are potential allergens, monitoring the presence of these taxa is of key importance.

So far data on exposure and sensitization to fungal allergens are mainly based on the

assessment of few, easily identifiable taxa and focused only on certain environments.

The microscopic method used to analyze aerobiological samples and the inconspicuous

fungal characters do not allow a in depth taxonomical identification. Here, we present a first

assessment of fungal diversity from airborne samples using a DNA metabarcoding analysis.

The nuclear ITS2 region was selected as barcode to catch fungal diversity in mixed airborne

samples gathered during two weeks in four sites of North-Eastern and Central Italy. We

assessed the taxonomic composition and diversity within and among the sampled sites and

compared the molecular data with those obtained by traditional microscopy. The molecular

analyses provide a tenfold more comprehensive determination of the taxa than the tradi-

tional morphological inspections. Our results prove that the metabarcoding analysis is a

promising approach to increases quality and sensitivity of the aerobiological monitoring. The

laboratory and bioinformatic workflow implemented here is now suitable for routine, high-

throughput, regional analyses of airborne fungi.

Introduction

Fungi are ubiquitous and are among the most ecologically important and widespread groups

of organisms which play key roles in multiple environments [1]. Fungal spores and mycelium
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fragments are usually so small that they belong to the group of particles that becomes and can

be aerosolized (average size of 10 μm); therefore they have been investigated by aerobiologists

since the early years of this field [2]. Aerobiology has been acknowledged in the 1930s as the

study of biological particles in the air, including the diversity and the processes involved in the

movement of microorganisms in the atmosphere between different geographical locations [3].

The long-distance dispersal of fungal spores is especially relevant for many crop plants patho-

gens, such as the obligatory and biotrophic fungi producing huge numbers of spores and caus-

ing, e.g. rust, blight, powdery and downy mildew diseases. Wind dispersal over hundreds or

thousands of kilometers has caused the spread of these severe crop diseases on continental and

even global scales [4, 5].

Besides being parasites of plants, fungi with their multiple life styles are also of general

interest as they are some of the most common, severe human and clinical pathogens (e.g. [6–

12]). They act as agents for a multiplicity of diseases, such as infections, toxicosis, allergic

asthma, allergic rhinitis, allergic sinusitis, broncho-pulmonary mycoses, and hypersensitivity

pneumonitis [6, 13–15]. Allergenic properties of spores, tissue fragments and metabolites

released by fungi have been studied plentifully [6, 13, 16–20]. Because fungal aerosol in indoor

environments depends in most cases from outdoor concentrations [21], the presence and dis-

tribution of allergenic fungi represents an important issue for public health [21, 22].

Researches on aerobiological samples have been performed in indoor and outdoor environ-

ments and have focused both on airborne pollen grains and fungal spores [21, 23–27]. Studies

on pollen grains have developed into established monitoring networks over several countries

worldwide [i.e. Italy (http://www.pollnet.it), United Kingdom (http://www.worc.ac.uk/

discover/national-pollen-and-aerobiology-research-unit.html), USA (http://www.aaaai.org/

global/nab-pollen-counts)]. In particular, the development of DNA barcodes for plants

enhanced aerobiological analyses of plant diversity based on pollen grains [28–31]. In the past

few years studies on pollen diversity have seen a large application of high throughput sequenc-

ing (HTS) technologies in palynology, melissopalynology and nutritional biology researches

[32–38]. Recently Kraaijeveld et al. [38] accurately identified pollen from mixed airborne sam-

ples, including species that could not be recognized microscopically, by sequencing them with

the Ion Torrent HTS platform.

On the contrary, the knowledge about fungal diversity in airborne samples is still very poor

in comparison to plant data. Limitations to determine airborne fungal diversity are in part due

to the very variable daily and seasonal loads of fungal (dia)spores, and to the limitations of the

microscopic method used in aerobiological analysis [14, 39]. Still, aerobiology mostly employs

morphological analyses of volumetric samples (usually spores/m3) collected with spore trap-

ping and differentiated in non-viable and viable air sampling [21, 39, 40]. The collection of

volumetric samples keeps costs low and allows the quantifications of the results. However, it

usually provides only a shallow taxonomical identification of the few, most abundant and

recognizable taxa, as morphological analyses suffer from being highly dependent on human

expertise (i.e., it needs highly trained personnel). Indeed, routine assessments of fungal spores

in pollen bulletins usually report only on a few genera, such as Alternaria and Cladosporium
(https://www.pollenwarndienst.at/en/current-data/current-charts.html; http://www.isac.cnr.

it/aerobio/ai/6bulletins.htm; e.g. http://www.arpa.umbria.it/pagine/spore).

In the last decade, molecular approaches (e.g., DNA barcoding, RFLP) have also been

implemented to assess fungal diversity in airborne samples and have strengthen the perception

that the majority of the genera were mostly overlooked by morphological inspections of either

viable or non-viable samples [14]. Among the few existing studies, Pashley et al. [14] used

PCR amplifications of the ITS and LSU regions coupled with cloning and sequencing of

RFLP-types to show that more than two third of all genera sequenced were not detected by
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morphology, and that the rates were highly variable on daily basis. It was also highlighted that

meteorological data, time of year, and length of the sampling period should be taken into

account when comparing studies of fungal taxa with seasonality [38, 41].

Despite the wide popularity of HTS approaches in monitoring and uncovering microbial

fungal diversity from diverse environments [42–47] so far very few researches applied HTS for

fungal aerobiological studies. Recently, a DNA sequencing analysis was successfully imple-

mented to identify airborne microorganisms in a hospital to control and supervise hospital

infections [26]. Few other studies have assessed the composition of outdoor, aerial microbial

communities (including fungi) with Illumina MiSeq [48–50] or with Roche 454 [18], showing

potential for the monitoring of air pollution and human health.

In this study, we assessed the fungal diversity from airborne samples by implementing a

DNA metabarcoding analysis using the Ion Torrent technology. We targeted the nuclear inter-

nal transcribed spacer region ITS2 and used it as fungal barcode [51–53] in mixed airborne

samples collected from four sites of North-Eastern (NE) and Central Italy (Fig 1). With this

approach we aimed at i) assessing the taxonomic composition and diversity within and among

the sampled sites; ii) comparing the molecular data with the ones obtained by microscopy

determination; iii) implementing a laboratory and a bioinformatic workflow suitable for rou-

tine, high-throughput, regional analyses of airborne fungi.

