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Abstract The first part of the paper illustrates the set-up and the methodologies adopted for the 

numerical analysis of the flow in a 6-jet Pelton turbine with vertical axis. At first, steady state 

simulations of flow in a distributor for three positions of needle stroke were performed. The results 

were used for the calculation of flow energy losses, analysis of jet quality and setting inlet boundary 

conditions for runner analysis. Runner analysis was done only for the maximal opening. The purpose 

of runner analysis for the model size was efficiency prediction. Numerical results were validated with 

the results from the test rig. Simulations for the prototype were done in order to check whether water 

sheets evacuating from the buckets impact the previous bucket and whether there is any interaction 

between the evacuating water sheets and the incoming jets. Analysis was done also for one nozzle 

operation. In the second part of the paper cavitation prediction for the prototype of a 2-jet Pelton 

turbine is presented. The problem, because of computational cost, was reduced to five runner buckets 

and one jet. A multiphase flow consists of water, air and water vapour. For cavitation pitting the 

vapour has to stick to the buckets and mass transfer from vapour to water has to happen in a very short 

time without the presence of air. With detailed analysis of numerical results it was concluded that in 

this case no cavitation pitting is expected. 

 

 

1.  Introduction 

Compared to Kaplan and Francis turbines, complete CFD analysis of Pelton turbines is, because of the 

complex two phase flow, far more difficult and more time consuming. For this reason the first useful 

results were obtained relatively late. In 2002 Parkinson et al. [1] described a water jet from a Pelton 

turbine injector on the basis of experimental and numerical results. One of the first attempts to 

calculate free surface flow in a rotating bucket was done by Kvinsky et al. [2]. A bucket flow 

simulation using three adjacent buckets with efficiency prediction was illustrated by Mack and Moser 

[3]. Perrig [4] investigated flow in buckets by unsteady onboard wall pressure measurements, high-

speed onboard and external flow visualizations, water film thickness measurements and CFD 

simulations. Efficiency prediction for a 2-jet Pelton turbine at different operating regimes was 

presented by Jošt at al. [5]. The effect of grid refinement and the importance of accurate description of 

real jet prescribed at the runner inlet, instead of the theoretical one, was emphasized. A great step 

forward was done by Santolin et al. [6]. They performed the simulation of an entire single-jet Pelton 

turbine. The runner was coupled with the final part of the penstock and the needle nozzle. The 

negative effect of the real jet, perturbed by the needle wake and secondary flows, in comparison with 

an ideal theoretical jet, was presented. In an attempt to overcome the mesh difficulties of the VOF 
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method, the analysis by Marongiu et al. [7] was performed with a particle-based method. Its main 

drawback was a significant increase of computational time. A new approach was presented by Vessaz 

et al. [8]. They validated Finite Volume Particle Method (FVPM) and showed that it was an accurate 

tool to capture the deviation of high-speed water jets by rotating Pelton buckets. With increasing 

number of particles the accuracy of results was improved, so the method proved to be stable and 

consistent. The disadvantage of the method is, again, a long computing time. In addition, the 

discrepancy between calculated and measured values of torque was significant. Regarding the 

cavitation prediction an important achievement was reported by Rossetti at al. [9]. They presented a 

simulation of cavitating flow in a Pelton runner and suggested a practical criterion for risk assessment 

of cavitation pitting. 

In this paper a numerical analysis for a 6-jet Pelton turbine that operates at 400 m head is 

presented. Contrary to the paper [5], where most of the effort was dedicated to the efficiency 

prediction at different operating regimes, in this paper the efficiency was calculated only at one 

operating point, for both the model and the prototype. The main purpose of this part of the study was 

to check the quality of the jets and in particular to see whether there is any interaction between the 

evacuating water sheets and the jets.  

In the second part of the paper a numerical simulation of cavitating flow in the runner of a high 

head 2-jet Pelton turbine is presented. Careful inspection of results has been done in order to check 

whether the conditions for cavitation pitting are fulfilled and subsequent erosion can be expected. 

 

  

2.  Numerical set-up and computational meshes 

The numerical analysis was performed with ANSYS CFX, Release 15.5 and Release 18.2. Turbulence 

was modelled with the k-ω SST model, and in one case also with the SAS SST model. The advection 

term was discretized with the high resolution scheme (HRS) implemented in ANSYS CFX code. For 

time discretization the second order Euler scheme was used.  

Multiphase flow was modelled with the homogeneous model. For mass transfer from water to 

vapour and vice versa the standard Zwart mass transfer model [10] was used.  

