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Abstract

Circadian clocks are fundamental physiological regulators of energy homeostasis, but direct

transcriptional targets of the muscle clock machinery are unknown. To understand how the

muscle clock directs rhythmic metabolism, we determined genome-wide binding of the mas-

ter clock regulators brain and muscle ARNT-like protein 1 (BMAL1) and REV-ERBα in

murine muscles. Integrating occupancy with 24-hr gene expression and metabolomics after

muscle-specific loss of BMAL1 and REV-ERBα, here we unravel novel molecular mecha-

nisms connecting muscle clock function to daily cycles of lipid and protein metabolism. Vali-

dating BMAL1 and REV-ERBα targets using luciferase assays and in vivo rescue, we

demonstrate how a major role of the muscle clock is to promote diurnal cycles of neutral lipid

storage while coordinately inhibiting lipid and protein catabolism prior to awakening. This

occurs by BMAL1-dependent activation of Dgat2 and REV-ERBα-dependent repression of

major targets involved in lipid metabolism and protein turnover (MuRF-1, Atrogin-1). Accord-

ingly, muscle-specific loss of BMAL1 is associated with metabolic inefficiency, impaired

muscle triglyceride biosynthesis, and accumulation of bioactive lipids and amino acids.

Taken together, our data provide a comprehensive overview of how genomic binding of

BMAL1 and REV-ERBα is related to temporal changes in gene expression and metabolite

fluctuations.
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Author summary

Circadian clocks are known to regulate local and systemic homeostasis by anticipating

rhythmic changes in behavior and nutritional state and by compartmentalizing incom-

patible metabolic pathways within precise temporal and spatial windows. Yet a precise

mechanistic understanding of how the circadian clock in skeletal muscle controls

homeostasis is just beginning to come to light. Here, we investigated how the muscle

clock directs 24-hr metabolic rhythms. We compared genome-wide binding of clock

transcription factors brain and muscle ARNT-like protein 1 (BMAL1) and REV-ERBα
with 24-hr transcriptional and metabolic effects after their loss of function specifically in

muscles. We found that the muscle clock plays a major role anticipating the transition

from fasting to feeding. This occurs by direct activation of transcriptional programs pro-

moting lipid storage, insulin sensitivity, and glucose metabolism, with coordinated

repression of programs controlling lipid oxidation and protein catabolism. Importantly,

these gene expression changes occur in the hours prior to systemic metabolic and hor-

monal cues that arise upon awakening. As such, we find that the muscle clock tips the

scales in favor of glucose metabolism, whereas loss of function of the clock transcription

factor BMAL1 is associated with persistent lipid metabolism, protein catabolism, and

metabolic inefficiency.

Introduction

Circadian rhythms of metabolism are endogenously generated and maintained by tissue-spe-

cific gene networks under the transcriptional control of molecular clocks [1]. While chronic

misalignment/disruption of circadian clocks has consistently been linked to metabolic disor-

ders and diseases [2], precise pathogenic mechanisms and their relation to tissue-specific clock

function remain largely undefined.

Global and tissue-specific conditional or inducible loss-of-function mouse models targeting

clock genes have begun to unravel such relationships in skeletal muscle [3], a multifaceted and

highly dynamic tissue and a major player in whole-body energy homeostasis. Depending on

fluctuations in energy supply and demand, skeletal muscle plays various essential metabolic

roles in the uptake, storage, utilization, and release of oxidative substrates. Experimental efforts

have established muscle as the main site for insulin-stimulated glucose disposal [4] and a

major consumer of lipoprotein-triacylglycerol-derived fatty acid and plasma free fatty acids

(FFAs) [5]. Importantly, muscle tissue serves a highly dynamic role as the main destination for

circulating amino acids in the fed state and the main source of circulating amino acids during

starvation and insulin deficiency [6].

Using muscle-specific knockout (myocyte-specific loss of BMAL1 [mKO]) models of

Bmal1, an essential and nonredundant core clock transcriptional activator, we previously dem-

onstrated that a critical function of the muscle clock is to anticipate and promote diurnal

changes in glucose uptake and oxidation prior to the sleep–wake transition [7]. Accordingly,

loss of brain and muscle ARNT-like protein 1 (BMAL1) is associated with reduced insulin sen-

sitivity and glucose oxidation. However, no previous study has systematically addressed the

muscle clock’s specific role in lipid and amino acid metabolism or the impact of muscle-spe-

cific Bmal1 deletion on whole-body energy homeostasis. Furthermore, direct transcriptional

targets of clock transcription factors in skeletal muscle remain mostly unknown.

BMAL1 forms a heterodimeric transcriptional activator together with circadian locomotor

output cycles kaput (CLOCK) and constitutes an integral component of the core molecular
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oscillator [8]. Global loss of BMAL1 results in loss of circadian physiology [9], impaired

entrainment of circadian behaviors to light/dark cycles [10], and loss of rhythmic expression

of canonical BMAL1 targets. These include Rev-erbα (Nr1d1) and Rev-erbβ (Nr1d2) [11], each

coding for dominant transcriptional repressors. REV-ERBα/β repress their targets by competi-

tively binding DNA response elements recognized by other nuclear receptors, especially the

RAR-related orphan receptor (ROR) constitutive activators, but also by recruiting the nuclear

receptor corepressor 1–histone deacetylase 3 complex (NCoR1-HDAC3) [12] and by indi-

rectly binding to tissue-specific transcription factors [13]. Circadian accumulation of

REV-ERBα/β likewise causes rhythmic repression of target genes, including Bmal1. Together,

BMAL1 and REV-ERBα thus form important positive and negative elements of the circadian

clock.

To identify additional metabolic roles of the muscle clock, we created and integrated multi-

ple in vivo high-throughput “omics” datasets. Here, we present a comprehensive in vivo map

of BMAL1 and REV-ERBα genomic binding in adult mouse skeletal muscle and highlight

specific transcriptional and metabolic consequences of muscle-specific loss of BMAL1 and

REV-ERBα. We determine how BMAL1 binding can activate expression of Dgat2, thus pro-

moting diurnal cycles of neutral lipid storage. We also show how REV-ERBα can coordinately

inhibit a network of master regulators of lipid and protein metabolism, thus tempering diurnal

rhythms of lipid oxidation and physiological protein turnover. Importantly, these changes

occur prior to and independent of metabolic and hormonal cues that arise during the feeding

phase, i.e., when glucose becomes the predominant fuel source. In addition, we show how loss

of BMAL1 is associated with disruption of its target genes, including Rev-erbα, and leads to a

state of metabolic inefficiency characterized by impaired neutral lipid storage, increased lipid

catabolism and oxidation, increased muscle protein turnover, mild mitochondrial uncoupling,

and increased energy expenditure (EE). Overall, our data bring to light previously uncharac-

terized molecular circuits underlying metabolic efficiency within skeletal muscle and illustrate

mechanistically how circadian transcription factors can anticipate and confine the use of

energy substrates to distinct temporal windows.

Results

Genome-wide binding of clock transcription factors BMAL1 and

REV-ERBα in mouse skeletal muscle reveals tight coordination between

factors

To understand how the muscle clock can transcriptionally direct rhythmic metabolism,

we mapped in vivo genome-wide chromatin occupancy (cistromes) of the positive master

clock regulator BMAL1 and the dominant repressor REV-ERBα in adult mouse gastrocne-

mius muscles. Accordingly, we performed chromatin immunoprecipitation followed by

next-generation sequencing (ChIP-seq) on tissues collected during maximum diurnal pro-

tein expression for BMAL1 and REV-ERBα at Zeitgeber time (ZT) 4 and 8, respectively

(S1A Fig).

We identified 2,787 BMAL1 and 1,263 REV-ERBα “high confidence” peaks (i.e., reproduc-

ible ChIP-seq peaks from 2 biological replicates), with 653 peaks showing “confident” occu-

pancy by both factors (i.e., peaks shared by�3 of the 4 samples) (Fig 1A and S1 Table).

Extensive overlap between muscle BMAL1 and REV-ERBα targets is in agreement with previ-

ous reports for mouse liver [14,15], suggesting that BMAL1 and REV-ERBα occupy many of

the same cis-regulatory genomic sites and regulate many of the same targets, albeit at different

times. Functional enrichment analysis [16] of these shared genomic sites underscored their

shared regulation of circadian processes, as well as their maintenance of myofiber form and
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function (Fig 1B). For example, in addition to shared roles regulating the “Circadian Clock”

and “Circadian rhythm” pathways, common muscle BMAL1 and REV-ERBα peaks were asso-

ciated with genes regulating muscle mass and contractility, muscle cell differentiation, glucose

and glucosamine metabolism, and the cellular response to hormones.

Fig 1. Genome-wide binding of clock transcription factors BMAL1 and REV-ERBα in mouse skeletal muscle. (A) Overlap of

BMAL1 and REV-ERBα “high confidence” peaks identified in gastrocnemius muscle from WT mice. (B) Functional enrichment

analysis (GREAT) of 653 shared muscle BMAL1 and REV-ERBα peaks. (C) Aligned genome browser tracks showing binding of

BMAL1, REV-ERBα, and RNAP2 at selected clock-associated transcriptional regulators. The left axis indicates sequence-tag counts.

Arrow indicates a REV-ERBα-specific peak in the Per1 promoter. (D) Representative top-ranking motifs found in chromatin sites

occupied by BMAL1 and REV-ERBα in vivo (selected from S2 Table). Underlying data can be found in supporting files S1 and S2

Tables, and at Gene Expression Omnibus (accession number GSE108650). ARE, androgen response element; bHLH, basic helix-

loop-helix; BMAL1, brain and muscle ARNT-like protein 1; CLOCK, circadian locomotor output cycles kaput; DR1, direct repeat 1;

DR2, direct repeat 2; FDR, false discovery rate; GO, Gene Ontology; GRE, glucocorticoid response element; GREAT, Genomic

Regions Enrichment of Annotations Tool; IR3, inverted repeat 3; MEF2, myocyte enhancer binding factor 2; MGI, Mouse Genome

Informatics; MSigDB, Molecular Signatures Database; MYF5, myogenic factor 5; MYOD, myoblast determination protein; MYOG,

myogenin; NPAS2, neuronal PAS domain protein 2; PPARE, peroxisome proliferator–activated receptor response element; RNAP2,

RNA polymerase II; RXR, retinoid X receptor; THRα, thyroid hormone receptor alpha; WT, wild type; ZT, Zeitgeber time.

https://doi.org/10.1371/journal.pbio.2005886.g001
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Consistent with their integral role regulating core clock gene expression, we identified

highly enriched common muscle BMAL1 and REV-ERBα peaks at promoters and enhancers

of clock-associated transcriptional regulators like Per1, Per2, Cry1, Cry2, Rev-erbα (Nr1d1),

Rev-erbβ (Nr1d2), Dbp, Tef, Dec1 (Bhlhe40), Dec2 (Bhlhe41), and Chrono (Ciart/Gm129) (Fig

1C and S1C Fig). We also noted common BMAL1 and REV-ERBα peaks near several known

[17] muscle clock-dependent circadian genes, including Coq10b, Dgat2, Klf9, Mylk4, Tcap, and

polybubiquitin-C (Ubc) (S1D Fig).

Comparing our muscle cistromes to published mouse liver cistrome data for BMAL1 [14]

and REV-ERBα [15], we found only 46 common BMAL1 peaks between tissues, associated

with 42 common genes, and 264 common REV-ERBα peaks associated with 252 common

genes (S1B Fig and S1 Table). Common muscle and liver targets were mainly core circadian

clock and known clock-dependent output genes. Interestingly, common muscle and liver

REV-ERBα targets were additionally enriched for p53 signaling components, chromatin modi-

fiers, as well as macroautophagy and mitophagy mediators. However, the vast majority of sites

(98% of BMAL1 peaks and 80% of REV-ERBα peaks) were muscle specific. This implies highly

tissue-specific roles for BMAL1 and REV-ERBα beyond their common regulation of core

clock genes.

To verify specificity of our muscle cistrome data and uncover potentially novel muscle-spe-

cific transcriptional networks, we searched BMAL1 and REV-ERBα peaks for known tran-

scription factor motifs. In agreement with their high degree of functional overlap, we found

significant enrichment for E-boxes and the canonical REV-ERB direct repeat 2 (DR2) motif

among the top-ranking motifs of each factor (Fig 1D, S2A–S2E Fig, S2 Table and S2 Data).

Both factors also showed a muscle-specific genomic signature, with enrichment for the basic

helix-loop-helix (bHLH) myogenic regulatory factors myoblast determination protein

(MYOD), myogenic factor 5 (MYF5), and myogenin (MYOG), in addition to multiple iso-

forms of their coregulator, the myocyte enhancer binding factor 2 (MEF2) [18]. Highlighting

potential loci for cross-talk between circadian clock components and hormones [19], both

BMAL1 and REV-ERBα peaks also showed motif enrichment for several different nuclear hor-

mone receptors with relatively high diurnal expression levels in adult skeletal muscle (S3A

Fig), including androgen receptor (AR; androgen response element [“ARE”]), retinoid X

receptor (“RXR”), peroxisome proliferator–activated receptor (PPAR; PPAR response element

[“PPARE”]), glucocorticoid receptor (GR; glucocorticoid response element [“GRE”]), and thy-

roid hormone receptor (TR) alpha (“THRα”). In summary, our in vivo cistromes indicate that

muscle BMAL1 and REV-ERBα sequentially bind and regulate many of the same target genes,

yet in a decisively muscle-specific manner.

Transcriptional reprogramming of metabolism after muscle-specific loss of

BMAL1

To provide a functional context for associations between BMAL1 and REV-ERBα binding

sites and target gene regulation, we focused on transcriptional changes of key targets and coor-

dinately regulated gene networks after mKO and loss of REV-ERBα [7,17]. REACTOME path-

way enrichment analysis [20] performed on 931 differentially expressed genes in muscles from

mKO mice [7] uncovered changes in canonical clock-related pathways and general perturba-

tions in fatty acid, triglyceride (TG), and phospholipid metabolism (Fig 2A).

