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Abstract. In this paper, we describe an algorithm to estimate the pa-
rameters of Iterated Function System (IFS) fractal models. We use IFS
to model Speech and Electroencephalographics signals and compare the
results. The IFS parameters estimation is performed by means of a ge-
netic optimization approach. We show that the estimation algorithm has
a very good convergence to the global minimum. However, the set-up
of the genetic algorithm should be properly tuned. In this paper, be-
sides the optimal set-up description, we describe also the best tradeoff
between performance and computational complexity. To simplify the op-
timization problem some constraints are introduced. A comparison with
suboptimal algorithms is reported. The performance of IFS modeling of
the considered signals are in accordance with known measures of the
fractal dimension.
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1 Introduction

The interest in fractal models of signals arises from the observation that many
signals, like images and speech, possess some degree of fractal properties [1].
A popular tool for describing and generating fractal objects is Iterated Func-
tion System (IFS) [2]. Very complex objects with fractal properties, such as
self-affinity, are easily generated with IFS. However, the types of data an IFS
can represent well are limited. Thus different IFS models, such as the piecewise
self-affine [3] or the hidden-variable [4] models, has been developed in order to
represent signals that are neither self-affine nor self-similar. In this paper, we
use self-affine and piecewise self-affine IFS fractal models. The estimation of the
parameters of an IFS model that reconstructs a given function, which is called
inverse problem of the IFS, can be carried out in various ways. In [5] an ap-
proach is proposed through wavelet decomposition and the moment method.
Alternatively, the inverse problem can be formulated through least squares [6],
and therefore a function minimization algorithm can be used. In [4], an op-
timization approach for the determination of the parameters of IFS models is



used. However, the optimization problem turns out to be quite complex, because
the function to be minimized is nonlinear with many local minima and because
many parameters are involved. In [7] a heuristic approach based on simulated
annealing is used, but some drawbacks are pointed out, such as the very slow
convergence to the global optimum and the critical tuning of the optimization
algorithm. If constraints are imposed on the variables, however, efficient subop-
timal solutions can be obtained and the definition of the best trade-off between
complexity and performance becomes the major concern. In [8] a computation-
ally efficient suboptimal inverse algorithm is described, but the search space is
greatly limited. The main question would then be whether the imposition of dif-
ferent constraints could lead to better results. The answer to this question is not
trivial because it requires extensive experimentation. The main goal of this paper
is therefore to evaluate the trade-offs between performance and computational
requirements related to different constraints in order to find the best one. The
estimation is carried out with Genetic Algorithms (GAs) based optimization,
which offers greater robustness with respect to other heuristic optimization al-
gorithms, better convergence to the global minimum, and ease of programming,
code maintenance, and updating. Moreover, GA’s lead quite naturally to parallel
implementations [9].

This paper is organized as follows: section 2 reviews some concepts of fractal
geometry and describes the self-affine and piecewise self-affine fractal models,
useful to this work. Section 3 gives a brief description of GAs. Sections 4 and
5 describe, respectively, the tuning of the optimization algorithm based on GAs
and the experimental results.

2 Fractal Geometry, IFS, Linear and Piecewise Fractal
Interpolation

Fractal geometry extends Euclidean geometry and describes objects character-
ized by a non-integer dimension. If we define H(Rn) as the set of compact subsets
of Rn, we can say that a fractal object is an element ofH(Rn). The usual distance
between two compact subsets is the Hausdorff distance [10], which introduces
a metric in H(Rn). Let us consider the bidimensional case, that is, n = 2. A
succession in the metric space H(R2) is obtained by an iterative application of
affine transformations. An affine transformation is a deformation of elements of
H(R2) realized by means of suitable maps, which can be represented in matrix
form as shown in Equation 1.

Y =

[
a b
c d

]
X +

[
e
f

]
(1)

An important class of affine transformations is the class of contractive affine
transformations [11]. An IFS is given by a complete metric space, in our case
R2, a distance measure (the Hausdorff distance), and a number N of affine
contractive transformations on the metric space wn : R2 → R2, each with a con-
traction factor sn. The contraction factor of the IFS is given by s = max{sn, n =



1, 2, . . . , N}. Let us define a function W : H(R2)→ H(R2) as reported in Equa-
tion 2.

