
Bayesian Statistical Parameter Synthesis
for Linear Temporal Properties

of Stochastic Models

Luca Bortolussi1 and Simone Silvetti2,3(B)

1 University of Trieste, Trieste, Italy
lbortolussi@units.it

2 University of Udine, Udine, Italy
simone.silvetti@gmail.com
3 Esteco S.p.A., Trieste, Italy

Abstract. Parameterized verification of temporal properties is an active
research area, being extremely relevant for model-based design of com-
plex systems. In this paper, we focus on parameter synthesis for stochas-
tic models, looking for regions of the parameter space where the model
satisfies a linear time specification with probability greater (or less) than
a given threshold. We propose a statistical approach relying on simulation
and leveraging a machine learning method based on Gaussian Processes
for statistical parametric verification, namely Smoothed Model Check-
ing. By injecting active learning ideas, we obtain an efficient synthesis
routine which is able to identify the target regions with statistical guar-
antees. Our approach, which is implemented in Python, scales better
than existing ones with respect to state space of the model and num-
ber of parameters. It is applicable to linear time specifications with time
constraints and to more complex stochastic models than Markov Chains.

Keywords: Parameter synthesis · Parametric verification
Smoothed model checking · Gaussian Processes

1 Introduction

Overview. Stochastic models are commonly used in many areas to describe and
reason about complex systems, from molecular and systems biology to perfor-
mance evaluation of computer networks. In all these cases, the system dynamics
is usually described by high-level languages as Chemical Reaction Networks [1],
population models [2] or Stochastic Petri Nets [3], which generate an underlying
Continuous Time Markov Chain (CTMC). Formal reasoning about these mod-
els often amounts to the computation of reachability probabilities. This is the
basic tool behind successful Stochastic Model Checking tools like PRISM [4] or
the more recent STORM [5]. These tools implement numerical algorithms that
compute probabilities up to a given precision, suffering though from state space
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explosion, as well as simulation engines that allow statistical estimation when
models are too large.

All classic quantitative verification tools assume that a model is fully speci-
fied, which is typically a strong assumption, particularly in application domains
like system biology, where many model parameters are estimated from data or
are only known to belong to a given range. An alternative approach is that of
parameterised verification, which tries to verify properties for a whole set of
models, indexed by some parameters. In case of stochastic models, this typically
requires us to compute how reachability probabilities change as a function of
model parameters, which is a much harder task [6]. A related problem is that of
synthesis [7], where one looks for a subset of the parameter space where a given
property (or multiple properties [8]) is guaranteed to be satisfied. Alternatively,
one can try to design a system by finding a value that maximises the probability
of satisfying a specification.

Problem Statement. In this paper, we focus on parameter synthesis for CTMC
models described by chemical reaction networks, benchmarking against the app-
roach of [7].

More specifically, we consider the following problem. We have a collection
of CTMCs, indexed by a parameter vector θ ∈ Θ, taking values in a bounded
and compact hyperrectangle Θ ⊂ R

k. We assume that the CTMCs depends
on θ through their rates, and that this dependency is smooth. We consider
a linear time specifications φ described by Metric Interval Temporal Logic [9],
with bounded time operators. For each φ and θ, we can in principle compute the
probability that a random trajectory, generated by that specific CTMC, satisfies
it, i.e. Pφ(θ).

Our goal is to find a partition of the parameter space Θ composed by three
classes. The positive class Pα which is composed by parameters where the prob-
ability of satisfying φ is higher than a threshold value α, the negative class Nα

composed by parameters where this probability is lower than α and the unde-
fined class Uα which collects all the other parameters. Following [7], we will look
for a partition where the volume of the undefined class is lower a fraction of the
volume of Θ. This is the threshold synthesis problem.

Our approach will be statistic: we assume that models are too complex to
numerically compute bounds on the reachability probability, and we only rely
on the possibility of simulating the model. As a consequence, our solution to
the parameter synthesis problem will have only statistical guarantees of being
correct. For example, if a parameter belongs to Pα, the confidence of this point
satisfying Pφ(θ) ≥ α will be larger than a prescribed probability (typically 95%
or 99%), though for most points this probability will be essentially one, and simi-
larly for Nα. The challenge of such an approach is that estimating the satisfaction
probability at many different points in the parameter space by simulation is very
expensive and inefficient, unless we are able to share the information carried by
simulation runs at neighbouring points in the parameter space.
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Contributions. We propose a Bayesian statistical approach for parameter syn-
thesis, which leverages a statistical parameterised verification method known as
Smoothed Model Checking [6] and the nice theoretical approximation properties
of Gaussian Process [10]. Being based on a Bayesian inference engine, this natu-
rally gives statistical error bounds for the estimated probabilities. Our algorithm
uses active learning strategies to steer the exploration of the parameter space
only where the satisfaction probability is close to the threshold. We also provide
a prototype implementation of the approach in Python.

