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Abstract. The goal of this work is to describe an optimization approach
for selecting a reduced number of samples of the linear prediction resid-
ual. Sample determination is a combinatorial problem. Our approach
addresses the combinatorial problem with simulated annealing based op-
timization. We show that better results than that obtained by a standard
approximation approach, namely the multipulse algorithm, are obtained
with our approach. Multipulse selects pulse locations by a sequential,
sub-optimal, algorithm and computes the pulses amplitudes according to
an optimization criteria. Our approach finds the optimal residual samples
by means of an optimization algorithm approach without amplitudes op-
timization. The compressed residual is fed to an all-pole model of speech
obtaining better results than standard Multipulse modeling. We believe
that this algorithm could be used as an alternative to other algorithms
for medium-rate coding of speech in low complexity embedded devices.
In this paper we also discuss performance and complexity issues of the
described algorithm.

1 Introduction

Research on approximation of the linear prediction residue has been an active
field for many years in the past. Important results have been obtained with the
multipulse approach [1, 2]. The multipulse approach has been extensively used to
model the prediction residual in medium-rate speech coders. High-quality speech
coders at bit-rates in the vicinity of 8 Kbits have been developed with the mul-
tipulse approach. However, it is very difficult to reduce the bit-rate with this
approach, basically because of the quantization of the pulses amplitudes. CELP
coders [3], which model the excitation signal with a binary sequence, can produce
good-quality speech at bit rates as low as 4.8 Kbits, but they require a costly -
from a computational point of view - codebook search. Multi-pulse algorithms,



on the other hand, have to solve a nonlinear minimization problem for search-
ing the pulse locations. Therefore, one problem of multipulse algorithms is the
determination of optimal excitation sequences with a reasonable computational
complexity. Such determination can be computationally simplified by using some
approximations during the derivation, but this leads to suboptimal results. The
classical multipulse algorithms described in [1,2] in fact use sequential, step-
by-step procedures where the next pulse location is determined assuming that
all the other locations remain constant. The high performance of the algorithm
described in [1,2] is based on optimal adjustment of the pulse amplitudes dur-
ing the location search. CELP is based on the assumption that the short- and
long-term LPC residual can be modeled with a zero-mean Gaussian process. A
stochastic codebook filled with instances of a Gaussian process is then exhaus-
tively searched for the minimum of the mean-squared error. However, standard
CELP [3] is not without pitfalls. First, we should assume that the codebook is
large enough to model any kind of voiced and unvoiced excitations. Therefore,
the CELP performance depends on the size of the codebook and on the assumed
statistical distribution. Improvements can be obtained using training algorithms
for the design of the random codebooks [4, 5] and using adaptive codebooks [6].
Second, exhaustive search imposes high computational complexity, which can be
reduced using suitable structures of the codebook [7,8]. Significant complexity
reduction has been also described in [9-11], where a somehow different approach
to low-bit rate coding is described.

A different approach to LP residual encoding is available from the year 2006,
when Candes and Donoho proposed the Compressed Sensing or Compressed
Sampling (CS) approach [12,13]. CS approach states the possibility to sample a
signal well below the Nyquist rate without degradation of the recovered signal
provided that two hypothesis concerning sparsity and incoherence are satisfied.
The approach moves the complexity from the encoder to the decoder. Thus the
receiver requires much more computational power than the transmitter, since
signal recovery at the receiver is performed by solving an optimization prob-
lem. Compressed sampling of LP residual is appealing since the residual is a
sparse signal. Giacobello et al. in [14,15] describe the computation of a sparse
approximation of speech residual using compressed sensing.

In this paper we describe a different approach for the optimal determina-
tion of a sparse approximation of the residual sequence through a minimization
carried out with simulated annealing. Standard multipulse finds pulse locations
through a sub-optimal algorithm, trying to compensate the sub-optimality of
pulse location with an optimal estimation of the pulses amplitudes. Our algo-
rithm try to optimally estimate the sample locations while the amplitudes are
the actual residual values at the found locations. Quality achieved and complex-
ity figures indicate that the algorithm described in this paper is an alternative
to Multipulse and Celp approaches. Instead of searching a codebook like Celp,
the proposed algorithm determines the optimum residual samples using heuristic
optimization. The algorithm has many interesting features. First of all, besides
the initial LPC analysis and the computation of auto- and cross-correlations, it



requires only additions during the optimum samples determination. Secondly,
the convergence of simulated annealing applied to this problem is easily reached
with a simple exponential cooling schedule. The algorithm’s objective perfor-
mance (segmental SNR) have been compared with the standard multipulse per-
formance and with an adaptive compressed sampling algorithm. Moreover, in-
formal subjective tests conducted with the proposed algorithm compared with
standard CELP show indistinguishable quality at a bit-rate of 5 — 6 Kbits. Fi-
nally, the algorithm can be implemented on a low-cost embedded system, as
suggested by the simulation results.