Due to complex geometry a combination of structured and unstructured meshes was used. Basic 

mesh for manifold with injectors and jets consisted of 14.2 million elements with 12.6 million nodes. 

After the refinement in the injectors and in the regions with jets the mesh consisted of 31.9 million 

elements with 20.4 million nodes (see figure 1). For runner analysis the computational domain was 

reduced to one half due to the symmetry. The unstructured grid consisted of about 46 million elements 

with 21 million nodes. A detail of the grid can be seen in figure 2.  

For cavitation prediction the problem was reduced to five runner buckets and one jet. Unstructured 

mesh was rather coarse in the regions without buckets and significantly refined on the buckets, 

especially at the regions where cavitation was expected (see figure 3). The mesh consisted of 10.75 

million elements with 4.4 million nodes.  

 
 

Figure 1. Computational domain and mesh for flow analysis in 

the manifold with injectors and jets. 

Figure 2. Detail of computational 

mesh for analysis of flow in the 

runner. 
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Figure 3. Details of computational mesh for cavitation prediction.  

Refinement at the inner side of the bucket (left) and at the back side of the bucket (right). 

 

3.  Numerical flow simulation in a 6-jet Pelton turbine with efficiency prediction 

The analysis was divided into two parts. At first, the analysis of the flow in the distributor with jets 

was performed. Secondly, the interaction between jets and buckets in the runner was investigated. 

Simulations were done for the model and for the prototype.   

3.1 Flow in the distributor with injectors and jets 

Proper design of the distributor with injectors is extremely important for good performance of Pelton 

turbines. Discharge should be equally distributed between all injectors and flow energy losses should 

not exceed 2% of the head. Even more important is the quality of the jets. Secondary velocities caused 

by bends in the distributor are highly undesirable because they can cause jet dispersion and deviation 

[11]. 

In this study a steady state analysis of the flow in the distributor with six injectors was performed 

with the following boundary conditions: flow rate at the inlet of the distributor, outflow with averaged 

static pressure at the end surfaces of the cylinders behind the nozzles (see figure 1) and opening with 

static pressure and air as a fluid (Air Volume Fraction = 1) on cylindrical surfaces.  

The simulations were performed for the model and prototype size. Analysis of the flow in 

distributor was done for three needle strokes. For the model, contrary to the prototype, servomotors 

were outside the distributor. To check the effect of this difference between the model and the 

prototype, flow in distributor was analysed for both options. For maximal opening additional steady 

state and transient simulations were performed on refined grid. Distributor was analysed also for 1-

nozzle operation. Besides flow energy losses in the distributor the quality of the jets was analysed. 

With this objective, the shape of the jets was checked and secondary velocities in the jets were 

calculated. Analysis of flow in distributor for prototype size was done mostly to get inlet conditions 

for runner flow simulation and it was performed only for maximal opening.   

Numerical results showed that flow rate is equally distributed between the injectors. For the 

smallest opening the deviation from equal distribution was less than 0.1%, while for the optimal and 

maximal opening the deviation was less than 0.02%.  

Relative flow energy losses are presented in table 1. It can be seen that in case of servomotors 

outside the manifold the losses are slightly higher than when the servomotors are inside the manifold. 

The losses are larger for small openings. The effect of mesh refinement on losses was very small and 

in addition with transient simulations the same values of losses were obtained. Losses for the 

prototype size are relatively smaller than for the model. 
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The quality of the jets was checked by observation of the jet shape (see figure 4) and by calculation 

of secondary velocities at the jet cross-section. In order to calculate secondary velocity for each 

injector local coordinate systems were defined in such a way that the z axis corresponds to the needle 

axis.  Secondary velocity secv  was then defined with the expression: 
22

sec yx vvv  .  

The effect of grid refinement on the shape of the jet cross section and on the secondary velocity can 

be seen in figure 4. On the basic mesh the cross section of the jet is nearly a perfect circle and 

secondary velocity is small. With grid refinement small perturbation of the jet due to the bend of the 

manifold can be observed and secondary velocity increases. With transient simulation performed on 

the refined grid no significant difference in comparison to the steady state results on the same grid was 

obtained. The results are presented for the jet behind the nozzle 4, where secondary velocity is the 

largest. The nozzles are numbered in the direction of the flow. 

