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Abstract

Dynamic programming is a popular optimization technique, developed in the 60’s
and still widely used today in several fields for its ability to find global optimum.
Dynamic Programming Algorithms (DPAs) can be developed in many dimension.
However, it is known that if the DPA dimension is greater or equal to two, the
algorithm is an NP complete problem. In this paper we present an approximation
of the fully two-dimensional DPA (2D-DPA) with polynomial complexity. Then, we
describe an implementation of the algorithm on a recent parallel device based on
CUDA architecture. We show that our parallel implementation presents a speed-up
of about 25 with respect to a sequential implementation on an Intel I7 CPU. In
particular, our system allows a speed of about ten 2D-DPA executions per second
for 85× 85 pixels images. Experiments and case studies support our thesis.
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1 Introduction

In this paper we describe an approximate Two-Dimensional Dynamic Pro-
gramming Algorithm (2D-DPA) running on a CUDA device. Dynamic pro-
gramming (DP), based on the Bellman’s Principle of Optimality [1], is a fast,
elegant method for finding the global solution to optimization problems. What
characterizes a problem suitable for dynamic programming is that solutions
to these problems can be formulated as a sequence of simpler problems, and
the global optimum is obtained as a sequence of local optima. A classic exam-
ple may be that of finding the length of a shortest path in a directed graph
that has no cycles. Another classical example is that of sequence alignment.
Generally-speaking, computer vision applications are emerging trends for such
a context, and, recently, the research community has devoted a lot of attention
to this topic (e.g., [2,3,4,5,6,7,8,9,10,11]).

DP has been applied to various tasks in pattern recognition and computer
vision [12,13]. Nowadays, DP is considered a classic optimization method and
ever though there are many other optimization techniques available, many
researchers still choose DP in their optimization problems because of its con-
ciseness, versatility, and ability to obtain globally optimal solution. Actually,
DP is considered an ideal technique for solving a wide variety of discrete opti-
mization problems such as scheduling, string editing, packaging, and inventory
management. Of the recent application of DP we can mention tracking [14],
stereo [15,16], and elastic image matching [17] problems. Elastic matching is
a typical application of 2D-DPA.

DPA was originally developed as a continuous optimization method to obtain
the solution efficiently [1]. Angel [18] used analytical DP to smooth interpo-
lated data. Serra and Berthod [19] and Munich and Perona [20] used it for
nonlinear alignment of one-dimensional patterns. Recently, Uchida et al. [21]
used it in object tracking. DP matching (and its stochastic extension, i.e. Hid-
den Markov Models) is a classical technique for speech recognition [22] and
for on-line character recognition [23].

Sequential 1D-DP matching algorithms have been extended to a two-
dimensional one by many authors. Truly two-dimensional elastic image match-
ing have been described in [24,25], but the authors have encountered the in-
herent NP-hardness of the problem [26]. Because of this computational in-
tractability, practical DP-based elastic image matching algorithms employ
various approximation strategies, the most popular of which is the limitation
of matching flexibility, as the pseudo 2D elastic matching algorithm described
in [27]. Another approximation strategy is the partial omission of the mutual
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dependency between 4-adjacent pixels (e.g., the tree representation in [28]).
Other approximations consist in the introduction of pruning and coarse-to-fine
strategies [29], at the cost of global optimality. Notwithstanding these strate-
gies, there is currently no practical DP algorithm that can provide both glob-
ally optimal and truly two-dimensional elastic matching. All the conventional
DP-based elastic matching algorithms used DP as a combinatorial optimiza-
tion method. In fact a recent survey [13] reported only combinatorial (i.e.,
discrete) DP algorithms. Even if the DP optimization problem was originally
formulated as a continuous variational problem, it has been discretized and
then solved by DP as a combinatorial optimization problem [12].

The paper is organized as follows. Section 2 reports some other CUDA im-
plementations of various DPA based applications. Section 3 describes the Dy-
namic Programming Algorithms, both in one and two dimensional formula-
tions. It has been shown that the implementation of 2D-DPA has an expo-
nential complexity, therefore in Section 4 we describe an approximation of
the two-dimensional algorithm with polynomial complexity. In Section 5, we
provide general architecture and funtionalities of the CUDA platform. Section
6 focuses the attention on the CUDA-based implementation of approximate
DPA. Section 7 reports experiments showing the benefits that derive from
our proposed algorithm. In Section 8, we report a complete case study and
related experimental results obtained from the application of the algorithm
to fingerprint verification. Finally, in Section 9, we report concluding remarks
and future work.

2 Related Work

In this Section, we provide an overview of state-of-the-art proposals related
to our research. Since the sequential implementation of various types of DPA
has high computational demand, many authors implemented the algorithm on
Graphics Processing Devices. Two issues have been mainly considered: how
to find the best way to parallelize the DPA itself and how to parallelize the
problem which has to be solved with DPA.

Many problems have been solved with DPA. The most popular are Stereo
Matching in stereo vision, Elastic Matching of images, or various discrete
numerical calculus problems. In 2007, a Dynamic Programming-based low
density real-time Stereo Matching was implemented on an ATI Radeon X800,
an early GPU device. They obtained a frame rate from 10 to 20fps [30].

In 2009, Xiao et al. address the problem of mapping DPA on Graphics Pro-
cessing Units. They propose a fine-grained parallelization of a single instance
of the algorithm that is mapped to the GPU. Steffen et al. [31] describe in 2010

3



an implementation, on a GTX 280, of a numerical framework, called Algebraic
Dynamic Programming, for encoding a broad range of optimization problems.
Depending on the application, they report speedups ranging from about 6 to
about 25. In the same year, Congote et al. [32] describe the implementation of a
Dense Stereo Matching algorithm based on Dynamic Programming to recover
depth map from two-dimensional images using dynamic programming. They
used a number of GPU’s available in that year for a parallel implementation
of the dynamic programming based algorithm. The sequential implementa-
tion was performed with an Intel Pentium processor E2180. They found a
speed-up of about 16 between the two devices. Stivala et al. [33] published
in 2010 a paper showing how to parallelize any DPA on a shared memory
multi-core computer by means of a shared lock-free hash table, via starting
multiple threads that compute the DP recursion in a top-down fashion and
memorizing the result in a shared lock-free hash table.