W (B) =

N⋃
n=1

wn(B) (2)

Then W is itself a contractive transformation on the complete metric space
H(R2). That is, calling h(. . . , . . .) the Hausdorf distance, ∃s, 0 < s < 1, such
that Equation 3 holds.

h(W (B)) ≤ s · h(B,C) (3)

for each B,C ∈ H(R2). Therefore the succession An = W (An−1) converges
to a point of H(R2), called attractor of the IFS or fractal. The fractal A = W (A)
can be represented as shown in Equation 4.

A =

N⋃
n=1

wn(A) (4)

Two algorithms can be used for the generation of a fractal by means of
IFS: the deterministic and the random iteration algorithm [3]. The deterministic
algorithm is a direct application of the definition of attractor mentioned above.
Assume that an initial set A0 is given. Then the succession An, computed as
reported in Equation 5, converges to the attractor of the IFS.

An =

N⋃
j=1

wj(An−1) n = 1, 2, . . . (5)

The random iteration algorithm is the following: let us take a given IFS,
together with a set of probabilities pi, one for each transformation. Starting
from an initial point x0, we then select one transformation wi with probability
pi. A succession of points is then generated as reported in Equation 6.

xn = wi(xn−1) (6)

The succession of points xn converges to the attractor of the IFS.
For the work described in this paper, a very important result is the so-called

Collage Theorem [12, 13], described in (7).

given L ∈ H(R2), ε ≥ 0 and an IFS such that h(L,W (L)) ≤ ε→ h(L,A) ≤ ε

1s
(7)

where A is the attractor of the IFS and s the contraction factor of the IFS.
The importance of this theorem is that it provides a way to test an IFS without
the need to compute the attractor. Because we want to represent a function, the
affine transformations suitable for us are the so-called shear transformations,
reported in Equation 8.
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[
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[
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ci di

]
·
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y

]
+

[
ei
fi

]
(8)

A shear transformation maps vertical lines into vertical lines, and therefore
it represents a single-valued function.

The fractal interpolation approach [3] is applicable to self-affine curves. Let
us assume that a number of data points (un, vn), n = 0 . . . N and un < un+1

are given. A set of interpolation points (xi, yi), i = 0 . . .M and M < N are also
given. The interpolation points are a sub-set of the data points with (x0, y0) =
(u0, v0), (xM , yM ) = (uN , vN ). Using fractal interpolation, an IFS can be built
according to the constraints reported in Equation 9.

wi

[
x0
y0

]
=

[
xi−1

yi−1

]
; wi

[
xN
yN

]
=

[
xi
yi

]
; i = 1, . . .M (9)

For each interpolation point the system of four equations into five unknowns
described in Equation 10 can therefore be written.

ai · x0 + ei = xi−1 ai · xm + ei = xi
ci · x0 + di · y0 + fi = yi−1 ci · x0 + di · y0 + fi = yi−1

(10)

Equation 10 can be solved fixing one of the coefficients, usually the so-called
contraction factors di. The are two ways of fixing these coefficients. The first
one [14] consists in imposing a given fractal dimension to the final curve. In
the second one [8], the contraction factor is computed through a least-squares
minimization of the error given by the difference between the original data and
the collage.

Once all the five parameters are determined, an IFS describing the data points
is derived. We can state that this IFS is a fractal model of the signal (un, vn), n =
0 . . . N . As stated in the introduction, for many signal a piecewise self-affine
fractal model [8] is more appropriate. The piecewise self-affine model, which is
merely an extension of the linear self-affine model, contains many degrees of
freedom and is therefore extremely flexible. In the following, a brief description
of the fractal piecewise model is given.

At each interpolation point (xi, yi), i = 0 . . .M an affine map wi and two
points, called addresses in [8], described as (x̃1i , ỹ

1
i ) and (x̃2i , ỹ

2
i ) are associated.

The affine maps wi map the function between the addresses and the interpolation
points. Therefore we can write the condition reported in Equation 11.

wi

[
x̃1i
ỹ1i

]
=

[
xi−1

yi−1

]
wi

[
x̃2i
ỹ2i

]
=

[
xi
yi

]
i = 1, . . .M (11)

Also in this case according to (7) a set of four equation into five unknown
(the IFS’s parameters) can be written [8], if the interpolation points and the
addresses are known.

The generation of a fractal function by means of the piecewise model must
be done only through the deterministic algorithm, because the random iteration
algorithm does not guarantee that the points within a given interpolation section
are necessarily contained within any address interval.