Accordingly, the top-ranking pathways affected by loss of Bmal1 included genes regulated

by “BMAL1:CLOCK” and “Circadian Clock.” Moreover, we noted that most muscle clock-

dependent circadian genes [17] displayed transcriptional changes one might expect from

direct muscle BMAL1 targets and suggested very specific yet disparate metabolic

Muscle clock directs diurnal metabolism
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Fig 2. Transcriptional reprogramming of metabolic pathways in mKO muscles. (A) REACTOME pathway enrichment analysis

of 931 differentially expressed genes from mKO TA muscles. (B) Diurnal expression profiles of selected BMAL1-dependent

circadian genes in TA determined by microarray and plotted as absolute expression levels (n = 3 × timepoint; mean ± SEM �p = 0.05,
��p = 0.01, ���p = 0.001, 2-way ANOVA with Bonferroni correction). (C) Diurnal REV-ERBα and REV-ERBβ protein levels

determined by western blot in vastus lateralis; GAPDH used as loading control. (D-F) Diurnal expression profiles in TA muscle of

selected (D) REV-ERBα and HDAC3 target genes, (E) PPARα/δ-regulated mediators of lipid catabolism and oxidation, (F) GR-

regulated mediators of protein turnover (n = 3 × timepoint; mean ± SEM �p = 0.05, ��p = 0.01, ���p = 0.001, 2-way ANOVA with

Bonferroni correction). (G) Venn diagram showing relative overlap and pathway enrichment of differentially regulated mKO genes

with BMAL1 and REV-ERBα ChIP-seq peaks. Underlying data can be found in supporting files S1 Data, S1 Table, and at Gene

Expression Omnibus (accession number GSE43071). BMAL1, brain and muscle ARNT-like protein 1; ChIP-seq, chromatin

immunoprecipitation followed by next-generation sequencing; CLOCK, circadian locomotor output cycles kaput; GAPDH,

glyceraldehyde 3-phosphate dehydrogenase; GR, glucocorticoid receptor; HDAC3, histone deacetylase 3; MAPK, mitogen-activated

protein kinase; MEF2, myocyte enhancer binding factor 2; mKO, myocyte-specific loss of BMAL1; NFκB, nuclear factor kappa B;
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consequences. For example, Slc7a2 and Coq10b were both highly oscillatory genes in wild-type

(WT) muscles, and both completely lost 24-hr oscillation in mKO muscles (Fig 2B). Slc7a2
codes for a cationic amino acid transporter, whereas Coq10b is thought to code for a scaffold/

chaperone protein regulating coenzyme Q localization within the inner mitochondrial mem-

brane [21]. According to our cistrome data, both genes may be direct functional targets of

BMAL1, and their altered expression profiles in mKO muscles suggest that impaired cationic

amino acid transport [22] and coenzyme Q deficiency might be consequences of muscle clock

perturbation/misalignment.

Likewise, REV-ERBα and REV-ERBβ displayed drastically disrupted diurnal expression [7]

and transcriptional activity in mKO muscles (Fig 2A). While Rev-erbα and Rev-erbβ are

among the highest expressed nuclear receptors in fast glycolytic and slow oxidative muscles

(S3A Fig), REV-ERBα and REV-ERBβ protein levels are restricted to an 8-hr temporal window

at the end of the light phase, around ZT8–ZT12 (Fig 2C). Loss of REV-ERBα/β in mKO mus-

cles was especially apparent at the protein level, with normal accumulation of REV-ERBα and

REV-ERBβ completely abolished in mutant muscles. This underscores the fact that muscle-

specific Bmal1 knockout (KO) mice are also, in essence, muscle-specific Rev-erbα and Rev-
erbβ double-KO mice, in agreement with enrichment analysis (Fig 2A). Accordingly, we noted

derepression (i.e., increased expression) of canonical REV-ERB target genes (Fig 2D)—like

p21 (Cdkn1a) [23] and Clock [7,24]—and previously identified skeletal muscle HDAC3 targets

[25] including Ppp1r3c, a master regulator of glycogen synthesis; Mybph, coding for a protein

thought to be involved in autophagosome maturation [26]; Ampd1, the predominant skeletal

muscle adenosine monophosphate (AMP) deaminase; and Thra coding for THRα.

REV-ERBα/β are known to regulate lipid metabolism in peripheral tissues [12,15,27],

including skeletal muscle [28,29], but a comprehensive understanding of their direct muscle

targets, their cross-talk with other nuclear hormone receptors, and the effects of muscle-spe-

cific loss of function remain largely unknown. REV-ERBα is known to directly compete with

and inhibit TR/RXR binding at target sites during muscle differentiation [30], and REV-ERBα
and PPAR signaling pathways are likewise known to converge [31]. PPARs are nuclear hor-

mone receptors that mediate adaptive metabolic responses, including increased lipid oxidation

and amino acid catabolism in muscle [32] following their activation by endogenous or dietary

lipids or lipid derivatives [33]. REV-ERBα/β is known to repress transactivation of some

PPAR targets by competitively binding to nearby genomic sites in a concentration-dependent

manner [34].

Consistent with motif enrichment of BMAL1 and REV-ERBα peaks (Fig 1D and S2E Fig),

PPAR signaling was also among the top-ranking pathways impacted by mKO (Fig 2A). Fur-

thermore, mKO muscles showed an altered gene expression profile reminiscent of acute phar-

macological activation using the PPARδ receptor agonist GW501516 [35]. In particular, we

noticed significantly increased expression of major regulatory genes involved in mobilizing

intracellular lipid stores (Atgl/Pnpla2) and channeling fatty acids from lipid droplets to the

mitochondria for oxidation (Plin5) (Fig 2E). Additionally, mKO muscles showed significantly

increased expression of genes involved in fatty acid transport (Fatp-1/Slc27a1), activation of

fatty acids to corresponding acyl-CoAs (Acsl1), and finally breakdown (Acadm) and oxidation

(Hadha) of fatty acids. However, we observed no major changes in diurnal expression of

PPARs in fast or slow muscles (S3B Fig), suggesting that increased PPAR target expression in

mKO muscles results from increased presence of endogenous ligands and/or PPAR activation.

NPAS2, neuronal PAS domain protein 2; PPARα/δ, peroxisome proliferator–activated receptor alpha/delta; RORα, RAR-related

orphan receptor alpha; TA, tibialis anterior; TGFβ, transforming growth factor beta; WT, wild type; ZT, Zeitgeber time.

https://doi.org/10.1371/journal.pbio.2005886.g002
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Highlighting potential sites for cross-talk/competition between REV-ERBα and PPARs, we

noted REV-ERBα peaks near known PPAR regulatory elements (PPREs) in promoters of Plin5
and Acsl1 [36,37].

To gain more mechanistic insight into how BMAL1 and REV-ERBα regulate muscle tar-

gets, and their functional roles, we further stratified our cistrome data according to direction

of expression changes in mKO muscles (Fig 2G and S1 Table). Hundreds of BMAL1 and

REV-ERBα targets showed differential regulation, suggesting a direct link between loss of

BMAL1 and REV-ERBα and gene expression changes in mKO muscles. According to pathway

enrichment analysis [20], down-regulated BMAL1 and REV-ERBα targets reflected common

regulation of circadian clock genes and transforming growth factor beta (TGFβ) signaling

components. Down-regulated BMAL1 targets were further associated with mitogen-activated

protein kinase (MAPK) and other stress response pathways, whereas down-regulated

REV-ERBα targets were associated with nuclear factor kappa B (NFκB) activation. Interest-

ingly, up-regulated target genes showed less cooperation between BMAL1 and REV-ERBα and

suggested more specific regulation of calcium and Wnt signaling by BMAL1, while REV-ERBα
showed specificity for the GR signaling pathway and heme biosynthesis (Fig 2G). We further

corroborated REV-ERBα-specific association with GR targets by visually inspecting prominent

REV-ERBα peaks with high enrichment scores near selected GR-regulated genes (S2F Fig),

including transcriptional regulators like Fos and Trp53 [38].

When glucose availability is low, skeletal muscle adapts to preferentially increase the uptake

and oxidation of lipids [39] while coordinately increasing protein degradation for production

and release of amino acids destined for gluconeogenesis [40]. This transcriptionally regulated

proteolytic process is under tight hormonal control [41] and is largely mediated by synergism

between ligand-bound GR and activated members of the forkhead box O (FOXO) family of

transcription factors [42]. REV-ERBα is also speculated to cross-talk with GR in adult muscle

[43]. Accordingly, several putative REV-ERBα/GR target genes uncovered by our muscle cis-

trome showed transiently increased expression in mutant muscles, particularly during the

hours around the light–dark transition (Fig 2F, S2F and S3C Figs), coinciding with peak levels

of endogenous glucocorticoids [44] and loss of REV-ERBα protein in mKO muscle (Fig 2C).

These included major mediators of muscle protein turnover, like MuRF-1 (Trim63) and Atro-
gin-1/MAFbx (Fbxo32)—two E3 ubiquitin ligases involved in targeting myofibrillar proteins

for degradation—and polyubiquitin-C (Ubc), a major determinant of the intracellular ubiqui-

tin pool. In addition, we found increased expression of several genes coding for proteasome

subunits (Psmb3, Psmb6, Psmc4, Psmd14), as well as master regulators of autophagy (Trp53,

Atg12, and Ulk1), and finally Snat2 (Slc38a2), the highly energized System A amino acid trans-

porter increased by cortisol [45] and amino acid starvation [46].

Collectively, our data suggest that one role of the muscle clock is to anticipate the feeding

phase by direct REV-ERB-mediated repression of important targets involved in the mobiliza-

tion and metabolism of lipids and amino acids. Furthermore, muscle-specific loss of BMAL1,

and thus REV-ERBα, is associated with increased expression of direct REV-ERBα targets and

coordinated gene networks known to regulate lipid and amino acid metabolism, muscle pro-

tein turnover, and autophagy.

Muscle-specific loss of BMAL1 alters 24-hr lipid and amino acid

metabolism

To understand how local diurnal rhythms of muscle metabolism are impacted by differential

expression of gene programs described above, we performed global 24-hr metabolite profiling

of tibialis anterior (TA) muscles from mKO mice and their WT littermates (Fig 3A). Tissues
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Fig 3. Global metabolite alterations associated with muscle-specific clock disruption. (A) Experimental design showing

integration of 24-hr metabolomics data with transcriptomics data from contralateral muscles. (B) Global 24-hr metabolomics of

TA muscles from WT and mKO mice. Heatmap shows mean scaled abundance (n = 5 × timepoint × group) of detected

metabolites across the light/dark cycle (white/black bar). Metabolites are sorted by phase according to WT muscle and aligned

between groups to show effect in mKO. (C) Class distribution of metabolites significantly impacted by muscle-specific Bmal1 KO

(genotype effect p< 0.05, mixed effects model). (D) Integrated pathway enrichment analysis combining metabolomics and

transcriptomics data. (E) Class distribution of metabolites oscillating with a 24-hr period (p< 0.05, JTK_CYCLE; red =

significantly increased in mKO muscles; green = significantly reduced). (F) Integrated pathway enrichment and topology analysis

of 24-hr cycling metabolites. Underlying data can be found in supporting file S1 Data. KO, knockout; mKO, myocyte-specific loss

of BMAL1; TA, tibialis anterior; WT, wild type; ZT, Zeitgeber hour.

https://doi.org/10.1371/journal.pbio.2005886.g003
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were collected every 4 hr across the light/dark cycle, and metabolites were profiled by mass

spectrometry (liquid chromatography/mass spectrometry [LC/MS] and gas chromatography/

MS [GC/MS], see Materials and methods). Importantly, we used the contralateral muscles

from the same cohort of mice used for 24-hr transcriptomics [7], allowing us to directly corre-

late diurnal muscle metabolite alterations with diurnal changes in muscle gene expression.

A large proportion of metabolites showed clear alterations in diurnal oscillation and abun-

dance in mKO muscles (Fig 3B and S3 Table). Lipids and amino acids showed the greatest

impact from clock disruption (Fig 3C), comprising 42% and 40%, respectively, of all signifi-

cantly altered metabolites (genotype effect p< 0.05, mixed effects model). Integrated pathway

enrichment analysis [47] likewise revealed substantial alterations in amino acid and lipid

metabolism pathways (Fig 3D). In particular, we noted that several anabolic pathways directly

linked to glycolysis were affected, including alanine, glycine, serine, and glycerolipid

metabolism.

Identification of 24-hr period oscillating metabolites (JTK_Cycle p< 0.05) revealed a

completely unexpected >2-fold increase in circadian metabolites in mKO muscles (Fig 3E).

De novo oscillating metabolites identified by this analysis were predominantly amino acids—

including alanine, glutamate, leucine, and valine—but also included pentoses (ribose and ribu-

lose), tricarboxylic acid (TCA) cycle intermediates (malate and fumarate), and essential lipids

(docosapentaenoate 22:5n3). Relatively few metabolites lost 24-hr oscillation after clock dis-

ruption, yet these were again mainly lipid-related metabolites like carnitine, essential lipids

(linoleate 18:2n6 and linolenate 18:3n3 or 6), and amino acids (arginine and ornithine). Our

integrated pathway enrichment and topology analysis [47] of these 24-hr oscillating metabo-

lites reflected a gain of oscillation in pathways related to alanine, glutamate, and branched-

chain amino acid (BCAA) metabolism; pantothenate and CoA biosynthesis; and glyoxylate

and dicarboxylate metabolism (Fig 3F). Conversely, oscillation of pathways involved in the

biosynthesis of unsaturated fatty acids, arginine and ornithine metabolism, and linoleic and

linolenic acid metabolism all showed impaired 24-hr oscillation after loss of BMAL1. Finally,

pathways involved in carbohydrate metabolism (starch and sucrose, fructose and mannose,

and galactose metabolism), amino and nucleotide sugar metabolism, and aminoacyl-tRNA

biosynthesis all retained 24-hr oscillation in mKO muscles.

In summary, our integrated metabolic analyses identified lipids and amino acids as the

metabolite classes showing the greatest impact from loss of BMAL1, with generally increased

abundance and increased 24-hr oscillation patterns in mKO muscles. In extension of previ-

ously reported impairments to glucose metabolism [7,48,49], our data demonstrate an impor-

tant role for BMAL1 in the regulation of lipid and amino acid metabolism.

Impaired neutral lipid storage and accumulation of bioactive lipids in

mKO muscles

Skeletal muscle TGs are an important and readily available local fuel reserve [50], especially

after long periods of activity, when muscle glycogen stores are depleted [51]. In humans,

replenishment of muscle TG stores can occur within hours [51,52], and content is increased

when carbohydrate availability is low and circulating lipids are elevated, like during fasting or

high-fat diet [53]. To gain a general perspective on diurnal rhythms of muscle neutral lipid

storage, we profiled TGs at 2 physiologically relevant time points in WT and mKO muscles.