In 2011, Wu et al. [34] present the GPU acceleration of an important category
of DP problems, called Non-Serial Polyadic Dynamic Programming. Since in
these problems the parallelism level varies significantly in different stages of
computation, they adjusted the thread-level parallelism in mapping a NPDP
problem onto the GPU. They report a speedup of about 13 over the previ-
ously published GPU algorithm. Nishida et al. in 2012 solved an optimization
problem with a known dynamic programming solution on a NVIDIA GeForce
GTX 580. The problem was the computation of the optimal polygon triangu-
lation of a convex polygon with minimum total weight. The algorithm they
published in [35] attained a very high speedup factor of about 250.

3 One- and Two-Dimensional DPA

In this Section, we focus the attention on one- and two-dimensional DPA. A
popular way to describe One-Dimensional Dynamic Programming Algorithms
(1D-DPA) is by means of the Edit Distance [36]. The Edit Distance, which
finds applications in bio-informatics [37], natural language processing [38] and
spoken-word recognition [22], is a way to measure the similarity of two strings
or, in other words, to align the two strings. In the following description we
extend the Edit algorithm to the comparison of one-dimensional sequences,
similar to the comparison between spoken words [22].

Given two one-dimensional sequences, A = (a1, a2, ..., ai, ..., aN) and B =
(b1, b2, ..., ..., bj, ...bM), the mapping of one sequence to the other is represented
by a path M ′ which starts from cell (1, 1) to cell (N,M). The path is formed
by a number of points so that each point k of the path corresponds to a couple
of coordinates, Mk = (ik, jk). A distance between the two sequences can be de-
fined by the sum of the local distances between the elements of the sequences,
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ai, bj, computed along a path, namely:
∑|M ′|
k=1 ‖aik − bjk‖, where |M ′| is the

length of the path M ′. Clearly, there exist a path along which the cumula-
tive distance is minimum. In this case the cumulative distance is the distance
between the two sequences:

D(A,B) =
min
M ′

∑|M ′|
k=1 d(M ′

k)

|M ′|
=

=
min
M ′

∑|M ′|
k=1 d(ik, jk)

|M ′|
=

min
M ′

∑|M ′|
k=1 ‖aik − bjk‖

|M ′|
(1)

.

It is worth noting that the factor at the denominator is needed to normalize
the distance against different lengths of the optimum path, and it is needed
when Equation (1) is used to measure the distance between images.

By Dynamic Programming, the optimization problem of (1) is solved by up-
dating the cumulative distance D(i, j) at each point of the A−B space using
the recursion described in Equation (2), which performs the optimal principle
of DP.

D(i, j) = min


D(i− 1, j) + d(i, j)

D(i− 1, j − 1) + 2d(i, j)

D(i, j − 1) + d(i, j)

(2)

where D(1, 1) = 2d(1, 1). The DP recursion described in Equation (2) is rep-
resented by in Figure 1.
.

d(i,j)D(i-1,j)

D(i-1,j-1) D(i,j-1)

2

2

2

D(i-1,j-2)

D(i-2,j-1)

Fig. 1. Graphical representation of DP recursion

After examination of the A−B space, Equation (1) becomes Equation (3):

D(A,B) =
D(N,M)

N +M
(3)

where D(N,M) is the cumulative distance at the point (N,M), and the fact
that the length of the optimum path is N + M is due to the weight of 2 on
the diagonal move. It is important to note that M ′ which corresponds to the
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minimum cumulative distance D(N,M) is the optimal map between A and B
and can be used to align one sequence on the other. This operation is called
warping. We can think of the goal of matching as bending and stretching the
curves to make them identical.

When the sequences to be compared are two-dimensional, ie images, the op-
timization of Equation (1) can be re-formulated in the following way. Given
two images, X = {x(i, j)} and Y = {y(u, v)}, the mapping of one image to
the other is represented by the image M ′′. Each element of M ′′ corresponds to
a couple of pixel’s coordinates of the two images, i.e. M ′′

k,l = (ijk,l, uvk,l). As in
the one-dimensional case, a distance between the two images can be defined
as depicted in Equation (4).

D(X, Y ) =
min
M ′′

∑
k

∑
l d(M ′′

k,l)

|M ′′|
=

=
min
M ′′

∑
k

∑
l ‖x(i, jk,l − y(u, vk,l)‖

|M ′′|
(4)

where, as before, |M ′′| is a normalization factor.

Similarly to the one-dimensional case, once the distance between the two im-
ages is found by solving the optimization described in Equation (4), a warping
map M ′′ is found. Warping one image to the other, can be described as the
operation to bend and scratch an image to make it comparable to the other
image better than you can.

However, in [26] it has been shown that the optimization described in (4)
is NP-complete. As reported before, many authors developed tractable algo-
rithms using various approximation strategies. One early algorithm developed
by Levin and Pieraccini in 1992 has a complexity of O(N4N) [24]. In [25], a
2D-DPA algorithm is described with a complexity of O(N292N). A continuous
and monotonic 2D-DPA algorithm with complexity as O(N39N) was reported
in [39]. In [17] Uchida and Sakoe surveys the elastic matching algorithms pro-
posed so far, seven of which are based on dynamic programming.

The algorithm described in the following Section 4 has a complexity of O(N4),
where M is the images size, assuming that the images have equal height and
width.
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4 2D Approximate Two-Dimensional DPA

In this Section, we provide the main contribution of our research, i.e. the
approximate 2D-DPA.