3 Genetic Algorithms

Genetic algorithms (GAs) are well-known population-based heuristic algorithms
for the optimization of complex problems. In contrast with other optimization
methods, GAs adopt a parallel approach in the search of the global optimum
because during the search a ”population” of candidates to the optimum is main-
tained. Each candidate solution is characterized by its fitness, which is a mea-
sure of the goodness of the solution. Some operators, which exploit an analogy
with the processes of natural selection and sexual reproduction, are applied to
the candidates during the process. Each element of the population is given a
”genetic code,” usually a string built with characters taken from a given al-
phabet V = a0, al, . . . , an−1 called ”chromosomes” (this is a first analogy with
nature). During the elaboration the population is updated, old individuals being
replaced with new ones. At each process iteration, called a ”generation,” the new
solutions, forming the new population, are created applying suitable procedures
(operators) to the chromosomes. These procedures are selection (the analogue
of natural selection), cross-over (sexual reproduction) and mutation. A basic
concept of GAs is the ”scheme,” which describes the configurations evaluated
during each iteration of the algorithm. Note that during the evaluation of a con-
figuration’s fitness, GAs also gain some information about all the hyperplanes
to which that configuration belongs [15]. The techniques used in the choice of
the parents of a new solution is of fundamental importance. The parents are
choosen between the best scoring elements of the population, that is, the ones
with the extreme values of the objective function. In the simplest procedure,
the roulette wheel selection [15], parents are choosen according to a probability
distribution based on the fitness of the population’s elements. This technique,
although very simple and immediate, is strongly inconvenient: it tends to lead
to premature convergence owing to the lack of restorative pressure, which in
terms of GAs means that the population loses its genotypic diversity. In order to
maintain good genotypic diversity we have adopted a simple strategy, which we
call in this paper modified roulette wheel selection (MRWS) and is described as
follows. The elements of the population are chosen as in RWS, but the parents
are selected only if the genotypic difference is greater than a given threshold.
The genotypic difference between coded strings is computed with the Euclidean
distance. We have found that another procedure, the so-called local selection
[16], gives better results. In this procedure the elements are arranged on a bidi-
mensional grid and two parents are choosen through a random walk over the
grid, starting from the element to be replaced and selecting the elements with
the best fitness. This kind of selection, while giving the chance of mixing the
genetic patrimony, mantains a good genetic diversity, thus preserving the pro-
cess from premature convergence. In the context of GAs, the cross-over operator
realizes the genetic recombination, which is fundamental because it allows for
an efficient sampling in the space of the solutions. If the cross-over is too low,
its effect is negligible and a premature convergence is eventually introduced. If
it is too high, it introduces a schemes disruption that eventually rejects the high
fitness schemes. The chromosome is generated concatenating the coded strings



of the parameters. In the classical 1-point cross-over operator, the cross-over
can take place anywhere inside the genetic string, whereas in our 1-point modi-
fied cross-over operator it can happen only at the boundary between groups of
genes that represent an IFS transformation. This is like working with a high car-
dinality alphabet, since the disruptive effects are reduced and the convergence
is speeded up. The continuous cross-over is an attempt to balance the two main
phenomena of genetic computation, that is, exploration of the solution space
and exploitation of solutions that have already been found. Another important
GA operator is mutation, which is a change in an hereditary character. In this
work, three approaches were considered: the soft, hard, and dynamic ones. Soft
mutation is performed by incrementing (or decrementing) the integer value of
one parameter, chosen with a given probability. Hard mutation was performed
by changing the value of a parameter with a random one. Finally, dynamic mu-
tation [17] is performed by modifying the value of a given parameter by a value
that decreases, according to a given perturbation function, as the generations
go on. The result of this approach is to make the exploration in the solutions
space more and more local as the algorithm proceeds. The last issue concerning
GAs is the way to handle constraints. In the case that a given solution does
not satisfy a constraint, we added a penalty to the solution itself. Our coding
performs a very complex mapping between genotypes and phenotypes, because
some parameters are optimized in a genetic way and others are computed in
closed form. Therefore, the constraints cannot be applied directly to the values
of the genes.

4 Optimal Determination of the IFS Parameters

The parameters involved in linear self-affine models are interpolation points and
contraction factors, whereas the piecewise self-affine models are controlled by
interpolation points, contraction factors, and the addresses associated with each
section of the discrete sequence. In order to reduce the number of variables, the
contraction factors are computed in a closed form [8]. All the other parame-
ters are estimated through the minimization of the fitness function reported in
Equation (12).

