Rice husk as inexpensive renewable immobilization carrier for biocatalysts employed in the food, cosmetic and polymer sectors. Marco Cespugli^a, Simone Lotteria^a, Luciano Navarini^b, Valentina Lonzarich^b, Lorenzo Del Terra^b, Francesca Vita^c, Marina Zweyer^d, Giovanna Baldini^d, Valerio Ferrario^{a§}, Cynthia Ebert^a, Lucia Gardossi^a * ^a Laboratory of Applied and Computational Biocatalysis, Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy. ^b illycaffè S.p.A., via Flavia 110, 34147 Trieste, Italy c Department of Life Science, University of Trieste, 34127 Trieste, Italy ^d Department of Medical, Surgical, and Health Sciences, University of Trieste, 34149 Trieste, Italy ## ELECTRONIC SUPPLEMENTARY INFORMATION **Figure S1.** Schematic representation of the chemical method for the oxidation of the cellulosic component of the rice husk employed in the study. $$\begin{bmatrix} 0 \\ HO \end{bmatrix}$$ $$NH_2OH \cdot HCI$$ $$HO$$ $$OH$$ $$OH$$ $$HO$$ $$OH$$ **Figure S2:** Reaction of cellulose oxidized with hydroxylamine chlorohydrate. The method consists in suspending a certain amount of sample in a concentrated solution of hydroxylamine chlorohydrate for two hours. Available carbonyl groups reacts with a hydroxylamine hydrochloride molecule forming the respective oxime and releasing a hydrochloric acid molecule which is then titrated with sodium hydroxide. Figure S3: Example of conductimetric titration curve obtained for the titration of oxidized cellulose. **Figure S4:** Evaluation of the leaching of the lipase CaLB from the three immobilized preparations upon incubation in the aqueous emulsion used for the lipase hydrolytic assay. Blue: CaLB on EC-EP/S; Red: CaLB on rice-husk with immobilization time= 24h; Light blue: CaLB on EC-EP/S; Red: CaLB on rice-husk with immobilization time= 48h. **Figure S6:** ¹H-NMR spectrum (CDCl3, 270 MHz) of the polycondensation reaction between dimethyl itaconate (DMI) and 1,4-butanediol (BDO) catalyzed by CaLB immobilized on rice husk after 24h. ¹H-NMR (270MHz, CDCl₃), δ: 1.69 (5.48 H, m, -C<u>H</u>₂CH₂OH), 3.34 (2.09 H, s, -C<u>H</u>₂CO), 3.68 (1.25 H, m, -CH₂C<u>H</u>₂OH), 3.76 (1.79 H, s, -C=CH₂-CO-OC<u>H</u>₃), 4.16 (2.87 H, m, -C<u>H</u>₂OCO-), 5.73 (0.97H, s, -COC=C<u>H</u>H-), 6.33 (1H, s, -COC=CH<u>H</u>-). **Figure S7**: ¹H-NMR spectrum (CDCl₃, 270 MHz) of the polycondensation reaction between dimethyl itaconate and CaLB catalyzed 1,4-butanediol immobilized on rice husk after 48 h. δ: 1.69 (5.14 H, m, -C \underline{H}_2 CH₂OH), 3.34 (2.10 H, s, -C \underline{H}_2 CO), 3.68 (0.53 H, m, -CH₂C \underline{H}_2 OH), 3.76 (0.71 H, s, -C=CH₂-CO-OC \underline{H}_3), 4.16 (3.63 H, m, -C \underline{H}_2 OCO-), 5.73 (0.97H, s, -COC=C \underline{H} H-), 6.33 (1H, s, -COC=CH \underline{H} -). **Figure S8:** ¹H-NMR spectrum (CDCl₃, 270 MHz) of the polycondensation reaction between dimethyl itaconate and CaLB catalyzed 1,4-butanediol immobilized on rice husk after 72 h. δ (ppm): 1,69 (5,27 H, m, -CH₂CH₂OH), 3,34 (2,16 H, s, -CH₂CO), 3,68 (0,31 H, m, -CH₂CH₂OH), 3,76 (0,24 H, s, -CH₂-CO-OCH₃), 4,16 (4,04 H, m, -CH₂OCO-), 5,73 (0,98 H, s, -COC=CHH-), 6,33 (1H, s, -COC=CHH-). ## CaLB covalently