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to myself:

“Never be afraid of the difficulty you encounter.

Remember that the kite rises with the opposite wind,

never with that in favour . . . ”

(Anonymous)





Abstract

This thesis concerns the investigation of the meandering phenomena, fo-

cusing on the hydrodynamic (Part I) and on the morphodynamic (Part II)

of meandering rivers.

In the first part of this work, sharp curved single-bend open channel flow

with a flat bed, representative of the early phase of bed erosion, is investi-

gated by the use of Large Eddy Simulation (LES). The three-dimensional

(3D) numerical simulation can provide flow field information that are diffi-

cult to obtain in the laboratory or in a real river. The focus is to provide

insight into the physics of sharp meandering bends, highlighting the main

flow and secondary flow characteristics and the role of turbulence. The lat-

ter plays an important role in many processes that are key in natural rivers,

such as the phenomena of spreading and mixing of suspended matter, of sed-

iment transport and scour processes. Turbulence affects the strength of the

curvature-induced secondary flow in the core of the flow domain, a typical

feature of curved open-channel flow. It rules the intensity of the bed shear

stresses and the friction losses along the bend. It is especially important in

the flow regions near the banks, affecting the stability of the channel banks.

At the inner bank, the model predicts, rather accurately, the boundary layer

detachment and the formation of an internal shear layer. Furthermore, the

model adequately reproduces the outer-bank cell of secondary flow and the

local increase of turbulent kinetic energy. In this work, two curved channels

are investigated with the intent to underline the influence of the water depth

on the flow features. Finally, the effects of the super-elevation of the free

i



ii Abstract

surface on the meandering hydrodynamics are analysed using a Detached

Eddy Simulation (DES) model available in the free software OpenFOAM.

In the second part of this work, a mathematical model for meandering

rivers with spatial width variations is developed. The mathematical mod-

elling of the long-term evolution of meandering rivers needs an efficient com-

putation of the flow field. Therefore, the development of a mathematical

model based on the complete response of a meandering river to spatially

varying channel axis curvature and width is necessary. For this purpose,

we elaborate a morphodynamic model able to predict the spatial distribu-

tion of the flow field and the equilibrium bed configuration of an alluvial

river characterized by arbitrary distributions of both the channel axis curva-

ture and the channel width. Owing to analytical character of the model, it

provides a computationally efficient tool that can be easily incorporated in

long-term river planform evolution models. Furthermore, it can be used to

rapidly evaluate the morphological tendencies of an alluvial river in response

to variations in planform geometry or hydrodynamic forcing. The model is

tested by comparison with the bed topography observed in a typical reach

of the Po River, showing that in presence of wide, mildly curved and long

bend and weak width variations, the river topography is described with a

good accuracy.
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Chapter 1

Meandering

Most of the rivers are of alluvial origin, that is, they are formed in ma-

terials that have been and can be transported by the stream. Furthermore,

alluvial rivers can continually undergo modification of their position and

planform shape with time, as a consequence of hydraulic forces exerted on

the bed and banks. These changes may be gradual or rapid and may be

the result of natural causes or human activities [54]. Natural rivers may

be classified according to the planimetric evolution of their patterns. They

are rarely straight, rather display a single-channel, sinuous planform (mean-

dering rivers, see Figure 1.1(a)) or consist of a network of interconnecting

channels (braiding rivers, see Figure 1.1(b)).

The most fascinating of these patterns is river meandering. The name

“meander” derives from the Greek Mαιανδρoς (maiandros) which is found

for the first time in the Greek literature and exactly in Homer’s Iliad (book

2, line 869: “The sons of Nomion were from near the waters of Maiandros

and led the Karians to Troy.”). Meander formation typically occurs for those

rivers characterized by relatively fine sediments in floodplains with low gradi-

ent. The bank erosion shifts outward the channel axis producing curvature,

while the inner bend deposition tends to keep the river width rather con-

stant. As a result, the channel centreline takes a variety of patterns, which

impressive feature is their regularity. In this regard, we can report the Yalin

1



2 1. Meandering

Figure 1.1: (a) River meandering: Okavango River in Africa (Source:

http://www.botswanatourism.co.bw/explore/okavango-delta).

(b) River braiding: Waimakariri River in the South Island of New Zealand (Source:

https://commons.wikimedia.org/wiki/File:Waimakariri01−gobeirne.jpg, photo by

Greg O’Beirne).

[99] definition about the meandering, as a “self-induced plan deformation of

a stream that is (ideally) periodic and anti-symmetrical with respect to an

axis, x say, which may or may not be exactly straight”. Thus, the meander-

ing is a pattern which offers a fascinating example of the nature ability to

develop highly regular forms.

The evolution of meandering rivers in nature undergoes a number of cyclic

events. In the initial stage, meanders are weakly curved and coexist with

migrating alternate bars. As the outer bank erosion progresses, meanders

amplify and migrate typically downstream. This amplification eventually

leads adjacent reaches of a meander loop to approach each other, until the

stream undergoes a so called “neck cutoff” and the abandoned loop becomes

an “oxbow lake” [17]. In Figure 1.2 we can observe a sketch of a river meander

with its characteristic parts. The process of meander evolution, previously

described, acts on periods of years, depending on the soil erodibility, and

typically end with meander cutoff (see Figure 1.3).

An equally fascinating planform pattern is that of braiding river observed

in wide rivers. Braiding rivers usually display steeper slopes and coarser
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Figure 1.2: Sketch of a river meander.

grain size than meandering rivers. The stream of braiding rivers splits into a

network of small channels (braids) separated by migrating bars, which may

turn into fixed or temporary islands. Both channels and bars are typically

highly mobile, such that the pattern of river may undergo significant changes

after the flood events [17].

The rivers are very important for human civilization, they ensure the

availability of water resources necessary for several human activities such

as agriculture, transportations and power supply. Therefore, the study of

meandering rivers, in particular, has attracted the attention of engineering

and scientific communities from the end of the 19th century.

The aim of this work is to provide a further contribution to the knowl-

edge of the charming world of the “Meandering”. In particular, the text is

organized in two parts focusing on the hydrodynamic (Part I) and on the

morphodynamic (Part II) of meandering rivers.

In Part I, two sharp curved single-bend open channel flows with a flat

bathymetry are investigated by the use of Large Eddy Simulations (LES)s

employing the LES-COAST model. The focus is to provide insight into the

physics of sharp meandering bends, highlighting the main and secondary

flow characteristics, the role of turbulence and underlining the influence of

the water depth on these flow features. Finally, an analysis on the influence



4 1. Meandering

Figure 1.3: Timelapse of Pucallpa river in Perù from 1984 to 2016, images

from Google Earth.

of the transverse inclination of the free surface on the flow field is conducted.

In this regard, the freely available OpenFOAM software has been employed

by means a Detached Eddy Simulation (DES).

In Part II, a mathematical model for meandering rivers with spatial width

variations is developed. The goal is to improve an existing morphodynamic

model able to predict the spatial distribution of the flow field and the equi-

librium bed configuration of an alluvial river characterized by arbitrary dis-

tributions of both the channel axis curvature and the channel width. To this

aim, the second order effect of the channel axis curvature and the interactions

between channel axis curvatures and width variations are accounted for. In

the end, the model is employed to evaluate the channel morphodynamics of

the Italian Po River.



Part I

Turbulent mixing in sharp

meander bends

5



Chapter 2

Introduction

Meandering river flows are characterized by important processes of inter-

action between the three-dimensional flow field, the bathymetry and the sed-

iment transport. Therefore, the knowledge of hydrodynamic of meandering

rivers is a major topic in environmental engineering and river management.

It has many practical consequences, i.e. it affects the bank stability and the

channel navigability, so the knowledge of 3D flow and a correct prediction of

the planimetric evolution of the river can be useful in the design of river revi-

talization projects, the maintenance and optimization of navigation fairways,

the improvement of ecological river functions, etc. For these reasons, the flow

in meandering bends has been the subject of a number of recent experimen-

tal and theoretical studies focused on the analysis of the mean stream and

the turbulence flow features. Actually, the tools mainly employed to predict

flow, bathymetry and sediment transport in rivers are the two-dimensional

(2D) depth-averaged models [38, 59]. These models yield satisfactory re-

sults in simplified river configurations, such as weakly to moderately curved

open-channel bends. In literature several results are present of experimental

studies on single-bend open-channel flows either through a rectangular cross-

section or over deformed topography [6, 14, 66, 75]. These studies allowed

to understand the mean flow and turbulence features in curved open chan-

nels, but they are often based on rather inaccurate velocity measurements

6
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on coarse measuring grids. From the numerical point of view, Reynolds

Averaged Navier Stokes equations are commonly used for the investigation

of the meandering flows, although results are not always very satisfactory

[27, 102, 93], especially in relation to the secondary flow pattern. In par-

ticular, the RANS models with isotropic turbulence closures are much less

successful in predicting the details of the secondary flow and tend to overes-

timate the friction losses [92, 94].

In the past few decades, due to the significant enhancement in compu-

tational resources, increasing interest is emerging in the use of Large Eddy

Simulation (LES) for the study of high Reynolds number flows. In litera-

ture there are many works in which LESs are employed to simulate straight

open-channel flows [22, 23] and curved duct flows [61, 64, 82]. Conversely,

LES has been rarely used to study curved channel flows which have higher

width-to-depth ratio. Focusing on meandering open-channel flows, the fol-

lowing studies are worth of mention: Booij [19], Stoesser et al. [87] and

Moncho-Esteve et al. [62] have performed measurements and LESs of flows

in some curved flumes; van Balen et al. [93] have analysed the hydrody-

namic of a mildly curved single-bend open-channel flow, while van Balen

et al. [92] and Koken et al. [28] have studied the turbulence structure in

a sharp meandering flow. Since LES directly resolves the anisotropic large

scales of motion, it appears adequate to reproduce the velocity redistribution

in open channel bends at conditions corresponding to the start of the scour

and erosion process (flat bed). Therefore LES can be considered a powerful

tool to study continuous spatial distribution of these types of flows, contrary

to some cross-sections experimental studies.

Natural river flow can generally be reproduced as an high Reynolds num-

ber open-channel flow having a large aspect ratio (width-to-depth) and a

strong local curvature. The principal feature of a meandering open channel

flow is the establishment of a centrifugal secondary flow (also called helical

flow or cross-stream circulation) that deeply influences the flow behaviour.

This type of flow is highly three-dimensional and the cross-stream motion
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is very important in terms of velocity redistribution, direction and magni-

tude of the boundary shear stresses and sediment transport. Thereby, the

curvature-induced secondary flow affects the evolution of river bathymetry

and planimetry and increases the turbulence activity enhancing the mixing

and spreading of suspended matter like nutrients or contaminants. Most

of previous research limited to weakly or moderate curved open-channels.

However, the secondary flow, energy losses and turbulence tend to saturate

in sharp bends. Accordingly, they do not grow proportionally to the rela-

tive curvature predicted by standard models. Understanding these processes

is very important, but it is also hindered by the lack of observations and

detailed experimental data.

In natural river flow, owing to the movable character of the bed, the

near-bed turbulence determines the formation of ripples and/or dunes on

the small scales. Instead, on large scales, the secondary flow strongly affects

the topography of the bed especially in the curved parts of the river, where it

enhances the ability of the flow to erode and transport sediments. It deviates

the motion of sediments creating regions of sediment deposition, called “point

bars”, near to the inner bank of the bend and regions of sediment erosion,

called “pools”, at the outer bank of the bend (see Figure 1.2). In curved

open channel with non-erodible bed, a “free vortex” effect prevails. The flow

at the inner bend, initially, accelerates relative to the outer bend; proceeding

downstream, secondary flow drives a net transfer of momentum toward the

outer bend, hence the thread of high velocity progressively moves from the

inner to the outer bend. Another important feature of the meandering flow

is its capacity to separate from the inner bank of the flume bend with the

consequent formation of internal shear layers, which are localized regions of

large shear-driven turbulence production. In natural river, the formation of

a convex bank flow separation has been noticed and measured. Ferguson et

al. [35] and Blanckaert [8] argued on the influence of the inner bank flow

separation on the outer bank flow. It increases the strength of the secondary

currents affecting the sedimentation processes and the stability of erodible
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channel banks. In order to better understand the complex behaviour of the

river flow, it is often downscaled to laboratory dimensions. Although there

are discrepancies between natural river flow and laboratory flume flow, this

downscaling allows to investigate the hydrodynamic processes of meandering

flow under optimized and controlled conditions.

In this work, we use the LES to highlight the role of the secondary flow and

turbulence in a sharp curved single-bend open channel flow with a Re num-

ber typical of the laboratory-scale. The channel configuration was designed

in order to highlight important processes that occur in natural rivers. In pre-

vious experimental investigations of curved channel (e.g. [5, 11, 12, 13, 15]),

the ratio of centreline radius of curvature (R) to channel width (B) was

larger than 3.5 (“mildly curved bends”). In this condition, the strength of

the cross-stream motions is less important on the hydrodynamics of the flow.

On contrary, in the present case the value of R/B is close to 1.3 (“sharp

curved bend”) and this condition determines an increase of the strength and

importance of the secondary flow and the turbulence activity. This experi-

ment was performed by Blanckaert [6, 9], whose analysis is mainly focused

on the depth-averaged statistics and the role of the flow separation at convex

banks. This configuration was also investigated numerically through a RANS

model by Zeng et al. [102] and van Balen et al. [92]. However, the simulated

flow showed a poor accuracy in predicting the velocity redistribution and the

cross-stream motion within the channel.

Another aim of the present work is to investigate the influence of the water

depth on the secondary flow distribution and the turbulence structures in

sharp meandering open-channel flows. For this purpose, two different curved

channels have been employed.

Finally, we also wanted to analyse the influence of the free surface on

the hydrodynamics of the investigated curved channel and, in this regard,

a DES has been employed. During recent years, DES has been shown to

predict the mean flow and turbulence structure more accurately than wall-

modeled LES for complex turbulent riverine flows. Of particular interest



10 2. Introduction

are the works of Constantinescu et al. [27] and Koken et al. [52] in which

DES was used to investigate the structure of turbulent flow and the sediment

erosion mechanisms in an open channel bend of strong curvature with either

deformed bed or flat bathymetry. The results of a work still in progress will

be presented in the closure section of Part I.

The first part of the thesis is structured as follows. The numerical model

and the turbulence closure model are described in Chapter 3, while the nu-

merical domains as well as the boundary conditions are presented in Chapter

4. The analysis of the main flow, secondary flow and turbulence structures

are elaborated in Chapters 5, 6 and 7, respectively. The prediction of the

bed shear stress distribution is shown in Chapter 8. The influence of the

transverse inclination of the free surface on the flow field characteristics is

investigated in Chapter 9. The results obtained and the future goals are

summarized in Chapter 10.



Chapter 3

Numerical method

3.1 LES-COAST model

LES-COAST model is used to perform LES of incompressible fully de-

veloped turbulent flows (see, e.g., [70]). It solves the curvilinear form of

the Navier Stokes equations under the Boussinesq approximation (in case of

stratified flow, where the density anomalies are small compared with velocity

gradient).

Using LES methodology, the large, energy-carrying eddies are resolved

completely while the small structures are modelled. In order to obtain the

separation between large and small scales, the Navier-Stokes equations are

filtered through an application of a spatial low-pass filter. The filtering op-

eration reads as:

f i =

∫
D

G(x, x′)fi(x
′)dx′ (3.1)

where f is the flow field variable before the filtering, f is the filtered (or

resolved) variable, D is the domain and G is the filter function. There are

various kind of filter functions. In the present solver a top-hat filter is used,

defined as:

G(x) =

1/∆, if |x| ≤ ∆/2

0, otherwise
(3.2)

11
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where ∆ is the filter width, defined as the grid cell size. The solution fi will

be the sum of the subgrid-scale (SGS) part f
′
i and of the resolved part f i. The

Figure 3.1: Sketch of LES methodology.

base concept of LES is shown in Figure 3.1: large-scale eddies continuously

break up into smaller eddies until they are too small and they dissipate into

heat. The eddies with length scale greater than ∆ are directly resolved, while

the smaller ones are modelled with a SGS model.

The Cartesian form of the filtered governing equations reads as:

∂uj
∂xj

= 0 (3.3)

∂ui
∂t

+
∂ujui
∂xj

= − 1

ρ0

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− ∂τij
∂xj

(3.4)

They are the continuity and momentum equations, respectively. The

symbol “−” represents the filtering operation, ui is the i-th components of

velocity vector (namely u, v and w), xi is the i-direction space coordinate

(namely x, y and z), t is time, p is the kinematic pressure divided by reference

density ρ0, ν is the kinematic viscosity and τij are the SGS stresses which

arise from the non linearity of the advection term.
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3.1.1 Sub-grid scale model

In order to reproduce the flows motion properly on the sub-grid scale, the

SGS stresses τij are modeled by the dynamic eddy viscosity model described

in Armenio and Piomelli [1]. The model is founded on the Germano iden-

tity [39], which relates subgrid-scale stresses computed at two different filter

widths:

Lij = Tij − τ̂ij (3.5)

in which the individual terms are defined as:

Lij = ûiuj − ûiûj; Tij = ûiuj − ûiûj (3.6)

where · represents filtering at scale ∆, whereas ·̂ represents filtering at scale

∆̂ > ∆. The quantity Lij is the “resolved turbulent stresses”, instead the

term Tij is the “subtest scale stresses”, that appears when the test filter is

applied to the filtered Navier-Stokes Equations (3.3 and 3.4). The deviatoric

part of τij at scale ∆ is modelled as:

τij = −Cd2∆
2|S|Sij (3.7)

in which Cd is the constant of the model, Sij = (∂ui/∂xj + ∂uj/∂xi)/2

is the resolved strain rate tensor, |S| =
√

2〈SijSij〉 is its magnitude and

∆ = 2(∆x∆y∆z)1/3 is the filter width, proportional to the grid size in all

directions. Adopting a least squares procedure [56], the constant Cd is eval-

uated as:

C2
d = −1

2

〈LijMij〉
〈MmnMmn〉

(3.8)

with:

Mij = ∆̂
2

|Ŝ|Ŝij − ∆̂
2

|Ŝ|Sij (3.9)

and where 〈·〉 represents an appropriate ensemble or local averaging required

to avoid the mathematical inconsistency that one encounters when removing

Cd from a filtering operation.



14 3. Numerical method

Figure 3.2: Frame of reference transformation from physical to computational

space, two dimensional view.

3.1.2 Computational domain

The complex and irregular geometries, typical of the environmental en-

gineering, can not be treated in the Cartesian frame of reference, therefore

the governing Equations 3.3 and 3.4 are transformed into a curvilinear form.

Velocity gradient in the Cartesian coordinates can be written as:

∂ui
∂xj

=
∂ui
∂ξk

∂ξk
∂xj

(3.10)

hence, in the curvilinear coordinate framework the Equations 3.3 and 3.4

become:
∂Um
∂ξm

= 0 (3.11)

∂J−1ui
∂t

+
∂Umui
∂ξm

= − 1

ρ0

∂

∂ξm

(
J−1

∂ξm
∂xi

p

)
+

∂

∂ξm

(
νGmn ∂ui

∂ξn

)
− J−1∂ξm

∂xj

∂τij
∂ξm

(3.12)

where ξm are the transformed coordinates (ξ, η, ζ), J−1 is inverse of the

Jacobian of the coordinate transformation or the cell volume, Um is volume

flux or the contravariant velocity multiplied by the Jacobian, normal to the
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surface of constant ξm and Gmn is mesh skewness tensor. The aforementioned

quantities are given by:

J−1 = det
∂xi
∂ξj

(3.13)

Um = J−1
∂ξm
∂xj

uj (3.14)

Gmn = J−1
∂ξm
∂xj

∂ξn
∂xj

(3.15)

In LES-COAST, the governing equations are solved on a structured non-

staggered grid, where the Cartesian velocity components and pressure are

defined at the center of the cells and the volume fluxes are defined at the

corresponding faces (see Figure 3.2).

3.1.3 Fractional step method

The solution of Equations 3.11 and 3.12 is based on fractional step method

(see Zang et al. [101]). Spatial discretization in the computational space is

carried out using second order central finite differences, whereas temporal in-

tegration is carried out by using the second order accurate Adams Bashforth

scheme for the convective term, and implicit Crank-Nicolson scheme for the

diagonal viscous terms. A multigrid technique is used for the solution of the

pressure equation. The discretised form of the Equations 3.11 and 3.12 reads

as:
δUm
δξm

= 0 (3.16)

J−1
un+1
i − uni

∆t
=

3

2
(Cn

i +DE(uni ))− 1

2
(Cn−1

i +DE(un−1i ))

+Ri(p
n+1) +

1

2
(DI(u

n+1
i + uni )) (3.17)

in which δ/δξm defines the discrete finite difference operator in the compu-

tational space and the superscripts (such as n) represent the time step. The

quantities Ci (convective terms), Ri (the discrete operator for the pressure

gradient terms), DE (discrete operator representing the off-diagonal diffusive
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terms, treated explicitly) and DI (discrete operator representing the diagonal

viscous terms, treated implicitly) are expressed as:

Ci = − δ

δξm
(Umui) (3.18)

Ri = − δ

δξm

(
J−1

δξm
δxi

)
(3.19)

DI =
δ

δξm

(
νGmn δ

δξn

)
m = n (3.20)

DE =
δ

δξm

(
νGmn δ

δξn

)
m 6= n (3.21)

By applying the fractional step method described in Zang et al. [101] to

Equation 3.17, the momentum equation is solved for each iteration splitting

it into two steps called predictor and corrector.