Despite being implemented in Python, our approach turns to be remarkably
efficient, being slightly faster than [7] for small models, and outperforming it for
more complex and large models or when the number of parameters is increased,
at the price of a weaker form of correctness. Compared to [7], we also have
an additional advantage: the method treats the simulation engine and the rou-
tine to verify of the linear time specification on individual trajectories as black
boxes. This means that we can not only treat arbitrary MTL properties (while
in [7] they is an essential restriction to non-nested CSL properties, i.e. reacha-
bility), but also other more complex linear time specifications (e.g. using hybrid
automata, provided that the satisfaction probability is a smooth function of
model parameters), and we can also apply the same approach to more complex
stochastic models for which efficient simulation routines exist, like stochastic
differential equations.

Related Work. Parameter synthesis of CTMC is an active field of research.
In [7,11] the authors use Continuous Stochastic Logic (CSL) and uniformiza-
tion methods for computing exact probability bounds for parameteric models
of CTMCs obtained from chemical reaction networks. In [12] the same authors
extend their algorithm to GPU architecture to improve the scalability. Authors
in these two papers solve two problems: one is the threshold synthesis, the other
is the identification of a parameter configuration maximising the satisfaction
probability. In this paper we focus on the former, as we already presented a
statistical approach to deal the latter problem in [13] for the single objective
case and in [8] for the multi-objective case. An alternative statistical approach
for multi-objective optimisation is that of [14], where authors use ANOVA test
to estimate the dominance relation. Another approach to parameter synthesis
for CTMC is [15], where the authors rely on a combination of discretisation of
parameters with a refinement technique.

In this work we use a statistical approach to approximate the satisfaction
probability function, building on Smoothed Model Checking [6]. This approach
is applicable to CTMC with rate functions that are smooth with respect to
parameters, and leverages statistical tools based on Gaussian Process regression
[10] to learn an approximation of the satisfaction function from few observa-
tions. Moreover, this approach allows us to deal with a richer class of linear
time properties than reachability, like those described by Metric Temporal Logic
[9,16], for which numerical verification routines are heavily suffering from state
space explosion [17]. Another statistical approach is that of [18], which com-
bines sensitivity analysis, statistical model checking and uniform continuity to
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approximate the satisfaction probability function, but it is restricted to cases
when the satisfaction probability is monotonic in the parameters. In contrast,
Gaussian Process-based methods have no restriction (as Gaussian Processes are
universal approximators), and have also the advantage of requiring much less
simulations than pointwise statistical model checking, as information is shared
between neighbouring points (see [6] for a discussion in this sense). Parametric
verification and synthesis approaches are more consolidated for Discrete Time
Markov Chains [19], where mature tools like PROPhESY exist [20], which rely
on an symbolic representation of the reachability probability, which does not
generalise to the continuous time setting.

Paper Structure. The paper is organized as follows. In Sect. 2 we discuss back-
ground material, including Parametric CTMCs, MITL, and Smoothed Model
Checking and Gaussian Processes. In Sect. 3 we present our method in detail.
In Sect. 4 we discuss experimental results, comparing with [7]. Conclusions and
future work are discussed in Sect. 5.

2 Background

In this section we introduce the relevant background material: a formalism to
describe the systems of interest, i.e. Parametric Chemical Reaction Networks,
and one to describe linear time properties, i.e. Signal Temporal Logic. We then
present smoothed model checking [21] and Gaussian Processes [10], which form
the underlying statistical backbone of the parameter synthesis.

2.1 Parametric Chemical Reaction Networks

Chemical Reaction Networks [1] are a standard model of population processes,
known in literature also as Population Continuous Time Markov Chains [2] or
Markov Population Models [22]. We consider a variant with an explicit repre-
sentation of kinetic parameters.

Definition 1. A Parametric Chemical Reaction Network (PCRN) M is a tuple
(S,X,D,x0,R, Θ) where

– S = {s1, . . . , sn} is the set of species;
– X = (X1, . . . , Xn) is the vector of variables counting the amount of each

species, with values X ∈ D, with D ⊆ N
n the state space;

– x0 ∈ D is the initial state;
– R = {r1, . . . , rm} is the set of chemical reactions, each of the form rj =

(vj, αj), with vj the stoichiometry or update vector and αj = αj(X,θ) the
propensity or rate function. Each reaction can be represented as

rj : uj,1s1 + . . . + uj,nsn
αj−→ wj,1s1 + . . . + wj,nsn,

where uj,i (wj,i) is the amount of elements of species si consumed (produced)
by reaction rj. With uj = (uj,1, . . . , uj,n) (and similarly wj ), vj = wj − uj .
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– θ = (θ1, . . . , θk) is the vector of (kinetic) parameters, taking values in a com-
pact hyperrectangle Θ ⊂ R

k.

