




Summary

The work presented in this thesis is focused on out-of-equilibrium experiments on strongly

correlated systems, both with “standard” pump-probe spectroscopy and time resolved single

pulse statistics. We applied these techniques mainly on a High Temperature Superconductor,

an optimally doped Bi2Sr2Y0.08Ca0.92Cu2O(8+δ) (Y-Bi2212). These materials show intrigu-

ing and still unexplained properties, such as the presence of the pseudogap phase.

The aim of the first part of the thesis is to analyze the phase transition between superconduct-

ing and pseudogap phases, through the combination of time resolved techniques, suitable for

the study of strongly correlated systems, and electronic Raman spectroscopy, which allows

to detect anisotropic behaviors in the reciprocal space. The experimental result was a map

of the de-excitation dynamics as a function of temperature across Tc. The excitation was

provided by mid-infrared pulses at two photon energies (E > 2∆ and E < 2∆, where ∆ is

the superconducting gap) and different polarizations. The results show that a low photon

energy pump polarized along the Cu-Cu direction causes a larger dynamical superconducting

response with respect to the Cu-O polarized excitation, both below and above the critical

temperature. The results are supported by an effective theoretical model based on BCS

theory for a superconductor with an anisotropic d-wave gap typical of cuprates. The model

reveals a dynamical enhancement of the superconducting order parameter for a Cu-Cu po-

larized pump, which is due to the increase of phase coherence of the pair operator, whereas

the density of Cooper pairs seems not to be strongly affected by the excitation.

In the second part of the thesis we wanted to move a step forward and to study the statistical

distribution of the probe pulses. The intrinsic noise of the photon number distribution reveals

a completely distinct behavior in the various phases of the sample: it follows the mean

photon number dynamics in the metallic states, whereas it has a different time resolved

signal (and in particular the noise has a longer time decay) in the superconducting state. A

simple quantum model, which describes the dissipative processes of the set-up as perfect

beam splitters, has been developed to simulate the observed peculiar results. From the model

it turns out that the non-selected polarization contributes to the final noise signal, giving

rise to a completely different dynamics for high and low temperatures. This interpretation

shows how, whereas it is always possible to select photons with certain features (such as

polarization) in “standard” intensity measurements, footprints of every interaction are kept

in the noise.
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1Introduction

In complex materials unexpected and intriguing properties can arise from the
intricate (and not completely understood) interplay between several degrees of
freedom, such as electrons, spins, lattice etc. Among these interesting features,
we stress their rich phase diagram, in which a small variation of external (such as
temperature) or internal (e.g. chemical doping) parameters can modify completely
the phase of the material, moving from superconductors to insulators, from Fermi
liquid metals to “strange” ones and so on.

This abundance of phases leads not only to a revision of the description of the inter-
action between all the material degrees of freedom, but also to possible technological
applications, exploiting the possibility of triggering phase transitions on short time
scales. For instance, a metal-insulator transition may be adopted in fast switches.

The excitement in this field is intertwined with the difficulties in the comprehension
of the origin of many of the properties of complex materials. As a matter of fact, the
entanglement between the different degrees of freedom does not allow to identify
their contribution separately in the creation of the described properties. The advent
of ultrafast lasers1 and the related time resolved spectroscopies partially answered
to this need by providing a new technique able to separate the response of different
degrees of freedom, even though for a very short time.

The base concept of this approach is to excite the sample with a very short per-
turbation and to measure its response to a certain stimulus as a function of the
time passed from the excitation. Different degrees of freedom are supposed to show
different de-excitation processes (for example, different recovery times), favoring the
separation of their contributions to the total response. In particular, in pump-probe
experiments the sample is excited by an ultrashort laser pulse (pump), and the varia-
tion of its optical properties (for example reflectivity or transmittance) is investigated
by a second ultrashort pulse (probe), reflected or transmitted by the sample after a
controlled time delay. The variation of this delay, controlled by changing the probe
optical path, provides the complete dynamics of the sample de-excitation.

1The relevance of ultrafast systems was acknowledged by the Nobel Committee for Physics in 2018.
The prize was awarded for groundbreaking inventions in the field of laser physics, with one half jointly
to Gérard Mourou and Donna Strickland for their method of generating high-intensity, ultra-short
optical pulses.
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Ultrafast techniques have also the technological advantage to study and characterize
variation of the optical behavior on very short time scales, which could be of
interest in the modern need of speed up fast digital circuits. Furthermore, the
non-equilibrium approach and especially it opens the possibility to trigger phase
transitions and even discover new transient phases of the material.

Although the described technique is very powerful, we suppose that the light pulses
used in the experiment can actually convey much more information. As a matter of
fact, in a pump-probe experiment, we measure the mean light intensity transmitted
or reflected by the sample; this average is performed on thousands of laser pulses
and provides the mean response of the sample in time. But, on the other hand, light
is not characterized only by its intensity: many other quantum properties are hidden
in the detection of a light pulse. In this thesis we will focus on just one, that is the
particle nature of light.

Considering each pulse as made up of a defined number of photons leads to the
study of the distribution of the photon number (detecting each pulse separately) and
especially the fluctuations on this quantity. The passage from intensity to photon
number is not a simple generalization of the classical concept: let us think the shot
noise experiment, for instance. If a single laser beam is split in two by a 50:50 beam
splitter, the two output beams are expected to have the same intensity. In contrast, a
single pulse measurement shows that the initial number of photons is not perfectly
divided in two and the output photon number varies from pulse to pulse, giving rise
to a noise due only to the particle nature of light. This simple example demonstrates
that the study of the noise of the photon number provides information about the
quantum nature of light. The open question is whether and, eventually, how the
quantum properties of light can be affected by the interaction with the sample and
the study of the fluctuations of the photon number can give additional information
on the de-excitation process.

The choice of the use of a time resolved photon number distribution technique
has been triggered by the observation that quantum fluctuations in materials, and
especially fluctuations of the atomic positions are the origin of material properties
such as quantum paraelectricity [27], high temperature superconduction and quan-
tum phase transitions in general [82, 81], which are some of the features of the
complex materials described above. The final goal of this work is to understand
whether the quantum fluctuations of the sample can be mapped in the light ones
and, consequently, to which extent the information encoded in the fluctuations of the
probe photon number can be used to infer the nature of the quantum fluctuations in
materials.
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My thesis work is organized in two parts, one concerning the intensity measurements
and a second about the fluctuation detection.

The first part starts with the introduction of high-temperature superconductivity
and, specifically, of the copper oxides family, which is the subject of our experiments
(Chapter 2). In the chapter the main features of conventional and non conventional
superconductors are presented, in order to compare the two kinds of materials
and to highlight the impact of strong correlations on the physical properties of
cuprates. Finally, the properties of the material used in the pump-probe experiments,
i.e. an optimally doped Yttrium substituted Bi2212 (Bi2Sr2YxCa1−xCu2O8+δ), is
presented.

The experimental technique is introduced in Chapter 3, where the advantages of
electronic Raman scattering and time resolved spectroscopy are shown, in relation
to the measurement of strongly correlated systems and, in particular, superconduc-
tors. The chapter highlights that electronic Raman scattering is sensitive to the
anisotropies in the reciprocal space, a peculiar feature of high temperature supercon-
ductivity in cuprates, whose electronic dispersion is characterized by nodes (d-wave
gap), whereas time resolved spectroscopy detects the contributions of the different
degrees of freedom, eventually producing metastable states which are not accessible
through thermodynamics. The combination of the two complementary techniques
provides a more complete characterization of the sample and of its dynamics.
At the end of the chapter we show and give more details on our experimental
set-up.

In Chapter 4 the first time resolved measurements on Y-Bi2212 are presented. The
aim of the chapter is the introduction of the characteristic time resolved response in
certain experimental conditions and its variation obtained by tuning some parame-
ters. In particular, we analyzed the effects of pump and probe fluence and photon
energy as a function of the temperature. The measurements allow us to characterize
the dynamics associated to a specific phase (superconducting, pseudogap or metallic
one) or to the transition between two phases, depending on the excitation and
probing features.

Chapter 5 shows the effects on the same sample of a low photon energy excitation
with defined polarization requirements. We focused our attention on the phase
transition between superconducting and the so-called pseudogap phase, in order to
understand if the dynamics in this temperature range can be affected by the pump
photon energy and, in particular, if the energy is lower than the one required to break
a Cooper pair, the electron couple whose presence is at the base of superconductivity.
Measurements are sustained by an effective model, which qualitative describes the
most peculiar time resolved results.
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The second part of my PhD work concerns the fluctuation measurements described
above. After a brief introduction of the concept, Chapter 6 introduces the quantum
description of the Beam Splitter formalism, in order to represent a general dissipative
process present in the experimental set-up. The treatment is adopted to describe the
whole fluctuation measurement, providing the relation between the mean number
of photons the related variance and a way to interpret the results of the detection.

Chapter 7 compares the Beam Splitter model introduced in the previous chapter
with the experimental results on three benchmark samples, characterized by coherent
Raman active modes: two transparent ones (quartz and strontium titanate), in which
the phonon oscillation is directly excited by the radiation and an absorbing one
(bismuth), in which we expect an electron mediation between the impinging light
and the vibrational mode.

Finally, in Chapter 8, the fluctuation measurement is applied to our original sample,
Y-Bi2212, in its different phases, in order to understand if the photon number
fluctuations are somehow correlated to the phase properties of the material.
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Part I

Intensity Dynamics in Complex Materials





107 years have passed since H. K. Onnes discovered that mercury is characterized by a
negligible resistivity at very low temperatures (T < 4.2 K) [67]. It was subsequently
found that the observed collapse of resistivity was common to a relatively wide class
of elements when cooled at the liquid helium temperature: from this property these
materials took the name of “superconductors”. The implications of these samples
are immediately clear if you consider the possibility of having no resistance at all:
from transmission lines without dissipation, to the improvement (and dimensional
reduction) of motors and generators, to the modern need of speed up computers
performances and in general to use fast digital circuits.

But the resistence drop was just one of the characteristics of superconductivity. In
1933 W. Meissner and R. Ochsenfeld noticed that below the transition temperature
these materials behave as perfect diamagnets, that is, in presence of an external
magnetic field, they show no internal magnetism. It is the so-called Meissner effect,
whose most spectacular consequence is the superconducting levitation [63].
This second feature of superconductivity widened the list of technological applica-
tions: from maglev trains (which uses magnetic levitation to reduce the friction
between the rails and the train itself, making earth means of transport competing
with airplanes), to the detection of very low magnetic fiels, with implication in
geology (like mineral exploration and earthquake prediction), medical sciences
(neuron activity and magnetic resonance), oil prospecting and research (for example
in the study of gravitational waves).

Unfortunately the application of these materials had two strong limitations: on
one hand the absence of a theoretical model able to describe the phenomenon and,
on the other hand, the high costs of the cooling system (and especially of helium)
needed to reach the superconducting phase.
The solution to the first point arrived in 1957 when J. Bardeen, L. N. Cooper and J.
R. Schrieffer developed the first microscopic theory (then called BCS theory) able to
describe the behaviors of this class of materials [5].
A great improvement regarding the second problem was reached in 1986, when J.
G. Bednorz and K. A. Müller found that a new class of materials (mainly ceramics
belonging to the cuprate family) enters the superconducting phase at relatively high
temperature (T ≈ 40 K) [7]. The turning point was the discovery of compounds
whose transition temperatures exceed the nitrogen boiling one, thus making super-
conductivity achievable in a much cheaper way. On the other hand there was a price
to be paid: the new samples showed completely different properties with respect to
“conventional superconductors”, which cannot even be explained by the BCS model
(see Chapter 2).

Despite the evolution of non-equilibrium spectroscopies of the last two decades,
have increased our understanding of the physics of strongly correlated materials
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[39] (see chapter 3), after more than 30 years from its discovery High Temperature
Superconductivity is still discussed and, while different samples are synthesized every
year (Figure I1), a clear and unanimous explanation of the origin of the phenomenon
is still lacking. In this framework the measurements of Chapters 4 and 5 find their
motivation.

Fig. I1.: Timeline of Superconductivity. Several superconducting compounds as a function
of the year of discovery and their transition temperature. BCS superconductors are
displayed as green circles, cuprates as blue diamonds, iron-based superconductors
as yellow squares, fullerenes with purple triangle and carbon nanotubes with red
triangles [1].
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2Cuprates

In the present chapter I will introduce the system we studied during my PhD project,
a Bi2212 (Bi2Sr2YxCa1−xCu2O8+δ) with a hole doping, δ, close to that necessary
to attain the highest critical temperature (δ=0.16, Tc=97 K). It is a cuprate and a
High Critical Temperature Superconductor.
Starting from the main features of BCS (conventional) superconductivity, we will
move to the intriguing properties of High Critical Temperature Superconductors
and especially to their rich phase diagram. The last part is dedicated to our specific
sample.

2.1 Features of conventional superconductivity

Superconductivity has been observed in several elements below a certain critical
temperature Tc and eventually under particular pressure conditions (see Figure
2.1).

Fig. 2.1.: Periodic table of Superconductivity. [10]
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The experimental evidences of a novel phase below Tc has been observed through
different measurements and techniques [3]

1. RESISTIVITY: In a superconductor no DC electrical resistivity can be measured
below the critical temperature.

2. GAP: Superconductors usually behave as if there were an energy gap 2∆
centered at the Fermi energy: an electron can be excited in a superconductor
only if its energy exceeds the Fermi one by the gap value. It has been observed
that the value of the gap at zero temperature and Tc are proportional in most of
the cases. A peculiar manifestation of this property is the absence of “acoustic
attenuation”: when a sound propagates through a metal, the microscopic fields
due to the displacements of the ions can give energy to the electrons close to
the Fermi level, removing it from the wave. Usually the energy carried by a
sound wave is smaller than the gap and so the energy cannot be transferred to
the electrons, resulting in a reduction of the sound attenuation.

3. THERMAL PROPERTIES: Superconductors are poor thermal conductors (con-
trarily to normal metals) and the electric current is not accompanied by the
thermal one.

4. SPECIFIC HEAT: In a normal metal the specific heat cv fulfills the relation
cv = AT +BT 3, where the linear terms comes from the electronic excitations
and the cubic one is due to lattice vibrations. In a superconductor the specific
heat jumps at higher values at Tc and then decreases, with an exponential
electronic contribution.

5. MAGNETIC PROPERTIES: A magnetic field (provided it is not too strong) is
not able to penetrate into the interior of a superconductor. This perfect
diamagnetism is called Meissner effect and is due to the formation of electrical
surface currents which create an additional field that precisely cancels the
applied one. Above a certain threshold, called critical field, the application of
the magnetic field destroy the superconductive phase. The value of the critical
field depend on the temperature.

Notice that the superconducting phase can be suppressed through
i. the application of a sufficiently intense magnetic field
ii. the application of an intense DC current
iii. the application of an AC current, whose frequency exceeds the value ∆

~ [3]

Conventional superconductivity is explained by the BCS theory (so called from the
name of the physicists who developed it: J. Bardeen, L. N. Cooper e J. R. Schrieffer),
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which is based on the hypothesis that a weak attractive potential between electrons
can favour the formation of Cooper pairs, i.e. new bosonic particles with total
momentum and spin equal to zero [5]. A possible origin for the attractive potential
is provided by electron-phonon coupling. In order to understand the phononic
contribution, the following intuitive argument can be used.
Let us consider an electron hopping throughout a crystal: its electric field would
cause a retarded attraction of the positive ion of the lattice (the retardation is due to
the mass difference between electrons and ions). A second electron would feel the
attraction due to the increase of the positive charge density in the region where the
first electron passed through, giving rise to an effective electron-electron attraction
[5, 77].

The main effect of this pairing mechanism is the transformation of two fermionic
particles of opposite spin and momentum into a single bosonic one (called Cooper
pair), which obeys to the Bose-Einstein statistical distribution, allowing, for instance,
the occupation of one state by an infinite number of particles.

The superconducting phase occurs below a critical temperature Tc and is charac-
terized by an energy gain and by the opening of an energy gap in the band, which
is conventionally called ∆ and it is of the order of few tenths of meV. E = 2∆ is
the minimum energy required to excite the system, that is to break a Cooper pair
producing two quasiparticles [20].
The superconducting gap in a BCS system depends on the temperature (and, in
particular, it is maximum for T → 0 and it vanishes for T → Tc), but it is isotropic in
the reciprocal space (i.e. it is k−independent), showing an s-wave symmetry [20].

The coherence length, that is the approximate spatial extent of a Cooper pair, is of
the order of hundreds of nanometer, so that pairs average over pertubations at the
atomic level, making the real space description usually irrelevant [85].

In the normal state (T > Tc) conventional superconductors are good metals that
can be described as Fermi liquids. For further details on the BCS model see appendix
A.

The brief introduction of this section, as well appendix A, has the double purpose of
allowing the comparison between conventional and non-conventional superconduc-
tivity (that you will find in the following sections of this chapter) and to introduce
the BCS model. As a matter of fact, despite this theory is not adequate to completely
describe the properties of high temperature superconductors, sometimes models
explaining conventional superconductivity can be used to describe non conventional
compounds and especially their de-excitation dynamics, at least qualitatively. This
is the case of the gap equation A.17 and of the Rothwarf-Taylor phenomenological
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model (see section 3.21), which predicts a divergence of the decay in a time resolved
measurement as the temperature approaches Tc, actually observed in pump-probe
experiments.
This relation will be exploited in chapter 5, where we use a BCS model to describe
the dynamical response of a high temperature superconductor.

2.2 Non-conventional superconductors

The term “high critical temperature superconductor” (HTSC) refers to unconven-
tional superconductors which are able to sustain superconductivity at unexpected
high temperatures. This phenomenon is of particular interest for its applications,
since in most cases the critical temperature is higher than the nitrogen boiling tem-
perature, making the “extended” use of these materials feasible and cheap.
However there exist BCS superconductors with relatively high Tc (for example
MgB2, with Tc = 40 K [11]. In the last months even the evidence of BCS supercon-
ductivity at room temperature was claimed [93].) and HTSC with relatively low
critical temperatures (see the cuprate LaBaCuO, with Tc = 35K [7] or the iron
based superconductor LaOFeP , with Tc = 4K [48]). So, lately the term “high
critical temperature superconductor” has been used to identify the unconventional
physics which determines the origin and the properties of superconductivity in these
compounds, which definitely goes beyond the simple Tc value.
Different families of non-conventional superconductors have been discovered, such
as:

• cuprates: layered copper oxygen compounds. The first discovered HTSC (in
1986) belonged to this class;

• pnictides and calchogenides: iron-based superconductors, discovered in 2006;

• fullerenes: allotropes of carbon in the form of a hollow sphere, ellipsoid or tube
(like nanotubes and Buckminsterfullerene, a type of fullerene with the formula
C60);

• heavy fermion systems;

• organic superconductors.