In the first step (predictor), Equation 3.17 is solved for an unphysical

velocity u∗i which satisfies advective and diffusive transport only:(
I − ∆t

2J−1
DI

)
(u∗i − uni ) =

∆t

J−1

[
3

2
(Cn

i +DE(uni ))− 1

2
(Cn−1

i +DE(un−1i )) +DI(u
n
i )

]
(3.22)

where I is the identity matrix. The approximate factorization technique is

used to invert the matrix DI , so the Equation 3.22 becomes:(
I − ∆t

2J−1
D1

)(
I − ∆t

2J−1
D2

)(
I − ∆t

2J−1
D3

)
(u∗i − uni ) =

∆t

J−1

[
3

2
(Cn

i +DE(uni ))− 1

2

(
Cn−1
i +DE(un−1i )

)
+DI(u

n
i )

]
(3.23)

where:

Dk =
δ

δξk

(
νGkk δ

δξk

)
k = 1, 2, 3 (3.24)

Afterwards, the second step (corrector) adjusts the flow-field considering

the pressure gradient. It consists in finding out the velocity un+1
i from the

intermediate velocity u∗i such that the continuity equation is satisfied. From
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Equations 3.17 and 3.22, the velocities un+1
i and u∗i are related to the pressure

gradient by:

un+1
i − u∗i =

∆t

J−1
[
Ri(φ

n+1)
]

(3.25)

in which the projector operator φ satisfies the following relation:

Ri(p) =

(
J−1 − ∆t

2
DI

)(
Ri(φ)

J−1

)
(3.26)

Once written the Equation 3.25 in the chain-rule-conservation-law form, it

can be interpolated on the cell face yielding:

Un+1
m = U∗m −∆t

(
Gmn δφ

n+1

δξn

)
(3.27)

where U∗m = J−1(δξm/δxj)u
∗
j is called the intermediate volume flux.

Replacing Equation 3.27 into Equation 3.16, the Poisson equation for the

pressure φn+1 is obtained as:

δ

δξm

(
Gmn δφ

n+1

δξn

)
=

1

∆t

δU∗m
δξm

(3.28)

The elliptic equation 3.28 is solved using a mixed line/point-SLOR algorithm

together with a multigrid method in order to speed up the convergence. In

Zang et al. [101], more details about the method are presented.

3.2 OpenFOAM software

OpenFOAM, Open Field Operation and Manipulation [97] is a free, open

source computational fluid dynamics (CFD) software. The model is three-

dimensional and it is structured with a set of flexible modules written in

C++, that are employed to build solvers to simulate specific problems in

fluid mechanics and engineering [47]. Pre- and post-processing tasks are ac-

cessible to the solvers through utilities as well as libraries to create toolboxes

for turbulence models, mesh transformation and combustion. The model is

free in its hierarchical design and structure, making the solvers, utilities and

libraries entirely extensible. OpenFOAM uses finite volume numerics to solve
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systems of partial differential equations on either structured or unstructured

meshes. The fundamental equations are developed within a robust, implicit,

pressure-velocity, iterative solution framework and computed with a domain

decomposition method, in which the geometry and other fields are divided

and allocated to separate processors. To solve the conservation equations

in a finite volume scheme, the values of the flow variables are required at

the face centres. In this work, we use the pisoFOAM solver based on the

PISO (Pressure-Implicit Split Operator) algorithm originally proposed by

Issa [44] and Issa et al. [45]. The spatial derivatives are discretized using

second-order central differences. A standard second order finite volume dis-

cretization of a Gaussian integration scheme (Gauss linear) is used for the

gradient terms. The implicit, second order backward scheme is applied for

the temporal derivatives, whereas the Gauss upwind scheme is adopted for

the turbulence model.

3.2.1 The PISO algorithm

The incompressible continuity and momentum equations are given by:

∇ · u = 0 (3.29)

∂u

∂t
+∇ · (uu)−∇ · (ν∇u) = −∇p (3.30)

where the non-linearity in the convection term (∇ · (uu)) is handled using

an iterative solution technique:

∇ · (uu) ≈ ∇ · (uoun) (3.31)

with uo the currently available solution and un the new solution. The al-

gorithm cycles until uo = un. In incompressible flow the coupling between

density and pressure is removed, therefore there is no pressure equation. On

contrary, the continuity equation imposes a scalar constraint on the momen-

tum equation. The pressure-velocity system contain two complex coupling

terms, the non-linear convection term with the u−u coupling and the linear

pressure-velocity coupling. The idea behind the PISO algorithm is as follows:
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• on small time-step, the pressure-velocity coupling is much stronger than

the non-linear coupling;

• it is therefore possible to repeat a number of pressure correctors with-

out updating the discretization of the momentum equation (without

updating uo);

• in this set-up, the first pressure corrector will create a conservative

velocity field, while the second and the following will establish the

pressure distribution.

In order to derive a pressure equation, the momentum equation is discretized,

keeping the pressure gradient in its original form (for more details see Jasak

[46]):

aPuP +
∑
N

aNuN = r−∇p (3.32)

where aN is the matrix coefficient corresponding to the neighbour N , aP is

the coefficient of the computational point P located at the centroid of the

control volumes and r is the source term. Introduce the H(u) operator:

H(u) = r−
∑
N

aNuN (3.33)

so that:

uP =
1

aP
[H(u)−∇p] (3.34)

Substituting this in the incompressible continuity equation 3.29, a pressure

equation for incompressible flow is obtained:

∇ ·
[
∇p
aP

]
= ∇

[
H(u)

aP

]
(3.35)

The discretised form of the continuity equation 3.29 is:

∇ · u =
∑
f

sfu =
∑
f

F (3.36)

where F is the face flux that is calculated, substituting the expression of the

velocity 3.34, as:

F = −sf · ∇p
aP

+
sf ·H(u)

aP
(3.37)
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When the Equation 3.35 is satisfied, the face fluxes are guaranteed to be

conservative. Summarizing, the PISO loop consists of an implicit momen-

tum predictor followed by a series of pressure solutions and explicit velocity

corrections. The loop is repeated until a pre-determined tolerance is reached

[46].

3.2.2 Detached-eddy simulation

Detached-eddy simulation is a nonzonal technique that resolves time-

dependent, 3D turbulent motions (as in LES) and applicable to high Reynolds

numbers (as the RANS methods).

The Spalart-Allmaras (SA) model [86] is used as the base model. The

one equation SA model solves a transport equation for the modified eddy

viscosity, υ̃. The DES version of SA is obtained by replacing the turbulence

length scale d (distance to the nearest wall) in the destruction term of the

transport equation for υ̃ with a new length scale d̃ = min(d, CDES∆), where

∆ is the local grid size and the model parameter CDES is equal to 0.65 [81, 25].

Close to solid boundaries, DES reduces to RANS [52] ensuring an accurate

solution of the near-wall flow. In the case of rough wall, the roughness

effects are taken into account by redefining the distance to the boundary as

d = dmin + 0.03ks [85], with dmin the distance to the closest boundary and ks

the equivalent roughness height. Away from the solid boundaries, the closure

is a one-equation model for the modified SGS eddy viscosity [26]:

∂υ̃

∂t
+ uj

∂υ̃

∂xj
= Cb1[1− ft2]S̃υ̃ +

1

σ
{∇ · [(υ + υ̃)∇υ̃] + Cb2|∇υ̃|2}

−
[
Cw1fw −

Cb1
κ2

ft2

] [
υ̃

d̃

]2
(3.38)

The turbulent eddy viscosity is given by:

νT = υ̃fv1 fv1 =
χ3

χ3 + C3
v1

χ =
υ̃

υ
(3.39)

where υ is the molecular viscosity. The production term is expresses as:

S̃ = S +
υ̃

k2d̃2
fv2 fv2 = 1− χ

1 + χfv1
(3.40)
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with S the magnitude of the vorticity. The function fw is given by:

fw = g

[
1 + C6

w3

g6 + C6
w3

]1/6
g = r + Cw2(r

6 − r) r =
υ̃

S̃k2d̃2
(3.41)

The function ft2 is defined as:

ft2 = Ct3exp(−Ct4χ2) (3.42)

The wall boundary condition is υ̃ = 0 and the constants are:

Cv1 = 7.1 Ct3 = 1.1 Ct4 = 2.0 Cb1 = 0.1355 Cb2 = 0.622

σ = 2/3 k = 0.41 Cw2 = 0.3 Cw3 = 2.0 Cw1 =
Cb1
k2

+
(1 + Cb2)

σ

When the production and destruction terms of the model are balanced, the

turbulence length scale d̃ = CDES∆ becomes proportional to the local grid

size and yields an eddy viscosity proportional to the mean rate of strain and

∆2, as in LES with a dynamic Smagorisky model. Indeed, the role of ∆ is to

allow the energy cascade down to the grid size similar to the classical LES.



Chapter 4

Description of simulation cases

The laboratory data of Blanckaert [6, 9] are used for validation purposes.

The channel consists of a straight inflow reach of 4m, a curved reach of 193◦

and a straight outflow reach of 3.5m, all with a flat bed, representative of

the early phase of bed erosion (see Figure 4.1).

Figure 4.1: Sketch of flow geometry. The arrows denote the flow direction.

22
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The radius of curvature at the center line of the channel is R = 1.7m.

The channel has a rectangular cross-section, with width B = 1.3m and

average water depth H = 0.159m (run n◦1). The vertical sidewalls of the

laboratory channel are rigid and hydraulically smooth, whereas the channel

bed is hydraulically rough. In the experiment the bed was covered with

quasi uniform sand (d50 = 0.002m). In the present thesis, an additional

curved channel is considered, with H = 0.141m (run n◦2). The flow rate

Q is the same for the two simulations and equals to 89 l/s. According to

van Rijn [95], the Nikuradse equivalent roughness can be assumed as three

times the sand diameter (ks = 0.006m); the two Reynolds numbers are such

that Re � 4000. The flow in the two simulations is fully rough turbulent

(Re∗ > 70) and sub-critical (Fr < 1). Moreover, to account for the influence

of the super-elevation of the free surface on the flow field characteristics,

the test case run n◦1 is also conducted reproducing the steady water surface

detected by Blanckaert [9] in its experiment (see Figure 4.2). This last test

is presented in the Chapter 9 and it is indicated as run n◦1FS.

The hydraulic and geometric conditions are summarized in Table 4.1.

Figure 4.2: Water surface level with an interval of 0.001m, reconstructed

through Blanckaert experimental data [9].
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Run Q B H Wav Re Fr ks R R/H B/H

n◦ (m3/s) (m) (m) (m/s) (-) (-) (m) (m) (-) (-)

1 0.089 1.3 0.159 0.43 68400 0.34 0.006 1.7 10.7 8.2

2 0.089 1.3 0.141 0.49 68000 0.41 0.006 1.7 12 9.2

Table 4.1: Hydraulic conditions for the two numerical simulations. Q denotes

the discharge, B the width of the flume, H the water depth, Wav the bulk

velocity, Re the Reynolds number, Fr the Froude number, ks the Nikuradse

equivalent roughness and R the radius at the center line. Re and Fr are

based on the bulk velocity Wav and the water depth H.

4.1 Simulations setup

The inflow conditions are provided by the output of simulations carried

out by considering the corresponding straight open-channel flows with peri-

odic boundaries in streamwise direction. A convective boundary condition

is instead used at the outflow. Since the Reynolds number is too large for

solving directly the near wall viscous sub-layer, a wall-layer approach is em-

ployed in the LESs. For the vertical lateral walls, the standard smooth law

of the wall is used in the logarithmic layer:

v+n = 2.5 ln z+n + 5.5 (4.1)

where v+n is the wall-normal velocity dimensionless with the average shear

velocity uτ and z+n represent the wall-normal coordinate expressed in wall

units (ν/uτ ). A numerical validation of the wall layer model implemented in

the LES-COAST code is reported in the Appendix A. For the channel bed a

modified log law (see, e.g., [96]) is used:

v+n = 2.5 ln
zn
ks

+ 8.5 (4.2)

where ks is the roughness height (see Table 4.1).

The free surface in run n◦1 and n◦2, is treated as a horizontal, imperme-

able rigid lid where the free-slip condition is applied, namely the normal
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gradient of the velocities parallel to the surface and the wall-normal velocity

component are set to be zero [52, 92]:

∂w

∂y
= 0,

∂u

∂y
= 0, v = 0 (4.3)

The use of this condition is justified by the low Froude number of the flows

(Fr1 = 0.34 and Fr2 = 0.41), such that the free surface deformation is prac-

tically negligible. Instead in run n◦1FS, the free surface is not horizontal but

inclined as in Figure 4.2.

The simulations are performed on a very high resolution grids consisting of

9 million cells (128×64×1024 points in spanwise, vertical and streamwise di-

rections), with a uniform discretization in all three directions. The equations

were integrated in time until a statistical steady state was reached. After

that, data for the statistics were collected for a sampling time of ∆t = 230 s

in all simulations, corresponding to 620 time unit (∆t · U/H) for run n◦1,

n◦1FS and 800 time unit for run n◦2. Note that 5 s of real time requires

24h of computational time running at the supercomputing facility of Italian

computing center CINECA, employing 16 processors with the LES-COAST

code and 64 processors with the OpenFOAM software.

In the following, all variables are presented in non-dimensional form, using

H and U as the length scale and velocity scale, respectively.
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Main flow characteristics

In this section, the primary flow characteristics for the test cases run n◦1

and run n◦2 are discussed. In particular, we highlight the role of the water

depth on the main flow features and the computation results of run n◦1 are

compared with Blanckaert experimental results [6, 9] in order to validate

the numerical model here applied. In the figures the arrows denote the flow

direction.

5.1 Mean velocity field

The contours of streamwise velocities at the free surface are shown for run

n◦1 and run n◦2 in Figures 5.1(a) and 5.1(b), respectively. The figures show

how turbulent channel flow enters the bend and how this flow is subjected

to centripetal forces in the curved part of the bend, giving rise to secondary

flow cells. This mechanism is evidenced by the presence of higher streamwise

velocity near the inner bank of the channel, at the entry of the bend, and by

a clear outward shift of momentum. Moving forward, the main flow detaches

from the inner bank because of the formation of an internal shear layer. The

comparison of the two figures shows the importance of the aspect ratio (the

ratio between the channel width B and the water depth H) on these main

features of the flow, whose strength increase when the ratio B/H decreases

26
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Figure 5.1: Streamwise velocities at free surface, scaled with the bulk velocity

Wav: (a) run n◦1 (B/H = 8.2) and (b) run n◦2 (B/H = 9.2).

(see Table 4.1). The generation of the flow separation is mainly due to the

sharpness of the bend R/B (see [2]). In the case of mildly curved bends, no

separation or development of an internal shear layer takes place. In sharp

bends characterized by values of R/B < 3, the flow begins to separate near

the convex inner bank, also if in this zone it is still rather stagnant. When

the sharpness of the bend is relatively small (R/B < 2), vortex energy sinks

and flow reversal begin to form in the flow. The present results clearly show

the convex bank flow separation also identified by van Balen et al. [92]

and Koken et al. [52]. Its generation is strongly related to turbulence: the

boundary separation develops when the turbulent flow moves rapidly into a

region with adverse pressure gradient. Flow separation implies the failure of

the RANS with isotropic turbulence models to reproduce correctly the flow

in sharp bends [92, 102].

In the plan of view of velocity vectors depicted in Figure 5.2, the blue

coloured vectors show the near-bed velocity components and the red coloured

vectors show the near-free surface velocity components. We can observe a

shifting of the high-velocity core from the inner bank to the outer bank.

At the bend apex, the near-bed flow is oriented towards the inner bank,
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Figure 5.2: Plan view of velocity vectors: (a) run n◦1 (B/H = 8.2) and (b)

run n◦2 (B/H = 9.2). Colors in the vectors define the vector elevation.

while the near free-surface flow is oriented towards the outer bank. This

hydrodynamic structure indicates the presence of the helicoidal recirculation

typical of meandering channels [100]. In Figure 5.2 the near-bed and near-free

surface vectors start to deviate from each other around the 30◦ cross-section

and the highest angular deviation is observed at the 90◦ cross-section. A

comparison between Figures 5.2(a) and 5.2(b) shows that the angular shifting

and, thus, the associated helicoidal recirculation, are less pronounced in case

of shallower conditions.

For a more quantitative investigation of the flow field, the vertical pro-

files of the streamwise velocities and transverse velocities are highlighted in

Figures 5.3 and 5.4, respectively. The profiles are located at 60◦, 120◦ and

180◦ cross sections in the bend and they are given in the transverse direc-

tion for six different locations of the verticals: 0.2B; 0.35B; 0.5B; 0.65B

and 0.8B (from inner to outer bank). In Figures 5.3 and 5.4, the predicted

vertical profiles (solid lines) are compared with the measurements (circle)

for the run n◦1. The streamwise and transverse vertical profiles of velocities

are influenced by the along bend evolution of the cross stream circulation

zone and the streamwise vorticity [10, 15, 102]. The streamwise velocity

profiles undergo a flattening due to the advective momentum transport by
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Figure 5.3: Streamwise velocities at three cross sections in the flow field: (a)

60◦, (b) 120◦ and (c) 180◦ cross section. The circles represent the experimen-

tal results of Blanckaert [9] while the solid lines are the predicted results of

run n◦1. The values are made non-dimensional by the bulk velocity Wav.

the secondary flow, consequently decreasing the driving force of the cross-

stream circulation. Figure 5.3 shows that the streamwise velocity profiles

are about logarithmic in the upstream part of the bend and flatten when

moving toward the inner bank. On the other hand, downstream of the 90◦

cross section, the streamwise profiles located in the inner half of the bend,

are non monotonic with maximum velocities in the lower part of the water

column. Furthermore, we can note an inflexion point in the velocity profiles

that coincides with the zone of steepest gradient where the internal shear

layer characterized by eddies and vortices occurs.
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Figure 5.4: Transverse velocities at three cross sections in the flow field: (a)

60◦, (b) 120◦ and (c) 180◦ cross section. The circles represent the experimen-

tal results of Blanckaert [9] while the solid lines are the predicted results of

run n◦1. The values are made non-dimensional by the bulk velocity Wav.

The transverse velocity profiles, represented in Figure 5.4, reveal the prin-

cipal characteristics of the curvature induced cross-stream circulation cell.

The latter occupies the large part of the cross section, within which fluid

particles follow a helicoidally path with inward (i.e., negative) transverse ve-

locities in the lower part and outward (i.e., positive) transverse velocities in

the upper part.

The comparison between measured and predicted vertical profiles of stream-

wise and transverse velocities reveals minimal differences. The major discrep-

ancies are visible close to the water surface near the outer bank, where the
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streamwise predicted velocity profiles do not show the decrease of the mea-

sured velocity towards the water surface. The disagreements near the water

surface might be due to the rigid-lid assumption for the free surface but also

to the reduced accuracy of the measurements in this zone.

5.2 Vertical vorticity

In Figure 5.5, we show the vertical vorticity ωy at the free surface resulting

from the two simulations. The spatial distribution of the vorticity reveals the

rotational structure at the free surface and clearly show the detachment of

the boundary shear layer at the inner bank. It clearly appears that the

detachment of this shear layer is shifted downstream in the channel bend

and that the peak values of the vorticity are somewhat lower in the case of

run n◦2 (Figure 5.5(b)). The influence of the internal shear layer increases in

strength with increasing water depth (B/H = 8.2) and in a real river context,

it is relevant for bank accretion, river planimetry and meander formation.

Figure 5.5: Vertical vorticity, scaled with the bulk velocity Wav and the mean

water depth H: (a) run n◦1 (B/H = 8.2) and (b) run n◦2 (B/H = 9.2).
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Secondary flow features

Secondary flow is a key element of the hydrodynamic of meandering chan-

nels and its correct prediction is fundamental as regards, for example, the

outer banks erosion and inner bank accretion and, hence, planimetry evolu-

tion.

In the following, in order to render the flow pattern along the bend,

the results are shown at six cross sections located in the curved part of the

channel at 30◦, 60◦, 90◦, 120◦, 150◦ and 180◦, respectively.