To stress the dependency of M on the parameters θ ∈ Θ, we will often write
Mθ . A PCRN Mθ defines a Continuous Time Markov Chain [2,23] on D, with
infinitesimal generator Q, where Qx,y =

∑
rj∈R{αj(x,θ) | y = x + vj}, x �= y.

We denote by Pθ the probability over the paths PathMθ of Mθ of such a CTMC.

2.2 Metric Interval Temporal Logic

Metric Interval Temporal Logic (MITL [16]) is a discrete linear time tempo-
ral logic used to reason about the future evolution of a path in continuous time.
Generally this formalism is used to qualitatively describe the behaviors of trajec-
tories of differential equations or stochastic models. The temporal operators we
consider are all time-bounded, like in Signal Temporal Logic [9], a signal-based
version of MITL. This implies that time-bounded trajectories are sufficient to
verify every formula. The atomic predicates of MITL are inequalities on a set of
real-valued variables, i.e. of the form μ(X):=[g(X) ≥ 0], where g : Rn → R is a
continuous function and consequently μ : Rn → {�,⊥}.

Definition 2. A formula φ ∈ F of MITL is defined by the following syntax:

φ := ⊥ |� |μ | ¬φ |φ ∨ φ |φU[T1,T2]φ, (1)

where μ are atomic predicates as defined above, and T1 < T2 < +∞.

Eventually and globally modal operators are defined as customary as F[T1,T2]φ ≡
�U[T1,T2]φ and G[T1,T2]φ ≡ ¬F[T1,T2]¬φ. MITL formulae are interpreted over the
paths x(t) of a PCRN Mθ . We will consider here the Boolean semantics of [9],
which given a trajectory x(t), returns either true or false, referring the reader to
[9] for its definition and for a description of monitoring algorithms. Combining
this with the probability distribution Pθ over trajectories induced by a PCRN
model Mθ , we obtain the satisfaction probability of a formula φ as

Pφ(θ) ≡ P (φ | Mθ ) := Pθ ({x(t) ∈ PathMθ | (x, 0) |= φ})

2.3 Parametric Verification and Smoothed Model Checking

Given an MITL formula φ and a CTMC Mθ , we consider two verification tasks:

– (Classic) Verification: compute or estimate the satisfaction probability Pφ(θ)
for a fixed θ.

– Parametric verification: compute or estimate the satisfaction probability
Pφ(θ) as a function of θ ∈ Θ.
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The classic verification task can be solved with specialised numerical algo-
rithms [17,24]. These methods calculate Pφ(θ) by a clever numerical integration
of the Kolmogorov equations of the CTMC. This approach, however, suffers from
the curse of state space explosion, becoming inefficient for big or complex models.
A viable alternative is rooted in statistics. The key idea is to estimate the satis-
faction probability by combining simulation and monitoring of MITL formulas.
In practice, for each trajectory x generated by a simulation of the CTMC Mθ ,
we verify if x |= φ. This produces observations of a Bernoulli random variable
Zφ, which is equal to 1 if and only if the trajectory satisfies the property, and 0
otherwise. By definition, the probability of observing 1 is exactly Pφ(θ), which
can thus be estimated by frequentist or Bayesian statistical inference [25,26].

Parametric verification brings additional challenges. For PCRN, the numeri-
cal approach of [27] provides upper and lower bounds on the satisfaction function.
By decomposing the parameter space in small regions, one can provide a tight
approximation of the satisfaction function, at the price of a polynomial cost in
the dimension of the state space and of an exponential cost in the dimension of
the parameter space [27].

The statistical counterpart for parametric verification is known as Smoothed
Model Checking [6]. This method combines simulations in few points of the
parameter space with state-of-the-art generalised regression methods from statis-
tics and machine learning to infer an analytic approximation of the satisfaction
function, mapping each θ to the corresponding value of Pφ(θ). The basic idea
is to cast the estimation of the satisfaction function as a learning problem: from
the observation of few simulation runs at some points of the parameter space, we
wish to learn an approximation of the satisfaction function, with statistical error
guarantees. Smoothed Model Checking solves this problem relying on Gaussian
Process (generalised) regression, a Bayesian non-parametric method that returns
in each point an estimate of the value of the satisfaction function together with
confidence bounds, defining the region containing the true value of the function
with a prescribed probability. The only substantial requirement for Smoothed
Model Checking is that the satisfaction probability is smooth with respect to
the parameters. This holds for MITL properties interpreted over PCTMCs [6].
Smoothed Model Checking will be the key tool for our synthesis problem, hence
we will introduce it in more detail, after a brief introduction of its underlying
inference engine, i.e. Gaussian Processes.

