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Abstract

Mean field approximation is a powerful tool .~ stu. - "ae performance of large
stochastic systems that is known to be eve~t ~~ = > gystem’s size N goes to
infinity. Recently, it has been shown that, whew. ~ne wants to compute expected
performance metric in steady-state, this apr roximation can be made more ac-
curate by adding a term V/N to tl - rigii | approximation. This is called a
refined mean field approximatior in (21,

In this paper, we improve this re. "It in two directions. First, we show how
to obtain the same result for ** transient regime. Second, we provide a further
refinement by expanding t ‘e term 1 1/N? (both for transient and steady-state
regime). Our derivatior , are ins. ed by moment-closure approximation, a pop-
ular technique in theo. *ti al b ochemistry. We provide a number of examples
that show: (1) thr = this new approximation is usable in practice for systems
with up to a few tens o. limensions, and (2) that it accurately captures the

transient and teac ; state behavior of such systems.

1. Intro «uct.on

M an fiel ' approximation is a widely used technique in the performance eval-
uatior. ~omm- nity. The focus of this approximation is to study the performance

¢ syste s composed of a large number of interacting objects. Applications
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range from biological models [46] to epidemic spreading [2] and com _ute -based
systems [4]. In the performance evaluation community, this ap, roxii. tion
has successfully been used to characterize the performance .t CSMA proto-
cols, [8], information spreading algorithms and peer-to-peer .~ works [9, 33],
caching [10, 14, 20] or a quite popular subject such as loe . balar cing strategies
[18, 32, 36, 43, 45, 34, 48, 35]. This approximation can L~ used o study tran-
sient (for example the time to fill a cache [20]) or s eadv *“ate properties (for
example the steady-state hit ratio [14, 10]).

One of the reasons of the success of mean field ap, "oximation is that it is
often very accurate as soon as N, the number ot ¢ iect: in the system, exceeds
a few hundreds. In fact, this approximation can be ~roven to be asymptotically
exact as N goes to infinity, see for example |J9. 31, 4, 19| and explicit bounds
for the convergence rate exist [5, 15, 44, 51).

Recently, the authors of [21] prr ~ased ~hat they call a refined mean field
approximation that can be used to chai “cte.ize more precisely steady-state per-
formance metrics. Their refinemen. nses chat for many models, a steady-state
expected performance metric of a system with N objects E[h(X)] is equal to its

mean field approximation () plu a term in 1/N:

F h(X)] = h(r) + %V(h) +0 <]‘b> : (1)

where 7 is the fixec point o1 .ne ODE that describes the mean field approxima-
tion and V(y, is a consta. * that can be easily evaluated numerically.

By using 2 nun ser of examples, they show that the refined approximation
h(m) + % Vi) is  ~uch more accurate than the mean field approximation for
moderate syst m sizes (i.e., a few tens of objects).

In thie pap » we extend this method in two directions: First we generalize
Equa ion (1) o the transient behavior; second we establish the existence of a
secrnd . ' - term in 1/N? (both in transient and steady-state regimes). More

1 vecisely, we establish conditions such that for any smooth function h, there




exist constants V() and Ay such that for any time ¢ € [0;00) U {c '} :

B (X ()] = Ae(0) + Vi (0) + 3 Aa® +o = @)

We show that for the transient regime, V(;)(t) and A (t) sa *sfy u linear time-
inhomogeneous differential equation that can be easily ir . ratea —umerically
(Theorem 1). The steady-state constants are directly co. \puted : om the fixed
point of this linear differential equation (Theorem 3)

We use Equation (2) to propose two new approxii. =’ .ons t 1at depend on the
system size N and that are expansions of the classica. ~ean field approximation
to the order 1/N and 1/N?2, respectively. We tu.~ comr are the following three

approximations numerically on various examples
e Mean field approximation: h(z(t)).
e 1/N-expansion: h(x(t)) + Vipy(t)/1 ™
e 1/NZ?-expansion: h(z(t)) + Vipy\ N« + Apy(t) /N2

Our numerical results shows that .“e two expansions capture very accurately
the transient behavior of such a system even when N ~ 10. Moreover, they
are generally much more 7 :curate han the classical mean field approximation
for small values of N (fc trans. » and steady-state regimes). Our experiments
also confirm that goo acc urac of the 1/N-expansion approximation that was
observed for stead -state v. aes in [21] : In most cases, the largest gain in
accuracy comes com . > 1/N-term (both for the transient and steady-state
values). The */N- term does improve the accuracy but only marginally. We
also study the 1. it of the method by studying an unstable mean field model
that has # 1 ur table fixed point. This last example has unique fixed point that
is not an atu. ~ct v which means that the classical mean field approximation
cannc ¢ be us. for steady-state approximation as shown in [4]. We show that
in this . =~ ¢he 1/N and 1/N? expansions are not stable with time and are
1 1erefore ‘naccurate when the time becomes large.

T~ - ummarize, this paper makes theoretical contributions that are interest-

in , trom a practical perspective :




e Theoretical contributions — We show that the 1/N-expansion “ror ssed in
[21] for steady-state estimation can be extended to the trau. ‘ent 1. zime

and can be refined to the next order correction term in " /N .

e Practical implications — We show that, despite the comple.™*v of the for-
mulas, it is relatively easy to compute the 1/N a1 d 1/N= ‘erms (in the
transient and steady-state regimes) for realistic made.. - .1 as the super-
market model. The developed method is gene: ¢ a- d ic implemented in a

tool [16].

Roadmap. The rest of the paper is organized a. “ollor s. We discuss related
work in Section 2. We describe the model in Sec.’~n 3. We develop the main
results in Section 4 where we also provide the | “oofs. We show a simple malware
propagation model in Section 5 in order 9 .. ' ~te the main concepts. We then
study the supermarket model in mo ~ deta. in Section 6. In Section 7 we show
an example that illustrates the limitaticns " the approach. Finally, we conclude

in Section 8.

Reproducibility. The code t ., rep aduce the paper — including simulations, fig-
ures and text —is available o https //github.com/ngast/sizeExpansionMeanField

[17].
2. Related work

Our results | ~ly to tne classical density-dependent population process of

Kurtz [31] of -hic'. the supermarket model of [45, 36] is an example.

2.1. Stein s M chod

From a n.. “he dological point of view, our paper uses an approach similar to
one ¢ [15, 2. 29, 49, 51] in which the key idea is to compare an asymptotic
expansic ~ 2" che generator of the stochastic process with the generator of the
11ean fie. 1 approximation, by using ideas inspired by Stein’s method. In the
pap = 45, 29, 49, 51], this is used to obtain the rate of convergence of mean

fie.d models to their limit. In [21], this idea is used to compute the 1/N-term




for the steady-state behavior. The main theoretical contribution < © the paper
with respect to these is to show that this method can be pushed fur. =r to . 5udy
transient regime and to obtain exact formula for the term in 1/ v<. The work on
Stein’s method is not new [40] but has seen a regain of interes. ™ che stochastic

networks’ community in the recent years thanks to the w.rk of '4, 7|.

2.2. System Size Ezxpansion

Our paper is also closely related to an approach « eve’ spec in the theoretical
biology literature, known as system size expansion ("SE). % ne core idea of SSE
dates back to the work of Van Kampen [44], ¢ ~d consis s in working with the
stochastic process expressing the fluctuations . ¢ the population model around
the mean field limit, rescaled by N~%/2, | . approximating it by an absolute
continuous process £(t) taking real valu~< Starti. g from the Kolmogorov equa-
tion of the population model, and relyl. » on a perturbation expansion, Van
Kampen obtains an Fokker-Plank (F.*1 ~ua.ion for £(t) containing in the right
hand side terms of order N=?/? “~+mn = 0,1,.... Keeping only lower order
terms (i.e. of order 0 and -1/2) results ‘n a linear FP equation, whose solution
is known as the linear nois app ~zimation, which is equivalent to the central
limit theorem proved by k. +z [13

Grima and coautho 5, in ;23] and following papers (see e.g. [25, 41, 42]), start

1
/N’

tions to the linear «, "roximation. The resulting FP cannot be solved exactly,

from the FP and kee» h.,_ 'er ¢ .der terms of introducing non-linear correc-
but it can be us~ ' to derive differential equations for the mean, covariance, and
potentially hi_her .rder moments. As far as the mean of the populations is con-
cerned, the equatio.. derived in [23, 25] shows an equivalent structure with the
one obta.. ~d .n tr.s paper. The higher-order SSE equations, with corrections
up to uraer N~ | have been implemented in the tool iNA [41, 42], and more
recend'v in the Matlab toolbox CERENA [27], the only working implementation
t- the anthors’ knowledge.