immobilized on EC-EP resin applied to the polycondensation of dimethylitaconate and 1,4-butandiol. The following figures (Figures S9, S10, S11) report the NMR characterization of the polyesters obtained from the polycondensation of dimethylitaconate (DMI) and 1,4-butandiol (BDO) catalyzed by CaLB immobilized on EC-EP resins. Percentage of conversion was related to the increase in the intensity of the signal (time 24, 48 and 72h) of the methylene H_e protons adjacent to the ester function with the sum of the intensity of the H_e and H_c signals. **Figure S9**: ¹H-NMR spectrum (CDCl₃, 270 MHz) of the polycondensation reaction between dimethyl itaconate and CaLB catalyzed 1,4-butanediol immobilized on EC-EP/S resins after 24 h. ¹H-NMR (270MHz, CDCl₃), δ: 1.69 (6.79 H, m, -C $\underline{\text{H}}_2\text{CH}_2\text{OH}$), 3.34 (2.38 H, s, -C $\underline{\text{H}}_2\text{CO}$), 3.68 (1.39 H, m, -CH₂C $\underline{\text{H}}_2\text{OH}$), 3.76 (1.98 H, s, -C=CH₂-CO-OC $\underline{\text{H}}_3$), 4.14 (3.39 H, m, -C $\underline{\text{H}}_2\text{OCO}$ -), 5.73 (1.00 H, s, -COC=CHH-), 6.33 (1.09 H, s, -COC=CHH-). **Figure 10:** ¹H-NMR spectrum (CDCl₃, 270 MHz) of the polycondensation reaction between dimethyl itaconate and CaLB catalyzed 1,4-butanediol immobilized on EC-EP/S resins after 48 h. ¹H-NMR (270MHz, CDCl₃), δ: 1.69 (6.03 H, m, -C $\underline{\text{H}}_2\text{CH}_2\text{OH}$), 3.34 (2.31 H, s, -C $\underline{\text{H}}_2\text{CO}$), 3.68 (0.59 H, m, -CH₂C $\underline{\text{H}}_2\text{OH}$), 3.76 (0.86 H, s, -C=CH₂-CO-OC $\underline{\text{H}}_3$), 4.14 (4.04 H, m, -C $\underline{\text{H}}_2\text{OCO}$ -), 5.73 (1.00 H, s, -COC=C $\underline{\text{H}}$ H-), 6.33 (1.09 H, s, -COC=CH $\underline{\text{H}}$ -). **Figure S11:** ¹H-NMR spectrum (CDCl₃, 270 MHz) of the polycondensation reaction between dimethyl itaconate and CaLB catalyzed 1,4-butanediol immobilized on EC-EP/S resins after 72 h. ¹H-NMR (270MHz, CDCl₃), δ: 1.69 (5.27 H, m, -C $\underline{\text{H}}_2$ CH₂OH), 3.34 (2.16 H, s, -C $\underline{\text{H}}_2$ CO), 3.68 (0.31 H, m, -CH₂C $\underline{\text{H}}_2$ OH), 3.76 (0.24 H, s, -C=CH₂-CO-OC $\underline{\text{H}}_3$), 4.16 (4.04 H, m, -C $\underline{\text{H}}_2$ OCO-), 5.73 (0.98 H, s, -COC=C $\underline{\text{H}}_1$ -). | Name: 1JSL_A_PDBID_CHAIN_SEQUENCE Length: 327 | | |---|-----| | ADKLPNIVILATGGTIAGSAATGTQTTGYKAGALGVDTLINAVPEVKKLANVKGEQFSNMASENMTGDVVLKLSQRVNEL | 80 | | LARDDVDGVVITHGTDTVEESAYFLHLTVKSDKPVVFVAAMRPATAISADGPMNLLEAVRVAGDKQSRGRGVMVVINDRI | 160 | | GSARYITKTNASTLDTFRANEEGYLGVIIGNRIYYQNRIDKLHTTRSVFDVRGLTSLPKVDILYGYQDDPEYLYDAAIQH | 240 | | GVKGIVYAGMGAGSVSVRGIAGMRKALEKGVVVMRSTRTGNGIVPPDEELPGLVSDSLNPAHARILLMLALTRTSDPKVI
OEYFHTY | 320 | | N | 80 | | | 160 | | | 240 | | | 320 | | | 400 | | | | | (Threshold=0.5) | | | | | | SeqName Position Potential Jury N-Glyc | | | agreement result | | | | | | 1JSL A PDBID CHAIN SEQUENCE 64 NMTG 0.6240 (8/9) + | | | 1JSL A PDBID CHAIN SEQUENCE 170 NAST 0.3138 (8/9) | | | | | | | | **Figure S12**: Analysis of the primary structure of asparaginase from *Eriwinia chrysantemi* using the open source softare NetNGly (http://www.cbs.dtu.dk/services/NetNGlyc/) that identifies N-glycosylation sites