Gaussian Processes. Gaussian Processes (GPs) are a family of distributions
over function spaces, used mostly for Bayesian non-parametric classification or
regression. More specifically, a GP is a collection of random variables f(x) ∈ R

(x ∈ E, a compact subset of Rh) of which any finite subset defines a multivariate
normal distribution. A GP is uniquely determined by its mean and covariance
functions (called also kernels) denoted respectively with m : E → R and k :
E × E → R such that for every finite set of points (x1,x2, . . . ,xn):

f ∼ GP(m, k) ⇐⇒ (f(x1), f(x2), . . . , f(xn)) ∼ N (m,K) (2)
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where m = (m(t1),m(t2), . . . , m(tn)) is the vector mean and K ∈ R
n×n is the

covariance matrix, such that Kij = k(xi,xj). From a functional point of view,
GP is a probability distribution on the set of functions g : E → R. The choice
of the covariance function is important from a modeling perspective because it
determines which functions will be sampled with higher probability from a GP,
see [10].

GP are popular as they provide a Bayesian non-parametric framework for
regression and classification. Starting from a training set {(xi, yi)}i=1,...,n of
input xi and output yi pairs, and a prior GP, typically with zero mean and a
given covariance function, GP regression computes a posterior distribution given
the observations, which is another GP, whose mean and covariance depend on
the prior kernel and the observation points. In particular, for real valued yi

and Gaussian observation noise, the posterior mean at a point x∗ is a linear
combination of the prior kernel k(x∗,xi) evaluated at x∗ and observation points
xi with coefficients depending on the observations yi. The prior kernel thus plays
a central role, and it sometimes depends on hyperparameters, that can be set
automatically by optimising the marginal likelihood, as traditionally happens in
Bayesian methods [10].

In this work we use the Gaussian Radial Basis Function (GRBF) kernel
[10], as samples from a GP defined by it can approximate arbitrarily well any
continuous function on a compact set E. The kernel is defined as

k(x1,x2) = exp(−‖x1 − x2‖2/l2),

where l is the lengthscale hyperparameter, which roughly governs how far away
observations are contributing to predictions in a point (as if x∗ and xi are
much more distant than l, then k(x∗,xi) is approximately zero). Moreover, l

determines the Lipschitz constant of the GRBF kernel, which is
√

2/e

l , and a
fortiori of the prediction itself (being a linear combination of kernel functions).

Smoothed Model Checking. Smoothed Model Checking is a statistical
method to estimate the function Pφ(θ), casting it into a learning problem taking
as input the truth value of φ for several simulations at different parameter val-
ues θ1, . . . ,θn, with few simulation runs (M � +∞) per parameter point. The
method tries to reconstruct a real-valued latent function f(θ), which is squeezed
to [0, 1] via the Probit transform1 Ψ to give the satisfaction probability at θ:
Pφ(θ) = Ψ(f(θ)). Let us denote with O = [o1,o2, . . . ,on] the matrix whose
rows oi are the Boolean m-vectors of the evaluations in θj . Hence, we have that
each observation oi is an independent draw from a Binomial(M,Pφ(θj))).

Smoothed Model Checking plugs these observations into a Bayesian infer-
ence scheme, assuming a prior p(f) for the latent variable f . As f is a random
function, one can take as a prior a GP, specifying its mean and kernel function,

1 The Probit Ψ(x) = p(Z ≤ x) is the cumulative distribution function of a standard
normal distribution Z ∼ N (0, 1), evaluated at the point x.
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and then invoke Bayes theorem to compute the joint posterior distribution of f
at a prediction point θ∗ and at the observation points θ1, . . . ,θn as

p(f(θ∗), f(θ1), . . . , f(θn) | o) =
1
Z

p(f(θ∗), f(θ1), . . . , f(θn))
n∏

j=1

p(oj | f(θj)).

In the previous expression, on the right hand side, Z is a normalisation constant,
while p(f(θ∗), f(θ1), . . . , f(θn)) is the prior, which is Gaussian distribution with
mean and covariance matrix computed according to the GP. p(oj | f(θj)),
instead, is the noise model, which in our case is given by a Binomial density.
By integrating out the value of the latent function at observations points in the
previous expression, one gets the predictive distribution

p(f(θ∗) | O) =
∫ n∏

j=1

d(f(θj))p(f(θ∗), f(θ1), . . . , f(θn) | O).

The presence of a Binomial observation model makes this integral analytically
intractable, and forces us to resort to an efficient variational approximation
known as Expectation Propagation [6,10]. The result is a Gaussian form for
the predictive distribution for p(f(θ∗) | O), whose mean and δ-confidence region
are then Probit transformed into [0, 1].

It is important to stress that the prediction of Smoothed Model Checking,
being a Bayesian method, depends on the choice of the prior. In case of Gaussian
Processes, choosing the prior means fixing a covariance function, which makes
assumptions on the smoothness and density of the functions that can be sampled
by the GP. The Gaussian Radial Basis Function is dense in the space of con-
tinuous functions over a compact set [28], hence it can approximate arbitrarily
well the satisfaction probability function. By setting its lengthscale via marginal
likelihood optimization, we are picking the best prior for the observed data.