E =

N∑
n=1

[s(n)− c(n)]2 (12)

where s(n) is the input signal and c(n) the collage W (L), defined in Equation
12. Clearly, L is the input frame and N its dimension. It is worth noticing that,
in virtue of the Collage theorem, described in (7), the Collage instead of the
attractor is used. As the parameters are not correlated to each other, a com-
plete genetic optimization of all the parameters should be performed. However,
this is the most critical situation for the GAs. In order to reduce the number of
parameters to be optimized, constraints should be imposed on the parameters.
The estimated solution is sub-optimal because the constraints limit the search



space. In order to solve the minimization problem described in Equation 12,
algorithms have been developed [8] that perform an exhaustive search over the
solution space, although they are subject to a number of constraints that keep
the complexity low. For an exhaustive algorithm to be computationally afford-
able, the constraints on the search space must be quite heavy. for example, the
algorithm described in [8] explores only 32 out of 1.32E36 possible points (in the
hypothesis of eight interpolation sections and four address intervals, with eight
bit parameters). The introduction of GAs allows us to relax the constraints keep-
ing the computational time sufficiently low. In conclusion, depending on what
parameters are included in the optimization process and on the type of con-
straints, a number of sub-optimal solutions can be obtained. Each solution is
therefore a trade-off between required computational power and performances.
For example, if the interpolation points are distributed in some known way and
we want to determine the optimum dis and address positions (x̃1i , x̃

2
i ), the chro-

mosome must be set as reported in Equation 13.

{d0, x̃10, x̃20, . . . , dn, x̃1n, x̃2n, (13)

Then the genetic algorithm described in Section 3 is used to minimize Equa-
tion 12.

In the following, we describe the tuning of the GAs used for the optimal de-
termination of IFS parameters, that is, the optimal setup for coding, selection,
mutation, and cross-over. Several experiments are performed to obtain the op-
timum set-up. Data for experiments is obtained for two class of signals, namely
speech and electroencephalography signals. Speech data is extracted from the Ar-
tic speech dataset from CMU [18] and electroencephalography data is extracted
from the KDD Archive from UC at Irvine, Ca., [19]. Speech data in Artic is
sampled at 16 KHz. The signal is divided in 18.75 ms frames or 300 samples
long. On the other hand, electroencephalography data is sampled at 256 Hz and
the signal is divided in 400 ms frames or 102 samples. One hundred of speech
sentences from Artic and one hundred of electroencephalography measurements
from the KDD Archive are selected and the results are averaged among them. In
Fig. 1 the convergence behaviour is shown. Three selection procedures roulette
wheel, modified roulette wheel, and local selection are reported in this figure.

The best selection turns out to be the local selection, in terms of better con-
vergence with smaller difference between minimum and average values. We have
implemented and tested a number of variants of the classical genetic algorithm,
including non binary coding and cross-over. Fig. 2 reports the average value of
the population versus cross-over probability, showing different kinds of cross-over
procedures.

The procedure that achieves the lowest values is a variant of the classical
1-point cross-over procedure, namely the 1-point modified operator, with a prob-
ability of 90%. Finally, we also tested several mutation operators. In Fig. 3 the
average value of the population versus mutation rate for dynamic and hard mu-
tation is shown.
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figure.
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figure.
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figure.

The best operator we found is a dynamical mutation at a 1/100 rate, where
the amount by which a ”gene” is changed is a function of time, starting with
higher values at the beginnning of the elaboration and decreasing towards the
end.

5 Experimental Results

Experimental results are obtained with the same data described before. The
segmental SNR is defined as shown in Equation (14).

Segmental SNR =
10

M

M−1∑
m=0

log

∑N ·n+N−1
n=N ·n x2(n)

sumN ·n+N−1
n=N ·n [x(n)− x̂(n))]2

(14)

where x(n) is the original signals and x̂(n) is the attractor of the IFS esti-
mated from the original signal by means of genetic optimization. In section 4
the design of the GAs for the determination of the fractal models parameters
(local selection, modified one-point cross-over with a 90% probability, dynamic
mutation with 1/100 rate) has been made through experimental measurements.
We first implemented the linear self-affine fractal interpolation with genetic op-
timization of the interpolation nodes (called method 1 in the following). For
comparison purposes, moreover, the suboptimal procedure described in [4] and
called the Mazel/Hayes method has been implemented. In summary, we imple-
mented the following versions of the piecewise self-affine fractal interpolation:

– method 1: linear self-affine fractal interpolation with genetic optimization of
the interpolation nodes



– method 2: uniformly distributed interpolation nodes and genetic optimiza-
tion of the addresses

– method 3: complete genetic optimization of the interpolation nodes and of
the addresses

– method 4: uniformly distributed addresses and genetic optimization of the
interpolation nodes

– method 5:uniformly distributed addresses and inter-polation nodes, with op-
timization of the indexing be-tween interpolation sections and addresses

– method 6: genetic optimization of the interpolation nodes and of the indexing
between interpolation sections and addresses. The addresses correspond to
the interpolation nodes.