Quantitative lipidomics performed at “lights on” (ZT0) and “lights off” (ZT12, 12 hr later)

revealed a 2-fold accumulation of total TG in WT muscles at ZT12 (Fig 4A), the end of the

physiological fasting phase. This accumulation was completely abolished in mKO muscles, with

total TG content remaining static at basal levels. We noticed that mKO mice showed a normal
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Fig 4. Impaired storage of neutral lipids and accumulation of bioactive lipids in mKO muscles. (A) Muscle

triglyceride extracted from gastrocnemius muscles, quantified by HPLC, and normalized to cell protein (mean ±
SEM; n = 5 × group × timepoint; ��p< 0.01, �p< 0.05, Student’s t test). (B) Diurnal variations of selected

lysoglycerophospholipids in WT and mKO TA muscles (mean ± SEM; n = 5 × group × timepoint; �p< 0.05, repeated

measures ANOVA). (C) Temporal distribution of significantly increased lysoglycerophospholipids comparing WT and
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daily rhythm of food intake, with completely normal distribution of feeding time and amount

(S4A Fig). Similarly, plasma non-esterified fatty acids (NEFAs), lactate, and ketone bodies (β-

hydroxybutyrate [β-OH-B] and acetoacetate [AcAc]) were all comparable to WT levels in sed-

entary mice independently of whether they had been fasted (4 hr, collected at ZT11) or fed (col-

lected at ZT14), as well as in endurance-trained mice after 1 hr of treadmill running (S4B Fig).

Reduced TG accumulation in mKO muscles therefore seems to reflect local alterations in mus-

cle lipid metabolism rather than differences in feeding behavior or interorgan lipid fluxes.

Profiling individual TG species revealed a general reduction of TG accumulation in mKO

muscles at ZT12 rather than specific changes in esterified fatty acid composition. All TG spe-

cies were increased around 2-fold at ZT12 compared to ZT0 in WT muscles, and all were dras-

tically reduced at ZT12 in mKO muscles (S4C Fig). At the same time, the total distribution of

TG species was completely normal in mKO muscles (S4D Fig), with over 92% of all TG species

containing 48, 50, 52, or 54 carbons and multiple unsaturated fatty acids, regardless of time

point or genotype.

While neutral lipid storage was impaired in mKO muscles, we noted a striking general

increase of various bioactive lipids involved in signaling and inflammation. These included

several lysoglycerophospholipids (lysoPLs) comprising a wide spectrum in terms of hydro-

philic and hydrophobic moieties (Fig 4B and 4C; S3 Table). While many lysoPLs were signifi-

cantly increased in mKO muscles, ZT12 emerged as a particularly important time point, with

85% significantly increased in mKO muscles during the light–dark transition, including the

lysophosphatidylcholine LPC (16:0), thought to be an endogenous PPAR ligand [54].

Circadian metabolomics also revealed a transient increase in mKO muscles of many long-

chain polyunsaturated fatty acids (PUFAs; docosapentaenoate 22:5n3 and docosahexaenoate

22:6n3), essential fatty acids (linoleate 18:2n6 and linolenate 18:3n3 or n6), and oxidation- and

inflammation-associated metabolites (13-hydroxyoctadecadienoate + 9- hydroxyoctadeca-

dienoate, dihomo-linolenate 20:3n3 or n6, and arachidonate 20:4n6) (Fig 4D; S3 Table).

Importantly, most of these lipid species are also thought to be endogenous PPAR ligands [55]

and so may contribute to increased expression of PPAR targets in mKO muscle. Taken

together, mKO muscles showed reduced neutral lipid storage (TG) and a significant accumula-

tion of bioactive lipids, particularly during the hours around the light–dark transition.

Increased glucogenic amino acids in mKO muscles linked to TCA cycle

anaplerosis

Amino acids were the other major metabolite class significantly impacted by muscle-specific

loss of BMAL1. In particular, we noted a significant increase of glucogenic amino acids in

mKO muscles (Fig 5A and S5A Fig). Alanine, glutamine, glutamate, glycine, serine, threonine,

methionine, proline, and aspartate were all significantly increased between 20% and 300% at

multiple time points throughout the light/dark cycle in mKO muscles. At ZT16, the BCAAs

leucine, isoleucine, and valine, in addition to cysteine, were all significantly increased 25%–

35% in mKO muscles relative to WT. In contrast, the cationic amino acids arginine and lysine

were significantly reduced 30%–60%, with 24-hr oscillation severely blunted in mKO muscles

mKO TA (+p< 0.05, Ŧp< 0.1, repeated measures ANOVA). (D) Diurnal variations of selected long-chain PUFAs,

essential FAs, and related metabolites in WT and mKO TA muscles (mean ± SEM; n = 5 × group × timepoint;
�p< 0.05, repeated measures ANOVA). Underlying data can be found in supporting files S1 Data and S3 Table. FA,

fatty acid; HPLC, high-performance liquid chromatography; HODE, hydroxyoctadecadienoate; lysoPC,

lysoglycerophosphocholine; lysoPE, lysoglycerophosphoethanolamine; lysoPI, lysoglycerophosphoinositol; mKO,

myocyte-specific loss of BMAL1; PUFA, polyunsaturated fatty acid; TA, tibialis anterior; WT, wild type; ZT, Zeitgeber

time.

https://doi.org/10.1371/journal.pbio.2005886.g004
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Fig 5. Increased amino acids in mKO muscles linked to TCA cycle anaplerosis. (A-C) Diurnal levels of selected amino acids

(A), cationic amino acids (B), and TCA cycle intermediates (C) in WT and mKO TA muscles (mean ± SEM; n = 5 × group ×
time point; �p< 0.05, repeated measures ANOVA). (D) Serum alanine (genotype effect p< 0.05) and glycine (genotype effect

p< 0.01) from ad libitum fed mice (mean ± SEM; n = 3–4; 2-way ANOVA with Bonferroni correction). (E) Serum amino acids

at ZT8 after a 6-hr fast. (mean ± SEM; n = 3–4; �p< 0.05 Student’s t test). (F) Simplified scheme showing interrelationships

between increased amino acids, purine nucleotides, and TCA cycle intermediates in mKO muscle (indicated by red text).

Increased glycolytic flux in the context of impaired PDH activity [7] may divert glycolytic intermediates to alternative

biosynthetic pathways, including serine, glycine, and alanine formation. Circadian metabolomics data also suggest mKO
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(Fig 5B), concordant with reduced Slc7a2 at the end of the dark phase (Fig 2B). Finally, aro-

matic amino acids phenylalanine, tyrosine, and tryptophan remained unchanged (S5A Fig).

We also noted increased levels of several metabolites linked to intermediary amino acid metab-

olism, including 5’-inosine monophosphate (5’-IMP) and 5’-guanosine monophosphate (5’-

GMP) (S5B Fig), both regulators of the purine nucleotide cycle [56], as well as the TCA cycle

intermediates citrate, fumarate, and malate (Fig 5C).

To investigate whether the increase in free amino acid levels observed in mKO muscles are

directly correlated with differences in circulating amino acids, we quantified serum amino

acids in ad libitum–fed WT and mKO mice across the light/dark cycle. Importantly, mKO

mice showed persistently increased serum alanine and glycine levels throughout the dark

phase (Fig 5D), despite normal feeding behavior and blood lipid profiles (S4A Fig). These

reflect the largest differences we observed in mKO muscles (Fig 5A) and are in agreement with

transiently increased expression of REV-ERBα targets (Fig 2F) linked to the temporally

restricted production and release of these major [41] glucogenic precursors. To validate these

findings under a more controlled nutritional state, we also examined serum amino acids after

a 6-hr fast at ZT8, during the normal physiological fasting+rest phase when diurnal insulin lev-

els are lowest [57]. While serum amino acids were generally increased in mKO mice, only ala-

nine and glycine reached significance (Fig 5E).

Contextualizing our results from a temporal perspective, we conclude that increased amino

acids, purine nucleotides, and TCA cycle intermediates in mKO muscles are all closely related

(Fig 5F). We noticed diurnal alanine levels increased substantially in mKO muscles as gluta-

mate levels decreased, starting around ZT8–ZT12 and coinciding with inhibition of pyruvate

dehydrogenase (PDH) in mKO muscles [7]. Increased alanine in mKO muscles thus likely

reflects increased mass-action conversion of pyruvate and glutamate into alanine and α-keto-

glutarate, a freely reversible and near-equilibrium reaction catalyzed by alanine aminotransfer-

ase [58]. Quantitatively, this is the most important anaplerotic reaction contributing to

expansion of the TCA intermediate pool at the start of exercise [59]. In support of this inter-

pretation, peak alanine levels in mKO muscle increased 83% compared to control levels at

ZT16 and coincided with peak TCA intermediates citrate, fumarate, and malate, which

increased respectively 251%, 62%, and 52% at ZT16.

Alanine is a particularly important precursor for hepatic gluconeogenesis [41], and its pro-

duction and export reflect nutritional state more closely than that of glutamine, the other

major amino acid produced and released by skeletal muscle [60]. Alanine increases the most

during the earliest phases of starvation [61] and correlates with increased muscle protein deg-

radation [41,58,62]. The carbon required for alanine formation is derived mostly from circu-

lating glucose and muscle glycogen, while the nitrogen comes from the catabolism of other

amino acids, mainly BCAA, as well as others [63,64]. The particularly large increase of alanine

in mKO muscles thus indicates an energy deficit and related increase in proteolysis in mKO

muscles during this time [65]. However, feeding is normal in mKO mice (S4A Fig), and mus-

cles from mKO mice show normal or even slightly increased content of muscle glycolytic

intermediates, AKT phosphorylation, and glycemia [7]. Therefore, fasting, or some other sys-

temic starvation signal (i.e., alterations in circulating glucose or insulin), cannot explain

muscles undergo increased rates of protein turnover, increased formation and release of alanine and glycine, and increased

anaplerotic flow of carbon into an expanded TCA cycle via citrate, fumarate, and malate. Underlying data can be found in

supporting file S1 Data. 3PG, 3-phosphoglycerate; α-KG, alpha-ketoglutarate; AMP, adenosine monophosphate; GDP,

guanosine diphosphate; GTP, guanosine triphosphate; mKO, myocyte-specific loss of BMAL1; PDH, pyruvate dehydrogenase;

TA, tibialis anterior; TCA, tricarboxylic acid; WT, wild type; ZT, Zeitgeber time.

https://doi.org/10.1371/journal.pbio.2005886.g005
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increased alanine and other amino acids in mKO muscles. Instead, their accumulation must

reflect a local defect in energy sensing or metabolism related to loss of BMAL1.

Increased lipid and amino acid oxidation in mKO muscles linked to

oxidative stress, altered mitochondrial function, and metabolic inefficiency

Accumulation of bioactive lipids and amino acids can be symptomatic of mitochondrial dys-

function or may simply reflect an imbalance between oxidative substrate supply and energy

demand [66,67]. We uncovered several complementary lines of evidence that suggest mKO

muscles have increased lipid and amino acid oxidative capacity and altered mitochondrial

function. According to our 24-hr metabolome, long-chain acylcarnitines showed distinct diur-

nal fluctuations in WT muscles, with a peak during the rest+fasting phase and reduced levels

during the activity+feeding phase (Fig 6A). These diurnal oscillations were similar in mKO

muscles, except for slightly reduced peak oscillation for some species, like oleoylcarnitine and

palmitoylcarnitine, and a modest increase at ZT12, which was statistically significant only for

myristoylcarnitine.

In contrast, all medium- and short-chain acylcarnitines were significantly reduced at vari-

ous timepoints. This was particularly striking for acetylcarnitine (Fig 6A) but also branched-

chain acylcarnitines derived from BCAA catabolism, including isobutyrylcarnitine, 2-methyl-

butyroylcarnitine, isovalerylcarnitine, propionylcarnitine, and succinylcarnitine (S3 Table).

Reduced levels of short- and medium-chain acylcarnitines relative to essentially normal long-

chain acylcarnitines and increased BCAA (only at ZT16) may reflect increased lipid and

BCAA catabolism, with faster transit of carbon chains through the pathways. Increased lipid

and amino acid catabolism could also supply increased acetyl CoA or succinyl CoA, in agree-

ment with TCA cycle anaplerosis (Fig 5C). To measure lipid catabolism rates, we quantified

[1-14C]palmitate oxidation to [1-14C]CO2 in whole gastrocnemius muscle homogenates col-

lected at ZT12. Compared to control muscles, mKO muscles showed a clear and significant

22% increase in palmitate oxidation rate (Fig 6B), in agreement with transcriptional changes

of lipid metabolism genes (Fig 2F), and suggesting increased β-oxidation capacity.

Increased oxidative capacity in mKO muscles can result from a combination of factors,

including increased mitochondrial content, increased activity of respiratory chain complexes,

or increased proton conductance related to mitochondrial membrane potential (Δψm) [68,69].

To quantify mitochondrial content in control and mKO muscles, we measured citrate synthase

(CS) activity in muscle homogenates and found no differences (Fig 6C). We next assayed enzy-

matic activities of respiratory chain complexes I–IV and found maximum catalytic activity of

complexes I, II, and III were likewise unchanged in mKO muscles (Fig 6D). However, we

detected a highly significant 20% reduction in complex II+III activity in mKO muscles, sug-

gesting a mild coenzyme Q deficiency, consistent with reduced Coq10b (Fig 2B), whereas com-

plex IV activity was significantly reduced around 30%.

To investigate alterations in Δψm, we performed real-time fluorescence imaging of Δψm in

isolated muscle fibers loaded with the potentiometric fluorescent dye tetramethylrhodamine

methyl ester in the presence of oligomycin A, an inhibitor of the mitochondrial F1FO-ATP

synthase. In this system, maintenance of Δψm relies on the reverse activity of ATP synthase.