The algorithm proposed here for the mapping of images is based on the one-
dimensional DPA described in Section 3. Consider an image as a vector whose
elements are the rows of pixels of the image itself. Let us indicate with x(i, :),
y(i, :) the i-th row of pixels of the images X, Y . The X, Y images are thus
described as reported in (5).

X = [x(1, :), x(2, :), ..., x(i, :), ..., x(N, :)]T

Y = [y(1, :), y(2, :), ..., y(j, :), ..., y(N, :)]T
(5)

In (5) the images are assumed for simplicity of the same size. The idea of this
paper is to apply the one-dimensional DPA algorithm on the two sequences
X and Y . We remark that each element of these sequences is an entire row
of pixels. The i− th row of X is x(i, :) = (xi,1, . . . , xi,n, . . . , xi,N) and the j−
th row of Y is y(j, :) = (yj,1, . . . , yj,m, . . . , yj,N). The distance between two
elements of X, Y or, in other terms, the distance between two rows of pixels
is again performed with one-dimensional DPA. The application of Equation
(1) to x(i, :), y(j, :) becomes Equation (6).

d(x(i, :), y(j, :)) =
min
M ′

∑|M ′|
l=1 d(M ′

l )

|M ′|
=

=
min
M ′

∑2N
l=1 ‖xi,nl

− yj,ml
‖

2N
(6)

On the other hand, the application of 1 to X, Y results in Equation (7). In
this case the map M ′ is between all the rows of X and Y . As before, |M ′| is
the length of the path of the M ′ map.

d(Xi, Yj) =
min
M ′

∑|M ′|
l=1 d(M ′

l )

|M ′|
=

=
min
M ′

∑|M ′|
l=1 ‖xil,nl

− yjl,ml
‖

2N
(7)

Finally, the distance between the two images is obtained by Equation (8). In
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this case the map M ′ is between all the rows of X and Y. As before, |M ′| is
the length of the path.

D(X, Y ) =
min
M ′

∑
k d(M ′

k)

|M ′|
=

=
min
M ′

∑
k d(Xik , Y jk)

|M ′|
=

min
M ′

∑
k

min
M′

∑|M′|
l=1

d(M ′
l )

2N

2N
=

=
min
M ′
{∑k min

M ′

∑|M ′|
l=1 ‖xi,nl

− yj,ml
‖}

4N2
(8)

The term at the denominator of Equation (8) is obtained with the following
reasoning. Assuming that the images are of equal size of N × N pixels, the
length of the optimum path between the two images is equal to 2N . The local
distances in each point of this path is obtained with other 1D-DPA with paths
of length 2N . The total length is the sum of 2N along the 2N long path, giving
4N2.

5 CUDA Platform: Architecture and Functionalities

In this Section, we provide general architecture and funtionalities of the CUDA
platform. First, GPU is a parallel processor initially developed to accelerate
graphical applications. In fact, the typical GPU architecture, reported in Fig-
ure 2, is a parallel architecture with many computation units, organized in
vertex and pixel shader, which are programmable sequences of instructions
which respectively allow the transformation from 3D coordinates to 2D and
the assignment of color to each pixel of the image. A GPU device is interfaced
with a host computer.

In 2006, it was introduced CUDA (Compute Unified Device Architecture),
designed to overcome many of the obstacles that prevented a smooth non-
graphical programming. Instead of dividing the computational resources in
vertex and pixel shaders, the CUDA architecture makes use of unified shaders
capable of performing any type of shader (vertex, pixel, etc ..). This means
that every single ALU on the chip is driven by a program that has as objective
to perform general calculations. These ALUs are constructed to comply with
the requirements for IEEE arithmetic in single-precision floating point and
are designed to use a set of instructions customized to the general calcula-
tion rather than one specifically graphic. In addition the executive units have
arbitrary read and write access. Furthermore, they can make use of a cache
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Fig. 2. GPU architecture

maintained in software known as shared memory. All these features have been
added to the CUDA architecture to create a GPU suitable to calculate and
graph the general-purpose computing.

5.1 CUDA Programming

CUDA programming can be performed using libraries, such as OpenCL, and
languages, such as CUDA C/C++, used in this implementation. CUDA C
allows the programmer to define C functions (called kernels) that, when called
by the CPU (host), are performed on the GPU (device) N times in parallel
by N different CUDA threads, and when they end return control back to the
host. Threads are organized by CUDA in grids of blocks and scheduled in
hardware.

A kernel is defined using the statement global and returns a void pa-
rameter. The number of threads running that kernel is specified as the sec-
ond parameter p2 inside the brackets <<< p1, p2 >>>. Each thread is
assigned a unique ID, which is accessible within the kernel code by the
variable threadIdx. This variable is a three component vector, such that
the threads can be identified using an one-dimensional, two-dimensional,
three-dimensional index, forming a block of threads with one, two, three-
dimensional. This facilitates calculation by elements of domains as vectors,
matrices, volumes.

The index of a thread and its ID are related in this way. For a one-dimensional
block they are identical. For a two-dimensional block of size (Dx, Dy), the ID
of a thread of index (x, y), i.e. (threadIdx.x, threadIdy.y), is (x + y Dx).
For a three-dimensional block of size (Dx, Dy, Dz), the ID of a thread of index
(x, y, z) is (x + y Dx + z Dx Dy).

There is a limit to the number of threads per block, since all of the threads
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of a block reside on the same core and must share the limited memory of the
same.

The blocks, similar to threads, are arranged in one or two-dimensional grids.
The number of blocks per grid is specified as the first parameter p1 inside
the brackets <<< p1, p2 >>>. Each grid block is identified by a one or two-
dimensional index accessible within the kernel using the variable blockIdx.
The block size, ie the number of threads that compose it, is accessible with the
variable blockDim while the size of the grid blocks is specified by the variable
gridDim (Figure 3).