Within this thesis work we will consider a copper oxides, therefore the terms HTSC
and cuprate will be used as synonyms.
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2.2.1 Structure

Copper Oxides based HTSC are a class of ceramic compounds with a perovskite-like
structure. They are characterized by Copper-Oxygen (Cu-O) planes separated by
spacer layers, which act as charge reservoirs.
The Cu-O planes determines most of the superconducting properties and, in particu-
lar, the number of Cu-O planes per unit cell seems to be related to the maximum
value of the critical temperature (in general the higher the number of Cu-O planes,
the higher the critical temperature).

2.2.2 Doping

Another key parameter is the doping: as a matter of fact cuprates are insulators in the
absence of holes (we will refer to this condition as parent compound). Conventional
band theory predicts such compounds to be metals, but, because of the effect of
the strong electron-electron correlations, they turn out to be Mott insulators, as
many transition metal oxides [18], with a gap of the order of 2 eV. Doping allows
to fill the gap with states and, once a doping threshold is reached, to transform the
material in a bad metal (at room temperature) and a superconductor below the
critical temperature [15]. Doping refers to the chemical substitution of elements in
the spacer layers or of oxygen atoms: in both cases the result is that electrons are
pulled away from the Cu-O planes creating holes.

2.2.3 Phase Diagram

Up to now we cited two fundamental parameters to control the macroscopic phase
of the material: temperature and doping. Therefore, the most natural phase diagram
to describe these materials has the hole doping p on the x-axis and the temperature
on the y-axis. A sketch of the typical phase diagram is shown in Figure 2.2.

Below the doping value p = 0.05 (5%) the compound is an antiferromagnetic insula-
tor; increasing the doping level a superconducting state arises at low temperatures.
The critical temperature becomes larger with the doping, as far as it reaches its max-
imum value at pc ≈ 0.16: this condition is called optimal doping. For higher values
of p (overdoped region) the critical temperature starts decreasing up to p ≈ 0.25,
when it falls to zero. The area enclosed by Tc(p) is called superconducting dome. In
the whole underdoped region (p < pc) and sometimes also at optimally doping, a
new phase (called pseudogap phase) arises from Tc to a second doping dependent
temperature T ∗, responsible for the transition to the bad metallic phase.
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Fig. 2.2.: Cuprate phase diagram. Sketch of the temperature versus doping phase diagram
for HTSC. At low doping (green area) the material is Mott insulator. Increasing
the doping the sample enters in a bad metallic phase at high temperatures and
in pseudogap phase (gray area) for T < T ∗. The superconducting condition is
reached in the interval of doping values about from 0.05 to 0.25 and for T < Tc
(orange area). Both Tc and T ∗ are doping dependent; the maximum value of the
critical temperatures occurs at optimal doping p = pc.

2.2.4 Pseudogap

The presence of the pseudogap phase is one of the most intriguing and still discussed
properties of HTSC, which definitely differentiate them from the standard BCS
superconductors.

Pseudogap measurements

The pseudogap phase can be recognized from several manifestations, which are
typical neither of the superconducting phase nor of the metallic one.
In the following I will briefly describe the unusual results of some static measure-
ments in the pseudogap phase and the comparison with the same properties as
measured in superconducting and metallic phases.

• RESISTIVITY - The drop of the resistivity below Tc is probably the most char-
acteristic feature of superconductivity, from which the name itself derives. In
conventional superconductors for T > Tc the resistivity is expected to be linear
in T and to collapse at the critical temperature. In HTSC there is a temperature
region in which the resistivity deviates from both behaviors [91], as shown in
Figure 2.3.
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Fig. 2.3.: Resistivity in pseudagap phase. Temperature dependence of the longitudinal
resistivity in underdoped and optimally doped La2−xSrxCuO4. Notice that at
optimal doping (p = 0.15) the resistivity has a linear behavior for high temper-
atures and drops at Tc. In the underdoped case a region in between arises, in
correspondence of the pseudogap phase [91].

• ENERGY GAP - NMR, ARPES measurements and c-axis tunneling revealed the
suppression of the low energy single particle spectral wave, suggesting the
presence of a gap (and so of some form of local superconducting pairing), usu-
ally associated to superconducting phase, even above the critical temperature,
where the macroscopic superconducting properties vanish [13, 76]. Some
results are plotted in Figure 2.4.

• SPECIFIC HEAT - In conventional superconductors for T > Tc the specific heat
is expected to be linear in the temperature, while it diverges from this behavior
in the pseudogap phase [59], as highlighted from Figure 2.5.

• INFRARED CONDUCTIVITY - In overdoped materials a motion of the infrared
spectral weight at low energies is observed just below the critical temperature,
whereas in underdoped samples it survives at higher temperatures [73], as
pointed out by Figure 2.6

• SPIN STRUCTURE - Inelastic neutron scattering revealed changes in the dynamic
spin structure factor: magnetic correlations and “resonant peaks”, typical of
the temperature region close to Tc in overdoped materials, are found to be
considerably above the critical temperature in underdoped ones [24]. The
intensity of the resonant peaks as a function of doping is plotted in Figure 2.7.
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Fig. 2.4.: Gap in pseudogap phase. Tunneling spectra measured as a function of tempera-
ture on underdoped Bi2212 (Tc = 83 K). Notice that the gap does not close at Tc,
while the amplitude of the “coherence peaks” vanishes at Tc [76].

Fig. 2.5.: Specific Heat in pseudogap phase. Temperature dependence of the electronic
specific heat resistivity in underdoped and optimally doped Y Ba2Cu3O6+δ. The
plotted quantity is γ = CV

T , which underlines the temperature regions in which
the dipendence diverges from the linear one, represented by the horizontal lines
[59].

Interpretation of pseudogap phenomena

Up to now there is no clear explanation for the origin of the pseudogap phase.
It is suggested that in this phase two elements coexist: a superconducting order
and a second element which is able to suppress the superconducting macroscopic
properties. On the nature of this second elements two classes of models have been
theoretically developed, in order to interpret the pseudogap phenomena [18, 13]:
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Fig. 2.6.: Infrared conductivity in pseudogap phase. Frequency dependent scattering
rate for a series of underdoperd cuprate superconductors in superconducting,
pseudogap and metallic phase. You can observe that the behavior in pseudogap
phase is always different with respect to the metallic one (and actually it is more
similar to the superconducting one) [73].

Fig. 2.7.: Inelastic neutron scattering in pseudogap phase. Temperature dependence
of the so called resonant peak observed in neutron scattering in Y Ba2Cu3O6+x
for three doping values. While at higher doping level the transition is quite
sharp at Tc, at lower values it is much more smooth and in particular it affects a
larger temperature range (from Tc to T ∗), as highlighted from panel D, where
the derivatives of the previous signals are plotted [24].

1. COMPETING ORDER. In these models the pseudogap is considered as a phase
with its own order (current loops, stripe and antiferromagnetic order, density
wave etc...), which breaks the symmetry of the system. Therefore in this model
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the pseudogap phase is in competition with superconductivity.
The transition between the metallic phase and the pseudogap one it at T = T ∗

(which is doping dependent), that exist even above optimal doping, although
it enters in the superconducting dome [13].

2. NON-COMPETING ORDER. These models take into account the concept of
fluctuation and in particular the possibility that, under suitable conditions,
they produce a local order which can be extended in a disordered phase. In
this case fluctuations can enhance some superconducting-like behaviors even
above Tc.
An example of possible fluctuations is related to the phase coherence of Cooper
pairs [32]: in this hypothesis pairing is still present above Tc, but phase
fluctuations destroy their long range order, despite keeping some non-metallic
macroscopic features.
Another discussed scenario proposes a spin (fermionic) - charge (bosonic)
separation [55]: in this hypothesis the pseudogap is due to the “spin phase”,
whereas the system enters in the superconducting state when the charges
undergo Bose-Einstein condensation at Tc. Notice that it is not necessary that
a single type of fluctuations dominates the entire range of temperatures.

2.2.5 Superconducting Gap

Another fundamental difference between BCS and a unconventional superconductors
is the strong anisotropy of the electronic properties of the latter. As a matter
of fact, whereas conventional superconductors are characterized by an isotropic
superconducting gap in the reciprocal space (s-wave), the cuprate gap shows a strong
dependence of the gap on the k vector (d-wave gap) and in particular has a maximum
value in the ΓM direction of the first Brillouin Zone (antinode) and it is zero in the
ΓX direction (node). A sketch of a d-wave gap is plotted in Figure 2.8 c.

The main effect of the gap anisotropy is that the energy required for the creation of
two quasiparticles from a Cooper pair depends on the direction of its momentum.
In particular at the node single electronic states can be excited with negligible
energy even at T = 0 K, resulting in long-living particle excitations. This feature of
the electronic dispersion has implications on the electronic and thermodynamical
properties of these systems, such as specific heat, thermal conductivity and transport
[85], since in thermal equilibrium the population of quasiparticles is dominated by
the low energy nodal contribution [36].

In order to study the sample (and especially the interaction of the antinodal quasi-
particles at low temperatures), the creation of non-thermal populations by external
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Fig. 2.8.: d-wave gap. a Copper-Oxygen layer of cuprates, from which the main supercon-
ducting properties derive. b scheme of the first Brillouin Zone ; the black curved
lines represent the Fermi surface. c Sketch of the modulus of a d-wave gap (red
line) in one fourth of the first Brillouin Zone, as highlighted by the blue area in b.

excitations can completely change the paradigm. In this respect time resolved tech-
niques are ideal, since they are supposed to create a non-equilibrium density of
quasiparticles and to measure the subsequent relaxation [39] (see Chapter 3).

The differences between the electronic dispersion of BCS and high temperature su-
perconductors lead to the hypothesis that the pairing mechanism in the two classes
of materials has a different origin. As already introduced, in standard supercon-
ductivity, pairing comes entirely from electron-phonon interactions, whose strength
determines the critical temperature. On the contrary the origin of cuprate pairing
is still unknown, despite many hypotheses of different electron-boson interactions
(phonon [23, 54, 86] , spin [83, 2] or both) have been proposed. The large use
of time resolved techniques on these materials is also justified by the possibility
of disentangle the different interacting contributions through the study of their
“return-to-equilibrium” after a system excitation (see section 3.2.1).
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2.3 BSCCO

The Bismuth-Strontium-Calcium-Copper-Oxide family (Bi2Sr2Cam−1CumO2m+4+δ),
often abbreviated with BSCCO, contains some of the most studied cuprates super-
conductors. In the formula m represents the number of Copper-Oxygen planes in a
unit cell (which is related to the critical temperature, as we already pointed out n
section 2.2.1) and δ indicates the Oxygen concentration.

BSCCO can be synthesized in more than twenty phases, but only three of them show
HTSC properties: they differ for the number of the Cu-O planes m and are indicated
as

1. Bi2201 (m = 1 and TcMAX = 20 K);

2. Bi2212 (m = 2 and TcMAX = 90 K);

3. Bi2223 (m = 3 and TcMAX = 110 K).

Among them the most studied sample is Bi2212: its main quality is that it is an
easily cleavable compound (in which the cleaving plane is parallel to the Cu-O
layers) and therefore it facilitates experiments requiring very clean surfaces (such
as photoelectron spectroscopy or STM). The wide literature on this system made
it a benchmark for all subsequent measurements (e. g. optical time resolved
spectroscopy).

Bi2212 has a perovskite-like crystal structure with dimensions a = b = 5.4 Å and
c = 30.6 Å [17], where a and b are in the Cu-O plane and c is the perpendicular axis
(see Figure 2.9).

Its phase diagram follows the main features of HTSC: the parent compound (δ = 0)
is an antiferromagnetic insulator, whereas for δ > 0 it becomes a bad metal at room
temperature. For 0.05 < δ < 0.26 the system undergoes a superconducting transition
when cooled and the optimal doping is reached for δc = 0.16. A pseudogap phase is
detected in the underdoped and optimally doped region.
The Tc dependence on the doping for this sample can be found through the the
following phenomenological relation [72]

Tc(δ) = TcMAX

[
1− 82.6 (δ − δc)2

]
. (2.1)

In Bi2212 the maximum value of Tc can be modified by acting on the Sr or Ca
disorder.

20 Chapter 2 Cuprates



Fig. 2.9.: Bi2212 crystal structure. Unit cell of a Bi2212 crystal [18]

Good results have been obtained by substituting the Ca cation with Yttrium, creating
the new compound Bi2Sr2YxCa1−xCu2O8+δ. The maximum value Tc(δc) = 97 K is
reached at x = 0.08. Moreover Yttrium substitution stabilizes the crystal structure,
keeping electronic properties similar to the ones of the more known Bi2212 [18].

The measurements presented in the following chapters have been performed on
an optimally doped Yttrium substituted Bi2212, which will be usually indicated as
Y-Bi2212 or simply Bi2212.
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3Experimental techniques

In this chapter we introduce the experimental technique used in the study of our
Y-Bi2212 sample and the reasons why it is particularly suitable for measurements
on cuprates. The technique is called “pump-probe” and combines electronic Raman
scattering to time-resolved spectroscopy; in the following we will consider the
advantage of the two approaches and discusses how they can be combined.

Experimental techniques like ARPES or STM have been applied extensively to study
correlated electronic systems [31]. Their contribution is related to single electron
properties: for example, ARPES allows to measure the spectral function, a sort
of “weight” to be applied to the Fermi distribution in order to switch from a free
particle description to an interaction one. In particular, it takes into account both
the interaction with the crystal lattice (which determines the band structure) and all
other couplings of the system (electron-phonon, electron-electron Coulomb repulsion
etc.). The net effect is a renormalization of the band structure due to the interactions
and a finite lifetime of the particles.

The main disadvantage of single particle methods is that they do not give information
on how the electrons may transport heat, current, energy etc. and on collective
modes in general. To reach this aim one needs two particle correlation functions,
which can be measured through optical and thermal conductivity, resistivity, nuclear
magnetic resonance and electron-spin resonance [31]. These experiments have
revealed basic properties of strongly correlated systems and characterized complex
behaviors of high-Tc cuprates.

On the other hand two particle quantities are less sensitive to anisotropies, since they
measure variables integrated in the reciprocal space. Electronic Raman spectroscopy
is complementary to all these techniques, since it provides information about the
electronic behavior in different regions of the Brillouin Zone, thanks to polarization
selection rules [31].

Last but not least “equilibrium spectroscopies” (like ARPES, but also Raman scat-
tering) can measure only overall sample responses, without discriminating the
contributions of the different degrees of freedom of the sample (electrons, phonons,
magnetization etc.), thus preventing a complete comprehension of the phenomena.
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This limitation can be overcome through time resolved techniques, which in this
thesis work have been combined with electronic Raman scattering.

In this chapter both the techniques will be presented, paying particular attention
on the implications on cuprate samples, and finally the experimental set-up will be
introduced.

3.1 Raman spectroscopy

Raman scattering is the elastic scattering of the electromagnetic radiation (photons)
creating or annihilating an elementary excitation in the solid, like phonons, plasmons,
excitons and spin fluctuations [94]. The scattered photons are detected and their
frequency shifts, as well as polarization rotations, are analyzed in order to get
information on the elementary excitation.

In general Raman spectroscopy is very advantageous for its experimental versatility
and because it is a non-destructive experiment that allows to study even small
samples under the effect of external parameters (like temperature, electric and
magnetic fields, excitations energy and pressure).

This technique produces different effects depending on the band structure of the
material: if the photon energy causes an electronic transition (this is the case of
absorbing materials, for example) the elementary excitation is mediated by the
electronic one (electronic Raman scattering); on the contrary if the electronic gap is
too large, there is no electronic mediation and the elemental excitation is excited
“directly” [31].

The electronic Raman scattering process can be described by the three steps shown
in Figure 3.1:

1. The external electromagnetic field couples with the electronic system of the
solid sample; the absorption of incident light gives rise to en electron-hole pair
(virtual intermediate level).

2. The transition of the electron-hole pair to another state is responsible of an
elementary excitation.

3. The final scattered photon is produced by the recombination of the electron-
hole pair. Its energy and polarization are used to characterize the elemental
excitation [12].
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Fig. 3.1.: Description of the Raman process through Feynman diagrams. The initial
photonic laser state, with frequency ωL excites a virtual intermediate electronic
state µ, which decays in a photon of energy ~ωP and a second virtual electronic
state ν. Finally the recombination of the electron-hole pair produces the scat-
tered photon of frequency ωS . The second diagram represents the hole phonon
interaction [12].

In each step the interaction between the electrons and the photons or the phonons is
fundamental and determines the effectiveness (or ineffectiveness) of the measure-
ment. These couplings strictly depend on the material band structure (because of
the electronic mediation) and on its atomic structure (which determines the allowed
phonon modes). In the next subsections the contribution of these two material
features is discussed.

3.1.1 Band structure contribution

The electronic contribution to the interaction between the photons and phonons,
typical of the electronic Raman scattering, is strictly related to the material band
structure. Although it is a specific characteristic of the sample, different classes of
materials can be defined, which share the main electron band features.

In the following, three classes of materials are considered (metals, semiconduc-
tors/insulators and superconductors), in order to qualitatively discuss the expected
results of a static Raman measurement. We will especially focus on the effects on
superconductors, which are the subject of the first part of the thesis. Anyway the
treatment of the other two classes will be useful in the second half of the work (and
in particular in Chapter 7), where impulsive stimulated Raman scattering results on
bismuth (metal) and quartz (semiconductor) will be shown.

Metals
In metals the Raman cross section is small because of two main reasons: it is a second
order process (see section 3.1.2), intrinsically weaker than the dipole absorption,
and in conductors the electromagnetic radiation penetrates only a few hundreds of
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nanometers, making the interaction volume small [12].
In normal metals there are two kinds of electronic excitations: interband and
intraband ones. Let us focus on the latter, since the former require higher photon
energies.

In the clean metal approximation (which means in absence of surface effects, doping
and impurities, phonons etc.)1 low frequency excitations cannot be produced by
optical techniques, because of their small transfer vector k. In particular in the
Stokes case, optical photons can provide a transfer energy and momentum ET = EL − ES = ~c |kL| − ~c |kS |

kT = kL − kS
(3.1)

(where the label T stands for “transfer”, L for “laser”, and so refers to the incoming
beam, and S for “scattered”), whereas an electronic transition in a metal in free
electron approximation requires the following set of equations ET = ~2

2mk2
F − ~2

2mk2
I

kT = kF − kI
(3.2)

(where I and F are the initial and final state respectively). The two equation systems
cannot be simultaneously fulfilled for optical photons (see sketch of Figure 3.2a). In

Fig. 3.2.: Electronic dispersion and optical transitions. a 1-D sketch of electronic disper-
sion of a clean metal (parabola) and of the optical transition (vertical arrow):
the optical momentum is too small to fullfill the momentum conservation, so the
transition is optically forbidden in the electric dipole approximation. EF is the
Fermi energy. b Corresponding dispersion for the superconducting state [12].

the dirty limit defects produce a shorter electron mean free path l, which results in a

1The clean limit can never be reached: even in the best cases, scattering by acoustic phonons and
many body electron-electron interactions cannot be avoided.
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smearing of the scattering k vector by an amount 1
l . If l is sufficiently short Raman

scattering can induce intraband electronic excitations [12].