Oligomycin addition caused no change in Δψm in control muscle fibers (Fig 6E), whereas

marked depolarization was induced by the protonophore carbonylcyanide-p-trifluoromethox-

yphenyl hydrazone (FCCP). While WT mitochondria were polarized and metabolically effi-

cient, progressive mitochondrial depolarization was apparent in mKO myofibers. Addition of

FCCP had little impact on these already depolarized cells, suggesting mKO muscle mitochon-

dria have reduced Δψm and a general loss of coupling efficiency.
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Fig 6. Increased lipid oxidative capacity yet reduced mitochondrial efficiency in mKO muscles. (A) Diurnal levels

of selected acylcarnitines in TA muscles (mean ± SEM; n = 5 × group × time point; �p< 0.05, repeated measures

ANOVA). (B) Palmitate oxidation in gastrocnemius homogenates (mean ± SEM; n = 12–13; ��p< 0.01, Student’s t
test). (C) CS activity in vastus lateralis muscle extracts (mean ± SEM; n = 18). (D) Maximum catalytic activity of

Respiratory Chain Complex I (NADH:ubiquinone oxidoreductase; n = 6), Complex II (succinate dehydrogenase;

n = 18), Complex III (decylubiquinol cytochrome c oxidoreductase; n = 18), Complex II+III (succinate cytochrome c
reductase; n = 18), and Complex IV (cytochrome c oxidase; n = 18) in vastus lateralis muscle extracts (mean% relative

to WT ± SEM; ���p< 0.001, Student’s t test). (E) Real-time fluorescence of isolated flexor digitorum brevis muscle

fibers loaded with TMRM and imaged every 60 s; data expressed relative to initial fluorescence; 5 μM Olm and 4 μM

FCCP were added where indicated (mean ± SEM; n = 21–24 fibers isolated from 5 animals per group). (F) Diurnal
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Mild uncoupling of skeletal muscle mitochondria is thought to mitigate potentially damag-

ing oxidative stress [68]. Examining various markers of oxidative stress, we noted that oxidized

glutathione (GSSG) oscillated around 30% over 24 hr in control muscles. GSSG was normally

highest during the rest+fasting phase and remained lowest during the activity+feeding phase

(Fig 6F). However, in mKO muscles, GSSG remained constitutively increased across the light/

dark cycle, suggesting increased buffering demand. On the other hand, reduced glutathione

was only slightly increased in mKO muscles, and the difference was significant only at ZT4.

Another biomarker of oxidative stress resulting from peroxidation of PUFAs, 4-hydroxy-

2-nonenal, also showed only a slight trend for increased abundance during the fasting+rest

phase and otherwise remained within a normal diurnal physiological range (S6A Fig). Overall,

while chronic loss of BMAL1 appears to be associated with a mild and transient increase in

oxidative stress, this appears to be sufficiently buffered through a combination of mild uncou-

pling and various endogenous antioxidant systems.

Mild oxidative stress is known to increase protein degradation in muscle cells by increasing

expression and activity of the ubiquitin-proteasome system [70] and so may also be causally

linked to increased amino acids (Fig 5A). Mild uncoupling was previously shown to increase

2-fold by starvation in rat skeletal muscle mitochondria and is mediated by uncoupling pro-

teins in the presence of fatty acids and in response to coenzyme Q–generated superoxide [71].

We noted Ucp3 expression was significantly increased at ZT8 in mKO TA muscles compared

to WT, while Ucp2 expression was massively induced at all time points in mKO soleus, peaking

around ZT8 (Fig 6G).

Our results indicate that reduced energy efficiency and increased supply of oxidative

substrates are linked to a mild increase in oxidative stress and a transcriptionally regulated

mild uncoupling in mKO muscles. However, evidence suggests these changes should be con-

sidered in terms of altered function rather than dysfunction. Increased oxidative capacity with

increased uncoupling from ATP production is observed in muscles of endurance-trained ath-

letes [72,73] and in rodents fed a high-fat diet [74], with enhanced sensitivity of mitochondrial

uncoupling to fatty acids seen in both cases. As such, one might interpret reduced coupling

efficiency of mKO muscle mitochondria similarly as a consequence of increased lipid metabo-

lism. In any case, we saw no differences in endurance capacity after a graded exercise tolerance

test to exhaustion (S6B Fig). Using glycemia <76 mg/dl to establish fatigue [75], mKO mice

showed neither deficit nor advantage in terms of exercise endurance capacity, running more

than 2 km in around 2 hr, just as their WT littermates. Normal exercise endurance in mKO

mice likely reflects normal 24-hr glycogen stores in muscle and liver (S6C Fig), since liver gly-

cogen stores are known to be the main determinant of exercise endurance capacity in mice

[76,77].

Muscle-specific loss of BMAL1 causes fat-to-lean body mass partitioning,

increased rates of muscle protein synthesis, and increased EE

We previously showed that mKO mice have increased muscle mass yet normal bodyweight

compared to their WT littermates [7]. Closer examination confirmed [48] significant

levels of GSSG and GSH in mKO and WT TA muscles (mean ± SEM; n = 5 × group × time point; �p< 0.05, repeated

measures ANOVA). (G) Diurnal expression in TA and SOL muscles determined by microarray and plotted as absolute

expression levels (n = 3 × time point; mean ± SEM �p = 0.05, ��p = 0.01, 2-way ANOVA with Bonferroni correction).

Underlying data can be found in supporting files S1 Data and at Gene Expression Omnibus (accession number

GSE43071). CS, citrate synthase; FCCP, carbonylcyanide-p-trifluoromethoxyphenyl hydrazone; GSH, reduced

glutathione; GSSG, oxidized glutathione; mKO, myocyte-specific loss of BMAL1; Olm, oligomycin; SOL, soleus; TA,

tibialis anterior; TMRM, tetramethylrhodamine methyl ester; WT, wild type.

https://doi.org/10.1371/journal.pbio.2005886.g006
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differences in body composition in mKO mice (both fat and lean tissue mass). While body-

weight of adult mice was normal, mKO mice showed increased lean mass and reduced fat

mass according to EchoMRI, ultimately translating into an increased lean-to-fat body mass

ratio (Fig 7A). We found this was due to a combination of about 30% reduction in total body

fat mass (Fig 7B) and a 10%–20% increase in muscle mass (Fig 7C).

Reduced peripheral fat mass in mKO mice is in agreement with increased lipid oxidation

and reduced lipid storage in muscles of mKO mice. On the other hand, increased alanine syn-

thesis and release and persisting peak expression of genes involved in protein degradation sug-

gest that mKO muscle mass should be reduced rather than increased. We thus hypothesized

that increased mKO muscle mass must reflect increased rates of daily protein turnover, with

net balance favoring muscle protein synthesis. To accurately quantify muscle protein synthesis

rates in mKO mice and WT littermates, we used the nonradioactive in vivo surface sensing of

translation (IV-SUnSET) technique [78]. We performed experiments at ZT4 and ZT16, in the

middle of the physiological fasting and feeding phases, respectively. Muscles from mKO mice

showed clearly increased puromycin incorporation into muscle peptides compared to their

WT littermates (Fig 7D). Impressively, protein synthesis rates of some mKO mice even

approached the extremely high protein synthesis rates observed in a muscle-specific transgenic

model with constitutively active AKT (c.a.AKT) [79]. Quantification revealed that WT mice

had lower muscle protein synthesis rates at ZT4, the middle of the physiological fasting phase,

and approximately 2-fold increased synthesis rates at ZT16, during the middle of the feeding

phase (Fig 7E). This is in agreement with previous results obtained in skeletal muscles of fasted

and fed WT mice [80,81]. However, muscle protein synthesis rates remained significantly ele-

vated at ZT4 in mKO mice compared to WT littermates.

Increased rates of muscle protein synthesis and increased muscle mass in mKO mice are

consistent with functional roles we identified for BMAL1 and REV-ERBα target genes in the

regulation of myofiber size and muscle mass (Fig 1B). It is thus probable that these changes in

mKO mice arise from local changes in transcription and metabolism inherently linked to loss

of BMAL1 rather than changes in feeding behavior or activity. In fact, we could not detect any

significant changes in daily feeding pattern or in daily caloric intake, whether measured under

standard housing conditions at 22 ˚C (S4A Fig) or under thermoneutral conditions [82] at

30 ˚C (Fig 7F). Locomotor activity across the light/dark cycle and total activity levels, measured

under thermoneutral conditions (30 ˚C) by beam breaks (X + Y counts) and running wheel

(rotations), were similarly unaltered (Fig 7G).

Differences in body composition are known to impact 24-hr fuel selection and EE [83].

Accordingly, respiratory exchange ratio (RER) measured at 30 ˚C was significantly lower dur-

ing the light phase in mKO mice compared to WT littermates, but not during the dark phase

(Fig 7H). This is consistent with a shift in nutrient partitioning to promote more fat utilization

in mKO animals. Likewise, mKO mice showed significantly increased EE throughout the dark

phase at 30 ˚C (Fig 7I). However, resting metabolic rate (RMR) measured at thermoneutrality

throughout the rest+fasting phase [84,85] was not significantly increased in mKO mice, sug-

gesting the approximately 15% increased EE observed during the dark phase reflects a geno-

type effect rather than differences in body composition. Indeed, even after accounting for

differences in lean mass [85], we noted a persisting general trend for increased EE in mKO

mice during the dark phase (Fig 7J). A significant genotype effect on total EE (p = 0.046) and

EE specifically during the dark phase (p = 0.023) was confirmed by ANCOVA using body

weight, lean mass, and fat mass as covariates, as previously suggested [84].

Overall, these results significantly expand upon our previous observations and indicate that

muscle-specific loss of BMAL1 can significantly impact systemic energy homeostasis, alter

interorgan metabolite fluxes, and the storage, release, and use of energy substrates in other
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Fig 7. Muscle-specific loss of BMAL1 associated with fat-to-lean mass partitioning, increased rates of muscle protein synthesis,

and increased EE. (A-B) n = 11–12 mice; 5-mo-old male littermates; mean ± SEM; ��p< 0.01, Student’s t test. (A) Normal

bodyweight, increased percent lean mass, reduced percent fat mass, and increased lean-to-fat mass ratio in mKO mice. (B) About

30% reduced total body fat. (C) Increased muscle mass relative to bodyweight (TA; n = 44 five-mo-old male littermates; dashed line

indicates mean trend line). (D-E) In vivo protein synthesis rates of TA measured by IV-SUnSET. (D) Representative image of

western blot analysis for puromycin-labeled peptides followed by ponceau staining to verify equal protein loading. TA from a

transgenic mouse with c.a.AKT was used as positive control. (E) Quantification of puromycin-labeled peptides expressed as a

percentage of the values obtained in WT ZT4 (mean ± SEM; n = 10, ZT4; n = 5, ZT16; �p< 0.05, Student’s t test). (F-I) Effects of

muscle-specific Bmal1 mKO on (F) food intake, (G) locomotor activity (X + Y axis counts and running wheel rotations), (H) RER

(VCO2/VO2), and (I) EE all measured at thermoneutrality (30 ˚C). n = 10 four-mo-old male littermates; mean ± SEM; �p< 0.05,

Student’s t test; ANCOVA genotype effect p = 0.046 (total EE) and p = 0.023 (dark phase EE) when considering body weight, lean

mass, and fat mass as covariates. (J) Relationship between EE and lean mass at ZT16 (n = 10; dashed line indicates mean trend line).

Underlying data can be found in supporting file S1 Data. BMAL1, brain and muscle ARNT-like protein 1; c.a.AKT, constitutively

active AKT; EE, energy expenditure; IV-SUnSET, in vivo surface sensing of translation; mKO, myocyte-specific loss of BMAL1; n.s.,

not significant; RER, respiratory exchange ratio; TA, tibialis anterior; VCO2, volume carbon dioxide produced; VO2, volume oxygen

consumed; WT, wild type; ZT, Zeitgeber time.

https://doi.org/10.1371/journal.pbio.2005886.g007
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tissues. Importantly, our cistrome, metabolome, transcriptome, and metabolic phenotyping

data all point to fundamental roles of BMAL1 and REV-ERBα in the regulation of energy bal-

ance and in systemic lipid and amino acid homeostasis.

BMAL1 promotes diurnal muscle TG synthesis by direct transcriptional

activation of Dgat2
In addition to its known role driving circadian expression of clock genes like Rev-erbα/β, we

identified a crucial role for BMAL1 in the regulation of diurnal TG levels. To explain the

mechanism behind reduced TG content and increased lysoPLs in mKO muscles, we examined

expression profiles of genes involved in glycerophospholipid and TG metabolism. Mutant

muscles showed significant differences in expression of 4 crucial enzymes (Fig 8A and S7A

Fig). We first noted up-regulation of Agpat3, a lysophosphatidic acid acyltransferase abun-

dantly expressed in human skeletal muscle [86] and known PPARα-regulated gene [87]. Like-

wise, oscillation of Adpn (Pnpla3), an acyl-CoA-dependent acyltransferase involved in the

Fig 8. BMAL1 promotes diurnal muscle triglyceride synthesis by direct transcriptional activation of Dgat2. (A) Diurnal

expression profiles in TA muscles of selected key regulators of glycerophospholipid and triglyceride metabolism (n = 3 × time point;

mean ± SEM �p< 0.05, ��p< 0.01, ���p< 0.001, 2-way ANOVA with Bonferroni correction; see also S7A Fig). (B) Scheme showing

alterations identified in mKO muscles related to reduced TG content and increased lysoPLs. Increased glycolytic flux in the context

of impaired PDH activity [7] channels glycolytic intermediates to lysoPL biosynthesis. Red = increased gene expression or metabolite

abundance in mKO relative to WT; green = reduced gene expression or abundance. (C) Validation of BMAL1 transcriptional targets

by cotransfecting HEK-293T cells with LUC reporter constructs containing muscle BMAL1 binding sites from known and putative

target promoters linked to LUC, along with expression plasmids for BMAL1 and CLOCK or empty control vector (pcDNA3). Data is

expressed as mean fold-change normalized to the empty vector (n = 3; ±SEM). (D) In vivo BMAL1 occupancy at target sites in WT

and mKO gastrocnemius at ZT4 and ZT16 (mean fold-enrichment over IgG ± SEM; n = 2 pooled biological replicates for each of 2

independent ChIP-qPCR experiments). Underlying data can be found in supporting file S1 Data and at Gene Expression Omnibus

(accession number GSE43071). BMAL1, brain and muscle ARNT-like protein 1; ChIP-qPCR, chromatin immunoprecipitation–

quantitative real-time PCR; CLOCK, circadian locomotor output cycles kaput; HEK-293T, human embryonic kidney 293T; IgG,

immunoglobulin G; LUC, luciferase; lysoPL, lysoglycerophospholipid; mKO, myocyte-specific loss of BMAL1; PDH, pyruvate

dehydrogenase; TA, tibialis anterior; WT, wild type; ZT, Zeitgeber time.

https://doi.org/10.1371/journal.pbio.2005886.g008
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conversion of lysophosphatidic acid into phosphatidic acid, remained constitutively increased.

Phosphatidic acid is a precursor of both TGs and glycerophospholipids, and overexpression of

Adpn induces both TG and glycerophospholipid synthesis in mammalian cells [88].

Particularly relevant for the reduced TG content in mKO muscles was the marked down-

regulation of Dgat2, the major enzyme that converts diacylglycerols to TGs in mouse skeletal

muscle [89]. According to our muscle cistrome data, Dgat2 is a direct BMAL1 and REV-ERBα
target gene and oscillates with a 24-hr period in both fast and slow muscles [17,90]. In mKO

muscles, Dgat2 oscillation was severely blunted, and expression markedly reduced.