 
Table 1. Flow energy losses in manifold, 6-nozzle operation 

Configuration Size A0/A0,BEP Grid 

density 

Simulation  

type 

Losses 

H/H *100  

(%) 

Servomotor outside manifold model 0.47 basic steady state 1.94 

Servomotor outside manifold model 1 basic steady state 1.27 

Servomotor outside manifold model 1.83 basic steady state 1.23 

Servomotor outside manifold model 1.83 refined steady state 1.20 

Servomotor outside manifold model 1.83 refined transient, SST 1.20 

Servomotor outside manifold model 1.83 refined transient, SAS SST 1.21 

Servomotor inside nozzle model 0.47 basic steady state 1.89 

Servomotor inside nozzle model 1 basic steady state 1.25 

Servomotor inside nozzle model 1.83 basic steady state 1.16 

Servomotor inside nozzle model 1.83 refined  steady state 1.17 

Servomotor inside nozzle prototype 1.83 refined steady state 0.84 

 
 

    
 

Figure 4. Shape of the jet presented with Contours of Water Volume Fraction and vectors of 

secondary velocities on cross-section of a jet behind the nozzle 4 (red – water, blue –air), 6-nozzle 

operation. 

 a) basic grid, steady state SST, b) refined grid, steady state SST, c) refined grid, transient SST,     

d) refined grid, transient SAS SST. 

 

In table 2 results for 1-nozzle operation for maximal opening (A0/A0,BEP = 1.83) are presented. As 

expected, flow energy losses in the manifold are the largest when the nozzle 6 is active. At the same 

time, for the nozzle 6 being active, the measured efficiency is the highest. This can be explained with 

the effect of secondary velocity in the jets on turbine performance. For nozzles 1, 2, 3, 4 and 6 

negative correlation between secondary velocity and measured turbine efficiency can be clearly seen. 

An exception is nozzle 5, where measured efficiency was the smallest in spite of relatively small 

secondary velocity. 1-nozzle operation was numerically analysed also for the best efficiency point and 

the same negative correlation between secondary velocity and efficiency was observed, exception was 
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again the nozzle 5. Therefore it can be suspected that on the test rig the nozzle 5 was not accurately 

positioned. Nevertheless, from the results in table 2 it can be concluded, that for high turbine 

efficiency the quality of the jets is even more important than flow energy losses in manifold.  

The results (velocity and thickness of the jets) of steady state simulations on refined mesh for 

model and prototype size were used as inlet boundary conditions for transient simulations in the 

runner.  

 

Table 2. Results for 1-nozzle operation, A0/A0,BEP =1.83 

Relative flow energy losses in manifold, averaged relative secondary velocity and difference in 

measured efficiency for different nozzle being active. Nozzles are numbered in the flow direction. 
Active 

nozzle 
H/H *100 

(%) 

vsec / v *100 

(%) 
i -

(%) 

1 0.81 0.097 -0.06 

2 0.84 0.077 -0.01 

3 0.90 0.153 -0.24 

4 0.92 0.195 -0.27 

5 0.91 0.100 -0.38 

6 0.99 0.074  0.00 

 

3.2 Interaction between jets, buckets and evacuating water sheets in the runner and prediction of 

turbine efficiency 

A computational domain for runner analysis consisted of two parts: a rotating part that comprises the 

runner and a stationary thin ring with six inlets (see figure 5a) where distribution of water and air and 

velocity components are prescribed. The other boundary conditions are presented in figure 5b. Time 

step corresponded to 0.25 degrees of runner rotation.  

The results of the simulation are velocity and pressure distribution in the whole domain, as well as 

the shape of the jets and evacuating water sheets and an interaction between them (see figure 6).  

 

              
a)                                                                       b)  

Figure 5. Computational domain and boundary conditions. 

a) rotating part (red) and stationary part with six inlet regions (blue);  

b) boundary conditions: walls - red, opening - yellow, symmetry - magenta, outlet - transparent 

blue, inlets  are coloured with Water Volume Fraction. 

 

From pressure distribution on runner buckets torque on the shaft was calculated. At the beginning 

of the simulation the whole domain is filled with air and torque on the shaft is zero. During the 

simulation the jets get closer to the runner and when they impact the buckets the torque starts to rise. 

After approximately 200 time steps the value of the torque stabilizes (see figure 7), only periodic 

oscillation remains. For calculation of efficiency the averaged value of torque during the last 144 time 

steps was used.  

Numerical results for the model were compared to the experimental values obtained on the test rig 

(see figure 8). Flow rate was input data, therefore its numerical and experimental values are the same. 

Numerical values of head, torque and efficiency are smaller than the experimental ones. The largest 
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discrepancy is for the value of torque, where calculated value is 3.51% smaller than the measured one. 