Semiconductors and insulators
Semiconductors and insulators need high excitation energies to excite states across
the gap: this kind of samples is more advisable to study “direct” phonon excitations
since, if the photon energy is lower than the band gap, phonon modes can be
excited without the electronic mediation (see as an example coherent phonons
excited on quartz [80]). In this case the technique is called Impulsive Stimulated
Raman Scattering and it is a third order process, caused by the broad content of
the excitation pulse: the sample de-excitation is then studied by a probe pulse (see
section 7.1). For this reason in semiconductors and insulators it is usually difficult to
investigate the low energy electron dynamics.

On the contrary, a study of low energy electrons is recommended for systems
where many-body interactions are essential: this is why electronic Raman scattering
is considered a good technique for the investigation of low energy elementary
excitations in high temperature superconductors and for their characterization
[12].

Superconductors
In Raman measurements a key role is played by the coupling of elementary ex-
citations to electron-hole pairs, which is also related to the phenomenon of high
temperature superconductivity [12]. Moreover Raman scattering allows the measure-
ments of the superconducting gap, thus giving information on the symmetry of the
order parameter and on the coupling mechanism. In addition these measurements
can characterize the sample with respect to the oxygen content (a different concen-
tration can modify the Raman modes), the orientation, because of the sensibility
to angle between the light polarization and crystallographic axes, and the different
phases [94].

In conventional superconductors, excitations across the gap are Raman active: these
transitions break Cooper pairs preserving the momentum (the two quasiparticles
have momenta k and −k), highlighting a clear peak at 2∆ (see Figure 3.3). As a
matter of fact in BCS theory the electronic dispersion is ∆Ek = 2

√
|∆|2 + εk (see

appendix A), so the minimum energy required to beak a Cooper pair is 2∆. This
excitation is feasible even at kP ≈ 0, (with kP the phonon wavevector), whereas it
is not possible in the metallic phase, at least in the clean limit (Figure 3.2).

In cuprates the Raman spectrum is dominated by phonons which are superimposed
to an energy independent continuum. Contrarily to BCS superconductors they have
no clear onset at 2∆. In Figure 3.4 the high temperature Raman spectrum of a
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Fig. 3.3.: Raman measurements on BCS superconductors. Raman peaks on 2H−NbSe2:
the peak at 2∆, indicated with G is very strong in the superconducting state (the
top ones in the graphs) and completely absent at higher temperatures. The energy
shift of peak C between superconducting and metallic phase is always visible.[90].

Y Ba2Cu3O7−δ is subtracted from the superconducting one (open circles) [12]. We
notice a continuous increase of the signal until 2∆ = 350 cm−1. The absence of a
net step at 2∆ demonstrates the anisotropic character of cuprates gap: as a matter
of fact, the nodes of the gap allow electronic transitions even for very low photon
energies (that is for hω < 2∆).

In the approximation in which the lattice properties do not change significantly, the
study of kP = 0 Raman scattering leads to the value of the superconducting gap
and to the main characteristics of its symmetry. More in details, the presence of a
superconducting gap determines the following effects on the Raman spectra [94]:

1. MODIFICATION OF THE PHONON LIFETIME: the phonon lifetime depends on the
decay channels. For T > Tc the only available decay channel is the normal
state carriers, whereas in the superconducting state the interaction with Cooper
pairs must also be taken in account. In particular:

• if ~ωph > 2∆ (where the label “ph” stands for “phonon”), the phonon
can break Cooper pairs activating a second channel with respect to the
metallic phase, so the phonon lifetime becomes shorter and the Raman
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Fig. 3.4.: Raman measurements on High-Tc superconductors. Electronic Raman scat-
tering of a Y Ba2Cu3O7−δ. for two temperatures: 4K (open circles) and 89 K
(solid circles). In both measurement the spectrum at T = 100 K has been sub-
tracted is order to cancel the strongest phonon peaks and to highlight the gap
one.[12].

peaks broaden (γphτph = C, where γph is the full width at half maximum
of the Raman peak, τph is the phonon lifetime and C is a constant.)

• if ~ωph < 2∆ the phonon cannot break a Cooper pair, so the only decay
channel is the normal state carriers: the peak sharpens with respect to
the previous case.

2. ENERGY SHIFT: in perturbation theory at first order the energy shift is

∆En =
∑
m

|〈n|V |m〉|2

En − Em
, (3.3)

where n is the phononic state and m are the electronic ones. So, below Tc:

• if ~ωph = En > 2∆⇒ ∆En > 0 and the phonon peaks shift up in energy.

• if ~ωph = En < 2∆ ⇒ ∆En < 0, because the relevant terms of the sum
are negative and the energy of the phonon peak decreases with respect to
the metallic state. [94]

Both the effects are visible in Figure 3.3 for ~ωph > 2∆.
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3.1.2 Crystal structure contribution

The measurment of Figure 3.4 already introduced the concept of anisotropy of the
superconducting gap in the first Brillouin Zone in cuprates, an interesting feature
which distinguish them from standard superconductors. Anyway the presented
measurement does not exhaust the possibilities provided by this technique, which
allows to select different phonon modes by tuning the photon polarization directions.
These selection rules are related to the crystal structure of the material.

In order to understand this relation, a systematic description of the process is needed.
The approach is completely general and its application to cuprates is straightforward
(it will be discussed in section 3.1.2).

Description of the process

The process of electronic Raman scattering can be modelled both in semi-classical
and quantum framework: in the following a summary of the two treatments are
provided. More details can be found in [31, 99].

Semi-classical treatment
The Raman scattering of phonons in solids is due to a linear coupling of the elec-
tromagnetic field with the electronic system of the target, whose crystal responds
with a change of susceptibility (and consequently in the induced polarization). The
semi-classical model is based on the assumption that the vibrational ionic motion is
much slower that the electronic one (responsible for the susceptibility tensor χ(ω)
change): this allows to consider the lattice as static at each time, with instantaneous
electron position determined by the lattice vibration.
The incoming electric field is

EL (r, t) = ELe
i(kL·r−ωLt) + c.c., (3.4)

where EL is the amplitude in the polarization direction, ωL is the frequency and k
the wavevector of the incident beam. The induced polarization can be expressed
as

P (r, t) = ε0χ (r, t) EL (r, t) , (3.5)
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where ε0 is the dielectric constant in vacuum.
Let us consider a small excitation of the generalized coordinate Q (r, t): the suscep-
tibility can be expressed in Taylor series as

χ (r, t) = χ0 +
∑
i

∂χ (r, t)
∂Qi (r, t)Qi (r, t) · î+ ..., (3.6)

where Qi (r, t) is the ith component of the vector Q (r, t) and î is the unitary vector in
the ith direction. Putting the expansion of χ (up to the first order) in the polarization
equation 3.5 and considering a lattice vibrational excitation with frequency ω Q =
Q0e

−iωt + c.c., one ends up with a term of order zero, which corresponds to elastic
Rayleigh scattering, and the linear term

P(1) (r, t) =
∑
i

[
∂χ (r, t)
∂Qi (r, t)

]
Q0i · î·EL

(
ei[(kL−k)·r−(ωL−ω)t] + ei[(kL+k)·r−(ωL+ω)t] + c.c.

)
.

(3.7)
Notice that

• the frequency of the scattered photon can be ωS = ωi − ω (Stokes process) or
ωS = ωi + ω (Antistokes process): in the former case an elementary excitation
of energy ~ω is created, in the latter it is annihilated.

• the term
∑
i

[
∂χ(r,t)
∂Qi(r,t)

]
Q0i (r, t) · î is responsible for the polarization direction

of the scattered electric field and its product with EL determines the selection
rules of the experiment. In the semi-classical approximation it is the so-called
Raman tensor.

Quantum treatment
Let us consider an Hamiltonian for N electrons coupled to an electromagnetic field:

H =
N∑
i=1

[
p̂i + e

cÂ (ri)
]2

2m +HC +HF (3.8)

where p̂ = −i~∇, e is the absolute value of the elementary charge, m is the electron
mass, c is the speed of light and Â is the electromagnetic vector potential, which in
its second quantization form can be expanded in the Fourier modes as

Â (ri) =
∑

q
eiq·ri

√
hc2

ωqV

[
êqâ−q + ê∗qâ

†
−q

]
, (3.9)

with V the volume, âq the annihilation operator of transverse photons with E = ~ωq

and êq the polarization unit vector. HC represents the Coulomb interaction and HF

the free electromagnetic part.
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We can rewrite the Hamiltonian as

H = H ′ + e

2mc
∑
i

[
p̂i · Â (ri) + Â (ri) · p̂i

]
+ e2

2mc2

∑
i

Â (ri) Â (ri)︸ ︷︷ ︸
M

, (3.10)

where H ′ = 1
2m
∑
i p̂2 +HC +HF .

The electronic Raman scattering measures the total cross section for scattering
from all the electrons illuminated by the incident light, which is determined by the
probability that an incident photon with frequency ωI is scattered into a solid angle
interval between Γ and Γ + δΓ with a frequency between ωS and ωS + δωS . This
probability can be evaluated using time dependent perturbation theory to the second
order, so

∂2σ

∂Γ∂ωS
∝ 1
Z

∑
I,F

e
− EI
kBTMFI · δ (EF − EI − ~Ω) . (3.11)

Here kB is the Boltzmann coefficient, Z =
∑
j e
−

Ej
kBT is the partition function

( 1
Z e
−

Ej
kBT is the probability that the system occupies the microstate j), I and F

represent the initial and final state respectively, Ω = ωS − ωI and MFI is the time
dependent perturbation theory matrix element up to the second order2. A key role in
this expression is attributed to the Dirac delta, which ensures the energy conservation,
and to the matrix element MFI , which is responsible for the polarization selection
rules.

Using second quantization for electronic states3 and the long wavelength approxi-
mation (k · r << 1 and so eik·r ≈ 1) one gets

MFI =êI · êS
∑
ab

ρab(q)
〈
F
∣∣∣c†acb∣∣∣ I〉+

+ 1
m

∑
ν

∑
a1,b1
a2,b2

〈
a2

∣∣∣∣∣∣
∑
j

p̂ · êS

∣∣∣∣∣∣ b2
〉〈

a1

∣∣∣∣∣∣
∑
j

p̂ · êI

∣∣∣∣∣∣ b1
〉
·

·


〈
F
∣∣∣a†2b2∣∣∣ ν〉〈ν ∣∣∣a†1b1∣∣∣ I〉
EI + ~ωI − Eν

+

〈
F
∣∣∣a†1b1∣∣∣ ν〉〈ν ∣∣∣a†2b2∣∣∣ I〉
EI + ~ωS − Eν

 .
(3.12)

The first term of equation 3.12 comes from the A2 term of the Hamiltonian and
refers to a non resonant Raman scattering where the photon energy is transferred to

2The matrix elements up to the second order are V
(1)
FI = |〈F |V |I〉|2 and V

(2)
FI =∣∣∣∑K 6=I

[ 〈I|V |K〉〈K|V |F 〉
EK−EI−~ωI

]∣∣∣2
3In the second quantization treatment we can rewrite the exponential as

∑
i
eiqr =

∑
ab
ρab(q)c†acb,

where ρab(q) =
∑

i

〈
a
∣∣eiq·r∣∣ b〉 and c†a and cb are the creation and annihilation operators for the

H0 electronic eigenstates |a〉 and |b〉.
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an electron-hole pair and than re-emitted with a scattered photon. The remaining
contributions are derived from second order time dependent perturbation theory of
p̂ ·A: a virtual intermediate state |ν〉 is created from the absorption of the incident
photon, which finally decays to the final state with the emission of a second photon:
since resonances occurs when the incident photon energy matches the difference
between the initial state and the intermediate state resonance Raman scattering
provides information on the electronic structure of the system.

One of the advantages of Raman scattering is that selection rules can be easily
derived from the Raman tensor R:

MFI = 〈F |R| I〉 , (3.13)

where the matrix elements Rµν is expressed as a function of the polarization of the
incident µ and scattered ν beam. The Raman tensor can be decomposed in the basis
of the irreducible representation of the symmetry group of the crystal as

R =
∑
n

anRΓn , (3.14)

where Γn is a representation of the symmetry group [99]. The Mulliken symbols,
that is, the symbols used to identify the irreducible representation of symmetry
groups, are listed in Appendix B.

Selection rules for cuprates

The symmetry of the crystal is fundamental to determine the vibrational modes
allowed in particular scattering configurations, as shown in Eq. 3.14.
Most cuprates can be described by a D4h tetragonal point group and have inversion
centers, so vibrations can be classified as even or odd (if the wavevector does or
does not change sign upon inversion). Odd vibration (“u”, ungerade) are infrared
(IR) active modes, while even (“g”, gerade) are Raman modes [94] (the complete
character table for D4h is reported in appendix B). So, for parity reasons, the only
Raman active modes of the group are A1g, A2g, B1g, B2g and Eg.
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From Eq. 3.14 we can decompose the Raman tensor as

R = 1
2
[
O

(1)
A1g (exI · exS + eyI · e

y
S)

+O
(2)
A1g (ezI · ezS)

+OB1g (exI · exS − e
y
I · e

y
S)

+OB2g (exI · e
y
S + eyI · e

x
S)

+OA2g (exI · e
y
S − e

y
I · e

x
S)

+O
(1)
Eg (exI · ezS + ezI · exS)

+O(2)
Eg (eyI · e

z
S + ezI · e

y
S)
]
,

(3.15)

where Oj are the projection on the different configurations, while eXY are the polar-
ization vectors, where X represents the direction with respect to the Cu-O crystal
axis (z is perpendicular to the Cu-O plane)4 and Y = I, S indicate the incoming
and scattered beam. Finally the polarization product J ·K (where J and K are two
polarization unit vectors) is defined as

J ·K =


J (1)

J (2)

J (3)

 [K(1) K(2) K(3)
]

=


J (1)K(1) J (1)K(2) J (1)K(3)

J (2)K(1) J (2)K(2) J (2)K(3)

J (3)K(1) J (3)K(2) J (3)K(3).

 (3.16)

So, for example, the B1g contribution to the Raman tensor is

RB1g =1
2OB1g




1
0
0

 [1 0 0
]
−


0
1
0

 [0 1 0
]

=1
2OB1g




1 0 0
0 0 0
0 0 0

−


0 0 0
0 1 0
0 0 0




=1
2OB1g


1 0 0
0 −1 0
0 0 0

 .

(3.17)

The polarization vectors define the polarization selection rules needed to measure a
defined mode. For example the B1g signal can be selected with an incoming field
polarized along x or y and selecting after the same polarization. On the other hand
the same configuration would select also the A1g mode. The following table [31]
summarizes all the selection rules for the D4h group.

4A sketch of the crystal structure is plotted in Figure 2.9, whereas the Cu-O layer is displayed in
Figure 2.8 a.
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eI eS R

x̂, ŷ x̂, ŷ RA1g(1) +RB1g
1√
2 (x̂+ ŷ) 1√

2 (x̂+ ŷ) RA1g(1) +RB1g
1√
2 (x̂+ ŷ) 1√

2 (x̂− ŷ) RB1g +RA2g

x̂ ŷ RB2g +RA2g
1√
2 (x̂+ iŷ) 1√

2 (x̂+ iŷ) RB1g +RB2g
1√
2 (x̂+ iŷ) 1√

2 (x̂− iŷ) RA1g(1) +RA2g

x̂ ẑ RE1g

ŷ ẑ RE1g

ẑ ẑ RA1g(2)

In our experimental configuration, with the incoming beam propagating along the ẑ
axis, (perpendicular to the Cu-O plane), the A2g mode does not contribute [97] and
the Raman tensor is reduced to the 2 x 2 matrix

RB2212 =1
2

{
OA1g

[
1 0
0 1

]
+OB1g

[
1 0
0 −1

]
+OB2g

[
0 1
1 0

]}

=1
2

[
OA1g +OB1g OB2g

OB2g OA1g −OB1g

]
.

(3.18)

It is easy to note that in this experimental configuration the B2g symmetry can be
obtained with incident and scattered beam polarized along the two orthogonal Cu-O
axis. The B1g mode can be measured through a beam polarized along the Cu-Cu
direction and selecting the orthogonal polarization: to prove it , it is sufficient to
select the polarization beams as follows:

〈eI |RB2212 |eS〉 =1
2
[
1 1

] [OA1g +OB1g OB2g

OB2g OA1g −OB1g

] [
1
−1

]

=1
2 (OA1g +OB1g −OB2g +OB2g −OA1g +OB1g)

=OB1g.

(3.19)

On the other hand the Ag mode cannot be completely separated from the other
symmetries. Further details on Raman modes selection rules are given in section
5.4
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3.2 Time resolved spectroscopy

Although the so-called “static measurements” are actually perturbative of the sample
equilibrium state, both the weakness of the stimuli and their relatively long applica-
tion time (with respect to the system degrees of freedom) allow to study a steady
regime, which may or may not correspond to the real ground state, that can be
treated with standard statistical approaches. The advent of ultrafast laser sources
changes the perspective completely: in this case the perturbation should not be
avoided, but it becomes a fundamental ingredient of the measurements, whose effect
can be studied in time through ultrashort light pulses (hundreds of femtoseconds or
less) [39].

In complex systems all the degrees of freedom are strictly intertwined and equi-
librium measurements are not able to distinguish their inner properties. On the
contrary time resolved measurements can discriminate between the contributions of
the different interactions to the total de-excitation process of a previously perturbed
sample. A key role is played by the duration of the excitation and of the sampling,
which must be faster than the energy exchange between the electronic, vibrational,
magnetic etc. degrees of freedom of the system.

High critical temperature superconductors (HTSC) belong to the wide class of
strongly correlated materials and in the last decades their unusual and intriguing
properties have been tested through time resolved experiments, both in the low
perturbation limit, to study the quasiparticle relaxation, and in the strong one, to
analyze the order parameter dynamics and eventually the photo-induced phase
transitions [50].

3.2.1 Pump-probe experiments

Pump probe spectroscopy is a time resolved technique, in which the sample is
excited by a relatively intense ultrashort light pulse called pump, which produces
an (electronic) Raman excitation, and the de-excitation process is explored by a
second weak, but still ultrashort, light pulse called probe. The probe is transmitted or
reflected by the sample, in order to measure the optical properties of the system at a
definite time delay after the excitation; a tunable probe optical path allows to scan a
wide interval of time delays, leading to the measurement of the whole de-excitation
dynamics. A sketch of the typical set-up is shown in Figure 3.5. For sake of simplicity,
form now on we will consider only a reflective configuration, as the one shown in
the sketch of Figure 3.5 a.
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Fig. 3.5.: Sketch of a pump-probe experiment. a The pump pulse excites the sample at
time t = 0 and, after a time delay ∆t, the probe pulse is reflected by the sample.
Finally the reflected probe intensity is measured by a photodiode. b Measurement
result: the transient reflectivity of the sample during its de-excitation is plotted
as a function of the time delay ∆t between the pump and the probe, which
can be tuned changing the probe light path, for example through a micrometer
translation stage.