3 Methodology

3.1 Problem Definition

We start by rephrasing the parameter synthesis problem defined in [7] in the
context of Bayesian statistics, where truths are quantified probabilistically. The
basic idea is that we will exhibit a set of parameters that satisfy the specification
with high confidence, which in the Bayesian world means with high posterior
probability. To recall and fix the notation, let Mθ be a PCRN defined over a
parameter space Θ, φ a MITL formula and P̃φ(θ) be a statistical approximate
model of the satisfaction probability of φ at each point θ. In the Bayesian setting,
P̃φ(θ) is in fact a posterior probability distribution over [0, 1], hence we can
compute for each measurable set B ⊆ [0, 1] the probability p(P̃φ(θ) ∈ B).

Problem (Bayesian Threshold Synthesis): Let Mθ, Θ, φ, and P̃φ(θ) as before.
Fix a threshold α and consider the threshold inequality Pφ(θ) > α, for the true
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satisfaction probability Pφ(θ). Fix ε > 0 a volume tolerance, and δ ∈ (0.5, 1]
a confidence threshold. The Bayesian threshold synthesis problem consists in
partitioning the parameter space Θ in three classes Pα (positive), Nα (negative)
and Uα (undefined) as follows:

– for each θ ∈ Pα, p(P̃φ(θ) > α) > δ

– for each θ ∈ Nα, p(P̃φ(θ) < α) > δ

– Uα = Θ \ (Pα ∪ Nα), and vol(U)
vol(Θ) < ε, where vol is the volume of the set.

Note that the set Pα solves the threshold synthesis problem defined above, while
Nα solves the threshold synthesis problem Pφ(θ) < α.

3.2 Bayesian Parameter Synthesis: The Algorithm

Our Bayesian synthesis algorithm essentially combines smoothed Model Check-
ing (smMC) with an active learning step to adaptively refine the sets Pα,Nα,Uα,
trying to keep the number of simulations of the PCRN Mθ to a minimum. smMC
is used to compute a Bayesian estimate of the satisfaction probability, given the
samples of the truth of φ accumulated up to a certain point. More specifically,
we use the posterior distribution p(P̃φ(θ)) of the satisfaction probability at each
θ returned by smMC to compute the following two functions of θ:

– λ+(θ, δ) is such that p
(
P̃φ(θ) < λ+(θ, δ)

)
> δ

– λ−(θ, δ) is such that p
(
P̃φ(θ) > λ−(θ, δ)

)
> δ

Essentially, at each point θ, λ+(θ, δ) is the upper bound for the estimate P̃φ(θ)
at confidence δ (i.e. with probability at least δ, the true value Pφ(θ) is less than
λ+), while λ−(θ, δ) is the lower bound. These two values will be used to split
the parameter space into the three regions Pα,Nα,Uα as follows:

– θ ∈ Pα iff λ−(θ, δ) > α
– θ ∈ Nα iff λ+(θ, δ) < α

– Uα = Θ \ (Pα ∪ Nα), vol(U)
vol(Θ) < ε

To dig into how λ+ and λ− are computed, recall that smMC computes a real-
valued Gaussian process fφ(θ), with mean function μ and covariance function
k, from which the pointwise standard deviation can be obtained as σ(θ) =√

k(θ,θ). At each θ, the function fφ(θ) is Gaussian distributed, hence we can
compute the upper and lower confidence bounds for the Gaussian, and then
squeeze them into [0, 1] by the Probit transform Ψ . Letting βδ = Ψ−1( δ+1

2 ), as
customary while working with Normal distributions, we get:

– λ+(θ, δ) = Ψ(μ(f̃φ(θ)) + βδσ(f̃φ(θ)))
– λ−(θ, δ) = Ψ(μ(f̃φ(θ)) − βδσ(f̃φ(θ)))
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Algorithm 1. Bayesian Parameter Synthesis.
Input: Θ parameter space, M PCRN, φ MTL formula, α threshold, ε volume preci-

sion, δ confidence
1: S ← initial samples(Θ, M, φ)
2: Pα ← ∅, Nα ← ∅, Uα ← Θ
3: while true do
4: λ+, λ− ← smoothed MC(Θ, S)
5: Pα, Nα, Uα ← update regions( λ+, λ−, Pα, Nα, Uα)

6: if vol(Uα)/vol(Θ) < ε then
7: return Pα, Nα, Uα

8: else
9: S ← refine samples( S, Uα)

10: end if
11: end while

The Bayesian synthesis procedure is described in Algorithm 1, which after
initialisation enters the main loop, in which the computation of the positive,
negative, and uncertain sets are carried out adaptively until convergence. Before
proceeding further, we introduce some notation to describe regular grids, as
they are used in the current implementation of the method. Let us consider
the hyper-rectangular parameter space Θ = ×n

i=1
[w−

i , w+
i ] ⊂ R

n, where w−
i

and w+
i are respectively the lower and the upper bound of the domain of the

parameter θi. An h-grid of Θ is the set h-grid = ∪m∈M{w− + m ∗ h} where

h = {h1, . . . , hn}, M = ×n

i=1
{0, . . . ,

w+
i −w−

i

hi
}, w− = (w−

1 , . . . , w−
n ) and ∗ is

the elementwise multiplication. Given a grid, we define as basic cell a small
hyperrectangle of size h whose vertices are points of the grid.