Materials and methods

Sampling

The sampling was carried out in four sites of the Italian peninsula (Fig 1) in the following

regions (city): Friuli Venezia Giulia (FVG, Pordenone, 45˚57’09.2"N 12˚40’54.2"E, 4 m a.s.l.),

Marche (Ascoli Piceno, 42˚52’50.0"N 13˚42’27.4"E, 154 m a.s.l.), Umbria (Terni, 42˚34’48.0"N

12˚37’59.4"E, 130 m a.s.l.) and Veneto (Vicenza, 45˚31’49.6"N 11˚35’24.2"E, 39 m a.s.l.). Sites

in FVG and Veneto are in the North-Eastern Italy, those in Marche and Umbria are in Central

Italy; North-Eastern sites are located about 500 km far away from the those in Central Italy. In

general FVG and Veneto have lower average annual temperature (11.8˚C and 11.6 ˚C, respec-

tively) than Marche and Umbria (13.6˚C and 12.9˚C, respectively). The average annual precip-

itation is rather homogeneous among the sites, being 1.065 mm in FVG, 797 mm in Marche,

808 mm in Umbria and 845 mm in Veneto [54]. All sites are classified as humid-subtropical

(Cfa) by the Köppen climate classification, characterized by warm temperate climate, fully

humid [55].

In each site, the sampling was performed on the roof of a building at 15–20 m from the

ground using a volumetric sampler (VPPS 2010, Lanzoni) mounted with a sticky tape (Meli-

nex1). The sampling was performed during two whole weeks, corresponding to 5th-12th and

19th-26th September 2016. The sampling did not required any permission as it was performed

by the cooperators of the Italian Regional Agency for Environmental Protection (ARPA, Agen-

zia Regionale per la Protezione all’ Ambiente) for each region.

Meteorological and land use data

Meteorological data were collected from the regional stations of ARPA FVG (located 100 m

away from the sampling point of the aerobiological samples), Regione Marche (6 km), Regione

Umbria (100 m), and ARPA Veneto (10 km).

Land cover data were acquired form Corine Land Cover 2012 (CLC12) data and imported

in Quantum Geographic Information System (QGIS) program. A buffer of 50 km from each

sampling site was used, after taking into account both the distances among sampling sites and
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the Mediterranean Sea. The area of the different land use was calculated on the intersection

between CLC12 and the buffer.

Microscopy analysis

The sticky tape was detached from the sampling drum under a sterile hood and cut in eight

segments. Two segments at the extremities belonged to two incomplete Mondays of the weeks

(the day at which the tape was weekly changed). These pieces were excluded from the molecu-

lar analyses but were microscopically inspected as representatives of the possible diversity that

could have been determined by microscopy analyses alone. The eight fragments obtained in

total were used to screen the presence of fungal spores and perform taxonomical identifica-

tions, which were later compared with the metabarcoding results. The sampling tapes were

Fig 1. Geographical location of the sampling sites in the North-Eastern and Central Italy. Region and city names

are reported (FVG: Friuli Venezia Giulia). The map has been retrieved and modified from http://www.d-maps.com.

https://doi.org/10.1371/journal.pone.0194489.g001
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placed on a glass slide, mounted in water and observed at a light microscope Olympus BH-2.

Fungal spore identification was based on the illustration manual of air samples of Smith [56].

DNA extraction

Each of the remaining six segments of the tape corresponded to one full day of the week (24 h)

starting from Tuesday to Sunday. Each segment was further cut into two half-day parts to fit

them individually into a 1.5 ml tube, taking care that the sticky surface, on which the air sam-

ples were attached, was facing the internal part of the tube. The total DNA was extracted using

the ZR Fungal/Bacterial DNA MicroPrep™ Kit (Zymo Research); the tapes were grinded with

beads for five minutes using a bead-beater. The half-day sections were processed individually

and pooled at the last step of the DNA extraction protocol to obtain a single DNA extraction

for each day. This resulted in a total of 48 samples, 12 for each site.

Molecular analysis and sequencing

The fungal nuclear ribosomal ITS2 region was amplified with the forward primer ITS3 and the

reverse primer ITS4 [57]. The amplicons were obtained in two PCR amplifications. The first

PCR used the ITS2 forward and reverse primers modified with GC rich universal tails on the

5’-end [58], which was identical to the tail applied on the 3’-end of the barcodes used in the

second PCR. The first PCR reaction mix contained 3 μl DNA template (10–20 ng), 3 μl Hot-

MasterMix (5PRIME), 0.5 μl BSA 10X (Sigma-Aldrich), 0.75 μl EvaGreen™ 20X (Biotium),

0.5 μl forward primer ITS3 (10 μM), 0.5 μl reverse primer ITS4 (10 μM) in a final volume of

15 μl. The PCR amplification was performed with CFX 96™ PCR System (Bio-Rad) with the

following cycling profile: 94 ˚C for 2 min and 35 cycles at 94 ˚C for 20 sec, 55 ˚C for 20 sec, 65

˚C for 40 sec followed by a final extension at 65 ˚C for 2 min. A negative control was used to

verify the absence of non-specific amplification products and was carried out for the whole

sequencing process. The second PCR (switch PCR) was required for multiplex sequencing

through attachment of the barcodes. This amplification used primers modified with an ’A’

adaptor and a sample-specific 10 bp barcode to the 5’-end of the forward primer, and a P1

adaptor to the 5’-end of the reverse primer. The reaction was performed in a mix containing

5 μl of the first PCR product, 20 μl HotMasterMix (5PRIME Fisher Scientific), 2.5 μl Eva-

Green™ 20X (Biotium), 1.5 μl forward primer (10 μM), and 1.5 μl reverse primer (10 μM) in a

final volume of 50 μl. PCR conditions were the same as for the first PCR but were run for 12

cycles. All the amplicons were checked for their quality and length by agarose gel electrophore-

sis and pooled in equimolar amount. The resulting barcoded library was run on a E-Gel Pre-

cast Agarose Electrophoresis System (Thermo Fisher Scientific). The 400 bp product was

recovered, measured with Qubit™ Fluorimeter (Thermo Fisher Scientific) and sequenced with

an Ion Torrent Personal Genome Machine (PGM, Thermo Fisher Scientific) provided with a

400 bp reads length 314™ chip (Thermo Fisher Scientific).

