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Recently, nonthermal excess noise, compatible with the theoretical prediction provided by collapse models, 
was measured in a millikelvin nanomechanical cantilever experiment [A. Vinante et al., Phys. Rev. Lett. 119, 
110401 (2017)]. We propose a feasible implementation of the cantilever experiment able to probe such noise. 
The proposed modification, completely within the grasp of current technology and readily implementable also in 
other types of mechanical noninterferometric experiments, consists in replacing the homogeneous test mass with 
one composed of different layers of different materials. This will enhance the action of a possible collapse noise 
above that given by standard noise sources.

I. INTRODUCTION

Technological development allows for novel and more
refined tests of the foundations of quantum mechanics
[1–3], which were wishful thinking up to a few decades ago.
Among them, noninterferometric tests [4–18] of models of
spontaneous wave-function collapse [19,20], which assume
a progressive violation of the quantum superposition prin-
ciple when moving from the microscale to the macroscale,
have given a strong boost to the search of the limits of
validity of quantum theory. These limits, if present, would
represent an intrinsic boundary to the scalability of quantum
technologies.

Collapse models predict the existence of new effects, which
tend to localize the wave function of massive systems in
space. This is accomplished by coupling quantum systems
nonlinearly to a noise field, which is characterized by two
phenomenological constants: a collapse rate λ and a correlation
length rC. Numerical values for these parameters were given by
Ghirardi, Rimini, and Weber (GRW) [21]: λ = 10−16 s−1 and
rC = 10−7 m. Later, Adler [22,23] suggested stronger values
for the collapse rate, namely, λ = 10−8±2 s−1 for rC = 10−7 m
and λ = 10−6±2 s−1 for rC = 10−6 m.

The literature on experimental tests of collapse models is
nowadays rather extensive. First came matter-wave interfer-
ometry, the most natural type of experiment, where larger
and larger systems are prepared in delocalized states and
quantum interference is measured by standard interferometric
techniques [24–29]. Due to the difficulty in handling massive
delocalized states, such experiments so far do not place
significant bounds on the collapse parameters.

To overcome this difficulty, noninterferometric experiments
have been developed. They are based on an unavoidable side ef-
fect of the collapse process: a diffusion of the system’s position,
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which can be traced via optomechanical techniques, which are
very sensitive to small position displacements [30–32]. Among
them, cold atoms [33], measurement of bulk temperature
[12,13], and detection of spontaneous x-ray emission give the
strongest bound on λ for rC < 10−6 m [18], while force noise
measurements on nanomechanical cantilevers [14,15] and on
gravitational wave detectors give the strongest bound for rC >

10−6 m [16,17]. Recently, an excess noise of unknown origin
was measured in one such experiment [15] and several standard
explanations were ruled out. The result is still unconfirmed and
could be likely explained by more subtle conventional effects.
Nevertheless, one cannot rule out nonstandard explanations,
such as collapse models or decoherence effects due to the
interaction with exotic particles or forces [34]. In particular,
the fact that the noise is compatible with the continuous
spontaneous localization (CSL) collapse rate predicted by
Adler [22,23] calls for more sensitive experimental tests of
collapse models.

We propose a method to enhance and optimize the CSL
effect in optomechanical setups, which can be readily applied
to most experiments of this kind. In contrast with other
previous proposals [35–38], the hereby described method takes
advantage of only existing technology, which was already
used to set bounds on the CSL parameters. It consists in
using a mechanical test mass composed of layers of two
different materials, instead of a homogeneous one. A similar
technique was already considered for coherently enhancing
weak quantum effects (see, for example, [39]). For specific
values of the ratio between the layers thickness and rC, the CSL
noise coherently correlates the collapses of the single layers
and an amplification mechanism, which is fully discussed
below, emerges. We will consider a specific application to
the cantilever-based experiment described in Ref. [15]. The
foreseen increase of the CSL effect is sufficient to test almost
the entire interval of collapse rate proposed by Adler and
in particular to falsify the hypothesis that the excess noise
observed in [15] may be due to CSL.
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II. MODEL

The CSL master equation [19] is of the Lindblad type
dρ̂(t )/dt = − i

h̄
[Ĥ , ρ̂(t )] + L[ρ̂(t )], where Ĥ describes the

free evolution of the system and

L[ρ̂(t )] = − λ

2r3
Cπ3/2m2

0

∫
dz[M̂ (z), [M̂ (z), ρ̂(t )]] (1)

governs the CSL effect on the system, with M̂ (z) defined as

M̂ (z) = m0

∑
n

exp

(
− (z − q̂n)2

2r2
C

)
, (2)

where m0 is a reference mass chosen equal to the mass of a
nucleon, the sum

∑
n runs over all nucleons of the system, and

q̂n is the position operator of the nth nucleon. When the spread
of the center-of-mass wave function is much smaller than rC,
which is typical of all situations we are interested in, we can
Taylor expand to second order in q̂n [16] and rewrite Eq. (1)
as

L[ρ̂(t )] = −1

2

∑
i,j=x,y,z

ηij [q̂i , [q̂j , ρ̂(t )]], (3)

where q̂i is the center-of-mass position operator along the ith
direction and

ηij = λr3
C

π3/2m2
0

∫
d3k e−r2

Ck2
kikj |μ̃(k)|2, (4)

with μ̃(k) the Fourier transform of the mass density of the
system.