Initialisation. The initialisation phase consists in running some simulations of
the PCRN at some points of the parameter space, to have a first reconstruc-
tion of the satisfaction function. As we do not need to be very precise in every
part of the parameter space, but only for points θ whose satisfaction probabil-
ity Pφ(θ) is close to the threshold α, we start by simulating the model on all
parameters of a coarse grid h0-grid, with h0 chosen such that the total number
of parameters θ explored is reasonably small for smMC to be fast. The actual
choice will depend on the number of dimensions of the parameter space, as grids
depend exponentially on it. Once the grid h0-grid is fixed, we simulate N runs
of the model per each point and pass them to a monitoring algorithm for MITL,
obtaining N observations of the truth value of the property φ at each point of
h0-grid, collected in the set S. We also initialise the sets Pα, Nα, and Uα.

Computation of Pα , Nα , and Uα Regions. The algorithm then enters the
main loop, first running smMC with the current set of sample points S to com-
pute the two functions λ+ and λ−. These are then used to update the regions
Pα, Nα, and Uα. Here we discuss several possible approaches.
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Approach 1: Fixed Grid. The simplest approach is to partition the parameter
space in small cells, i.e. using a h-grid with h small, and then assign each cell to
one of the sets. The assignment will be discussed later, but it involves evaluating
the functions λ+ and λ− in each point of the grid. The method is accurate
if each basic cell contains only a fraction of the volume much smaller than ε.
However, this requires to work with fine grids, whose size blows up quickly with
the number of parameters. Practically, this approach is feasible up to dimension
3 or 4 of the parameter space.

Approach 2: Adaptive Grid. To scale better with the dimension of the parameter
space, we can start evaluating the λ+/− functions on a coarse grid, and refine
the grid iteratively only for cells that are assigned to the uncertain set, until a
minimum grid size is reached.

Central in both approaches is how to guarantee that all points of a basic cell
are all belonging to one set, inspecting only a finite number of them. In particular,
we will limit the evaluation of the λ+/− functions to the vertices of each cell c,
i.e. to the points in the grid h-grid. Intuitively, this will work if the cell has a
small edge size compared to the rate of growth of the satisfaction function, and
the values of the satisfaction function in its vertices are all (sufficiently) above
or below the threshold. However, we need to precisely quantify this “sufficient”.
We sketch here two exact methods and an heuristic one, which performs well in
practice. We discuss here how to check that a cell belongs to the positive set,
the negative one being symmetric.

Method 1: Global Lipschitz bound. This approach relies on computing the Lips-
chitz constant L of the satisfaction function. This can be obtained by estimating
its derivatives (e.g. by finite difference or better by learning it using methods
discussed in [10]), and performing a global optimization of the modulus of the
gradient after each call to smMC. Let d(h) be the length of the largest diagonal
of a basic cell c in a h-grid. Consider the smallest value of the satisfaction func-
tion in one of the vertices of c, and call it p̂. Then the value of the satisfaction
function in the cell is surely greater than p̂ − Ld(h)/2 (after decreasing for half
the diagonal, we need to increase again to reach the value of another vertex).
The test then is p̂ − Ld(h)/2 ≥ α.

Method 2: Local Lipschitz bound. The previous method will suffer if the slope of
the satisfaction function is large in some small region, as this will result in a large
Lipschitz constant everywhere. To improve it, we can split the parameter space
is subregions (for instance, by using a coarse grid), and compute the Lipschitz
constant in each subregion. An alternative we are investigating is to compute
in each cell of the grid a lower bound of the function f(θ) learned from the GP
from its analytic expression.

Heuristic Method. In order to speed up computation and avoid computing
Lipschitz constants, we can make the function λ− more strict. Specifically, we
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can use a larger βδ than the one required by our confidence level δ. For instance
for a 95% confidence, βδ = 1.96, while we can use instead βδ = 3, corresponding
roughly to a confidence of 99%. Coupling this with a choice of the grid step h at
least one order of magnitude smaller than the lenghtscale of the kernel learned
from the data (which is proportional to the Lipschitz constant of the kernel and
of the satisfaction function), which guarantees that the satisfaction function will
vary very little in each cell, we can be confident that if the strict λ− is above the
threshold in all vertices of the cell, then the same will hold for all points inside
c for the less strict λ−.