In mammalian cells, glycerophospholipids can be converted to lysoPLs by the activity

of specific phospholipases, including phospholipase A2 group 7 (Pla2g7), another PPARα-

regulated gene that showed markedly increased expression in mKO muscles. Pharmacologi-

cal activation of PPARα was shown to increase expression of Pla2g7 and abundance of the

LPC(16:0) in serum, liver, and muscle [54]. LPC(16:0) is also an endogenous PPAR ligand

that further activates PPARα targets in a feed-forward mechanism. This effect is blocked

by Pla2g7 small interfering RNA (siRNA), and PPARα antagonism also inhibits Pla2g7
expression.

Modeled together with known perturbations in PDH [7] and diversion of glycolytic inter-

mediates (Fig 8B), our transcript data suggest impaired biosynthesis of TGs yet increased pro-

duction of bioactive lysoPLs in mKO muscles, in agreement with metabolomics data (Fig 4A–

4C). Increased PUFAs in mKO muscles (Fig 4D) is also consistent with increased phospholi-

pase A2 activity, since phospholipase A2 acts specifically at the sn-2 position of phospholipids

where PUFAs are preferentially located.

To verify whether BMAL1 can transcriptionally activate putative targets identified by our

muscle cistromes and transcriptomes, we cotransfected human embryonic kidney 293T

(HEK-293T) cells with reporter constructs containing muscle BMAL1 binding sites linked to

luciferase, along with empty control vectors or expression plasmids for BMAL1 and CLOCK

(Fig 8C). As expected, cotransfection of BMAL1 and CLOCK with reporters of classical known

BMAL1 target sites in the promoters of Rev-erbα, Rev-erbβ, and Per2 led to a potent induction

of transcription (3–70-fold) over basal control levels (empty vector). Likewise, BMAL1 and

CLOCK cotransfection with Coq10b and Dgat2 reporters led to a 2-fold transcriptional induc-

tion, in agreement with in vivo binding data for BMAL1, and 24-hr Coq10b and Dgat2 expres-

sion in WT and Bmal1 mKO muscles.

To investigate a direct link between loss of genomic BMAL1 binding in mKO muscles and

reduced expression and oscillation of putative and established BMAL1 targets, we used

directed chromatin immunoprecipitation–quantitative real-time PCR (ChIP-qPCR). We col-

lected mutant and WT muscles at 2 time points, ZT4 and ZT16, i.e., during relatively high and

low diurnal genomic Bmal1 binding [11,14]. In WT muscles, we detected specific BMAL1

binding at a positive control locus near Per1 at ZT4 (Fig 8D) and relatively low binding at

ZT16. Importantly, BMAL1 binding was severely attenuated in mKO muscles at both time

points. In agreement with muscle-specific loss of Rev-erbα expression, BMAL1 binding at a

known regulatory locus near Rev-erbαwas also severely attenuated in mutant muscles. Sup-

porting a direct role in the transcriptional activation of Dgat2 by BMAL1, we saw similar

BMAL1 binding at its target site in the Dgat2 promoter. Binding was higher at ZT4 in WT

muscles yet attenuated in mKO muscles. Furthermore, we detected no BMAL1 binding at a

negative intronic Dgat2 site.

Finally, closer inspection of the Dgat2 promoter genomic sequence revealed 2 likely tandem

E-boxes separated by 15 bp in the very middle of our BMAL1 Dgat2 peak summit (S7B Fig).

Taken together, our data demonstrate that transient binding of muscle BMAL1 to the Dgat2
promoter is linked to transcriptional activation and a 2–3-fold increase in diurnal Dgat2
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expression. Muscle-specific loss of BMAL1 is associated with 2–3-fold reduced Dgat2 expres-

sion, 2-fold reduced muscle TG content at ZT12, and accumulation of several bioactive lipid

species. Muscle-specific overexpression of Dgat2 was shown to cause a 1.8-fold increase in

muscle TG content [91]; thus, modulating local Dgat2 expression levels is sufficient to increase

muscle TG synthesis and storage. Our data highlight mechanistically how BMAL1 promotes

diurnal rhythms of neutral lipid storage in preparation for the feeding+activity phase, when

bioactive lipids could potentially impair insulin signaling and glucose metabolism. We also

show how loss of BMAL1 leads to reduced TG storage and accumulation of bioactive lysoPLs.

REV-ERBα inhibits lipid and protein catabolism by direct repression of key

lipid and protein metabolism target genes

To monitor in vivo properties of REV-ERB-dependent transcriptional repression in muscles

from WT and mKO mice, we used a REV-ERB luciferase reporter (mBmal1::luc) [92] contain-

ing 2 ROR response elements spaced by 26 bp derived from the proximal promoter region of

mouse Bmal1 [93]. Cotransfecting HEK-293T cells with this REV-ERB sensor, along with an

expression plasmid for mouse REV-ERBα, led to a 5-fold reduction of transcriptional activity

compared to an empty control vector, thus demonstrating its sensitivity to REV-ERBα-medi-

ated repression (Fig 9A). To show that lack of REV-ERBα in mKO muscles is associated with

transcriptional derepression of REV-ERBα targets, we used in vivo bioluminescence imaging

of TA muscles from WT and mKO mice cotransfected with the REV-ERB sensor and either

REV-ERBα or an empty control vector (Fig 9B). Mice were imaged at ZT10, during peak

endogenous REV-ERBα and REV-ERBβ protein levels in WT muscles. Accordingly, WT mus-

cles transfected with exogenous REV-ERBα showed only a minor reduction of luciferase activ-

ity compared to contralateral muscles transfected with the empty control vector (Fig 9C).

Importantly, muscles from mKO mice transfected with the empty vector showed the highest

sensor activity, while the introduction (“rescue”) of REV-ERBα in contralateral mKO muscles

led to a significant 2-fold repression of luciferase activity. Overall, our data show that lack of

REV-ERBα in mKO muscles is associated with increased transcriptional activity (i.e., derepres-

sion) of REV-ERBα targets.

Our cistrome data revealed that muscle REV-ERBα peaks are highly enriched with GRE

motifs, suggesting binding sites for both factors are within close proximity. Mouse, rat, and

human MuRF-1 all contain a consensus GRE around 200 bp upstream of the transcription

start site (TSS) [94], which is directly under the summit of the MuRF-1 REV-ERBα peak we

uncovered. In fact, we noted 2 putative (A/G)GGTCA monomer sites approximately 200 bp

and approximately 450 bp downstream of the GRE in the first exon of MuRF-1 (S8A Fig). A

consensus FOXO binding site is also directly adjacent to the GRE, and FOXO and GR were

previously shown to synergistically activate MuRF-1 expression from this same promoter site

[94]. To determine the functional relevance of REV-ERBα binding to the MuRF-1 promoter,

we cotransfected luciferase reporter constructs containing either −5 kb or −1 kb fragments of

the mouse MuRF-1 promoter along with expression constructs for mouse REV-ERBα, GR,

and a constitutively active form of FOXO3 (c.a.FOXO3A) [95]. GR and c.a.FOXO3A each

induced both MuRF-1 promoter constructs, and they together increased each reporter activity

>3-fold (Fig 9D). Addition of REV-ERBα alone or with either GR or c.a.FOXO3A had only a

limited repressive effect on either MuRF-1 reporter; however, REV-ERBα completely blocked

the synergistic activation by GR and c.a.FOXO3A when combined together. While several

additional interesting muscle REV-ERBα targets suggested by our cistrome and transcriptome

data remain to be rigorously validated as functional targets on a case-by-case basis, our results
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Fig 9. REV-ERBα controls muscle lipid and protein metabolism by directly repressing key regulators. (A) Cotransfection of

HEK-293T cells with empty control vector or mouse REV-ERBα expression plasmid, along with REV-ERB sensor (mBmal1::luc),
containing 2 ROREs from the proximal promoter of Bmal1 linked to LUC. Data from 2 independent experiments are expressed as

mean fold-change normalized to the empty vector (n = 6; ±SEM). (B) In vivo imaging of LUC activity in WT and mKO mouse TA

muscles following electric pulse–mediated gene transfer of mBmal1::luc cotransfected either with empty vector or REV-ERBα
expression plasmid. Imaging analysis was performed 3 d after gene transfer at ZT10 as described in Materials and methods.

Pseudocolors overlaid on the image indicate the luminescence intensity from mBmal1::luc reporter gene activity as indicated by the

scale bar radiance (photons/second/cm2/steradian). (C) Quantification of LUC activity in TA muscles normalized to mKate2, an

exogenous spike-in control plasmid (mean ± SEM; n = 3 mice; �p< 0.05, ��p< 0.01, ���p< 0.001, Student’s t test). (D)

Cotransfection of HEK-293T cells with empty control vector, mouse REV-ERBα expression plasmid, mouse GR expression plasmid,
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already highlight the role of REV-ERBα repression at major established sites known to be

coactivated by GR and FOXO in muscle cells.

To demonstrate that increased expression of putative functional REV-ERBα targets is asso-

ciated with loss of REV-ERBα genomic binding in mKO muscles, we performed directed

ChIP-qPCR of REV-ERBα and corepressors NCoR1 and HDAC3. We focused on selected loci

at ZT8, when REV-ERBα is abundant in control muscles (Fig 2C). We detected REV-ERBα
binding at positive control loci like Bmal1 and Clock promoters, in addition to binding at

novel muscle REV-ERBα loci we uncovered near Plin5, Acsl1, Ucp3, MuRF-1, Atrogin-1, and

polyubiquitin-C (Fig 9E). Importantly, binding was severely abrogated in mKO muscles, estab-

lishing these as direct REV-ERBα targets. Binding of corepressors NCoR1 and HDAC3 at

most sites was likewise reduced in mutant muscles, consistent with loss of REV-ERBα occu-

pancy and increased expression (Fig 2D–2F and S3C Fig).

Finally, to investigate whether REV-ERBα can modulate expression of these genes in vivo,

we performed a REV-ERBα “rescue” in mKO muscles via electric pulse–mediated gene trans-

fer. Importantly, the introduction of REV-ERBα into mKO muscles (S8B Fig) led to 20%–50%

reduced expression of Clock, Plin5, Acsl1, Ucp3, MuRF-1, Atrogin-1, and polyubiquitin-C at

ZT10 relative to contralateral muscles transfected with the empty control vector (Fig 9F).

Moving beyond skeletal muscle, we found further evidence for a common network of

REV-ERBα-regulated lipid and amino acid metabolism genes in diurnal expression data from

liver-specific overexpression of Rev-erbα [9]. Since Bmal1 is a direct target of REV-ERBα,

transgenic activation of REV-ERBα constitutively represses Bmal1 across the light/dark cycle,

analogous to our muscle-specific Bmal1 KO. Likewise, Rev-erbα overexpression was linked to

reduced expression and blunted diurnal oscillation of Clock, p21 (Cdkn1a), Plin5
(2310076L09Rik), and Snat2 (Slc38a2) (S8C Fig).

Altogether, our data highlight a coordinated network of REV-ERBα target genes controlling

both lipid and amino acid metabolism in skeletal muscle and perhaps in other tissues. We

show how normal diurnal rhythms of muscle REV-ERBα might serve to repress these genes in

anticipation of the feeding+activity phase, when glucose returns as the predominant fuel

source. Furthermore, muscle-specific loss of BMAL1 also leads to loss of REV-ERBα-depen-

dent repression and persistently increased expression of these targets, likely causing increased

lipid metabolism and increased protein turnover.

Discussion

Here, we present a comprehensive map of in vivo genomic binding for the clock transcription

factors BMAL1 and REV-ERBα in adult mouse skeletal muscle and the transcriptional and

metabolic consequences of muscle-specific loss of BMAL1 and REV-ERBα. We have sought to

shed some light on the complex and highly dynamic regulation of skeletal muscle metabolism

or c.a.FOXO3A expression plasmid, along with GR:FOXO sensor containing −5 kb or −1 kb promoter sequence from mouse MuRF-
1 linked to LUC. Data are expressed as mean fold-change normalized to the empty vector (n = 2–3; ±SEM). (E) In vivo REV-ERBα,

NCoR1, and HDAC3 occupancy at target sites in control and mKO gastrocnemius at ZT8 (mean fold-enrichment over IgG ± SEM;

n = 4 independent biological replicates from 4 independent ChIP-qPCR experiments; Foxl2 promoter used as negative control). (F)

Gene expression (RT-qPCR) of mKO TA muscles at ZT10 following electric pulse-mediated gene transfer of REV-ERBα expression

plasmids or empty vector. Data normalized to 36B4 expression and expressed as fold-change relative to contralateral muscle

containing empty vector (mean ± SEM, n = 4 mice, �p< 0.05, Student’s t test). Underlying data can be found in supporting file S1

Data. BMAL1, brain and muscle ARTN-like protein 1; c.a.FOXO3A, constitutively active forkhead box O3; ChIP-qPCR, chromatin

immunoprecipitation–quantitative real-time PCR; CLOCK, circadian locomotor output cycles kaput; GR, glucocorticoid receptor;

HDAC3, histone deacetylase 3; HEK-293T, human embryonic kidney 293T; IgG, immunoglobulin G; LUC, luciferase; mKO,

myocyte-specific loss of BMAL1; NCor1, nuclear receptor corepressor 1; PDH, pyruvate dehydrogenase; ROR, RAR-related orphan

receptor; RORE, ROR response element; RT-qPCR, quantitative reverse transcription PCR; TA, tibialis anterior; ZT, Zeitgeber time.

https://doi.org/10.1371/journal.pbio.2005886.g009
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from a 24-hr perspective and have attempted to contextualize our results and add functional

relevance by linking genomic binding to 24-hr patterns of putative target gene expression and

metabolite fluctuations. We hope these rich genomics and metabolomics data profiles will pro-

vide a useful resource to others for further hypothesis generation and validation. We have

tried to maximize the potential for correlations between different assays by using predomi-

nantly fast glycolytic muscles from the same cohort of animals when possible (for example,

contralateral TA muscles were used for metabolomics and transcriptomics, gastrocnemius

muscles were used for quantitative lipidomics and ChIP-qPCR, vastus lateralis muscles were

used for western blotting and mitochondrial respiratory chain activity assays). Details can be

found in S4 Table.