Equation (3) describes a diffusive dynamics, quantified
by the CSL-induced diffusion constants ηij , which can be
best measured via optomechanical techniques [30–32]. In
a typical experimental setup, the position of a mechanical
resonator is accurately monitored and the force acting on
it is determined; this is, for instance, the case of cantilever
experiments [14,15] or gravitational wave detectors [16,17]. In
such a setup, diffusion is conveniently quantified by the density
noise spectrum (DNS) of the resonator’s position, which reads

Sz(ω) = 1

2

∫ +∞

−∞
dτ e−iωτ E[�{δq̂z(t ), δq̂z(t + τ )}�], (5)

where δq̂z(t ) = q̂z(t ) − qss denotes the fluctuations in position
in the z direction, the measurement direction, with respect to
the steady-state position qss. The DNS is the quantity measured
in the experiment and it quantifies the motion of the system and
its diffusive dynamics. Under the effect of thermal fluctuations
and the CSL diffusion, the DNS takes the form [38]

Sz(ω) = 2MγmkBT + SCSL

M2
[(

ω2
0 − ω2

)2 + γ 2
mω2

] , (6)

where M , ω0, and γm are the mass, the resonance frequency,
and the damping of the resonator, respectively, and T is
the temperature of the thermal noise (kB is the Boltzmann
constant). CSL contributes to the DNS as a temperature-
independent force noise equal to SCSL = h̄2η, where η = ηzz

is the CSL diffusion constant in the z direction, the direction of
measurement. Equation (6) shows that in order to increase the
relative strength of the CSL effect with respect to the thermal
noise, one has two options: one either minimizes the thermal

force noiseSth = 2MγmkBT , which requires low temperatures
and/or low damping regimes, or maximizes the CSL force
noise, i.e., the diffusion constant η.

Some of the strongest CSL bounds have been set by mechan-
ical experiments, which were designed for ultralow thermal
noise. For experiments with cantilevers, this is achieved by
operating at millikelvin temperature; for macroscopic experi-
ments such as gravitational wave detectors, the key ingredient
is the operation at very low frequency, where the mechanical
damping can be strongly reduced. A further decrease of temper-
atures and/or low damping requires demanding technological
improvements.

Here we are interested in the other option: to explore
possible ways to enhance the CSL diffusion by optimizing
the shape and the mass density distribution of the test mass.
In a cantilever experiment, the damping constant γm is mainly
defined by the cantilever stiffness and the value of the attached
mass, independently of its shape. Thus, at fixed mass, the shape
plays a role only in defining η. Quantitative calculations (see
Appendix A) show that the cuboidal geometry is preferable
over the spherical, since is the one that shows the strongest CSL
diffusion. Similar results can be obtained also for a cylindrical
geometry, once the ratio between the base length and the height
of the system is properly chosen. For the sake of simplicity in
the following analysis we will focus on the cuboidal geometry.

Preliminary heuristic considerations can be done by looking
at the characteristic profile of the upper bounds inferred from
noninterferometric experiments [14–17] (cf. light orange lines
in Fig. 5). Such a profile can be understood by looking at Fig. 1:
For a single mass, the CSL effect (as well as the bound on
λ) is strongest when rC ∼ H/3, where H defines the mass
dimension. Conversely, for rC � H or rC � H the effect is
weakened by its incoherent or unfocused action, respectively.

In the following, we will quantify such a profile for a system
composed of N masses, modeled as harmonic oscillators. The
action of the CSL noise on each mass can be described in terms
of the Langevin equations [16]

dq̂α

dt
= p̂α

mα

,

dp̂α

dt
= −mαω2

αq̂α − γαp̂α + ξ̂α + Fα, (7)

where ωα , γα , and mα are the frequency, the damping constant,
and the mass of the αth mass, respectively, and ξ̂α and Fα are
the surrounding environmental and the CSL stochastic forces,
whose action leads to thermal and nonthermal diffusions,
respectively. Going into the details, the correlations of the CSL
forces depend on the distance between the masses. In the limit
of validity of Eq. (3), the Fourier transform of Fα becomes [16]

F̃α = ih̄
√

λr
3/2
C

(4π3)3/4m0

∫
dz w̃(z, ω)