The paper is structured as follows: in Section 2 the linear prediction of speech
basis are briefly reviewed. In Section 3 we summarize the Compressed sensing al-
gorithm to show its similarities with our approach. In Section 4 we briefly review
the standard Multipulse approach which is compared with our approach. Sec-
tion 5 describe our approach and Section 6 describes the optimization algorithm
based on Simulated annealing. In Section 7 we report some experimental results
about performance. In Section 7 we report also an analysis example of a speech
frame. In Section 8 some concluding remarks and future word are discussed.

2 Preliminaries

According to the Linear Prediction (LP) of speech (e.g. [16]), in Z domain the
LP residue is given by

E(z) = (1 - Zaiz_i) X(z)=A(2)X(2) (1)

where E(z) is the LP residue, X(z) is the speech signal, a; are the linear pre-
diction coefficients and p is the linear prediction order. Consequently, X (z) =
E(z)ﬁ Turning to the discrete time domain, we have z(n) = Y_7_ h(i)e(n—i),
where x(n) is the speech signal, h(7) is the impulse response of the all-pole sys-
tem ﬁ and e(n) is the LP residue. LP-based efficient coding of speech is based
on finding an approximation é(n) of the LP residual such that a high perceptual
quality version Z(n) of the original speech signal is reconstructed at a lower bit
rate using Equation (2).

P
E(n) = h(i)é(n — i) (2)
i=0

An important residual approximation approach is multipulse [1], where the
residual is approximated with a series of pulses whose amplitudes are optimized.
Other popular approaches are based on the selection of the optimum residue
from a codebook of residues randomly generated [3]. Recently, Giacobello et al.
[14] use Compressed sampling for representing the LP residual in a compressed
sampling framework. In this paper we proposed to sample the residue by solving

the related combinatorial problem with Simulated Annealing.



3 Compressed Sampling Principles

Candés et al. and Donoho in 2006 develop in [12], [13] the Compressed Sampling
(or sensing) theory (CS). By CS theory, under sparsity and incoherence hypothe-
sis, a signal can be reconstructed from very few samples, well below the Nyquist-
Shannon rate. Sparsity means that a signal frame = [z(1), z(2), ..., z(N)] may
be expanded onto a basis ¥ = [¢1,19,...,¥N] so that z(n) is represented by
only K significant coefficients, K < N. The expansion is represented by Equa-
tion (3) where only K coefficients in ¢ are nonzero.

z=Wec (3)

The signal is randomly sampled, so that M < N random samples of x are
taken, as described in Equation (4).

&= Px = dVc (4)

The M x N measurement matrix @ is made by random ortho-basis vectors.
By the CS theory, if @ and ¥ are incoherent, the original signal  can be recon-
structed from & within the approximation error € by solving the optimization
problem described in Equation (5).

N

N
min Z |e(n)| such that Z[w(n) —2(n))* <e (5)
n=1

RN
ce — i—1

Note that this optimization problem is solved at the receiver.

4 Review of LP Residue Approximation by standard
Multipulse Approach

In the standard multipulse algorithm, [1], the LP residual is approximated with
an impulsive sequence u(n). The standard multipulse algorithm uses a closed-
loop procedure for computing u(n), once the impulse response h(n) of the all-pole
filter ﬁ is determined. The reconstructed signal x(n) is obtained by filtering

the impulse excitation sequence u(n) with the all-pole filter as reported in Equa-
tion (6).

#(n) = Y h(i)u(n — i) (6)

=0

The pulse sequence u(n) is a model of the prediction residual signal and is
given by Equation (7) which is a linear combination of Kroneker delta functions.

M-1
u(n) =Y Bid(n —ny) (7)
i=0



In Equation (7) 8;, n;, and M are the pulse amplitudes, the pulse locations,
and the number of pulses respectively. In [1] the error between the input signal
and the reconstructed one, r(n) = x(n) — &(n), is weighted with a perceptual
filter derived from A(z). The perceptual filter is intended to un-emphasize the
error energy in the high-energy regions of the signal spectrum, according to au-
ditory masking criteria [17]. The best values of pulse amplitude and locations
B; and n; is attained by minimizing the energy of the weighted reconstruction
error. Because the weighting filter is linear, the minimization problem is equiv-
alent to minimizing the un-weighted mean squared error between the weighted
speech signal z,,(n) and the corresponding weighted synthetic signal Z,,(n). The
optimization problem of [1] is described by Equation (8).