6.1 Streamwise vorticity

When the turbulent channel flow enters the bend, it is subject to centrifu-

gal forces in the curved part of the geometry, giving rise to secondary flow

cells. In Figure 6.1 we illustrate the patterns of streamwise vorticity for the

two runs. It highlights the rotational strength of the secondary flow. Near

the inner bank, a flow reversal occurs and a recirculating vortex develops in

the separation zone. The formation of an internal shear layer is identified

by the existence of a belt of positive vorticity values at the free surface. We

notice that the detachment of this shear layer is shifted more downstream

when increasing the width to depth ratio (Figure 6.1(b)) and that the peak

values of the vorticity are somewhat lower. The principal coherent structure

32
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related to secondary flow is the main cross-stream circulation cell, that tends

to cover a large part of the channel bend cross sections when the bed is not

deformed [9] or weakly deformable [7]. Such circulation cell is represented

in the central region of the section in Figure 6.1, filling the major area of

negative vorticity. Furthermore, we can observe the generation of an outer-

bank cell, corresponding to an area of positive vorticity near the outer bank

close to the free surface. It is the strongest in the upstream part of the bend,

whereas it loses strength in the downstream part of the bend. It is evident

as the outer bank cell strength increases with decreasing the aspect ratio

(Figure 6.1(a)). This secondary counter-rotating cell of cross-stream circula-

tion has been also observed in natural channels [3, 4, 32, 91] and identified

in previous studies of mildly and sharp channel bends [8, 11, 75]. It affects

the bank stability and for this reason the effects of the secondary flow are

incorporated in the prediction of bank erosion models [71].

Figure 6.1: Streamwise vorticity at 30◦, 60◦, 90◦, 120◦, 150◦ and 180◦ cross

sections: (a) run n◦1 (B/H = 8.2) and (b) run n◦2 (B/H = 9.2). The values

are made non-dimensional using the mean water H and the bulk velocity

Wav.
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6.2 Vertical velocity

Figure 6.2 shows the contour of the vertical velocity for run n◦1 and run

n◦2. It reveals the complex structure of the secondary flow. Near the inner

bank an alternating pattern of up-welling and down-welling is observed. This

pattern is associated with the internal shear layer separating from the inner

bank. The flow near the outer bank is obviously dominated by down-welling

associated with the main secondary flow motion due to the presence of the

centripetal forces. The spatial distribution of the vertical velocities is almost

the same for the two test cases, with an evident greater intensity for run n◦1

(see Figure 6.2(a)).

Figure 6.2: Vertical velocity at 30◦, 60◦, 90◦, 120◦, 150◦ and 180◦ cross

sections: (a) run n◦1 and (b) run n◦2. The values are made non-dimensional

using the bulk velocity Wav.
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Turbulence structures

In the context of the meandering spatial evolution, the knowledge of the

mean flow hydrodynamics is not sufficient and also the turbulent flow struc-

ture is important. This section analyses the turbulence parameters in sharp

meandering bends, emphasizing the influence of the water depth. Hereafter

the symbol 〈·〉 denotes a quantity averaged in time.

7.1 Turbulence stresses

Figure 7.1 illustrates the along bend distribution of the turbulent shear

stresses computed in run n◦1 at six cross-sections located in the curved part

of the channel at 30◦, 60◦, 90◦, 120◦, 150◦ and 180◦, respectively. The be-

haviour of the transverse-vertical 〈u′sv
′〉 stress is shown in Figure 7.1(a) and

it is strongly related to the secondary flow. The 〈u′sv
′〉 negative values are

dominant in the bend, although a core of positive values is localized near the

inner bank in correspondence of the internal shear layer.

In Figure 7.1(b), the streamwise-vertical stress 〈v′w′s〉 exhibits an area of

negative values in the first part of the bend, that fully coincides with the outer

bank circulation cell [14, 93]. In the second part of the bend, the 〈v′w′s〉 values

become dominant in the upper part of the water column and in particular

near the inner bank, where the internal shear layer develops. Conversely, the
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Figure 7.1: Reynolds stresses for run n◦1 at 30◦, 60◦, 90◦, 120◦, 150◦ and

180◦ cross sections: (a) transverse-vertical stresses, (b) streamwise-vertical

stresses and (c) streamwise-transverse stresses. The values (×103) are made

non-dimensional by the bulk velocity squared W 2
av.

〈v′w′s〉 negative values are concentrated in the near-bed region.

The along bend distribution of the streamwise-transverse stress 〈u′sw
′
s〉 is

represented in Figure 7.1(c). In the first half of the bend, it presents a core

of high positive values and a strong local increase near the free surface where

the outer bank cell and the center region cell touch. This behaviour does

not appear for the streamwise-vertical 〈v′w′s〉 and transverse-vertical 〈u′sv
′〉

stresses, since at the free surface the vertical velocity is set to be zero. In

the second half of the bend, the patterns of 〈u′sw
′
s〉 present a less pronounced

core of negative values, that tends to increase in the downstream part.

The distribution of Reynolds stresses in run n◦2 are reported in Figure
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Figure 7.2: Reynolds stresses for run n◦2 at 30◦, 60◦, 90◦, 120◦, 150◦ and

180◦ cross sections: (a) transverse-vertical stresses, (b) streamwise-vertical

stresses and (c) streamwise-transverse stresses. The values (×103) are made

non-dimensional by the bulk velocity squared W 2
av.

7.2. The results show a distribution nearly similar to that of run n◦1; they

differ only in the intensity of stresses, that is smaller. To summarize, the

variation in Reynolds stresses along the channel length highlights the influ-

ence of channel geometry on the distribution and magnitude of these stresses.

Also, the variation of the water depth in the range herein considered does

not affect the Reynolds stress distribution along the channel.

7.1.1 Reliability of eddy-viscosity RANS-like modelling

RANS simulations of sharp meander bend were carried out in Zeng et al.

[102] and van Balen et al. [92] using a k - ω and k - ε turbulence model,

respectively. These works show the limitation of RANS isotropic models
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Figure 7.3: Reynolds transverse-vertical stresses for run n◦1 at 30◦, 60◦, 90◦,

120◦, 150◦ and 180◦ cross sections using the RANS-like modelling. The values

(×103) are made non-dimensional by the bulk velocity squared W 2
av.

to predict the correct hydrodynamics in this type of channel. It is thus

important to asses why the assumptions that lie behind the RANS approach

closed with eddy-viscosity turbulence models perform poorly for this type

of flow fields [20]. Indeed, the eddy-viscosity hypothesis [73] implies the

alignment between the elements of the deviatoric Reynolds stress tensor and

the rate-of-strain tensor of the mean field:

〈u′iu
′

j〉 −
2

3
kδij = −νT (

∂Ui
∂xj

+
∂Uj
∂xi

) (7.1)

where δij is the Kronecker Delta and νT is the eddy-viscosity.

The eddy-viscosity assumption is here verified for run n◦1, by computing

the off-diagonal Reynolds stress 〈u′sv
′〉 with Equation 7.1. In the previous

section, it was shown that this stress component reflects the secondary flow

trend and, therefore, its accurate estimation is very important. By comparing

Figures 7.1(a) and 7.3, it is clear that an isotropic eddy viscosity approach

correctly predicts the sign of the Reynolds stress, but over-predicts the actual

numerical value by about an order of magnitude. This is an evident prove of

the inadequacy of RANS models to study sharp meandering rivers. Similar

conclusions were drawn by Bressan et al. [20], in the analysis of turbulence

around an abutment.
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Figure 7.4: Tke at 30◦, 60◦, 90◦, 120◦, 150◦ and 180◦ cross sections: (a)

run n◦1 (B/H = 8.2) and (b) run n◦2 (B/H = 9.2). The values are made

non-dimensional by the bulk velocity squared W 2
av.

7.2 Turbulent kinetic energy

Figure 7.4 shows the spatial distribution of the turbulent kinetic energy

(tke), defined as:

tke =
1

2
〈u′u′〉+

1

2
〈v′v′〉+

1

2
〈w′w′〉 (7.2)

In the case of non-erodible bend, as treated here, the flow entering the

bend is subject to a “free vortex effect”, accelerating at the inner bank rela-

tive to the outer bank and producing large scale fluctuations in the flow field.

As a result, an eruption of tke occurs in the upstream part of the bend. The

production of tke is strongly related to the recirculation cell generated by

the local curvature. The tke progressively increases moving towards the core

of the center region cell, with maximum values just below the middle flow

depth. In the downstream part of the bend, this core of high tke weakens

and is reduced to about half of its maximum value at the bend exit. The

plots also reflect an outward shift of high momentum fluid due to differential

advection; in particular it can be seen that the location of the peak value of

tke has shifted towards the outer bank at the 150◦ cross-section as compared

to the 60◦ cross-section. The analysis clearly shows the increase of turbulent
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activity when decreasing the width to depth ratio (see Figure 7.4(a)).

7.3 Turbulence anisotropy

For the investigation of the turbulence anisotropy and the efficiency in

turbulence shear stress production, the principal stresses and the so-called

structure parameter a1 are examined.

The Reynolds shear stresses can be used for understanding the force field

active in each cross-section of the bend and the forces that act on the solid

walls. The difference between the principal stresses σ1−σ2 is an indicator of

anisotropy in the two-dimensional cross-sectional plane. Recalling the Mohr’s

circle [93, 92], it results:

σ1 − σ2 = 2·

√(
〈u′2〉 − 〈v′2〉

2

)2

+ 〈u′v′〉2 (7.3)

The vertical velocity fluctuations tend to zero at the free surface, as a

consequence of the free slip condition, and this circumstance causes the trans-

verse velocity fluctuations to be dominant there. Instead, at the outer bank,

the vertical velocity fluctuations tend to prevail. Therefore, the anisotropy

results most pronounced at the boundaries, as highlighted in Figure 7.5. The

pattern of the principal stresses difference σ1 − σ2, in the 60◦ cross-section

shows a strong increase of turbulence activity where the main cross-stream

circulation cell and the outer bank cell encroach near the free surface, in

particular for the run n◦1 (Figure 7.5(a)). In the second half of the bend,

the turbulence anisotropy is very high near the inner bank where is located

the generation of the internal shear layer, whose influence is less marked in

the case of run n◦2 (Figure 7.5(b)).

The structure parameter a1 is defined as the ratio of the magnitude of

the turbulent shear stresses and twice the amount of the turbulent kinetic

energy:

a1 =

√
〈w′v′〉2 + 〈u′v′〉2

2k
(7.4)
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Figure 7.5: Principal stresses difference for run n◦1 at 30◦, 60◦, 90◦, 120◦,

150◦ and 180◦ cross sections. The values (×104) are made non-dimensional

by the bulk velocity squared W 2
av.

According to Schwarz and Bradshaw [76], it roughly indicates the efficiency

of turbulent eddies in producing turbulence shear stresses. Blanckaert and de

Vriend [12] report the trend of this non-dimensional parameter a1 for the case

of a straight open-channel flow. It has a value of 0.10 at the bed, a maximum

of about 0.14 around the mid-depth and it is zero at the free surface. The

structure parameter a1 is shown in Figure 7.6 for the two test cases. In this

figure, we observe relatively low values of the structure parameter a1 along

the interface of the two counter-rotating cells at the free surface (see 60◦ cross-

section). Moreover, this decrease of a1 is accompanied by a strong increase

of the streamwise-transverse stresses 〈u′sw
′
s〉 and a relatively decrease of the

transverse-vertical 〈u′sv
′〉 and streamwise-vertical 〈v′w′s〉 stresses (see Figure

7.1). This dependency is the opposite in the core of the outer bank cell.

Therefore, it is possible to deduce that the outer bank cell itself determines a

local increase in the production of turbulent shear stress in the cross-sectional

plane. In the central region of the bend, the a1 values have a very similar

trend as that of the straight open-channel flow. Instead, near the inner bank

we can observe a local decrease of a1 values along the region of flow separation

due to the presence of the internal shear layer.
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Figure 7.6: Structure parameter at 30◦, 60◦, 90◦, 120◦, 150◦ and 180◦ cross

sections: (a) run n◦1 and (b) run n◦2. The values are made non-dimensional

by the bulk velocity squared W 2
av.

7.4 Lumley triangle

The global anisotropy of the Reynolds stress tensor can be further exam-

ined using the Lumley triangle. The triangle can be drawn by considering

the invariants of the normalized anisotropy tensor, which is computed by

subtracting its trace from the Reynolds tensor:

bij =
〈u′iu

′
j〉

〈u′ku
′
k〉
− 1

3
δij (7.5)

Since the trace of this tensor b is zero, it is characterized by only two

invariants, II and III, which identify the state of turbulence [60]. It has been

shown that any turbulent states must be contained inside a well-defined

triangle in the plane, ξ = (1/2III)1/3, η = (−1/3II)1/2. The top curved line

(Figure 7.7) corresponds to a two-component turbulent state; the straight

line in the ξ < 0 half-plane represents a three-component turbulent state, in

which one component is smaller than the others (disk-like turbulence); the

straight line in the ξ > 0 half-plane represents a three-component turbulence,

in which one component is larger than the others (rod-like turbulence) [83].

The values of the II and III invariants are evaluated for run n◦1 at four dif-

ferent cross-sections: a cross-section at 2m upstream of the bend entrance, a
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cross-section at 60◦ in the bend, a cross-section at 150◦ and a cross-section at

2m beyond the bend exit, where the flow is recovering from centripetal effects

and returns to be a straight flow again. The Lumley triangles for these four

cross-sections are shown in Figure 7.7. It is known for a straight boundary

layer flow that the invariants values are found near the right straight side of

the triangle, which represents axisymmetric turbulence with one large eigen-

value. This type of behaviour is recognized in the picture of the cross-section

2m upstream of the bend (Figure 7.7(a)).

Figure 7.7: Lumley triangle for run n◦1 at four cross section in the flow field:

(a) 2m upstream the entrance of bend; (b) 60◦ in the bend; (c) 150◦ in the

bend and (d) 2m downstream the exit of the bend. The values (×103) are

made non-dimensional by the bulk velocity squared W 2
av.
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For the 60◦ cross-section (Figure 7.7(b)), it is seen that most of the values

is also located near the right straight side of the triangle. Moving from

the inner bank to the outer bank, the ξ, η values move from the right side

of the triangle to the left, and move towards the curved top side of the

triangle, when approaching the free surface. At left straight side of the

triangle, the state of the turbulence can be characterized as axisymmetric

with one small eigenvalue. For this type of turbulence, the shape of the

stress tensor is an oblate spheroid. The tendency of the invariants values

toward the curved upper side of the triangle indicates a tendency toward

two-dimensional turbulence. The presence of this tendency is explained by

the high aspect ratio of the cross-section, B/H = 8.2.

The ξ, η values for the 150◦ cross-section (Figure 7.7(c)) show more or less

the same behaviour as for the 60◦ cross-section, but with a more uniformly

distribution of the values over the triangle. In the bend, there is a strong

tendency of the points to move toward the origin of the triangle, which is

associated with isotropic turbulence.

Beyond the bend (Figure 7.7(d)), in the straight outflow reach, the tur-

bulence structure tends to move far away from the isotropic state, but rather

slowly: at the cross-section located 2m downstream of the bend exit, the

bend influences is still quite strong.

It can be concluded that in the core region of the flow (i.e., far from

the walls), the turbulence is axisymmetric with one small eigenvalue of the

anisotropy tensor b, thus displaying the typical behaviour of a plane bound-

ary layer. This turbulence state is favoured far downstream of the inlet of the

bend, with a weak tendency to isotropy in the outer half of the cross-section.
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Bed shear stresses

In the context of bed erosion and deposition, the bed shear stresses are

relevant because they are a measure of the forces exerted on the channel

bottom. When the bed shear stress exceeds a critical value, the grains situ-

ated at the bed start moving. The correct prediction of the bed shear stresses

along the channel bend is also useful to estimate the distribution of the Chezy

coefficient in depth-averaged 2D flow models.

The bed shear stress is related to the square of the friction velocity, de-

noted as w2
∗, by the water density ρ. The Equation 4.2 for the hydraulically

rough bed, can directly be used to determine the friction velocity. It is ap-

plied to the total velocity vector, resulting from the two wall-parallel velocity

components. In order to make the bed shear stress non dimensional, it is di-

vided by ρ and it is scaled by the square of the bulk velocity W 2
av, thus

obtaining the friction factor cf . The distribution around the bend of the bed

shear stress components for run n◦1 and of the friction factor cf for the two

simulations are represented in Figures 8.1 and 8.2. The bed shear stresses

are characterized by a very non uniform distribution, with the peak value

of cf around 10 in both runs (see Figure 8.2). The region of largest friction

is located close to the inner side of the bend and covers the major part of

the upstream half of the bend. On the contrary, the smallest friction is near

the outer bank. Within the former region, the velocities are the highest as a
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Figure 8.1: Bed shear stress components for run n◦1: (a) streamwise com-

ponent and (b) spanwise component. The values (×103) are made non-

dimensional by the water density ρ and the bulk velocity squared W 2
av.

result of the strongly favouring pressure gradient due to the beginning of the

bend and the transverse component of the bed shear stress (Figure 8.1(b))

becomes an important contributor to the total shear stress. This means that

the cross flow play an important role in the scour processes in channels with

high curvature. The maximum bed shear stress occurs at the inner bank just

after the bend entry and it is about twice as high as the bed shear stress

in the straight inflow channel. Proceeding in the downstream part of the

bend, the core of maximum friction factor gradually shifts towards the outer

bank (Figure 8.2). Note that the regions of high/low friction factor cf do

not correspond to scoured/deposited areas, in virtue of the strong nonlin-

ear interaction between the complex three dimensional flow, the sediment

transport and the plane configuration of the bathymetry considered in the

simulation.

The curvature-induced increase of the friction factor cf along the bend

can mainly be attributed to the velocity redistribution and the gradual defor-

mation of the vertical profiles of the velocity. The latter produces an increase

of the near bed velocity gradients and, as a result, an amplification of friction

factor cf . This strong non uniform spatial distribution of cf has important

consequences for the depth-averaged 2D flow models, in which the use of a
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constant value of cf will conduct to an underestimation of flow friction near

the inner bank and, hence, a less accurate prediction of the flow field and of

the sediment transport processes.

Figure 8.2: Friction factor cf (multiplied by 103): (a) run n◦1 (B/H = 8.2)

and (b) run n◦2 (B/H = 9.2).



Chapter 9

The free surface question

In meandering channels the flow undergoes centrifugal forces which make

the flow field highly three-dimensional. Its main feature is the transverse

inclination of the free surface which varies along the bend producing cen-

trifugal secondary flow that deeply influences the flow behaviour. Currently,

the numerical modelling of the free surface is addressed adopting one of the

following methodologies:

• the Volume-of-Fluid technique;

• the Arbitrary Lagrangian Eulerian front tracking technique;

• the use of rigid-lid assumption.

From a numerical point of view, the latter is the simplest one: the free water

surface is treated as a horizontal plane where the normal gradient of the

variables parallel to it and the wall-normal velocity component are set to

be zero (free slip condition) [92, 94, 27]. However, this simplification works

rather well only for subcritical flows (Fr < 1), when the super-elevation of

the free surface is less than 10% of the channel depth. In this context, the

super-elevation effect on the flow properties can be assumed to be negligible,

but this is not true in general. Hence, further efforts must be made to account

for this effect.
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In this chapter we consider the influence of the super-elevation of the free

surface on the behaviour of turbulence in the flow field. For this purpose,

it is employed the powerful software OpenFOAM and DES simulations are

performed. Therefore, the test case run n◦1 is again investigated by means a

DES and a second test (n◦1FS) is conducted considering the free-surface not

horizontally, but reproducing the steady water surface detected by Blanckaert

[9] in its experiment (see Figure 4.2).

9.1 Comparison results

9.1.1 Streamwise velocity in cross sections

Figure 9.1 shows the patterns of the streamwise velocity ws in the cross

sections at 60◦, 90◦, 120◦ and 150◦ within the bend. In the upstream part

of the bend, the main flow detaches from the inner bank and the core of

highest velocities progressively moves away from the convex bank. In the

cross sections at 60◦ and 90◦ of the bend (Figure 9.1), a zone of convex bank

flow separation is observable characterized by lower streamwise velocities

between the inner bank and the core of highest velocities, with the formation

of an internal shear layer. Proceeding downstream in the bend, the flow

separation zone widens but the velocity difference at the edges of this zone

is attenuated, as shown in Figure 9.1 for the cross sections at 120◦ and 150◦

into the bend. The low velocity region is not distributed homogeneously over

the water column, indeed it tends to shrink from the free surface towards

the bottom without reaching it. The principal differences between run n◦1

and run n◦1FS are observable in the second half of the cross sections and in

particular near the outer bank where there is an increase in the water surface

compared to the average value (H = 0.159m). Figure 9.1(b) shows a non-

monotonic vertical distribution of the streamwise velocity in this region with

the formation of a slow recirculation zone. The reduction of the streamwise

velocity near the outer bank is located in the area where an outer bank cell

of secondary flow occurs. Moreover in Figure 9.1(b) for the cross sections at
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120◦ and 150◦, we can note as the flow separation zone is wider than that

resulting from run n◦1 (Figure 9.1(a)).