∫
dk μ̃α (k)e−k2r2

C/2−ik·zk,

(8)

where μ̃α (k) and w̃(z, ω) are, respectively, the Fourier trans-
form of the mass density μα (x) of the αth mass and of a white
noise. For the latter, �w̃(z, ω)� = 0 and �w̃(z, ω)w̃(z�,�)� =
2πδ(ω + �)δ(3)(z − z�) hold. Consequently, the correlations
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FIG. 1. Hypothetical bounds on the CSL parameters obtained by monitoring the center-of-mass motion of a harmonically trapped system
of mass M . Two configuration are considered: a cuboid of side H (red solid line) and two cuboids of side a = H/2 separated by a distance
b which is supposed to be constant (green dashed line). The base area is the same for both configurations. The circles represent Gaussians of
variance r2

C inside which the CSL noise acts coherently. Due to the two different geometrical configurations (see Appendix B) of the mass,
the bounds become stronger or weaker depending on the value of rC. In particular, for relatively small values of rC a nonuniform mass density
makes the bound stronger (roughly by a factor of 2 for the considered configurations). This feature of the collapse mechanism is at the heart of
the amplification effect of the multilayer structure which is discussed in the paper.

read

�F̃α,i (ω)F̃β,j (�)�

= 2h̄2λr3
Cδ(ω + �)√
πm2

0

∫
dk μ̃α (k)μ̃∗

β (k)e−k2r2
Ckikj , (9)

which reduces to �F̃i (ω)F̃j (�)� = 2πh̄2δ(ω + �)ηij for N =
1, with ηij defined in Eq. (4).

We are interested in the motion of the center of mass of
the system, whose dynamical equation can be derived from
Eq. (7),

dq̂c.m.

dt
= p̂c.m.

M
,

dp̂c.m.

dt
= −Mω2

0q̂c.m. − γmp̂c.m. + ξ̂ c.m. + Fc.m., (10)

where M = ∑
α mα and we set ωα = ω0 and γα = γm. This is

the case when the masses are clamped together and attached
to a cantilever, thus they move together at the frequency ω0 =√

k/M , where k is the cantilever stiffness, while the damping
γm will be typically determined by cantilever bending losses.
We also defined Fc.m. = ∑

α Fα and ξ̂ c.m. = ∑
α ξ̂α . The corre-

lations of Fc.m. can be derived from Eq. (9). The environmental
noise is preponderately due to the dissipation of the cantilever
spring and its correlations read 1

2 �{ξ̂c.m.,i (t ), ξ̂c.m.,j (s )}� =
2MγkBT δi,j δ(t − s ) (with i, j = x, y, z), which depend on
the total mass of the system and the damping of the cantilever
only [14,15]. From the form of these correlations, one can
derive the thermal and nonthermal (CSL) contributions, whose
form is SA = ∫

d��{Ã(ω), Ã(�)}�/4π , to the DNS, which
was introduced in Eq. (6). By applying the correlation rules

for ξ̂ c.m. and Fα previously outlined, we end up with

Sth = 2MγmkBT ,

SCSL = h̄2λr3
C

π3/2m2
0

∫
dk

∑
α,β

μ̃α (k)μ̃∗
β (k)e−k2r2

C k2
z , (11)

where we focused once again on the motion in the z direction,
which is assumed to be the direction of measurement. If N = 1,
these relations correspond to those entering Eq. (6).

We note that Sth is proportional to the mass M . Indeed,
the main contribution to the thermal noise comes from the
coupling to the cantilever spring, thus depending only on the
total mass M and γm [14,15]. Consequently, the thermal noise
does not change if the system is composed of one or many
layers for a fixed value of the mass. On the other hand, the CSL
force acts directly on the mass layers and SCSL is a sum of N2

contributions: N contributions are due to the self-correlation
of a single mass; N (N − 1) are due to the cross-correlation
terms. While the former are positive by definition, the latter
do not have a definite sign and depend on the distance dα,β

between the αth and βth mass. Indeed, by considering only two
masses, if rC � dα,β , the forces acting on the two masses are
uncorrelated, hence the corresponding cross-correlation term
vanishes. If rC � dα,β , the two forces contribute coherently
to the center-of-mass diffusion: This is the situation that
maximizes the CSL effect. If rC � dα,β , the main contribution
to the integral in Eq. (11) comes from |k| < 1/dα,β ; the rest
is suppressed due to the Gaussian weight and consequently
the global CSL effect does not benefit from it. This analysis is
summarized in Fig. 1 for two masses.
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FIG. 2. Graphical representation of the 2Nlay + 1 layered cuboid.
The two materials A and B are represented by two different colors,
cyan and orange, respectively.

An example of this analysis is reported in Fig. S5 of
[14], where the mixed term diminishes the self-correlated
contributions to SCSL for rC � 10−6 m, a value for which both
the noise acting on the cantilever and that acting on the sphere
coherently contribute to the CSL diffusion of the center of mass
of the system. For rC � 10−6 m the mixed contribution toSCSL

is positive and for rC � 10−6 m it goes to zero. We will now
discuss a concrete application of the model discussed in the
preceding section. Let us consider a test mass consisting of a
cuboid of base L × L and height H made of 2Nlay + 1 layers,
which are parallel to the base and orthogonal to the z axes.
These layers are made of two different materials, Nlay + 1 of
material A (density μA) of thickness a and Nlay of material
B (density μB) of thickness b, alternatively disposed one on
top of the other. In order to maximize the contribution to η,
we choose the layers labeled by A, whose number exceeds
the B layers by one, to be the heavier ones (cf. Fig. 2). Thus,
by carefully tuning the dimension L of the single mass and
the distance d between the masses, one can explore different
CSL parameter regions even though the value of SCSL does not
change.