N-1

(ni; Bz) = argmin Z [mw(n) — T (nﬂ2 (8)

where IV is the number of samples in the voice signal frame. The problem
stated in Equation (8) can be solved at different levels of optimality depending on
the procedure for the pulse location search. The algorithm described in [1] uses
a step-by-step procedure for finding the M locations of the best pulse sequence.
On the other hand, the sequential approach to location space scanning does not
guarantee the optimal solution to the minimization problem.

5 A Novel Approach for Sparse Approximation of the
Speech LP Residue

Our Sparse Approximation of the residual is simply the selection of a reduced
number of residual samples that is still able to give good signal reconstruction
performance. It is an approach of compressed sampling of the residual. Com-
pressed sampling on N points sequence may be viewed as a combinatorial prob-
lem, in the sense that a small number of K samples are selected out of N to
represent the sequence according to an optimization criterion. The number of
the possible sets of K samples I" is given by Equation (9).

()

In theory the selection of the optimal set of samples would be performed as
follows. All the possible sets of compressed samples are generated, and for each
set an error measure is computed. The set corresponding to the minimum error
is thus selected. However, let us consider a simple example. If we start from a
sequence of 20 ms at a sampling rate of 11K samples per second, we have a
sequence of 220 points. If for example we want to select only 13 samples out of
220 points, the number of possible sets is about 3E20. Clearly, the computation
of an error measure for each set is computationally impossible. For this reason
we perform the compressed sampling with a Simulated Annealing optimization
procedure [18].



The sampled residue u(n) is given by Equation (10), where e(n) is the LP
residue, ny are the sampling locations and M is the number of samples.

M—-1

u(n) = > e(nk)d(n —nx) (10)

k=0

The sampled residue is fed to the all-pole filter whose impulse response is
h(n). Thus the reconstructed signal Z(n) is described by Equation (11).

N N M-1 M-1
Z(n) = Zh(z)u(n—z) = Zh(z) e(ng)d(n—i—ng) = e(nk)h(n —ng)
i=0 =0 k=0 k=0
(11)
The reconstruction error E is reported in Equation (12).
N-1 N—-1 M—1 2
E=Y [o(n) - i)’ = 3 [x(n) =3 el - m)} -
n=0 n=0 k=0
N-1 N-1[M-1 M-1 N-1
Z z2(n) + Z l e(n;)h(n — nz)] Z e(nj)h(n —n )| —2 Z z(n)
n=0 i=0 L =0 §=0 n=0
N-1 M—-1M-1 N-1 M-1 N-1
z(n) + Z e(n;)e(n;) Z h(n —n;)h(n —n;) —2 e(nk) Z z(n)h(n —ng) =
n=0 i=0 7=0 n=0 k=0 n=0
N-1 M—-1M-1 M-1
z2(n) + e(n;)e(n;)Rupn(ni,nj) — 2 e(ng)Ren(ni)
n=0 i=0 j=0 k=1
(12)

where Rpp(n4,n;) is the auto-correlation of the impulse response at (n;,n;)
and R.p(ny) the cross-correlation at ny.

5.1 The Simulated Annealing Algorithm

Simulated annealing (SA) is an heuristic optimization procedure proposed by
Kirkpatrick in [19]. initially applied to the solution of combinatorial problems.
Other reported applications of SA, besides combinatorial problems, include pin
assignment optimization [20], image segmentation [21] and image reconstruction
in Electrical Impedance tomography [22]. The compressed samples locations de-
termination problem is indeed a combinatorial one as M locations out of NV
(the number of samples in a frame) must be found according to a suitable MSE
criterion. In [20-22] Simulated Annealing optimization is applied only once. In
the present applications, however, SA shall be applied for each signal segment.
Therefore, real-time computation issue is fundamental.

Roughly, the concept of Simulated Annealing comes from the physical pro-
cess called annealing, where where a solid is heated to melt. Subsequently the



solid is slowly cooled to asses its reticule. In algorithmic terms, starting from
an initial state, related to a starting temperature and associated to an energy
definition, the state is randomly modified. If the energy associated to the new
state is reduced with respect to the previous state, then the perturbed state is
accepted and a new perturbation is performed. Otherwise, a new perturbation
is performed. If the new state is in thermal equilibrium, as verified by the Boltz-
mann distribution, the perturbed state is accepted and the process continue.
The sequence of random perturbations forms a Markov chain and it is generated
until the thermal equilibrium is reached. Then, the temperature is reduced and
another sequence of Markov chains is generated.

