
Avdanced ECHMM-Based Machine Learning Tools
for Complex Applications

Alfredo Cuzzocrea
DIA Dept.

University of Trieste and ICAR-CNR
Trieste, Italy

alfredo.cuzzocrea@dia.units.it

Enzo Mumolo
DIA Dept.

University of Trieste
Trieste, Italy

mumolo@units.it

Gianni Vercelli
DIBRIS Dept.

University of Genova
Genova, Italy

gianni.vercelli@unige.it

Abstract—We present a novel approach for accurate charac-
terization of workloads. Workloads are generally described with
statistical models and are based on the analysis of resource
requests measurements of a running program. In this paper we
propose to consider the sequence of virtual memory references
generated from a program during its execution as a temporal
series, and to use spectral analysis principles to process the
sequence. However, the sequence is time-varying, so we employed
processing approaches based on Ergodic Continuous Hidden
Markov Models (ECHMMs) which extend conventional station-
ary spectral analysis approaches to the analysis of time-varying
sequences.

In this work, we describe two applications of the proposed
approach: the on-line classification of a running process and the
generation of synthetic traces of a given workload. The first step
was to show that ECHMMs accurately describe virtual memory
sequences; to this goal a different ECHMM was trained for each
sequence and the related run-time average process classification
accuracy, evaluated using trace driven simulations over a wide
range of traces of SPEC2000, was about 82%. Then, a single
ECHMM was trained using all the sequences obtained from
a given running application; again, the classification accuracy
has been evaluated using the same traces and it resulted about
76%. As regards the synthetic trace generation, a single ECHMM
characterizing a given application has been used as a stochastic
generator to produce benchmarks for spanning a large applica-
tion space.

Index Terms—Workload characterization, HMM, cepstral co-
efficients.

I. INTRODUCTION

Performance evaluation of computer systems requires to test
different alternatives under identical conditions. However, a
real computing environment is generally not repeatable, and
for this reason it is necessary to characterize the workload
by developing a workload model that can be used repeatedly.
Once a workload model is available, changes in the workload
and in the system can be studied under controlled conditions.

As pointed out in [8], workload characterization using a
model plays a fundamental role in many areas, namely to un-
derstand the key resource usage of applications, to tune com-
puter architectures, to validate trace reduction mechanisms, to
guide the selection of programs for obtaining benchmark sets,
to generate synthetic traces to span application spaces, and
to create abstract program behavior models for performance
studies of computer systems.

Workloads are typically modeled as stochastic processes and
analyzed with statistical techniques [10] [11]. This is because
different benchmarks are obtained from a single application for
different inputs, and the only way to describe all the potential
application space is through the extraction from the running
application of suitable parameters which describes the main
features of the workload.

A running application thus produces a huge amount of
data; the only way to analyze such data is by means of
statistical techniques. In this paper we propose to use ergodic
Hidden Markov Models as statistical models of workloads.
Our approach is based on the idea to treat the sequences of
memory page references produced by a running application
as time-varying discrete-time series of data and to analyze
them with statistical techniques using spectral parameters. The
proposed methodology operates as follows: the page references
sequences obtained from a running application is divided into
segments of some hundreds of page numbers, and each piece is
then described with a vector of spectral parameters. Chunks of
references are formed by some hundreds of such vectors; the
chunks are then used to estimate the parameters of a Hidden
Markov Model. Repeating this operation for each running
application, we compute a HMM model of the application. The
accuracy of such models has been estimated as quite good.

By considering a number of workloads obtained from the
same type of application, and re-estimating the parameters of
a single Hidden Markov Model, a statistical model of that type
of application can be computed. In this way, we have obtained
models for several application types, as described in I-A. In
this paper, models have been used in two ways: to determine
to which application type belongs a running application and to
generate synthetic traces. Both these points are very important
from a computer architecture perspective. As regards the
benchmark classification, it is important to note that using our
approach the classification is possible in run-time, i.e. during
the application execution, since the computational complexity
is quite low. As regards the synthetic traces generation, HMMs
can indeed be viewed as generators of observations, in our
case allowing to cover a large application space for computer
architecture studies and designs [12].