Figure 9.1: Streamwise velocity at 60◦, 90◦, 120◦ and 150◦ cross sections: (a)

run n◦1 with a horizontal water surface and (b) run n◦1FS with a water sur-

face configuration as detected experimentally by Blanckaert [9]. The values

are made non-dimensional by the bulk velocity Wav.
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9.1.2 Bed shear stress distribution

The total bed shear stresses, τbs, are made non-dimensional by the bulk

velocity squared W 2
av and the water density ρ, thus defining the friction fac-

tor cf . The distributions of the bed shear stresses, expressed in terms of cf ,

are shown in Figure 9.2. The comparison of the two simulations reveals the

influence of the inclined water surface also on the bed shear stress distribu-

tion. In Figure 9.2(b) we can observe a pronounced increase of the friction

factor cf near the inner bank, not limited only to the first half of the bend,

but which also extends towards the exit of the curve. This increase is located

below the zone of the convex bank flow separation which, as shown in the

Figure 9.1(b) of the velocity patterns, is more extended in the run n◦1FS.

Furthermore, we note a considerable transversal variation of the friction fac-

tor of over 50% which underlines the wrong choice to use a constant value

of cf in the depth-averaged flow models. A correct estimate of the forces

that are exerted on the bottom is really important in the context of river

engineering, indeed the shear stresses can be directly related to erosion and

sedimentation processes.

Figure 9.2: Friction factor cf (multiplied by 103): (a) run n◦1 with a hor-

izontal water surface and (b) run n◦1FS with a water surface configuration

as detected experimentally by Blanckaert [9].
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9.1.3 Patterns of flow and turbulence in the 90◦ cross

section

The 90◦ cross section is analysed in detail below, as it presents the greatest

variation of the water depth from the inner to the outer bank (∆h = 0.018m).

Figure 9.3 reports the vertical profiles of the streamwise and spanwise veloc-

ities at five verticals within the 90◦ cross section located at 0.12B, 0.3B ,

0.5B, 0.7B and 0.9B. The results are also compared with the experimental

data of Blanckaert [9]. Within the separation zone, the streamwise velocity

profiles are strongly deformed with the maximum values in the lower part

of water column instead near to the water surface (Figure 9.3(a)). Close to

the outer bank only the predicted profile of run n◦1FS shows the measured

decrease of the streamwise velocity toward the water surface (Figure 9.3(a)).

Figure 9.3: Vertical profiles at the 90◦ cross section: (a) streamwise velocities

and (b) spanwise velocities. The circles represent the experimental results

of Blanckaert [9], the dashed lines are the results of run n◦1 while the solid

lines refer to the results of run n◦1FS. The values are made non-dimensional

by the bulk velocity Wav.
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Figure 9.4: Streamwise vorticity at the 90◦ cross section: (a) run n◦1 and (b)

run n◦1FS. The values are made non-dimensional by the bulk velocity Wav

and the water depth H.

The predicted spanwise velocity profiles (Figure 9.3(b)) capture the typ-

ical helicoidal path of the curvature induced cross-stream circulation cell. In

particular, run n◦1FS reproduces an inflexion of the spanwise profile near the

outer bank (Figure 9.3(b)) highlighting the presence of another recirculation

zone. Overall, the comparison between measured and predicted velocity pro-

files show the best agreement for the results of run n◦1FS that is able to

reproduce the right behaviour near to the water surface.

Figure 9.4 shows the patterns of secondary flow in the 90◦ cross section,

expressed in terms of the non-dimensional streamwise vorticity ωsH/Wav. It

clearly appears the presence of an outer bank cell of secondary flow charac-

terized by positive vorticity and a central region cell identified by an area

with negative vorticity. Figure 9.4(b) reveals the important influence of the

transverse inclination of the water surface into the production of centrifugal

secondary flow. Indeed, in run n◦1FS a more intense outer bank cell forms

that can strongly affect the bank erosion processes. Along the edge of the

flow separation zone at the convex bank, a zone with ωs > 0 clearly separates
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Figure 9.5: tke at the 90◦ cross section: (a) run n◦1 and (b) run n◦1FS. The

values are made non-dimensional by the bulk velocity squared W 2
av.

an area of ωs < 0 within the separation zone from another area of negative

vorticity induced by streamline curvature.

Figure 9.5 analyses the tke patterns in the cross section at 90◦. We can

note the dominant influence of the center circulation cell (Figure 9.4) in

producing additional tke in the section. Figure 9.5(b) shows also an increase

of the tke near the outer bank and close to the free surface as a consequence of

the outer bank cell. The influence of the latter is clearly visible in the patterns

of the turbulent normal stresses in Figure 9.6(b) with a local growth of the

turbulent activity. The internal shear layer confines the streamwise flow

and the cell in the central region (the core of maximum vorticity) below the

zone of flow separation in the lower part of the water column. As a result,

an enhancement of streamwise velocity (Figure 9.1), streamwise vorticity

(Figure 9.4) and related tke (Figure 9.5) is obtained. The main contribution

to this increase in tke under the flow separation zone and to the core of

maximum tke in correspondence of the main secondary flow cell is attributed

to the transverse turbulent normal stress 〈u′su
′
s〉 (see Figure 9.6(II)). Instead,

near to the edge of the flow separation zone is evident an increase of the tke
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mainly related to the contribution of the streamwise turbulent normal stress

〈w′sw
′
s〉, as represented in Figure 9.6(I). Figure 9.6(III) shows that the vertical

turbulent normal stress 〈v′v′〉 has a significantly lower weight in production

of tke respect to the other two components but, nevertheless, it attains non

negligible values. The turbulent shear stresses are represented in Figure 9.7

Figure 9.6: Turbulent normal stresses at 90◦ cross sections: (a) run n◦1 and

(b) run n◦1FS. The values are made non-dimensional by the bulk velocity

squared W 2
av.
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Figure 9.7: Turbulent shear stresses at the 90◦ cross section: (a) run n◦1 and

(b) run n◦1FS. The values are made non-dimensional by the bulk velocity

squared W 2
av.

for the 90◦ cross section of the bend. The shear stresses 〈u′sw
′
s〉 (Figure 9.7(I))

and 〈v′w′s〉 (Figure 9.7(II)) related to streamwise velocity are characterized

by high positive values in correspondence of the internal shear layer. Also the

pattern of 〈u′sv
′〉 shows positive values near the edge of the flow separation

region where an area of opposite vorticity occurs (Figure 9.4). Moreover,
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in the 〈u′sv
′〉 pattern (Figure 9.7(III-b)) is possible to observe an area of

positive values along the edge of separation between the main secondary flow

cell and the outer bank cell. Figure 9.7(I) shows a pronounced variation of

the pattern of 〈u′sw
′
s〉 near the inner bank in the zone of flow separation.

For a more detailed analysis on the influence of the outer bank cell in

the production of turbulence shear stresses, the structure parameter a1 (see

Equation 7.4) is examined in the area near the concave bank of the 90◦ cross

section. In Figure 9.8 is evident how the super elevation of the free surface

influences the greatness of this outer circulation cell. In fact, the structure

parameter a1 is characterised by relatively low values along the interface of

the two mutually counter-rotating cells where positive values of transverse-

vertical stresses 〈u′sv
′〉 are observed (Figure 9.7(III-b)). In the pattern of the

structure parameter a1 is clear the footprint of the outer bank cell with a

progressive increase of its values moving towards the free surface.

Figure 9.8: Structure parameter in the area near the outer bank of the 90◦

cross section: (a) run n◦1 and (b) run n◦1FS. The values are scaled with the

bulk velocity squared W 2
av.
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Conclusion

The present work reproduces numerically the fluvial processes in sharp

open-channel bends. The laboratory configuration designed by Blanckaert [6,

9] is considered in the simulations with a flat non-erodible bed to accentuate

the curvature related processes.

The main characteristics of this type of complex 3D flow field are ac-

curately simulated, such as the interaction between the deformation of the

streamwise velocity profiles and the strength of the secondary flow cells, as

well as the production of turbulent kinetic energy. The patterns of mean,

secondary and turbulent flow quantities are examined in detail.

The region close to the inner bank is characterized by a zone of flow

separation with the occurrence of high velocity gradients, a shear layer, the

reversal of the vertical velocities (v < 0) and reversed vorticity (ωs > 0),

high positive values of the turbulent shear stress 〈u′sv
′〉 and enhanced tke.

The velocity profiles are strongly deformed in this zone, with low velocities

near the water surface and maximum values near the bed. This leads to

an increase of the bed friction coefficient and, hence, of the flow’s capacity

to pick up sediment. The LES simulation also predicts rather correctly the

outer bank cell of cross-stream circulation measured in the corresponding flat

bed experiment [102]. The secondary flow is strongly influenced by stream-

line curvature, that drives the flow patterns of the flow variables and is the
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dominant mechanism for the amplification of turbulent stresses and tke in

sharp curved bends.

Two configurations of sharp bends are analyzed in the thesis: a first

configuration characterized by B/H = 8.2 and a second configuration with a

higher aspect ratio B/H = 9.2. The comparison of the two flow fields reveals

the important influence of the water depth on the secondary flow distribution

and the turbulence structure.

In the upstream part of the bend, the strength of the central cell becomes

stronger when decreasing the aspect ratio. Whereas this difference is not

particularly evident in the downstream part of the bend.

The outer bank cell gains strength with increasing water depth, condi-

tioning the near-bank hydrodynamic. Indeed, the outer bank cell is known

to play an important role with respect to the flow forcing on the outer bank.

The secondary flow and turbulence stresses have a similar behaviour. This

increase in turbulence is a key aspect, it affects the spreading and mixing of

pollutants and suspended matter, sediment transport and scour processes.

The section dedicated to “the free surface question” has emphasized the

influence of the transverse inclination of the free surface on the secondary

flow and the turbulent activity by means of DES simulations. The principal

differences are observed close to the water surface and near the outer bank

where the run n◦1FS is able to capture a recirculation zone and to better

reproduce the strength of the outer bank cell of secondary flow as measured

by Blanckaert in its experiment [9]. Along the edge of this outer bank cell

an increased tke occurs enhancing the sediment transport capacity and then

the morphological development. The width of the separation zone is also

conditioned by the transverse inclination of the free surface which influences

the increase of the friction factor cf beneath this area.

In conclusion, it is possible to state that the centripetal effects on the

free-surface due to meandering need to be considered for a more complete

and detailed analysis of the phenomenon. To this aim, the compatibility

dynamic conditions for flows with free surface should be enforced and solved
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in a Finite-Element fashion. Furthermore, an Arbitrary Lagrangian Eule-

rian (ALE) technique should be implemented in order to deform the grid

according to the calculated super-elevations on the free-surface. A powerful

implementation of the ALE framework [48] exists on the OpenFOAM li-

brary, while is not yet implemented in the LES-COAST model. That is why

the OpenFOAM software has been adopted for investigating the free-surface

sloping effects.



Part II

Mathematical model for

meandering rivers with spatial

width
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Chapter 11

Introduction

Meandering rivers are the most common river pattern in the alluvial

floodplains, where human settlements, industries and agriculture are most

concentrated. For these reasons, meandering rivers have attracted the in-

terest of river engineers and geoscientists since more than one century [49].

The planform geometry of meandering rivers can be described through their

spatial curvature and width distributions. Brice [21] has proposed a classifi-

cation of river meandering patterns based on the intensity of spatial width

oscillations, which has lately refined by Lagasse et al. [53]. In Figure 11.1 the

meandering configurations are ordered according to the absence or presence

of spatial width variation in the channel and to the degree of width variabil-

ity. This last classification is important in river meanders because the spatial

width distribution plays a dynamic role similar to that of the channel curva-

ture. The presence of more or less pronounced spatial variations in width is

certainly related to the near-bank dynamics, as well as to the in-stream mor-

phodynamic processes. Most of the mathematical models used to investigate

meander morphodynamics are based on simplified analytical solutions of the

equations governing the flow dynamic and the evolution of the bed topog-

raphy, obtained through perturbation methods [40]. It is assumed that flow

and bed topography deformation in curved channels are small with respect

to the flow velocity and water depth of a corresponding straight channel with
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Figure 11.1: Modified Brice [21] alluvial pattern classification of single-thread

rivers reprinted from Lagasse et al. [53], (modified figure).

a flat bed characterized by the same discharge, slope, width and sediment

size. This assumption for the applicability of perturbation methods is justi-

fied because in many meander bends the curvature and planform geometry

are slowly varying. Therefore, most of the mathematical models employed to

investigate bend stability and meander planform evolution are linear, namely

the perturbation expansion are truncated at the first order of approximation

(see, e.g., [29, 65]). They are based on the bend theory originally proposed

by Ikeda et al. [43] and obtained by linearizing the equations of flow, sedi-

ment transport and of the planform evolution. The original bend theory and
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its subsequent refinements have allowed to develop linear models of steady

flow in meandering channel able to disclose a variety of characteristics of the

meandering phenomenon [77]. These models have enabled to successfully pre-

dict the characteristic spatial scales of developing meanders, to understand

the hydraulic and geometric conditions under which a meander can grow in

loops [16, 67] and reproduce the typical meander loop migration rates [30] and

shapes [80, 104]. More recently, deeper investigations about the bend theory

have allowed to investigate the nature of meander instability [55] and the

dominant direction of upstream/downstream 2D morphodynamic influence

[88, 106, 103], distinguishing between stable or unstable bends through field

observations [57]. Furthermore, linear models have played a dominant role

in exploring the long-term (order of centuries) meander evolution [36, 42, 89]

and they have opened new perspectives about the possible existence of a sta-

tistically universal behavior of meandering rivers [37]. A detailed summary

of linear models for meandering channels with constant width and their per-

formance can be found in Camporeale et al. [24] and in Frascati and Lanzoni

[36].

In order to treat the effect of flow non-linearities, Seminara and Tubino

[79] have extended the analysis at the third order of the perturbation ex-

pansion. Later on, Seminara and Solari [78] introduced a slightly different

perturbation model that allowed a more complete treatment of nonlinear ef-

fects relaxing the assumption of small amplitude flow and bed perturbations.

This approach was subsequently extended by Bolla Pittaluga et al. [18].

Most of the models mentioned so far assume the river width constant in

time and space, imposing that, as the channel migrates laterally, the rate of

bank advance is equal to the bank retreat rate. This assumption of constant

width has been justified as a long-term requirement for meandering rivers

and it has been supported by field observation of natural rivers character-

ized by fairly uniform cohesive banks [72]. However, similarly to curvature

forcing induced by bends, the presence of spatial width oscillations along the

channel may have significant effects on the hydrodynamic and morphody-
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namic of meandering rivers [74, 105]. In this regard, Repetto et al. [74] have

elaborated a linear analysis on the steady flow-bed topography that occurs

in straight channels with regular width oscillations. Recently, the theory de-

veloped by Repetto et al. [74] has been extended by Frascati and Lanzoni

[38] to meandering channels with arbitrarily width. On the other hand, in

the case of sine-generated meanders, Luchi et al. [59] have analyzed the dy-

namic effects of periodic width oscillations on the process of bend stability,

accounting for the planimetric forcing generated by the nonlinear interaction

between curvature and width variations. Finally, the nonlinear model of flow

and bed topography in meandering rivers elaborated by Bolla Pittaluga et

al. [18] has been extended by Luchi et al. [58] to account for spatial width

oscillations in a sequence of sine-generated meander bends.

The analytical models so far described, try to put within a rational theo-

retical framework the key physical processes pointed out by field observations.

They, thus, provide indications on the necessary ingredients for developing

a robust mathematical model that describes correctly the morphodynamic

evolution of alluvial rivers: a reliable estimate of the flow field resulting from

spatial distributions of channel axis curvature and width and a physically

based model simulating the inner bank advance and the outer bank erosion

[69].

In this Part II of the thesis, a morphodynamic model able to predict the

flow field distribution and the equilibrium bed configuration of alluvial rivers

characterized by arbitrary distributions of both channel width and channel

axis curvature is developed. We extend the linear model proposed by Frascati

and Lanzoni [38] in order to account for also the nonlinear effects arised by

curvature and width oscillations. The model has an analytical character

that makes it a robust and computationally sustainable tool to study the

morphodynamic regime and the long-term evolution of alluvial meandering

rivers. Furthermore, it can be easily incorporated in long-term models of river

planform evolution or used to rapidly evaluate the morphological behaviour

of alluvial rivers as a result of hydrodynamic forcing or planform geometry



66 11. Introduction

variations.

This Part II is organized as follows. In Chapter 12, we derive a two-

dimensional, depth-averaged model for flow and bed topography in allu-

vial meandering channels with both arbitrarily varying curvature and width.

The linearized solution of the morphodynamic problem by means of a two-

parameters perturbation approach is presented in Chapter 13. Results of a a

direct application of the model to a test case (a reach of the Po River, Italy)

are illustrated in Chapter 14. Finally, in Chapter 15 draws some conclusions.



Chapter 12

Mathematical formulation

This Chapter describes the mathematical model formulated for a steady,

nonuniform flow in channels with arbitrarily varying curvature and width

and the relative sediment transport processes. The three-dimensional gov-

erning conservation equations are depth-averaged in order to obtain a set of

two-dimensional equations that takes into account the dynamic effects of sec-

ondary flows produced by curvature and width variation forcing. Afterwards,

the governing equations are linearized by means of a two-parameter pertur-

bation expansion technique based on perturbations induced by curvature and

width variations.

12.1 The three dimensional model

Consider the permanent flow of a constant discharge Q∗ in a meandering

cohesionless channel characterized by varying distribution of both channel

axis curvature C∗ and width 2B∗. Flow and bed topography are here re-

ferred to an orthogonal intrinsic reference system (s∗,n∗,z∗), where s∗ is the

longitudinal coordinate, n∗ is the lateral coordinate orthogonal to s∗, and z∗

is the vertical coordinate pointing upwards (see Figure 12.1). Notice that a

superscript asterisk indicates dimensional variables.

The starting point of the modelling is represented by the Reynolds equa-
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Figure 12.1: Sketch of a meandering channel with spatial varying width and

notations (image from Frascati and Lanzoni [38]).

tions governing the steady turbulent flow of an incompressible fluid subject

to gravity along with the continuity equations for the fluid and solid phases.

Observing that for the investigated problem the horizontal scales are much

larger than the flow depth, the shallow-water approximation can be applied.

This assumption implies a hydrostatic distribution of pressure and we can

replace the pressure gradient with the slope of the free surface. Moreover,

we assume the slowly varying character of the flow field, restricting the anal-

ysis to the central part of the channel ignoring the bank region, that implies

the possibility to neglect the horizontal derivatives of the stress tensor. The

governing equations are then replaced in according to the orthogonal curvi-

linear system depicted in Figure 12.1, (more information on the derivation of

the dimensional equations can be found in Frascati and Lanzoni [38]). They
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read:

u∗2,s∗

1 + n∗C∗
+ (u∗v∗),n∗ +(u∗w∗),z∗ +

2C∗(u∗v∗)
1 + n∗C∗

= −gh
∗,s∗ −CfuF 2

ru

1 + n∗C∗

+ (ν∗Tu
∗,z∗ ) ,z∗ (12.1)

(u∗v∗),s∗

1 + n∗C∗
+ v∗2,n∗ +(v∗w∗),z∗ +

C∗(v∗2 − u∗2)
1 + n∗C∗

= −gh∗,n∗ + (ν∗Tv
∗,z∗ ) ,z∗

(12.2)
u∗,s∗

1 + n∗C∗
+

(
C∗

1 + n∗C∗
+

∂

∂n∗

)
v∗ + w∗,z∗ = 0 (12.3)

qs
∗,s∗

1 + n∗C∗
+

(
C∗

1 + n∗C∗
+

∂

∂n∗

)
qn
∗ = 0 (12.4)

where the comma indicates the partial derivative, u∗ = (u∗, v∗, w∗) is the

mean velocity vector (averaged over turbulence), h∗ is the free surface el-

evation, ν∗T the eddy viscosity, q∗ = (q∗s , q
∗
n) is the sediment flux per unit

width and g is the acceleration due to gravity. Furthermore, Cfu and Fru

are the friction coefficient and the Froude number of the reference flow, re-

spectively. Therefore, the subscript “u” refers to properties of a uniform flow

in a straight channel having the same flow discharge and grain size of the

meandering river considered here, while the width and the slope of this chan-

nel are equal to their average values in the meandering reach. In the case

of channels with nonuniform width it is convenient to define the following

dimensionless variables:

(B∗, s∗, n∗) = B∗avg (B, s,B n)

(u∗, v∗, w∗) = U∗u (u, v,
w

βu
)

(D∗, h∗, z∗) = D∗u (D,F 2
ruh, z) (12.5)

C∗ =
1

R∗0
C

ν∗T = νT (
√
CfuU

∗
uD
∗
u)

(q∗s , q
∗
n) =

√
g
ρs − ρ
ρ

d∗s · d∗s

where B∗avg is the reach averaged half width, D∗ is the flow depth, ρ and ρs are

water and particle density, respectively, d∗s is the sediment grain size (taken
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to be uniform) and R∗0 is some characteristic value of the radius of curvature

of the channel axis (e.g., its minimum value in the meandering reach). By

substituting the expressions (12.5) into Equations (12.1-12.4) and applying

the following derivation chain rule:

∂

∂s∗
−→ 1

B∗avg

[
∂

∂s
− n

B
B, s

∂

∂n

]
∂

∂n∗
−→ 1

B∗avg

1

B

∂

∂n
(12.6)

∂

∂z∗
−→ 1

D∗u

∂

∂z

the rescaled and dimensionless governing equations are found to take the

form:

NuLu+B−1vu,n +wu,z +2NνC(uv) = −N(Lh− βuCfu)

+ βu
√
Cfu(νTu,z ),z (12.7)

NuLv +B−1vv,n +wv,z −NνCu2 = −B−1h,n +βu
√
Cfu(νTv,z ),z (12.8)

NLu+

(
NνC +B−1

∂

∂n

)
v + w,z = 0 (12.9)

NLqs +

(
NνC +B−1

∂

∂n

)
qn = 0 (12.10)

Here, βu = B∗avg/D
∗
u is the aspect ratio of the channel, ν is the curvature

ratio and C is the dimensionless channel axis curvature, such that:

ν =
B∗avg
R∗0

∂θ

∂s
= −νC (12.11)

where θ is the angle that the local tangent to the channel axis forms with

the direction of a Cartesian axis x∗ (see Figure 12.1). Furthermore, the

longitudinal metric coefficient N of the coordinate system and the differential

operator L are defined as follows:

N =
1

1 + νnBC
L =

∂

∂s
− n

B
B,s

∂

∂n
(12.12)
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Finally, the boundary and integral conditions associated with the differential

system (Equations 12.7-12.10) are:

u = v = w = 0, z = z0 (12.13)

u,z = v,z = w −NL(F 2
ruh)u−B−1F 2

ruh,n v = 0, z = F 2
ruh(12.14)∫ F 2

ruh

z0

u · nb dz = q · nb = 0, n = ±1 (12.15)

where nb is the unit vector normal to the banks. They express the no-slip

condition at the bed, with z0 the reference level at which the condition is

imposed under uniform conditions (12.13); the conditions of no stress at the

free surface and the requirement that the latter must be a material surface

(12.14); finally, the physical requirement that the channel walls be imper-

meable both to the flow and to the sediment (12.15). At last, three further

integral conditions are required in order to close the problem. They express

the requirement that flow discharge per unit width, sediment supply, and

averaged reach slope are not affected by the development of perturbations

either of the flow field or of the boundary configuration. These conditions

will be made explicit in the following.