Fig. 3. Grids, blocks and threads in CUDA

There is a maximum number of blocks that can be executed. The blocks must
also run independently: it must be possible to execute them in any order,
in parallel or in series. This need of independence means that the blocks are
scheduled in any order through any number of cores.

Threads within a block can cooperate by sharing data through shared memory
and synchronizing their execution to coordinate memory access. Specifically,
you can specify synchronization points in the kernel code calling the function
syncthreads(); it acts as a barrier to which all threads of the block must

wait before each be allowed to continue.

Threads can access data from different memory locations during their execu-
tion. Each thread has its own private local memory. Each block has its own
shared memory visible to all the threads of the block and with the same time
of life of the block. All threads of all blocks have access to a global memory
(global memory). There are also two additional spaces of read-only memory ac-
cessible by all threads: the constant memory and texture memory. The global,
constant, and texture memory survive after different executions of the kernels
of the same application.
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The memory spaces in the device are typically allocated using cudaMalloc()

and released with cudaFree(); data transfer between host and device is imple-
mented by cudaMemcpy(). Since the bandwidth between memory and the host
device is much lower than that between two locations device, the program-
mer should try to minimize data transfers between the host and the device.
CUDA also provides functions to allow the use of page-locked host memory
(as opposed to traditional pageable host memory allocated with malloc()):
cudaHostAlloc() and cudaFreeHost().

The page-locked buffers have an important property: the operating system
ensures that they will reside in physical memory without being stored to disk.
The GPU can thus use the direct memory access (DMA) to copy data to
and from the host, allowing a significant increase in performance. Both the
allocation and de-allocation of memory to create grids of thread blocks are
not allowed inside the kernel because they are controlled exclusively by the
host.

6 CUDA Implementation of Approximate DPA

This Section focuses the attention on the CUDA-based implementation of
approximate DPA. As shown in Equation (7), the computation of the approx-
imate 2D-DPA is obtained by a 1D-DPA where each node of the optimum
path is computed by another 1D-DPA. Let us first look at Figure 4.

Fig. 4. Explicative graphic sequence of DP operation, clockwise from the left top
square. The black cells within a square represent the cells that can be executed in
parallel within that square.

It represents various stages of a 1D-DPA between two 1D patterns of length
4 for simplicity. In the left square, top row, we can see the initial 1D-DPA
operation. The square drawn in black is the local optimization corresponding
to the first parameter of the horizontal pattern and the first parameter of
the vertical pattern, as shown in Equation (2) and in Figure 1. We want
to compute in parallel most squares as possible. It is evident that, although
possible according to the Equation (2) operation, it is not possible to compute
in parallel all the first column, as it were possible in a sequential operation:
only the square drawn in black can be computed.

After the first black square, i.e. going to the second parameter of the horizontal
pattern, the only cells that can be computed in parallel are the two black cells
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shown in the second to the left, top row, square of Figure 4. Clearly, the cell
at (1, 1) cannot be computed in parallel to the other because of the lack of
the values in the bottom and left cells, which must be still computed. Same
reasoning at the third parameter of the horizontal pattern, shown in the third
to the left, top row, square.

It is clear that the parallel computation of 1D-DPA can be performed in
sequences of diagonal cells of increasing size, from 1 to 4. After the diagonal
of length 4, shown in the right square of the top row, things change in the sense
that the only cells that can be computed in parallel are diagonal sequence of
cells, but their number decrease from 4 to 1.

Let us now consider Figure 5, which shows in a simplified way, our mapping
of the algorithm on the GPU. It represent, on the vertical axis, a number of
patterns, each with 4 elements, from 0 to 3. The horizontal patterns are elab-
orated one element at a time, from left to right. In the figure it is represented
the situation related to the third horizontal element of the horizontal pattern.
It is evident that all the cells drawn in black of Figure 5 can be computed in
parallel.

In our case, the patterns are the rows of the two images on which Equation
(7) is computed. The elements of the patterns are the pixels of the rows. In
the experimental Section we assume that the images are of equal size, i.e.
N × N , so the images have N rows, and each row have N pixels. In other
words, the parallel implementation is implemented taking into account all the
templates at once: the relation between the token and the various templates
occur simultaneously. This way you do not have a loop that passes through
all the templates, nor reset and copies of the flag and the coordinates x, a
process that would increased the time of execution of the code. Now there
is only one cycle while which focuses on the number of iterations required
to complete the matrix of minima, which is equal to DimX + DimY - 1. The
variable DimX is the width of the matrix, DimY the height. As now, all the
matrices of the comparisons are considered together, the number of iterations
needed to complete the calculation is linked to the size of the larger array.

Fig. 5. Simplified representation of the mapping of the algorithm on GPU. Each
black cell represent a thread. Horizontal and vertical patterns will be image rows.

The algorithm is as follows:

for (r=0;r<N;r++) {

for (iter=0;iter<=N;iter++) {
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1D-DPA<<N, iter+1>>>(r,iter, d_cell, ...);

}

for (iter=N-1;iter>=1;iter--) {

1D-DPA<<<N,iter>>>(r,iter, d_cell, ...);

}

}

The outer loop handles all the rows of one image, represented by the variable
r. The inner loops perform DP for each pixel of the chosen row. As shown,
the first loop perform activate initially one thread per block, then two, then
three and so forth, until N . The second loop goes to the last cell, in the right
top position of each block.

At this point it is important to remark the following three things.

• One is that initially the images are loaded in the global memory of the GPU,
to avoid data transfers from the Host.
• The second is that the operation realized by the code above has the result

to compute the local distances matrix between all the rows of the image.
On that matrix will be performed another 1D-DPA to solve Equation (7).
• Finally, we remark that, while the distance is obtained by the last cell

of the space of the two images, the warping path is obtained by back-
tracing from the last cell to the initial. That means that all the information
regarding the slopes taken during the DP computation must be stored in
data structures and recovered during back-tracing. That means, during the
DPAs between the image’s rows and during the DPA computed on the local
distance matrix.