The measured quantity is the transient reflectivity, i.e.

∆R(∆t)
R

= REX(∆t)−REQ
REQ

, (3.20)

where REX(∆t) and REQ are the pumped and equilibrium reflectivity respectively.
REX(∆t) contains all the contributions to the de-excitation, which can differ for
“starting” time delay, lifetime and intensity: these differences allow to separate and
study the decay channels, in order to get information on the internal correlations of
the sample.

In general the signal ∆R(∆t)
R is characterized by a magnitude, a sign and a decay

time: all these features are fingerprints of the sample phase. For example, a
parameter like temperature affects most of the sample degrees of freedom (electrons,
crystal structure...), which are responsible of the sample de-excitation, so, different
temperatures correspond to different signals. The same argument can be valid for
pressure, doping and so on [18]. This feature is particularly interesting across phase
transition, as we will see in Chapter 5. Moreover, set-up parameters like the pump
wavelength and fluence or the probe wavelength can modify the signal, leading to a
complete characterization of the sample phase dynamics.

Time resolved measurements can be performed in two different regimes, as a function
of the pump intensity:

1. QUASI-EQUILIBRIUM: the system is weakly perturbed and the matter is driven
into an excited state which eventually relaxes toward the equilibrium ground
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state. The process is driven by electronic, vibrational and magnetic excitations
and de-excitations. We refer to the interval of pump fluences used in this kind
of experiments as linear regime, since the transient reflectivity is linear in the
pump intensity. The results of a quasi-equilibrium experiment are shown in
Figure 3.6, where a typical transient reflectivity is plotted and the different
de-excitation contributions are highlighted.

Fig. 3.6.: Transient reflectivity in a quasi-equilibrium measurement in a strongly cor-
related system. Several contributions to the dynamics are highlighted, such as
the interaction of the electromagnetic field with the electronic system (EM-e),
the electronic interaction (e-e), electron-lattice one (e-L) and the final lattice
relaxation (Lrelax) [66].

2. NON-EQUILIBRIUM: high pump fluences belonging to the non-linear regime,
that is where the sample response is completely non-linear in the pump fluence,
can produce metastable states which are not accessible through thermodynam-
ics [66]. These dynamical phase transitions can have two different origins:
either the pump destroys the equilibrium order (for example it can melt a
charge density wave order parameter [84, 101, 43, 78] or break the supercon-
ducting pairing [28, 40, 87]) or it can dynamically induce a long range order
(for light induced superconductivity see [34, 62, 64]).

3.2.2 Time resolved spectroscopy on Cuprates

The unexpected and still unexplained main properties of cuprate HTSC, such as their
rich phase diagram and especially the presence of the pseudogap, are correlated
to the inherent strong short-range electronic interactions between two elecrtons
occupying the same Cu-3d orbital. For this reason time resolved techniques have
been widely used to study these materials and to complete the information derived
from equilibrium measurements.
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Since in strongly correlated materials the low and high-energy scales are intrinsically
entangled [38], high photon energy excitations of the system (in the optical range,
for example) can produce variations of the low energy response (e.g. with a THz
probe [46, 4]). Conversely it is possible to excite a mid-infrared perturbation
and probe the reflectivity dynamics with optical pulses. It is known [97, 61] that
the optical properties of the sample change as the phase of matter changes. In
particular in the superconducting phase an optical pump hν > 2∆ (where ∆ is
the superconducting gap) perturbation consists in the breakdown of Cooper pairs
(of whatever k-vector) in two electrons, which are brought in a non-equilibrium
high energy state. In this case the probe detects the recombination of photoexcited
carriers into a superconducting state [89]. But then, what happens if the pump
photon energy decreases below the gap amplitude? In the de-excitation process still
detectable by a high energy probe? We tried to add some clues in this respect with
the experiment described in chapter 5, where two pump photon energies (hν > 2∆
and hν ≈ 2∆) have been used in order to study the superconducting-pseudogap
phase transition.

In order to describe the correspondence between the phase of the sample and the
pump-probe transient response. I will here briefly present the typical results and
expectations of the main processes for the superconducting (T < Tc) and metallic
(T > T ∗) response at fixed doping. If not indicated explicitly, we will always consider
the quasi-equilibrium regime.

T < Tc : Rothwarf-Taylor model

The pump-probe response of a conventional superconducting sample was firstly
described by A. Rothwarf and B. N. Taylor in 1967 [79] with a phenomenological
model, which describes the superconducting recovery in a BCS system. The main
assumptions of the model are
i. the presence of the superconducting gap ∆ below the critical temperature
ii. the relevance of the quasiparticle-phonon interaction.
The process can be divided in three steps:

1. The pump pulse breaks some Cooper pairs, creating quasiparticles at higher
energies.

2. The quasiparticles tend to recombine loosing an amount of energy 2∆ (binding
energy of the Cooper pair) through a phononic excitation.

3.2 Time resolved spectroscopy 39



3. The phonon energy (2∆) is large enough to break another Cooper pair into
two particles and so on.

The phonon lifetime determines the superconducting recovery dynamics: for instance
a slow decay of the phonons means a higher probability of breaking Cooper pairs.
This slowdown of the dynamics can reach a limiting behavior due to the equilibium
between phonon and quasiparticle creation, which is called bottleneck. The process
is shown in Figure 3.7.

Fig. 3.7.: Process of time resolved measurements at T < Tc. a creation of two quasipar-
ticles due to the interaction with the pump pulse. b quasiparticle recombination
in a Cooper pair, with the emission of a photon of energy 2∆. c the phonon excite
another Cooper pair.

The process can be described by the following system of coupled equations:
dn
dt = Iqp(T ) + ηp−Rn2

dp
dt = Ip(T )− η p2 + Rn2

2 − γ (p− pT ) ,
(3.21)

where n and p represent the quasiparticle and phonon total number respectively.
The phonon has always energy hν ≥ 2∆.
Iqp(T ) and Ip(T ) are the external sources of quasiparticles and phonons respectively;
Ip(T ) can usually be neglected, because the main effect of the pump is not the
injection of phonons but the Cooper pair breaking, whereas Iqp(T ) has the profile of
the pump pulse.
Rn is the rate of recombination of quasiarticle (and so of production of high energy
phonons), whereas η is the transition probability for pair breaking due to phonon
absorption.

In the second equation γ is the rate at which the phonons decay by a process other
than pair excitation (for example anharmonic decay to an energy smaller that 2∆
or diffusion of phonons into the thermal bath) and pT is the number of phonons in
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thermal equilibrium at a temperature T . The factor 1
2 is due to the production of

two quasiparticle from a single phonon and vice versa. To sum up, the first equation
of the system 3.21 means that the number of quasiparticles is increased by the pump
excitation and from the destruction of Cooper pairs, due to phononic excitations,
and it is limited by the recombination process. The second equation points out that
the phonon number dynamics is enhanced by the recombination process Rn2

2 (and
eventually by the less probable direct excitation of phonons due to the pump IP (T )),
whereas it is decreased by Cooper pair breaking (ηp2 ) and by the anharmonic thermal
decay γ(p− pT ).

The dynamics of the superconducting recombination is determined by the parameter
R, η, γ.
A particularly interesting limiting case is γ << η, that represents the condition
for which the most likely decay channel for a high energy phonon is the creation
of two quasiparticles (rather than thermalization). In the IP ≈ 0 approximation,
the phonon population increases (dpdt > 0) as far as ηp = Rn2, that is when the
rate of recombination equals the quasiparticle creation one. When the condition
γ << η is fulfilled, the two populations are strongly coupled and their dynamics is
characterized by the common parameter γ, which is small by hypothesis. This is the
already mentioned bottleneck limit. Notice that no bottleneck regime can be reached
for γ >> η).

T→ Tc : limit of the Rothwarf-Taylor model

Although the Rothwarf-Taylor model has been developed for BCS superconductors,
it has been applied also for the qualitative description of HTSC dynamics, even if in
the latter case the de-excitation process could be driven by different interactions and
the presence of a bottleneck regime is still not proved.
Approaching the critical temperature the superconducting gap decreases, allowing
an increasing number of phonons to break Cooper pairs. In terms of the equations
3.21, this means an enhancement of the rates η and Rn with respect to γ: a quasi-
equilibrium between quasiparticles and phonons establishes, which slows down the
recombination dynamics. This phenomenon produces an increase of the decay time,
which is easily recognizable in HTSC time resolved measurements across Tc.

Low Temperature non-equilibrium measurements
At higher pump fluences we enter the so called non linear regime, in which dynamical
phase transitions can be excited (see section 3.2.1).
Let us consider an intense pump excitation in the superconducting phase: in this case
the long range order can be perturbed by the pump pulse, provoking a dynamical
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destruction of the macroscopic phase coherence of the superconducting phase [9].
In the sample we measured (Y-Bi2212) this phenomenon causes a fast response
immediately after the excitation, followed by relatively slow dynamics (with respect
to the quasi-equilibrium one) [74].
In the work of I. Madan et al. [61] the possibility of destroying the superconducting
phase is used to study the pairing above Tc: a three pulse experiment5 allows
to separate the superconducting contribution from the pseudogap one, assuming
the presence of superconducting properties (like pairing) even above the critical
temperature.

T > T∗

For high temperature no gap characterizes the metallic phase, so there is no particular
requirement on photon and phonon energies. However the system is still strongly
correlated and a single decay channel is not sufficient to describe its de-excitation
[25].
This aspect is visible in room temperature time resolved measurements, in which a
unique exponential decay cannot fit the experimental data [74]. In order to find a
better fitting function, it is useful to consider two exponentials (representing two
decay channels of the primary excitation), convoluted with a gaussian, which takes
into account the pump and probe pulse duration.

The final function is

f(t) =
∑
i=1,2

σi√π

2 e
−
σ2
i

2τ2
i e
− t
τi

[
erf
(

t√
2σi
− σi√

2τi

)
+ 1

] , (3.22)

where τi is the life time of the ith decay channel, erf(x) is the error function (that is
the derivative of a gaussian function), and σ is the pulse length.

An analysis of the time resolved response to different excitation energies showed
that the longest decay time (τ2) is independent of the photon frequency, whereas
the shortest one (τ1) decreases if the photon energy increases [74]. This is probably
due to the fact that the primary excitation does not have enough energy to relax
emitting quasiparticles.

5In the experiment they propose, the first pulse melts the superconducting phase, the others are used
like in a standard pump-probe measurement
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3.3 Measurements

To sum up, time resolved electronic Raman scattering is a good technique to study
correlated systems and cuprates in particular. It combines the anisotropy k-resolved
measurements provided by the electronic Raman scattering (just by changing the
polarization of the impinging electromagnetic fields and selecting the output one)
with the discrimination of the different contributions to the total de-excitation
process offered by pump-probe measurements. An additional contribution is given
by the possibility of tuning the pump wavelength.

Set-up

Our experiment consists of a mid-infrared pump-optical probe temperature resolved
spectroscopy on Y-Bi2212. A sketch of the set-up is shown in Figure 3.8.

The Laser system is made up of a Non-Collinear Parametric Amplifier (Orpheus-N
by Light Conversion) and a Twin Optical Parametric Amplifier (Orpheus TWIN by
Light Conversion), both pumped on the Light Conversion Pharos Laser, producing 400
µJ pulses with 1.2 eV photon energy at 50 KHz repetition rate.
The optical probe (generated by the NOPA system) is a ∼ 25 fs wavelength pulse,
tunable in the visible and near-infrared (from about 1.27 to 2 eV). The carrier enve-
lope phase stable mid-infrared pump pulses are produced by Difference Frequency
Generation (DFG), mixing the signal outputs of the twin OPA seeded with the same
white light. The final range of pump photon energies varies from 70 to 300 meV.

As shown in Figure 3.8, the mid-infrared pulses are sent to the sample (the focal spot
has about 150µm diameter). The NOPA beam is divided in two by a beam splitter,
in order to have a reference to minimize the external noise contribution, while the
other branch is reflected by the sample and collected by a differential detector. The
measured output is the intensity difference between the reference and the probe
reflected by the excited sample.

In most of the measurements, data have been amplified by a Lock-in system, but in
some of them the signal has been digitized by a fast digitizer (Spectrum M214964-
exp, see appendix C.1). In both cases the pump beam have been chopped, but
whereas in lock-in measurement the chopping frequency was an input parameter
of the amplification system, which can extract the desired data even from very
noisy signals, in the second case it was used directly to compare pumped and non-
pumped measurements: the subtraction between the two pulses improved the signal,
reducing significantly the acquisition time.
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A closed cycle cryostat (DE 204 by Advanced research systems) allows to cool the
sample up to about 12 K (well below the critical temperature for our sample),
avoiding vibrations, which could strongly affect our measurements, especially in the
fluctuation case (see chapters 7 and 8).

The sample is a large and high-quality optimally doped Y-substituted Bi2212 single
crystals (Bi2Sr2Y0.08Ca0.92Cu2O8+δ), grown in an image furnace by the traveling-
solvent floating-zone technique with a non-zero Yttrium content. The critical tem-
perature is Tc = 97 K and the transition temperature is T ∗ ∼ 135 K.

Fig. 3.8.: Set-up scheme. The Laser and the DFG system generates ultrashort optical pulses
(probe) form the NOPA and mid-infrared pulses (pump) from the TWIN OPA plus
DFG system. The tunable time delay between the pump and the probe is obtained
by changing the optical path of the probe through a µm-translation stage. The
final measured signal is the difference between the probe intensity reflected by
the sample (excited by the mid-infrared pump) and a reference signal originated
by the same optical pulse. The time resolved signal is acquired through a Lock-
in amplifier or a fast digitizer. The sample temperature can be tuned through
a closed cycle cryostat and the variation of pump and probe wavelength and
intensity allows a complete characterization of the time resolved response in the
different phases.
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3.4 Summary

In the present chapter we explained the reasons for the choice of the experimental
technique for the study of an HTSC sample: we listed the advantages coming from
the use of electronic Raman scattering and pump-probe spectroscopy in relation to
some cuprate features.

Electronic Raman scattering gives information about the superconducting gap and
in particular:

1. reveals the existence and the value of the gap of BCS superconductors, by
showing a peak at 2∆;

2. detects the presence of nodes in the gap of HTSC

3. allows to study anisotropies of the gap in the reciprocal space and to detects
specific symmetry modes, though polarization selection rules.

The choice of a time resolved techniques is due to the strongly correlated nature of
cuprates: pump-probe spectroscopies allow to disentangle the degrees of freedom
of the sample by studying their response to an external excitation (an ultrashort
mid-infrared pump, in our measurements).

Finally we introduced our experimental set-up in which different parameters of the
light pulses and of the sample can be tuned:

1. pump wavelength and fluence. These parameters changes the entity of the
excitation: in particular, in chapter 5 we will focus on the difference between
excitation above and below the gap energy 2∆, both in the linear regime (low
pump fluence) and in the non linear one (hogh fluence).

2. probe wavelength and fluence. Different probe photon energies can be used
to sample the material de-excitation in several spectral regions. The choice of
the probe fluence (provided it is not too large (see section 4.1) is only related
to the quality of the measurement (in terms of signal to noise ratio)

3. sample temperature. A close cycle cryostat is used to lower the sample tem-
perature and scan all possible phases at fixed doping (in our case, at optimally
doping, the possible phases are metallic, pseudogap and superconducting)

The effects of the tuning of the set-up parameter are shown in Chapter 4.
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4Preparatory measurements on
Y-Bi2212

In this chapter the preliminary time resolved measurements on Y-substituted opti-
mally doped BSCCO, Bi2Sr2Y0.08Ca0.92Cu2O8+δ (Y-Bi2212), are presented.
The aim of the present section is first of all to characterize the dependence of the
pump-probe signal of the sample as a function of excitation and detection energy,
selection of Raman modes and phase of the material. This characterization allows to
study the “standard” time resolved response of the sample to a defined excitation,
before moving to unusual experimental conditions, as the one described in chapter
5.
Moreover the following preliminary analyses define some limitations and thresh-
olds which ensures the validity of the experiment itself (see section 4.1) and some
quantities for the measurements of tricky properties, such as the direction of the
crystallographic axes of the sample (see section 4.2).
Finally they provide a useful comparison with literature and with the theoretical
expectations (see for example the divergence of the time decay predicted by the
Rotwarf-Taylor equations and the temperature resolved data of section 4.5).

Fig. 4.1.: Photon energies. Sketch of the different possible excitations of the sample
at the related energies. The red arrow connects the excitation energy with the
detected one.

Our set-up has already been described in section 3.3: a mid-infrared pump pulse
excites the cuprate and the transient reflectivity is measured through an optical/near-
infrared probe pulse. So in our experiment the sample is excited with a quite low
photon energy, whereas we observe the response at much higher energies (from
6 to 20 times larger, see Figure 4.1). The entanglement between high and low
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energies is ensured by the strong electronic correlation which characterizes the
cuprate systems.

The characterization of the sample response has been obtained by tuning several
experimental parameters, such as

1. the fluence of the probe (see section 4.1 and 4.3) and pump (see section 4.3)
pulses;

2. the probe beam polarization (section 4.2)

3. the probe and pump photon energy (section 4.4 and 4.5)

4. the sample temperature (section 4.5), in order to measure different phases
of the sample (superconducting phase if T < Tc = 97 K, pseudogap phase
if Tc < T < T ∗ ≈ 135 K, strange metallic phase at larger temperatures; see
chapter 2).

4.1 Probe linearity

In pump-probe measurements, as well as for equilibrium ones, the probe should
provide the lowest perturbation possible on the sample.

The strength of the probe perturbation is mainly due to its fluence, which must be
much lower than the pump one. We expect that small variations in the probe fluence
do not change the de-excitation dynamics, except for a moltiplicative constant
proportional to the impinging pulse intensity and independent of the material. In
order to find out an intensity threshold, we performed time resolved measurements
at 80 K with different probe powers in the quasi-equilibrium regime (see section
3.2.1).

The results are plotted in Figure 4.2a, where four pump-probe measurements at
different probe fluences are plotted (the data have been rescaled by the value of the
probe power). It is clear from the plot that the lower intensity measurements are
linear, whereas the higher intensity one differ from the others. In order to study
the fluence dependence of the signal, we show in Figure 4.2b the peak value of the
dynamics (that is the maximum value in Figure 4.2a) versus the probe fluence. We
observe a linear dependence on the probe fluence for low values (f ≤ 1.25µJ · cm−2)
and a competely different behavior for higher probe intensities.
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Fig. 4.2.: Probe linearity. a Time-resolved signals at different probe fluences, rescaled by
the probe power: the lower fluence signals are very similar in the plot (and so
proportional), contrarily to the high intensity one. b Peak of the time resolved
signal at 80 K integrated in polarization, versus probe fluence. The pump and
probe photon energies are respectively 170 meV and 1.63 eV. A linear behavior
is obtained for f ≤ 1.25µJ · cm−2 (blue line), whereas for higher intensities a
different dependence is shown (orange line). The inset is a zoom on low fluence
results.