12.2 The structure of the secondary flow

In order to derive a depth-averaged form of the governing equations (12.7-

12.10) that preserves the memory of the centrifugally induced secondary flow

with zero average, the following velocity structure is assumed [51, 84]:

u = U(s, n)F(ξ) (12.16)

v = ν ṽ(s, n, ξ) + V (s, n)F(ξ) (12.17)

h = ν h̃(s, n) +H(s, n) (12.18)

Here U and V denote the depth-averaged values of u and v and H is the

free surface elevation. Furthermore, ṽ denotes the local distribution of the

transverse helical (secondary) flow and h̃ is the related free surface perturba-

tion, F(ξ) is a dimensionless velocity shape function, while ξ is a normalized
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vertical coordinate which reads:

ξ =
z − η
D

=
z − (F 2

ruh−D)

D
(12.19)

with η the dimensionless bed elevation. The flow decomposition (12.16-12.18)

is equivalent to the formulation used by Johannesson and Parker [50] and

Zolezzi and Seminara [106]. Since the depth averages of u and v must be

equal to U and V by definition, it follows from 12.16 and 12.17 that:∫ 1

ξ0

F(ξ)dξ = 1

∫ 1

ξ0

ṽ(s, n, ξ)dξ = 0 (12.20)

with ξ0 = ξ(s, n, z0) the normalized reference level for no slip. Closure rela-

tionships for the terms ṽ and h̃ are then needed. Here we refer to the method

of Zolezzi and Seminara [106], who extended the analysis of Seminara and

Solari [78] referring to constant-curvature channels. The method relies on

the solution of equation (12.8), rewritten in terms of the coordinate system

(s, n, ξ), by means of an iterative procedure adopting a slowly varying struc-

ture of the eddy viscosity profile of the form νT = UDN (ξ). The vertical

distribution of the eddy viscosity N (ξ) is taken to coincide with that char-

acteristic of the uniform flow, corrected through the Dean’s wake function

[31]:

N (ξ) =
kξ(1− ξ)

1 + 2Aξ2 + 3Bξ3
(12.21)

where k = 0.41 is the Von Karman’s constant, A = 1.84 and B = −1.56. On

the basis of this formulation, at the leading order of approximation O(ν0),

the function F(ξ) is found to follow the classical logarithmic distribution,

corrected by the wake function:

F(ξ) =

√
Cfu

k

[
ln
ξ

ξ0
+ A(ξ2 − ξ20) +B(ξ3 − ξ30)

]
(12.22)

and from the first integral condition of (12.20) results:

ξ0 ∼= e
− k√

Cfu

−0.777
(12.23)
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Thus we obtain that ṽ and h̃, in the present case of channel with varying

width, take the form:

ṽ =
DUCs
βu
√
Cfu
G0(ξ) +

D

β2
uCfu

L(DUCs)G1(ξ) (12.24)

h̃,n =
UFr2u
βu
√
Cfu

[UCsa0 + UL(DUCs)a1] (12.25)

where the functions Gi(ξ), with i = 0, 1 describe the vertical structure of the

secondary flow: G0(ξ) accounts for the secondary flow effects associated with

channel axis curvature in a fully developed flow and G1(ξ) accounts for the

effects associated with longitudinal convection implying a phase lag between

the secondary flow and the curvature. Instead, the coefficients a0 and a1

depend on the vertical profiles F(ξ) and N (ξ) through the solutions of the

following ordinary differential problems [106]:

(I) [N (ξ)G0,ξ ] ,ξ = a0 −F(ξ)2 (12.26)

G0,ξ |ξ=1 = 0 G0,ξ |ξ=ξ0 = 0

∫ 1

ξ0

G0dξ = 0

(II) [N (ξ)G1,ξ ] ,ξ = F(ξ)G0(ξ) + a1 (12.27)

G1,ξ |ξ=1 = 0 G1,ξ |ξ=ξ0 = 0

∫ 1

ξ0

G1dξ = 0

where (I) and (II) are two boundary value problems that are numerically

solved through the shooting method. Note that the structure of secondary

flow, as given by (12.24-12.25), is slightly different from that proposed by

Zolezzi and Seminara [106]. Indeed, the function G2(ξ) which appears in

Equation (3.13) of Zolezzi and Seminara [106] turns out to be redundant if

the depth-averaged form of the continuity (12.9) is used to further simplify

the lateral momentum equation (12.8). Furthermore, in Equations (12.24)

and (12.25), Cs represents the curvature of the streamlines to account the

deviation of the main flow from the channel axis. The relationship between

streamlines and channel axis curvature can be expressed through the follow-

ing dimensionless equation [63]:

Cs(s) = C(s)− 1

ν

V,s
U

(12.28)
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where the second term on the right side accounts for the deviation of the

streamline curvature, coinciding with the channel axis in the present case,

from that of the streamwise coordinate line. An appropriate assessment

of this term involves a reasonable amount of algebra, therefore, following

Repetto et al. [74], we can include the streamline curvature in the term

accounting for centrifugal effects on transverse bottom shear stress.

12.3 A two-dimensional depth-averaged model

The problem can be tackled within the context of a two-dimensional

depth-averaged model by substituting from the decomposition (12.16-12.18)

and the relations (12.24-12.25) into the governing differential problem (12.7-

12.10), written in terms of the normalized variable ξ, and performing a depth

integration. The latter leads to the following modified system of governing

equations for the morphodynamics of meandering channels:

α (UU,s +V U,n ) +H,s +βu
τs
D

= νf10 + δf01 + νδf11 + ν2f20 (12.29)

α (UV,s +V V,n ) +H,n +βu
τn
D

= νg10 + δg01 + νδg11 + ν2g20 (12.30)

(DU),s +(DV ),n = νm10 + δm01 + νδm11 + ν2m20 (12.31)

qs,s + qn,n = νn10 + δn01 + νδn11 + ν2n20 (12.32)

where α =
∫ 1

ξ0
Γ2(ξ)dξ ∼= 1 is the momentum correction factor accounting for

vertical velocity gradients and H = h − βuCfus represents the free-surface

elevation with h given by (12.18). Furthermore, δ is a parameter quantifying

the intensity of the width variability along the streamwise direction, such

that:

δ =
B∗0 −B∗avg
B∗avg

B = 1 + δB(s) (12.33)

with B∗0 some characteristic value of the half width of the channel (e.g., its

maximum value in the meandering reach) and B = (B∗ −B∗avg)/(B∗0 −B∗avg)
a quantity measuring the longitudinal variability of the width disturbances.

The boundary conditions, associated to Equations (12.29-12.32), impose the
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physical requirement of channel walls impermeable to flow and to sediment

transport:

U · nb = −UB,s±V = 0 (n = ±1)

q · nb = −qsB,s±qn = 0 (12.34)

In order to fully close the problem, additional relations are needed for de-

termining the bed shear stress τ = (τs, τn) and the sediment flux per unit

width q = (qs, qn). Using the decomposition (12.16-12.17) and the solutions

for G0(ξ) and G1(ξ), we determine an improvement in the bed shear stress

expression compared to that used by Frascati and Lanzoni [38]:

|τ | =
√
τ 2s + τ 2n (12.35)

τs = Cfu
√
U2 + V 2 U (12.36)

τn = Cfu
√
U2 + V 2

[
V + ν

(
DUCs

βu
√
Cfu

k2 +
DL(DUC)
β2
uCfu

k3

)]
(12.37)

where the coefficients k2 and k3, that account for centrifugal and convective

secondary flows effects, are defined as follows:

k2 =

[
G0,ξ
F ,ξ

]
ξ0

k3 =

[
G1,ξ
F ,ξ

]
ξ0

(12.38)

The local value of the friction coefficient Cfu is related to bed configuration:

in the case of plane bed we used the usual logarithmic formula [33], while in

case of a dune-covered bed the formula by Engelund and Hansen [34] is em-

ployed. Finally, sediment transport is assumed to be determined by local flow

conditions and its direction to deviate from that of the average bottom stress

owing to the gravity action. In order to account for the gravitational effect

on the direction and intensity of bedload motion, we consider the following

well established approach of semi empirical nature [78, 68]:

q = Φ(τ∗;D;Rp)

(
τ

|τ |
−G · ∇hη

)
(12.39)

where G is a dimensionless second order 2-D tensor describing the gravity

effects on the direction and intensity of bedload motion, ∇h = (∂/∂s, ∂/∂n)
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and Φ is the local bed load intensity for which several semi-empirical or em-

pirical formulas are available in the literature. The latter is a monotonically

increasing function of the Shields stress τ∗ = |τ ∗|/[(ρs − ρ)gd∗s] for a given

particle Reynolds number Rp =
√

(ρs/ρ− 1)gd∗3s /νT and in the following it

is computed with the Meyer-Peter and Müller formula as modified by Wong

and Parker [98]. Note that assuming a small streamwise slope, the streamwise

gravitational forces affecting particles motion can be reasonably neglected.

As a consequence, Equation (12.39) reduces to:

(qs, qn) = Φ

(
1,
τn
|τ |
− B−1

βu

r
√
τ∗
η,n

)
(12.40)

with r an empirical constant ranging about 0.5 − 0.6 [90]. Furthermore, we

must guarantee that in any cross section the flow and sediment discharge are

constant and that the averaged reach slope is not altered by the development

of perturbations. We thus impose the following integral constraints:∫ 1

−1
UDBdn = 2

∫ 1

−1
ΦBdn = 2Φu (12.41)∫ L

0

∫ 1

−1
(F 2

ruH −D)Bdnds = const. (12.42)

where L is the overall streamwise length of the investigated reach.

The quantities fij, gij, mij, and nij which appear in the right-hand sides

of Equations (12.29-12.32) express the forcing effect arising from the presence

of curvature and width variations at different (ij − th) orders of approxima-

tions, where the subfixes i and j refer to the O(νi) and O(δj) contributions,

respectively. Note that, the model previously developed by Frascati and Lan-

zoni [38] is limited to the first approximation order. The curvature forcing

effects are due to first O(ν) and second O(ν2) order terms, while the channel

width variations force the system in the form of a first-order contribution

O(δ). Moreover, the O(νδ) term represents the mixed forcing due to width

and curvature variations characteristic of meandering channels with longi-

tudinal width variations. The O(δ2) component is not considered, since its

contribution is supposed to play a minor role [105]. The expressions of these



77

functions are given in Appendix B.1. They involve the coefficients k0, k1 and

k4, k5, k6 defined as:

ki =

∫ 1

ξ0

FGidξ (i = 0, 1) (12.43)

k4 =

∫ 1

ξ0

G0G0dξ k5 =

∫ 1

ξ0

G0G1dξ k6 =

∫ 1

ξ0

G1G1dξ (12.44)

which account for the dispersive effects due to the nonlinear interactions

between the secondary flow components and the longitudinal flow.
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The linearized form of the

problem

The curvature and channel width distributions are assumed to be slowly

varying in the streamwise direction. As a consequence, flow and bed to-

pography “weakly” deviate from the base solution. This hypothesis of small-

amplitude curvature and width variations, mathematically expressed by (12.11)

and (12.33), allows us to linearize the problem (12.29-12.32, 12.34). We note

that this is a fairly restrictive assumption. However, Seminara and Solari

[78] suggested that linearity is likely to be a reasonable approximation if the

following relationship is satisfied:

ε = ν

√
τ∗

r Cfu
< 10 (13.1)

where ε is a parameter controlling the intensity of bottom variation.

Given the typically wide character of river bends and the usually limited

character of width variations, the solution can be expanded in powers of the

small perturbation parameters ν and δ:

(U, V,D,H) = (1, 0, 1, H0) + ν(uc, vc, dc, hc) + δ(ub, vb, db, hb)+

νδ(ucb, vcb, dcb, hcb) + ν2(ucc, vcc, dcc, hcc) + ... (13.2)

where H0 = Hr − βCfus, having denoted with Hr a reference water surface

elevation (Hr = 1), while (uc, vc, dc, hc), (ub, vb, db, hb), (ucb, vcb, dcb, hcb) and

78
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(ucc, vcc, dcc, hcc) are the perturbations associated with channel width and

channel axis curvature variations up to the second order of approximation.

Note that terms of order higher than the second are supposed to play a

minor role. In order to derive the final differential problems, it is necessary

to expand also the terms Cfu, τ∗ and Φ:

Cf = Cfu
(
1 + νCf1 + δCf2 + νδCf3 + ν2Cf4

)
τ∗ = τ∗u

(
1 + ντ∗1 + δτ∗2 + νδτ∗3 + ν2τ∗4

)
(13.3)

Φ = Φu

(
1 + νΦ1 + δΦ2 + νδΦ3 + ν2Φ4

)
This method assumes that the friction coefficient, the Shields parameter and

the intensity of sediment transport are in a quasi-equilibrium condition and,

therefore, are evaluated in terms of local values of the relevant flow and

sediment transport parameters. The latter assumption can be used because

the flow field and the sediment dynamics are characterized by slow variations.

The expressions of coefficients Cfi, τ∗i and Φi with i = 1, 2, 3, 4 are reported

in Appendix B.2.

On substituting (13.2 and 13.3) into Equations (12.29-12.32) and into

the boundary conditions (12.34), a system of partial differential equations

(PDE) is obtained at each order of approximation, corresponding to a differ-

ent physical mechanism:

• O(ν): flow and bed topography components linearly forced by curva-

ture in meanders with constant width;

• O(ν2): second-order non linear components of flow and bed topography

forced by curvature in meanders with constant width;

• O(δ): flow and bed topography components linearly forced by width

variations in a straight channels with variable width;

• O(νδ): first nonlinear interaction which expresses the mixed response

of flow and bed topography in meanders with variable width.
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13.1 The linear response forced by width vari-

ations O(δ)

The linear differential problem describing the O(δ) response of the flow

field and the bed configuration to the forcing induced by channel width vari-

ations reads as:



(
∂
∂s

+ a1
)
ub + a2db + ∂hb

∂s
= 0(

a7
∂
∂s

+ a3
)
vb + ∂hb

∂n
= 0

∂ub
∂s

+ ∂vb
∂n

+ ∂db
∂s

= 0

a4
∂ub
∂s

+
(
∂
∂n

+ a8
∂2

∂s∂n

)
vb +

(
a5

∂
∂s

+ a6
∂2

∂n2

)
db − a6F 2

ru
∂2hb
∂n2 = 0

(13.4)

with the associated nonhomogeneous boundary conditions (n = ±1):

vb = ±B′;
(
F 2
ruhb − db

)
,n = −b5

∂vb
∂s

(13.5)

where B′ denotes the first derivative of dimensionless width variations, while

the ai (i = 1, 8) and b5 coefficients are reported in Appendix B.3. Further-

more we can schematically indicate with L the corresponding linear differen-

tial operator:

L =


(
∂
∂s

+ a1
)

0 a2
∂
∂s

0
(
a7

∂
∂s

+ a3
)

0 ∂
∂n

∂
∂s

∂
∂n

∂
∂s

0

a4
∂
∂s

(
∂
∂n

+ a8
∂2

∂s∂n

) (
a5

∂
∂s

+ a6
∂2

∂n2

)
−a6F 2

ru
∂2

∂n2

 (13.6)
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The perturbations of the flow field induced by channel width variations are

expanded as:

ub = ub0 +
∞∑
m=1

ubm cos(Mbn)

vb = vb n+
∞∑
m=1

vbm sin(Mbn) (13.7)

hb = hb n
2 + hb0 +

∞∑
m=1

hbm cos(Mbn)

db = db n
2 + db0 +

∞∑
m=1

dbm cos(Mbn)

where Mb = mπ and:

vb = B′

hb = −1

2
(a3B′ + a7B′′) (13.8)

db = F 2
ruhb −

a8
2a6
B′′

Note that the Fourier expansions (13.7) along with conditions (13.8) are

selected in order to satisfy the boundary conditions (13.5) and to respect the

antisymmetric character of vb and the symmetric character of ub, hb and db

due to width variations. The O(δ) solution for the first Fourier mode (m = 0)

can be obtained using the integral conditions (12.42), it becomes:

ub0 = c1B

hb0 = −c1B − Ab0hb − (a1c1 + a2c2)

∫ s

0

Bds̃ (13.9)

db0 = c2B − Ab0db

where:

c1 =
a5 − 1

a4 − a5
; c2 =

1− a4
a4 − a5

; Ab0 =
1

3
(13.10)

The solution for the higher lateral Fourier modes (m > 0), instead, is found

introducing the relations (13.7) and (13.8) into Equations (13.4) and (13.5).
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The following system of four ordinary differential Equations with constant

coefficients is obtained:(
d4

ds4
+ σb3

d3

ds3
+ σb2

d2

ds2
+ σb1

d

ds
+ σb0

)
ubm = Abm

4∑
i=1

ρbiBi (13.11)


vbm =

∑4
i=1 vbmi

ubm
i−1 + Abm

∑5
i=1 v

b
bmi
B i−1

hbm =
∑4

i=1 hbmi
ubm

i−1 + Abm
∑5

i=1 h
b
bmi
B i−1

dbm =
∑4

i=1 dbmi
ubm

i−1 + Abm
∑5

i=1 d
b
bmi
B i−1

(13.12)

where Abm = (−1)m4/M2
b quantifies the decaying contribution of the higher

lateral Fourier modes, while σbi, ρbi, vbmi
, hbmi

, dbmi
, vbbmi

, hbbmi
and dbbmi

are

coefficients depending on the relevant physical parameters (βu, ds, τ∗u) and

their expression is provided in Appendix C.1. By means of the method of

variation of parameters, the nonhomogeneous constant coefficient ordinary

differential Equation (13.11) is solved in closed form. Once the solution for

ubm is known, the remaining dependent variables can be solved in cascade for

the mth Fourier mode by employing Equation (13.12). The general solution

for longitudinal velocity perturbation is found to be:

ubm =
4∑
j=1

cbmj
eλbmj

s

+ Abm

4∑
j=1

[
gbj0

∫ s

0

eλbmj
(s−ξ)B(ξ)dξ + gbj1B

] (13.13)

where cbmj
(m = 1,∞ and j = 1, 4) are integration constants to be deter-

mined on the basis of the upstream and downstream boundary conditions of

the channels and gbjk (j = 1, 4 and k = 0, 1) are constant coefficients depend-

ing on βu, ds, τ∗u, reported in Appendix C.1. Moreover, the characteristics

coefficients λbmj
are the solution of the corresponding ordinary differential

Equation, whose solution is described in Appendix C.1. Analyzing the solu-

tion (13.13), we can note that the flow and the bed topography of a meander

channel, at each given section, are influenced by the local value of the width,

through the term B, and by the hydrodynamics and morphodynamics of the
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reaches located upstream (downstream influence) or downstream (upstream

influence), through the four convolution integrals.