In fact, the array d cell is virtually a super-matrices that contains all the
matrices of individual comparisons. It is basically a three-dimensional matrix
in which the linearized coordinates x and y adds a coordinated z, necessary
to specify how the token compares template. The main difference in the code
of the function 1D-DPA is therefore to map the indexes of the block with the
three-dimensional coordinates of the matrix. Clearly, in addition to storing
the backtracking for each association between the lines, you need to store the
mapping pixels within the same row.

We now report the pseudo-code of the kernel that performs 1D-DPA on the
Kepler GPU. For the sake of simplicity, we denoted as U, V, W the cumulative
distances D(i− 1, j − 1), D(i, j − 1) and D(i− 1, j) respectively.

__global__ void 1D-DPA(int nrtemp, float *d_pdati, float *d_cell, ...)

{

int z=blockIdx.x/N;

int y=blockIdx.x \% N;

int x=d_x[blockIdx.x];

int i=y + x*N + (d_FrCum[z]*N);

float dxy, Uval, Vval, Wval;

char Wfree, Vfree;

if ((d_checkflag[i]==1) || (y==0 && x==0)) {
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if ((y==0) && (x==0)) {Uval=0; Vval=1000; Wval=1000; Wfree=0; Vfree=0; }

else if ((y==0) && (x!=0)) {

Uval=1000;

Vval=1000;

Wval=d_cell[i-N];

Wfree=d_bWfree[i-N];

Vfree=0;

}

else if ((y!=0) && (x==0)) {

Uval=1000;

Vval=d_cell[i-1];

Wval=1000;

Wfree=0;

Vfree=d_bWfree[i-1];

}

else {

Uval=d_cell[i-N-1];

Vval=d_cell[i-1];

Wval=d_cell[i-N];

Wfree=d_bWfree[i-N];

Vfree=d_bWfree[i-1];

}

dxy=d(z,nrtemp,x,y,d_pdati);// distance between pixels

if ( ( (Wval+dxy) < (Uval+2*dxy) ) && ( Wfree==1 ) )

if ( ( Wval <= Vval ) || ( bfree==0) ) {

Vval=Wval+dxy; // choose W

d_bWfree[i]=0;

}

else {

Vval=Vval+dxy; // choose V

d_bWfree[i]=0;

}

else {

if( ( (Vval+dxy) < (Uval+2*dxy) ) && ( Vfree==1 ) ){

Vval=Vval+dxy; // choose V

d_bWfree[i]=0;

}

else {

Vval=Uval+2*dxy; // choose U

d_bWfree[i]=1;

}

}

d_cell[i]=Vval;

if (x<d_nftemp[z]-1) {

d_checkflag[i+1]=1;

d_checkflag[i+N]=1;

d_x[blockIdx.x]=d_x[blockIdx.x]+1;

}

else if (x==d_nftemp[z]-1 && y<N-1) {

d_checkflag[i+1]=1;

}

else if (x==d_nftemp[z]-1 && y==N-1) {

d_res[z]=Vval;

}

}

}

There are a couple of other very important remarks to make at this point.

• The first regards the way the implementation use to synchronize the exe-
cutions. It has to remember that when a kernel is started, all the created
thread share the same code, so how we can stop the thread that cannot
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execute like all the cells above the black one in the upper left square of
Figure 4 and all the other similar cells in the same figure. We perform syn-
chronization simply with the d checkflag[] Boolean variables, which are set
when data is available and reset when not.
• The second remark is the use of the flags Wfree and V free. They are used

to impose a path that cannot have two subsequent horizontal or vertical
moves, to avoid real paths.

7 Experimental Results

In this Section, we report experiments showing the benefits that derive from
our proposed algorithm. The solution of Equation (1) was first obtained using a
sequential implementation on a Intel I7 CPU with 8 cores running at 3.07GHz
and a memory of 24GB. Then, the algorithm has been rewritten in the CUDA
framework and executed on a NVidia Kepler TM GK110 device. This device
has many improved features over the previous CUDA Fermi devices, such as
dynamic parallelism, the possibility that multiple CPU cores start executions
on a single GPU simultaneously, improved Grid management, and enhanced
memory subsystem, including additional caching capabilities, more bandwidth
, and a faster DRAM I/O implementation. These improvements lead to higher
computation capability with respect to the previous Fermi devices.

The algorithm executed on the I7 CPU takes about 2500ms to compute Equa-
tion (1) with 85 pixels images. For the same images, the same algorithm run-
ning on Kepler TM GK110 takes about 100ms. Of course, the execution times
depend on the size of the images. Figure 6 shows the speed-up obtained with
difference image sizes.

The algorithm can be applied in many applications as explained previously. In
this paper, we considered image matching and image warping applications. We
report in this Section only some examples regarding warping. We left image
comparison results to future papers. The images were taken from a Uchida’s
paper and from an image dataset.

In Figure 7, we show three sets of three handwritten characters. The set at
the left is written in a vertical manner, the set in the middle is rather inclined
and the set at the right is obtained by warping the set in the middle according
to the optimum path. Of course the warped image could be passed to an OCR
for its recognition. Otherwise, the score obtained with Equation (7) could be
used to automatically infer psychological aspects from handwritten writing.

Similar results are shown in Figure 8. In this case the image represent a human
face. The warped face (image on the right) could be passed to a face recognition
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Fig. 6. GPU-CPU execution speedups

Fig. 7. From the left: first handwritten sequence, second handwritten sequence,
second image warped onto the first

system. The image at the left and in the middle of this figure are taken from
a Uchida paper.

Fig. 8. From the left: first image, second image, second image warped onto the first
(Uchida paper)

The human face image shown in Figure 9 is taken from a public dataset. Same
considerations as that related to Figure 8 could be done.