This preliminary measurement allows to understand the maximum fluence value for
which the dynamics can be described by the pump probe approximation and also
confirms that differences in the probe fluence below this limit should not affect the
results, apart from a scaling factor. For this reason the choice of a probe fluence just
below the threshold is very convenient, since it increases the signal to noise ratio
while keeping the same dynamical features.
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4.2 Probe polarization

The second measurement deals with the angle between the probe polarization and
the sample crystallographic axes in the Copper Oxygen plane.
We already know that the probe input and output polarization directions are essential
to select the desired Raman mode. In this measurements we rotated the sample
with respect to the pump and probe polarization directions and we did not select
the polarization of the output beam (that is to say that the signal is integrated in
polarization).

We noticed that the time resolved signal in the superconducting phase has always
the same dynamics, that is, the transient reflectivity obtained at different angles1

differs for a multiplicative constant (see Figure 4.3a), whose angle dependence is
approximately sinusoidal (Figure 4.3a).
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Fig. 4.3.: Reflectivity versus pump-probe polarization angle. a Transient reflectivity of
superconducting Y-Bi2212 at different polarization angles between pump and
probe. They have been normalized for their maximum value in order to check the
linear relation. b Peak value of the signals in a as a function of the polarization
angle. The light blue sinusoidal line is a guide for the eye.

1In the present section the “angles” refers to the rotation of the probe polarization with respect to
the pump, which is fixed with respect to the crystal. The measurements revealed that the pump
polarization direction (and so the zero angle) is parallel to the Cu-O axis, as described in the
following.
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The dynamics of the sample de-excitation has been studied by Y. Toda et al. in
[97], where, although the completely different choices for pump and probe photon
energies, they obtained a similar polarization dependence in the superconducting
phase. They observed that the maximum (and the minimum) of the signal are
associated to a polarization close to the Cu-O axis direction. Because of this feature
the described measurements can be used to check the sample orientation: in this
configuration we observe that the Cu-O axis is approximately vertical (0◦ angle) and
parallel to the pump polarization direction.

4.3 Fluence dependence of the Raman modes
dynamics

As shown in section 3.1.2 different polarizations of the pulses with respect to
the crystal axes can select different Raman active modes of the sample. In our
experimental configuration both the pump and the probe propagate in the direction
perpendicular to the Cu-O layers of the system (z-axis). Rotating the polarization of
the probe and of the final analyzer (see Figure 3.8) in the x-y plane it is possible to
select only the B1g and B2g modes. The Ag symmetry can never be selected with
linear polarizations, but since its response is much more intense than the others,
from now on we will call “Ag” signal the one with the analyzer parallel to the probe
polarization.

In section 3.2.1 we discussed the difference between quasi-equilibrium and non-
equilibrium measurements, depending on the strength of the excitation. We remind
here that in the former case the pump intensity is low and the de-excitation dynamics
is almost linear for small variations of the pump fluence; in the latter the excitation
is much more perturbative and the time resolved signal is non-linear in the pump
power and, in principle, dynamical phase transitions may take place.

In order to characterize the sample response in the superconducting phase, we
performed time resolved measurements in three polarization configurations (with
the analyzer parallel to the probe polarization and in the orthogonal polarization
both along the Cu-Cu and Cu-O axes)2 and three pump fluences. The results are
plotted in Figure 4.4.

The lowest fluence measurements are related to the linear regime and the de-
excitation dynamics is very similar for the three selected modes. The other two
measurements belong to the non-equilibrium regime: the non-linearity between two

2The described polarization configurations are the ones used for the detection of the three mentioned
active modes in a Raman (static) measurement
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results within the same experimental symmetry is quite evident for all the modes.
Moreover the dynamics of the modes are much more peculiar in the high fluence
range.
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Fig. 4.4.: Different modes dynamics in superconducting phase. Optical (hν = 1.63 eV)
time resolved response to a mid-infrared excitation (hν = 170 meV) at several
pump fluences (rows) and input-output polarization configurations (columns),
indicated by the black arrows in the first line. The first fluence (0.09 mJ · cm−2)
belongs to the linear regime, whereas the others are non-equilibrium measure-
ments.

4.4 Excitation photon energy

Broadly speaking, the excitation pathways depends on two characteristics of the
pump beam: its fluence, which can cause different kinds of excitations (as already
pointed out many times) and its photon energy, which determines the allowed
electronic transitions.
As described in section 2.2.5, because of the peculiar anisotropy of the d-wave gap,
electronic transitions are always feasible, even at very low temperatures. Anyway
the 2∆ value is a crucial parameter of the cuprate systems, so we wanted to study
the excitation of the sample around this characteristic value (2∆ ≈ 75 meV).
Our twin OPAs system, associated with the Difference Frequency Generation is able
to produce pulses with tunable photon energy in the range (70− 275 meV).

In order to test the photon energy dependence we firstly performed measurements
in the superconducting phase at different pump photon energies (275, 170, 85 and
70 meV) and several fluences (see Figure 4.5). We notice that at fixed temperatures
the main features in the fluence dependence are the same: a quasi-linear behavior is
characteristic of low excitation intensities, while a dip appears at about 0.5 ps. This

52 Chapter 4 Preparatory measurements on Y-Bi2212



effect is associated to the incipient melting of the superconducting phase, due to
the high pump fluence [61, 53, 92]: this is one of the dynamical phase transitin
expected for the non-equilibrium regimes.

Fig. 4.5.: Pump photon energy and fluence dependence at 80 K. Time resolved reflec-
tivity of the sample in superconducting phase at different pump photon energies:
a 275 meV, b 170 meV, c 85 meV and d 70 meV. The probe photon energy has
been fixed at 1.88 eV.

Fig. 4.6.: Pump photon energy and fluence dependence at 110 K. Time resolved reflec-
tivity in pseudogap phase at different pump photon energies: a 170 meV, b 85
meV and c 70 meV. The probe photon energy has been fixed at 1.88 eV.
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The same analysis can be performed in different phases of the sample. In particular,
we studied the pseudogap response at several photon energy excitations as a function
of the fluence.
Up to f ≈ 0.7 mJ · cm−2 the pump-probe signal has always the same dynamics: an
initial decrease of the reflectivity followed by an enhancement and finally a slow
(quasi-constant in our time interval) time decay. Although the transient reflectivity
signals are similar, also in this case they are not proportional. Moreover, if we reach
higher fluences (0.8 mJ · cm−2), the behavior completely changes, as we observe in
Figure 4.6a.

A direct comparison of the pump photon energy effects can be obtained by fixing
the pump fluence (in our case in the quasi-equilibrium regime) and measuring the
different phases (see Figures 4.7 from a to c). Notice that the longer decay typical

Fig. 4.7.: Pump photon energy dependence. Transient reflectivity in a the superconduct-
ing (T=86 K), b pseudogap (T=110 K) and c metallic (T=295 K) phase as a
function of the excitation photon energy. All the signals has been normalized on
the long time scale, in order to facilitate the comparison. On the bottom right
corner the sketch of the phase diagram with the reference to the measured phases
is shown.

of smaller photon energies is not due to the sample response, but to the pump
pulse duration, which increases as the wavelength increases. This difference in the
cross-correlation is evident in the rise time dependence on the pump wavelength of
Figures 4.7 a - c.
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4.5 Temperature map

The measurements of the previous section allowed to characterize the single phase
response, but, on the other hand, reveal that no significant difference is visible at a
defined phase, even at low photon energies (hν ≈ 2∆ = 75 meV). But what happens
at the transition between two phases?
In order to study the complete dynamics of the phase transition, we performed
temperature resolved pump-probe measurements, whose typical result is the map of
Figure 4.8. Here the x-axis shows the time delay between the pump and the probe,
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Fig. 4.8.: Temperature map. a Pump-probe measurement in temperature on Y-Bi2212,
with high pump photon energy (hν = 170 meV). Horizontal black lines represent
the transition temperatures. b, c and d represent the transient reflectivity of the
three phases (metallic, pseudogap and superconductive ones respectively). See
also [19]

the y-axis is the temperature and the color scale represents the transient reflectivity,
so each horizontal line represents the reflectivity dynamics at a fixed temperature,
as the one plotted in Figure 4.8 b, c and d. As expected (see section 3.2.2), there
is a divergence of the time decay when approaching the critical temperature. This
increase of the lifetime can be used as a measurement of the “dynamical critical
temperature”.
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4.5.1 Probe photon energy

In the first set of temperature measurements the tuned parameter is the probe
photon energy, in order to completely characterize the sample response to the same
excitation (photon energy hν = 170 meV, fluence f ≈ 0.1 mJ · cm−2) at several
energies. The results for hνprobe = 1.88, 1.63, 1.44 eV are plotted in Figure 4.9a, b
and c respectively, whereas Figures 4.9d, e and f show the characteristic dynamics
of the sample phases (superconducting, pseudogap and metallic) for the same probe
energies.
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Fig. 4.9.: Probe photon energy dependence. On the left column, temperature maps of
the pump-probe dynamics due to a low intensity excitation (f = 0.1 mJ · cm−2)
with photon energy 170 meV. The measurements plotted in a, b and c have been
performed with a probe photon energy of 1.88, 1.63 and 1.44 eV respectively. The
white dashed lines mark the transition temperatures Tc and T ∗. On the right
column, horizontal “cuts”of the corresponding maps at fixed temperatures, in
different phase domains. All the signals have been normalized to the maximum
value at 80 K, in order to favor the comparison.
Comparable results are shown in [38].

The different phases usually show a typical behavior, although it is strongly energy
dependent.
The 1.88 and 1.63 eV detections in the linear regime produced similar results, with
a positive signal appearing at t > 0 in the superconducting phase (red line in Figure
4.9 d and e) and a dip in the pseudogap one (green line in the same plot). The
similarity of the two maps is confirmed by their subtractions, plotted in Figure 4.10 a.

56 Chapter 4 Preparatory measurements on Y-Bi2212



The differential map show a a quasi-constant behavior, except for the small structures
at short time delays, probably related to small difference in the pulse duration due to
the energy change. The effect is particularly evident when the dynamics has a sharp
variation, as highlighted in yellow and orange in graphs 4.10 b and c, where th
original signals for the two energies and their subtraction are plotted in pseudogap
and superconducting phase respectively.
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Fig. 4.10.: High photon energy probes comparison. a Map of the subtraction between
Figures 4.9 a and b. The map is quasi-zero everywhere, apart for small positive
contributions between -500 and 500 fs. In b and c the dynamics at the two
photon energies are compared: in blue the original signal at hνprobe = 1.88 eV,
in orange the 1.63 eV one and in green the difference between the two, that is,
the corresponding horizontal cut of map a, both in the superconducting (c) and
pseudogap d phase. The results point out that the non-zero contributions of
map a refers to the maximum derivative of the signal (yellow and orange area),
suggesting that the reason for the non-zero difference is related to the pulse
duration.

Notice that the similarity between these two measurements is confined to the low
fluence excitation regime. For higher fluences (see Figure 4.11b)the dip associated to
the melting of the superconducting phase is much more visible in the larger photon
energy case.

As anticipated at the beginning of the section, the described temperature maps can
be used to study the phase transitions of the sample and their modification, if any,
due to the variation on the experimental conditions.

In order to extract the value of the transition temperatures, we analyzed the tempera-
ture dependence of the transient reflectivity at a fixed time delay after the excitation
(that is a vertical cut in the maps of Figure 4.9).
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Fig. 4.11.: High photon energy probes comparison: non-equilibrium. Superconducting
(T=80 K) dynamics at hνprobe = 1.88 and 1.63 eV, for low (a) and high low (b)
excitation intensities.

For “higher” photon energy detection (1.88 and 1.63 eV)3, the analysis of the temper-
ature signal immediately after the excitation (t = 0.3 ps) shows that both transitions
are characterized by a sudden variation of the reflectivity trend (Figure 4.12 a),
which is revealed by a rapid enhancement (or even a divergence) of the signal
derivative in temperature (Figure 4.12 b).
The same analysis can be performed at longer time delays (t > 4 ps), where we
expect a divergence of the time decay and so a maximum in the reflectivity. This
behavior is observed for both transition temperatures (Figure 4.12 c), although it
is much more evident for Tc, and is confirmed by the derivative graph 4.12 d, in
which the transition is associated to the zero value (revealing a stationary point)
and neagtive slope (related to a concave function).

The same analysis can be performed for the low probe photon energy measurements
(hν = 1.44 eV), which are characterized by a completely different dynamics and
temperature dependence, as shown in Figure 4.9 c and f. In this configuration the
pump-probe signals at all temperatures are characterized by a an initial enhancement
of the reflectivity (T ≈ 0− 3 ps), followed by an exponential decay. The peculiarity
of the superconducting phase is the presence of a negative dynamics from about 0.5
to 4 ps.

The study of the temperature dependence of the reflectivity highlights a the opposite
trend with respect to the high photon energy one, Here the critical temperature Tc
os associated to the maximum of the signal (and so to a zero value of the derivative)
immediately after the excitation (Figure 4.13 a and b), whereas the long time signal
has the maximum slope (that is the maximum of the derivative) ate the critical
temperature (Figure 4.13 c and d). Notice that with this probe photon energy it is
hard to detect the transition between the psedogap and the metallic phase.

3Since the response of the sample at these energies is very similar in the linear regime, we will
consider just one of these frequencies.
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Fig. 4.13.: Transition temperature at hνprobe = 1.88 eV. Vertical cut of map 4.9a at 0.3 ps
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the derivative graph is put at zero, in order to highlight the stationary points.

For its more accurate representation of the critical temperature only the high photon
energy detection will be discussed from now on.
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4.5.2 Pump photon energy

Similar measurements have been performed in two different pump fluence regimes
(linear and non-linear, which are plotted in the two columns of Figure 4.14) and
several excitation photon energies (275, 165, 85 and 70 meV, see the rows of Figure
4.14).
Apart for the expected broadening due to the increase of the pulse duration with the

wavelength, no significant difference is visible between maps of the same “excitation
regime” (so within the same column), even about the transition temperatures Tc
and T ∗.

On the other hand different pump fluences (at the same photon energy) show
different responses close to the superconducting-pseudogap phase transition, not
only for the presence of the dip related to the melting of the superconducting phase
at higher fluences, but also small variations of Tc can be extracted from the time
decays. For instance maps 4.14 d and e highlight a slightly different temperature for
the divergence of the time decay, depending on the pump intensity, even at the same
excitation frequency. This effect is pointed out by figure 4.15, where the temperature
profile at long time delays is shown.
As described in the previous section, at this probe photon energy we expect a
maximum in the reflectivity at the critical temperature, leading to the detection
of the dynamical Tc from the time resolved data. In Figure 4.15a the temperature
dependence after several photon energy excitations is shown: it is clear that in this
experimental configuration4 the dynamical Tc is energy independent, since it occur
exactly at the same temperature T = Tc = 97 K.

In Figure 4.15b the same analysis at fixed photon energy is shown for the two
fluence regimes. In this case we notice that a stronger excitation causes a small
decrease of the dynamical Tc. This phenomenon is related again to the melting of
the superconducting phase (see section 3.2.2): high fluences can destroy the pairing
at lower temperatures with respect to the equilibrium case, thus decreasing the
effective dynamical critical temperature.

The observation emphasizes the importance of performing measurements exactly at
the same fluence (that is at the same ratio between the incident intensity and the
area of the beam spot on the sample). This condition is not easy to be fulfilled for at
least two reasons:

4The experimental geometry is the one measured in section 4.2: the pump and probe polarization
directions are both parallel to the Copper-Oxygen axis of the Y-Bi2212. We will see in chapter 5
how the rotation of the sample can provide differences at the transition temperature.
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• the focal length of a lens depends on the photon energy, so the position of
the pump focus on the sample can move along the propagation direction,
changing the dimension of the light spot on the sample and so the fluence of
the excitation beam.

• some optical elements (such as the ZnSe lens used to focus the pump beam
on the sample) have different absorption at different wavelength. For this
reason, provided the same efficiency of the mid-infrared pulses generation for
all photon energy, the intensity of the impinging beam is frequency dependent.

In order to check this condition for different photon energies we tuned the pump
power in order to have the same dynamical response on the sample at a definite
temperature (possibly far from the transition), apart from the differences due to the
intrinsic increase of the pulse duration with the photon energy. Within this conditions
it is possible to compare the phase transition dynamics of different excitations, as
shown in chapter 5.
Concerning the second point, notice that actually the difference frequency generation
has not the same efficiency for all wavelength and that also the OPAs provide different
intensities for different wavelength. So, at the time when the measurements of Figure
4.14 have been performed we were not able to reach high fluences for 275 and 70
meV (notice that in the first case a key role was played also by the ZnSe absorption).
Subsequent improvements on the set-up allowed to reach the non-linear regime
even at these photon energies.
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4.6 Conclusions

The measurements presented in this chapter allowed to characterize both the sample
and the set-up in order to understand and interpret the results of the next chapters.
In particular we noticed that:

1. There is an upper limit for the probe fluence (f ≤ 1.25µJ · cm−2) above which
the sample is too strongly perturbed by the probe pulse.

2. The sample orientation can be checked by measuring the reflectivity at a
defined time after the excitation for different probe polarization. The maximum
(or minimum) signal identifies that the probe polarization is parallel to the
Cu-O axis.

3. The probe photon energy significantly affects the dynamics, probably because
of intraband transitions. The comparison between several probe photon ener-
gies made us opt for higher detection energies. As a matter of fact its time and
temperature dependence is more evidently affected by the phase of the sample
leading to a more accurate analysis of the data.

4. Different pump photon energies show similar time resolved signals at fixed
temperatures. Interesting features may arise from the comparison of pump-
probe experiments across the phase transition with different pump wavelength,
especially from the measurement of the “dynamical Tc”.
Since these measurements are strongly affected by the pump intensity, which
is responsible for the dynamical vaporization of the superconducting phase, it
is fundamental to compare data with the same absorbed energy density.
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5Signatures of enhanced
superconducting phase
coherence

MID-IR EXCITATION IN OPTIMALLY
DOPED Y-BI2212

In this chapter, pump-probe measurements on Y-Bi2212 as a function of temperature
are presented, started from the observations of the previous one. We are especially
interested in the transition between superconducting and pseudogap phase, which
has been analyzed with respect to the photon energy and polarization of the pump
pulse. In the second part of the chapter an effective theoretical model is introduced in
order to justify the experimental results. Finally further experimental configurations
are taken into account in order to reinforce the obtained results.