The spatial width variations cause laterally symmetrical flow-bed topog-

raphy patterns. They tend to induce the formation of central bar pattern in

the widest sections of the channel [105], as shown in Figure 13.1.

Figure 13.1: Sketch of the bedform pattern corresponding to each perturba-

tion order. Modified from Zolezzi et al. [105].

13.2 The linear response forced by channel

curvature O(ν)

The nonhomogeneous linear differential problem describing the response

of flow field and bed configuration to the forcing induced by channel curvature
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variations O(ν) reads as:

L


uc

vc

dc

hc

 =


nb1C

b2C + b3C ′ + b4C ′′

0

0

 (13.14)

with the associated boundary conditions (n = ±1):

vc = 0;
(
F 2
ruhc − dc

)
,n = −b5

∂vc
∂s

+ b5C + b6C ′ (13.15)

where the bi (i = 1, 6) coefficients are reported in Appendix B.3, while C ′ and

C ′′ represent the first and second derivatives of the channel axis. The problem

described in (13.14) and (13.15) is similar to that presented by Zolezzi and

Seminara [106], where they do not consider the curvature variation. It can

be transformed into a linear system of ordinary differential equations by

adopting the method of separation of variables and introducing the following

Fourier expansions in order to satisfy the boundary conditions (13.15) and

to respect the symmetric character of vc and the antisymmetric character of

uc, hc and dc, typically associated with alternate channel bending:

uc =
∞∑
m=0

ucm sin (Mcn)

vc =
∞∑
m=0

vcm cos (Mcn) (13.16)

hc = hc n+
∞∑
m=0

hcm sin (Mcn)

dc = dc n+
∞∑
m=0

dcm sin (Mcn)

where Mc = (2m+ 1)π/2 and:

hc = hc1C + hc2C ′ + hc3C ′′ (13.17)

dc = dc1C + dc2C ′ + dc3C ′′)
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with:

hc1 = b2 hc2 = b3 hc3 = b4 (13.18)

dc1 = F 2
ruhc1 − b5 dc2 = F 2

ruhc2 − b6 dc3 = F 2
ruhc3

The O(ν) solution for all the Fourier modes is found substituting the expan-

sions (13.16) into Equations (13.14) and (13.15). Eventually, the following

system of four ordinary differential equations with constant coefficients is

obtained:(
d4

ds4
+ σc3

d3

ds3
+ σc2

d2

ds2
+ σc1

d

ds
+ σc0

)
ucm = Acm

4∑
i=0

ρciCi (13.19)


vcm =

∑4
i=1 vcmi

ucm
i−1 + Acm

∑5
i=1 v

c
cmi
C i−1

hcm =
∑4

i=1 hcmi
ucm

i−1 + Acm
∑5

i=1 h
c
cmi
C i−1

dcm =
∑4

i=1 dcmi
ucm

i−1 + Acm
∑5

i=1 d
c
cmi
C i−1

(13.20)

where Acm = (−1)m2/M2
c and the coefficients σci, ρci, vcmi

, hcmi
, dcmi

, vccmi
,

hccmi
and dccmi

(reported in Appendix C.2) are functions of the physical param-

eters βu, ds, τ∗u. The general solution for longitudinal velocity perturbation

is found to be:

ucm =
4∑
j=1

ccmj
eλcmj s

+ Acm

4∑
j=1

[
gcj0

∫ s

0

eλcmj (s−ξ)C(ξ)dξ + gcj1C
] (13.21)

where ccmj
(m = 1,∞ and j = 1, 4) are integration constants depending

on the channel boundary conditions, while gcjk (j = 1, 4 and k = 0, 1) are

constant coefficients depending on βu, ds, τ∗u and their expression is reported

in Appendix C.2. Once the solution for ucm is known, the remaining de-

pendent variables can be solved in cascade for the mth Fourier mode by

employing Equation (13.20). Note that the characteristics coefficients λcmj

are the solution of the corresponding ordinary differential equation and the

whole procedure on how to solve the problem (13.19, 13.20) is described in
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Appendix C.2. A comment on the integration constants ccmj and cbmj can be

here worthwhile. The influence of the integration constants on the flow field

is local, owing to the rapid decay of the exponential functions they multi-

ply. Therefore, they can be set to zero when evaluating the equilibrium bed

topography in a river reach for a given flow discharge, although it is known

that they have a certain importance in the long-term simulations of the river

planform evolution [55].

The channel curvature, differently from width variation, is usually re-

sponsible of laterally antisymmetric bed patterns. It reproduces the classical

point bar morphology with a sequences of scour/deposition zones (see Figure

13.1).

13.3 The non-linear response forced by chan-

nel curvature O(ν2)

The nonhomogeneous differential problem describing the second order

O(ν2) response of the flow field and the bed configuration to the forcing

induced by channel curvature variations is obtained not considering the de-

viation of the main flow from the channel axis direction (Cs = C) in order

to reduce the complexity of the long algebraic work. It results:

L


ucc

vcc

dcc

hcc

 =


Kcc

1 (s, n)

Kcc
2 (s, n)

Kcc
3 (s, n)

Kcc
4 (s, n)

 (13.22)

with the associated boundary conditions (n = ±1):

vcc = 0;(
F 2
ruhcc − dcc

)
,n = [b6(uc,s + dc,s) + b7uc + b8dc]C + (b9uc + b10dc)C ′

(13.23)

where the bi (i = 6, 10) coefficients are reported in Appendix B.4. Note

that the operator L in the system (13.22) differs from (13.6) through the
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coefficients a7 and a8, which in this case read as:

a7 = 1; a8 = 0 (13.24)

The forcing terms Kcc
i (s, n) (i = 1, 4) are the products between two O(ν)

terms and O(ν) terms related to channel curvature C and its derivatives.

They are reported in Appendix B.4 and can be divided into four types of

contributions:

Kcc
1 =Bcc10(s) + Bcc11(s)

∞∑
m=0

κ11m cos(Mcn)+

Bcc12(s)
∞∑
m=0

m∑
i=0

κ12i,m−i cos(M I
ccn) + Bcc13(s)

∞∑
m=0

m∑
i=0

κ13i,m−i cos(M II
cc n)

Kcc
2 =Bcc20(s) + Bcc21(s)

∞∑
m=0

κ21m sin(Mcn)+

Bcc22(s)
∞∑
m=0

m∑
i=0

κ22i,m−i sin(M I
ccn) + Bcc23(s)

∞∑
m=0

m∑
i=0

κ23i,m−i sin(M II
cc n)

Kcc
3 =Bcc30(s) + Bcc31(s)

∞∑
m=0

κ31m cos(Mcn)+

Bcc32(s)
∞∑
m=0

m∑
i=0

κ32i,m−i cos(M I
ccn) + Bcc33(s)

∞∑
m=0

m∑
i=0

κ33i,m−i cos(M II
cc n)

Kcc
4 =Bcc40(s) + Bcc41(s)

∞∑
m=0

κ41m cos(Mcn)+

Bcc42(s)
∞∑
m=0

m∑
i=0

κ42i,m−i cos(M I
ccn) + Bcc43(s)

∞∑
m=0

m∑
i=0

κ43i,m−i cos(M II
cc n)

(13.25)

where:

M I
cc = (2i−m)π; M II

cc = (m+ 1)π (13.26)

We can observe a symmetric structure for the forcing terms of longitudinal

momentum, flow and sediment continuity equations, instead an antisymmet-

ric structure for those of the lateral momentum equation. Given the linear

nature of system (13.22), it can be solved by separating it into four subsys-

tems and proceeding in a similar way to that adopted for O(δ) and O(ν)
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problems. In this work we consider only the forcing contributions that do

not lead to any distortion of the basic flow. The first system reads as:

L


uIcc

vIcc

dIcc

hIcc

 =


Bcc12(s)

∑∞
m=0

∑m
i=0 κ

12
i,m−i cos(M I

ccn)

Bcc22(s)
∑∞

m=0

∑m
i=0 κ

22
i,m−i sin(M I

ccn)

Bcc32(s)
∑∞

m=0

∑m
i=0 κ

32
i,m−i cos(M I

ccn)

Bcc42(s)
∑∞

m=0

∑m
i=0 κ

42
i,m−i cos(M I

ccn)

 (13.27)

The perturbations of the flow field, that satisfy the boundary conditions and

the corresponding structure, are expanded as:

uIcc =
∞∑
m=0

m∑
i=0

uIccm cos (M I
ccn)

vIcc =
∞∑
m=0

m∑
i=0

vIccm sin (M I
ccn) (13.28)

hIcc =
∞∑
m=0

m∑
i=0

hIccm cos (M I
ccn)

dIcc =
∞∑
m=0

m∑
i=0

dIccm cos (M I
ccn)

Substituting the expansions (13.28) into (13.27), we obtain the following

system of four ordinary differential equations with constant coefficients:

(
d4

ds4
+ σIcc3

d3

ds3
+ σIcc2

d2

ds2
+ σIcc1

d

ds
+ σIcc0

)
uIccm = ρIccm +

6∑
i=0

ρIccmi
Ci

(13.29)
vIccm =

∑4
i=1 v

I
ccmi

uIccm
i−1 +

∑6
i=1 v

Ic
ccmi
C i−1 + vIccm

hIccm =
∑4

i=1 h
I
ccmi

uIccm
i−1 +

∑6
i=1 h

Ic

ccmi
C i−1 + h

I

ccm

dIccm =
∑4

i=1 d
I
ccmi

uIccm
i−1 +

∑6
i=1 d

Ic

ccmi
C i−1 + d

I

ccm

(13.30)

where the coefficients (σIcci, v
I
ccmi

, hIccmi
, dIccmi

) are functions of the physical

parameters βu, ds, τ∗u, while the terms (ρIccmi
, vIcccmi

, h
Ic

ccmi
, d

Ic

ccmi
), (ρIccm, v

I
ccm,

h
I

ccm, d
I

ccm) depend also on the longitudinal coordinate s. The general solution
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for longitudinal velocity perturbation is found to be:

uIccm =
4∑
j=1

cIccmj
e
λIccmj

s

+
4∑
j=1

gIccj

∫ s

0

e
λIccmj

(s−ξ)
[
ρIccm(ξ) +

6∑
i=0

ρIccmi
(ξ)Ci(ξ)

]
dξ

(13.31)

where cIccmj
(m = 1,∞) are integration constants depending on the channel

boundary conditions, while gIccj (j = 1, 4) are constant coefficients depending

on βu, ds, τ∗u. Once the solution for uIccm is known, the remaining dependent

variables can be solved in cascade for the mth Fourier mode by employing

Equation (13.30).

The second system reads as:

L


uIIcc

vIIcc

dIIcc

hIIcc

 =


B13(s)

∑∞
m=0

∑m
i=0 κ

13
i,m−i cos(M II

cc n)

B23(s)
∑∞

m=0

∑m
i=0 κ

23
i,m−i sin(M II

cc n)

B33(s)
∑∞

m=0

∑m
i=0 κ

33
i,m−i cos(M II

cc n)

B43(s)
∑∞

m=0

∑m
i=0 κ

43
i,m−i cos(M II

cc n)

 (13.32)

where the perturbations of the flow field are expanded as:

uIIcc =
∞∑
m=0

m∑
i=0

uIIccm cos (M II
cc n)

vIIcc =
∞∑
m=0

m∑
i=0

vIIccm sin (M II
cc n) (13.33)

hIIcc =
∞∑
m=0

m∑
i=0

hIIccm cos (M II
cc n)

dIIcc =
∞∑
m=0

m∑
i=0

dIIccm cos (M II
cc n)

We can again obtain a system of four ordinary differential equations with con-

stant coefficients similar to (13.29-13.30), with the following general solution
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for longitudinal velocity perturbation:

uIIccm =
4∑
j=1

cIIccmj
e
λIIccmj

s

+
4∑
j=1

gIIccj

∫ s

0

e
λIIccmj

(s−ξ)
[
ρIIccm(ξ) +

6∑
i=0

ρIIccmi
(ξ)Ci(ξ)

]
dξ

(13.34)

In conclusion the solution of the differential problem describing the O(ν2)

response of the flow field and the bed configuration due to the forcing induced

by channel curvature variations at the second-order, without the distortion

effects of the basic flow, reads as:

ucc = uIcc + uIIcc

vcc = vIcc + vIIcc

hcc = hIcc + hIIcc

dcc = dIcc + dIIcc

(13.35)

The symmetric structure of the O(ν2) solution for hcc and dcc suggests

that mid-channel bars can also develop in nearly equiwidth meanders and,

hence, they are not only related to spatial width variations, as observed

by Hooke and Yorke [41]. Furthermore, as in the case of periodic meander

channels studied by Zolezzi et al. [105], it results that curvature variations

can promote laterally symmetrical channel width variations (see Figure 13.1).
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13.4 The non-linear response forced by the

interaction of channel curvature and width

variation O(νδ)

The nonhomogeneous differential problem describing the O(νδ) response

of the flow field and the bed configuration to the forcing induced by the

interaction between the channel curvature variations and the channel width

variations is obtained, as for theO(ν2) problem, not considering the deviation

of the main flow from the channel axis (Cs = C). It becomes:

L


ucb

vcb

dcb

hcb

 =


Kcb

1 (s, n)

Kcb
2 (s, n)

Kcb
3 (s, n)

Kcb
4 (s, n)

 (13.36)

and the boundary conditions (n = ±1) read as:

vcb =± B′uc;(
F 2
ruhcb − dcb

)
,n =[b5B + b6(ub,s + db,s) + b7ub + b8db]C+

(b6B + b9ub + b10db)C ′
(13.37)

where the bi (i = 5, 10) coefficients are reported in Appendix B.4.

The forcing terms Kcb
i (s, n) (i = 1, 4) can be expressed as products be-

tween O(δ) and O(ν) terms, O(δ) terms related to channel curvature C and

its derivatives and O(ν) terms related to width oscillations B and its deriva-

tives. They are reported in Appendix B.5 and can be divided into five types
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of contributions:

Kcb
1 =Bcb10(s) + Bcb11(s)

∞∑
m=0

k11
m sin(Mcn) + Bcb14(s)

∞∑
m=1

k14
m sin(Mbn)+

Bcb12(s)
∞∑
m=1

m∑
i=1

k12
i,m−i+1 sin(M I

cbn) + Bcb13(s)
∞∑
m=1

m∑
i=1

k13
i,m−i+1 sin(M II

cb n)

Kcb
2 =Bcb20(s) + Bcb21(s)

∞∑
m=0

k21
m cos(Mcn) + Bcb24(s)

∞∑
m=1

k24
m cos(Mbn)+

Bcb22(s)
∞∑
m=1

m∑
i=1

k22
i,m−i+1 cos(M I

cbn) + Bcb23(s)
∞∑
m=1

m∑
i=1

k23
i,m−i+1 cos(M II

cb n)

Kcb
3 =Bcb30(s) + Bcb31(s)

∞∑
m=0

k31
m sin(Mcn) + Bcb34(s)

∞∑
m=1

k34
m sin(Mbn)+

Bcb32(s)
∞∑
m=1

m∑
i=1

k32
i,m−i+1 sin(M I

cbn) + Bcb33(s)
∞∑
m=1

m∑
i=1

k33
i,m−i+1 sin(M II

cb n)

Kcb
4 =Bcb40(s) + Bcb41(s)

∞∑
m=0

k41
m sin(Mcn) + Bcb44(s)

∞∑
m=1

k44
m sin(Mbn)+

Bcb42(s)
∞∑
m=1

m∑
i=1

k42
i,m−i+1 sin(M I

cbn) + Bcb43(s)
∞∑
m=1

m∑
i=1

k43
i,m−i+1 sin(M II

cb n)

(13.38)

where:

M I
cb = (4i− 2m− 1)

π

2
; M II

cb = (2m+ 3)
π

2
(13.39)

These terms are characterized by a laterally antisymmetric structure for the

longitudinal momentum, the water depth and free surface elevation, while a

symmetrical distribution for the lateral momentum [59]. As proceeded for

the O(ν2) problem, we consider only the forcing contributions that do not

lead to any distortion of the basic flow. The first system reads as:

L


uIcb

vIcb

dIcb

hIcb

 =


Bcb12(s)

∑∞
m=1

∑m
i=1 k12

i,m−i+1 sin(M I
cbn)

Bcb22(s)
∑∞

m=1

∑m
i=1 k22

i,m−i+1 cos(M I
cbn)

Bcb32(s)
∑∞

m=1

∑m
i=1 k32

i,m−i+1 sin(M I
cbn)

Bcb42(s)
∑∞

m=1

∑m
i=1 k42

i,m−i+1 sin(M I
cbn)

 (13.40)
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The perturbations of the flow field, that satisfy the boundary conditions and

the corresponding structure, are expanded as:

uIcb =
∞∑
m=1

m∑
i=1

uIcbm sin (M I
cbn)

vIcb =
∞∑
m=1

m∑
i=1

vIcbm cos (M I
cbn) (13.41)

hIcb =
∞∑
m=1

m∑
i=1

hIcbm sin (M I
cbn)

dIcb =
∞∑
m=1

m∑
i=1

dIcbm sin (M I
cbn)

Introducing the expansions (13.41) into the system (13.40), the following four

ordinary differential equations system with constant coefficients is obtained:(
d4

ds4
+ σIcb3

d3

ds3
+ σIcb2

d2

ds2
+ σIcb1

d

ds
+ σIcb0

)
uIcbm =

ρIcbm +
6∑
i=0

ρIccbmi
Ci +

6∑
i=0

ρIbcbmi
Bi

(13.42)


vIcbm =

∑4
i=1 v

I
cbmi

uIcbm
i−1 +

∑6
i=1 v

Ic
cbmi
C i−1 +

∑6
i=1 v

Ib
cbmi
B i−1 + vIcbm

hIcbm =
∑4

i=1 h
I
cbmi

uIcbm
i−1 +

∑6
i=1 h

Ic

cbmi
C i−1 +

∑6
i=1 h

Ib

cbmi
B i−1 + h

I

cbm

dIcbm =
∑4

i=1 d
I
cbmi

uIcbm
i−1 +

∑6
i=1 d

Ic

cbmi
C i−1 +

∑6
i=1 d

Ib

cbmi
B i−1 + d

I

cbm

(13.43)

where the coefficients (σIcbi, v
I
cbmi

, hIcbmi
, dIcbmi

) and the terms (ρIccbmi
, vIccbmi

, h
Ic

cbmi
,

d
Ic

cbmi
), (ρIbcbmi

, vIbcbmi
, h

Ib

cbmi
, d

Ic

cbmi
), (ρIcbm, v

I
cbm, h

I

cbm, d
I

cbm) are functions of the

physical parameters βu, ds, τ∗u. The general solution for longitudinal velocity

perturbation is found to be:

uIcbm =
4∑
j=1

cIcbmj
e
λIcbmj

s
+

4∑
j=1

gIcbj

∫ s

0

e
λIcbmj

(s−ξ)
[
ρIcbm(ξ)

+
6∑
i=0

ρIccbmi
(ξ)Ci(ξ) +

6∑
i=0

ρIbcbmi
(ξ)Bi(ξ)

]
dξ

(13.44)
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where cIcbmj
(m = 1,∞) are integration constants depending on the channel

boundary conditions, instead gIcbj (j = 1, 4) are constant coefficients de-

pending on βu, ds, τ∗u. Once the solution for uIcbm is known, the remaining

dependent variables can be solved in cascade for the mth Fourier mode by

employing the expressions in (13.43).

The second system reads as:

L


uIIcb

vIIcb

dIIcb

hIIcb

 =


Bcb13(s)

∑∞
m=1

∑m
i=1 k13

i,m−i+1 sin(M II
cb n)

Bcb23(s)
∑∞

m=1

∑m
i=1 k23

i,m−i+1 cos(M II
cb n)

Bcb33(s)
∑∞

m=1

∑m
i=1 k33

i,m−i+1 sin(M II
cb n)

Bcb43(s)
∑∞

m=1

∑m
i=1 k43

i,m−i+1 sin(M II
cb n)

 (13.45)

where the perturbations of the flow field are expanded as:

uIIcb =
∞∑
m=1

m∑
i=1

uIIcbm sin (M II
cb n)

vIIcb =
∞∑
m=1

m∑
i=1

vIIcbm cos (M II
cb n) (13.46)

hIIcb =
∞∑
m=1

m∑
i=1

hIIcbm sin (M II
cb n)

dIIcb =
∞∑
m=1

m∑
i=1

dIIcbm sin (M II
cb n)

A system of four ordinary differential equations with constant coefficients

similar to (13.42-13.43) can be obtained with the following general solution

for longitudinal velocity perturbation:

uIIcbm =
4∑
j=1

cIIcbmj
e
λIIcbmj

s
+

4∑
j=1

gIIcbj

∫ s

0

e
λIIcbmj

(s−ξ)
[
ρIIcbm(ξ)

+
6∑
i=0

ρIIccbmi
(ξ)Ci(ξ) +

6∑
i=0

ρIIbcbmi
(ξ)Bi(ξ)

]
dξ

(13.47)

In conclusion the solution of the differential problem describing the O(νδ)

response of the flow field and the bed configuration to the forcing induced
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by the interaction between the channel curvature variations and the channel

width variations, without the distortion effects of the basic flow, reads as:

ucb = uIcb + uIIcb

vcc = vIcb + vIIcb

hcc = hIcb + hIIcb

dcc = dIcb + dIIcb

(13.48)

The mixed O(νδ) solution takes into account the reciprocal effects due

to the presence of channel curvature and width variations. It shows how the

width variations may influence the meander growth and its curvature (see

Figure 13.1).