Virtual time

P
a
g
e

r
e
f
e
r
e
n
c
e
s

n
u
m
b
e
r

Fig. 1. Graphical view of a portion of a sequence of page references.

A. Methodology

We used traces-driven simulations to test the proposed
approach. The traces are obtained from the SPEC2006 bench-
mark suite [9], as reported in Tab. I.

Benchmark Category
464.h264ref Video coding
403.gcc C Compiler
400.perlbench Interpreter
401.bzip2 File Compressor
445.gobmk Go Game Playing
429.mcf Vehicle Scheduling
456.hmmer Profile Hidden Markov Models
458.sjeng Chess Playing
462.libquantum Quantum Computer Simulation
471.omnetpp Discrete Event Simulation
473.astar Path-finding Library
483.xalancbmk XML to HTML

TABLE I
THE WORKLOADS USED IN THIS WORK.

CPU address traces have been obtained by running the ap-
plications of Tab. I with different input data; several executions
of each application have been considered. The applications of
Tab. I run on a Intel Core i7 quad-core 2,8 GHz, under Linux
operating system. In Fig. 1 a part of a page references trace
(16000 virtual time instants) is shown. This figure illustrates
the time-varying characteristic of the trace. From Fig. 1, it
clearly follows how modeling and capturing such phenomena
represents a challenging problem for modern machine learning
applications.

The rest of this paper is organized as follows. Section
II reports some significative papers related to this work. In
Section III the operation principles of the algorithm described
in this paper are described together with the used parameters.
In Section IV the workload classification methodologies based
on HMM are described while in Section V the generation
of synthetic traces with HMMs is briefly reported. Finally,

in Section VI some final remarks are reported. This paper
significantly extends the copyright-free paper [21], where the
proposed methodology has been firstly introduced.

II. RELATED WORK

A Markov Model is a classical workload characterization
tool. Markov Models contain a number of system states linked
by probabilistic transitions. A simple way to use a Markov
Model for describing a process behaviour during execution is
to make states equal to the software resources used by the
process and transitions probabilities between states equal to
the actual use of the resources during execution.

Song et al. propose a Markov Chain based model of a
Parallel computer workload [1]. The workload is described in
terms of the allocation of the process nodes to the jobs. Two
independent Markov Chains are used, one for modeling the
sequence of the requested processing nodes and for modeling
the runtimes required. The authors describe algorithms for
combining the two Markov Chains and for computing the
correlation between them. The quality of the model is tested
by generating synthetic traces and comparing them with the
original one.

Normally the system states of a Markov Model are directly
observable. However, in many practical cases we can observe
only values which are functions of the states. A Markov
Chain where the states are not observable is an Hidden
Markov Model (HMM). HMM have been successfully used in
a huge number of practical applications, including Workload
modeling and Performance Evaluation [2].

[3] trains an HMM for finding the type of application work-
load from Network File System (NFS) file system operations
and their parameters by unknown processes.

[4], instead, uses HMM for finding the network protocol
used by a running application from packet size and destination.

[5] estimates an HMM from I/O data gathered from
storage operations. The authors then use the HMM to cre-
ate representative traces to test the performance of storage
systems. Synthetic traces are very useful to drive simulation
based performance studies without the need to acquire suitable
traces. In particular, in [5] the synthetic traces are used to study
Flash memories performance.

Khan et al. proposes in [6] an HMM based model for
characterizing and predicting Virtual Machines workload. The
purpose of this paper is workload characterization and predic-
tion of computing resources in cloud computing.

[7] propose an adaptive HMM algorithm for estimating
statistical models of storage systems. The algorithm has been
tested with several traces formed by a time stamp and I/O
commands like read/write. Also in this case the authors use
the HMM model to generate synthetic traces of storage system.
This proposal embeds interesting ideas, as the whole HMM-
based framework can be extended to these metaphors (e.g.,
[22]) as to gain flexibility in the main processes.