III. MULTILAYER APPROACH

The test mass is supposed to be attached to a cantilever.
Specifically, we take as a reference the experiment described
in Ref. [15]. Here the resonant frequency is ω0/2π = 8174
Hz, the spring constant k = 0.40 N/m, and the test mass is
a NdFeB sphere with density μs = 7430 kg/m3 and radius
R = 15.5 μm. Under these conditions the measured residual
force noise acting on the cantilever after subtracting the thermal
noise is SF = 2.0 aN2/Hz. This value corresponds to an excess
noise of unknown origin, compatible with CSL. Here we want
to probe the values of λ and rC that correspond to such a value.

While keeping all other experimental parameters fixed, we
replace now the NdFeB sphere with a layered cuboid with the
same mass and variable geometry (L, a, b, and Nlay). By taking
the same mass we keep also the same resonant frequency,
so as to guarantee a fair comparison with the experiment in
Ref. [15]. We choose the densities of the two materials equal to

μA = 16.0 × 103 kg/m3 and μB = 2.2 × 103 kg/m3, which
correspond respectively to CoPt, a heavy ferromagnetic ma-
terial required for the superconducting quantum interference
device (SQUID) detection, and SiO2. SiO2 is one of the most
common materials, easy to fabricate, and comparatively light.
CoPt is one of the heaviest ferromagnetic materials and is
chosen here to enable SQUID detection in the absence of
a magnetic sphere as in Ref. [15]. If the latter condition is
not required, better choices for the heavy material are, for
instance, Au and W, whose densities are almost the same
μA = 19.41 × 103 kg/m3. Given the measured value of the
residual force noise, we compute the upper bounds on the CSL
parameters for different values of the cuboid parameters. The
Fourier transform of cuboidal mass density is given by

μ̃(k) = 4

kxky

sin

(
kxL

2

)
sin

(
kyL

2

)
μ̃z(kz), (12)

where

μ̃z(kz) = 2

kz sin
(

kz (a+b)
2

)

×
[
μA sin

(
kza

2

)
sin

(
kz(H + b)

2

)

+μB sin

(
kzb

2

)
sin

(
kz(H − a)

2

)]
, (13)

with H = (Nlay + 1)a + Nlayb. In the particular case a = b,
the latter expression reduces to

μ̃z(kz) = μA sin[(Nlay + 1)kza] + μB sin(Nlaykza)

kz cos
(

kza

2

)
e−ikz (H/2+a)

. (14)

Combining Eqs. (12) and (4), we obtain the CSL diffusion
constant

η = 16r5
Cλ

m2
0

√
π

[
1 − e−L2/4r2

C − L
√

π

2rC
erf

(
L

2rC

)]2

Iz, (15)

where

Iz =
∫

dkz e−r2
Ck2

z k2
z |μ̃z(kz)|2. (16)

The latter, in general, must be computed numerically. For the
special case of Nlay = 0, we obtain the standard expression
[31]

Iz = 2
√

πμ2
A

rC
(1 − e−H 2/4r2

C ), (17)

where H = a.
We start our numerical analysis by noting that, once the

value of the mass and the material densities are fixed, η

depends on three parameters of the system: the base side L

of the cuboid, the number of layers 2Nlay + 1, and the ratio
between the thickness of the two materials � = b/a. We take
the value rC = 10−7 m as a reference, and by setting � = 1
and Nlay = 1, 16, and 64 we compute the hypothetical bounds
obtained by varying L. Figure 3 compares the bounds from
the uniform case (black line) with the ones obtained by using
the multilayer approach (colored lines), with Nlay = 1 (blue
lines), Nlay = 16 (orange lines), and Nlay = 64 (green lines).
To underline the importance of the density difference between
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FIG. 3. Comparison of the hypothetical upper bounds on λ for
different configurations of the test mass for rC = 10−7 m for different
values of Nlay with a = b. The uniform case (black line) is compared
with the multilayer approach for Nlay = 8 (blue lines), Nlay = 16
(orange lines), and Nlay = 64 (green lines). Two cases are checked:
μA = 16.0 × 103 kg/m3 and μB = 2.2 × 103 kg/m3 (solid lines)
and μA = 16.0 × 103 kg/m3 and μB = 0 (dashed lines). The mass is
held fixed at M = 1.2 × 10−10 kg. The top horizontal axis indicates
H in the uniform case.

the two materials used, Fig. 3 shows the bounds obtained using
μA = 16.0 × 103 kg/m3 and μB = 2.2 × 103 kg/m3 (solid
lines) and the extreme case with μA = 16.0 × 103 kg/m3 and
μB = 0 (dashed lines). Remarkably, a large density difference
enhances the CSL signal.