Sequence data analysis

Data analysis was performed in QIIME 1.9.1 [59]. High quality sequences were demultiplexed,

reverse primers and barcodes were removed, and reads that did not pass through the filtering

(minimum length 150 bp, minimum average quality score 20, maximum length of homopoly-

mer 8, maximum number of primer mismatches 3) were discarded. The ITS2 region was

extracted with ITSx v1.0.11 [60] by selecting the fungal (F) profile option. Chimeric reads were

identified and filtered out with UCHIME v4.0 algorithm using the reference dataset updated

on 01.12.2016 [53, 61] to obtain the final, high quality dataset. Operational Taxonomic Units

(OTUs) were picked at 97% similarity with open reference strategy and UNITE database,

Metabarcoding of fungi from airborne samples in Italy

PLOS ONE | https://doi.org/10.1371/journal.pone.0194489 March 20, 2018 5 / 20

https://doi.org/10.1371/journal.pone.0194489


updated on November 2016 [62]. The method used for the taxonomic assignment was blast

(max E-value 1e-30). Singletons were removed from the dataset. Statistics and ecological indices

were performed with QIIME [59].

The alpha and beta diversity analyses were conducted on the rarefied dataset. Rarefaction

threshold was set at 1284 reads, which corresponds to the number of reads in the first sample

over 1000 reads. Alpha diversity in terms of OTUs richness and diversity was calculated using

Chao1 [63] and Shannon indices [64]. A one-way analysis of variance (ANOVA) followed by a

Duncan’s new multiple range test was applied to verify the significance of differences in alpha

diversity among the sites with R version 3.2.0 [65]. The beta diversity was calculated with

Bray-Curtis distances principal coordinate analysis (PCoA). As suggested in QIIME tutorial

for de novo OTU picking, stability and robustness of PCoA was assessed using a resampling

procedure known as jackknifing [66, 67]. For this procedure, calculations are reiterated after

omitting one observation and representing the average in a PCoA plot [67]. Here, jackknife

resampling was performed on the OTU table, repeating the PCoA analysis for each resampled

table (with one OTU omitted) and plotting the results (i.e. the variance) as confidence ellip-

soids around the samples [68]. The PCoA was visualized with EMPeror [69].

The sequence data are available at the NCBI short read repository under the accession num-

ber SRR6080480.

Results

Microscopy analysis

The morphological analyses of fungal spores resulted in the identification of 22 genera (S1

Table). The morphological and molecular identification fully corresponded for the genera

Alternaria, Cladosporium, Stemphylium and Torula in all sites. Spores of the genera Lepto-
sphaerulina, Oidium, Peronospora, Pithomyces and Polythrincium (single spores found in

Marche and Veneto), and of the lichen genus Caloplaca were observed on the tapes but corre-

sponding sequence were not recovered by the molecular analysis (S1 and S2 Tables). Also,

Caloplaca, Leptosphaerulina and Oidium were detected in only one of the four sites, precisely

in Marche, FVG and Umbria, respectively.

Sequencing and data analysis

A total of 328,929 raw reads were generated, 176,054 passed the quality filter and had an aver-

age length of 385 bp. After ITS2 extraction and chimera checking a total of 152,418 reads,

ranging from 496 to 6,356 reads per sample, were retained and represented the final dataset

used for the taxonomic assignment and the statistical analyses (S3 Table).

Rarefaction curves showed a large variation in the total number of OTUs among samples.

The curves did not reach saturation (S1 Fig), suggesting that an increased sequencing depth

would detect additional OTUs.

Comparison within and among sites

Alpha and beta diversity of samples were estimated from the rarefied dataset with a minimum

value of 1,284 reads. Two samples from Veneto, V5 and V7, resulted in only 496 and 558

reads, respectively, and were therefore excluded from the further analyses (S3 Table).

The alpha diversity was estimated using Chao1 and Shannon diversity indices (S3 Table). A

significant difference (with ANOVA and Duncan’s new multiple range test p-value <0.05) was

recorded in comparing the two indices between sites (Fig 2, S3 Table). Both Chao1 and Shan-

non indices were significantly higher (with ANOVA and Duncan’s new multiple range test
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p< 0.05) for the two sites from the Central Italy, Marche and Umbria, than with the two sites

from the NE Italy, FVG and Veneto. Veneto showed the lowest diversity values (Fig 2, S3

Table). At genus level, 195 and 194 taxa were found for Marche and Umbria, respectively,

while only 113 and 97 were reported for FVG and Veneto, respectively.

The beta diversity was assessed from Bray-Curtis distance matrices and presented with

PCoA plot. The maximum percentage of variation explained by the single PC1 axis was

35.64% (Fig 3). The samples are grouped mostly according to their geography: samples from

Fig 2. Box plots of Chao1 and Shannon diversity indices estimated for each site. Significant differences among sites

were calculated with ANOVA and Duncan’s new multiple range test and are indicated by different letters a-c (p-

value< 0.05).

https://doi.org/10.1371/journal.pone.0194489.g002

Fig 3. Jackknifed principal coordinate analysis (PCoA) plot of Bray-Curtis distances between the samples of the four sites. Ellipsoids show the

statistical confidence of the analysis.

https://doi.org/10.1371/journal.pone.0194489.g003
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NE Italy (FVG and Veneto) are well separated between each other and also from the samples

from the Central Italy (Marche and Umbria), while these latter were clustered together. This is

due to an uneven distribution of the taxa in the sites: about 25% of the genera (63 out of 239)

detected in the dataset are present only in the sites of Central Italy. On the other hand, in NE

sites we recovered a high number of reads belonging to unidentified fungi, such as uncultured

fungi (about 30% and 20% in FVG and Veneto, respectively; 8% in both Marche and Umbria).

In particular, in NE sites about 15% of the reads belong to an uncultured fungus isolated in air

sample in (GeneBank ID KF800389).

Within the Central Italian samples, only three samples from Marche (M2, M3 and M4) dis-

tinctly segregate from the others (Fig 3), likely due to a higher presence of Phaeosphaerales

and Pleosporales and a lower presence of Capnodiales OTUs (S2 Fig).

Taxonomic composition

The ITS2 analysis of airborne fungi allowed a taxonomic assignment for more than the 99% of

the reads by clustering them to OTU at 97% similarity (S2 Fig). At division level, in all sam-

pling sites the vast majority of reads belonged to ascomycetes (Fig 4A). However, between the

different sites the distribution at division level is not homogenous. The two sites in NE Italy

(FVG and Veneto) present a lower proportion of ascomycetes (71.12 and 80.11%, respectively)

but a higher proportion of reads that could be assigned only at kingdom level (Fungi sp. 28.2%

and 19.1%, respectively, which includes environmental and uncultured fungi) than the two

sites of Central Italy. These latter, Marche and Umbria, are more similar to each other in the

amount of ascomycetes (90.21% and 89.83% reads, respectively) and in the amount of Fungi

sp. (7.3% and 7.9%, respectively; Fig 4A). In all sites less than 1% of the reads correspond to

fungi with no blast hit (0.12% in FVG, 0.93% in Marche, 0.31% in Umbria and 0.20% in

Veneto). Basidiomycetes are present in very low proportions, representing less than 1%

in FVG and Veneto and between 1.5–2% in Marche and Umbria. The most dominant

Fig 4. Doughnut charts showing fungal taxonomic composition at division (A) and class (B) level in the four sampling sites. Relative abundances

of taxa are reported in percentage. “Unidentified fungi” comprehends Fungi sp. and fungi with no blast hit. Taxa accounting for<0.1% of reads are

grouped as “other”.

https://doi.org/10.1371/journal.pone.0194489.g004
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ascomycetes class is Dothideomycetes, followed by Leotiomycetes and Sordariomycetes

(Fig 4B). Basidiomycetes are represented by Tremellomycetes and Agaricomycetes (Fig 4B).