Of course a process is in several states during execution.
The states can be initialization, I/O, computation. During
computation there are sequential, periodic or random states.

In our paper we estimate an HMM from parameters obtained
from memory address reference generated during process exe-
cution. The observable values are memory reference addresses
and the HMM states are the states of the process in execution.
We cannot know the exact meaning of the HMM states exactly;
we can only experimentally find what is the best number of
states.

III. HIDDEN MARKOV MODELS FOR WORKLOAD
CLASSIFICATION

A. Operating Principles

The sequence of memory address references is transformed
to a virtual page sequence. The Virtual page sequence is
divided into 4096 pages frames. For each frame a cepstral
vector is computed and from each vector the4 first ten cepstral
coefficients are given as input to HMM. For Discrete HMM
computation the cepstral coefficients are vector quantized. An
Hidden Markov Model is normally designed as λ = (A,B, π)
where A is the transition probability matrix among states, B
is the emission probability distribution and π is the state initial
probability distribution. Given an unknown observation O, an
HMM is evaluated by computing the likelihood P (O|λ).

B. HMM Features

The page references are produced at a CPU instruction clock
rate, because each virtual memory address is translated to
a virtual page reference. This information rate is too high
to make reasonable workload evaluations, and consequently
the number of page references is too large. Therefore, some
feature extraction must be performed for getting rid of the
redundant information and for reducing the data rate. Accord-
ing to the idea of considering the page references sequence
as a signal, we use a spectral description of the page refer-
ences sequences. Characteristics in the sequences, such as for
examples loops or sequential program behaviors, are indeed
described in the spectrum. For instance, loops introduce peaks
in the spectrum while a sequential address sequence produces
a DC component. For example, representing the sequence of
Fig. 1 in the log spectral domain, we obtain the data shown
in Fig. 2.

Since the page references sequence is time varying, as
suggested in Fig. 1, the result of Fig. 2 is obtained with short-
time spectral analysis. In particular, the sequence of virtual
memory pages is divided into short sections – 120 references
long – and analyzed by means of a discrete Fourier transform.

It is worth noting that Fig. 2 reports a log-spectral view
of the page references trace shown in Fig. 1. In Fig. 2 it
is possible to see how the change of behavior in the trace
of Fig. 1 at about 5000 virtual time instants reflects in the
spectral domain. As in the proposed approach a fundamental
issue is related to the comparison between log-spectral data,
it is important to define a log-spectral distance between two
spectra. To show how to define the log-spectral distance, let

Frequency

Time

lo
g

A
m

pl
itu

de

Fig. 2. Log-spectral data of the portion of the page references sequence shown
in Fig. 1.

us start with the Euclidean distance definition between the log
spectra of two sequences, xn and yn:

e(ω) = log |X(ω)|2 − log |Y (ω)|2 =

= 2(log |X(ω)| − log |Y (ω)|) =
= 2Re [log (X(ω))− log (Y (ω))]

where X(ω) =
∑+∞
n=−∞ xne

jωn is the spectrum of the xn
sequence. On the other hand, log(X(ω)) =

∑+∞
n=−∞ cne

jωn

where cn is the cepstrum sequence [14] which is obtained
applying an inverse Fourier transform to the log spectrum of
the input page references sequence. Hence, calling cxn and cyn
the cepstrum of the xn and yn sequences respectively,

e(ω) = 2Re

[
+∞∑

n=−∞
(cxn − cyn) ejωn

]
=

+∞∑
n=−∞

(cxn − cyn) ejωn

because the cn sequences are symmetrical since the input
reference page sequence is real. Finally, the spectral distance
between two sequences xn and yn is

d(X,Y) =
1

2π

∫ π

−π
e2(ω)dω =

+∞∑
n=−∞

(cxn − cyn)
2
.