As Fig. 3 shows, by using the multilayer approach, one
can gain almost two orders of magnitude in bounding λ with
respect to the uniform case (cf. L ∼ 20 μm and Nlay = 64).
The choice of the range of possible values of L is constrained
by experimental considerations. The test mass should be ac-
commodated on the cantilever, so L is limited by the cantilever
width. In the opposite high-aspect-ratio limit H/L � 1, the
test mass becomes a thin pillar and it cannot be treated as a
simple inertial mass anymore. A good compromise is a value
of L which is comparable with H ; for instance, we consider
for the further analyses L = 18 μm. For a comparison, we
consider also a bigger, but still worthwhile, value L = 50 μm.

As the second step of our numerical investigation, we fix the
value of the side length L to the values defined above and vary
Nlay and �. Figure 4 compares the bound given by the uniform
mass (black line) with those of the multilayer approach for
different values of Nlay with � = 1/4 (orange solid line), � = 1
(blue solid line), and � = 4 (green solid line). Again, we also
studied the case of μB = 0, whose data are reported with the
corresponding dashed lines.

Figure 4 shows that the best configuration is given by Nlay =
61 with � = 1 for L = 18 μm and by Nlay = 7 with � = 1
for L = 50 μm. The corresponding values of H , a, b, and
the bound on λ for rC = 10−7 m are reported in Table I. It
is worthwhile to notice that, although the dimensions of the
proposed test masses are well different, the value of a (and
equivalently b) is almost identical in the two configurations
that maximize the bound on λ. The optimal value of a ∼ b is

(a)

(b)

FIG. 4. Comparison of the hypothetical upper bounds on λ for
rC = 10−7 m for different values of Nlay and � = b/a with (a) L =
18 μm and (b) L = 50 μm. The uniform case (black line) is compared
with the multilayer approach for � = 1/4 (orange lines), � = 1 (blue
lines), and � = 4 (green lines). The densities are fixed at μA = 16.0 ×
103 kg/m3 and μB = 2.2 × 103 kg/m3. The extreme case with μB =
0 is reported with dashed lines. The mass is held fixed at M = 1.2 ×
10−10 kg.

of the order of rC, which is in agreement with the heuristic
argument discussed in Fig. 1.

As the last step of the analysis, we compute the hypothet-
ical bounds in the CSL parameters space (rC vs λ) for the
configurations reported in Table I. These are reported in Fig. 5
for different values of Nlay. It is clear that with the multilayer
approach one can strongly improve the bound on λ by one or
two orders of magnitude, depending on the side length.

Since the CSL effect scales with the total mass of the
mechanical oscillator, it is worth extending the analysis to
larger masses. Specifically, we consider M1 = 1.16 × 10−9 kg
and M2 = 2.32 × 10−9 kg, which are respectively 10 and 20
times larger than the mass previously considered. Keeping
L = 60 μm and � = 1, we choose Nlay such that the second

TABLE I. Parameters of the test mass that maximize the bound
on λ from the analysis shown in Fig. 4.

L (μm) H (μm) Nlay a = b (μm) λ (s−1)

18 39 61 0.32 3.1 × 10−10

50 4.6 7 0.31 2.9 × 10−10
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(a) (b)

FIG. 5. Hypothetical upper bounds from multilayer test mass on the same cantilever as in Ref. [15]. The considered system is a cuboid
of base side (a) L = 18.058 μm and (b) L = 51.077 μm at fixed mass M = 1.2 × 10−10 kg. (a) Black, blue, red, purple, brown, and green
solid lines refer to Nlay = 0, 1, 5, 10, 61, and 360, respectively. (b) Black, blue, red, purple, brown, and green solid lines refer to Nlay = 0,
1, 3, 7, 20, and 40, respectively. Light orange lines (and the corresponding shaded area) represent, respectively, the excess noise measured in
Ref. [15] and, if the latter would not result as a CSL effect, the upper bound from the cantilever experiment [15]. The densities are fixed at
μA = 16.0 × 103 kg/m3 and μB = 2.2 × 103 kg/m3. The extreme case with μB = 0 is reported with dashed lines. For comparison, we report
with gray lines other significant experimental upper bounds: x-ray spontaneous emission (dotted line) [40], LISA Pathfinder (solid line) [16],
and theoretical lower bound (dashed line) [26]. Other weaker experimental bounds are not reported [26,29,33,41].