Even [ equations for the mean population and for covariance of SSE and our

~~thod coincide, our approach has some advantanges. First of all, its derivation




is rigorous and does not rely on any approximation of the proces: £(¢) being
based on a perturbation expansion of the moment equations thei. ~lves. Sec-
ondly, it gives us an approximate equation for any function A - ¢ t1. > nopulation
vector, which can be used to estimate higher order moments or . *t ng times. Fi-
nally, in this paper we validate our method with large-dir ¢nsion~l models : the
1/N-expansion can be computed for models with hundre 's of d’ nensions and

the 1/N2-expansion can be computed for models wit. a fe~ *ens of dimensions.

2.83. Moment-closure Approximation

Our way of deriving the equations is also related t¢ moment closure tech-
niques [22], which work by truncating, at a . ite 0. ' . of moments, the exact
infinite dimensional system of ODEs whicl ~~*= _ .he evolution in time of all
moments of the population process. The trunc."*on strategy typically assumes
some form of the distribution, and uses ths relationship among moments im-
plied by that assumption to express '._h-or.=r moments as a function of lower
order ones (e.g. a Gaussian distributic » has odd centered moments of order
3 and more all equal to zero). The. ~ techniques are in theory applicable to
higher order moment — see ‘.. »xample [1] — but the approach presented in
[1] seems difficult to appl; ‘n high limensional models, due to the exponential
dependence on the orde . of mom.nts of the number of moment equations. The
accuracy of moment c¢.. ™ re a proximations was studied in [24], and more re-
cently in [38, 39]. T ~ese studies show that accuracy is subtle and hard to predict,
and does not necessarily . icrease with the population size N. The method we
present in this pap r uses a more rigorous approach, rooted in convergence the-
orems, whic 1 guai. ~tees exactness in the limit of large IV, and can also be used
to provid est’mats s of moments of any order without extra effort, by choosing

proper ‘.actiown. A.

3. Mc ‘el » .d notations
..1. Der ity-Dependent Population Processes

onsider mean field models described by the classical model of density-

de peudent population process of [30]. A density dependent population process




is a sequence of continuous time Markov chains X) where the mde ¢ N is
called the size of the system. For each N, the Markov chain X, -olve. on a
subset £ C RY, where d is called the dimension of the model. We assume that
there exists a set of vectors £ € £ and a set of functions 8¢ : ¢ - R such that
X™) jumps from = to z + £/N at rate NSe(z) for each f € L.

Note that we state all our results using the framework ~f dens ty-dependent
population processes. An alternative would have beer to ue ? a continuous-time
version of the discrete-time model of [4] for which ou. resu’.s can be adapted

(see also the discussion in Section 2.3 of [21]).

3.2. Drift and Mean Field approximation

We define the drift f as

f(z) = YL LY (-,
Lel

The drift is the expected variation of "¢~ *) when X(V)(¢) = z. By definition
of the model, it is independent or 7

In all our results, we will assume that the ordinary differential equation
(ODE) ¢ = f(x) has a ur.que so. ition that starts in x(0) at time 0 that we
denote t — Pz, It sati-fes: - » =z + fg ®,xds. When it is not ambiguous,
we will denote x(t) :: @ . The function ¢ — xz(t) is called the mean field

approximation.

3.3. Tensors, Derivatives and Finstein Notations

Our result . rel" on tensor computation. To simplify the expression of the
results and heir ac ‘vations, we use Einstein notation (also known as Einstein
summatic > ccaver 1on) that we recall here.

Al yectors (or tensors) are d-dimensional (or of size d x d, d X - -+ x d). For
a give 1 vector or tensor, the upper indices denote the component. For example,
X uenotes the ith component of a d-dimensional vector X, and C“* denotes
t e (i,7,1 ) components of a d X d x d-dimensional tensor C. We use the symbol

< for the Kronecker product between two tensors: for two d-dimensional vectors




X and Y, X ® Y denotes a d x d-dimensional tensor whose compc ent i, j) is
XY7. Also, Y®3 =Y QY ®Y.

For a given function, the lower indices denote the varia’.te . n which we
differentiate. Unless otherwise stated, the functions will alw. < be evaluated
at the mean field approximation z(t). We use uppercase tetters to denote the
function evaluated at z(¢). To be more precise, this me. ns tha’ the quantity

c

Fjlu»jk denotes the kth derivative of the ith comperaent © f with respect to
It .. ak evaluated at z(t):
[ —
R PR FRAC)
We use Einstein summation convention, whicn, "mplies summation over a set

L

of repeated indices: each index variable tun.* appears twice implies the sum-
mation over all the values of the inde. = ~vample F/V7 := 37, F/V/ and
Fi . BM =30 Fly B This convent. u greatly compactifies and therefore
simplifies the expression of our results.

For a given d** tensor T, we “enuwe by Sym(7T) the symmetric part of a
tensor, which is the summation of this tensor over all permutation of indices.
Its (i1 .. .4 )-component is-

¢ . 1 oy i
Cym(T)* k:H Z Tror ok
ocGy

where Gy, is the syr .metric ~ oup on k elements.

3.4. Summary of the As. mptions

In order t! ¢ pr ve our results for the transient regime, we will use the fol-

lowing assvu aptiouw

(A1) The . > aenc . of stochastic processes X (V) is a density dependent process

aat evalves in a compact subset of £ C R?.

(A2) 1.~ ALt function f(x) is well defined and continuously differentiable four
tin. 's. The function q(z) = >, £ ® £Be(x) is well defined and contin-
= usly differentiable twice. The function r(z) = >, . £ ® £ @ £3¢(x) is

well defined and continuous.




Note that assumption (A2) on the differentiability of the drift, co: bhinr { with
assumption (Al) on the compactness of £ implies that the drift |- Lips hitz-
continuous and bounded and that therefore the differential ec uat. m & = f(x)
has a unique solution. These assumptions are mainly technica. = .d are verified
by many of the mean field models of the literature.

For the steady-state analysis, we will assume in addit. \n:

(A3) For each N, the stochastic process X V) has a 1ic .c 5 ationary distribu-

tion.

(A4) The differential equation # = f(z) has . unique fixed point 7 that is
a globally exponentially stable attractor, . eaning that there exists two

constants a,b > 0 such that for all x _ £:

[EHEIEE S

Assumption (A3) combined with the xu.'~nce of a globally stable attractor is
a natural condition when one wa. 5 vo =* >w that a stochastic model converges
to the fixed point of its mean field approximation (this is often a necessary
condition, as shown in [4, "1|). 1 e exponential stability of this attractor is a
natural condition to obtain . *e o’ convergence for mean field models [49, 15].
Proving that a fixed pr mt i, an attractor is often difficult but showing that this
attractor is exponer Jally +a'le is often much easier since it only depends on

the eigenvalue pre per.'»s of the Jacobian evaluated at the fixed point 7.

4. Main res .Its

In this .ection, we provide the main theoretical results. We start by stating
the results ™ . thr transient case (§4.1), and the steady-state case (§4.2). We
then - omme: * on the numerical feasibility of the approach (§4.3) and we finish

with t. e proc s (§4.4).

..1. Tra. sient Analysis
T~ nain result of our analysis is Theorem 1, which characterizes how the

m ments of the difference between the stochastic system X (¢) and its mean field




approximation evolve with time. We show that each of these momer - ad- .its an
expansion with a first term in 1/N and a second term in 1/N2. 1.~ con. ants
of this asymptotic expansion are characterized by a system of . near ODEs.
One of the direct consequence of this theorem is Corollary = Y ¢ provides an
asymptotic expansion of the mean and the variance of X' /.

Theorem 1. Under assumption (A1-A2), let x(t) denote ‘he uni ue solution of
the ODE & = f(x) starting in XN (0). There exists ¢ . ries o, time-dependent
tensors VW, A, B, C and D such that, for any four :ime uy), "rentiable function
h:RY = R, we have:

1 1 N
E [h(XM )] = (1) + 5 (Hin + g Hy W )
1 N S| ijk 4 ight !
+W(Hi‘4 +§H¢ij+gHiJ'kC] +;)AHijkeDJ )—I—o(ﬁ)a

where the terms H; ... Hyjie denotes the firsu [~ fourth derivative of h evaluated
at z(t).