In conclusion, the spectral distance between the log spectra is
simply the Euclidean distance between the cepstal sequences.

On the basis of this consideration, we described the page
references sequences with cepstral coefficients. In Fig. 3 the
cepstral representation of the page references sequence of
Fig. 1 is reported. As shown in Fig. 2 the change of trace
behavior at about 5000 time instants is reflected in the cepstral
domain. In fact, the slow spectral characteristics are seen in
the part around zero in the cepstral domain, in Fig. 3 we can
see that the initial part of the cepstrum is more spiky around
zero reflecting in this way the change of trace behavior seen
in Fig. 1. On the basis of that, it is useless to consider all the
cepstral coefficient to represent traces; for this reason we used
only the first 10 cepstral coefficients.

Quefrency

Time

C
ep

st
ru

m
 A

m
pl

itu
de

Fig. 3. Cepstral description of the portion of the page references sequence
shown in Fig. 1.

IV. WORKLOAD CLASSIFICATION

For dynamic characterization of processes, the address field
of the traces has been extracted. In this way we have obtained
a sequence of virtual addresses generated by the processor
during the execution of the processes. For converting the
trace of addresses into trace of virtual pages, the sequence
of addresses has been divided by the page dimension, which
we set to 4096 pages.

Once the sequence of virtual pages has been obtained from
every trace and thus for every process, we have tried to use
discrete HMMs for their classification. Even if the sequence of
pages is a discrete sequence, it can not be used for processes
classification using discrete HMMs, as it contains a too high
number of symbols.

In order to face this problem, the sequence of virtual pages
has been turned into a sequence of few symbols, without
loosing meaningful data. The sequence of virtual pages has
been turned into sequence of cepstral coefficients by the short
time analysis process described in Sec. III-B.

A. Single Trace Classification

The sequences of cepstral coefficients are real number
sequences. For analyzing cepstral sequences using a discrete
HMM, vector quantization is needed. In this process some
degradation is introduced and the training lacks its efficiency.

A continuous HMM can use an input sequences of 10-
dimensional cepstral vectors and vector quantization is not
needed. The results obtained in this way usually perform better
than using the discrete model.

The multivariate Gaussian density is used for describing
the cepstral observation. The 10-dimensional cepstral vector is
described using a multivariate density having 10 dimensions,
and it is specified by means of the mean and covariance
matrixes. Using this approach it is supposed that the 10-
cepstral coefficients are uncorrelated and so the covariance
matrix is diagonal.

In order to choose the optimum number of states and the
topology of the HMMs, several tests have been performed. The
number of states needed for continuous HMM is lower than in
the discrete ones. Considering topology, ergodic models score
better results.

In Fig. 4 the mean classification rate versus the number of
states for ergodic and left-right models is depicted.

Left-right CHMM (50 observations)

Left-right CHMM (20 observations)

Ergodic CHMM (100 observations)

Fig. 4. Mean classification rate versus the number of states of ergodic and
left-right models.

As the models using 4 states provides better results using
a lower number of observation, we have repeated experiments
using this configuration increasing the number of observations.

Using 100 observations for every model, in the ergodic case
the recognition mean of single traces is about 82%, in the left-
right case this mean is 65%. In Fig. 5 and in Fig. 6 these results
are depicted, gathering the traces per workload and computing
for every traces group the mean recognition rate.

Fig. 5. Average classification rate for all the traces using 16-state ergodic
discrete HMMs.

The ergodic continuous HMMs have been trained using 100
observations for every model. The recognition rate varying the
number of states and using all the traces is reported in Fig. 6.

As it is shown in Fig. 5 and Fig. 6, four states give
better results than sixteen states. In Fig. 7 is reported the
classification rate using left-right continuous HMM with 4
states.

Fig. 6. Average classification rate for all the traces with 4-state ergodic
continuous HMMs.

Fig. 7. Average classification rate for all the traces with 4-state left-right
continuous HMMs.