5.1 Motivation

Many of the ingredients required for superconductivity in cuprates survive well be-
yond the region of the phase diagram where the actual macroscopic superconducting
phase resides. An example of this hindered superconductivity is represented by the
behavior of underdoped cuprates just above the critical temperature (Tc), where
some hints indicate that pairing occurs, but the presence of the superconducting
phase is inhibited either by a competing charge order or by the local nature of the
pair incoherence (global phase incoherence), blocking the formation of a mesoscopic
superconducting state [96, 16, 26, 56, 49]. Signatures of an incipient superconduc-
tivity at temperatures larger than Tc have been revealed also in optimally doped
samples, where the superconducting fluctuations survive tens of Kelvin above the
actual Tc [70, 22, 61, 9, 52].
The relative fragility of the superconducting phase, together with the underlying
presence of its ingredients on large portions of the phase diagram, enables the
possibility of controlling superconductivity through ultra-short light pulses.
While there is ample evidence that photo-excitation with ultrashort high photon
energy pulses melts the superconducting phase under some specific conditions [70,
9, 88, 39, 61], it has been shown that the formation of a superconducting phase
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can be triggered by mid-infrared (MIR) excitations in regions of the phase diagram
that are not superconducting at equilibrium [34, 47, 44, 14, 64]. The possibility of
triggering the onset of quantum coherence through MIR excitations could open up
new avenues to control quantum states of matter through light.

5.2 Measurements

5.2.1 Phase diagram and pump-probe measurements

We performed pump probe measurements on Yttrium substituted Bi2212, (Y-Bi2212),
at optimal doping presents a superconducting phase below Tc = 97 K, a pseudogap
phase between Tc and T ∗ ≈ 135 K and an unusual “strange-metal” phase for higher
temperatures (see chapter 4). The intensity map shown in Figure 5.1a represents
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Fig. 5.1.: MIR pump, optical probe measurements. a) and b) Reflectivity variation due
to an impulsive excitation at time delay 0 by a MIR pulse (hν ≈ 70 meV) as a
function of the temperature of the sample (vertical axis). The two maps differ
for the polarization of the impinging pump, as highlighted by the two insets,
representing the direction of the polarization (green and orange arrow) in the
Cu-O plane. c) Time resolved signal at fixed temperatures for Bi2212: the brown
line represents the characteristic superconductive signal, while the blue one refers
to the pseudogap phase. The transition between the two phases is marked with
the black line and is related to the divergence of the time decay. Light colored
lines represent intermediate temperatures. d) Sketch of the first Brillouin zone
and of the superconducting d-wave gap amplitude |∆(k)| in the reciprocal space.
The black curved lines represent the Fermi surface.

the relative variation of the reflectivity upon the pump excitation as a function of
the time delay between the pump and the probe pulses (horizontal axis) and of the
temperature of the sample (vertical axis).
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Notice that in time resolved measurement as a function of temperature all the phase
contributions are visible and have a characteristic dynamics. In particular a “positive”
dynamics is associated to the superconducting state, while a “dip” at about 1 ps is
related to the pseudogap.

From the experimental point of view our contribution is related to the excitation
photon energy, which is close to the characteristic energy of the system (that is, for
our sample, 2 |∆| ≈ 75meV. The de-excitation is then probed by an optical pulse
(hν = 1.62eV). This is possible since in cuprates the onset of the superconducting
phase is followed by a change of spectral weight at an energy scale orders of
magnitude larger than the superconducting gap. In particular, in Bi2212, the
opening of a superconducting gap at about ∆ = 35 − 40meV results in spectral
weight redistribution at frequency as high as several eV [65, 6, 8]. This is visible in
time domain studies where, upon a sudden perturbation of the superconducting gap,
the reflectivity in the visible range changes consistently [30, 35, 46, 53, 37, 28, 4].
Here we leverage this characteristic and work under the assumption that the spectral
response in the visible-near infrared region is intimately related to the dynamics.

5.2.2 Pump photon energy dependence

We focused our investigation on a temperature range across the superconducting-
pseudogap transition (from 80 to 110 K). For T < Tc, the reflectivity increases
for about 1 ps after the arrival of the pump (at 0 ps) and then it starts decreasing
through an exponential decay (red line in Figure 5.1c). The characteristic time of the
decay increases with temperature, it is maximum at T = 97 K (green line) and drops
for higher temperatures. The observed divergence of the time decay is an indicator
of the phase transition [29, 39]. For higher temperatures, the sample enters the
so-called pseudogap phase, whose time domain response is shown by the blue line
in Figure 5.1c.

The anisotropy of the gap of d-wave superconductors (Figure 5.1 d) suggests a
detailed analysis of the effects of excitations with different pump polarizations [31].
Figure 5.1a and 5.1b show the measured transient reflectivity for two different pulse
polarizations: along the Cu-O axis (Figure 5.1a) and the Cu-Cu direction (Figure
5.1b). We measured the transient reflectivity in both polarizations, using a pump
photon energy around the characteristic energy of the system in the superconducting
phase, that is 2|∆| ≈ 75 meV [57]. A convenient way to visualize the polarization
dependence of our measurements is to subtract the two maps in Figure 5.1a and
5.1b, as displayed in the differential map of Figure 5.2a. The difference map reveals
a sizable signal around Tc, for time delays from 0 to 2 ps, corresponding to the
maximum response in the superconducting phase (red region at about 1 ps in Figure
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5.2a).
The result is confirmed by the visual inspection of the temperature response at a
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energies. The dashed lines highlight the critical temperature Tc = 97 K. The
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Cu-Cu (orange line) and Cu-O (green line) polarized pump excitations for low
and high pump photon energies (a and b, respectively). The gray dashed lines
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pump photon energies (170 and 70 meV, first and second row respectively), but
same fluence, at two different pump polarizations.

fixed time delay (1 ps) for different polarizations of the pump, as shown in the inset
of Figure 5.2a.
We observe an increase of response the associated to the onset of the superconduc-
tivity when the pump is polarized along the Cu-Cu direction both above and below
Tc = 97 K. We stress that this is an anisotropic response strongly dependent on the
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photoexcitation wavelength: in Figure 5.2b we display the differential map retrieved
for higher pump photon energy (hν ≈ 170 meV), which reveals no anisotropy at
any temperature. In Figure 5.3 representative measurements at different pump
photon energies and polarizations are reported. These data have been used to
obtain the map difference in Figure 5.2. The difference in the decay times between
measurements at different photon energies is accounted for the duration of the pulse
itself, which is different at different pump wavelengths. For low excitation energies
the divergence of the decay time marks the critical temperature.

5.2.3 Linear fit

In order to observe the temperature evolution of the transient reflectivity in the
different polarization and photon energy configurations, we performed an analysis
on the contributions of the “pure” superconducting and pseudogap signal on the
total reflectivity. We implemented a fit of the signal at each temperature using the
function

fFIT (T ) = A(T ) · S80K +B(T ) · S110K , (5.1)

where S80K is the typical superconducting dynamics (at T = 80K in in this case)
and S110K represents the pseudogap one.

The advantage of this simple function is that the parameters A(T ) and B(T ) in this
approximation are indicators of the superconducting and pseudogap contributions
respectively and their tempperature dependence can be a further confirmation of
the observed increase of the superconducting signal.

First of all we can check that the function is representative of the phase transitions,
at least in first approximation, since the data in every configuration can be fitted, as
shown in Figures 5.4 and 5.5.

The analysis of the parameters A and B as a function of the temperature (Figure
5.6) shows some common features: both A and B are maximum around Tc (dashed
line in Figure 5.6) and both for high and low energy photoexcitations the Cu-Cu
pseudogap contribution evolves more “slowly” in temperature with respect to the
other polarization. Notice that the parameter B (Figure 5.6 b and d) seems to
be energy independent, whereas A has a strong dependence on the pump photon
energy. As a matter of fact, while for high photon energies (Figure 5.6 a) a Cu-O
polarized pump has a higher superconducting contribution, for low photon energy
excitations the most relevant superconducting contribution is provided by the Cu-Cu
polarized pump. Moreover in this configuration the high values of A are preserved
also above Tc.
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The inversion of the A parameter behavior represents the increase of the supercon-
ducting signal: whereas for high photon energy excitations the two contributions
are “concordant” (that is, a change in the polarization produce an increase or a
decrease of both A and B at a certain temperature), this is not the case for low
energy excitations.

So, rotating the pump polarization from the Cu-O to the Cu-Cu direction the su-
perconducting contribution is increased and the pseudogap one in decreased, thus
resulting in an overall enhancement of the superconducting response.

5.2.4 High fluence measurements

The time resolved measurements shown in the previous section (Figure 5.3) have
been performed with low pump fluence (f = 0.09 mJ · cm−2). In order to consolidate
the physical picture emerging, i.e. that low photon energy excitations can trigger an
increase of the superconducting signal above the equilibrium critical temperature,
we have performed experiments at higher excitation density (f = 0.39 mJ · cm−2).
The results for high excitation density are plotted in Figure 5.7 for different pho-
ton energies, with pump and probe polarized along the Cu-Cu direction. In op-
tical pump and probe experiments based on high probe photon energy (1.5 eV),
photo-excitation with excitation density above critical value results in an addi-
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tional pronounced response at longer times [39]. This response was interpreted as
non-thermal superconducting-to-normal state phase transition where the supercon-
ducting condensate is vaporized before the closing of the gap, leading to a transient
inhomogeneous superconducting state.
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Fig. 5.7.: High fluence regime. Time resolved measurements with intense pump pulses
(fluence f = 0.39 mJ · cm−2) for two pump photon energies, polarized along the
Cu-Cu direction. The black line represents the critical temperature Tc = 97 K

.

Our measurements based on long wavelength photons reveal an overall similar re-
sponse. On the other hand, from a comparison between the temperature dependence
of the transient reflectivity (Figure 5.7) for photon energy comparable to 2∆ (Figure
5.7b) or much larger (hν > 2∆, Figure 5.7a) it is evident that the positive ∆R

R , which
characterizes the superconducting phase, extends to significantly larger temperature
for longer wavelengths. We stress that the two measurements were performed with
similar absorbed fluence.

5.3 d-wave BCS model

In order to draw a picture of the physical scenario emerging from the anisotropic
response to low photon energy ultra-short pulses, we implemented a microscopic
description based on a generalized BCS Hamiltonian allowing for a k-dependent d-
wave gap. While it is well known that a simple BCS formalism, disregarding first and
foremost the presence of electronic correlations, cannot explain the whole cuprate
phenomenology, we will argue here that it accounts well for the non-equilibrium
response of the low-energy superconducting gap, at least at a qualitative level.
From the described Hamiltonian, it is possible, through density matrix formalism, to
calculate the time evolution of several meaningful quantities (such as the supercon-
ducting gap amplitude |∆|).

The following sections describe:
i. the details of the model and in particular the Hamiltonian and the relevant
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quantities related to the pump-probe measurement (5.3.1),
ii. the results of the calculations for the superconducting phase (5.3.2), and in
pseudogap (5.3.3),
iii. the interpretation of the results in real space (5.3.4).

5.3.1 Quantities and methodologies

The generalized BCS Hamiltonian1 has the following expression

H =
∑

k

ε

(
k− e

~
A(t)ε

)
n̂(k) +

∑
k

(
∆∗(k)Ψ̂(k) + ∆(k)Ψ̂†(k)

)
, (5.2)

where ε(k) = −2t (cos kx + cos ky)−µ is the two-dimensional tight-binding electronic
dispersion with a nearest-neighbor hopping integral t = 250 meV and µ is the
chemical potential, which has been fixed self-consistently in order to have a filling of
n = 0.9 and Ψ̂(k) = c↑(k)c↓(−k) is the so-called pair operator.

The homogenous time-dependent vector potential of the pump pulse has the follow-
ing expression

A (t) = A (t) ε = A0 exp

−(2
√

ln 2 (t− t0)
τ

)2
 cos (ω0 (t− t0)) ε (5.3)

where A0 is the intensity, which has been fixed to 1000 meV·fs
nm unless stated otherwise,

τ = 200 fs is the FWHM, ω0 is the frequency, ε is the in-plane polarization, which has
been varied between the Cu-Cu 1√

2 (1, 1) and Cu-O (1, 0) direction, and t0 has been
chosen such that A (t = 0) = 10−4A0, so that one can use A (t < 0) = 0 without
incurring in any significant step-like change.

n̂(k) =
∑
σ n̂σ(k), where n̂σ(k) = c†σ(k)cσ(k) is the number operator for spin σ of the

Wannier electronic state with momentum k, whose annihilation operator is cσ(k).
∆(k) = ζ(k) |∆| eiθ is the gap function, where ζ(k) = 1

2 (cos kx − cos ky) parametrizes
the d-wave momentum dependence of the gap function, |∆| is the amplitude of the
gap parameter, θ is its phase. The amplitude of the gap parameter at T = 0 K has been
set to |∆ (T = 0K)| = 25 meV, while the phase of the gap parameter has been set to
zero (θ = 0 rad) at the equilibrium (t < 0 fs), for the sake of simplicity and without
losing generality. The critical temperature is Tc = 139.7 K and the ratio between the
zero-temperature gap parameter and the critical temperature gives |∆(T=0K)|

kBTc
= 2.08,

which is the typical d-wave BCS value. The temperature used is T = 120 K and the
corresponding value of the gap at equilibrium is |∆ (T = 120K)| = 14.8315 meV.

1for further information see Appendix A
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A relevant parameter is the pair operator Ψ̂(k) and it is related to the gap function
through the equation

∆ (k) = Gζ (k)
∑
k′
ζ
(
k′
)

Λ
(
k′
)
, (5.4)

where G is the attractive BCS coupling constant and Λ (k) =
〈

Ψ̂ (k)
〉

= |Λ (k)| eiφ(k)

is the complex expectation value of the pair operator.

The Hamiltonian 5.2 is used to compute the time evolution of relevant quantities of
the system (such as the superconducting gap amplitude |∆|) through density matrix
formalism.
In particular we start considering the expectation values:

1. 〈n̂↑ (k)〉 = 〈n̂↑ (k)〉 ≡
〈

ˆ̄n
〉

= n̄

2.
〈

Ψ̂ (k)
〉

= Λ (k) = |Λ (k)| eiφ(k).

The time evolution is obtained through the commutation between the desired
operators and the Hamiltonian:

1.
〈
i~∂ ˆ̄n(k)

∂t

〉
=
〈[
H, ˆ̄n (k)

]〉

2.
〈
i~∂Ψ̂(k)

∂t

〉
=
〈[
H, Ψ̂ (k)

]〉
.

Let us separate the Hamiltonian asH = HK+HINT , whereHK =
∑

k ε
(
k− e

~A(t)ε
)
n̂(k)

is the kinetic part and contains just the interaction with the pump pulse, whereas the
Cooper attraction is completely stored in HINT =

∑
k

(
∆∗(k)Ψ̂(k) + ∆(k)Ψ̂†(k)

)
.

Keeping in mind the fermionic anticommutation relations of the annihilation oper-
ator ĉ2 and that n̂ (k) = n̂↑ (k) + n̂↓ (k), one gets

[
HK , ˆ̄n

]
= 0 and

〈[
HINT , ˆ̄n

]〉
=

∆Λ∗ (k)−∆∗Λ (k).
The same kind of calculations can be performed for Ψ (k) and the result is

〈[H,Ψ (k)]〉 =
[
ε

(
k− e

~
A (t) ε

)
+ ε

(
k + e

~
A (t) ε

)]〈
Ψ̂ (k)

〉
+ ∆ (k) (1− 2n̄ (k))

(5.5)

2
{
c†σ (k) , cσ′ (k′)

}
= δσσ′δkk′,

{
c†σ (k) , c†

σ′ (k′)
}

= {cσ (k) , cσ′ (k′)} = 0
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Finally, keeping in mind the definition of the pair operator Ψ̂ (k) c↑ (k) c↓ (−k) and
of its expectation value Λ (k) =

〈
Ψ̂ (k)

〉
, one gets the following set of relevant

equations:

i~ ∂
∂t
n̄ (k) = ∆ (k) Λ∗ (k)−∆∗ (k) Λ (k) (5.6)

i~ ∂
∂t

Λ (k) =
[
ε

(
k− e

~
A (t)

)
+ ε

(
k + e

~
A (t)

)]
Λ (k) + ∆ (k) [1− 2n̄ (k)] (5.7)

with variables n̄ (k) and Λ (k)3. They are used to calculate the dynamics of the
k-dependent gap amplitude |∆| and of the modulus and phase of the expectation
value of the pair operator (|Λ (k)| and φ (k) respectively).

5.3.2 Results: T < Tc

The model predicts different behaviors depending on the frequency and the polar-
ization of the pump pulse. In particular, Figure 5.8a shows that low photon energy
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Fig. 5.8.: d-wave BCS microscopic model. Results of the microscopic model: a Time
evolution of the modulus of the superconducting gap (|∆|) in both Cu-Cu (orange
line) and Cu-O (green line) excitation case. The maximum of the pump electric
field is reached at about 350 fs. b Normalized integral of |∆| in the time interval
from 0 to 1 ps as a function of the pump photon energy (∆0 = |∆ (t = 0)|) for
Cu-Cu polarized pump excitations.

excitations with polarization parallel to the Cu-Cu direction are predicted to drive an
instantaneous enhancement of the superconducting gap, while a pump polarization
rotated 45◦ induces a dynamical quench of the gap. These results qualitatively ratio-
nalize the experimentally observed enhancement of the positive signal associated
to the superconducting response, triggered by photoexcitation polarized along the
Cu-Cu direction for pump photon energy hν ≈ 2 |∆|. On the other hand, the collapse
of the superconducting signal in the Cu-Cu polarization configuration is predicted for
higher pump photon energies, as shown in Fig. 5.8b, where we display the transient
decreases of |∆| as a function of the pump photon energy.

3The other quantities in the equations are A (t), whose value and direction are set depending on
the experimental configuration, and the superconducting gap, which depends only on Λ (k), since
∆ (k) = Gζ (k)

∑
k′ ζ (k′) Λ (k′) and G and ζ (k) are fixed
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The complete gap amplitude dependence on the pump photon energy in shown in
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Figure 5.9 The graphs represent the time dependence of the maximum values of the
gap amplitude due to the pump excitation, both in Cu-Cu and Cu-O polarization
configuration, for several pump photon energies. The difference between the time
response of the superconducting signal in experiments and calculations related to the
time decay (the increase of the superconducting signal lasts for some picoseconds in
the measurements, while the enhancement of ∆ is instantaneous in the calculations)
is due to the absence of dissipation effects in the microscopic model.
Figure 5.9c shows the fluence dependence of the superconducting gap, for Cu-Cu
(orange dots) and Cu-O (green ones) polarized pump excitations. Notice that while
the Cu-Cu excitations leads to a linear increase of the gap with respect to the fluence,
the decrease induced by an Cu-O excitation is not linear at all and seems to saturate
to a minimum value for high pump fluences.

In order to grasp the physical picture that emerges from this microscopic model, we
calculated the expectation value of the pair operator Ψ̂(k).