The dimension of the tensors V ana A 75 n; the dimension of W and B is
n X n; the dimension of C isnxnx - the ‘“‘mension of D isnxnxnxn. For
the 1/N-terms, these tensors satisfy 1., “llowing ODE system (with the initial
conditions V.=0 and W =0):

i i Lo i
Vi=FV/+ §Fj,kWJvk
W = B EW Q) = Sym (2B(WH) + QY

For the 1/N?%-terms, th  ODk . tem is as follows (with the initial conditions
A=0B=0,C=00cd =0

. o 1 N 1. . 1 . .
Al=FIA + _F ook + —F OO —FTL DIk
2 6 24
BY = $vm (25 + Fl,C + 2 F,,, DM

ij 1 i
n quJVk + 5QkJEVVM
¢ = yml3FjCY* + gFg'memj’“ +3QIVF + 3Q7W”“) + R
Py ﬂ(4anijM n 6Qijwkﬂ).

where *he sy metric d x d tensor Q and d*3 tensor R are:

Q=> (£ €)Be(x(t)) (4)
el

R=" "(£®£20)(x(t)); (5)
Lel

10




The tensors Qi and Qg ¢ correspond to the first and second deriv *ive: of the
function x — 3", . £ @ £Be(x), evaluated in x(t):

Qe = 00 S (00 O)5(a(r)

el

82
Qre = BT eezg(e ® £)Be(x(t)).

To prove this theorem, we will first prove the ex’ .cnce u. vhe tensors and
then will show that they satisfy the corresponding . ~t .t O) Es by computing
how the moments evolve with time. In fact, an equiva. "t cuaracterization of the
tensors V', W ... is to use these tensors to consti . “t asym' totic expansions of the
moments of X™)(¢) — z(t). This is summarize. ‘n Corollary 2, which also has
an interest in its own. This corollary also | “stiies why moment closure works:
neglecting the first moment of X (V) (¢)~ ‘9 oives che mean field approximation,
neglecting the moment three and above gi. ~, the expansion of order 1/N; finally
neglecting the moments five and abo.~ 4es the expansion of order 1/N2. In
theory, it should be possible to . ‘...~ the asymptotic expansion but the at
the price of a much higher complexity in the expressions. In the numerical
examples, we will show tb .t the asymptotic development of the expectation
provides a very accurate esu. ~atio . of the true expectation in many cases.

Corollary 2. Under “1e o sumntion of Theorem 1, we have

E[ (M) - x(t)} = iv(t) + %A(t) +o(1/N?)

N
E [(V(N)(t) —2(1)®?] = %W(t) + %B(t) +o(1/N?)
1

E|(Y0(0) - 2()] = 1500 +o(1/N?)

EL XM @) — 2)®1] = — D(t) + o(1/N?)
E [ W(1) — 2(t)®*] = o(1/N?)  fork =5,
In pai “cular:

cov(- M (1), XV(1) = LW (D) + 13 (B(D) = V(1) ® V(1)) +0(1/N?).
Prooy. [he first set of equation is a direct consequence of Theorem 1 applied to

th : tunctions h(X) = (X —2)®F for k=1,2....

11




For the covariance, we have :
cov(XM(8), XM (1)) = E [(XM () - 2(t) + 2(t) — E [xM(1) |, 2]

—E [(XM (1) = 2(6)2] = (@(t) =+ |X 1)

W0 + 35 (BO) = V(D) &7 1) + o /N?).

4.2. Steady-State Regime

We now turn our attention to the steady-state . ~ain... The next theorem
shows that when the system in the mean fic.? appro: imation has a unique
attractor, then the tensors of Theorem 1 have . limit as ¢ goes to infinity, and
this limit can be used to obtain an asymp. wic expansion in 1/N and 1/N? in
steady-state. For V and W, these eqi-~tions ar. the same as ones developed
in [21]. The novelty of this result is the 1,'" 4-expansion.

Theorem 3. In addition to the ass.my “on of Theorem 1, assume (A3) and
(A3). Then the ODE of Theorem 1 als. has a unique attractor. Moreover, in
steady state for any four times di, “entwole function h : R* — R, one has:

1/ . g
E [h(XUV))] =h(m)+ ¢ \*wl + ;Hijww>

1 -] I | . 1 | 1
+ 2 (HiAl + o Hynt gHijkC”k + ﬂHijkéD”kl) + 0<W>’
where the terms H; ... 7= 4 de wotes the first to fourth derivative of h evaluated
at the fized point m und wi. = the tensors satisfy the following system of linear
equations:

28 /m| B ) = —QY FjV7 = SF Wt
and
4Sym, 7, 7/mIR ) = —6Sym(QU WK
38 m(Fjr) = — (Sym (2Fngfmﬂ° +3QUVE + 3Q;JW““> + R”’“)
Sy 8M) = —Sym (F§e0k£3+§Fgekalm7+ij V’°+§Q,gew’ff)
1

o T R 1 _
FjA? = — (2%3]]c + EF;MC]M + MF;kEijkem)

w'ere Q, R, Qr and Qe are evaluated at the fixed point .

12




Also, as we will see in the proof, under the condition of The rem 3, the
convergence as N goes to infinity of Equation (3) is uniform in v me. 17is is
not necessarily the case when the mean field approximation  oes not have an

attractor (see Section 7).

4.8. Computational Issues and Implementation
4.8.1. Transient Analysis

For a given mean field model, the ODE & = f(z) 's an M"DE of dimension d.
As the drift f is in general non-linear, the solution (., can rrely be computed
in closed form but can be easily computed numeric..'v for high dimensional
models. Once the solution z(t) is computed, the . -sten- of ODEs for V', W, A,
B, C' and D given by Theorem 1 is a system of h.. ar ODEs with time-varying
parameters.

The system of ODEs for V and W av . * depend on A, B, C, D. It is
therefore possible to compute the /N tc ms V(¢) and W(¢) by numerically
integrating a system of O(d?) variables 'L..> computation of the 1/N? terms is

4

more complicated because D has .* variaples. This makes the computation of

the 1/N? terms feasible for d of at most a few tens.

4.8.2. Fized-Point Analys s

The computation of che fixe' point of Theorem 3 can also be solved by a
numerical algorithm: The con cants V' to D are the solutions of a system of
linear equations.

For the 1/N-term, tLc = equations are the same as the ones developed in [21]

and can there’,re 2 solved in O(d®) time in two steps:

e First we obta ~ the matrix W from the solution of the Lyapunov equation

MY+ MW )T = Q for some matrix M.

e second the vector V is the solution of a linear system of equations of

<’ mens’ o d.

" he mos costly step of the above is the computation of the solution of the
Lye, =~ v equation, which can be done in O(d®) time by using the Bartels-

St -wart algorithm [3].

13




Once the terms V' and W have been computed, one can computc the ensors
D,C, B, A (in this order) by exploiting the fact that the equatio.. for . does
not depend A, B, C (similarly, the equation for C' does not dey ma »n A and B;
the equation for B does not depend on A). Each is a system o. ' ear equations
with respectively d*, d3, d? and d variables. For D ar . (, the system is a
generalization of the classical Lyapunov equation MW + (M W)T = Q to higher
order tensors. Although the system of linear equatior s is 1=~ -2, in our numerical
examples we were able to solve these equations for system s large as d = 50
dimensions in less than 20 seconds (which corresponds "r D to a linear system

with 50 = 6.25 x 10° unknowns).

4.3.8. Implementation

To compute numerically the mean field expan. ons, we implemented a generic
tool in Python that can construct and : lv: the above equation. The tool is
available at https://github.com/n, 2. */rn. 7_tool/ [16]. It takes as an input
a description of the model and -~=< sy, bolic differentiation to construct the
derivatives of the drift and of the fun.“ons @ and R.

The tool uses the functio’ 1. ~grate.solve_ivp of the library scipy [26] to
numerically integrate the C VEs for .omputing V' (¢) and W (¢) of Theorem 1. For
the steady-state analys’ ., th~ too: uses the python library scipy.sparse to con-
struct a sparse system o. ¥ iear .quations and the function scipy.sparse.linalg.lgmres
to solve the sparse ."mear system.

Note that th~ use of symbolic differentiation makes the computation slow
for large mod Is. T.ence, for the supermarket model, we directly implemented
Python fur _tions . ~t compute the drift of the system and its derivative. All

our speci. - ir pler entation is available in the git repository of the paper [17].

4.8.4  Analy s of the computation time

To ~ive » davor of the numerical complexity of the method, we report in
T igure 1 the time taken by our algorithm to compute the expansions for the
su, erme ket model described in Section 6. This figure shows the computation

tu .« 3 a function of the number of dimensions of the model d. It contains four
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Figure 1: Supermarket : * me t, con bute the approximation as a function of the number of

dimension d. We compare «. ~ 1/N- xpansion (first line) and the 1/N2-expansions.

panels that correspond u. -
(a) The tin." to _ompute V(¢) and W (¢) for ¢ € [0,10].
(b) The ¢imr to compute V and W of Theorem 3.
(¢) 7 ue time v compute A(t), B(t), C(t) and D(t) for t € [0,10].
(d) 27~ tiv.e to compute A, B, C' and D of Theorem 3.