The results obtained using such statistical models demon-
strated the effectiveness of this dynamic processes modeling
approach. Cepstral coefficient obtained from the virtual pages
sequences are a good parameter for describing traces of
programs during execution.

B. Program Behavior Modeling

Dynamic classification of the traces, taking as parameter
the virtual pages, has obtained satisfactory results. As seen
in IV-A, the traces of a single application have been obtained
processing such application with different inputs, or processing
different functions of the same program.

Then, we have classified the workloads, gathering the traces
of the same workload using a single HMM trained with several
traces representing the same workload.

Using several traces of the same workload for incremental
training, it is possible to classify the program behavior. Of
course the performances are lower than the Single Trace
Classification. The performance obtained with ergodic discrete
and continuous HMM, are reported in Fig. 8 and in Fig. 9.

The mean accuracy results obtained in the case of ergodic
discrete and ergodic continuous HMMs are reported in Tab. II:
ergodic continuous models obtain better classification accuracy
than the discrete ones.

Fig. 8. Program behaviour classification using ergodic discrete HMM.

Fig. 9. Program behaviour classification using ergodic continuous HMM.

V. SYNTHETIC TRACE GENERATION

A Hidden Markov Model can be used as a generator of a
stochastic process. In our case the HMM generates vectors of
cepstral coefficients. However, the cepstral coefficients can be
inverted to give page numbers as shown in Fig. 10.

Fig. 10. Inversion of cepstral coefficients to page numbers.

The procedure is the following:

Ergodic Ergodic
Discrete HMM Continuous HMM

Mean Accuracy 64% 70%

TABLE II
MEAN PROGRAM BEHAVIOUR CLASSIFICATION ACCURACY.

1) Choose an initial state i according to the initial distri-
bution π.

2) Set t = 1.
3) Generate a N -dimensional random variable according to

the characteristic of the multivariate Gaussian distribu-
tion in state i.

4) Perform a state transition according to the transition
probabilities ai,j .

5) Set t = t+ 1. If t < T go to 3, else terminate.
The random variable generated in step 3 is a vector of

cepstral coefficients. This vector must be inverted to obtain
a set of page references.

A result is reported in Fig. 11, where the log-spectral data
of a synthetic trace produced with the above procedure and
the HMM trained with the trace of Fig. 1 is reported. Fig. 11

Frequency

Time

lo
g

A
m

pl
itu

de

Fig. 11. Example of synthetic trace generated using a continuous ergodic
HMM represented in the spectral domain.

should be compared with Fig. 2.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we describe an approach for workload char-
acterization using ergodic hidden Markov models. The page
references sequences produced by a running application are
divided into short virtual time segments and used to train a
HMM which models the sequence and is then used for run-
time classification of the application type and for synthetic
traces generation. The main contribution of our approach are
on one hand that a run-time classification of the running ap-
plication type can be performed and on the other hand that the
applications behavior are modeled in such a way that synthetic
benchmarks can be generated. Using trace-driven simulation
with SPEC2000 benchmarks, the mean classification rate is
about 82% for each traces and about 76% using a single HMM
to model a single application type. Many future developments
of our approach are possible since what we propose in this
paper – to use time-varying non-linear processing techniques
to treat sequences produced by programs during execution – is
a novel approach in computer architecture studies. In addition
to this, we believe that another interesting line of research

is represented by the adaption of the proposed framework to
novel big data trends (e.g., [18]–[20]).

REFERENCES

[1] B. Song, C. Ernemann and R. Yahyapour, Parallel Computer
Workload Modeling with Markov Chains. Job Scheduling Strate-
gies for Parallel Processing, 10th Int. Workshop, pages 47–62,
2004

[2] E. de Souza e Silva, R.M. Meri Leão and R.R. Muntz, Perfor-
mance Evaluation with Hidden Markov Models, Performance
Evaluation of Computer and Communication Systems, Int.
Workshop, Vienna, Austria, pages 112–128, 2010

[3] N. J. Yadwadkar, C. Bhattacharyya, K. Gopinath, T. Niranjan
and S. Susarla, Discovery of Application Workloads from Net-
work File Traces, 8th USENIX Conference on File and Storage
Technologies, pages 183–196, 2010

[4] T. Umut, Hidden Markov models to analyze user behaviour
in network traffic. Technical report, Bilkent University, Ankara,
Turkey, 2005.