The order Capnodiales was the most represented order in all the sites and was followed

by Pleosporales. The most represented genera in all the sites were Cladosporium, Alternaria,

Botrytis and Periconia (Fig 5A).

Sixty-two taxa identified up to the genus level are shared by the four sites, comprising about

99% of the total reads, (Fig 5B; being Cladosporium, Alternaria, Botrytis and Periconia the most

abundant). FVG, Marche and Umbria shared 24 taxa (being Naevala and Vuilleminia the most

abundant genera, both representing >0.1% of the reads). Low represented taxa (<0.1% of the

reads) are shared among two or three of the four sites (S2 Table). In each site, we also recover

unique taxa (<0.1% of the reads) which were otherwise not detected in the other three sites:

three for FVG and Veneto, 20 for Umbria and 21 for Marche (S2 Table).

At species level, in all four sites the most represented species was Cladosporium herbarum
(the anamorph synonym of Mycosphaerella tassiana, [70–73]). In FVG, M. tassiana (5.59%)

was followed by Botrytis cinerea (1.25%), Alternaria eichhorniae (0.64%), Exserohilum oryzicola
(0.6%), Periconia pseudobyssoides (0.46%), Hannaella luteola (0.24%), Alternaria alternata
(0.13%), Bipolaris sorokiniana and Aspergillus intermedius (0.12% each). In Marche, C. her-
barum (14.35%) was followed by B. cinerea (1.55%), Stemphylium herbarum (0.81%), Phaeo-
sphaeria juncophila (0.39%), A. eichhorniae (0.39%), Angustimassarina acerina (0.37%), Lanzia
echinophila (0.32%), Lophiostoma macrostomum (0.27%). In Umbria, C. herbarum (18.71%)

was followed by B. cinerea (1.03%), Parastagonospora avenae (0.43%), P. juncophila (0.41%), L.

echinophila (0.33%), A. eichhorniae (0.31%), S. herbarum (0.31%), L. macrostomum (0.22%

each). In Veneto, C. herbarum (9.46%) was followed by A. eichhorniae (0.84%), B. cinerea
(0.39%), H. luteola (0.27%), Periconia pseudobyssoides (0.22%), Aspergillus intermedius (0.18%),

A. alternata (0.14%).

Fig 5. A) Bar charts showing the taxonomic composition at genus level in the four sampling sites. Abundances of taxa are reported with the percentage

values of reads. Taxa accounting for<0.1% of reads are grouped as “Other”. B) Venn diagram shows the number of unique and shared taxa identified at

the genus level among sites (as in S2 Table).

https://doi.org/10.1371/journal.pone.0194489.g005
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Meteorological and land use data

Values recorded in the four sites for precipitations, air temperatures, air humidity and wind

speed during the sampling period were quite similar and are reported in S4 Table and showed

in S3 Fig.

Land use information of the four sites for a 50 Km buffer (artificial surfaces, agricultural

areas, forest and semi natural areas, wetlands and water bodies) are reported in S5 Table and

showed in S4 Fig. North-eastern sites present a higher proportion of artificial surfaces and a

lower proportion of forest and semi natural areas (8.87% and 28.49% in FVG, 11.25% and

22.80% in Veneto, respectively) than the site in Central Italy (3.54% and 38.60% in Marche,

2.70% and 45.20% in Umbria, respectively).

Discussion

Fungal diversity in airborne samples: Molecular vs morphological analyses

In this study we characterized the taxonomic composition of airborne fungi across four Italian

sites using the ITS2 region as barcode and the Ion Torrent sequencing platform. The two sites

from Central Italy, Marche and Umbria, showed higher species richness and diversity than the

two sites in NE Italy, FVG and Veneto. Beta diversity analyses group samples on the base of

their geographic location, as a subtle, different taxonomic composition was recovered between

the sites. Alternatively, the fungal composition during the two sampling weeks remains rather

constant within each site.

Spatial contexts (such as pedology, land use and vegetation) determine the availability of

substrates and plant hosts on which certain fungi can develop and spread [74]. In this study

differences in land use among the sites seem to partially explain the taxonomic diversity recov-

ered. The higher presence of forests and semi-natural areas in the sites of Central Italy than in

the NE sites, might represent the reason of a higher fungal diversity. Also, the range of disper-

sion that spores reach is strongly influenced by the characteristics of the landscape (whether

this is natural or anthropogenic modified) at both regional and local scales [75]. The presence

and distribution of fungal communities—and therefore their spores- are influenced by climatic

([76, 77] and reference therein) and meteorological conditions as well [78–81]. Mean air tem-

perature, relative humidity and wind speed are known to be factors shaping the spore distribu-

tion of Alternaria, Cladosporium, Drechslera-type, Epicoccum and Torula [82]. However, here,

we do not correlate the overall diversity observed with the meteorological parameters, as the

recorded meteorological data were rather constant among the sites and were collected over a

too short period (two weeks) to be reliably generalized in a broader context.

The main classes of fungi detected by the ITS2 barcode belonged to ascomycetes, whereas

basidiomycetes were present in very low proportions. The low proportion of basidiomycetes

might be impaired by multiple factors. About 15% of the reads could not be identified; these

reads might indeed hide further asco- or basidiomycetes taxa as well. In outdoor airborne sam-

ples the amounts of the two fungal divisions was often reported to vary during the year, but it

can also highly differ within shorter periods of time (i.e. daily [14, 50]), making the compari-

son of different surveys difficult. Notwithstanding this bias, the low proportion of recovered

basidiomycetes could be attributed to spore dimensions, dispersal ability, weather conditions

(as humidity, precipitations), seasonality, availability of substrate or geographical factors.