minimum in λ appears near rC = 10−7 m. This corresponds
to having a = b � 0.3 μm (cf. Table I) and taking Nlay =
48 (H � 29 μm) and Nlay = 98 (H � 59 μm) for the two
cases, respectively. We consider also the case with Nlay = 12
(a � 1.2 μm and H � 29 μm) and Nlay = 25 (a � 0.6 μm
and H � 29 μm), respectively, as a comparison. We note that
also with this increased size, the test mass would still fit on
the cantilever of Ref. [15]. Figure 6 shows the correspond-
ing bounds assuming that the value of the measured noise
remains the same as in [15]. This is a stronger assumption
with respect to the previous analysis, since also the resonant
frequencies will change according to ωi = √

k/Mi , which
gives ω1/2π = 2584 Hz and ω2/2π = 1828 Hz, respectively.
With this assumption, the multilayer configuration for a mass
equal to M2 with 48 layers is able to test the CSL model almost
down to λ = 10−11 s−1. Thus, this method can provide bounds
comparable to those from the x-ray measurements, which,
contrary to cantilever experiments, are less robust against
changes in the CSL noise [42,43].

IV. DISCUSSION

The novel feature of a multilayer cuboidal resonator is
the appearance of a second minimum in the curve defining
the upper bound. According to Fig. 1, while the main mini-
mum corresponds to rC ∼ H/3, the new minimum appears at
rC ∼ a, b and moves to smaller values of rC as Nlay increases.
The reason for this behavior is the following. For small
rC the single-layer contributions add incoherently with the

maximum effect when reaching rC ∼ a, b. For rC > a, b the
cross-correlations between the layers interfere and the global
diffusive action narrows until rC is of the order of the dimen-
sion of the system, when again the whole mass contributes
coherently to the diffusive dynamics. As Fig. 5 shows, there is
not an advantage of using a multilayer strategy for rC > a, b.

Our hypothetical bounds are stronger than the bounds
from the measured nonthermal excess noise reported in [15].
Moreover, they partially cover the orange highlighted region,
which is the portion of CSL parameter space which results by
attributing such an excess noise to standard sources.

Notably, the potential improvement would cover al-
most completely Adler’s suggestion, λ = 10−8±2 s−1 at rC =
10−7 m, using the value of the mass as in Ref. [15] (cf. Fig. 5).
So far, Adler’s values for the parameters have been ruled out
only by two experiments. The first is the x-ray experiment [40],
whose bound, however, may be evaded by a colored version
of CSL [43,44], with a frequency cutoff lower than 1018 Hz,
which is realistic. The second is the measurement of the crystal
phonon excitations at low temperatures; however, again the
bound does not hold for colored extensions of the CSL model,
and for a cutoff of the order of 1011 Hz it vanishes [43]. In both
cases, an exclusion by a purely mechanical experiment would
be much more significant since the dominant frequencies are
much smaller. This is the case for the multilayer method applied
to a larger mass (cf. Fig. 6).

One should also note that, differently from previous exper-
iments, where for each value of rC one can at most infer a
bound on λ, the multilayer strategy enables the possibility of
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FIG. 6. Hypothetical upper bounds from the multilayer method
with a bigger test mass. The system considered here is a cuboid of base
side L = 60 μm. Dashed purple and blue lines correspond to M1 =
1.16 × 10−9 kg with Nlay = 48 and Nlay = 12, respectively. Green
and brown lines correspond to M2 = 2.32 × 10−9 kg with Nlay = 98
and Nlay = 25, respectively. The other lines and the colored region
refer to ranges of parameters of CSL, which are already excluded by
other experimental data, as described in Fig. 5.

identifying the value for rC, if the presence of excess noise were
confirmed, by changing the geometry of the resonator. Finally,
we emphasize that the hereby proposed scheme to enhance
the CSL action can be easily implemented also in other types
of mechanical resonators, for example, the one considered in
[16,30–32,36–38].
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APPENDIX A: THE CSL ACTION ON
LEVITATED SYSTEMS

We compare the CSL contribution SCSL = h̄2η to the
density noise spectrum Sz(ω) for three different cases: a
sphere of radius R, a cuboid of lengths (L,L,H ), and a
cylinder of radius L and height H (moving along the symmetry
axis), all made of SiO2 with density μ = 2650 kg/m3. The
corresponding CSL contributions can be computed analytically
[31],

η(sphere) = 3λm2r2
C

m2
0R

6

[
R2 − 2r2

C + e−R2/r2
C
(
R2 + 2r2

C

)]
,

η(cuboid) = 32λm2r4
C

L4H 2m2
0

(1 − e−H 2/4r2
C )

×
[

1 − e−L2/4r2
C − L

√
π

2rC

erf

(
L

2rC

)]2

,

η(cylinder) = 16m2r2
Cλ

H 2m2
0L

2
(1 − e−H 2/4r2

C )