Finally, the result shown in Figure 10 are related to a fingerprint image. In
this case we can think that the alignment of the fingerprint at the left and
that in the middle could simplify the verification process. However, there is a
field in fingerprint verification area that address the recovery of orientation of
the fingerprint images.
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Fig. 9. From the left: first handwritten sequence, second handwritten sequence,
second image warped onto the first (public dataset)

Fig. 10. From the left: first fingerprint, second fingerprint, second fingerprint warped
onto the first

8 Case Study: 2D Approximate DPA for Supporting Fingerprint
Verification

In this Section we report a complete case study and related experimental re-
sults obtained from the application of the algorithm to fingerprint verification.
The idea is take a given fingerprint as reference and to warp any unknown fin-
gerprint to the reference one. Warping between images is discussed in Section
3. The verification is obtained according to the following rule: if the difference
between the reference and the warped fingerprints is below a threshold, then
the unknown fingerprint belongs to the same person to whom belongs the ref-
erence finger. If the difference is greater than the threshold, then the unknown
fingerprint belongs to a different person. This decision rule is motivated from
the fact that the warping operation is easier if it is performed between inter-
persons fingerprints than between intra-person fingerprints. The first step of
our fingerprint verification algorithm is to enhance the raw fingerprint images
with the Gabor filters [40]. The second step is to binarize the enhanced finger-
prints using a global threshold on the image. The identity of each human user
is represented by one Gabor-filtered and binarized fingerprint which is used
as a reference for the user to whom the fingerprint belongs. The unknown
fingerprints are Gabor-filtered and binarized too. The fundamental additional
step is that they are warped to the reference fingerprint with the 2D DPA
computed on the Kepler CPU as described in Section 6. The difference be-
tween reference and warped fingerprint is evaluated and the total number of
pixels of the difference image is evaluated. If this number is greater than a
threshold then the unknown fingerprint is verified, otherwise it is not verified.
This verification process is quite simple and, if the fingerprints have a size of
100 × 100 pixels, takes only 100 ms, which is the time to compute the 2D-
DPA on the Kepler GPU. A verification example is reported in Figure 11 and
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Figure 12, for two different cases. In Figure 11 it is shown, for the first case,
from the left, the reference fingerprint of a given user, an unknown fingerprint
(but we know it comes from a different imprint of the same user) and the dif-
ference from reference and the warped unknown fingerprints. The fingerprint
is verified since the number of pixels of the difference image is 20500 and the
threshold is set to 27000.

Fig. 11. From the left: reference fingerprint, unknown fingerprint, difference refer-
ence-warped unknown (first case)

In Figure 12 it is shown, for the second case, from the left, the reference
fingerprint, an unknown fingerprint (but we know it belongs to a different
user) and the difference from reference and the warped unknown fingerprint.
In this case the fingerprint is not verified since the number of pixels of the
difference image is 32200 and the threshold is 27000.

Fig. 12. From the left: reference fingerprint, unknown fingerprint, difference refer-
ence-warped unknown (second case)

However, some interruptions in the ridges of the fingerprints may appear in
the Gabor-filtered and binarized fingerprints in some noisy fingerprints. The
verification results can be improved if the interruptions are restored because
the number of valid pixels would be increased.

8.1 Restoring the Fingerprint Ridges Continuity

We have developed a novel technique for restoring the continuity of the fin-
gerprint ridges. The technique is inspired from [41] and takes the following
steps:

• thinning of the reference and warped fingerprints;
• reconstruction of the fingerprint ridges.

These two algorithms are summarized in the following sub-sections.
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8.1.1 Thinning Algorithm

The Thinning algorithm aims at reducing the ridge thickness, which after
Gabor filtering can be several pixels thick, to a only one pixel. In this way the
ridges are filiform. Our algorithm is made of the following phases:

• Pre-processing. This operation reduces the ridge thickness to a single
medium point.
• Isolated points removal. This is done to reduce noise.
• Discontinuities connection. Small discontinuity zones are searched for and

if they are found, they are connected.
• Filling. Pre-processing operation works better if there are no empty regions

in the ridges to be thinned. Therefore, white points in the ridges are looked
for and, if found, they are filled.
• Removal of not connected pixels. The pixels that have no connections with

other pixels are removed using an iterative algorithm based on suitable
masks.
• End line correction. When all the previous points are applied, artifacts

may be generated at the end of the lines. For correcting these artifacts,
an anisotropic operator is applied to modify particular pixel configurations.

8.1.2 Ridge Reconstruction

This phase aims at reconstructing small interruptions that can be still present
in the ridge. The ridge reconstruction must be coherent with the contiguous
ridges to ensure continuity. For this purpose, a ridge representation should be
generated. A representation is obtained by searching the runs of connected
pixels. Obviously, a run of connected pixel have a slope. The slopes can be in
the range [−π

2
. . . − π

2
]. For practical reasons, the slopes are quantized in 13

values, coming from dividing the range of possible slopes in 15o degrees bands.
That is, the first band contains all the slopes from −90o to −82.5o, the second
band from −82.5o to −67.5o and so on until the 13-th band that contains
all the slopes from +82.5o to +90o. First of all, the fingerprint is divided in
4 × 4 pixels sub-blocks. Each sub-block is labeled with the principal slope of
the runs found in the sub-block. This is performed by computing the Rl(k)
values, where l is a number of contiguously connected pixels, k is the number
of band, and R is the number of runs of length l found in the texel with a slope
situated in the k-th band. With the Rl(k) values, a couple of other quantities
are computed for each sub-block, as described in Equation 9 and Equation 10.

L(k) =

∑n
l=1 l

2Rl(k)∑n
l=1Rl(k)

(9)

and
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N(k) =

∑n
l=1R

2
l (k)∑n

l=1Rl(k)
(10)

These two quantities have the following meaning: Equation (9) measures the
presence of long runs and Equation (10) measures the presence of many small
runs. Equation (9) and Equation (10) are normalized in the [0 . . . 1] range
for each k value over all the sub-block to compare their values. With the
normalized values, the predominant slope in each sub-block can be estimated
using Equation (11) and Equation (12).