Chapter 14

Input data and applicability

conditions

The mathematical model for the orders O(ν) and O(δ) was implemented

in a MATLAB code by Frascati and Lanzoni [38] and, in this work, it has been

improved as described in Chapters 2 and 3. The analytical character of the

solution ensures a relatively moderate computational effort. This Chapter

illustrates the input data necessary for running the model and discusses the

applicability conditions of the model. The input data are:

• the aspect ratio of the channel computed for the reference uniform flow,

βu = B∗avg/D
∗
u;

• the dimensionless sediment grain size, ds = d∗s/D
∗
u;

• the Shields parameter for the reference uniform flow, τ∗u;

• the particle Reynolds number, Rp.

For the univocally determination of these parameters, it is necessary to know

the characteristic sediment grain size (d∗s); the water discharge conveyed by

the river (Q∗); the average longitudinal bed slope of the investigated river

reach and the spatial distributions of the channel axis and the river width.

96
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The latters are used to obtain the curvature and width distributions ex-

pressed in terms of the longitudinal curvilinear coordinate s. The resulting

distributions are smoothed by means of a Savitzky-Golay filter, to avoid any

numerical problem in the derivatives evaluation, and remeshed. At this point,

the river width and curvature are calculated at every grid point and another

low-pass band filter is applied to avoid spurious, high frequency fluctuations

in the velocity field. The above described procedures are preliminary to the

flow field computation. Eventually, the velocity, the water elevation, the flow

depth and the bed elevation are calculated on a two-dimensional curvilinear

grid (sk, nk). It is worthwhile to underline that the channel width has to be

determined with reference to the portion of the cross section where the sed-

iment transport occurs under the formative flow conditions, i.e., controlling

the river morphology equilibrium [58].

The condition for the model applicability are:

1. small free vortex effect: this requirement implies wide bends (small

ν −→ N−1 ' 1) and weakly width variations (small δ);

2. small topographic steering effects: this is ensured when the bends are

long enough to not create rapid longitudinal variations of the flow field;

3. small values of the secondary flow intensity due to centrifugally forces:

this condition is guaranteed by small values of the dimensionless group

ν/(βu
√
Cfu);

4. small amplitude of bed perturbations with respect to the flow depth,

in order to ensure the linearization of the problem (see condition 13.1).

14.1 Comparison with field observations: Po

river

The model developed in the second part of this thesis has been tested by

simulating a reach of the middle Po River (Figure 14.1). The Po River is lo-
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Figure 14.1: Planform configuration of the investigated Po river reach; the

sections indicated in the picture are those surveyed by the “Agenzia Interre-

gionale per il Fiume Po” (2005). The arrow denotes the flow direction. The

image has been taken from Frascati and Lanzoni [38] (source Google maps).

cated in northern Italy. Its length, 652 km, makes it the longest river entirely

included in the Italian territory. The Po River originates in Monviso moun-

tain and, for the most part, flows in the Pianura Padana floodplain before

debouching into the Adriatic Sea through a vast delta with six branches. The

Po River morphology presents both single thread meandering/sinuous reaches

and multi channel braided reaches. The investigated reach is located between

the confluence with the Parma stream and that with the Enza stream. It is

about 21 km long, has an average width of 267m and an average bed slope

of 0.02%, estimated from the data of bottom elevations collected in 15 cross

sections surveyed by the “Agenzia Interregionale per il Fiume Po” (AIFP)

in 2005. The bed river sediments are composed by a mixture of sand and

gravel characterized by a geometric mean grain size of d∗sg = 1.6mm. Since

the model does not account for graded sediment and for variations in the

flow discharge observed during the flood events, the input values for d∗s and
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Q∗ D∗u U∗u d∗s βu ds τ∗u Rp

(m3/s) (m) (m/s) (m) (-) (-) (-) (-)

1550 4.5 1.3 0.003 29.8 0.0007 0.18 661

Table 14.1: Uniform flow conditions and dimensionless input parameters of

the investigated Po river reach.

Q∗ have been estimated as described in section 4 of Frascati and Lanzoni

[38]. The chosen reach consist of a sinuous point bar river with the width

variation intensity δ = 0.761 and the curvature ratio ν = 0.125. The di-

mensionless group ν/(β
√
Cfu) takes the value 0.057 and thus indicates that

the investigated river reach is characterized by a wide mildly curved bends.

Furthermore, the parameter ε is less than 10 ensuring the applicability of a

linearized model. Note that the river reach is assumed to be in morphody-

namic equilibrium and no external sediments sinks or sources are considered.

Table 14.1 summarizes the uniform flow conditions and the dimensionless

input parameters necessary for running the numerical code. In the following,

the investigated reach is divided into three parts indicated as 1st, 2nd and 3rd

sub-reaches.

Figures 14.2, 14.3 and 14.4 show the patterns of the dimensionless value

of the vertically averaged longitudinal velocity predicted in these three sub-

reaches. It clearly appears that the high-velocity core shifts from one side to

the other side of the river at each variation in planform curvature, as a result

of the centripetal forces.

The patterns of the corresponding bed topographies results are repre-

sented in Figures 14.5, 14.7 and 14.9. They correctly predict the typical me-

andering bathymetry evolution, with alternating accretion of the sediment

deposition (“point bars”) and erosion (“pools”) at the river banks. Figures

14.6, 14.8 and 14.10 show the comparison between the computed bed ele-

vations and the data surveyed by the “Agenzia Interregionale per il Fiume

Po” in 2005, for the aforementioned cross sections (see Figure 14.1). Note
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that the bed elevation values shown in the plots are obtained by removing

the perturbations due to the average bed slope. The Figures 14.6, 14.8 and

14.10 reveal an overall good agreement between computed and observed bed

elevations. The model appears to reasonably reproduce the maximum and

minimum bed elevation within the analyzed cross sections and also the alter-

nating transverse bending of the river bed, as observed in Figures 14.5, 14.7

and 14.9 reporting the color maps of the computed bed topography.

Figure 14.2: Dimensionless value of the vertically averaged longitudinal ve-

locity of the 1st sub-reach. The arrow shows the flow direction.
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Figure 14.3: Dimensionless value of the vertically averaged longitudinal ve-

locity of the 2nd sub-reach. The arrow shows the flow direction.

Figure 14.4: Dimensionless value of the vertically averaged longitudinal ve-

locity of the 3rd sub-reach. The arrow shows the flow direction.
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Figure 14.5: Bed topography of the 1st sub-reach and the corresponding

aerial photo.

Figure 14.6: Bed elevations of the 1st sub-reach at five cross sections (see

Figure 14.5). The continuous line represent the computed values and the red

dots are the measures surveyed by the “AIFP”. The flow enters into the plot

plane.
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Figure 14.7: Bed topography of the 2nd sub-reach and the corresponding

aerial photo.

Figure 14.8: Bed elevations of the 2nd sub-reach at five cross sections (see

Figure 14.7). The continuous line represent the computed values and the red

dots are the measures surveyed by the “AIFP”. The flow enters into the plot

plane.
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Figure 14.9: Bed topography of the 3rd sub-reach and the corresponding

aerial photo.

Figure 14.10: Bed elevations of the 3rd sub-reach at five cross sections (see

Figure 14.9). The continuous line represent the computed values and the red

dots are the measures surveyed by the “AIFP”. The flow enters into the plot

plane.



Chapter 15

Conclusion

An analytical model based on the complete response of a meandering

river to spatially varying distributions of cross-section channel width and

channel axis curvature has been developed. The model has been elaborated

taking advantage of some morphological features observed in the field. Al-

though alluvial rivers in nature usually exhibit quite complex planforms,

they maintain small values of the intensity of width oscillations (δ) and of

the dimensionless channel axis curvature (ν). These characteristics allow for

linearization of the governing equations (12.29-12.32). Clearly, this approach

is unable to describe the behaviour of sharp bends. Another limitation of the

model is its incapacity into account for variable hydraulic regime and differ-

ent grain sizes, that can significantly influence the river morphology. When

the aforementioned conditions are not satisfied, the model can only qualita-

tively predict the morphological tendencies of an alluvial river. It describes

the combination of the laterally antisymmetric flow field and bed topogra-

phy patterns of the O(ν) and O(νδ) solutions and the laterally symmetrical

patterns resulting from the O(δ) and O(ν2) solutions (see Table 15.1).

The O(ν) and O(δ) contributions to the flow field are used to assess the

morphological behaviour of a reach of the Po River (Italy). The overall com-

parison between the computed and measured bed elevations is reasonable. A

preliminary calibration of the flow discharge Q∗ and the characteristic sed-
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Order u,d,h v

O(δ) symmetric antisymmetric

O(ν) antisymmetric symmetric

O(νδ) antisymmetric symmetric

O(ν2) symmetric antisymmetric

Table 15.1: Character of the flow field variables at different order of approx-

imation.

iment bed size d∗s parameters is necessary given the intrinsic limitations of

the model to find out the formative discharge and to account for the average

sedimentologic properties of the investigated reach (see Frascati and Lanzoni

[38]). The part two of the present thesis set the mathematical basis needed

in order to incorporate in the model also the effects due to the O(ν2) and

O(νδ) corrections. These are hopefully deemed to improve the robustness of

the model and, hence, its predictive capacity.

In general, despite the intrinsic limitations due to linearization, the model

can be used to investigate the response of the river bed topography as a

results of hydrological regime variations or modification of the river plan-

form geometry due to restoration activities or engineering works. Indeed,

its analytical character ensures a fast application in the research of the river

equilibrium configuration, unlike the complete 2D movable bed models that

are extremely time consuming. Moreover, it can be also easily integrated

into long-term planimetric evolution models of meandering rivers becoming

a powerful tool for controlling floodplain changes over time.
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Appendix A

Validation of wall layer model

Figure A.1: Sketch of the problem. Figure modified from Broglia et al. [22]

A wall layer model is applied to mimic the solid walls of the meander

channel. It supply wall stress as a boundary condition and it is obtained

from an instantaneous matching of velocity at the first off-wall centroid with

the log law to the computed velocity profile. The work of Broglia et al.

[22] has been taken as reference to test the model. They perform LES of a

incompressible fully developed turbulent flow in a square duct (see Figure

A.1) bounded above by a free-slip wall. The Reynolds number is based on

the mean friction velocity uτ and the duct width D and it is equal to 1000.
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Figure A.2: Mean streamwise-velocity profile in wall units along the bottom-

wall bisector (x = 0.5).

The flow is driven by a constant body force per unit mass. Periodic boundary

conditions are used in the streamwise directions and a wall function approach

is employed at the solid walls. The SGS stresses τij are parameterized by

an eddy viscosity model, where a dynamic procedure is used to determine

the eddy viscosity coefficient. The grid dimensions are 32 × 32 × 64 points

in spanwise, vertical and streamwise directions (note that we used a grid

coarser than that employed by Broglia et al.[22] because of the use of the

wall-layer model). In the following, the data for the statistics are collected

for a sampling interval of ∆t = 5 s, corresponding to a non-dimensional time

∆t uτ/D = 5.

The mean streamwise-velocity profiles in logarithmic scale along the bottom-

wall bisector and for a distance of y = 0.6 from the free surface are presented

in Figures A.2 and A.3, respectively. The velocity profiles and the distances

from the wall are normalized using the friction velocity value (uτ = 1). The

logarithmic law is satisfied very well and compared with the Broglia et al.
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Figure A.3: Mean streamwise-velocity profile in wall units for a distance of

y = 0.6 from the free surface.

results we do not observe the overshoot of the logarithmic layer intercept

in the upper part of the profile. It is worthwhile to observe that the test

reference was conducted employing a not uniform grid discretization in the

spanwise and normal directions and that a different log law was used for the

profile in Figure A.3.

The Figures A.4 and A.5 show mean streamwise-velocity contours and

secondary velocity vectors in the cross-stream (y, z)-plane, respectively. The

free surface is at the top and only half of the domain is shown. In the lower

corner of Figure A.4, a secondary flow, consisting of a streamwise counter-

rotating vortex pair, is driven from the central region of the duct towards the

corner region along the corner bisector. The flow behavior near the sidewall

in the region around z = 0.5 shows a transition between the corner and the

free-surface behavior, characterized by a weaker counter-clockwise vortical

motion. In the upper corner, the effects of the free-shear surface become

important with the formation of an “inner” and an “outer” mean secondary
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flow.

Contours of the resolved mean streamwise-vorticity (see Figure A.5) show

positive and negative extrema at the vertical and horizontal walls. In the

center of the larger flow-cells the vorticity attains extreme values locally. We

can observe that the contours of mean streamwise vorticity show a direct

correspondence with the secondary flow.

In conclusion, the results of this test case are satisfying and they strongly

support the wall layer model implemented in the LES-COAST model.

Figure A.4: Mean streamwise-velocity contours and cross-stream velocity

vectors in the cross-stream (x,y)-plane: (a) results from the present simula-

tion and (b) Broglia et al. [22] results.
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Figure A.5: Mean streamwise-vorticity contours in the cross-stream (x,y)-

plane: (a) results from the present simulation and (b) Broglia et al. [22]

results.
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Appendix B

Mathematical model

coefficients

B.1 Coefficients of Equations (12.29-12.32)

f10 = −nC
(
αV U,n +βu

τs
D

)
− αCUV − (k0Γn0 + k1Γn1)

f01 = nB,s (αUU,n +H,n )− αBV U,n
f11 = Bk0Γn0 + k1 (BΓn1 + B,s Γn)− nBCβu

τs
D

f20 = −nC (k0Γn0 + k1Γn1)− (k0Γν0 + k1Γν1)

g10 = −nC
(
αV V,n +H,n +βu

τn
D

)
+ αCU2 − k0 (Γ0 + Γs0)− k1 (Γ1 + Γs1)

g01 = αnB,s UV,n +B (αV V,n +H,n )

g11 = k0 (nB,s Γn0 + BΓ0) + k1 (nB,s Γn1 + BΓ1 + nΓs + B,s Γ01)− nBCβu
τn
D

g20 = −nC (k0Γ0 + k1Γ1)− C (k0Γ2 + k1Γ3)− (k4Γ4 + k5Γ5 + k6Γ6)

m10 = −C[n(DV ),n +DV ]

m01 = nB,s (DU),n−B(DV ), n

m11 = 0

m20 = 0

n10 = −C(nqn,n + qn)

n01 = nB,s qs,n + Bqn,n
n11 = 0

n20 = 0
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where:

Γn0 =
[D2U2C] ,n
βu
√
CfuD

Γn1 =
[D2U(DUC),s ] ,n

β2
uCfuD

Γn =
[nD2U(DUC),n ] ,n

β2
uCfuD

Γ0 = 2
[D2UV C] ,n
βu
√
CfuD

Γ1 = 2
[D2V (DUC),s ] ,n

β2
uCfuD

Γ01 = 2
[nD2V (DUC),n ] ,n

β2
uCfuD

Γs0 =
[D2U2C] ,s
βu
√
CfuD

Γs1 =
[D2U(DUC),s ] ,s

β2
uCfuD

Γs =
[B,sD2U(DUC),n ] ,s

β2
uCfuD

Γν0 = 2
DU2C2

βu
√
Cfu

Γν1 = 2
DUC [DUC] ,s

β2
uCfu

Γ2 = 2
DUV C
βu
√
Cfu

Γ3 = 2
DV [DUC] ,s

β2
uCfu

Γ4 =
[D3U2C2] ,n
β2
uCfuD

Γ5 = 2
[D3UC(DUC),s ] ,n

β3
uCfu

√
CfuD

Γ6 =
[D3(DUC),2s ] ,n

β4
uC

2
fuD

B.2 Coefficients of Equations (13.3)

Cf1 = CfT s1uc + (CfD + CfT s2) dc

Cf2 = CfT s1ub + (CfD + CfT s2) db

Cf3 = CfT s1ucb + (CfD + CfT s2) dcb + CfT j1ucub + CfT2j2vcvb + CfT j3(ubdc + ucdb)

Cf4 = CfT s1ucc + (CfD + CfT s2) dcc + CfT j4ucuc + CfT j2vcvc + CfT j3ucdc

τ∗1 = s1uc + s2dc

τ∗2 = s1ub + s2db

τ∗3 = s1ucb + s2dcb + j1ucub + 2j2vcvb + j3(ubdc + ucdb)

τ∗4 = s1ucc + s2dcc + j4ucuc + j2vcvc + j3ucdc

Φ1 = s1ΦTuc + (ΦD + ΦT s2) dc

Φ2 = s1ΦTub + (ΦD + ΦT s2) db

Φ3 = s1ΦTucb + (ΦD + ΦT s2) dcb + ΦT j1ucub + ΦT2j2vcvb + ΦT j3(ubdc + ucdb)

Φ4 = s1ΦTucc + (ΦD + ΦT s2) dcc + ΦT j4ucuc + ΦT j2vcvc + ΦT j3ucdc
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where:

s1 =
2

1− CfT
s2 =

CfD
1− CfT

s3 =
CfT

1− CfT

j1 = 3 + s1 + 3s3 + 4s1s3 j2 = (
s3
2

+
s1
4

+
1

2
) j3 = 2s2(s3 + 1)

j4 = (4s3 +
s1
2

)

CfT = τ∗u
Cf,T |u
Cfu

CfD =
Cf,D |u
Cfu

ΦT = τ∗u
Φ,T |u

Φu

ΦD =
Φ,D |u

Φu

B.3 Coefficients of O(δ) problem (13.4-13.5)

and O(ν) problem (13.14-13.15)

a1 =
2βuCfu
1− CfT

a2 = βuCfu

(
CfD

1− CfT
− 1

)
a3 = βuCfu

a4 =
2ΦT

1− CfT
a5 = ΦD +

CfDΦT

1− CfT
a6 =

r

βu
√
τ∗u

a7 = 1− k2
√
Cfu a8 = − k2

βu
√
Cfu

b1 = −βuCfu b2 = 1− k2
√
Cfu b3 = − k0

βu
√
Cfu
− k3
βu

b4 = − k1
β2
uCfu

b5 =
k2
√
τ∗u

r
√
Cfu

b6 =
k3
√
τ∗u

rβuCfu
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B.4 Forcing terms of System (13.22-13.23)

Kcc
1 (s, n) = + b11CC + 2b4CC ′ + nb12Cuc − Cvc + nb13Cdc + (b11C

+ 2b4C ′)uc,n + (b11C + 3b4C ′)dc,n + b4C
∂2uc
∂s∂n

+ b4C
∂2dc
∂s∂n

+ b14ucuc + b15vcvc − b13dcdc + b16ucdc − ucuc,s − uc,nvc
Kcc

2 (s, n) = + b17C − nb17C − nb20CC ′ + [(2b2 + b19)C + (2b3 + b20)C ′

+ 2b4C ′′]uc + nb1Cvc + [b21C + (b3 + b22)C ′ + 2b4C ′′]dc
+ [(b11 + b20)C + 3b4C ′]uc,s + [(b11 + b20)C + 4b4C ′]dc,s

+ (b11C + 2b4C ′)vc,n − nChc,n + b4C
∂2uc
∂s2

+ b4C
∂2dc
∂s2

+ b23ucvc + b24vcdc − ucvc,s − vcvc,n
Kcc

3 (s, n) =− Cvc − nCvc,n − ucdc,s − uc,sdc − vcdc,n − vc,ndc
Kcc

4 (s, n) = + b25CC + b26CC ′ − Cvc + (b27C + b28C ′)uc,n − nCvc,n

+ [(b29 + b30)C + b31C ′]dc,n − b30CF 2
ruhc,n + nb30C

∂2dc
∂n2

− nb30CF 2
ru

∂2hc
∂n2

+ b26C
∂2uc
∂s∂n

+ b26C
∂2dc
∂s∂n

+ b32ucuc,s

+ b33vcvc,s + b33uc,nvc + b33ucvc,n + b34uc,sdc + b34ucdc,s

+ b35vc,ndc + b35vcdc,n − b36F 2
ruuc,nhc,n + b36uc,ndc,n

+ b36uc
∂2dc
∂n2

− b36F 2
ruuc

∂2hc
∂n2

+ (b37 + b38)F
2
rudc,nhc,n

− (b37 + b38)dc,ndc,n + b37dc
∂2dc
∂n2

− b37F 2
rudc

∂2hc
∂n2

where the bi (i = 1, 6) coefficients are reported in the previous section B.3,
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whereas the bi (i = 7, 38) coefficients read as:

b7 =
k2
√
τ∗u

r
√
Cfu

(
1

1− CfT

)
b8 =

k2
√
τ∗u

r
√
Cfu

[
1 +

CfD
2(1− CfT )