To preserve glucose during periods of fasting, peripheral tissue metabolism shifts to priori-

tize the use of lipids, ketone bodies, and amino acids as energy substrates [96]. This occurs

concomitantly with increased peripheral glucose production derived mostly from amino acids

supplied from skeletal muscle protein breakdown. Accordingly, low blood glucose and the

resulting low circulating insulin levels are catalysts for increased peripheral lipolysis, muscle

protein degradation, and amino acid release. These homeostatic adaptations are readily appar-

ent during starvation, high-fat diet, and endurance exercise. Our data suggest that the same

mechanisms are at play and relevant during normal 24-hr fasting/feeding and rest/activity

cycles. Indeed, the normal circadian rise in blood glucose concentrations at awakening is

exquisitely controlled at multiple levels and by multiple tissues to ensure coordinated mainte-

nance of glycemia and peripheral insulin sensitivity [97]. Our study highlights several exam-

ples of how the muscle clock plays an important role in these processes by directly modulating

and coordinating local transcriptional programs in anticipation of diurnal oscillations of hor-

mones and metabolites (summarized in Fig 10).

Tissue-specific circadian clocks are thought to function as metabolic rheostats [98]. This

occurs both by synchronizing cells within each tissue and by fine-tuning local tissue metabo-

lism in anticipation of rhythmic systemic changes in behavior or nutritional state. Our data

indicate that the muscle clock is particularly tuned to regulate muscle metabolism, as genomic

binding sites for BMAL1 and REV-ERBα were mostly muscle-specific (S1B Fig). This reflects

known tissue specificity of circadian clock transcription factor binding [13] and is likely a con-

sequence of differences in tissue-specific chromatin accessibility. Our interpretation is sup-

ported by the fact that both factors also shared a muscle-specific enhancer genomic signature,

with muscle binding sites for BMAL1 and REV-ERBα also showing high enrichment of motifs

for myogenic regulatory factors—like MYOD, MYF5, and MYOG—and coregulators like

MEF2.

While common muscle BMAL1 and REV-ERBα target genes largely reflect their involve-

ment in the regulation of glucose metabolism and muscle mass, our REV-ERBα-specific cis-

trome also highlights a specialized metabolic role in regulating muscle lipid and protein

metabolism. This was not previously observed in genome-wide studies mapping REV-ERBα
binding in proliferating and differentiating myoblasts in culture [99] and so may be a particu-

lar facet of REV-ERBα’s physiological role in differentiated muscle cells within an in vivo

context.

Our results suggest that REV-ERBα may regulate lipid and protein metabolism target genes

via cross-talk/competition with other relevant nuclear hormone receptors, especially PPARs

and GR, but also others, including AR and thyroid hormone receptor (TR). Such promiscuity

among nuclear hormone receptors at target sites is well known [100,101] and is thought to per-

mit more subtle or complicated regulatory mechanisms [37]. Highlighting potential sites for

cross-talk/competition between REV-ERBα and PPARs, we found REV-ERBα peaks near

established [36,37] PPREs of Plin5 and Acsl1. Importantly, overexpression of Plin5 alone is
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sufficient to drive expression of a cluster of PPARα target genes involved in lipid catabolism

and mitochondrial oxidation in rat TA muscles [102]. This is thought to occur by a feed-for-

ward mechanism whereby increased perilipin-5 (PLIN5) promotes increased production of

endogenous PPAR ligands. Increased activation of PPAR targets in mKO muscles may thus

likewise result from a loss of REV-ERB-dependent repression of critical targets, including

Plin5, in conjunction with increased production of endogenous PPAR ligands.

Fig 10. BMAL1- and REV-ERB-dependent programming of muscle metabolism. Our integration of multiple “–omics” datasets

indicates that the muscle clock may modulate diurnal fuel selection in anticipation of the feeding phase by direct BMAL1-dependent

activation of genes promoting neutral lipid storage (Dgat2) and metabolic efficiency (Coq10b) while coordinating REV-ERB-

mediated repression of a network of genes involved in lipid metabolism (Plin5, Acsl1, Ucp3, Pdk4) and muscle protein turnover

(MuRF-1, Atrogin-1, polyubiquitin-C, Snat2). Muscle clock disruption causes loss of BMAL1-dependent activation and REV-ERB-

dependent repression of target genes, resulting in a state of metabolic inefficiency characterized by increased lipid mobilization and

oxidation and in increased protein turnover. BMAL1, brain and muscle ARNT-like protein 1; HDAC3, histone deacetylase 3;

NCoR1, nuclear receptor corepressor 1; RORE, ROR response element.

https://doi.org/10.1371/journal.pbio.2005886.g010
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Another potentially important link between rhythmic PPAR activity and the circadian

clock is through the PAR-domain basic leucine zipper (PAR bZip) proteins D-site-binding

protein (DBP), thyrotroph embryonic factor (TEF), and hepatic leukemia factor (HLF). Like

REV-ERBα/β, these transcription factors are direct BMAL1 targets and oscillate with high

amplitude over 24 hr at the level of mRNA and protein in most peripheral tissues [103]. They

are thought to regulate diurnal liver PPAR signaling indirectly by their transcriptional control

of acyl-CoA thioesterase (ACOT) proteins, which in turn liberate fatty acids from acyl-CoA

esters that can then serve as endogenous PPARα ligands [104]. Interestingly, Acot genes

(Acot1-13) were generally unchanged or showed slightly increased expression in mKO

muscles—despite loss of BMAL1 and despite massively reduced 24-hr oscillation of Dbp, Tef,
and Hlf—and increased expression of the PAR bZip repressor Nfil3 [7], another potential

REV-ERBα target gene [105]. Accordingly, it remains to be determined whether there are sim-

ilar links between PPAR signaling and PAR bZIP factors in muscle.

What is clear from our data is that time of day is a particularly crucial component for physi-

ological REV-ERB action in adult skeletal muscle, as every 12 hr, muscle cells alternate

between endogenous REV-ERBα/β gain and loss of function (Fig 2C). These considerations

have obvious chronotherapeutic implications for successful pharmacological targeting of mus-

cle REV-ERBα/β. When considering the timing and the relative abundance of REV-ERBα/β
protein expression in relation to other nuclear hormone receptors and their known and poten-

tial cross-talk, it is very tempting to think of physiological REV-ERB action in terms of a tem-

poral genomic “reset.” In this way, REV-ERBα/β may block and thus resensitize common yet

context-dependent regulatory regions of important metabolic target genes, preparing them to

respond to the next day’s particular challenges. Future studies are certainly warranted to com-

prehensively explore and better define these potential relationships.

Our data illuminate how BMAL1, REV-ERBα, and their target genes work together to

establish a transcriptional logic that defines 24-hr energy state and a coherent fuel selection

within the muscle cell, thus maximizing metabolic efficiency. For example, we show how

BMAL1-dependent activation of Dgat2 could promote synthesis and storage of neutral lipids,

while REV-ERB-dependent repression of lipid metabolism genes could coordinately dial

down mobilization and oxidation of lipids. This occurs in conjunction with transcriptional

activation of gene programs promoting muscle insulin sensitivity and glucose metabolism in

anticipation of the feeding+activity phase [7]. In the absence of BMAL1, muscle cells appear to

become untethered from (and thus unable to anticipate) rhythmic systemic nutritional signals

and persist in a fasting state, resulting in accumulation and de novo diurnal oscillation of lipids

and amino acids. Loss of BMAL1 appears to uncouple glycolysis from oxidation, and divert

glycolytic intermediates to alternative sugar, nucleotide, lipid, and amino acid biosynthetic

pathways (Figs 5F and 8B, and [7]).

Likewise, REV-ERB-dependent inhibition of the ubiquitin-proteasome system (MuRF-1,

Atrogin-1, polyubiquitin-C, and proteasome subunits) and the autophagy-lysosome pathway

(Trp53, Atg12, Mybph, and others) might provide an anticipatory brake on these metabolically

expensive and potentially devastating processes. Our results suggest that BMAL1 thus tempers

physiological rhythms of muscle protein breakdown in anticipation of feeding. However,

BMAL1’s role in regulating protein turnover appears to be somewhat limited in scope, as it

does not play a major role in pathological protein degradation associated with the massively

catabolic state of denervation atrophy [106] or in age-associated sarcopenia [3,7]. It will be

important to establish whether this is also the case in other forms of muscle atrophy, such as

glucocorticoid therapy, sepsis, diabetes, or cancer cachexia. Indeed, one possibility that

remains to be tested is whether mKO muscles, or other models of circadian misalignment,

exhibit increased sensitivity to endogenous glucocorticoids due to the loss of REV-ERBα-
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dependent repression. This could lead to the transiently increased expression of GR targets

like MuRF-1, Atrogin-1, polyubiquitin-C, and others that we observe.

Reduced peripheral fat mass in mKO mice is in agreement with increased lipid oxidation

and reduced lipid storage. On the other hand, increased alanine synthesis and release and per-

sisting peak expression of genes involved in protein degradation suggest that increased mKO

muscle mass reflects overall increased protein turnover, with net balance favoring muscle pro-

tein synthesis. Indeed, mKO mice showed significantly increased rates of protein synthesis at

ZT4 (Fig 7D and 7E). Increased rates of protein synthesis often go hand in hand with increased

rates of protein degradation. For example, the paradoxical up-regulation of protein synthesis

and mammalian target of rapamycin complex 1 (mTORC1) activation during denervation

atrophy occurs via a proteasome-mediated increase in intramuscular amino acids [107]. Like-

wise, protein degradation is often a necessary correlate of muscle growth/remodeling [108].

One of many interesting REV-ERBα target genes we uncovered was Snat2 (Slc38a2).

Sodium-dependent neutral amino acid transporter 2 (SNAT2) is a major determinant of cell

size [46] and anabolic amino acid concentration in muscle cells [109] because of its dual role

as an amino acid transporter–receptor [110]. SNAT2 couples System A transport with System

L activity, thus increasing uptake of BCAA, including the potently anabolic essential amino

acid leucine, and activation of mTORC1. Loss of REV-ERB-mediated repression of Snat2 (Fig

2F and S8C Fig) may thus contribute to the increased BCAA observed at ZT16 in mKO mus-

cles (Fig 5A) and might also contribute to increased rates of muscle protein synthesis. Even a

mildly increased futile cycle of protein breakdown and resynthesis in mKO muscles would add

a substantial contribution to metabolic rate [111,112] and negatively impact overall metabolic

efficiency. Indeed, we also noted significantly increased EE in mKO mice (Fig 7I).

Our finding of increased protein synthesis in mKO muscles appears to contrast with the

reported cytosolic role of BMAL1 as a translation factor that promotes rhythmic protein syn-

thesis as a substrate of the mTOR-effector p70S6K1 (S6K1) [113]. Lipton and colleagues found

approximately 10% reduced in vivo protein synthesis rates in livers from WT mice between

ZT0 and ZT12, the beginning and the end of the fasting phase, respectively. On the other

hand, livers from global BMAL1 KO mice showed approximately 30% reduced protein synthe-

sis rates at ZT0 and ZT12 compared to WT mice. Examining different timepoints, in a

different tissue, and using a different in vivo model of BMAL1 ablation, we found approxi-

mately 2-fold-increased protein synthesis rates in WT muscles at ZT16, the middle of the

feeding+activity phase, compared to WT muscles at ZT4, the middle of the fasting+rest phase.

While seemingly at odds, our results and those of Lipton and colleagues in WT mice are both

in agreement with published results obtained from livers and muscles of fasted and fed WT

mice [80]. However, we found that protein synthesis rates remained elevated rather than

reduced in mKO muscles at ZT4. Some important considerations may explain possible dis-

crepancies. For example, liver protein synthesis rates are much higher than skeletal muscle

under fed/fasted states and over 24 hr [114,115]. Furthermore, muscle and liver show impor-

tant tissue-specific differences in their regulation of protein synthesis [116]. For example, rapa-

mycin-induced inhibition of mTORC1 completely blocks the stimulation of protein synthesis

in liver upon feeding yet only partially inhibits muscle protein synthesis [117]. In addition, leu-

cine increases protein synthesis in skeletal muscle but not in liver [118–121]. Finally, mice

lacking S6K1 have normal global translational activity in muscle [115] and continue to show

increased muscle protein synthesis and hypertrophy in response to AKT activation [122].

The uptake of oxidative substrates and their rate of flux through catabolic pathways are

ultimately determined by the efficiency of electron transport and proton conductance (the

sum of ATP synthesis and proton leak) [69]. Increased oxidative capacity in conjunction with

increased uncoupling from ATP production is seen in endurance-trained athletes [72] and in
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rodents fed a high-fat diet [74]. The resulting loss of metabolic efficiency (i.e., uncoupling sub-

strate oxidation from ATP production) is thought to protect against an excessive buildup of

Δψm and uncontrolled formation of reactive oxygen species (ROS) [68]. Diurnal mitochon-

drial coupling efficiency is thus likely lowest from ZT8 to ZT12, at the end of the resting phase,

characterized by low respiration rates, low levels of intracellular ADP (S5B Fig), and around

peak diurnal expression of Ucp3 and Ucp2 (Fig 6G). In this state, total oxygen consumption

would be dominated by basal uncoupling mechanisms [72], and decreased efficiency of energy

production would cause a concomitant rise in basal TCA cycle flux. In WT muscles, ZT8–

ZT12 coincides with the peak of diurnal citrate levels, which oscillate around 2–3-fold over 24

hr. Increased TCA flux at this time may be beneficial in that it could provide a more rapid

response in anticipation of increased energy demand upon awakening, analogous to its advan-

tageous role proposed in endurance athletes compared to sedentary controls [72]. However,

despite increased muscle TCA intermediates, there is no clear advantage gained in terms of

exercise endurance in mKO mice (S6B Fig), and so increased TCA cycle anaplerosis may sim-

ply reflect a mismatch between pyruvate formation and oxidation, as suggested by Gibala and

colleagues [59].

It is important to stress that the mild mitochondrial alterations we observe in mKO muscles

should not be considered in terms of dysfunction. Interestingly, our results are in stark con-

trast to the severe exercise intolerance and mitochondrial dysfunction reported for Clock
mutant mice [123] and global Rev-erbαKO mice [29]. However, interpretation of these partic-

ular global models and their relation to the muscle clock is complicated by the fact that all tis-

sues are affected, including the central pacemaker. Further studies using conditional muscle-

specific and inducible Clock and Rev-erbα/βKO models, also keeping in mind REV-ERBα’s

indirect DNA binding roles [13], would certainly help to clarify the particular relationships.

Rather, our data suggest the mitochondrial alterations we observe in mKO muscles are likely

operating within a normal physiological range, albeit at one extreme analogous to the fasted

state. While loss of BMAL1 leads to a mild state of metabolic inefficiency under chow diet and

standard housing conditions, endogenous muscle antioxidant systems appear to sufficiently

buffer any associated increase in oxidative stress.