Efficiency was calculated also for the prototype size, the value was 0.11% higher than for the model.  

    
Figure 6. Pressure distribution on the buckets (left) and water jets and evacuating water sheets 

presented as isosurface of Water Volume Fraction = 0.5 (right).  

 

 
Figure 7. Torque on the shaft during the 

simulation, model size, 6-nozzle operation, 

A0/A0,BEP = 1.83.  

 
Figure 8. Comparison of numerical results to the 

experimental values, model size, 6-nozzle operation, 

A0/A0,BEP = 1.83.  

 

For the prototype two simulations of flow in the runner were performed: one with only one nozzle 

active and the other for 6-nozzle operation, both for A0/A0,BEP = 1.83.  

For the prototype a detailed analysis of results during several time steps was done. In figure 9 it can 

be seen that evacuating water sheets do not impact the previous buckets. Special attention was paid to 

check possible interaction between the evacuating water sheets and the jets. The results at several time 

steps were carefully analysed. In figure 10 iso-surfaces with 30% of water (Water Volume Fraction = 

0.3) are presented for two time steps. On the left part of the pictures the iso-surfaces are coloured by 

water velocity, while on the right part they are coloured by wall distance. Discontinuity in colour 

shows that there is a gap between the jet and the evacuating water. So there is no interaction between 

the evacuating water sheets and the approaching jet, although the bucket is never empty. 

 

 
Figure 9. Iso-surface of Water Volume Fraction = 0.3. Prototype size, 6-nozzle operation. 
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In figure 11 contribution of one bucket to the complete torque on the shaft is presented for 1-nozzle 

and 6-nozzle operation. For 1-nozzle operation the bucket contributes to the torque during 

approximately 90 degrees of runner revolution. For 6-nozzle operation before all the water leaves the 

bucket the next jet impacts it. Therefore during 6-nozzle operation at each moment all the buckets 

contribute to the torque (see figure 12). The runner consists of 20 buckets and there are 6 jets, 

therefore Mi = Mi+10, where Mi is the contribution of bucket #i to the torque.  

   
Water 
Velocity 
in Stn Frame 

 

Time step 710 (177.50 of runner revolution)        Time step 734   (183.50 of runner revolution)      Wall 
Distance 

   
 

 

Figure 10. Water jets and evacuating water sheets presented by iso-surface of Water Volume 

Fraction = 0.3. Left half is coloured by water velocity, while the right half of the pictures is coloured 

by wall distance. 

 

 
 

Figure 11. Contribution of one bucket to the 

torque on the shaft, prototype size, 1-nozzle and 

6-nozzle operation. 

Figure 12. Contributions of all buckets to the 

torque on the shaft, prototype size, 6-nozzle 

operation. 

 

4 Cavitation prediction 

Cavitation prediction was done for a prototype of a 2-jet high head Pelton turbine with runner diameter 

D = 1.2 m. The runner consists of 20 buckets.   

Prediction of cavitation in a Pelton turbine is very time consuming. Three-component flow 

consisting of water, water vapour and air has to be modelled. For close observation of formation and 

decay of water vapour cavities, a very small time step is needed. Furthermore, double precision of 

calculation has to be used, in order to improve the accuracy of the results and to avoid sudden 

overflows due to accumulation of numerical errors. Since the simulation of the entire runner is too 

time consuming, in this case the simulation was reduced to five runner buckets (see figure 13). Due to 
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the symmetry the computational domain was reduced to one half. At the inlet the velocity and 

thickness of the jet obtained in previous numerical analysis of the flow in distributor with injectors and 

jets (as in section 3.1) were prescribed.  

 
Figure 13. Computational domain for cavitation prediction. The position of the buckets at the 

beginning of the simulation. 

magenta – symmetry condition, red – runner, yellow – wall, green – inlet, blue – opening.  

 

At the beginning of the simulation the whole computational domain was filled with air. It took some 

time before the jet impacted the first bucket, therefore the first 36 degrees of runner rotation were 

performed without cavitation modelling. For this part of the simulation the time step was equal to the 

time needed for 0.5 deg. of runner revolution. After the 36 deg. of runner revolution the cavitation was 

included. Time step was reduced to 0.1 deg. of runner revolution and additional 360 time steps were 

performed.  