\’e obser ve that, as expected, computing the time-varying constants of the

transient regime is more costly than solving the fixed point equations because it
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requires solving an ODE: for a given time budget, one can compute ‘he ceady-
state constants for a system of doubled size. Moreover, these resu.. > show that
the computation of the 1/N-terms V() and W (¢) can be donr to1 modeis with
hundreds of dimensions in 10 seconds. With the same constra.. = of 10 seconds,
the 1/N2-terms can be computed for models with a few + ns of 1imensions.
Note that we only provide this figure for the supern. rket v odel because,
among our three examples, it is the only one for whicl we ¢~ vary the dimension
by changing the maximal queue lengths. We believe t..at the computation time
does not grow too much with the dimension because 1.. " tensors corresponding
to the derivatives of the drift or of the matrix  are celatively sparse. The

computation time might be higher for a model wi.. denser tensors.
4.4. Proofs

To simplify the notation, where it is . " needed in the proofs, we drop the

superscript N and denote X instead 1 V(..

4.4.1. Proof of Theorem 1

The proof of Theorem 1 is divided in two parts. We first we show the
existence of the constants A, B,.. Second we show how to derive the ODE
that they satisfy.

Existence of V, ¥ — derr, we again use the notation ®;x to denote the
value at time s of t’.e soluv. ~. of the ODE & = f(x) that starts in 2 at time 0.

According to [15, £qua ‘o (19)] for any function h : & — R, we have
PE[F @) — hXM @) | XN =@
rt
=/ ® [A(N)ho<1>s(X(N)(t—s)) | XN = z|ds, (6)
0

where 1Y) is wae operator that, for a function g, gives the function A(N)g

define 1 by:

(AMg)(z) = Ny Be(x)(N(g(z + L)) - 9i(2)#), (7)

N
LeL

W' cre we recall the use of Einstein summation convention : g;(z)€/ = Z?Zl (9g(x)) /(D7) €.
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By using a Taylor expansion of g in the above equation, for a f nction

g : R™ — R that is twice differentiable, we have
1 o
AWM g(z) = 3 > Be(w)gij ()€€ + o(1/N) (8)
LeLl
where the hidden constant in the o(1/N) depends on the modulu of continuity

of the second derivative of g.

This shows that Equation (6) equals

t . .
E / % Zﬁ@(X(N)(t_S))(h 0 @) (XN (t—s)) ¢ ds

0 “per

“(3)

where (h o ®,);;(®;_sx) denotes the second der. ~tive of h o ®5 with respect

to o' and 27 evaluated at ®; ,x. Again, . » hidden constant in the o(1/N)
depends on the modulus of continuity ¢ ... ~~~ound derivative of (ho ®) which
is finite for any time ¢ because of Assump. m (A2).
As X(NV)(t—s) converges weakly tc @, z as N goes to infinity, the above
quantity (to which Eq.(6) is equa., viewi
tq .y
Eq.(6) = / 3 > R ) (ho®y)ij(®ex)€ € ds + o(1/N). (9)
0 “eer
In the quantity (ho ®;',;(P;_s. , the only dependence in h is a linear combi-
nation of the first ana ~ec ,nd « erivative of h evaluated at ®;x. Indeed, by the
chain rule, for twe runctions g and h, the first and second derivative of g o h

evaluated in y is
(hog)i = (hiog)gf
(hog)ij = (hreo 9)gkgs + (hi o 9)gl;

Replar.ug g hy w sz and evaluating the function is ®;_sx shows that the second

derive “ive of } o @, evaluated in ®;_,x is :

(ho q’s)ij(q)tfsx) = hk@((btz)(@8)§(¢t78(x))<¢5)§(q’t75(17))

+ i (@42) (@)1 (@45 ()
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Plugging this into Equation (9) shows that Equation (6) is equal t- -

ke m) S (@) (B (@ () (@B (0L

0 eec
,.Wkl(t)
+ (B = / S Be(®4)E, (o (2)) €80 ds +o(*/N).
Lel

=:VE(t)
This implies the existence of V' (¢) and W(¢) in Ecnation (3}
Existence of A...D — The proof of the existence f the terms A to D is
similar. Hence, for space constraints we only skeiw.™ th . main differences. The

first ideas is to refined the expansion (8) to

1
AMg(a) = 23 Bu(a) g0+ = S gl O + o). (10)
ZEL ‘c

This shows that Equation (6) equals

Bl [ 3 S =)o (- 8”””5]

el
( )
N

In the above equation the .ecor d term is of order 1/N and involves the deriva-

+E [GN /OZ/B (—X(N) t— S))(h o P )’L]k( (N)(t S))elﬂjgkds

el

tive up to order thr e of h. ™ .e first term is equal to (6) plus a correction term
of order 1/N tha' invo. =s the derivative up order four of h (evaluated at ®;x).

Derivatior o1 *he ODEs — The evolution of the stochastic process X (t) —
z(t) can be dec v .posed in two parts : a jump part due to the fact that X(t)
jumps to () + £/N at rate NBe(X(t)) and a drift part due to the fact x(¢)

satisfies the ‘DF & = f(z). This shows that for any function h, one has :

SR (X() —2(0)

- SR [ (h0r) - #0) + )~ HOXW - 2(0)) Nex )]

el

—E [h;(X(t) — () f (=(1))]

18




In the above equation, the first line corresponds to the stochastic ju ~os £ X(t)
while the second line corresponds the continuous variation of z(¢).

Applying the above equation® to the function h(X) = (X - )< ¥ shows that

SE[(X -2 1)
=S| (o) - -0 v
ecL )

— kSym (f(2) 9 E [(X — 2,77

k
- Z <TI:L) Sym <E [Nm 1E®mﬁe( AN &) Bh—m
— kSym (f(z) @ E [(X —2)®* |}

—kSym( [(f(X) = f@) @ =751

( Sym ( [Nm_L®mu(X)®(X—x)®k_mD (12)

The the existence of the consta. *s V, W, A...D combined with Equa-

)

m=2

tion (12) show that the deri* “*ve of E[(X(t) — z(t))®*] admits an asymptotic
expansion with a first ter » in 1/ and a second term in 1/N2. We are now
ready to compute how .he cons. ats V, W, A... D evolve with time by com-
puting the derivative v."*b resp ct to time of E[(X — 2)®¥] for k € {1...4} and
identifying the 1/ and 1//V * terms.

1. Case E[X — z] — 1, using Equation (12), we have :

Applying ‘3) o th function h(X) = fH(X) — f(x(t)) implies that

i A P R
’ i Ad 1. j - j L jklm 1
. ]W(FjAJ+§ijBJk+6ijlC]“+24F . DIk )+ o(553)

n the remainder of the proof, we drop the dependence in ¢ in most of the proof and write
X usc.ad of X (¢) and z instead of z(t).
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Using that 2E[X? — 27] = V?/N+A*/N?+0(1/N?) and identifying he ¢ (1/N)
and O(1/N?) terms shows that:

d_ P ik
d i i AT 1 % ik 1 % j kel 1 7 jklr.

2. Case E[(X — x)®?] — By using (12), we have

LR [(X — )] = 29ym(E[(f(X) - f(@)) @ (A ~ )] + LE[g(X)],

where ¢(X) is a covariance matrix defined by

g(X) = Be(X) 0

el

For the first term, we consider the funct. i . () = ((f(X)— f(z)) @ (X —x))¥
and we use Lemma 1(i). The first ¢ ~rivat. e of this function h evaluated at x
is 0. The second derivative of h with 1 spc t to z* and 2¢ is 2Sym(F), ® Jiy)s
where J(y) is the matrix whose (¢, ) element is one, the others being zero. The
third derivative with respect to 2*, 2° and 2™ is equal to 3Sym(Fy, ® Jim))-
The fourth derivative with respect ‘o z¥, ¢, 2™ and 2™ is 4Sym(Fjem @ Jiny)-

Hence, applying Equ «tion (™ o h hows that

GE [Fym 1)~ f@) ® (X — )

2 1 13

— b}u {\:JFk(NWkJ + mBk']> + WFIMCIMJ
% kfmj
* gave FeemD ])

For the se ond serm, applying (3) to the function ¢ shows that

E | (X)) = Q7+ LQ/V" + S5 QW™ + O(1/N?).