Fig. 4 reports the average segmental SNR versus the number of IFS transforma-
tions for each of the above methods, and Fig. 5 shows the relative computational
complexity of the described methods.
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Fig. 4. Segmental SNR versus the number of IFS transformations for each method.

Let’s make some considerations on Fig. 4 and Fig. 5. Methods 1 and 5 are
worst in terms of SNR performance, as method 1 is not suitable for modelling
sequences that are not self-similar, and method 5’s constraints limit the search
space too much. On the other hand, methods 2 and 4 behave quite similarly,
suggesting that their setup is equivalent. The efficient Hayes/Mazel method,
described in [8], though better than methods 1 and 5, gives worse performances
than all the other methods. Moreover, method 3, which is a complete genetic
optimization of the parameters, seldom gives very high results, supporting the
conclusion that convergence, in this case, is quite difficult to reach. In any case,
Fig. 5 shows that method 3 is the most expensive piecewise method in terms of
required computational power. In summary, comparing the different methods,
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method 6 offers high performances without requiring too much computation,
and thus it represents the best tradeoff between SNR, compression ratio, and
computational complexity. We then used method 6 to model the data sequences.

The first results concern the modelling of speech. In Fig. 6 a speech sentence
from the Artic database is reported. The signal is divided into frames which are
separatly modelled with IFS.
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Fig. 6. Waveform of one speech sentence.



The quality of IFS modeling is shown by reconstruction the original signal
and comparing the two. In this example, 24 IFS maps for each frame were used.
The segmental SNR (frame by frame) computed according to Equation 14 is
reported in Fig. 7.
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Fig. 7. Segmental SNR of the speech sencence reported in Fig.6

Piecewise fractal model is then applied to a Electroencephalography (EEG)
signals [20], which is a measure of the electrical activity of the brain. Using
method 6 with 16 IFS transformations per 102 samples frame and 30 generations,
we obtained an average SNR, among all the extracted recordings, of about 19
dB. The waveform of a section of an Electroencephalographc recording from one
channel is reported in Fig. 8.
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Fig. 8. Waveform of an Electroencephalographic signal extracted from the KDD
dataset



Fig. 9 shows the frame-by-frame SNR results related to an analysis of an
EEG signal. With the same parameters as before, that is, 16 IFS for each frame
and 102 samples per frame, we obtained an average SNR of about 26 dB.

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40

Frame Number

Segmental SNR

S
eg

m
en

ta
l S

N
R

 (
dB

)

Fig. 9. Segmental SNR of the signal reported in Fig.8.

6 Final Remarks and Conclusions

We have described an optimization approach to the determination of fractal
models of speech and electroencephalography signals. Very good Segmental SNR
results were obtained by estimating the IFS fractal models with genetic algo-
rithms. It is worth noting that the SNR results depend on how much the signals
possess fractal properties. This can be measured by computed the fractal dimen-
sion of the signals. There are several different definitions of fractal dimension [16,
21]. In speech signals the fractal dimension depends on the phoneme type. The
values of fractal dimension can range normally from 1.2 to 1.6 for vowels and
from 1.6 to 1.8 for consonants [16]. For electroencephalography signals the val-
ues of fractal dimension can range normally from 1.7 to 1.9 depending on the
pathological conditions of the subject [22]. Our electroencephalography data is
related to alcoholic subjects and thus the fractal dimension is expected to be
high. Turning to the Segmental SNR reported in Figure ??, ??, this is the rea-
son why the values of SNR are higher for the electroencephalography data then
speech data we considered.

A number of constraints on the search space were explored and the best
tradeoff are experimentally defined. The proposed method gives much higher
SNR performaces than suboptimal techniques. On the other hand, even if sub-
optimal approaches are the most efficient, the proposed method requires the
same order of computational effort as the number of IFS transformations in-



creases. The problem of efficient coding of the estimated parameters for storing
or ransmission purposes are not considered in this paper.
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