×
{

1 − e−L2/2r2
C

[
I0

(
L2

2r2
C

)
+ I1

(
L2

2r2
C

)]}
,

(A1)

where Ii (x) denotes the modified Bessel function.
In Fig. 7 we compare these contributions. As one can see,

for small values of the mass, corresponding to a system whose
spatial dimension is smaller than rC, the CSL diffusion rate
depends on the shape in a negligible way. Conversely, for larger
masses, or equivalently when the dimensions of the system ex-
ceed rC, the shape of the system plays a role. The most favorable
case is given by the cuboidal geometry, as it can be concluded
from Fig. 8, where the cuboidal geometry is compared to the
cylindrical one for different values of L (this means that the
heights of the two systems will be different). For L � rC, there

(a) (b)

FIG. 7. The CSL contribution SCSL = h̄2η to the DNS as a function of the mass of the system; the density has been set equal to μ = 
2650 kg/m3. (For a better comparison, the top axis shows the value of the radius of a sphere with given mass.) (a) Spherical (red dot-dashed
line) vs cuboidal (gray lines) geometry. (b) Spherical (red dot-dashed line) vs cylindrical (blue lines) geometry. We considered three different
aspect ratios for the cuboidal and for the cylindrical geometries: L/H = 0.1 (dotted lines), L/H = 1 (solid lines), and L/H = 10 (dashed 
lines). For the CSL parameters, we take as reference Adler’s values λ = 10−8 s−1 and rC = 10−7 m.
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FIG. 8. Comparison of the CSL diffusion rate for a cylinder
ηcylinder and for a cuboid ηcuboid, whose ratio depends only on L/rC,
independently of the mass and density of the system. The blue dashed
line corresponds to the asymptotic value π .

is no significant difference between the two geometries, as
there is for the sphere. For L � rC, the cuboidal geometry has
a larger diffusion constant η, which leads to a stronger bound
on λ. One can also consider an alternative analysis where the
cuboidal and cylindrical geometries are compared for different
values of H . In such a case no appreciable differences emerge
between the two geometries.

APPENDIX B: MULTILAYER TECHNIQUE

To better understand the enhancement that can be achieved
with the multilayer technique, for the sake of simplicity let us
compare the single-layer case (Nlay = 0) with the two-layer
case (Nlay = 1) with μB = 0. The situation is represented in
Fig. 1. The Fourier transform of the mass densities can be
derived from Eq. (13), where in the single mass case one has
H = a1 and b1 = 0, while in the two-mass case H = (2a2 +

b2), with a1 = 2a2, and b2 �= 0. Thus, one obtains

μ̃
(Nlay=0)
z (kz) = 2μA

kz

sin(kza2),

μ̃
(Nlay=1)
z (kz) = 4μA sin

(
1
2kza2

)

kz

cos
[

1
2kz(a2 + b2)

]
, (B1)

where, to make the comparison more direct, we express both
expressions in terms ofa2 andb2. Due to the different geometry,
in the second expression a cosine appears and, by suitably
choosing the values of b2, this gives an enhancement of the
CSL effect. In the limit of rC → +∞, due to the presence
of the Gaussian factor in Eq. (16), only small values of kz

contribute to Iz. This is the case where the collapse noise
sees the system as pointlike, regardless of its geometry. In
such a limit, the expressions in Eq. (B1) take the same value,
limkz→0 μ̃

(Nlay=0,1)
z (kz) = 2μAa2, and thus the corresponding

bounds are the same. Conversely, for rC → 0, one needs to
go back to the integrals in Eq. (16), which in our case can be
computed exactly and read

I (Nlay=0)
z = 2

√
πμ2

A

rC
(1 − e−a2

2/r2
C ),

I (Nlay=1)
z = 4

√
πμ2

A

rC

(
1 − e−a2

2/4r2
C + 1

2fgeom
)
, (B2)

where the first expression is in agreement with Eq. (17) with
H = 2a2 and where we defined

fgeom = 2e−(a2+b2 )2/4r2
C − e−b2

2/4r2
C − e−(2a2+b2 )2/4r2

C , (B3)

which is a geometrical factor explicitly depending on
b2. For b2 �= 0, in the limit rC → 0, one finds that
the effect in the two-layer case is twice that in the
single-layer case: limrC→0 I

(Nlay=1)
z = 2 limrC→0 I

(Nlay=0)
z =

4
√

πμ2
A/rC. This enhancement is due to a geometrical factor,

which is different in the two configurations. Something similar
happens when the cuboidal and the cylindrical geometries are
compared for small values of rC, as shown in Appendix A. For
b2 = 0, one finds that limrC→0 fgeom = −1 and the single-layer
result is recovered as expected. One should note, however, that
in the limit rC → 0 one goes beyond the limits of validity of
the approximations used in the text.
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O’Brien, X. Zhang, B. Dakić, and P. Walther, Nat. Commun. 8,
15044 (2017).

[4] T. Kovachy, J. M. Hogan, A. Sugarbaker, S. M. Dickerson, C. A.
Donnelly, C. Overstreet, and M. A. Kasevich, Phys. Rev. Lett.
114, 143004 (2015).

[5] O. Usenko, A. Vinante, G. Wijts, and T. H. Oosterkamp, Appl.
Phys. Lett. 98, 133105 (2011).