‘niecall that the exponent ¥ stands for the component (7).
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This shows that:
W4 = 28ym(F{W™) + Q¥
B = sym(QF,gB’fj + F,CH 4 %F,gémpkf" J
FQUVE 4+ SQEW).
3. By using (12), with E[(X — 2)®3], we have :

d

S [(X —2)°) = 3Sym(E [(/(X) - [(w), o (X - 2)%2))

+2SmERX) ® (X~ o)) + REFX)L (1)

where 7(z) = 3, . £9°Be(2).

To study the first term of Equation (1., we consider the function h(X) =

(f(X) = f(z)® (X —2)®2)i% Applyi T ~mma 1(ii), the first two derivatives
of this function evaluated at x are equa. ¢o 0. The third derivative of this
function (with respect to zf, ™, 2", is .*nal to 6Sym(F; ® Jim) ® J(n)) and
the fourth derivative is equal to « Syil" 1 ® Jim) @ J(n) @ J(o))-

Hence, applying Equation (3) to h snows that

E[Sym((f(C) — f(z 1 ® (X —2)®?)]
12

1 . 6 i gk

Fg’memjk> + 0(1/N?).

The second terr . of Equ. 1on (13) can be treated by applying Equation (3)
to h(X) = q(X)(:x*—2" whose first derivative evaluated at x is Q% and whose

second derivat’ ve it QQ? ® J(g) (see Lemma 1(i)). This shows that
’ ijk 1 ik o 2oyt 1
E [Syr (¢(X) & ‘X — 2)7%)] :NSym QUV +§Qe w +0(N)'

Finally, v. ~ le .t term of Equation (13) is equal to R/N? + o(1/N?).
T is show that Equation (13) has only terms in O(1/N?) plus term of order
o(1/N-, R+ dentifying the O(1/N?)-terms, we get

CVE = 38ym(F;CY%) + _ Sym(Fj,,, D™I%)

+ 3Sym(QUV*) + 3Sym(QY W) + Rk
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4. The derivative is similar for E[Y;*%]. Applying (12) shows tk -t
d

+E [(X —2)®1]

= 4Sym(E [(f(X) ~ f(2)) @ (X —2)]) + L [g(X) (X — )
4 1 N
REE 08 (X =0 + B | S 06

By (3) with the function h(x) = (f(X) — f(z))(X — )®3 7. first term is equal
to 4Sym(F:, D™k /N2 + 0(1/N?) (because the first chree derivatives of this
function h are equal to zero and the last one has a ta tor 4 x 3 x 2 = 24 by
Lemma, 1(iii)).

For the second term, we can again use Equation. “3) with h(X) = ¢(X)(X —
x)? and Lemma 1(ii). The first derivative of /. '= zero and only the second term

counts :

Sym(E [¢(X) @ (X — 2)¥)) = —-3ym(Q ® W) + o(1/N).

L

Finally, the one before last is of orw. ~ O(1/N?) because of (3) and the last term
is of order O(1/N3).
We therefore obtain :

DR = 4Sym(s ) D™IFY) 1 6Sym(QMW ).

In the above pr- of, we - .d the following lemma, whose proof is direct by
using general Lei'.niz 1 'e.

Lemma 1. Le. g. R — R be k-times differentiable. Then

;
(i) THAH = a®) (@) 4 kgD (z)

(ii) 26,92 = 260 (2) + 2kag*=D(2) + k(k — 1)g*~?

(i1i) %Q = 23g®) () + 3ka?g*— D (x) 4 3k(k — 1)ag*—2)
+k(k —1)(k —2)g*=3)

. .4.2. F.oof of Theorem 3
2"~ of the work needed to prove Theorem 3 was already done in the proof

of lneorem 1. Indeed, it should be clear the linear equations of Theorem 3
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correspond to the fixed point equation of the ODE of Theorem 1. T ~ereore, to

prove Theorem 3, the only remaining steps are to prove that:

1. These fixed point equations have a unique solution.
2. The system of ODEs of Theorem 1 converges to this solut.. .

3. One can exchange the limits lim; o, and limy_, o

Uniqueness — the uniqueness of the solution, f .. V ana W was already
shown in [21]. For D, one can remark that its fix 7 poin equation can be
written as a matrix equation M® D = y where y .- a vectorized version of
—6Sym(Q ® W), and where the matrix M® 1, ~ d* x I* matrix that can be
expressed as the Kronecker sum of four times the J~cobian of the drift evaluated

at m:

4 ; 2
M3 aped = Fidjpdrcdr -+ dia ) Oedea

40420 TR0, g + 8ia0 b0k FY, (14)

where 9;; is the Kronecker symbc’ thav equals 1 if an only if ¢ = j and 0
otherwise. Note that in the above equation, the lines and columns of the matrix
M® are indexed by the t ples ij ’ (for the lines) or abed (for the columns).

By property the Krr aecke: v n, an eigenvalue of M® is the sum of four
cigenvalues of the Jac biar ma’.ix (F}). As the system is exponentially stable,
all the eigenvalues r. the Ja. oian matrix have negative real part. Therefore all
eigenvalues of the mati. - M® have negative real part and M®) is invertible.
This implies t} 2 ex stence and the uniqueness of the solution for D of the fixed
point equation.

Once “ne 7 is fixed, the equation for C' can be written is a similar way
M®B)IC =y w.~re M® is the Kronecker sum of three times the Jacobian of the
drift. A simi wr reasoning as the one for D shows that C is uniquely defined.
This ca.. »~ Jropagated to B and then A.

Com 3rgence to the fixed point. The time-varying constant D(t) satisfies
a ..~ ihomogeneous linear differential equation D = M® (¢)D + y(t), where

M =¢) is the Kronecker sum of four times the Jacobian of the drift evaluated in
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x(t) and y(t) (defined as in Equation (14)). As x(t) converges to an e: ~on’ atially
stable attractor m, all eigenvalues of the Jacobian of the drift ; -alua. d in
7 have negative real part. This implies that there exists a ime after which
all eigenvalues of the Jacobian of f have negative real part .~ vhich case all
eigenvalues of the matrix M (4)(1‘) have negative real part. ('his imples that the
ODE for D(t) is exponentially stable and that therefore 7(t) co .verges to the
unique fixed point of this system. The same reasoni g ap~''»s for C, B and A.

Exchange of the limits. The above steps gnara.utee t'.at the terms V (¢)
and A(t) of the development in 1/N and 1/N? convei, » as N goes to infinity.
Informally, this shows that

tlggoIE [XN(t)} -7 = tlggoE B ) — z(t)]

1

lim v O A(t) + o(1/N?)

t—o0 [\ N
1 2
=N At hm o(1/N7). (15)

In order to conclude the proof, w. necd ., show that it is possible to exchange
the limits, which is to show that the term lim; ., o(1/N?) is indeed a o(1/N?)
term.

To see that, we use Stem. * mr chod and the ideas developed in [49, 15] to
show that, in steady-s ate.

E h(X(N)\J —h(r) =E [A(N) /OOC h(® (XM (s))) — h(n)ds

where A(N) is he . perator defined in Equation (7). Note that this equation is
a consequerce o “quation (10) of [15] and is the analog of Equation (6) as ¢
goes to in .nity
Concerni. - t} ¢ exchangeability of the limits, for space constraints, we only
sketc’ the ma n remaining ideas of the proofs. The first step is to show that the
hidden (~>»<*.nt of the 0(1/N2) of Theorem 1 depends on the modulus of con-
{ nuity o. the function G (x fo h(®s(z)) — h(m)ds. This comes from Equa-
tio.. /17,. The second idea is that the function G(z) = [;° h(®, —h(m)ds is

fo .r umes differentiable and that the derivatives G®) converge umformly to the
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derivatives of G as t goes to infinity. This comes from perturbatior ~hec y : by
[12, Lemma C.1], if the flow ® has an exponentially stable attracte. and . four
times differentiable, then the first four derivatives of ®(z) cr ave e exponen-
tially fast to 0. The same argument is used in the proof of L. »aa 3.5 of [21].
These two arguments show that the modulus of contini .ty of “he derivatives
of G® are uniformly bounded in time and that therefc = the  onvergence is

uniform in time.

5. Example 1: Malware propagation

In this section we illustrate the above re mlts “t' a simplified variant of
the malware propagation model of [4, 281 Tt ~=. be viewed as an instance
of a basic infection model in epidemiology (e.. [37]). We choose this model
because of its simplicity: since it is a 0. =-d’ ncusional model, the constants of
the 1/N and the 1/N? approximatic . ~an 1 » computed in closed form and the
stationary distribution can be evaluate. numerically easily with high precision
(it is a birth-death process). This awu.vs us to assess the accuracy of the various

approximations with high pre~*~ion.