Thus, the algorithm consists in a sequence of Markov chains, each at a differ-
ent decreasing temperature. The test for thermal equilibrium has been proposed
by Metropolis et al. [23]. In summary, the Simulated Annealing algorithm is
described in Algorithm 1.

Algorithm 1 Simulated Annealing Algorithm

(To, a)

1: procedure SA

2: T <+ Ty

3: E <+ Energy definition

4: Cooling Schedule - T' = oT

5: Current Model < random()

6: while Not converged do

T New Model < Randomly Perturbed Current Model
8: Ag < E(New Model) - E(Current Model)
9: if Ag <0 then

10: Current Model < New Model

11: else

12: r < randomnumber perturbation
13: if (r < e_ATE)) then
14: Current Model < New Model
15: end if
16: end if

17: end while
18: return Current Model
19: end procedure

6 Compressed Sampling of Linear Prediction Residue

The SA solution of the sample selection problem is described as follows: a start-
ing set of locations is randomly chosen and a generation scheme is suitably
defined so that, given a set of locations, another set of locations is obtained. For
each new set of locations a cost function E is computed as the weighted mean



squared error between the original and the reconstructed signal. The new set of
locations is accepted if the Metropolis test is satisfied. This process continues
until a minimum is obtained. The Metropolis test is based on the Boltzmann
distribution and uses AF and T}. These two parameters are, respectively, the
variation of the cost between two iterations, and the temperature that controls
the annealing processe. The temperature T} is updated at each iteration k.

6.1 Generation of Samples Locations

In theory, at each Simulated Annealing iteration the algorithm should manage
a set of M different random locations. Recall that to each iteration corresponds
a generation of a Markov chain where the M locations are randomly perturbed.
Therefore, a multivariate random generator with a Gaussian distribution should
be used. This approach would introduce this difficulty: each parameter might
require a different annealing schedule for a good convergence and the computa-
tion of the cost function would be high. For these reasons, we developed a more
robust samples locations generation scheme, where only one location at a time is
modified according to a uni-variate Gaussian distribution. Therefore, the scheme
we use to generate a new set of sample locations is the following:

1. Randomly select one pulse.
2. Perturb its location according to a uni-variate Gaussian distribution.

6.2 Algorithm for the determination of optimal residual samples

The initial value of the temperature, Ty, is set to the value of the standard
deviation of the cost function computed during an initial free Markov chain.
According to [18], the temperature update is realized as reported in Equation
13.

T,
Thy1 = Ty, o = e 04Tk (13)

where 02 is the variance of the cost function during the k-th iteration.

The optimization algorithm for the determination of the optimal residual
samples is described in the Algorithm 2.

The Metropolis test is based on the variation of the error function, as shown
in Equation (14).

AE :Enew - Eold =

M 1M-1 M-—1
el e R ) =2 3 ) R )~
= O Jj= k=1
—1M-1 M—-1
|: 6 old new)th(n?ld7n?ld) —9 Z ( old)R h( old)
=0 j=0 k=1

(14)



Algorithm 2 Compressed Sampling of the Linear Prediction Residue

(T0, )

1: procedure SA1

2: T <+ Ty

3: Current Locations set < random() > random samples initialization
4: while Not converged do

5: while Iterations not terminated do

6: New Locations set < Randomly Perturbed Current Locations set

7 Ag < E(New) - E(Current)

8: if Ag <0 then

9: Current Samples Locations < New Samples Locations
10: else
11: r < random()
12: if (r < e_ATE)) then > Metropolis test
13: Current Locations set < New Locations set
14: end if
15: end if
16: end while
17: T =aT > Temperature Annealing
18: end while
19: return Current Samples Locations

20: end procedure

However many of the terms before and after the minus sign in Equation (14)
are equal because of the samples locations generation scheme: only one location
is perturbed at each iteration. Thus many terms are canceled and Equation (14)
reduces to Equation (15)

AE :Enew - Eold == th (nnew’ nnew) - th (nolda nold)*

_2e(nnew) Rmh(nnew) - Z e(nk)th(nnewunk) +
k+#old (15)

+2¢(mota) | Ran(nowa) = Y, e(ni) Run(nota, )
k£old

where FE,.., and E,4 are the error functions related to the actual and the
previous iterations.