Our data thus support the idea that specifically inhibiting muscle REV-ERBα/β [124] in

certain situations may provide a relatively safe means to temporarily modulate metabolic

efficiency and EE in skeletal muscle, a major oxidative tissue and relevant pharmacological

target in humans [125,126]. Indeed, pioneering groups have already begun to wade into these

therapeutic waters and, importantly, have already shown in mice that selective REV-ERB

antagonism accelerates muscle regeneration in response to acute muscle injury [99] and

promotes muscle differentiation and maintenance of muscle mass in a model of Duchenne

muscular dystrophy (DMD) [127]. Intriguingly, Welch and colleagues showed REV-ERB

antagonism enhances Wnt and Notch signaling, leading to satellite cell self-renewal. Selective

inhibition of REV-ERBα/β in muscle would also promote increased Bmal1 expression, which

is proposed to have positive effects on sleep [128] and longevity [129], and would further

promote neutral lipid storage (Figs 4A and 8), muscle insulin sensitivity, and glucose metabo-

lism [7].

In conclusion, we present a comprehensive in vivo view of BMAL1 and REV-ERBα geno-

mic binding in adult mouse skeletal muscle and show how this can be related to common and

specific transcriptional programs and metabolite oscillations in the presence or absence of

muscle BMAL1 and REV-ERBα/β. Our integration and presentation of multiple in vivo high-

throughput “–omics” datasets provides an entry point to explore how BMAL1 and REV-ERBα
can direct various physiological processes, including the regulation of muscle energy homeo-

stasis. Our data suggest that the muscle clock, via BMAL1 and REV-ERBα, plays an important
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role regulating metabolic efficiency by (1) confining substrate use to appropriate temporal

windows, (2) modulating rates of energetically expensive protein turnover, (3) promoting stor-

age of neutral lipids, and (4) controlling oxidation of lipid substrates. We also show how the

muscle clock may specifically inhibit a network of genes involved in lipid mobilization and

oxidation, protein degradation, and amino acid transport via direct REV-ERB-mediated

repression in anticipation of the feeding phase, all while coordinately activating genes promot-

ing neutral lipid storage, insulin sensitivity, and glucose oxidation [7]. The translational rele-

vance of our findings is already evident based on a series of very elegant recent studies

performed by Hansen [130], Loizides-Mangold [131], Perrin [132,133], van Moorsel [134],

and colleagues using human biopsies and human muscle cells in culture. While we have

focused only on 2 circadian clock transcription factors and a small subset of potential target

genes, additional mediators and physiological roles of the muscle clock remain to be explored.

We hope the comprehensive nature of our resource will serve as an important basis from

which to continue the exploration of muscle circadian rhythms in health and disease.

Materials and methods

Contact for reagent and resource sharing

Further information and requests for resources and reagents should be directed to and will be

fulfilled by Kenneth Dyar (kenneth.dyar@helmholtz-muenchen.de).

Ethics statement

All experimental procedures were performed according to European Commission guidelines

and were reviewed and approved by the local Veterinary Central Service, University of Padova,

and the relevant Italian authority (Ministero della Salute, Ufficio VI), in compliance with Ital-

ian Animal Welfare Law (Law n 116/1992 and subsequent modifications) and Directive 2010/

63/EU of the European Parliament. Accordingly, experiments performed before 2012 were

sent to the Italian Ministry of Health (Project# 27/09). Experiments performed after 2012 were

approved by the Italian Ministry of Health (Decree# 164/2012-B of 09.08.12).

Animals

Animals were housed in a temperature-controlled room (22 ˚C) under a 12-hr light/dark regi-

men, with lights on at ZT0 (6 AM) and lights off at ZT12 (6 PM), with standard chow diet

(Mucedola, Settimo Milanese, Italy) and water provided ad libitum. Muscle-specific inactiva-

tion of Bmal1 (mKO) was obtained as described [7] by crossing a floxed Bmal1 C57BL/6

mouse line with a C57BL/6 mouse line carrying a Cre recombinase transgene under control of

the Mlc1f promoter (Mlc1f-Cre). In the resulting mKO mice, the region coding for the BMAL1

bHLH DNA binding domain is excised. Cre-negative littermates were used as controls. All

mice used in this study were 3–5-mo-old male littermates, unless specified otherwise. Litter-

mates were randomly assigned to experimental groups. Tissues were collected immediately

after cervical dislocation at ZT0, 4, 8, 12, 16, and 20, snap frozen in liquid nitrogen, and stored

at −80 ˚C until subsequent use. S4 Table details the various muscles and tissues used for this

paper.

Metabolic phenotyping

Total body fat and lean tissue mass were quantified by nuclear magnetic resonance (EchoMRI).

EE, RER (VCO2/VO2), locomotor activity, and feeding behavior were monitored on a TSE

system (Bad Homburg, Germany).
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Exercise and endurance training experiments

To measure exercise endurance, forced running on a motorized treadmill was used (Harvard

Apparatus PANLAB, LE 8710 M). The protocol was based on [135], with some minor modifi-

cations. Briefly, mice were first acclimated to low-speed running (22 cm/s and 10% incline) for

10 min each day for 2 d prior to the test. Acclimation was always performed under dim red

light around ZT12 (lights off), the normal start of the circadian activity phase. On the day of

the endurance test, food was removed 3 hr before starting at ZT12 to ensure consistent base-

line blood glucose levels. For the test, mice began running at 22 cm/s and 10% incline under

dim red light. Speed was gradually increased by 5 cm/s every 30 min up to 45 cm/s. Mice were

encouraged to run by humanely stimulating their tail with a soft brush. The operator was blind

to genotype of the mice, and exhaustion was defined by mice refusing to run for 10 sec and

confirmed by blood glucose <76 g/dl [75]. Time and running distance were recorded for each

mouse. For endurance training, mice trotted on a motorized treadmill 25 cm/s and 0% incline

1 hr daily for 4 wk, starting around ZT12. After humanely encouraging mice to run with a soft

brush on their tail during the first few acclimation sessions, mice ran without much need for

further encouragement.

Clinical blood chemistry

Sedentary mice were either fed ad libitum, and blood was collected at ZT14 (“fed ZT14”), or

fasted for 4 hr late in the afternoon (ZT7–ZT11), and blood was collected at ZT11 (“fasted

ZT11”). A separate cohort of endurance-trained WT and mKO littermates was measured after

4 wk training on a motorized treadmill 25 cm/s and 0% incline 1 hr daily, starting around

ZT12. Blood was collected after running 25 cm/s and 0% incline for 1 hr. Blood was collected

from the orbital sinus in heparin-coated Pasteur pipettes and centrifuged immediately after

collection. Plasma samples were kept at −20 ˚C until dosing. FFAs, β-OH-B, and AcAc were

dosed using an automated spectrophotometer, Cobas Fara II (Roche), according to the manu-

facturer’s instructions. Blood glucose and lactate levels were measured with a YSI 2300 STAT

Plus glucose and lactate analyzer (YSI Life Sciences, Yellow Springs, OH) according to the

manufacturer’s instructions.

Quantification of serum amino acids

Mice were fasted 6 hr (8 AM–2 PM), and blood was collected at ZT8 (2 PM). Blood was col-

lected from the orbital sinus in Pasteur pipettes, allowed to clot at room temperature (RT) for 30

min, centrifuged, and kept at −20 ˚C until use. Amino acid concentrations were assessed by GC/

MS (HP 5890; Agilent Technologies, Santa Clara, CA), using the internal standard technique, as

previously reported [136]. Briefly, known amounts of internal standards (L-[15N]glycine, L-

[15N]glutamate, L-[15N]glutamine, L-[1-13C, methyl-2H3]methionine, L-[3,3-2H2]cysteine, L-

[15N]alanine, L-[1-13C]leucine, L-[1-13C]phenylalanine, L-[3,3-2H2]tyrosine, L-[15N]threonine,

L-[15N]serine, and L-[15N]proline [Cambridge Isotope Laboratories]) were added to plasma

samples. Amino acid concentrations were determined considering the following mass-to-charge

ratios (m/z): 218/219 for glycine, 432/433 for glutamate, 431/432 for glutamine, 320/324 for

methionine, 406/408 for cysteine, 158/159 for alanine, 302/303 for leucine, 336/337 for phenylal-

anine, 466/468 for tyrosine, 404/405 for threonine, 362/363 for serine, and 184/185 for proline.

In vivo ChIP assays

In vivo skeletal muscle ChIP was performed with sonicated nuclear extract prepared from form-

aldehyde-cross-linked gastrocnemius muscle according to [137]. For immunoprecipitation, we
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used anti-BMAL1 (ab93806, Abcam), anti-REV-ERBα (generous gift from Ron Evans), anti-

RNA Polymerase II (#MMS-126R; clone 8WG1, Biolegends), anti-NCOR1 (#20018-1-AP, Pro-

tein Tech), anti-HDAC3 (ab7030, Abcam), or rabbit IgG (2027x, Santa Cruz). DNA was column

purified and used for sequencing or real-time qPCR (enrichment expressed as fold-change rela-

tive to IgG; primer sequences used are listed in S4 Table).

ChIP-seq library prep

Libraries from ChIP and input DNA were prepared with the KAPA Hyperprep Kit (Kapa Bio-

systems, KK8504); Illumina-compatible adapters were synthesized by Integrated DNA Tech-

nologies (IDT) and used at a final concentration of 68 nM. Adapter-ligated libraries were size

selected (360–610 bp) in a Pippin Gel station (Sage Science) using 2% dye free gels (Sage Sci-

ence, CDF2010). Library concentration was estimated by real-time PCR with the KAPA

Library Quantification Kit (Kapa Biosystems, KK4873). Library quality was evaluated with the

Agilent High Sensitivity DNA Kit on a 2100 Bioanalyzer (Agilent). Libraries were run on a

HighSeq2500/HighSeq4000 sequencers (Illumina) at the NGS Core Facility at HMGU.

Bioinformatics pipeline for ChIP-Seq data analysis

Pre-processing. ChIP-Seq FASTQ files were mapped against the mouse mm10 genome

with BWA version 7.12 using MEM algorithm [138]. Duplicate reads were removed using

samtools version 0.1.19 [139]. Multi-mapping reads were removed with bamtools version 2.4.0

[140] using read threshold of MAPQ� 24.

Adjusting sequencing depth. Sequencing read depth was adjusted by down sampling

replicate BAM files to the replicate with lowest read count, resulting in about 13 million unique

reads for RNAP2 and about 20 million unique reads each for BMAL1 and REV-ERBα repli-

cates (see Table 1 below for further details).

Peak calling. Macs2 version 2.1.1 [141] peak caller was used to perform peak calling on

the replicates using input DNA. Peak calling cutoff was set to p-value 0.05. In addition to nar-

row peak files, read density distribution (Bedgraphs) was used to visualize ChIP-seq tracks

using Integrated Genome Browser [142].

Peak universe, “high confidence” and “confident” peak tables, and overlapping peaks.

A peak table was created for each sample. Replicate sample tables were then combined into a

unified peak universe for each factor with unique ranges across the genome and containing

overlapping peaks information including the tag counts (enrichment score). “High confi-

dence” peaks were identified as reproducible peaks common between replicate samples.

Table 1. Counts of samples at different stages of bioinformatics analysis.

sample description map percent read # rmdup read # unique reads #

(MAPQ > 24)

downsampled unique reads # # peaks p< 0.05 high confidence peaks

Muscle_RNAP2_ZT4_rep1 96.75 18,912,373 16,083,495 12,951,866 12,951,866 87,115 } 10764

Muscle_RNAP2_ZT4_rep2 99.33 26,923,018 23,744,982 21,078,107 13,000,000 168,711

Muscle_Bmal1_ZT4_rep1 99.15 27,754,186 21,676,362 19,181,165 19,181,165 34,730 } 2787

Muscle_Bmal1_ZT4_rep2 97.85 44,673,573 32,176,505 28,279,965 20,000,000 177,586

Muscle_Rev-erbα_ZT8_rep1 99.68 36,031,011 28,439,234 25,292,094 20,000,000 28,832 } 1263

Muscle_Rev-erbα_ZT8_rep2 99.43 28,909,625 22,233,385 19,698,054 19,698,054 29,883

Muscle_Input_rep1 99.11 28,600,958 26,311,286 23,540,615

Muscle_Input_rep2 99.58 29,104,973 24,849,024 21,920,901

Abbreviation: MAPQ, mapping quality.

https://doi.org/10.1371/journal.pbio.2005886.t001
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“Confident” peaks were reproducible peaks common between BMAL1 and REV-ERBα and

present in�3 of the 4 samples.

To assess overlapping peaks between liver and muscle, liver peak location coordinates for

BMAL1 [14] and REV-ERBα [15] were first converted from mm9 to mm10 using UCSC

liftOver.

Heatmaps. Bedgraphs were used to plot the read density map near the universe peak cen-

ters using deepTools version 2.2.4 [143]. Replicates for each factor were merged using UCSC

tools bedGraphToBigWig and bigWigMerge (http://hgdownload.cse.ucsc.edu/admin/exe/

macOSX.x86_64/).

Then, deepTools computeMatrix tool was used followed by plotHeatmap tool [143].

Peak annotation. Peak annotation was performed with HOMER version v4.8 [144].

GENCODE database for mm10 [145] was used as a reference for assigning feature level

annotation.

Motif discovery. To minimize bias, a combination of two different methods was used for

motif discovery:

1. HOMER version v4.8 [144]. For BMAL1 we searched for motifs of 8-, 10-, 12-, 14-, 15-, and

16-mers. For REV-ERBα, we searched for motifs of 8-, 10-, and 12-mers.

2. Clover version published on Jan 14, 2016 [146], was used with default settings.

Functional enrichment analysis of peaks. Genomic Regions Enrichment of Annotations

Tool (GREAT) [16] was used to analyze functional significance of BMAL1 and REV-ERBα
peaks using mouse NCBI build 38 genome assembly (mm10), whole genome as background,

and associating genomic regions with genes using “basal plus extension” and the following

parameters: proximal 20 kb upstream, 2 kb downstream, plus distal up to 500 kb.

Global metabolite profiling

Metabolite profiling, peak identification, and curation were performed by Metabolon using

described methods [147]. Briefly, the nontargeted metabolic profiling platform used by Meta-

bolon combines 3 independent platforms: UHPLC/MS/MS optimized for basic species,

UHPLC/MS/MS optimized for acidic species, and GC/MS. We analyzed a total of 60 TA mus-

cles from 60 male muscle-specific Bmal1 KO and control littermates (5 × group × time point).