Previous studies report that ascomycetes are more common than the basidiomycetes during

dry days [14, 83]. Another study based on ITS sequencing of airborne fungi captured through-

out a year reported that ascomycetes were prevailing (>90%) among larger particles (>9 μm),

while the opposite trend was recorded for smaller particles (<3 μm) [24]. Among spores,
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ascomycetes are more often reported in higher abundances than basidiomycetes. For example,

Fierer et al. [84] reported as much as 97% of ascomycetes using cloning and sequencing of the

universal nuclear marker SSU, while Yang et al. [18] reported abundances reaching over 90%

when sequencing fungal ITS1 in a study where haze and non-haze days in Beijing were ana-

lyzed based on the particulate matters fraction (PMs). The selection of the barcode primers

can also affect the detection of certain taxa [85, 86]; it has been observed that ITS1 barcode

generally captures a higher proportion of basidiomycetes than of ascomycetes [51, 87, 88].

The most widespread taxa. The genera Cladosporium, Alternaria, Epicoccum and Stem-
phylium were represented by the highest read percentages and were abundantly found in the

samples inspected at the microscope as well. These genera have their peak of spore dispersal at

late summer and early autumn [6, 89, 90], and indeed their spores were spread all over the col-

lecting tapes. These fungi are also known to be among the most common causes of allergies

[91, 92].

The sequencing results are characterized by a relatively high percentage of reads here

referred as Fungi sp. (about 7% for central and 25% for NE sites, respectively). These corre-

spond to about 100 OTUs which blasted in NCBI mainly as “Fungal sp.” or “Uncultured fun-

gus” derived from other air surveys (i.e. FJ820545, KP724985, KF800623), confirming the

importance of further investigation on this pool of still unknown, ecological components.

Peculiar taxa. Interestingly, our molecular analyses catch the presence of fungal taxa that

are not expected in urban areas and are peculiar because of their life styles, being these liche-

nized and rock-inhabiting fungi. Indeed, we report the presence of eight lichen genera (Calo-
placa, Cladonia, Flavoparmelia, Lecidella, Physcia, Hyperphyscia, Rinodina, Umbilicaria) of

which the spores of only the genus Caloplaca were identified during the morphological inspec-

tions of the samples. The majority of the detected taxa are epiphytic lichens commonly distrib-

uted in Italy, and can occur also in urban environment if these are not highly polluted. The

only exception is the genus Umbilicaria which comprises of only epilithic species occurring in

montane and alpine environments. To the best of our knowledge, this is the first report of the

detection of lichen spores and lichen sequence data in airborne samples.

Also, the genus Schizoxylon is one of the 70 genera shared by Marche and Umbria. Interest-

ingly this fungus is known to be both saprotrophic and optionally lichenized [93–95] and has

been reported only for Scandinavian countries so far [94]. Its presence in our dataset lets us

speculate on its possible distribution in the Mediterranean region but further researches are

necessary to support this hypothesis.

Surprisingly, rock inhabiting fungi (RIF) were identified as well, though in low amounts.

Some of them belong to widespread genera, such as Knufia, while other sequences correspond

to extremophilic genera, such as the Friedmanniomyces [96]. It is likely that either their pres-

ence in the airborne samples is due to long distance dispersal, or that their identities was

corresponded to closely related taxa which colonize rock surfaces in, or close to, the urban

environments. The distribution of epilithic and endolithic RIF assemblages is still poorly

known, and whether they would be repeatedly recovered in airborne samples should be inves-

tigated further.

Microscopy vs molecular analysis. The lack of detection of certain taxa by molecular

analysis could be due to different reasons: the presence of a primer bias towards those taxa

(the more likely case in this study), the fact that low represented sequences (i.e. singletons) are

removed from the dataset, or the lack of representative sequences in public databases, with

which our data can be compared and referenced to. Moreover, in case of taxa with particular

difficult morphology, the identification can remain ambiguous.

As some taxa were identified only by one of the two techniques, both approaches are still

to be implemented to gain an integrated and comprehensive overview of fungal diversity in
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airborne samples. On one hand, microscopy analyses allow to perform quantitative estimation

of the samples (particles/m3), is a less elaborate method and keeps laboratory costs low. On

the other hand, it renders possible only a shallow taxonomical identification, and this can be

affected by the degree of expertise and the specialization of the operator. Molecular tools such

as DNA metabarcoding, on the contrary, are independent from the operator expertise and

allow to detect a much higher taxonomic biodiversity within the samples. However, costs and

time for the analyses are higher and results might be biased by the preferential amplification of

certain sequences or lack of representative, reference sequences in public databases.

Fungal pathogens and invasive alien species (IAS)

Both microscopy and molecular analyses detected in all the four sites fungal taxa which are

well known plant (e.g. Botrytis, Bipolaris, Periconia, Phaeosphaeria, Parastagonospora, Ramu-
laria, Stemphylium) and animal pathogens (e.g. Acremonium, Candida, Cryptococcus, Torula)

or represent alien species. Within the most detected fungal order Capnodiales (Ascomycota,

Dothideomycetes) the main genera are the cause of many human allergenic diseases, e.g. Alter-
naria, Aspergillus, Cladosporium, Epicoccum and Exserohilum. Species of the genus Alternaria
are saprotroph, present a worldwide distribution and are commonly found in diverse habitats

[97]. Alternaria species can be found also on human skin [98] and seems to be the most signifi-

cant fungal allergen for people [99].

The genus Aspergillus comprehends species that are highly aerobic and commonly grow as

molds on the external surface of diverse substrates. More than half of known Aspergillus spe-

cies are identified only in their anamorphic state; the majority of the species are clinically and

commercially important (such as human pathogens on skin or fungi used in fermentation pro-

cesses), others are sources of natural products implemented in the treatment of many human

diseases [100].

Cladosporium is a worldwide spread genus, it occurs on different substrates and includes

species with diverse lifestyles [101, 102]. It is abundantly found on dead leaves of herbaceous

and woody plants and has frequently been isolated from air [103], where it usually represents

the most abundant fungus both in indoor and outdoor environments [99]. Similarly, species of

the genera Epicoccum and Stemphylium are saprophyte and widely distributed; Stemphylium is

also reported as weak parasite and pathogen in plants, including crops [104].

The genera which were detected only by microscopy analyses are Leptosphaerulina, Oidium,

Peronospora, Pithomyces and Polythrincium. Leptosphaerulina has been classified as a sapro-

phyte and pathogen of turfgrasses [105]. Oidium is an obligate, biotrophic, powdery mildew

genus [106]. Peronospora is a genus of oomycetes considered to be the largest downy mildew

genus [107]. Both Oidium and Peronospora cause significant economic impact in crops and

ornamental plants [108]. Pithomyces is a large genus in the order Pleosporales; it commonly

colonize plants, dead leaves and stems [109]. Different studies have highlighted its presence in

air of indoor environment where asthmatic patients were hosted [110]. Polythrincium, belong-

ing to Capnodiales, is an obligate biotrophic and is the pathogen causing the sooty/black blotch

of clover [111].