P (k) = max{0, L(k)− αN(k)}, k = 1 . . . 13 (11)

where P (k) is normalized in the [0 . . . 1] range for each k value in each sub-
block. The predominant slope of each sub-block is estimated with Equation
(13).

P (14) = min{N(k)}, k = 1 . . . 13 (12)

Predominant Slope = argmax{P (k)}, k = 1 . . . 14 (13)

With the predominant slope information, the runs can be finally connected.
The connection is performed using a set of simple heuristic rule, reported as
follows.

• The connection is performed only for runs belonging to sub-block labeled
from 1 to 13.
• In general, the runs are connected according to the minimum distance be-

tween the runs.
• Connection between two runs belonging to sub-block of opposite predomi-

nant slope is avoided.
• When more than one run is available for connection, only the closes one is

connected.

At the end of this Section we report an example of the results that can be
obtained from the low level processing techniques described so far, namely
the Gabor filtering, the binarization/thinning and the ridge reconstruction.
In Figure 13, from left to right, we report an example of a raw fingerprint, of
Gabor enhancement, of Thinning and of ridge reconstruction. In the red circle
we highlight a case of successful reconstruction.
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Fig. 13. From the left: original fingerprint, Gabor-filtered fingerprint, thinned fin-
gerprint, ridge reconstructed fingerprint

8.2 Experimental Results

The algorithm composed by fingerprints enhancement, binarization, and
Warping of unknown fingerprints by 2D-DPA implemented on GPU is called
the simplified verification algorithm. The algorithm composed by the simpli-
fied one plus thinning of the fingerprints plus restoring of the fingerprint ridges
is called the overall verification algorithm. Both the algorithms use the veri-
fication decision rule based on the computation of the total number of pixels
of the difference between reference and warped images. The simplified and
overall verification algorithms are tested with the dataset of the second fin-
gerprint verification competition FVC2002 [42]. Generally the performance of
a fingerprint verification system are measured in terms of False Accept Rate
(FAR) and False Reject Rate (FRR). FAR is the rate of accepting as verified
a fingerprint which in reality belongs to an impostor. FRR is the rate of re-
jection of valid inputs. Both these measures depend on the threshold of the
fingerprint verification algorithm. The threshold value is usually given by the
Equal Error Rate (EER). ERR corresponds to the threshold which indicates
that FAR is equal to FRR.

The FAR and FRR measures and the ERR value evaluated in our test are
reported in Figure 14. The dashed red line reports the result of the simplified
verification algorithm while the continuous green line is the result of the overall
algorithm.

It can be seen that the difference between the simplified and overall algorithms
is that the overall one has an ERR less than about 3% of the simplified one.

9 Conclusions and Future Work

In this paper we describe an approximation of two-dimensional dynamic pro-
gramming. The algorithm has been mapped on a recent GPU device with
Kepler architecture. Our results show that two-dimensional dynamic program-
ming can be executed at a rate of about 10 frames per second for images of
size 85×85 pixels. Of course other mapping of the algorithm could be devised.
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Fig. 14. Performance results of our algorithms on the FVC2002 dataset

In addition to the first experimental campaign, we provided a complete case
study and related experimental results obtained from the application of the
algorithm to fingerprint verification.

Future work on this topic will be to find better mappings of the algorithm
on a GPU on one side, and to apply the algorithm in applications that need
real time processing. On the other hand, we plan to extend our framework
as to deal with emerging trends of big data management and analytics (e.g.,
[43,44,45,46,47,48,49,50]).

References

[1] R. Bellman, Bynamic Programming, Princeton University Press, 1957.

[2] A. Morales, A. Kumar, M. A. Ferrer, Interdigital palm region for biometric
identification, Computer Vision and Image Understanding 142 (2016) 125–133.

[3] Z. Wu, M. Betke, Global optimization for coupled detection and data association
in multiple object tracking, Computer Vision and Image Understanding 143
(2016) 25–37.

[4] Y. Long, F. Zhu, L. Shao, Recognising occluded multi-view actions using local
nearest neighbour embedding, Computer Vision and Image Understanding 144
(2016) 36–45.

[5] K. Avgerinakis, A. Briassouli, Y. Kompatsiaris, Activity detection using
sequential statistical boundary detection (SSBD), Computer Vision and Image
Understanding 144 (2016) 46–61.

[6] J. Wang, Z. Xu, Spatio-temporal texture modelling for real-time crowd anomaly
detection, Computer Vision and Image Understanding 144 (2016) 177–187.

22



[7] P. R. Lumertz, L. Ribeiro, L. M. Duarte, User interfaces metamodel based on
graphs, J. Vis. Lang. Comput. 32 (2016) 1–34.

[8] K. Zhang, M. A. Orgun, R. Shankaran, D. Zhang, Classifying high dimensional
data by interactive visual analysis, J. Vis. Lang. Comput. 33 (2016) 24–36.

[9] W. Wang, M. L. Huang, Q. V. Nguyen, W. Huang, K. Zhang, T. Huang,
Enabling decision trend analysis with interactive scatter plot matrices
visualization, J. Vis. Lang. Comput. 33 (2016) 13–23.

[10] N. A. M. ElSayed, B. H. Thomas, K. Marriott, J. Piantadosi, R. T. Smith,
Situated analytics: Demonstrating immersive analytical tools with augmented
reality, J. Vis. Lang. Comput. 36 (2016) 13–23.

[11] C. Lin, W. Huang, W. Liu, S. Tanizar, S. Jhong, Evaluating esthetics for user-
sketched layouts of clustered graphs with known clustering information, J. Vis.
Lang. Comput. 37 (2016) 1–11.

[12] A. A. Amini, T. E. Weymouth, R. C. Jain, using dynamic programming for
solving variational problems in vision, PAMI 12 (9).