Refinement Step. After having build the sets Pα, Nα, and Uα, we check if the
volume of Uα is below the tolerance threshold. If so, we stop and return these
sets. Otherwise, we need to increase the precision of the satisfaction function
near the uncertain region. This means essentially reducing the variance inside
Uα, which can be obtained by increasing the number of observations in this
region. Hence, the refinement step samples points from the undefined regions
U , simulates the model few times in each of these points, computes the truth
of φ for each trace, and add these points to the training set S of the smoothed
model checking process. This refinement will reduce the uncertainty bound in the
undefined regions which leads some part of this region to be classified as Positive
P or Negative N . We iterate this process until the exit condition vol(U)

vol(Θ) <

ε is satisfied. The convergence of the algorithm is rooted in the properties of
smoothed Model Checking, which is guaranteed to converge to the true function
with vanishing variance as the number of observation points goes to infinity.
In practice, the method converges quite fast, unless the problem is very hard
(the true satisfaction function is close to the threshold for a large fraction of the
parameter space).

4 Results

Implementation. We have implemented our algorithm in Python 3.6. The code
is available at http://simonesilvetti.com/pycheck/. To improve the scalability of
our algorithm, we profiled it to identify the most computationally expensive
steps, among simulating the PCRN, checking the MITL formulae at each step,
running smMC and partitioning the state space. The most expensive part in our
test turned out to be the simulation step, which we performed using Gillespie
SSA algorithm [1]. To speed up simulations, we ran them in parallel leveraging
the Numba [29] package of Python which is optimal to execute array-oriented
and math-heavy Python code. The smoothed model checking step, instead, is
substantially independent with respect the number of repetitions. Its execution
time depends on the cardinality of the training points. This is why, compared
with [6], we increased the number of simulations per parameter point and reduced
their number. We ran all the experiments on a Dell XPS, Intel Core i7-7700HQ
2.8 GHz, 8 GB 1600 MHz memory, equipped with Windows 10 Pro.

http://simonesilvetti.com/pycheck/
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SIR Epidemic Model. We consider the popular SIR epidemic model [30],
which is widely used to simulate the spreading of a disease among a population.
The population of N individuals is divided in three classes:

– susceptible S individuals that are healthy and vulnerable to the infection;
– infected I individuals that are actively spreading the disease;
– recovered R individuals, which gained immunity to the disease.

The version of SIR model we consider is defined by the following two chemical
reactions:

r1 : S + I
α1−→ 2I α1 = ki · Xs · Xi

N

r2 : I
α2−→ R α2 = kr · Xi

Here, r1 describes the possibility that an healthy individual gets the disease and
becomes infected and the reaction r2 models the recovery of an infected agent.
We described the model as a PCRN where ki ∈ [0.005, 0.3], kr ∈ [0.005, 0.2]
and initial population (S, I,R) = (95, 5, 0) and we consider the following MITL
formula:

φ = (I > 0)U[100,120] (I = 0) (3)

This formula expresses that the disease becomes extinct (i.e.; I = 0) between 100
and 120 time units. Note that for this model extinction will eventually happen
with probability one, but the time of extinction depends on he parameters θ =
(ki, kr). In the following, we report experiments to synthetise the parameter
region such that Pφ(θ) > α, with α = 0.1, volume tolerance ε = 0.1, and
confidence δ = 95%. We consider all possible combinations of free parameters
to explore (i.e. ki alone, kr alone, and ki and kr). The initial train set of the
smoothed model checking approach has been obtained by sampling the truth
value on the parameters disposed in a grid as described in Sect. 3, of size 40
points for 1D case and 400 points for the 2D case. The satisfaction probability of
each parameter vector which compose the training set, as well as, the parameter
vectors sampled by the refinement process have been obtained by simulating the
PCRN and evaluating the MITL formula 3 with 1000 repetitions per parameter
point.

Efficiency, Accuracy, and Scalability. The execution times of the experi-
ments are reported in Table 1 (left). The results shows a good performance of
our statistical algorithms, despite being implemented in Python rather then in a
more efficient language like C. The execution time (in percentage) with respect
to the results of the exact method reported in [7] are 42%, 18% and 7% for Case
1, Case 2 and Case 3. Our results are reported using the heuristic method to
compute the sets and a fixed grid of small stepsize h.
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In Case 1, we also compare the three methods to classify the regions, com-
puting the derivative of the satisfaction probability function by finite differences
and (i) optimising it globally to obtain the Lipschitz constant (equal to 4.31),
(ii) optimising it in every cell of the fine prediction grid to compute a local
Lipschitz constant (in each cell). As for the heuristic method, we use β′