Invasive alien species (IAS) are recognized as a major threat of diverse ecosystems [112].

Due to their inconspicuous nature and the fact that they are still poorly studied also in terms

of bio- and phylogeography, fungal reports in IAS databases is still very scarce, with the excep-

tion of few important plants and animal pathogen [113]. The DAISIE European Invasive Alien

Species Gateway (http://www.europe-aliens.org/) lists about 40 alien fungal species for Italy.

Among these, Discula destructiva was sequenced from the sampling site in Umbria. This fun-

gus is a pathogenic, causal agent of the dogwood anthracnose, which is one of the major

Metabarcoding of fungi from airborne samples in Italy

PLOS ONE | https://doi.org/10.1371/journal.pone.0194489 March 20, 2018 12 / 20

http://www.europe-aliens.org/
https://doi.org/10.1371/journal.pone.0194489


diseases affecting Cornus tree species [114]. First observed in North America [115], the disease

has been reported also in Germany since 2002 [116] and in Italy since 2003 [117].

HTS technology for the study of airborne fungi

In our survey, species accumulation curves did not reach saturation, indicating an even more

remarkable richness and diversity of taxa. A more exhaustive sampling could be obtained if

the sequencing depth would be increased, for example by using a larger PGM chips (such as

316™) Another possibility would be to use other HTS approaches that allow the sequencing of

the whole ITS fragment.

The application of HTS technologies is nowadays among the new, standard approaches for

environmental studies. Despite the great advantages offered by HTS, e.g. the high taxonomic

resolution, reproducibility and short processing time [118], DNA metabarcoding is still

affected by some pitfalls. Among them, the possibility to quantify the abundance of the taxa

with higher accuracy (stochasticity of the PCR amplifications and also sequencing results are

semi-quantitative at best) and primer bias impair sequencing results at the most [118–120].

Further, the underestimation of species diversity is unpredictable in several fungal taxa,

although primers have been designed ad hoc for certain groups [120–122]. The low proportion

of basidiomycetes (see previous section) detected in this survey might be attributed to the

selected primers (ITS3/ITS4), as they were shown to preferentially amplify ascomycetes [51,

87, 88]. The cause of this could be that the ITS2 amplicon is longer in basidiomycetes than in

ascomycetes (about 30–50 bp longer [88]) and therefore the selected primer pair may preferen-

tially amplify the shorter ITS2 in the ascomycetes [87, 88], explaining the higher proportion of

ascomycetes reads in our dataset. As the application of HTS to fungal communities studies is

increasing, there is a general need to develop primers that minimize the taxonomic biases so

far persisting [86, 123].

The identities of the generated sequences are still hardly comparable with reference data-

bases and this represent a drawback in such surveys. We expect that the establishment of site-

specific reference databases would implement in the future the identification of airborne fun-

gal particles and further improve the air monitoring.

Conclusions

Intraspecific morphological variation, low quantity and lack of distinctive morphological char-

acters have been the major constraints for microscopy identification of fungal spores in air-

borne samples. In the present study we have showed that the great number of taxa identified

with DNA metabarcoding is ten-fold higher than the one identified by microscopy analyses

(238 vs. 22 genera). We found correspondence between morphological and molecular analyses

and provide a much more accurate determination of the taxa in comparison with the tradi-

tional morphological inspections.

This strengthens the perception that HTS analyses are tools of key importance to increase

the sensitivity of air biomonitoring and our knowledge on airborne fungal diversity. The

standardization of HTS techniques in aerobiology will make the monitoring of pathogenic

fungal agents and their distribution affordable in shorter time and with higher reliability.

The prompt identification of new or potential allergenic substances from plant and fungal

tissues, as well as invasive species, is essential for an effective prevention and management of

diverse environments. A long-scale monitoring extended on a wider geographic area in Italy

is taking into account seasonal variation and meteorological conditions. Further, the devel-

opment of regional database for airborne fungi and the ongoing implementation of existing
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worldwide fungal databases [124, 125] represents a reliable assessment for the identity of

new sequence data.
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15. Piecková E, Wilkins K. Airway toxicity of house dust and its fungal composition. Ann Agric Environ

Med. 2004; 11(1): 67–73. PMID: 15236501

16. Green BJ, Tovey ER, Sercombe JK, Blachere FM, Beezhold DH, Schmechel D. Airborne Fungal frag-

ments and allergenicity. Med Mycol. 2006; 44: 245–55. https://doi.org/10.1080/13693780600776308

PMID: 17050446

17. Pringle A. Asthma and the diversity of fungal spores in air. PLoS Pathog. 2013; 9(6): 1–4. https://doi.

org/10.1371/journal.ppat.1003371 PMID: 23762024

Metabarcoding of fungi from airborne samples in Italy

PLOS ONE | https://doi.org/10.1371/journal.pone.0194489 March 20, 2018 15 / 20

https://doi.org/10.1155/2013/493960
http://www.ncbi.nlm.nih.gov/pubmed/23365758
https://doi.org/10.1126/science.1072678
https://doi.org/10.1126/science.1072678
http://www.ncbi.nlm.nih.gov/pubmed/12142520
http://www.ncbi.nlm.nih.gov/pubmed/21491687
http://www.ncbi.nlm.nih.gov/pubmed/7621398
https://doi.org/10.1111/j.1364-3703.2011.00783.x
https://doi.org/10.1111/j.1364-3703.2011.00783.x
http://www.ncbi.nlm.nih.gov/pubmed/22471698
https://doi.org/10.1093/mmy/myu047
http://www.ncbi.nlm.nih.gov/pubmed/25202126
http://www.ncbi.nlm.nih.gov/pubmed/11204152
https://doi.org/10.1007/s11046-016-0073-9
https://doi.org/10.1007/s11046-016-0073-9
http://www.ncbi.nlm.nih.gov/pubmed/27783317
https://doi.org/10.1016/j.sjbs.2012.06.002
http://www.ncbi.nlm.nih.gov/pubmed/23961203
https://doi.org/10.1016/j.funbio.2011.11.004
http://www.ncbi.nlm.nih.gov/pubmed/22289767
http://www.ncbi.nlm.nih.gov/pubmed/15236501
https://doi.org/10.1080/13693780600776308
http://www.ncbi.nlm.nih.gov/pubmed/17050446
https://doi.org/10.1371/journal.ppat.1003371
https://doi.org/10.1371/journal.ppat.1003371
http://www.ncbi.nlm.nih.gov/pubmed/23762024
https://doi.org/10.1371/journal.pone.0194489


18. Yang CS, Eckardt J, De-Wei L. Airborne fungi and mycotoxins. Manual of Environmental Microbiology.

2016.