The presence of water vapour does not necessarily cause material erosion. For cavitation pitting 

water vapour cavity has to be in contact with the bucket surface and the condensation has to be very 

fast without presence of air. For numerical simulations Rossetti at al. in [9] suggested three practical 

conditions for cavitation pitting:  

 at time t* a cavity with at least 80% of water vapour is stuck to the bucket,  

 at time t*+t less than 20% of water vapour is in the cavity, where t  40s, 

 during the condensation process less than 10% of air is in the mixture of fluids in contact 

with the vapour cavity. 

To check these conditions for cavitation pitting we closely observed the formation and the decay of 

water vapour cavities at different time steps. In figures 14 and 15 cavitation at the inner and the back 

side of the buckets is presented. Water vapour is coloured with wall distance in order to see if vapour 

is stuck to the bucket and how thick the vapour cavity is. Water jets and evacuating water sheets are 

presented with transparent red, so it can be seen if vapour is inside the jet or if it is in contact with air.   

At the inner side of the bucket a small cavity with less than 40% of water vapour was observed (see 

figure 14). The condensation was very slow, more than 0.0018 seconds was needed before the vapour 

entirely disappeared. Therefore the conditions for cavitation pitting are not fulfilled.  

 

    
                  t*                           t* + 0.74 .10-3s              t* + 1.48 .10-3s               t* + 1.85 .10-3s        

 

Figure 14. Cavitation at the inner side of the bucket. 

Water is presented with iso-surface of Water Volume Fraction = 0.5 in transparent red. 

Water vapour is presented with iso-surfaces of Vapour Volume Fraction = 0.2 coloured with Wall 

Distance (dark blue). 
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The second cavity of water vapour was observed at the backside of the bucket. Its development and 

condensation is presented in figure 15. In the first three pictures the region with water vapour enlarges. 

At the fourth picture the condensation started at the nib of the knife. The condensation is faster than at 

the inner side of the bucket but the water vapour is in contact with air, therefore no erosion of material 

is expected.  

 

 
           t*                                t* + 0.37 .10-3 s                       t* + 0.74 .10-3 s 

 

 
t* + 1.30 .10-3 s                      t* + 1.48 .10-3 s                      t* + 1.85 .10-3 s 

 

Figure 15. Cavitation at the back side of the bucket. 

Water is presented with iso-surface of Water Volume Fraction = 0.8 in transparent red. 

Water vapour is presented with iso-surfaces of Vapour Volume Fraction = 0.5 coloured with Wall 

Distance. 

 

5 Conclusions 

 

Numerical simulation can be a useful tool for qualitative and quantitative analysis of Pelton turbines. 

On the basis of numerical results efficiency and cavitation can be predicted. In the first part of this 

paper the following results for the 6-jet Pelton turbine are presented:  

 Flow energy losses in the distributor were calculated. The effect of grid density on predicted 

quality of the jets was presented. From the results for 1-nozzle operation a negative correlation 

between secondary velocity in the jets and turbine efficiency was obtained. 

 Numerically predicted torque on the shaft and turbine efficiency were in good agreement with 

the results from the test rig.  

 Qualitative analysis of the results for the prototype size proved that there is no interaction 

between evacuating water sheets and the jets. As well, water evacuating from the buckets does 

not get in contact with the previous buckets.  

In the second part the cavitation prediction for a prototype of a high head 2-jet Pelton turbine was 

presented. Two regions with water vapour were observed. The first one was at the inner side of the 

buckets near the cut-out, but the concentration of vapour was small and the condensation process was 

very slow. The second region with water vapour was at the back side of the bucket. Also there the 
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condensation process was rather slow and water vapour was in contact with air. So it can be concluded 

that the conditions for cavitation pitting are not fulfilled and no cavitation damages are expected. 
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Nomenclature 

A0 

A0, BEP 

H 

M 

Mi 

 

Q 

Qi 

v 

vsec 

H 

 

Relative opening [-] 

Relative opening at BEP [-] 

Head [m] 

Torque on the shaft 

Contribution of bucket #i to the 

torque on the shaft 

Flow rate [m3/s] 

Flow rate through nozzle #i [m3/s] 

Velocity [m/s] 

Secondary velocity in the jet [m/s] 

Flow energy losses [m] 

Turbine efficiency 

i
 

BEP 

rel 

 

Subscripts: 

exp 

 

Abbreviations: 

BEP 

CFD 

SST 

SAS 

Turbine efficiency, active only 

nozzle i 

Turbine efficiency at BEP 

Relative efficiency [-], (=BEP ) 

 

 

experimental values 

 

 

Best Efficiency Point 

Computational Fluid Dynamic 

Shear Stress Transport 

Scale Adaptive Simulation 
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