5.1. Model

We consider a moc el o malware propagation in a system composed of N
agents. Fach agent is ei."er .nfected by the malware or not. Let X be the
fraction of infecte « a. nts. We consider that each non-infected agent becomes
infected at rate . . X (the rate 1 corresponds to infection by an external source
while the rate ¥ ¢ rresponds an infection by a peer). An infected agent recovers
at rate 1 cae t~ son.e patching mechanism. This translates into the following

transitions ~ X:

1
X+—>X+N at rate N(1 — X)(1+ X)

1
X»—)X—NatrateNX
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5.2. Mean Field Approzimations and Ezxpansions

To apply Theorem 1 and 3, let us first compute the drift of the ~vsteu., its
derivative, the matrix @ and its derivative, and the tensor F. A *he system
is uni-dimensional, all tensors are in fact scalars. The drift is "/ ¢) = 1 — 22 —
x = r(z) and the function g¢(z) = 1 — 22 + 2. The O JE of “he mean field
approximation & = f(z) is a Bernoulli type equation, 1. nce, *1e mean field
approximation has the closed-form solution

L, V5 (1 7;6_[57 .1\, : (16)
where a = (4z(0) + 1 —+/5)/(42(0) + 1 + v/5) an.. (0 s the initial condition.

As there is a close form solution for the mean fie..” approximation, it might be
doable to obtain a close form expression for the ~onstants V (¢), W (t),... but the
expressions of such constant seem high. - co: ... x. Hence, in our illustrations,
we use our tool [16] to compute nur -icall, these constants.

The fixed point analysis is simpler. “ro.i Equation (16), it is clear that the
ODE & = f(x) has a unique attre “or 7 = (/5 — 1)/2 that is exponentially
stable. Moreover, the derivatives of the drift (evaluated at ) are f’(r) = —/5,
f"(7) =2, fO(r) = f® 1) = L Finally, the function ¢ evaluated at 7 is
q(m) = V5 —1 and its .erivar. » are ¢'(7) = 2 — /5, ¢"() = —2. Last, we
have that r(7) = 0.

After some alge’ra, it ca. be shown that the constants V and A that solve

the fixed point equation ~f Theorem 3 are

1 _
Y and A Y5=3

v 10 50

Plugging * .e 8" 0ve quantity into Theorem 3 shows that, in steady-state and as
N goes to 1. ity one has :

E[X}—\/g_l(11>+\[_3+o( ! )

2 5N 50N2 N2

.3. Nuy erical Comparison

_ - “'.8 section, we propose a numerical comparison of the exact values, the

m an reld approximation and the two expansions (up to order 1/N and 1/N?).
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Figure 2: Malware model, transient regime: ¢r  ~~rison o1 the mean field approximation, the

1/N and 1/N? expansions and the exact value.

5.8.1. Transient regime

To perform a numerical compa.’ “on o1 the various approximations with the
exact values, we implemented two numerical procedures. For the mean field
approximation and the ex' ansions. we implemented a numerical integration of
the system of ODEs of ""heore. . For the exact values, we used the fact that
for a given size IV, the stoc iasti . model is a continuous time Markov chain with
N + 1 states ({0,1 N,2/n . .,1}). We again used a numerical integrator to
integrate the Kol.nogor. - equations for this case.

The results are eported in Figure 2 in which we compare the three approx-
imations (mwean  ‘ld and the two expansions) with the exact values, for N =5
and N = (0. At the beginning, we start in a system where X (0) = 0.6 (i.e.
3N/5 of the 7 ¢ sents are infected). We observe that the expansions provide
a mu h bette characterization of the transient regime that the classical mean
field ap, "~ nation. Note that for N = 5, the gain when going from the 1/N
{5 the 1, V2 is small. For N = 10, the gain is almost invisible.

T~ Lserve more precisely what is the gain brought by the 1/N? approxima-

tir a, we plot in Figure 3 the 1/N2-constant A(t) and compare it with the error
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Figure 3: Malware model, transient regime : we « .npare the error of the expansion of order
1/N with the constant A(t) of Theorem 1.

of the 1/N-expansion rescaled by . “: v \E[X ()] —x(t) — V(t)/N), for various
values of N € {5,10,20,30}. As shown by Theorem 1, the rescaled error of the
1/N-expansion converges t, A(t) «* N goes to infinity. This figures also shows
that A(t) is of order 1072, . ™is explains why the gain in accuracy brought
by the 1/N2-term is ¢ aall" the >rror of the 1/N-approximation is only around

0.01/N2.

5.8.2. Steady-state
We now v rify he accuracy in steady-state. In Table 1, we verify the ac-
curacy of t} 2 app. ~vimation for various values of N € {1,5,10,20,30,50}. We

compare arer valv s :

e _|X] that we computed by using the fact that this model is a birth-
Jeath process whose stationary measure can therefore be easily computed

nv merically.

—  V/N, which is the refined approximation of [15] and that we call the

1/N-expansion.
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N E[X] 1/N-expansion 1/N?-expansior |
Error ‘ Error
1 | 0.5000000 | 0.4944272 | 5.6e-03 | 0.4791486 2.16—\;:4‘
5 1 0.5929041 | 0.5933126 | -4.1e-04 | 0.5927015 | .0 04 ‘
10 | 0.6055449 | 0.6056733 | -1.3e-04 | 0.6055205 2.4 -05
20 | 0.6118184 | 0.6118536 | -3.5e-05 | 0.6118155 | o. -06

30 | 0.6138977 | 0.6139138 | -1.6e-05 | 0.6138°.,8 | 8 7e-u7
50 | 0.6155559 | 0.6155619 | -5.9¢-06 | 0.6155 57 | 1.£-07
oo | 0.6180340 | 0.6180340 0 0.618034" 0

Table 1: Malware propagation model: comparison of the "true ' ex- cctar on of X and the 1/N
and 1/N? expansions. The “error” column is the difference between El .] and the expansion.
Note that the classical mean field approximation is the ve. e fo. .v = oo, which is 7 =~
0.6180340.

e 7+ V/N + A/N? that we call the 1/N?-ex, ansion.

We observe that for this model, the 1/N a.' 1/N? expansions are already
very accurate for N = 1 and they soon , rov uc .more than 4 digits of precision
for N > 10. For N > 10, the error . . 1e by the 1/N?-expansion is an order of
magnitude smaller than the error made « v tue 1/N-expansion (the ratio between
the two errors is approximately 0.6:v" The high accuracy of the 1/N-expansion
can be by the fact that the tv~ constants are V' = 0.12 and A =~ —0.015, hence,
as for the transient regim the dii ‘erence between the two expansions is only

0.015/N2.

6. The supermar’.et m. 1 (

We now focus on the classical supermarket model of [36, 45]. We study
the gain of t' e 1/ Vv and 1/N? expansions for the transient and the steady-
state regim 3. As v the previous examples, the gain in accuracy of the 1/N-
expansior ove the mean field approximation is large but the gain of the 1/N2-
expans ... over 1e 1/N-expansion is smaller. Also, this model illustrates that

it is 1 ossible 1 » compute the 1/N and 1/N? terms for a realistic model.

€ 1. Th Model

We ¢ ,nsider a queuing system composed of N identical servers. Jobs arrive at

a  c...cal broker according to a Poisson process of rate pN and are dispatched
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towards the servers by using the JSQ(k) policy: for each incom’ g j o, the
broker samples k servers at random and sends the jobs to the se. ~r the' has
the smallest number of jobs in its queue (ties are broken at ra- doi 1) The time
to process a job is exponentially distributed with mean 1.

This system can be modeled as a density dependent 1 opulation process de-
fined in Section 3. To see that, we assume that the queuc size is »ounded by d
and we denote by X, (t) the fraction of servers with ¢ «eue <" -= ¢ or more at time

t. X (t) is a Markov chain whose transitions are :

X%Xf%ei at rate N(X; — Xy ) (17)
X = X+ 1e; atrate I (X, XPF),

where e; is a vector whose ith component # 1 ...C souer ones being 0. Also, note
that we use the classical notation for indices : A, denotes the ith component of
X and XF denotes the kth power of X;.

The explanation is as follows: A «.»art re from a server with i > 1 jobs
modifies X into X — N~'e; and ~~~nrs .t rate N(X; — Xit1). An arrival at a
server with i jobs modifies X into X ~ N~le;. Assuming that the k servers are

picked with replacement, tb . ic. * loaded among k servers has ¢ — 1 jobs with
probability Xik_1 - Xf.
6.2. Mean Field Appr: rim cion and Expansions

To apply Theore ns 1 ¢ ~d 3, we first compute the drift, the constants Q, R

and the needed d rive. *ves.
The ith cor po. ent of the drift of this model evaluated at = is F*:
Fr= plai_y — af) + (w1 — 25). (18)
The fi. * < eriv cive of the drift evaluated at a point x satisfies
Fl_y = kpz} ™ Fj = —kpa; ™' = 1; Fla=1,

al’ Joher werms being equal to 0.