19. Kurup V, Shen H, Banerjee B. Respiratory fungal allergy. Microbes Infect. 2000; 2: 1101–10. PMID:

10967290

20. Twaroch TE, Curin M, Valenta R, Swoboda I. Mold allergens in respiratory allergy: from structure to

therapy. Allergy Asthma Immunol Res. 2015; 7(3): 205–20. https://doi.org/10.4168/aair.2015.7.3.205

PMID: 25840710

21. Shelton BG, Kirkland KH, Flanders WD, Morris GK. Profiles of airborne fungi in buildings and outdoor

environments in the united states. J Appl Environ Microbiol. 2002; 68(4): 1743–53.

22. Samet JM, Spengler JD. Indoor environments and health: moving into the 21st century. Am J Public

Health. 2003; 93(9): 1489–1493. PMID: 12948968

23. Amend AS, Seifert KA, Samson R, Bruns TD. Indoor fungal composition is geographically patterned

and more diverse in temperate zones than in the tropics. Proc Natl Acad Sci USA. 2010; 107: 13748–

13753. https://doi.org/10.1073/pnas.1000454107 PMID: 20616017

24. Yamamoto N, Bibby K, Qian J, Hospodsky D, Rismani-Yazdi H, Nazaroff WW, et al. Particle-size dis-

tributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air. ISME J. 2012; 6(10):

1801–11. https://doi.org/10.1038/ismej.2012.30 PMID: 22476354

25. Pavan R, Manjunath K. Qualitative analysis of indoor and outdoor airborne fungi in cowshed. J of

Mycol. 2014;1–8. https://doi.org/10.1155/2014/985921

26. Tong X, Xu H, Zou L, Cai M, Xu X, Zhao Z et al. High Diversity of airborne fungi in the hospital environ-

ment as revealed by meta-sequencing-based microbiome analysis. Scientific Reports. 2017; 7: 1–8.

27. Pusz W, Weber R, Dancewicz A, Kita W. Analysis of selected fungi variation and its dependence on

season and mountain range in southern Poland: key factors in drawing up trial guidelines for aeromy-

cological monitoring. Environ Monit and Assess. 2017; 189(10): 526.

28. Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes.

Proc R Soc Lon. 2003; 270: 313–321.

29. Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. Use of DNA barcodes to identify flowering

plants. Proc Nat Acad Sci of the USA. 2005; 102(23): 8369–74. https://doi.org/10.1073/pnas.

0503123102 PMID: 15928076

30. Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA. DNA Barcoding: How it complements taxonomy,

molecular phylogenetics and population genetics. Trends Genet. 2007; 23(4): 167–72. https://doi.org/

10.1016/j.tig.2007.02.001 PMID: 17316886

31. Joly S, Davies TJ, Archambault A, Bruneau A, Derry A, Kembel SW, et al. Ecology in the age of DNA

barcoding: the resource, the promise and the challenges ahead. Mol Ecol Resour. 2014; 14(2): 221–

32. https://doi.org/10.1111/1755-0998.12173 PMID: 24118947

32. Longhi S, Cristofori A, Gatto P, Cristofolini F, Grando MS, Gottardini E. Biomolecular identification of

allergenic pollen: a new perspective for aerobiological monitoring? Ann Allergy, Asthma Immunol.

2009; 103(6): 508–14. https://doi.org/10.1016/S1081-1206(10)60268-2

33. Galimberti A, De Mattia F, Bruni I, Scaccabarozzi D, Sandionigi A, Barbuto M, et al. A DNA barcoding

approach to characterize pollen collected by honeybees. PLoS ONE. 2014; 9(10).

34. Hawkins J, De Vere N, Griffith A, Ford CR, Allainguillaume J, Hegarty MJ, et al. Using DNA meta-

barcoding to identify the floral composition of honey: a new tool for investigating honey bee foraging

preferences. PLoS ONE. 2015; 10(8): 1–20. https://doi.org/10.1371/journal.pone.0134735 PMID:

26308362

35. Keller A, Danner N, Grimmer G, Ankenbrand MVD, Ohe KVD, Ohe W, et al. Evaluating multiplexed

next-generation sequencing as a method in palynology for mixed pollen samples. Plant Biol. 2015; 17

(2): 558–566. https://doi.org/10.1111/plb.12251 PMID: 25270225

36. Richardson RT, Lin CH, Sponsler DB, Quijia JO, Goodell K, Johnson RM. Application of ITS2 meta-

barcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl

Plant Sc. 2015; 3(1): 1400066. https://doi.org/10.3732/apps.1400066 PMID: 25606352

37. Prosser SWJ, Hebert PDN. Rapid identification of the botanical and entomological sources of honey

using dna metabarcoding. Food Chem. 2017; 214: 183–91. https://doi.org/10.1016/j.foodchem.2016.

07.077 PMID: 27507464

38. Kraaijeveld K, de Weger LA, Ventayol Garcı́a M, Buermans H, Frank J, Hiemstra PS, et al. Efficient

and sensitive identification and quantification of airborne pollen using next-generation DNA sequenc-

ing. Mol Ecol Resour. 2015; 15(1): 8–16. https://doi.org/10.1111/1755-0998.12288 PMID: 24893805

39. Anurag S, Clark E, McGlothlin JD, Mittal SK. Efficiency of airborne sample analysis platform (ASAP)

bioaerosol sampler for pathogen detection. Front Microbiol. 2015; 6.