6.3 Convergence Behaviour

In Figure 1 the convergence behavior of the algorithm is shown. This figure
describes the segmental SNR versus Markov chain length for 13, 16, and 22
samples per frame. Recall that in our experiments we use 20ms long frames,
which at 11025 sampling rate means 220 samples. Thus 22 samples per frame is a
90% residual compression. The correct convergence is ensured by the saturation



in the SNR as the Markov chain length increases. The best length value has
been taken in correspondence of the saturation edge, and it was set to 300. The
number of temperature decrements was experimentally found to be about 20 in
order to reach the minimum.

Performance versus Chain Length

Segmental SNR [dB]
=

12t —e— 13 Samples per Frame
—e— 16 Samples per Frame
st 22 Samples per Frame

L L L L I L I I
0 100 200 300 400 500 600 700 800 900
Markov Chain Lenght

Fig. 1. Segmental SNR versus Markov chain length for various numbers of samples per
frame.

All the products in Equations (15) are computed prior to the Simulated
Annealing iterations. Thus each Simulated Annealing iteration require only ad-
ditions and the iterations are very fast.

7 Experimental results

Experimental results are obtained with sentences extracted from the Artic speech
dataset from CMU [24]. One hundred sentences spoken by two US male speakers
are extracted from the database and the results are averaged among the two
speakers. The data is down-sampled at 11000 samples per second, and analyzed
with 20ms frames, namely 220 samples long. We used a 10th-order LPC analysis
with a correlation approach. The segmental SNR is defined as shown in Equation
(16).

M-1 N-ntN-1 o
Segmental SNR = 10 Z log NET;L:VJXI" ° (n? (16)
M m=0 SUMp—N.n [m(n) - w(n))]Q
The performance results, averaged over all the utterances and speakers, are
shown in Fig.2. More precisely, Fig.2 shows the objective performances of the
proposed algorithm and of the multipulse algorithms described in [1] versus the
bit rate.



Performance Versus BitRate
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Fig. 2. Segmental SNR versus bit rate of the proposed algorithm compared to standard
multipulse algorithm.

It should be noted that the bit rate used in this figure include the bits needed
to code the excitation signal plus the 10-th order linear predictor, represented
with Line Spectrum Pairs parameters and coded with 35 bits per frame. We
should also note that no pitch prediction at all was used in obtaining all the
data shown in Figure 2.

We then implemented in Matlab the adaptive compressed algorithm de-
scribed in [25] and executed on the same data. The SNR results are reported in
Figure 3, where the performance of our algorithm are included for comparison.

We finally report an example of an analysis performed with our algorithm
on a frame of speech data. In Fig. 4 the input frame, 20ms long, is reported.

The corresponding 10-th order linear prediction residue is shown in Fig. 5.

The Simulated Annealing based optimization algorithm selects the 22 sam-
ples per frame reported in Figure 6, where the selected samples are overlapped
with the residual signal. This compressed sampled residual is given in input to
the A(z) system to reconstruct the input signal.

The reconstructed signal is reported in Figure 7 using thin line, overlapped
with the original signal which is plotted using a strong line in order to see the
differences.

8 Final Remarks and Future work

In this paper, we describe an optimization algorithm based on Simulated An-
nealing for solving an optimization problem related to the approximate repre-
sentation of the Linear prediction residual. We show that the approach turns
out to be a form of compressed sampling of the residual signal. The algorithm
described in this paper can produce coded speech at different levels of quality



Performance Versus BitRate
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Fig. 3. Segmental SNR versus bit rate of the proposed algorithm compared to Com-
pressed Sampling.

20ms Input Signal
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Fig. 4. Input 20ms speech frame sampled at 11000 samples per second.

Linear Prediction Residual

Amplitude
o

-05 L L L L L L L L L
20 40 60 80 100 120 140 160 180 200 220

Sample Number

Fig. 5. 10-th order Linear Prediction residual.

and bit rate depending on how many linear prediction residual samples are used
to represent the excitation signal. The optimization procedure requires only ad-
ditions in every iteration. The LPC parameters used for coding were the LSP,
which have been coded with 35 bits per frame. Future work concerns the real
time implementation of the described algorithm on of the ARM-based embedded
device currently available.



Compressed Sampled Residual
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Fig. 6. Compressed sampling of the LP residual with 22 pulses per frame.

Reconstructed Signal
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Fig. 7. Reconstructed signal with compressed LP residual (thin line) overlapped to the

original signal (strong line).
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