]
b9 =

k3
√
τ∗u

rβuCfu

(
1

1− CfT

)
b10 =

k3
√
τ∗u

rβuCfu

[
2 +

CfD
2(1− CfT )

]
b11 = − 2k0

βu
√
Cfu

b12 = −βuCfu
(

2

1− CfT

)
b13 = −βuCfu

(
−1 +

CfD
1− CfT

)
b14 = −βuCfu

[
(1 + 2CfT )2

1− CfT

]
b15 = −βuCfu

[
1

2
+

2CfTCfD
(1− CfT )2

]
b16 = −βuCfu

(
CfT + 2CfD − 2

1− CfT

)
b17 = k2

√
Cfu b18 =

k3
βu

b19 = −k2
√
Cfu

(
2CfT

1− CfT

)
b20 = −k3

βu

(
2CfT

1− CfT

)
b21 = −k2

√
Cfu

(
1 +

CfD
1− CfT

)
b22 = −k3

βu

(
CfD

1− CfT

)
b23 = −βuCfu

(
1 + CfT
1− CfT

)
b24 = −βuCfu

(
CfD

1− CfT

)
b25 = − k2

βu
√
Cfu

b26 = − k3
β2
uCfu

b27 = − k2

βu
√
Cfu

(
2ΦT

1− CfT

)
b28 = − k3

β2
uCfu

(
2ΦT

1− CfT

)
b29 = − k2

βu
√
Cfu

(
1 + ΦD +

ΦTCfD
1− CfT

)
b30 = − r

βu
√
τ∗u

b31 =
k3

β2
uCfu

(
2 + ΦD +

ΦTCfD
1− CfT

)
b32 = −2ΦT (1 + 4CfT )

1− CfT

b33 = −2ΦT + CfT − 1

1− CfT
b34 = − 2ΦTCfD

(1− CfT )2

b35 = −ΦD −
ΦTCfD
1− CfT

b36 = − r

βu
√
τ∗u

(
2ΦT − 1

1− CfT

)
b37 = − r

βu
√
τ∗u

(
ΦD −

ΦTCfD
1− CfT

)
b38 =

r

βu
√
τ∗u

[
CfD

2(1− CfT )

]
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B.5 Forcing terms of System (13.36-13.37)

Kcb
1 (s, n) = + nb1BC + nb12Cub − Cvb + nb13Cdb + (b11C + 2b4C ′)ub,n

+ (b11C + 3b4C ′)db,n + nB′uc,n + nB′hc,n + b4C
∂2ub
∂s∂n

+ b4C
∂2db
∂s∂n

+ b39ucub + b23vcvb − 2b13dcdb + b40ucdb + b40ubdc − ucub,s
− uc,sub − uc,nvb − ub,nvc

Kcb
2 (s, n) = + [(2b2 + b19)C + (2b3 + b20)C ′ + 2b4C ′′]ub + nb1Cvb + [b41C

+ (b3 + b22)C ′ + 2b4C ′′]db + [(b11 − b18)C + 3b4C ′]ub,s + [(b11

− b18)C + 4b4C ′]db,s + nB′vc,n + (b11C + 2b4C ′)vb,n + Bhc,n

− nChb,n + b4C
∂2ub
∂s2

+ b4C
∂2db
∂s2

+ b23ucvb + b23ubvc + b13vcdb

+ b13vbdc − ucvb,s − ubvc,s − vcvb,n − vbvc,n
Kcb

3 (s, n) =− Cvb + nB′uc,n + Bvc,n − nCvb,n + nB′dc,n − ucdb,s − uc,sdb
− ubdc,s − ub,sdc − vcdb,n − vc,ndb − vbdc,n − vb,ndc

Kcb
4 (s, n) =− Cvb + nb42B′uc,n + (b27C + b28C ′)ub,n + Bvc,n − nCvb,n

− nb35B′dc,n + [(b29 + b30)C − b31C ′]db,n − b30CF 2
ruhb,n

− 2b30B
∂2dc
∂n2

+ nb30C
∂2db
∂n2

+ 2b30BF 2
ru

∂2hc
∂n2

− nb30CF 2
ru

∂2hb
∂n2

+ b26C
∂2ub
∂s∂n

+ b26C
∂2db
∂s∂n

+ b43ucub,s + b43uc,sub + b33vcvb,s

+ b33vc,svb + b33ucvb,n + b33uc,nvb + b33ubvc,n + b33ub,nvc

+ b34ucdb,s + b34uc,sdb + b34ubdc,s + b34ub,sdc + b35vcdb,n

+ b35vc,ndb + b35vbdc,n + b35vb,ndc + b36uc,ndb,n + b36ub,ndc,n

− b36F 2
ruuc,nhb,n − b36F 2

ruub,nhc,n − 2b44dc,ndb,n + b44db,nhc,n

+ b36uc
∂2db
∂n2

+ b36ub
∂2dc
∂n2

− b36uc
∂2hb
∂n2

− b36ub
∂2hc
∂n2

+ b38dc
∂2db
∂n2

+ b38db
∂2dc
∂n2

− b38F 2
rudc

∂2hb
∂n2

− b38F 2
rudb

∂2hc
∂n2

where the bi coefficients are reported in section B.3 (i = 1, 6) and B.4 (i =
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7, 38), whereas the bi coefficients (i = 39, 44) read as:

b39 = −βuCfu
[

2 + 9CfT − 3C2
fT

(1− CfT )2

]
b40 = −βuCfu

[
2(CfT + CfD − 1)

(1− CfT )2

]
b41 = −k2

√
Cfu

(
CfD

1− CfT

)
b42 =

2ΦT

1− CfT

b43 = −ΦT (5 + 3CfT )

(1− CfT )2
b44 =

r

βu
√
τ∗u

[
ΦD + CfD

(
ΦT −

1

2

)]
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Solution of the linearized form

of the problem

C.1 Solution forced by width variations O(δ)

The solution (13.13) of the four ordinary differential Equation (13.11)

is composed by the solution of the corresponding homogeneous differential

Equation (I term) and by the particular solution (II term). The homogeneous

differential Equation reads as:

λ4bm + σb3λ
3
bm + σb2λ

2
bm + σb1λbm + σb0 = 0

where σbi (i = 0, 4) coefficients are determined as follows:

σbi = [ξi + ∆0ξi+1 + ∆2(α2 εi+2 − δ2 βi+2)]/ξ4 (σb4 = 1)

with:

ξi = ∆1(δ2βi+1 − α2εi+1)− δ2(δ2βi − α2εi) + ∆εi+1

and:

∆ = δ2α1 − δ1α2 ∆0 =
δ2α0 − δ0α2

∆

∆1 = δ2∆0 − δ1 ∆2 = ∆1∆0 + δ0
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α0 = a2 α1 =
a6

F 2
ruâ6

α2 =
1− â5
M2

b F
2
ruâ6

δ0 = −M2
b a6 δ1 = â5 − 1− F 2

ruâ6a3 δ2 = −F 2
ruâ6a7

β2 = a1 β3 = 1 β4 =
1− â4
M2

b F
2
ruâ6

β1 = β5 = β6 = 0

ε3 = â4 − 1− F 2
ruâ6a3 ε4 = −F 2

ruâ6a7 ε1 = ε2 = ε5 = ε6 = 0

Note that:

â4 = a4 +
a3a8
a7

â5 = a5 +
a3a8
a7

â6 = a6 +
a8

F 2
rua7

Moreover, the coefficients gbjk (k = 1, 4) appearing in the II term of the

solution (13.13) are:

gbj0 =
Wmj

Wm

4∑
k=0

ρbkλ
k
bmj gbjk =

Wmj

Wm

4∑
i=k

ρbiλ
i−k
bmj

where Wm is the Wronskian determinant of the fundamental system and

Wmj are the Wronskian determinant of the fundamental system with the ith

column replaced by (0, 0, 0, 1):

Wm =

∣∣∣∣∣∣∣∣∣∣
1 1 1 1

λbm1 λbm2 λbm3 λbm4

λ2bm1 λ2bm2 λ2bm3 λ2bm4

λ3bm1 λ3bm2 λ3bm3 λ3bm4

∣∣∣∣∣∣∣∣∣∣

Wm1 = −

∣∣∣∣∣∣∣∣
1 1 1

λbm2 λbm3 λbm4

λ2bm2 λ2bm3 λ2bm4

∣∣∣∣∣∣∣∣ Wm2 =

∣∣∣∣∣∣∣∣
1 1 1

λbm1 λbm3 λbm4

λ2bm1 λ2bm3 λ2bm4

∣∣∣∣∣∣∣∣
Wm3 = −

∣∣∣∣∣∣∣∣
1 1 1

λbm1 λbm2 λbm4

λ2bm1 λ2bm2 λ2bm4

∣∣∣∣∣∣∣∣ Wm4 =

∣∣∣∣∣∣∣∣
1 1 1

λbm1 λbm2 λbm3

λ2bm1 λ2bm2 λ2bm3

∣∣∣∣∣∣∣∣
The other terms that appear in the coefficients gbjk are defined as follows:

ρbi = [µi + ∆0µi+1 + ∆2(α2 ηi+2 − δ2 γi+2)]/ξ4
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with:

µi = ∆1(δ2γi+1 − α2ηi+1)− δ2(δ2γi − α2ηi) + ∆ηi+1

and:

η4 = −δ1db1 η5 = −δ2db1 − δ1db2
η6 = −δ2db2 η1 = η2 = η3 = 0

γ3 = −a2db1 γ4 = −hb1 − a2db2 γ5 = −hb2 − α2db1

γ6 = −α2db2 γ1 = γ2 = 0

Note that:

hb1 = −a3
2

hb2 = −a7
2

db1 = −a3
2
F 2
ru db2 = −a7

2
F 2
ru −

a8
2a6

Once the coefficients of the perturbed solution for the longitudinal velocity

have been determined, the coefficients of the other perturbed variables are

readily determined from the relations (13.12), in which appear the terms:

dbmi = − ξi
∆ ∆2

dbbmi =
µi

∆ ∆2

vbm1 = Vbm1/Mb vbm2 = (Vbm2 − 1)/Mb vbm3 = Vbm3/Mb vbm4 = Vbm4/Mb

vbbm2 = V b
bm2/Mb vbbm3 = (V b

bm3 − d1b)/Mb vbbm4 = (Vbm4 − d2b)/Mb

hbm1 = Hbm1 hbm2 = Hbm2 + β4 hbm3 = Hbm3 hbm4 = Hbm4

hbbm2 = Hb
bm2 hbbm3 = Hb

bm3 + α2 d1b hbbm4 = Hbm4 + α2 d2b

where:

Vbmi = ∆0dbmi +
δ2 βi+1 − α2 εi+1

∆

V b
bmi = ∆0d

b
bmi +

α2 ηi+1 − δ2 γi+1

∆

Hbmi = (α1 −∆0 α2)dbmi − α2
δ2 βi+1 − α2 εi+1

∆

Hb
bmi = (α1 −∆0 α2)d

b
bmi − α2

α2 ηi+1 − δ2 γi+1

∆
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C.2 Solution forced by channel curvature O(ν)

The solution (13.21) of the four ordinary differential Equation (13.19)

is composed by the solution of the corresponding homogeneous differential

Equation (I term) and by the particular solution (II term). The homogeneous

differential Equation reads as:

λ4cm + σc3λ
3
cm + σc2λ

2
cm + σc1λcm + σc0 = 0

where σci (i = 0, 4) coefficients are determined as follows:

σci = (ξi + ∆0ξi+1 + ∆∆2Ti+1)/ξ4 (σc4 = 1)

with:

ξi = −∆∆1Ti + δ2∆Ti−1 + ∆εi+1

and:

∆ = δ2α1 − δ1α2 ∆0 =
δ2α0 − δ0α2

∆

∆1 = δ2∆0 − δ1 ∆2 = ∆1∆0 + δ0

T0 = −∆0 Ti = − 1

∆
(δ2βi+1 − α2εi+1)

α0 = a2 α1 =
a6

F 2
ruâ6

α2 =
1− â5
M2

c F
2
ruâ6

δ0 = −M2
c a6 δ1 = â5 − 1− F 2

ruâ6a3 δ2 = −F 2
ruâ6a7

β2 = a1 β3 = 1 β4 =
1− â4
M2

c F
2
ruâ6

β1 = β5 = β6 = 0

ε3 = â4 − 1− F 2
ruâ6a3 ε4 = −F 2

ruâ6a7 ε1 = ε2 = ε5 = ε6 = 0

Note that:

â4 = a4 +
a3a8
a7

â5 = a5 +
a3a8
a7

â6 = a6 +
a8

F 2
rua7

The coefficients gcjk (k = 1, 4) appearing in the expression of the longitudinal

velocity perturbation (13.13) are formally similar to those derived for the
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problem forced by width variations (gbjk), but with the coefficients ρci that

take the form:

ρci = (µi + ∆0µi+1 −∆∆2T
c
i+1)/ξ4

where:

µi = ∆∆1 − δ2∆T ci−1 + ∆ηi+1

with:

T ci =
1

∆
(δ2γi+1 − α2ηi+1)

and:

η3 = −δ1dc1 η4 = −δ2dc1 − δ1dc2 η5 = −δ2dc2 − δ1dc3
η6 = −δ2dc3 η1 = η2 = 0

γ2 = b1 − a2dc1 γ3 = −hc1 − a2dc2 γ4 = −hc2 − a2dc3 − α2dc1

γ5 = −hc3 − α2dc2 γ6 = −α2dc3 γ1 = 0

Once the coefficient of the perturbation of the longitudinal velocity has been

determined, the coefficient of the other perturbed variables are readily de-

termined from the relations (13.20), in which appear the terms:

vcmi = (Vci + Tc0dcmi)/Mc vccmi = (V c
ci + Tc0d

c
cmi)/Mc

hcmi = Hci +Hc0dcmi hccmi = Hc
ci +Hc0d

c
cmi

with:
dcm0 = −(M2

cHc0 + a7T
2
0 + a3T0)

dcm1 = (M2
cHc1 + a7T0T1 + a3Vc1)/dcm0

dcm2 = (M2
cHc2 + a7T0T2 + a3Vc2 + a7Vc1)/dcm0

dcm3 = (M2
cHc3 + a7T0T3 + a3Vc3 + a7Vc2)/dcm0

dcm4 = (a7Vc3)/dcm0

dccm1 = (M2
cH

c
c1 + a7T0T

c
1 + a3V

c
c1)/dcm0

dccm2 = (M2
cH

c
c2 + a7T0T

c
2 + a3V

c
c2 + V c

c1)/dcm0

dccm3 = (M2
cH

c
c3 + a7T0T

c
3 + a3V

c
c3 + V c

c2)/dcm0

dccm4 = (M2
cH

c
c4 + a7T0T

c
4 + a3V

c
c4 + V c

c3)/dcm0

dccm5 = (a7V
c
c4)/dcm0
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where:

Vc1 = T1 Vc2 = T2 + 1 Vc3 = T3

V c
c1 = T c1 V c

c2 = T c2 + dc1 V c
c3 = T c3 + dc2

V c
c4 = T c4 + dc3 V c

c5 = 0

Hc0 = α1 + α2T0 Hc1 = α2T1

Hc2 = α2T2 + β4 Hc3 = α2T3

Hc
c1 = α2T

c
1 Hc

c2 = α2(T
c
2 + dc1)

Hc
c3 = α2(T

c
3 + dc2) Hc

c4 = α2(T
c
4 + dc3) Hc

c5 = 0



List of Symbols

ai (i = 0, 1) constant coefficients

a1 structure parameter

ai (i = 1, 8) constant coefficients in Part II

aN matrix coefficient corresponding to the neighbour N

aP central coefficient

B channel width in Part I

B,Bavg, B0 local, average and maximum half channel width

B dimensionless width perturbation

bi (i = 1, 10) constant coefficients

Cd constant of the dynamic eddy viscosity model

CDES model parameter

Cf , Cfu local and uniform flow friction coefficient

Cfi (i = 1, 4) constant coefficients

Ci convective terms

C curvature of the channel axis

Cs curvature of the streamlines

cbmj, ccmj integration constants

cf friction factor

D flow field domain in Part I

D,Du local and uniform flow depth

DE, DI discrete operator representing the off-diagonal diffusive

terms and the diagonal viscous terms, respectively

d turbulence length scale
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128 List of Symbols

d50 sediment diameter intercepted for 50% of the cumulative

mass

dmin distance to the closest boundary

dsg geometric mean grain size

ds sediment grain size

F face flux

Fr, Fru Froude number based on the bulk velocity and Froude num-

ber of the uniform flow

F vertical distribution of the uniform flow with local flow

characteristics

f flow field variable, point in the centre of the face

fij constant coefficients

G filter function

Gmn mesh skewness tensor

Gi vertical structure of the secondary flow due to channel axis

curvature (i = 0) and longitudinal convection (i = 1)

G dimensionless second order 2-D tensor

g gravitational constant

gij constant coefficients

gbjk, gcjk constant coefficients

H average water depth in Part I

H,Hr local and reference water surface elevation with respect to

a given horizontal datum in Part II

h local water surface elevation with respect to the horizontal

plane containing n

h̃ free surface perturbation

I identity matrix

J−1 inverse of Jacobian of the coordinate transformation or cell

volume

Kcb
i , K

cc
i (i = 1, 4) forcing terms

k von Karman constant
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ki redistribution coefficients due to centrifugal (i = 0, 2) and

convective (i = 1, 3) secondary flow effects or due to non-

linear interactions (i = 4, 6) between secondary and longi-

tudinal flow

ks equivalent roughness height

L length of the investigated river reach

Lij resolved turbulent stresses

L,L differential operators

mij constant coefficients

N longitudinal metric coefficient

N vertical distribution of the eddy viscosity

nij constant coefficients

nb unit vector normal to the banks

p kinematic pressure

Q flow rate

qs, qn longitudinal and lateral components of the unit width sed-

iment flux, q

R centreline radius of curvature in Part I and local radius of

curvature of the channel axis in Part II

R0 typical value of the radius of curvature

Ri discrete operator for pressure gradient terms

Rp particle Reynolds number

Re Reynolds number

r empirical constant

r source term

S magnitude of the vorticity

Sij resolved strain rate tensor

s, n, z intrinsic longitudinal, lateral and vertical coordinate in

Part II, respectively

sf face area vector

Tij subtest scale stresses



130 List of Symbols

t time

Um volume flux

U, V local values of depth-averaged longitudinal and transverse

velocities in Part II, respectively

u∗i intermediate velocity

uτ average shear velocity

u, v, w longitudinal, lateral and vertical components of the local

velocity in Part II, respectively

ub, vb, db, hb flow field perturbations due to width variations

uc, vc, dc, hc flow field perturbations due to channel axis curvature

ucb, vcb, dcb, hcb flow field perturbations due to channel axis curvature and

width variations interaction

ucc, vcc, dcc, hcc flow field perturbations due to channel axis curvature at

second-order

us, v, ws spanwise, vertical and streamwise velocity in Part I, re-

spectively

u velocity vector

v+n wall-normal velocity dimensionless with uτ

ṽ local distribution of the centrifugally induced secondary

flow

Wav bulk velocity

w∗ friction velocity

x arbitrarily selected reference Cartesian axis in Part II

x, y, z lateral, vertical and longitudinal space coordinates in Part

I, respectively

z0 reference level at which the no slip condition is applied

z+n wall-normal coordinate dimensionless with ν/uτ (wall

units)

α momentum correction factor

βu aspect ratio of the uniform flow

∆ filter width
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∆ local grid size

∆x,∆y,∆z grid size in x, y and z directions, respectively

δ intensity of longitudinal width variations

δ Kronecker Delta

ε controlling parameter of bottom variation intensity

η local bed elevation

θ angle between the channel axis and the x-direction

λbmj
, λcmj

characteristic exponents

λcbmj
, λccmj

characteristic exponents

ν kinematic viscosity in Part I and curvature ratio in Part II

νT turbulent eddy viscosity

ξ, η, ζ curvilinear coordinate in Part I

ξ normalized vertical coordinate

ξ0 normalized reference level

ρ, ρs water and sediment density, respectively

ρ0 reference density

ρbi, ρci constant coefficients

ρcbm, ρccm functions of the longitudinal coordinate s

ρcbmi
, ρccmi

functions of the longitudinal coordinate s

σ1, σ2 principal stresses

σbi, σci, σcbi, σcci constant coefficients

τij subgrid-scale stresses

τ∗, τ∗u local and uniform flow Shields stress

τ∗i (i = 1, 4) constant coefficients

τbs total bed shear stresses

τs, τn longitudinal and transverse components of the bed shear

stress, τ

υ molecular viscosity

υ̃ modified eddy viscosity

Φ,Φu local and uniform flow intensity of sediment transport

Φi (i = 1, 4) constant coefficients
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φ projector pressure operator

ωy vertical vorticity

ωs streamwise vorticity
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