Metabarcoding of fungi from airborne samples in Italy

PLOS ONE | https://doi.org/10.1371/journal.pone.0194489 March 20, 2018 16 / 20

http://www.ncbi.nlm.nih.gov/pubmed/10967290
https://doi.org/10.4168/aair.2015.7.3.205
http://www.ncbi.nlm.nih.gov/pubmed/25840710
http://www.ncbi.nlm.nih.gov/pubmed/12948968
https://doi.org/10.1073/pnas.1000454107
http://www.ncbi.nlm.nih.gov/pubmed/20616017
https://doi.org/10.1038/ismej.2012.30
http://www.ncbi.nlm.nih.gov/pubmed/22476354
https://doi.org/10.1155/2014/985921
https://doi.org/10.1073/pnas.0503123102
https://doi.org/10.1073/pnas.0503123102
http://www.ncbi.nlm.nih.gov/pubmed/15928076
https://doi.org/10.1016/j.tig.2007.02.001
https://doi.org/10.1016/j.tig.2007.02.001
http://www.ncbi.nlm.nih.gov/pubmed/17316886
https://doi.org/10.1111/1755-0998.12173
http://www.ncbi.nlm.nih.gov/pubmed/24118947
https://doi.org/10.1016/S1081-1206(10)60268-2
https://doi.org/10.1371/journal.pone.0134735
http://www.ncbi.nlm.nih.gov/pubmed/26308362
https://doi.org/10.1111/plb.12251
http://www.ncbi.nlm.nih.gov/pubmed/25270225
https://doi.org/10.3732/apps.1400066
http://www.ncbi.nlm.nih.gov/pubmed/25606352
https://doi.org/10.1016/j.foodchem.2016.07.077
https://doi.org/10.1016/j.foodchem.2016.07.077
http://www.ncbi.nlm.nih.gov/pubmed/27507464
https://doi.org/10.1111/1755-0998.12288
http://www.ncbi.nlm.nih.gov/pubmed/24893805
https://doi.org/10.1371/journal.pone.0194489


40. Portnoy JM, Barnes CS, Kennedy K. Sampling for indoor fungi. J All and Clin Immunol. 2004; 113(2):

189–198.

41. Sabariego S, Dı́az De La Guardia C, Alba F. The effect of meteorological factors on the daily variation

of airborne fungal spores in Granada (southern Spain). Int J Biometeorol. 2000; 44:1–5. https://doi.

org/10.1007/s004840050131 PMID: 10879421

42. U’Ren JM, Lutzoni F, Miadlikowska J, Laetsch AD, Arnold AE. Host and geographic structure of endo-

phytic and endolichenic fungi at a continental scale. Am J Bot. 2012; 99: 898–914. https://doi.org/10.

3732/ajb.1100459 PMID: 22539507

43. Fort T, Robin C, Capdevielle X, Delière L, Vacher C. Foliar fungal communities strongly differ between

habitat patches in a landscape mosaic. PeerJ. 2016; 4: e2656. https://doi.org/10.7717/peerj.2656

PMID: 27833817

44. Li W, Wang MM, Wang XG, Cheng XL, Guo JJ, Bian XM, et al. Fungal communities in sediments of

subtropical Chinese seas as estimated by DNA metabarcoding. Scie Rep. 2016; 6.

45. Durand A, Maillard F, Foulon J, Gweon HS, Valot B, Chalot M. Environmental metabarcoding reveals

contrasting belowground and aboveground fungal communities from poplar at a Hg phytomanage-

ment site. Microb Ecol. 2017 https://doi.org/10.1007/s00248-017-0984-0 PMID: 28451743

46. Fernández-Mendoza F, Fleischhacker A, Kopun T, Grube M, Muggia L. Taxonomically informed

amplicon sequencing of lichens and lichenicolous fungi highlights the low specificity of the myco-

biomes at a local scale. Mol Ecol. 2017

47. Malacrinò A, Schena L, Campolo O, Laudani F, Mosca S, Giunti G, et al. A metabarcoding survey on

the fungal microbiota associated to the olive fruit fly. Microb Ecol. 2017; 73(3): 677–84. https://doi.org/

10.1007/s00248-016-0864-z PMID: 27687872

48. Bowers R M, Lauber CL, Wiedinmyer C, Hamady M, Hallar AG, Fall R et al. Characterization of air-

borne microbial communities at a high-elevation site and their potential to act as atmospheric ice

nuclei. Applied and Environmental Microbiology. 2009; 75(15): 5121–5130. https://doi.org/10.1128/

AEM.00447-09 PMID: 19502432

49. Cao C, Jiang W, Wang B, Fang J, Lang J, Tian G, et al. Inhalable microorganisms in Beijing’s PM2.5

and PM10 pollutants during a severe smog event. Environ Sci Technol. 2014; 48: 1499–1507. https://

doi.org/10.1021/es4048472 PMID: 24456276

50. Oh SY, Fong JJ, Park MS, Chang L, Lim YW. Identifying airborne fungi in Seoul, Korea Using Meta-

genomics. J Microbiol. 2014; 52(6): 465–72. https://doi.org/10.1007/s12275-014-3550-1 PMID:

24723107

51. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA et al. Nuclear ribosomal inter-

nal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci

USA. 2012; 109(16): 1–6. https://doi.org/10.1073/pnas.1117018109 PMID: 22454494
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68. Navas-Molina JA, Peralta-Sánchez JM, González A, McMurdie PJ, Vázquez-Baeza Y, Xu Z, et al.

Advancing our understanding of the human microbiome using QIIME. Methods enzymol. 2013; 531:

371–444. https://doi.org/10.1016/B978-0-12-407863-5.00019-8 PMID: 24060131

69. Vazquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. EMPeror: a tool for visualizing high-throughput

microbial community data. Gigascience. 2013; 2: 16. https://doi.org/10.1186/2047-217X-2-16 PMID:

24280061

70. Braun U, Crous PW, Dugan F, Groenewald JZ, de Hoog GS. Phylogeny and taxonomy of Cladospor-

ium-like hyphomycetes, including Davidiella gen. nov., the teleomorph of Cladosporium s. str. Mycol

Prog. 2003; 2(1): 3–18.

71. Gams W. Biology of Microfungi, Fungal Biology. Springer International Publishing Switzerland;2016.

72. Crous PW, Summerell BA, Carnegie AJ, Wingfield MJ, Hunter GC, Burgess TI, et al. Unravelling

Mycosphaerella: do you believe in genera? Persoonia 2009; 23: 99–118. https://doi.org/10.3767/

003158509X479487 PMID: 20198164

73. Crous PW. axonomy and phylogeny of the genus Mycosphaerella and its anamorphs. Fungal Divers.

2010; 38: 1–24.

74. Peay KG, Bruns TD. Spore dispersal of basidiomycete fungi at the landscape scale is driven by sto-

chastic and deterministic processes and generates variability in plant-fungal interactions. New Phytol.

2014; 204(1): 180–191. https://doi.org/10.1111/nph.12906 PMID: 24975121

75. Kauserud H, Lie M, StensrudØ, Ohlson M. Molecular characterization of airborne fungal spores in

boreal forests of contrasting human disturbance. Mycologia. 2005; 97(6): 1215–1224. PMID:

16722215

76. Favero-Longo SE, Sandrone S, Matteucci E, Appolonia L, Piervittori R. Spores of lichen-forming

fungi in the mycoaerosol and their relationships with climate factors. Sci. Total Environ. 2014; 467:

26–33.
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