Metabolomics data processing and analysis

Metabolomics data (“origscale”) can be found in supporting file S3 Data. The data were first

normalized according to raw area counts and processed according to [148]. Run day correc-

tion was performed for each metabolite by setting the run day medians equal to 1. We removed

metabolites with more than 50% missing values and transformed data to log10. Data points

outside 4 times the standard deviation for each metabolite were considered as outliers and

removed. Missing data were imputed by k-nearest-neighbor algorithm. To identify metabolites

that show significant change over time and/or genotype, we fit data to a linear mixed effects

model. Significant changes were estimated by performing F-test statistics to each fixed effect

term (ANOVA) Genotype, Time, Genotype × Time. Calculations were done using MATLAB

R2015b, Statistics Toolbox. Heatmaps were generated using the mean of 5 replicates. Hierar-

chical clustering was performed with squared euclidean distance and Ward’s minimum vari-

ance algorithm. Data were sorted by phase according to WT muscle and aligned between

groups to show effect in mKO. Metabolites were categorized according to Metabolon super-

pathways: Amino Acids, Carbohydrates, Cofactors and Vitamins, Energy, Lipids, Nucleotides,
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Peptides, and Xenobiotics. To identify significantly enriched KEGG pathways in our data, we

performed a hypergeometric distribution test on metabolites showing a Genotype effect

p< 0.05. To identify 24-hr cycling metabolites, we used the nonparametric test JTK_CYCLE

as described in [147], using an adjusted p< 0.05.

Extraction of total lipids

Muscles were weighed and homogenized in 800 μl dH2O. Lipids were extracted twice accord-

ing to Folch and colleagues [149] using chloroform/methanol/water (2/1/0.6, v/v/v) containing

500 pmol butylated hydroxytoluene, 1% acetic acid, and 100 pmol of internal standards (ISTD,

17:0–17:0 PC, 17:0 LPC, 17:0–17:0–17:0 TG, Avanti Polar Lipids) per sample. Extraction was

performed under constant shaking for 90 min at RT. After centrifugation at 1,000 x g for 15

min at RT, the lower organic phase was collected. Then, 2.5 ml chloroform was added to the

remaining aqueous phase, and the second extraction was performed as described above. Com-

bined organic phases of the double extraction were dried under a stream of nitrogen and

resolved in 900 μl 2-propanol/chloroform/methanol (7/2/1, v/v/v).

Quantitative analysis of TG by HPLC with light scattering detection

For HPLC-ELSD, 20 μl of the resolved extract was evaporated and dissolved in 100 μl chloro-

form/methanol (2/1, v,v). The chromatographic setup for lipid separation consisted of an Agi-

lent 1100 combining pump, injector, precooled sample manager (4 ˚C), and column oven (40

˚C) (Agilent, Santa Clara, CA). For detection of lipids, a Sedex 85 evaporative light scattering

detector (Sedere, Alfortville, France) was used. Data acquisition was performed by the Chem-

station software (B 04.01, Agilent, Santa Clara, CA). A ternary gradient with a Betasil Diol col-

umn (100 × 4.6 mm, particle size 5 μm, Thermo Fisher Scientific, Waltham, MA) was used for

chromatographic separation. The solvent system consisted of eluent A (isooctane/ethylacetate,

99.8/0.2, v/v), eluent B (acetone/ethylacetate, 2/1, v/v, containing 0.02% [v/v] acetic acid), and

eluent C (isopropanol/water, 85/15, v/v, containing 0.05% [v/v] acetic acid and 0.3% [v/v]

ammonium acetate). For external calibration, TG 54:3 (Larodan, Solna, Sweden) was prepared

in chloroform:methanol (2:1, v/v), and the final concentration ranged from 1 μM to 2.5 μM.

Injection volume for all samples including external calibration was 10 μl.

Qualitative analysis of lipids by ultra-performance liquid chromatography

(UPLC) with qTOF detection

For UPLC-qTOF, 120 μl of the resolved extract was transferred to an autosampler vial for anal-

ysis. Chromatographic separation was performed using an AQUITY UPLC system (Waters),

equipped with a BEH-C18-column (2.1 × 150 mm, 1.7 μm; Waters) as previously described

[150]. A SYNAPTG1 qTOF HD mass spectrometer (Waters) equipped with an ESI source was

used for detection. For positive and negative ionization mode, 5 μl and 10 μl were injected,

respectively. Data acquisition was done by the MassLynx 4.1 software (Waters Corporation).

Lipid classes were analyzed with the “Lipid Data Analyzer 1.6.2” software [151]. Extraction

efficacy and lipid recovery were normalized using ISTD, and lipid classes were expressed as

percent composition.

Separation of neutral lipids by thin-layer chromatography

Extracted lipids were spotted on a silica gel 60 (Merck, Darmstadt, Germany). For comparison,

a standard solution containing TG 54:3 was used. The silica gel was developed using n-hexane/
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diethylether/acetic acid (80/20/2, v/v/v) as solvent system, and lipids were visualized by char-

ring using concentrated sulfuric acid.

Palmitate oxidation

Gastrocnemius muscles were immediately removed after cervical dislocation. Tissues were

quickly weighed, and placed in ice-cold homogenization buffer (250 mM Sucrose, 10 mM

Tris-HCL, 1 mM EDTA, pH = 7.4). Muscles were then thoroughly minced with scissors and

transferred to a 10 ml glass homogenization mortar on ice, and ice-cold homogenization

buffer was added up to a 20-fold dilution (w/v) suspension. Samples were then homogenized

with 10 strokes of a motor-driven, tightly fitting glass mortar/Teflon pestle Potter Elvehjem

homogenizer operated at 1,600 rpm. Reactions were initiated by adding 50 μl of muscle

homogenates to 450 μl of prewarmed oxidation medium (30 ˚C; 111 mM sucrose, 11.1 mM

Tris-HCl, 5.56 mM KH2PO4, 1.11 mM MgCl2, 88.9 mM KCl, 0.222 mM EDTA, 1.11 mM

DTT, 2.22 mM ATP, 0.33% fatty acid–free BSA, 2.22 mM Carnitine, 0.056 mM CoA, 0.111

mM Malate, 222 uM cold Palmitate, + 0.5 uCi [1-14C]-palmitic acid; prepared fresh daily; pH

7.4). After incubation for 90 min in a shaking water bath (100 rpm; 30 ˚C), reactions were ter-

minated by addition of 100 μl 1 M perchloric acid, and the CO2 produced during the incuba-

tion was trapped in 100 μl NaOH that had been added to a small tube inside the reaction vial.

Palmitate oxidation rates were determined by measuring incorporation into 14CO2 and 14C-

acid-soluble metabolites (ASM) by liquid scintillation counting.

Analysis of mitochondrial function

Spectrophotometric activity of mitochondrial respiratory chain complexes CI, CII, CIII, CII

+III, CIV, as well as CS, was measured according to [152] using muscle homogenates from fro-

zen vastus lateralis muscles from the same cohort of mice used for gene expression and meta-

bolomics analyses. Mitochondrial membrane potential was measured by epifluorescence

microscopy based on the accumulation of TMRM fluorescence in isolated muscle fibers from

flexor digitorum brevis (FDB) muscles as previously described [153], with minor modifica-

tions. Briefly, fresh FDB muscles from adult mice were digested in type I collagenase at 37 ˚C

for 2 hr and dissociated into single fibers by gentle pipetting. Isolated FDB myofibers were

then placed in 1 ml Tyrode’s buffer (Sigma) and loaded with 2.5 nM TMRM (Molecular

Probes) supplemented with 1 μM cyclosporine H (a P-glycoprotein inhibitor) for 30 min at

37 ˚C. At the times indicated by arrows, oligomycin (Olm, 5 μM; Sigma) or the protonophore

FCCP (4 μM; Sigma) was added to the culture medium.

Assessment of muscle protein synthesis

Quantification of muscle protein synthesis rates was performed using the nonradioactive

IV-SUnSET technique as described in [78].

Gene expression profiling and analyses

Microarray sample processing, quality control, and data analysis are reported in [7].

SDS-PAGE and western blotting

Muscle lysates were prepared in RIPA buffer (Sigma) supplemented with Halt protease and

phosphatase inhibitor cocktail (#78446, Thermo Scientific), protein concentration determined

using the bicinchoninic acid assay (Pierce, Rockford, IL, USA), and SDS-PAGE performed using

NuPAGE 4%–12% gels (Invitrogen). Proteins were transferred onto a PVDF membrane and
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incubated with rabbit anti-REV-ERBα (kind gift from Ron Evans), mouse anti-REV-ERBβ (D-8;

sc-398252, Santa Cruz), or mouse anti-GAPDH (ab8245, Abcam). Membranes were then incu-

bated with HRP-conjugated donkey anti-rabbit (sc-2317, Santa Cruz) or goat anti-mouse (170–

6516, Biorad) secondary antibodies. HRP activity was measured by chemiluminescence (Immo-

bilon Western, Millipore), and bands visualized on CP-BU Medical X-Ray Film (Agfa Health-

Care NV, Gevaert, Belgium).

Plasmids

Mouse promoter regions of Rev-erbα (forward, 50-CCCCTAGTCACCACTAACCTC-30;

reverse, 50-AGAGACGTGTGCCCTGCTA-30), Rev-erbβ (forward, 50-ATGTAGGAGGGAGG

CTCGG-30; reverse, 50-GCCTCGCGCAGACTATGG-30), Dgat2 (forward, 50-AGCTGCTAG

GATTGTAGGATTACAG-30; reverse, 50-AGAGCTGAGGTAGGTAGCCG-30), and Coq10b
(forward, 50-GCTAACCAAATGCAGCAGGC-30; reverse, 50-TGTGAAGCCGGTAGCCAA

C-30) were amplified using High Fidelity Platinum Taq DNA polymerase (Invitrogen), cloned

into pGL3-Basic (Promega), and verified by sequencing. pRL-CMV renilla expression con-

struct was from Promega. pCMV-AC-mKate (mKate2) was from OriGene. Both mPer2::luc
(423-bp mPer2 promoter fragment) and mBmal1::luc (530-bp mBmal1 promoter fragment)

reporter plasmids were generous gifts from Kazuhiro Yagita and described in [154]. Mouse

full-length Bmal1 and Clock pcDNA3-HA constructs were generous gifts from Marina Antoch

(Roswell Park Cancer Institute) and described in [155]. Mouse full-length Rev-erbαORF (for-

ward, 50-ATGACGACCCTGGACTCCAA-30; reverse, 50-TCACTGGGCGTCCACCCGGA-

30) was amplified using AccuPrime GC-Rich DNA Polymerase (Invitrogen) and shuttled into

Gateway pDONR-221 (Invitrogen) with Gateway BP Clonase Enzyme (Invitrogen). Mouse

Rev-erbαORF was then shuttled into Gateway pcDNA-Dest47 expression vector with Gateway

LR Clonase Enzyme (Invitrogen). The −1 kb and −5 kb MuRF-1 promoter luciferase reporters

and c.a.FOXO3A plasmids were generous gifts from Marco Sandri. The mouse GR construct

was generated by PCR amplifying a Kpn1/BamH1 PCR fragment from full-length mouse GR

ORF (BioScience IMAGE40111802) using forward 50-GGGGTACCATGGACTCCAAAGAA

TC-30 and reverse 50- CGGGATCCTCATTTCTGATGAAAC-30 primers and cloning into

Kpn1/BamH1-digested pcDNA3.

In vitro transfection and luciferase assays

HEK-293T cells were cultured in DMEM with 10% FBS and penicillin-streptomycin. Cells

were seeded in 96-well plates at 100,000 cell/mL for transfection and luciferase measurements.

For BMAL1 target validation, cells were cotransfected with 25 ng promoter reporter construct,

25 ng pRL-CMV, and either 25 ng BMAL1-HA + 25 ng CLOCK-HA or 50 ng empty pcDNA3.

For REV-ERBα sensor validation, cells were cotransfected with 25 ng mBmal1::luc, 25 ng

pRL-CMV, and either 200 ng REV-ERBα or 200 ng empty pcDNA-Dest47. For MuRF-1

reporter experiments, cells were cotransfected with 25 ng MuRF-1 reporter, 25 ng pRL-CMV,

and 25 ng each of GR, c.a.FOXO3A, and REV-ERBα. To maintain consistent DNA transfec-

tion concentrations across experiments, 50 ng or 25 ng empty pcDNA-Dest47 was supple-

mented, respectively, when transfecting only one or two transcription factors. Transfection

was performed with FuGene HD (Promega) and transfection medium replaced with Phenol

Red free DMEM. The next day, cells were lysed, and firefly and renilla luciferase were sequen-

tially measured using Dual-Glo Luciferase assay system (Promega). Firefly raw values were

normalized to Renilla raw values for each replicate. Data from 2 independent experiments are

expressed as mean fold-change of the test condition normalized to the empty vector ± SEM.
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In vivo transfection of adult skeletal muscle

Six-mo-old adult male Bmal1 mKO mice and WT littermates were anesthetized by i.p. injec-

tion of a mixture of Zoletil 100 (a combination of Zolazapam and Tiletamine, 1:1, 10 mg/kg,

Laboratoire Virbac) and Rompun (Xilazine 2%, 0.06 ml/kg, Bayer). Gene transfer of TA mus-

cles was induced by intramuscular injection of plasmid DNA (40 μg, consisting of 15 μg

mBmal1::luc reporter plasmid, 5 μg mKate2 exogenous spike-in control, and 20 μg either

REV-ERBα or empty pcDNA-Dest47) followed by electroporation using stainless steel elec-

trodes connected to a ECM830 BTX porator (Genetronics, San Diego, CA).

Optical bioluminescence imaging

In vivo bioluminescence images were acquired with the IVIS 100 system (Perkin-Elmer)

under general anesthesia by i.p. injection of a mixture of Zoletil 100 (a combination of Zolaza-

pam and Tiletamine, 1:1, 10 mg/kg, Laboratoire Virbac) and Rompun (Xilazine 2%, 0.06 ml/

kg, Bayer) and analysis performed according to [156] with the following parameters: field of

view 25 cm, binning factor 8, exposure time 1 min. Living Image software (version 4.3) was

used for image capture and analysis.

RNA isolation and qPCR

Total RNA was isolated, purified, and reverse transcribed to cDNA, and RT-qPCR was per-

formed as described in [7]. Analysis was performed using the standard curve method, and all

data were normalized relative to 36B4 expression.

Quantification and statistical analysis

All data are expressed as means ± SEM unless otherwise stated. Statistical analysis was per-

formed using unpaired Student’s t test or 2-way ANOVA. When ANOVA revealed significant

genotype differences, further analysis was performed using Bonferroni’s multiple comparison

test. Differences between groups were considered statistically significant for p< 0.05.
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