δ = 3
instead of βδ = 1.96, and a grid step of order 10−4, three orders of magnitude
less than the lengthscale of the kernel, set by marginal likelihood optimization
equal to 0.1. All three methods gave the same results for the grid size we used.
More specifically, the maximum displacement of the approximated satisfaction
probability inside the cell is estimated to be 0.003

As a statistical accuracy test, we computed the “true” value of the satisfaction
probability (by deep statistical model checking, using 10000 runs) for points in
the positive and negative set close to the undefined set, and counted how many
times these points were misclassified. More specifically, in Case 1 we consider
300 equally-spaced points between 0.1 and 0.07 (consider that a portion of the
undefined region is located in a neighborhood of 0.05, see Fig. 1). All points
turned to be classified correctly, pointing out to the accuracy of the smMC
prediction.

We performed also a scalability test with respect to the size of the state
space of the PCRN model, increasing the initial population size N of the SIR
model (case 1). The results are reported in Table 1 (right). We increase the
initial population size maintaining the original proportion I

S = 1
19 . Moreover

we consider different thresholds α and volume tolerance ε in order to force the
algorithm to execute at least one refinement step, as the shape of the satisfaction
function changes with N . The execution time increase moderately, following a
linear trend.

Table 1. (LEFT) Results for the Statistical Parameter Synthesis for the SIR model
with N = 100 individuals and the formula φ = (I > 0) U[100,120] (I = 0). We report
the mean and standard deviation of the execution time of the algorithm. The volume
tolerance is set to 10% and the threshold α is set to 0.1. The h-grid column shows the
size h of the grid used to compute the positive, negative, and uncertain sets. (RIGHT)
Scalability of the method w.r.t. the size of the state space of the SIR model, increasing
initial population N . α and δ are the threshold and volume tolerance used in the
experiments.

Case ki × kr h-grid Time (sec)
1 [0.005, 0.3]× 0.05 0.0007 17.92± 2.61
2 0.12× [0.005, 0.2] 0.0005 4.87± 0.01
3 [0.005, 0.3]× [0.005, 0.2] (0.003,0.002) 116.4± 4.06

Pop. Size α δ Time (sec)
200 0.13 10% 13, 05± 3, 22
400 0.08 10% 13, 86± 5, 99
800 0.2 4% 15, 02± 0, 05
1000 0.23 4% 17, 44± 0, 23
2000 0.3 4% 28, 81± 0, 07
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Fig. 1. (a),(c) and (d) show the partition of the parameter space for Cases 1, 2, and 3
respectively. The positive area Pα is depicted in red, the negative area Nα is in blue
and the undefined region Uα is in yellow. (a) and (c) are one dimensional case: in the
x-axis we report the parameter explored (respectively ki and kr), on the y-axis we show
the value of the satisfaction function and the confidence bounds (for βδ = 3). The green
horizontal line is the threshold α = 0.1 (d) shows a two dimensional parameter space,
hence no confidence bound has been represented. The circle dot represent the training
set. In (b) we have zoomed a portion of the parameter space of (a) to visualize the cells
with base length equals to h and height equal to the span of the confidence bounds.
(Color figure online)

5 Conclusions

We presented an efficient statistical algorithm for parameter synthesis, to iden-
tify parameters satisfying MITL specifications with a probability greater than a
certain threshold. The algorithm is based on Bayesian statistics and leverages the
powerful parametric verification framework of Smoothed Model Checking, inte-
grating it into an active learning refinement loop which drives the computational
effort of simulations near the critical region concentrated around the threshold
α. The developed approach shows good performance in terms of execution time
and outperforms the exact algorithm developed in [7], retaining good accuracy
at the price of having only statistical guarantees.

Note that we compared with the performance of [7] and not of their GPU
implementation [12], as our method uses only CPU computing power at the
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moment. However, it can be implemented on a GPU, leveraging e.g. [31]. We
expect a substantial increase of the performance. Fully distributing on CPU
the computations of the algorithm, beyond only stochastic simulation, is also
feasible, the hard part being to parallelise GP inference [32].

Other directions for future work include the implementation of the adaptive
grid strategy to construct the Pα, Nα, and Uα regions, given the output of the
smMC, and a divide and conquer strategy to split the parameter space (and the
uncertain set Uα) in subregions, to reduce the complexity of the smMC. These
two extensions are mandatory to scale the method in higher dimensions, up to
6–8 parameters. To scale even further, we plan to integrate techniques to speed
up GP reconstruction: more classical sparsity approximation techniques [10] and
more recent methods for GPs tailored to work on grids [33,34]. This techniques
have a computational cost of O(n) instead of standard implementation which
costs O(n3). Finally, we aim to combine our approach with the exact algorithm
developed in [7]. The idea is to use our approach for a rough exploration of the
parameter space to cut out the region with higher statistical confidence to be
higher or lower than the considered threshold, applying the exact approach in
the remain area, when feasible.
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