Simil¢ -ly, the second derivative satisfies

Fiifl,ifl =k(k - 1)/’33?:12 Fiy = —k(k — 1)095?_27
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all other terms being equal to 0. The expression is similar for tt * th’ d and
fourth derivatives.

The tensors @ and R of Equation (4) and (5) satisfy:

Q“ = (ﬁEi (I) + 575i (1‘)) = ,0(1‘2671 - l‘f) + (Ix IiJrl;

R =F' = p(ay_) — 27) + (wip1 — 25).
Finally, the first and second derivatives of ¢ evaluat d in . » tisfy

iy = kpri) Qi =1 kpal” =1

i 1 =k(k - 1)p.23]-€712 @ — _l(k— Noxk 2

i—1,i— i— i

To apply Theorem 3, the only technice. - vuuivion to verify is that the fixed
point is exponentially stable. This is dore for exa. .ple in [49, 50]. The constants
for the steady-state approximation can 1 » :omputed by evaluating the above

equation in 7.

6.3. Algorithmic Considerations

In order to perform numerical comparison of the refined approximations and
an estimation of the true v .lues, w« implemented various numerical algorithms.
For the expected values we in,, '« nented a C++ simulator of the supermarket
model that simulates der sity- .ependent population process whose transitions
are exactly the one, of Equ. ion (17). For the transient analysis, to estimate
the evolution of t.ae exp ~ted queue length as a function of time, we performed
an average of .0° for N = 10) or 20000 (for N = 20) independent runs of
simulations. 11’ number of simulations is chosen as a compromise between
computat’on t'me and accuracy. As we will observe in Figure 4, more simula-
tions wonld ¢’ - aore accurate results but we choose to limit the computation
time o 1h pc- panel. For the steady-state values, we compute the average of
1000 inc. ~~ dent time-average of simulations after a warp-up period of 10000 N
cvents fo each.

7>~ _ne numerical analysis, we implemented a code to compute the param-

et rs of the supermarket model and then use our tool [16] to solve numerically
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the ODEs of Theorem 1 or the fixed point equations of Theorem 3. As ‘.ie size
of the ODE for the 1/N2-approximation grows like d*, we choose . bouu ' the
queue length to d = 10 for the 1/N2-expansions. In practic., u ing a larger
maximal queue length brings to the same numerical value. T~ the transient
regime, the computation time of the 1/N2-term is arounc L0sec ana the one of
the 1/N-term less than one second. The computation of t. < fixed point is much
faster than the one of the transient regime: it takes arov- ' 300ms for d = 20

and around 15s for d = 50 (on a 2013-laptop).

6.4. Numerical Comparisons

It is shown in [21] that the 1/N-expansion . wiaes estimates of the steady-
state average queue length that are much 1 . c accurate than the classical mean
field approximation. In this section we <how th.’ the 1/N-expansion can also
be used to improve the accuracy in the ‘v .nsient-regime and that the 1/N2-
expansion improves on the 1/N-expa.'s..n (Loth for transient and steady-state

analysis).

6.4.1. Transient regime

We first consider how .he exp cted queue length evolves with time. We
consider the supermarke$ mou ! v 1th £ = 2 choices and p = 0.9. We start in
a system where the e oect :d o eue length is 2.8 : out of the N queues, 0.2N
queues start with 7 jobs a. 7 0.8N queues start with 3 jobs. We choose this
value as it is clos : to - 75, the steady-state average queue length predicted by
the 1/N-expar 1on ‘or N = 10.

In Figure 4, - report how the expected queue length evolve with time com-
pared to * ie t' ree approximation (mean field, 1/N-approximation and 1/N2-
approximati. ). " Ve observe in this figure that both for N = 10 and N = 20, the
expar sions p. wide an estimation of the evolution of the expected queue length
that is ~uck more accurate than the one provided by the classical mean field
¢ pproxin ation. Moreover, for N = 10, the 1/N2-expansion provides a better
ap, "ovi"_.ation than the 1/N-expansion. For N = 20, the two curves are almost

in .sv.nguishable.
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N ok p [Mean fieldl/N-expansionll /N?-expansionSimula IOT}]
10 2 07| 1.1301 1.2150 1.2191 1.2193
20 2 0.7 1.1301 1.1726 1.1736 1.17v.° ‘
10 2 09| 2.3527 2.7513 2.8045 .02 ‘
20 2 09| 23527 2.5520 2.5653 2.5 sz
10 2 095 3.2139 4.1017 4.3265 ‘ S 17993
20 2 0.95| 3.2139 3.6578 3.7140 3.0,
10 3 09 1.8251 2.2364 2.3322 2.°143
20 3 09 ] 1.8251 2.0307 2.0547 2.0517
50 3 09| 1.8251 1.9073 1.91° ~.9106
100 3 09| 1.8251 1.8662 1. 672 | 1.8672
10 4 095 2.0771 2.9834 3.77.  3.3268
20 4 0.95| 2.0771 2.5303 ~ 7520 2.6376
50 4 0.95| 2.0771 2.2584 2.2v.7 2.2787
100 4 0.95| 2.0771 2.1678 2.176¢€ 2.1732

Table 2: Supermarket model, steady-state average queu length : comparison of the value
computed by simulation with the three approximation«

For the simulation of the transient 1 9., "2 running time of simulation is
approximately 0.1sec per run of our “'+- : mulator for NV = 20 and 0.05sec for
N = 10. This represents roughly 1h ot ~ow.utation for each of the two panels.
As a comparison, the total time . compute the expansion of order 1/N? is
about 10 seconds (and does not depend on N), and the time to compute the
expansion of order 1/N is ¢ ound 1 ‘econd (using our python’s implementation).

Note that we only p’ :sent "o cesults for £k = 2 and p = 0.9. Similar results
can be observed for o aer alue, of k and p with one difference: the smaller is
p, the smaller is th' differe.. - : between the approximations and the simulation
(the difference be ween he 1/N-expansion and the 1/NZ%-expansion can almost

not be distingy .she ! for p < 0.7). This is more visible in Table 2.

6.4.2. Stea y-staic

In Ta’ 'e 2 we " resent results that illustrate the accuracy of the expansions
compea’ .. to the one of the classical mean field approximation. We choose a few
value. of k an 1 p. More complete results can be found in the git repository of
th . paper |17].

We ol serve that in all tested cases, the 1/N-expansion provides an estimation

of the average queue length that is much more accurate than the one provided
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Xo X3 X4 Xs Xe | X7 #
p=0.9, k=2, N=10 !

Mean field 0.729 | 0.478 | 0.206 | 0.038 | 0.001 | L.20
1/N-expansion | 0.742 | 0.544 | 0.361 | 0.179 | 0.0°0 ‘ 0.000
1/N?-expansion | 0.741 | 0.533 | 0.316 | 0.194 | 0 16 ' 0.0vo

Simulation 0.741 | 0.534 | 0.327 | 0.170 | 0.07, ' 0.032

p=0.95, k=2, N=20 \

Mean field 0.857 | 0.698 | 0.463 | 0.204 ' 0.039 0.001
1/N-expansion 0.861 | 0.721 | 0.544 | 0.371 ‘ R4 0.026
1/N2%-expansion | 0.861 | 0.719 | 0.527 | 0,21 | 2210 | 0.122

Simulation 0.861 | 0.719 | 0.530 | 6327 | 0. 78 | 0.083

p=0.9, k=4, N=10
Mean field 0.590 | 0.109 | 0.000 | 0.00," | 0.000 | 0.000
1/N-expansion | 0.679 | 0.450 | 0.06." | 0.000 | 0.000 | 0.000
1/N2-expansion | 0.652 | 0.341 | 0..27 | v.2%0 | 0.000 | 0.000
Simulation 0.657 | 0.344 | 0.140 | ~ 051 | 0.018 | 0.006
p=0.95, k=4, N=20 ‘
Mean field 0.774 | 0.341 | 0.01. | 0.000 | 0.000 | 0.000
1/N-expansion | 0.802 | 0.60c | u ..~ | 0.000 | 0.000 | 0.000

1/N2%-expansion | 0.795 | 0.429 | .578 | 0.001 | 0.000 | 0.000
Simulation 0.798 | 0.~ ™ 1 1236 | 0.092 | 0.034 | 0.012

Table 3: Superm . " - ste dy-state distribution.

by the classical mean field -, ‘roximation. The estimation provided by the

1/N?2-expansion is genera! ~ more : ccurate but the gain brought by the 1/N2-
term varies across the .fferent , arameters. The gain is the most visible for
k = 2, in which case tn 1 N2- xpansion provides very accurate estimates, even
for N = 10. This = less pronounced for £k = 3 and k£ = 4, where the gain is
more visible for higher v.lues of N. Recall that in all cases, the mean field
approximatior pro ides estimates that do not depend on the system size V.
They are sy tema. ~ally less accurate than the two expansions.