Figure 5.10 displays the modulus and the phase of the pair amplitude Λ (k) (in the
first Brillouin zone) calculated in three different cases: at equilibrium and during
a Cu-Cu and Cu-O low photon energy excitation (hν ≈ 2∆). We observe that the
value of

∣∣∣〈Ψ̂(k)
〉∣∣∣ around the Fermi surface is nearly unperturbed (and actually

slightly enhanced) in both excitation schemes (Figure 5.10b and 5.10c), i.e., that
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pairing is still present in both cases4. On the other hand, the phase reveals a strong
anisotropic response (Figure 5.10e and 5.10f): the model shows that Cu-O polarized
excitations drive intense phase fluctuations, which are responsible for the collapse
of |∆| shown in Figure 5.8a. The reason is clear if we observe equation 5.4: strong
oscillations od φ (k) can cancel the sum on k and suppress |∆ (k)|. Cu-Cu polarized
low-photon-energy excitations preserve instead phase coherence and enable an
enhanced superconducting dynamical response.
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5.3.3 Results: T > Tc

We stress that all previous calculations were performed at a temperature T < Tc,
where the amplitude of the superconducting gap |∆| has a non-zero equilibrium
value. This is an intrinsic limitation of the microscopic BCS model, which does not
allow superconducting pairing at temperatures higher than the critical value (Tc).
The data instead report a well visible enhancement of the superconducting behavior
at temperatures larger than the equilibrium critical temperature Tc (inset of Figure
5.2a).
In order to extend this effective description to higher temperatures, we propose
to run calculations from a modified equilibrium state (whose features are justified
in the following) maintaining the BCS framework. Different from standard BCS

4Notice that |Λ (k)| is not exactly the number of Cooper pairs, but the two quantities are related,
since 〈n̂c〉 =

〈
Ψ† (k) Ψ (k)

〉
, while |Λ (k)| =

√
〈Ψ† (k)〉 〈Ψ (k)〉
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superconductors, cuprates exhibit signatures of strong superconducting fluctuations
at temperatures larger than Tc [22]. In particular, in optimally-doped Bi2212, both
equilibrium and time-domain techniques revealed superconducting fluctuations
up to tens of Kelvin above the critical temperature [61, 9, 70, 52, 98, 58]. This
anomalous feature is commonly taken to imply the presence of Cooper pairs losing
phase coherence; i.e. while the mesoscopic coherence vanishes above the transition
temperature, pairing remains, together with phase correlations, which are local
in space and time [22, 100, 68, 71, 69]. Transport and magnetization studies
suggest that the local correlations lead to a universal superconducting percolative
regime above Tc; a local gap distribution was able to explain [68] the presence of an
effective average gap above Tc in photoemission experiments [75].

In order to explore these effects within the generalized BCS model, we employ the
following simple procedure. We proposed a new equilibrium state artificially built by
adding a random noise to the phase of the original state pair amplitude φ(k), while
retaining its modulus

(∣∣∣〈Ψ̂(k)
〉∣∣∣). The phase noise introduced in the model leads

to a reduction of the gap, as shown in Figure 5.11a, in which the dependence of
the gap amplitude on the maximum value for the phase fluctuations (δφ) is plotted.
Calculations of the dynamic response, starting from this inhomogeneous (in mo-
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Fig. 5.11.: Extension of the d-wave BCS model to larger temperatures. a) Values of
the superconducting gap at equilibrium (∆0 = |∆| (t = 0)) as a function of the
amplitude of the phase noise. b) Distribution of the phase values at equilibrium
(blue line) and during the excitation polarized along the Cu-Cu direction (red
line) for an initial noise amplitude of δφ = π/8.

mentum space) equilibrium state, reveal that Cu-Cu low-photon-energy excitations
induce not only an increase of the gap amplitude (Figure 5.12), but also a significant
enhancement of phase coherence (and negligible variation in the amplitude) of the
pair operator, as highlighted in Figure 5.11b, which depicts a histogram of the phase
distribution before (blue line) and during (red line) the photo-excitation (350 fs), for
an initial fluctuation of δφ = π/8 (value chosen for sake of clarity). The plot reveals
that the phase distribution, which becomes narrower after the excitation, leads to
an enhanced superconducting response. We argue that this scenario rationalizes, at
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Fig. 5.12.: Gap amplitude evolution at T > Tc. a Time dependence of the vector
potential of the pump pulse. b Gap amplitude dynamics for a low energy
photoexcitation (hν < 2 |∆ (T = 0)|) polarized along the Cu-Cu axis for an
initial “pseudogap” state. The noise (with amplitude δφ = π) added in the phase
of the initial state causes the initial negligible value of the gap amplitude, which
increases when the pump intensity reaches its maximum, because of the increase
of phase coherence (see Figure 5.11).

qualitative level, the enhancement of an out-of-equilibrium superconducting behav-
ior above Tc, which could therefore be associated to a light-driven boost of phase
coherence.

5.3.4 Real Space representation

In this section we want to briefly discuss the effect of the enhanced superconducting
coherence in real space.
Real and reciprocal space are conected through Fourier Transform, so let us consider
the inverse Fourier Transform of the pair operator expectation value Λ (k)

Λ
(
r, r′

)
=
〈
c↑ (r) c↓

(
r′
)〉

= 1
N

∑
kk′

c↑ (k) c↓
(
k′
)
ei(kr·k′r′). (5.8)

In a BCS system the electrons in a Cooper pair are connected by the value of
k (Ψ̂ (k) = c↑ (k) c↓ (−k)), so the second sum of equation 5.8 disappears since
k′ = −k, and one gets

Λ
(
r, r′

)
= 1
N

∑
k
c↑ (k) c↓

(
−k′

)
ei(k·(r−r′)) = Λ

(
r − r′

)
. (5.9)

The quantity Λ (r − r′) allows to get the coherence length of Cooper pairs in the
system: typical results are plotted in Figure 5.13 a and b. The axes represent
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x − x′ and y − y′ (where r = (x, y)) and the interesting information is related to
the spot eventually present around (0,0). The width of the central area (in which
Λ (r − r′) 6= 0) gives us an idea of the coherence length in real space. In the BCS
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Fig. 5.13.: Coherence length. Λ (r − r′) at equilibrium a and during the excitation b.
Horizontal c and diagonal d cuts of Λ (r − r′) maps for several time delays
between pump and probe.

effective model the pair operator evolves as a result of the Hamiltonian 5.2: the
inverse Fourier transform at different time delays allows us to study the dynamics of
the coherence length. We apply this calculation to the initial “noisy” state described
in section 5.3.3, with phase fluctuation δφ = π. In particular, in Figure 5.13 a and b
the modulus of the inverse Fourier Transform of Λ (k) for the equilibrium situation
and at t = 350fs (delay at which the pump intensity reaches its maximum value)
are plotted. Whereas at t = 0 (equilibrium case) the map is almost zero for any
value of r − r′, during the excitation a positive area appears in the center of the
map, indicating an increase of the coherence length due to the low photon energy
excitation. To highlight the time evolution of the coherence length, in Figure5.13
c and d Λ (r− r′) is plotted for r = (x, 0) and r =

(
x√
2 ,

x√
2

)
. The result confirms

the increase of the coherence length due to the low photon energy Cu-Cu polarized
pump.
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5.4 Symmetry of the electronic excitation

In the measurements presented in this chapter no polarization selection has been
performed after the interaction with the sample. The geometry of the sample allows
to activate three Raman modes: Ag, B1g and B2g (see chapter 4. The Ag signal is the
most intense, and in reflectivity measurements integrated in polarization all other
contributions are negligible.
B1g and B2g modes can be selected by acquiring the signal with orthogonal polariza-
tion with respect to the probe one. This requirement and the relatively high intensity
of the Ag signal make these measurements experimentally complicated, especially
for temperature scans.

In order to acquire temperature and time resolved maps for these Raman modes, we
performed birefringence measurements in suitable configurations.

5.4.1 Birefringence measurements

The aim of a birefringence measurement is to quantify the variation of a beam
polarization due to the interaction with a sample. This kind of measurement is
performed acquiring two orthogonal components of the probe pulses reflected or
transmitted by the sample. In time resolved spectroscopy we are interested in the
time dependent variation of polarization after the excitation of the sample. In order
to study this parameter we performed a “standard” pump probe experiment, in which
the output beam is split by a Wollaston prism. The final signal is the subtraction of
the two projections of the probe beam, performed by a differential detector. The
set-up is shown in Figure 5.14. In our configuration the prism was always oriented
such that the measured signals have the same intensity (and so the subtraction is
negligible in average) before the excitation.

Fig. 5.14.: Birefringence acquisition set-up: the probe pulse is reflected by the sample
and sent to a Wollaston prism, which separates the vertical and horizontal
polarization component of the reflected signal.
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Angle dependence of the transient reflectivity

In order to study the polarization dependence of a “standard” pump-probe signal
after the interaction with the sample, the transient reflectivity can be described as a
Raman-like process [97]. At the first order the transient reflectivity can be expressed
as ∆R (θ) = ∂R

∂ε ·∆ε, where ∆ε = ∂ε
∂f(q) ·∆f (q), <q = ∂ε

∂f(q) is a Raman-like tensor
and ∆f (q) is the pump-induced change of the occupation around the Fermi surface.
For our sample (D4h symmetry) and our experimental configuration (the pump
direction is orthogonal to the Cu-O plane of Bi2212) the photoinduced changes of
the dielectric tensor can be decomposed as

∆ε =
[
a 0
0 a

]
+
[
c 0
0 −c

]
+
[
0 d

d 0

]
, (5.10)

where a = ∆εA1g , c = ∆εB1g , d = ∆εB2g .
Applying on both sides of the matrix an electric field like ~E = E0

( cos θ
sin θ

)
one ends up

with the relation

∆R (θ) ∝
(
∆RA1g + ∆RB1g cos 2θ + ∆RB2g sin 2θ

)
, (5.11)

where θ represents the probe polarization rotation with respect to the the Cu-Cu axis
of the crystal. Notice that, in general, ∆Ri is time-dependent.
In order to consider the polarization rotation induced by the sample at a certain
pump-probe time delay, we introduce another angle α, which represents the po-
larization of the output beam (in an experimental set-up we can consider θ as the
angle of the polarizer before the sample and α the angle of the polarizer, or analyzer,
after the sample). In this case the matrix element is calculated on two different
states (or electric fields), ~E0 =∝

( cos θ
sin θ

)
and ~E1 ∝

( cosα
sinα

)
and the resulting transient

reflectivity is

∆R (θ, α) ∝
(
∆RA1g cos (α− θ) + ∆RB1g cos (α+ θ) + ∆RB2g sin (α+ θ)

)
.

(5.12)
From equation 5.12 one can derive the most suitable configurations to select the
desired Raman mode (A1g, B1g or B2g). In particular if θ = α it is not possible to
isolate a single symmetry. In particular for some significant angles we get:

θ = α ∆R
0◦ ∆RA1g + ∆RB1g

45◦ ∆RA1g + ∆RB2g

90◦ ∆RA1g −∆RB1g
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On the other hand, crossed polarizations allow to select B1g or B2g modes, as shown
in the following table

θ α ∆R
0◦ 90◦ ∆RB2g

90◦ 0◦ ∆RB2g

45◦ −45◦ ∆RB1g

−45◦ 45◦ ∆RB1g

while the total symmetric A1g mode can never be selected, although its relative
high intensity makes all other contributions negligible in a parallel polarization
measurements (θ = α).

Birefringent measurement can be treated with the same formalism, just by consider-
ing two orthogonal α angles and subtracting the two signals. In particular for θ = 0◦

and α1,2 = ±45◦ one gets

∆R1,2 (θ) ∝
( 1√

2
∆RA1g + 1√

2
∆RB1g ±

1√
2

∆RB2g

)
, (5.13)

so ∆R1 −∆R2 ∝ ∆RB2g .
Performing the same calculation for θ = 45◦ and α = 0◦ and 90◦, one gets ∆R1 −
∆R2 ∝ ∆RB1g .
The previous calculations shows that birefringent measurements (choosing suitable

Fig. 5.15.: Measurement correspondence. Correspondence between “standard” pump-
probe measurements (on the left) and birefringence measurements (on the
right).

angles) can be an alternative way to acquire B1g and B2g signals. This trick is
particularly convenient since the cross polarization measurements needed to select
B1g and B2g signals can be disturbed by A1g contributions, often present because
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Fig. 5.16.: Measurement comparison. Comparison between a pump probe measurement
performed in B2g configuration (orange line) and a birefringence measurement
(black line, obtained by subtracting the polarization components along the Cu-Cu
axes), both in superconducting phase (a and c) and in pseudogap (b and d).
The measurements have been performed in two different pump fluence regimes
(about 0.2 mJ/cm2 in a and b and 1.3 mJ/cm2 in c and d). The signals have been
rescaled in order to verify the proportionality between the two measurements.

of the high intensity of this symmetry signal with respect to the others (about 20
times more in the superconducting phase). As a matter of fact in a birefringence
measurement the A1g component is split in two contributions, which are equal if
the polarization angles selected by the Wollaston prism (α1,2) are symmetric with
respect to the probe polarization (θ). The final subtraction cancels completely the
total symmetric contribution.
The summary of the correspondence between cross-polarization and birefringence
measurements is summarized in Figure 5.15.

5.4.2 Results

B2g symmetry

In order to verify if the linear approximation we have considered in the previous
section is consistent with our experimental results, we compare a “standard” B2g

measurement [74] (that is, a pump-probe measurement in which the probe polariza-
tion is along the Cu-O axis and the analyzer selects the orthogonal component) with
a birefringence one, in which the signal polarization components along the Cu-Cu
axis are subtracted. The results are shown in Figure 5.16: both in superconducting
phase (Figure 5.16 a and c) and in pseudogap (figure 5.16 b and d) the signals
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obtained by the two measurements are proportional, confirming the results derived
from equation 5.13. Notice that the results are confirmed both for low and high
pump fluence.

Using the birefringence set-up we were able to collect pump-probe signals at different
temperatures, in order to focus on the phase transition between superconducting
and pseudogap phases in this symmetries. We measured the effects of different
pump fluences and wavelength, while the pump polarization was fixed in the Cu-Cu
direction.
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Fig. 5.17.: B2g temperature measurement - low pump fluence. Comparison between

temperature pump probe birefringence measurements, subtracting the polariza-
tion contributons along the Cu-Cu axes. a and b represent the temperature time
resolved maps for two different photon energies (170 and 70 meV respectively).
In c the transient reflectivity for different temperatures is plotted; marked lines
represent the characteristic superconducting signal (red), the pseudogap one
(blue), and the reflectivity measured at Tc = 97K (green). The pump flu-
ence is within the linear regime (about 0.2 mJ/cm2). In d two temperature
dependencies at a fixed time delay are compared.

Figure 5.17 a and b shows the results of the temperature measurements for low
pump fluence (0.09mJ/cm2) at 170 meV (hν > 2∆) and 70 meV (hν < 2∆) pump
photon energies. The details of the dynamics for each temperatures are shown
in Figure 5.17 c for the high photon energy case. The results show a behavior
similar to the one observed in the integrated polarization measurements: after a
photon excitation of 70 meV, the sample dynamics is characterized by a higher signal
(associated to a superconducting de-excitation, as shown by the red line in Figure
5.17 c), while the typical dip of the pseudogap transient reflectivity becomes visible
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Fig. 5.18.: B2g temperature measurement - high pump fluence. Maps a and b show
the temperature time-resolved maps for the usual photon energies (hν > 2∆
and hν < 2∆ respectively). In c several horizontal cuts of map a are plotted;
marked lines represent the characteristic superconducting signal (red), the
pseudogap one (blue), and the reflectivity measured at Tc = 97K (green). The
pump fluence is within the non-linear regime (about 1.3 mJ/cm2). In d two
temperature dependencies at a fixed time delay (white line in maps a and b)
are compared. Because of the slowdown of the dynamics in the low energy case
(due to the higher pump duration), in order to compare the two reflectivities,
we chose the time delay in which the maximum signal at 80 K is reached.

only at higher temperatures. This behavior is highlighted by Figure 5.17 d, where
the temperature response at a fixed time delay between pump and probe is shown
(the plotted one refers to the minimum of the pseudogap signal). We observe an
increase of the low photon energy signal around and above the critical temperature
Tc, marked by the yellow area.
Similar results have been obtained through high fluence measurements (Figure
5.18).
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B1g symmetry

Analogous measurements have been performed by rotating the probe and analyzer
polarization of 45◦, in order to select the B1g symmetry through the usual birefrin-
gence measurements. In this case the results seems to be even more affected by the
photon energy, since the transient reflectivity after a high and low photon energy
excitation shows quite a different behavior at each temperature, both in low and high
fluence regimes. In particular low photon energy de-excitations are characterized by
bigger time decays with respect to high photon energies one.
This effect is clearly visible in Figure 5.19 and 5.20 c and d, where the transient re-
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Fig. 5.19.: B1g temperature measurement - low pump fluence. Maps a and b show the

temperature time-resolved maps for hν > 2∆ and hν < 2∆ respectively. In c
and d several horizontal cuts of map a and b are plotted; marked lines represent
the characteristic superconducting signal (red), the pseudogap one (blue), and
the reflectivity measured at Tc = 97K (green). The pump fluence is within the
linear regime (about 0.2 mJ/cm2).

flectivity at several temperatures is plotted. In particular the pseudogap and T = Tc

responses show an evident divergence of the time decay for low photon energy
excitation, which is not visible for high photon energy excitations. This discrepancy
seems not to be due just to different pump duration (always relevant when the pump
wavelength is modified), since we observe qualitatively different responses for the
two excitation photon energies. The effect is even more evident at short time delays,
were 170 meV excitation generate a positive instantaneous pseudogap response,
while hν < 2∆ seems to be responsible of a negative pseudogap transient reflectivity
around t=0.
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Fig. 5.20.: B1g temperature measurement - high pump fluence. Maps a and b show
the temperature time-resolved maps for hν > 2∆ and hν < 2∆ respectively. In c
and d several horizontal cuts of map a and b are plotted; marked lines represent
the characteristic superconducting signal (red), the pseudogap one (blue), and
the reflectivity measured at Tc = 97K (green). The pump fluence is within the
non-linear regime (about 1.3 mJ/cm2).

5.5 Conclusion

The scenario that emerges from our pump-probe experiments (for both polariza-
tion integrated measurement and selected Raman modes) reveals the capability
to enhance the transient response associated with superconducting fluctuations in
cuprates by means of photo-excitations with low-energy photons polarized in the
Cu-Cu direction. The effective d-wave BCS description of the interaction of the
superconductor and pulsed electromagnetic radiation is in qualitative agreement
with the experimental results. Moreover it allows us to ascribe the observed dy-
namical increase of the superconductive response to a light-driven enhancement of
phase coherence below and above Tc, where thermodynamic constraints make the
superconducting equilibrium state unattainable. The revealed field-driven increase
of phase coherence highlights the possibility of driving the onsets of quantum coher-
ence in complex oxides.
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Part II

Fluctuation Dynamics in Pump-Probe
Measurements





The word “noise” in experimental physics (but even in everyday life) has always
conveyed a negative connotation and been associated to a useless phenomenon which
overcomes the interesting information, or, at least, compromises its comprehension.
In this work we would like to overturn completely the point of view: if we cannot
avoid the presence of noise (at least of some kinds of noise), why don’t we exploit it
in order to get more information on the system under study?
The following chapters describe this new approach to time resolved measurements
and the kind of information that can be extracted from it.