[5] P. G. Harrison, S. K. Harrison, N. M. Patel and S. Zertal, Storage
workload modelling by hidden Markov models: Application to
Flash memory, Perform. Eval., vol.69, n.1, pages 17-40,2012

[6] A. Khan, X. Yan, S. Tao and N. Anerousis, Workload charac-
terization and prediction in the cloud: A multiple time series
approach, IEEE Network Operations and Management Sympo-
sium, pages 1287–1294, 2012

[7] T. S. Chis and P. G. Harrison, iSWoM: The Incremental Storage
Workload Model Based on Hidden Markov Models, 20th Int.
Conference on Analytical and Stochastic Modelling Techniques
and Applications, pages 127–141, 2013

[8] R. Han, S. Zhan, C. Shao, J. Wang, L. K. John, J. Xu,
G. Lu, Lei Wang, BigDataBench-MT: A Benchmark Tool for
Generating Realistic Mixed Data Center Workloads. Lecture
Notes in Computer Science 9495, Springer 2016.

[9] Standard Performance Evaluation Corporation,
https://www.spec.org/cpu2006/.

[10] M.C. Calzarossa, L.Massari and D. Tessera, Workload Char-
acterization: A Survey Revisited. ACM Comput. Surv., 48, 3,
Page(s):1–43, 2016.

[11] K.J. McDonell, Benchmark Frameworks and Tools for Mod-
elling the Workload Profile. Performance evaluation 22(1),
Page(s):23–42, 1995.

[12] J.P. Singh, H.S. Stone, D.F. Thiebaut, A Model of Workloads and
Its Use in Miss-Rate Prediction for Fully Associative Caches.
IEEE Transactions on Computer, vol.41(7), 1992.

[13] L.R. Rabiner, A Tutorial on Hidden Markov Models and Se-
lected Applications in Speech Recognition. Proceedings of the
IEEE, vol.77(2), 1989.

[14] L.R. Rabiner, B.H. Juang, Foundamentals of Speech Recogni-
tion. Prentice Hall Signal Processing Series, 1993.

[15] Y. Bengio, Markovian Models for Sequential Data. Neural
Computing Surveys 2, 1999.

[16] Y. Bengio, Markovian Models for Sequential Data. in ”Machine
Learning for Audio, Image and Video Analysis: Theory and
Applications”, Springer London, Page(s):265–303, 2008.

[17] J.A. Bilmes, A Gentle Tutorial of the EM Algorithm and its
Application to Parameter Estimation for Gaussian Mixture and
Hidden Markov Models. Technical Report, TR-97-021, 1997.

[18] A. Cuzzocrea, Privacy and Security of Big Data: Current
Challenges and Future Research Perspectives. ACM PSBD 2014
Proceedings, 2014.

[19] A. Cuzzocrea, U. Matrangolo, Analytical Synopses for Approx-
imate Query Answering in OLAP Environments. DEXA 2004
Proceedings, 2004.

[20] A. Cuzzocrea, G. Fortino, O.F. Rana, Managing Data and Pro-
cesses in Cloud-Enabled Large-Scale Sensor Networks: State-
of-the-Art and Future Research Directions. CCGRID 2013 Pro-
ceedings, 2013.

[21] A. Cuzzocrea, E. Mumolo, G. Vercelli, Ergodic Hidden Markov
Models for Workload Characterization Problems. DMSVLSS
2017 Proceedings, 2017.

[22] M. Cannataro, A. Cuzzocrea, A. Pugliese, XAHM: An Adaptive
Hypermedia Model based on XML. SEKE 2002 Proceedings,
2002.