[6] A. Vinante et al. (AURIGA Collaboration), Class. Quantum
Grav. 23, S103 (2006).

[7] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), Phys. Rev. Lett. 116, 131103 (2016).

[8] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), Phys. Rev. Lett. 116, 061102 (2016).

[9] M. Armano et al., Phys. Rev. Lett. 116, 231101 (2016).
[10] M. Armano et al., Phys. Rev. Lett. 120, 061101 (2018).
[11] C. E. Aalseth et al. (The IGEX Collaboration), Phys. Rev. C 59,

2108 (1999).
[12] S. L. Adler and A. Vinante, Phys. Rev. A 97, 052119

(2018).
[13] M. Bahrami, Phys. Rev. A 97, 052118 (2018).
[14] A. Vinante, M. Bahrami, A. Bassi, O. Usenko, G. Wijts, and

T. H. Oosterkamp, Phys. Rev. Lett. 116, 090402 (2016).
[15] A. Vinante, R. Mezzena, P. Falferi, M. Carlesso, and A. Bassi,

Phys. Rev. Lett. 119, 110401 (2017).
[16] M. Carlesso, A. Bassi, P. Falferi, and A. Vinante, Phys. Rev. D

94, 124036 (2016).



9

[17] B. Helou, B. J. J. Slagmolen, D. E. McClelland, and Y. Chen,
Phys. Rev. D 95, 084054 (2017).

[18] K. Piscicchia, A. Bassi, C. Curceanu, R. Del Grande, S.
Donadi, B. C. Hiesmayr, and A. Pichler, Entropy 19, 319
(2017).

[19] A. Bassi and G. C. Ghirardi, Phys. Rep. 379, 257 (2003).
[20] A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht, Rev.

Mod. Phys. 85, 471 (2013).
[21] G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34, 470

(1986).
[22] S. L. Adler, J. Phys. A: Math. Theor. 40, 2935 (2007).
[23] S. L. Adler, J. Phys. A: Math. Theor. 40, 13501 (2007).
[24] S. Eibenberger, S. Gerlich, M. Arndt, M. Mayor,

and J. Tüxen, Phys. Chem. Chem. Phys. 15, 14696
(2013).

[25] K. Hornberger, J. E. Sipe, and M. Arndt, Phys. Rev. A 70, 053608
(2004).

[26] M. Toroš, G. Gasbarri, and A. Bassi, Phys. Lett. A 381, 3921
(2017).

[27] M. Toroš and A. Bassi, J. Phys. A: Math. Theor. 51, 115302
(2018).

[28] K. C. Lee et al., Science 334, 1253 (2011).
[29] S. Belli, R. Bonsignori, G. D’Auria, L. Fant, M. Martini, S.

Peirone, S. Donadi, and A. Bassi, Phys. Rev. A 94, 012108
(2016).

[30] M. Bahrami, M. Paternostro, A. Bassi, and H. Ulbricht, Phys.
Rev. Lett. 112, 210404 (2014).

[31] S. Nimmrichter, K. Hornberger, and K. Hammerer, Phys. Rev.
Lett. 113, 020405 (2014).

[32] L. Diósi, Phys. Rev. Lett. 114, 050403 (2015).
[33] M. Bilardello, S. Donadi, A. Vinante, and A. Bassi, Physica A

462, 764 (2016).
[34] A. Bassi, A. Großardt, and H. Ulbricht, Class. Quantum Grav.

34, 193002 (2017).
[35] D. Goldwater, M. Paternostro, and P. F. Barker, Phys. Rev. A 94,

010104 (2016).
[36] S. McMillen, M. Brunelli, M. Carlesso, A. Bassi, H. Ulbricht,

M. G. A. Paris, and M. Paternostro, Phys. Rev. A 95, 012132
(2017).

[37] B. Schrinski, B. A. Stickler, and K. Hornberger, J. Opt. Soc. Am.
B 34, C1 (2017).

[38] M. Carlesso, M. Paternostro, H. Ulbricht, A. Vinante, and A.
Bassi, New J. Phys. (2018), doi:10.1088/1367-2630/aad863.

[39] P. F. Smith and J. D. Lewin, Acta Phys. Polon. B15, 1201 (1984).
[40] C. Curceanu, B. C. Hiesmayr, and K. Piscicchia, J. Adv. Phys.

4, 263 (2015).
[41] F. Laloë, W. J. Mullin, and P. Pearle, Phys. Rev. A 90, 052119

(2014).
[42] J. Nobakht, M. Carlesso, S. Donadi, M. Paternostro, and A.

Bassi, arXiv:1808.01143 (2018).
[43] M. Carlesso, L. Ferialdi, and A. Bassi, arXiv:1805.10100 (2018)

[Eur. Phys. J. D (to be published)].
[44] A. Bassi, D.-A. Deckert, and L. Ferialdi, Europhys. Lett. 92,

50006 (2010).