Theor m ° car also be used to compute estimations of the queue length
distrib>""on. 1. 7ced, for the supermarket model, E[X;] is the probability that
a given server has ¢ jobs or more. In Table 3, we report the value of E[X;] for
ve l.as vawues of the parameters and i € {2...7}. Note that we do not report

{ e value E[X;], which is the probability that a server is busy and is equal to

0. We make two observations. First, for moderate values of p and k, the 1/N2-
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expansion provides a very accurate estimation of the “true” distribu ‘on ‘aat we
estimate by using simulation. This is less clear for higher values 5. ~h as .| =4
and p = 0.95 for which the 1/N? terms has a tendency to over cor, 2t for small
values of N. Also, in all tested cases, the values for modera. - - alues of i are
well approximated, but the tail of the distribution is le s well approximated.
Note that for a fixed set of parameters (p,d), the two exp ~usions become more

accurate as N grows. This is illustrated in the git re yosit~ - of the paper [17].

7. Limitations of the approach

In the previous examples, we concentrat 1 on =~ s where the mean field
approximation has a unique attractor, which imnlie< “hat the mean field approx-
imation and its expansions converge to the exc * value of E[h(X)] uniformly in
time (Theorem 3). In this section, we s ‘0w ouec when the mean field approx-
imation has a fixed point that is . . an g nbal attractor, this does not hold
anymore. Moreover, in this setting, the two expansions do not work when ¢ is

too large compared to N.

7.1. An “Unstable” Malwar rro, "gation Model

We consider a variation . € the malware propagation example presented in
Section 5 that is inspi ed !y the model of [4]. The system is composed of N
nodes. Each node .an . drrmant (D), active (A) or susceptible (S). Let
Xp,Xa,Xgs denc e . » proportion of dormant, active and susceptible nodes.
A node that is .. mant becomes active at rate 0.1 + 10X 4. An active node

becomes susce, *it e at rate 5 and a susceptible node becomes dormant at rate

1+ ;(OXA , 7. her~ § is « parameter of the model. This translates into the following
D40

transitions.

. 1 1
(). D, XA, < S)’_><XD7N7XA+ Xs) atrateN(0.1+10XA)XD

N’
1 1
(XD, XA7XS) — (XD7XA — N,XS + N) at rate N5 X4
. 1 1 10X 4
V.- el B
\ ,XA,XS)F—)(XDJrN,XA,XS N) atrateN(lJrXD_'_(s)XS
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This model satisfies all the assumptions (A1-A2) needed to appl; The rem 1
that characterize the transient regime. It also satisfies (A3): 1. ve ea.ts a
unique stationary distribution because for each system size 7 , t. e stochastic
model is a finite state irreducible Markov chain. This model, .. = :ver, does not
satisfy assumption (A4) for all possible values of the para: ieter § Indeed, there
exists a parameter value 6* & 0.18 such that the mean fi.'d limi’ has a unique
attractor if and only if 6 > 0*. For § < ¢*, the mer a fie! " approximation has
a unique fixed point but unless the initial state is thi> nxed point, the limiting
behavior of the solution of the ODE is an orbit. This . illustrated in Figure 5
where the two possible regimes are shown: for ¢ - 0.1 ne system has a stable
orbit and an unstable fixed point. For 6 = 0.5 the  stem has a globally stable
attractor.

It is known that when the mean fic 1 &, .. <imation has a globally stable
attractor, then the sequence of stat’ nary . easures of the stochastic processes
concentrates on this attractor as the sys“em .ize N goes to infinity. On the other
hand, when the mean field approxu. ~tion nas a (even unique) fixed point that is
not an attractor (for example hecause there exist stable orbits), the sequence of
stationary measures does r ot neces arily concentrate on this fixed point [4, 11].

When the stochastic mode: f size IV is a finite-state irreducible continuous
time Markov chain, i has a v .ique stationary distribution and X®)(¢) con-
verges in distributic a to a v. 1able X (V) distributed according to this distribu-
tion. This shows that ..~ any function A lim;_,o E[R(X)(t))] = E[R(X )]
Theorem 1 als) shws that for any fixed time step ¢, limy_ oo E[R(X(t))] =
h(z(t)) where 2" is the mean field approximation. These reasons explain why
one cannc . exs aange the limits ¢t -+ oo and N — oo :

" lim b VL(X(N)(t))} # lim Jim E [h(XW)(t))] = lim h(z(t)),

—oot— > —00 N—o00 t— o0
becanse “h~ amit on left hand side is independent of the initial condition of
11e Mart w chain while the limit on the right-hand-side is not necessarily well

dew. ~7 i z(t) does not converge to a unique fixed point regardless of the initial

CC 1d1u101n.

36




7.2. Instability of the the Expansions

One may hope that the expansions could be able to correct the no.. ~xchangeability
of the limits or at least would be able to compensate for some of t * deviation.
We show in fact in Figure 6 that not only the expansions do >t correct the
error of the mean field approximation but they can eve’ . make ‘t worse when
the mean field approximation has a limiting cycle (case  -0.1)

To see that, we compare in Figure 6 the mean fi' 1d ar .. ximation, the two
expansions and an estimation of E[X (¢)] obtained v simulat on for the example
described in Section 7.1 in the case where the fixed pc'nt is not an attractor
(6 = 0.1). We observe that for N = 50, the 1 ~an .. 7 approximation provides
an accurate approximation of E[X(¢)] for # < 1 2= then starts oscillating for
larger values of ¢t whereas E[X (t)] stabilizes. The two expansions are slightly
more accurate than the mean field ap, "ox" nacvion until ¢ =~ 1.2. After this
time, they diverge quickly and are . . ~h le. - accurate than the mean field ap-
proximation. The main explanation fo. this fact is that when the mean field
approximation does not have an atu. ~tor, the ODE of Theorem 1 are unstable
and the oscillations of the co~~*ants V(t) and A(¢) grow with time. Note that
the larger is N, the later t - mean ield approximation and its expansions start
diverging from the expe tation . 1mated by simulation.

When § = 0.5, the 5% d pe nt is an exponentially stable attractor. In this
case, the error ma e by the mean field approximation (or by any of the two
expansions) remains bow ded with time, see Figure 7. Moreover in this case
the expansion’ pro ide a more accurate estimate of the true value of E[X 4(t)].
The behavi-r in ."is case is similar to the one observed for the two examples
presented 1 t'.e pr>vious sections. Note that this examples is quite special in
the ser-~ tha, ~ ost of the mean field models studied in the queuing theory
litera ure hav a unique fixed point that is an attractor. This means that for
th~ -~ moJ L it is more likely to observe a positive result like the one observed
i\ Figure 7 rather than an oscillation like the one of Figure 6. This is no longer

true . uen considering models from biochemistry [47].

37




8. Conclusion

In this paper, we show how mean field approximation can he rew. ~d by a
term in 1/N and a second term 1/N? where N is the size ¢ the sys. :m. We
exhibit conditions that ensure that this asymptotic expansie= can . ~ applied for
the transient as well as the steady-state regimes. In the - ransient regime, these
constants satisfy ordinary differential equations that ~~n .. .sily integrated
numerically. We provide a few examples that sho -t .t t e 1/N and 1/N?
expansions are much more accurate than the classic.” mes.. ield approximation.
We also study the limitations of the approach ~nd shov that, when the mean
field approximation does not have an attractor, .“ese uew approximations might
be unstable for large time horizons. Obte .ug a vetter approximation in this
case remains a challenge that we leave for future work.

When we compare the accuracy of the <! .ssical mean field approximation to
the one of the expansions of order 1/:7 «. 1 1, N2, it seems that most of the gain
in terms of accuracy are brough’ L - *he ' /N-term. As the 1/N2-term is much
more expensive to compute than the 1,V term, we believe that when the 1/N2-
expansion is too hard to cc upu.~ staying with the 1/N-expansion is already
sufficient for many models. Final y, our derivation may also be exploited to
obtain bounds on the e ror ommitted in the approximation of moments, which

is something we aim at . “klir £ as future work.
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