[13] P. F. Felzenszwalb, R. Zabih, dynamic programming and graph algorithms in
computer vision, PAMI 33 (4).

[14] A. Buchanan, A. Fitzgibbon, interactive feature tracking using k-d trees and
dynamic programming, in: Proceedings of CVPR, 2006.

[15] O. Veksler, stereo correspondence by dynamic programming on a tree, in: Proc,
of CVPR, 2005.

[16] C. Lei, J. Selzer, Y. H. Yang, region-tree based stereo using dynamic
programming optimization, in: Proceedings of CVPR, Vol. 2, 2006, pp. 2378–
2385.

[17] S. Uchida, H. Sakoe, survey of elastic matching techniques for hanwritten
character recognition, IEICE Transactions Inf. and Sist. (2005) 1781–1790.

[18] E. Angel, dynamic programming for noncausal problems, IEEE Trans. on
Automatic Control.

[19] B. Serra, M. Berthod, subpixel contour matching using continuous dynamic
programming, in: Proc. of CVPR.

[20] M. E. Munich, P. Perona, continuous dynamic time warping for translation
invariant curve alignment with applications to signature verification., in: Proc.
of ICCV, 1999.

[21] S. Uchida, I. Fujimura, H. Kawano, Y. Feng, analytical dynamic programming
tracker, in: Proc. of ACCV, 2010.

[22] H. Sakoe, S. Chiba, Readings in speech recognition, Morgan Kaufmann
Publishers Inc., 1990, Ch. Dynamic programming algorithm optimization for
spoken word recognition, pp. 159–165.

23



[23] C. L. Liu, S. Jaeger, M. Nakagawa, online recognition of chinese characters:the
state-of-the-art, PAMI 26 (2).

[24] E. Levin, R. Pieraccini, dynamic planar warping for optical character
recognition, in: Proceeding of ICASSP, 1992, pp. 149–152.

[25] Seiichi Uchida, H. Sakoe, a monotonic and continuous two-dimensional warping
based on dynamic programming, in: Proc. 14th ICPR, 1998, pp. 521–524.

[26] D. Keysers, W. Unger, elastic image matching is npcomplete, Pattern
Recognition Letters 24 (2003) 445–453.

[27] D. Keysers, T. Deselaers, C. Gollan, H. Ney, deformation models for image
recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence
(2007) 1422–1435.

[28] V. Mottl, S. Dvoenko, A. Kopylov, pattern recognition in interrelated data: the
problem, fundamental assumptions, recognition algorithms, in: Proc. of ICPR,
2004.

[29] H. Lester, S. R. Arridge, a survey of hierarchical non-linear medical image
registration, Pattern Recognition 32 (1).

[30] Minglun Gong, Y.-H. Yang, real-time stereo matching using orthogonal
reliability-based dynamic programming, IEEE TRANSACTIONS ON IMAGE
PROCESSING 16 (3) (2007) 879–884.

[31] Parallel Processing and Applied Mathematics, Vol. 6068 of LNCS, Springer,
2010, Ch. GPU Parallelization of Algebraic Dynamic Programming, pp. 290–
299.

[32] J. Congote, B. J., I. Barandiaran, R. O., realtime dense stereo matching with
dynamic programming in cuda, in: Proc. of CEIG09, Vol. 32, 2009.

[33] Alex Stivala, P. J. Stuckeya, M. G. de la Bandac, M. Hermenegildod, lock-free
parallel dynamic programming, Journal of Parallel and Distributed Computing
(2010) 839–848.

[34] C. Wu, Y. Ke, H. Lin, W. Feng, optimizing dynamic programming on graphics
processing units via adaptive thread-level parallelism, in: Proc. of IEEE 17th
International Conference on Parallel and Distributed Systems, 2011, pp. 96–103.

[35] Y. I. Kazufumi Nishida, Koji Nakano, accelerating the dynamic programming
for the optimal polygon triangulation on the gpu, in: Algorithms and
Architectures for Parallel Processing, 2012, pp. 1–15.

[36] N. Gonzalo, a guided tour to approximate string matching, ACM Computing
Surveys (2001) 31–88.

[37] C. Di Neil, P. Pevzner, An Introduction to Bioinformatics Algorithms, MIT
Press, 2004.

[38] C. J. Hopfe, Y. Rezgui, E. Mtais, A. Preece, H. Li, Natural Language Processing
and Information Systems, LNCS6177, Springer, 2010.

24



[39] Seiichi Uchida, H. Sakoe, an efficient two-dimensional warping algorithm, IEICE
Trans. Inf. and Syst.

[40] Jianwei Yang, L. Liu, T. Jiang, Y. Fan, a modified gabor filter design method
for fingerprint image enhancement, Pattern Recognition Letters 24 (12) (2003)
1805–1817.

[41] Enzo Mumolo, spectral domain texture analysis for speech enhancement,
Pattern Recognition 35 (10) (2002) 2181–2191.

[42] Dario Maio, D. Maltoni, R. Cappelli, J. L. Wayman, A. K. Jain, FVC2002:
second fingerprint verification competition, in: 16th International Conference
on Pattern Recognition, ICPR 2002, Quebec, Canada, August 11-15, 2002.,
2002, pp. 811–814.

[43] M. Cheung, J. She, Z. Jie, Connection discovery using big data of user-shared
images in social media, IEEE Trans. Multimedia 17 (9) (2015) 1417–1428.

[44] M. Chen, S. Mao, Y. Liu, Big data: A survey, MONET 19 (2) (2014) 171–209.

[45] A. Cuzzocrea, L. Bellatreche, I. Song, Data warehousing and OLAP over big
data: current challenges and future research directions, in: Proceedings of the
sixteenth international workshop on Data warehousing and OLAP, DOLAP
2013, San Francisco, CA, USA, October 28, 2013, 2013, pp. 67–70.
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