“Standard” time resolved techniques detect the transient reflectivity or transmittance
of a sample after a certain excitation. In other words, the pump-probe technique
measures the variation of the mean number of photons transmitted or reflected by
the sample after the excitation (see chapter 3). The mean is a powerful tool, which
allows to study the average behavior of a certain quantity. On the other hand, the
mean (or expected) value is not enough to completely define a statistics: even the
common and simple gaussian distribution requires another parameter: the variance
(or its square root, named standard deviation). More complicated distributions are
characterized by higher order moments (the variance is the second order one and
represents the width of the distribution, so it is related to the concept of noise).
The purpose of the second part of my PhD project is to go beyond the mean value
pump-probe measurements and to study the variation of the distribution (and in
particular the noise on the photon number) of the probe signal, produced by the
interaction with the excited sample.

In standard experiments the probe intensity is measured by integrating the signal
in the time domain (typically on hundreds of milliseconds) using, for instance, a
lock-in amplifier. The system provides very clean measurements, in which the noise
is considerably reduced by the average on hundreds of pulses. The limit of this
detection system is that the reduction of the noise affects not only the environmental
one but also the intrinsic fluctuations of the detected signal, which could be induced
by intrinsic properties of the sample, such as quantum fluctuations. The capability to
detect these quantum effects, although indirectly, is quite sought, since it is clear now
that their consequences could affect condensed matter even at “high temperatures”
[21]: for example, fluctuations of the atomic positions are the origin of material
properties such as quantum paraelectricity [27], high temperature superconductivity
and quantum phase transitions in general [82, 81].

Therefore, the perspective and the aims of a time resolved measurement can change
completely by implementing a single pulse acquisition, in which the number of
photons of each probe pulse, after the interaction with the sample, can be observed.
This detection technique provides the whole statistical distribution of the probe
photon number as a function of time. The aim is to understand if, and eventually
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how, the photon distribution (and in particular photon number fluctuation) dynamics
can carry additional information on the sample with respect to the mean photon
number.

Measurements

The measurements presented in the next chapters combine time resolved spec-
troscopy with photon number distribution, resulting in the detection of the photon
number statistics for each time delay between the excitation and the probe pulse.
A sketch of the measurement concept is shown in Figure II1: in a a mean photon
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Fig. II1.: Concept of a distribution measurement. a Example of time resolved mean
photon number measurement. b Measurement of pulse intensities for a fixed time
delay between the excitation and the probe pulse (grey point in a). The mean
value of the pulse intensities 〈n̂〉 is marked by a blue dashed line, while the noise
σ is indicated by the red arrow.

number measurement is shown in which a certain time delay is selected (grey point);
Figure II1b shows the single pulse measurement for the chosen time delay. Both
the mean value 〈n̂〉 (blue dashed line) and the noise amplitude σ (red arrow) are
highlighted.
These quantities can be trivially calculated for each time delay through the relations
〈n̂〉 ∝ 1

N

∑
i Ii and σ ∝

√
1

N−1
∑
i(Ii − Ī)2 (where Ii is the intensity of the ith pulse

and N is the number of pulses) and then, if needed, averaged on tens of scans, in
order to improve the quality of the measurement.

The general result of this time dependent photon distribution is shown in Figure II2
a, where the x-axis represents the time delay between the pump and the probe, the
y-axis is the photon intensity (which is proportional to the photon number) and the
colors refers to the number of pulses with a certain intensity. Therefore, each vertical
line in the measurement is the histogram of the photon number distribution at a
fixed time delay. The response of the typical pump-probe measurement is plotted in
Figure II2b and can be obtained just by calculating the intensity mean value 〈n̂〉 for
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the N measured pulses of every time delay. Notice that a similar result could have
been obtained through a lock-in amplification system.
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Fig. II2.: Typical result of a distribution measurement. a Histograms of the photon
number distribution as a function of the time delay between pump and probe:
the x-axis represent the time delay, the y-axis the intensity associated to the
photon distribution, while the color scale represents the number of pulses of a
certain intensity. b Transient reflectivity (intensity) in a pump probe experiment.
c Histograms rescaled by the mean intensity value as a function of time. d Time
dependent variance (related to the broadening of the histograms plotted in c).

The variation of the photon distribution can be highlighted by subtracting the
mean value 〈n̂〉 to the original intensity data, as displayed in Figure II2c. This
representation allows to draw the attention to the evolution of higher statistical
moments. In particular, from now on, we will focus only on the second moment,
or variance σ2 = 1

N−1
∑
i

(
Ii − Ī

)2
, which is related to the width of the distribution

and so to the amplitude of the noise.
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6Noise in time domain
measurements: a quantum model

In this chapter the theoretical bases for the interpretation of a statistical differential
measurement are given.
The experimental set-up used to get the fluctuation results is described by a the-
oretical quantum model. The main point of the model is the treatment of each
dissipative process of the experiment as a Beam Splitter, a device which transmits a
certain percentage of the incoming beam (signal) and reflects the remaining part
(dissipation1). We will start from the effect of a single Beam Splitter on the input
beam (with particular attention to the so-called Shot-Noise measurement) and we
will increase progressively the complexity by adding more and more dissipators,
such as filters, polarizers and the sample itself.

6.1 Model concept

In this section we present a quantum model to describe the dissipation processes of
the optical experimental set-up of Figure 3.8. The model is based on the assumption
that any dissipative process (absorption of the sample, transmission through a filter
etc.) can be described as a Beam Splitter which splits the beam in two, with a defined
intensity percentage: for instance, the transmitted beam can serve as the selected
beam and the reflected beam is dissipated. For example, to describe a polarizer, the
beam transmitted from the beam splitter represents the selected polarization, while
the reflected one is the orthogonal polarized one.

In order to understand the effects of the dissipation processes of each component of
the experiment, we will start from very simple modeled set-ups and then increase
the complexity by adding optical elements (and correspondingly Beam Splitters in
the model).

In particular, the following measurements and set-ups will be described:

1In the following we will call dissipation the beam which is not selected in the experiment. It can
refer to the reflected beam is we use a certain optical element in transmission (or vice versa), the
absorbed or scattered radiation and so on
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Fig. 6.1.: Description of dissipative effects. Example of simple experimental set-ups
which describes a dissipation process: transmission of a light beam through a
filter, a polarizer, a sample and detection of the final beam. All these optical
elements can be described as a Beam Splitter, which transmit a certain percentage
of the original beam. The remaining part represent the dissipated radiation and is
not detected.

1. differential acquisition with no dissipation on the beams and its role in the
reduction of the environmental noise;

2. single Beam Splitter: mean and variance of the split beams;

3. Shot-Noise measurements: differential detection of the photons coming from a
single Beam Splitter;

4. intensity attenuation (filtering) after beam splitting and its effects on the final
noise.
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6.2 Differential Acquisition

In the first section we consider a very simple set-up: a differential single pulse
acquisition with no dissipation, like the one sketched in Figure 6.2.
In first approximation we can describe the acquisition system as made up of two

Fig. 6.2.: Differential acquisition set-up Sketch of the differential acquisition set-up for
two non-correlated pulses with photon number n̂1 and n̂2 and variance σ2

1 and
σ2

2 .

photodiodes, which measure the light intensity of any incoming pulse, and the
electronic part, which performs the difference between the intensities of pulses 1
and 2 and then amplifies the differential signal. No constraint on the input pulses is
taken into account now, exception made for the absence of correlation between the
light states 1 and 2, which will be identified through their number operators n̂1 and
n̂2 and to the variance of the photon number σ2

1 and σ2
2 respectively.

The mean differential intensity measured in this experiment is proportional to the
differential photon number

〈n̂1 − n̂2〉 = 〈n̂2〉 − 〈n̂1〉, (6.1)

whereas the variance of the photon number is

σ2
1−2 = (〈n̂1 − n̂2〉)2 − 〈(n̂1 − n̂2)2〉 = σ2

1 + σ2
2. (6.2)

Equation 6.2 shows that, if the input states are not correlated, the noise of the
differential number of photons is the sum of the noise of the single pulses.
Notice that in our set-up the two pulses are always correlated, since they come
from the same laser source (see Figure 3.8). Anyway this hypothesis highlights
that if some non correlated constant noise impinges on one diode, the effect on the
detection is just a rigid shift of both mean and variance, which in principle should
not affect the dynamics of a time domain response.

Of course in this configuration the differential acquisition has no practical advantage
with the respect to the measurement of the single signals separately (on the contrary
it increases the noise of the measurement - Equation 6.2). A real improvement is
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Fig. 6.3.: Variance for a photon poissonian distribution. a Variance vs mean photon
number graph for a Poissonian distribution. b Simulated variance of the differen-
tial signal as a function of the intensity signal itself for a Poissonian distribution
of the number of photons. Pulses 1 and 2 are supposed not to be correlated. In
the plot just the pulse 2 has been tuned.

obtained when a systematic environmental signal n̂3 is detected by both the diodes:
in this case the n̂3 contribution is cancelled both in the mean value and in the
variance, because of the differential acquisition.

Notice that in the particular case of a Poissonian distribution of the photon number
(in which σ2 = 〈n̂〉) for both pulses, the variance of the differential photon number
is linear with respect to the differential intensity, as shown in Figure 6.3.

6.3 Beam Splitter

In this section we describe the Beam Splitter (BS), a dielectric medium able to split
a beam into two with a certain proportion. This optical element is the core of the
model, since the treatment [60] not only describes a real BS, but also whatever
dissipator or adsorber.
A representation of a lossless BS is shown in Figure 6.4, in which two beams, that

we will indicate with their annihilation operators â1 and â2, are impinging on it
and two other beams (â3 and â4) are emerging from it. We can write the relation
between output and input states as

â3 = Râ1 + T â2 (6.3)

and
â4 = T â1 +Râ2, (6.4)

where R and T represent the Fresnel reflection and transmission coefficients of the
BS.
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Fig. 6.4.: Representation of a lossless Beam Splitter. The incoming beams n̂1 and n̂2 are
combined through the Beam Splitter in the output beams n̂3 and n̂4. In a quantum
treatment n̂2must always be present, although no laser beam enters the BS on
that side: in this case n̂2 is described by the vacuum state |0〉.

The output photon number operators are related to the input annihilation and
creation operators by the relations

n̂3 = â†3â3

= |R|2 â†1â1 +R∗T â†1â2 + T ∗Râ†2â1 + |T |2 â†2â2
(6.5)

n̂4 = â†4â4

= |T |2 â†1â1 + T ∗Râ†1â2 +R∗T â†2â1 + |R|2 â†2â2.
(6.6)

Since we are considering a lossless BS, we expect that the total number of photon is
conserved, that is n̂3 + n̂4 = n̂1 + n̂2; from the previous relation and equations 6.5
and 6.6 one can obtain the fundamental BS equations

|T |2 + |R|2 = 1 (6.7)

RT ∗ + TR∗ = 0, (6.8)

which allow to demonstrate that, if the input states are independent and fulfill the
boson commutation relations

[
â1, â

†
1

]
=
[
â2, â

†
2

]
= 1 and

[
â1, â

†
2

]
=
[
â2, â

†
1

]
= 0,

also the output state are described by the same commutation relations. Moreover,
just separating modulus and phase in equation 6.8, one get the phase relation
between R = |R| eφR and T = |T | eφT , which is φR − φT = ±π

2 .

From equations 6.3-6.6, we can compute the mean number of photons and the
related variance for each output beam. The expressions for the mean photon number
are:

〈n̂3〉 = |R|2 〈n̂1〉+ |T |2 〈n̂2〉 (6.9)

〈n̂4〉 = |T |2 〈n̂1〉+ |R|2 〈n̂2〉. (6.10)
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The same calculation can be done for the related variances. From now on we will
only consider the particular case in which the state n̂2 is a vacuum state (that means
that just one laser beam n̂1 impinges on the BS), so we report the expression of the
variances in this simplified case:

σ2
3 = |R|4 σ2

1 + |T |2 |R|2 〈n̂1〉 (6.11)

σ2
4 = |T |4 σ2

1 + |T |2 |R|2 〈n̂1〉. (6.12)

Both expressions of the variance contains two terms: the first one is due to the input
noise σ2

1 (Classical noise), while the second is caused by the random division of the
input photon stream in the two outputs with probabilities |R|2 and |T |2 (Partition
noise).

Fig. 6.5.: Classical vs Partition noise. Pictorial representation of the two noise components
of equations 6.11 and 6.12. The classical noise is related to the intensity of the
transmitted or reflected beam, whereas the 6.5 one is due to the particle nature of
light: although the mean value of n̂3 and n̂4 are equal, single measurements are
characterized by fluctuations of the number of transmitted or reflected photons.

Single beam

The next step is the study of the measurements of just one of the outputs of the
Beam Splitter, detecting both its mean photon number and the related variance,
as shown in Figure 6.6. In this case the Beam Splitter can have whatever value of
|T |2 (provided that it is less than one), thus representing a general attenuator or
absorber, like a filter, a combination of half-wave plate and polarizer or a sample.
The reflected number of photons, which depends on the parameter |R|2 = 1− |T |2,
serves as the dissipated portion of the initial beam and therefore is not detected by
the photodiode.
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Fig. 6.6.: One beam Splitter output. Set-up for the differential measurement of one output
of the Beam Splitter. Beam 1 is the “real” laser input, whereas Beam 2 represents
a vacuum state.

From the results 6.1, 6.2, one easily gets that the measured mean value is

〈n̂4〉 = |T |2 〈n̂1〉, (6.13)

while the variance is
σ2

4 = |T |4 σ2
1 + |T |2 |R|2 〈n̂1〉. (6.14)

As an example notice that a Poissonian distribution of the input photon number
(〈n̂1〉 = σ2

1 in Figure 6.6) generates still a linear dependence of the variance on the
measured mean photon number (σ2

4 = 〈n̂4〉, which means σ2
4 ∝ |T |

2, if the input
mean photon number 〈n̂1〉 remains constant).

On the other hand, if we move to a more general case, in which n̂1 6= σ2
1, the

expression for the variance becomes

σ2
4 = σ2

1 − 〈n̂1〉
〈n̂1〉

X2 +X, (6.15)

where X = 〈n̂4〉 is the detected mean value.
So, the dependence of the variance on the measured average is quadratic (a pois-
sonian distribution is a limit case) and the concavity is determined by the ratio
between the variance and the mean number of photons of the original state |1〉. The
most common case is the superpoissonian distribution, for which σ2

1 > 〈n̂1〉 and
the coefficient σ2

1−〈n̂1〉
〈n̂1〉 > 0, such that σ2

4(X) is a parabola with positive concavity
(for subpoissonian distributions the concavity is opposite). In particular the point
of minimum variance is at X0 = − 〈n̂1〉

2(σ2
1−〈n̂1〉) , which tends to zero if the variance is

much higher than the mean number or vice versa.
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Fig. 6.7.: Mean and variance measurements as a function of the beam attenuation.
In our experimental set-up the changes in |T |2 are due to the combination of
half-wave plate and polarizer, so variations of the intensity are related to the
rotation of the half-wave plate with respect to the polarizer axis. In a and b the
blue and red lines represent the detected intensity and variance respectively as a
function of the angle of the half-wave plate. In c the detected variance is plotted
as a function of the measured intensity (green points). The black line is the result
of the fit with the function 6.15. d shows the set-up used for the measurement
and its BS model representation.

In Figure 6.7 the results of the described measurements are shown, together with
the fit obtained from equation 6.15. The mean value can be modified by changing
the initial number of photons or the BS transmittance. We chose the second option,
since it allows to keep the same input conditions (〈n̂1〉 and σ2

1) and to study the
variance behavior as a function of one parameter.
In order to tune the transmission |T |2 of the effective BS, we used a combination of
a half wave plate λ/2 (which rotates the polarization of the beam) and a polarizer
(which instead selects a defined polarization). In Figure 6.7 a and b the x-axis
represents the angle of rotation of the half wave plate, while the y-axis is the mean
(blue line) and the variance (red line) of the number of photons and the fits (black
lines) with the Malus Law2 for polarizers and Equation 6.14 respectively. Figure
6.7 c displays the relation between variance and mean, which shows the expected

2The Malus Law states that if a light beam of intensity I0 impinges on a perfect polarizer, the intesity
of the transmitted beam is I = I0 · cos2 θ, where θ is the angle between the polarization direction
of the incoming beam and the polarization selected by the polarizer itself.
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parabolic behavior. The fit (black line) has been obtained through the function 6.15.
From now on we will refere to the variance dependence on the measured mean value
(σ2 (n̂1)) as characterization function, since it allows to characterize the systematic
noise related to a certain signal intensity.

6.4 Shot noise

The concept of Shot noise is related to the intrinsic fluctuations of the photon
number, due to the particle nature of light and is strictly related to the Partition noise
introduced in section 6.3 and to Figure 6.5. It is the minimum noise level that you
can measure, since it comes from intrinsic fluctuations of the number of photons.

The experimental set-up used to measure the shot noise level combines the differen-
tial acquisition and the BS treatments we have introduced in the previous sections.
A sketch of the set-up is shown in Figure 6.8, where n̂1 is the beam coming from the
laser and n̂2 is a vacuum state. Starting form equations 6.5 and 6.6 we can compute

Fig. 6.8.: Sketch of the Shot Noise set-up. A laser beam n̂1 is split in two beams n̂3 and
n̂4 and then the noise on the intensity difference n̂3 − n̂4 is acquired. Notice that
in a quantum mechanical description the second input beam n̂2 must be present
and described as a vacuum state.

the measured mean value, that is

〈n̂3−4〉 = 〈n̂3 − n̂4〉 =
(
|R|2 − |T |2

)
〈n1〉 , (6.16)

where |R|2 and |T |2 are the reflectance and transmittance of the beam splitter. For a
perfect 50:50 beam splitter |R| = |T | = 1√

2 , so we get

〈n̂3 − n̂4〉 = 0, (6.17)
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as expected even at the classical level.

The measured variance is

σ2
3−4 =

〈
(n̂3 − n̂4)2

〉
− (〈n̂3 − n̂4〉)2 =

(
|R|2 − |T |2

)2
σ2

1 + 4 |R|2 |T |2 〈n1〉 . (6.18)

For a perfect 50:50 beam splitter we have |R| = |T | = 1√
2 and a phase difference

φR − φT = π
2 [60], so we get the Shot Noise relation

σ2
3−4 = 〈n1〉 . (6.19)

The Shot Noise test has been performed on our set-up in order to characterize the
acquisition system. The measurement has been executed by acquiring the variance
of the differential signal as a funcion of the intensity of the original beam n̂1. The
result is plotted in Figure 6.9. The linear dependence of the variance as a function of
the incoming mean number of photons 〈n̂1〉 is directly due to the shot noise, while
the positive background represents the electronic noise, which is just related to the
detection process and is independent of 〈n̂1〉. In this configuration the shot noise is
the minimum reachable noise level for a certain intensity of the input beam n̂1.
As a matter of fact, if we rewrite equation 6.18 as a function of the mean value
X = 〈n̂3−4〉 =

(
|R|2 − |T |2

)
〈n̂1〉 =

(
1− 2 |T |2

)
〈n̂1〉, one gets

σ2
3−4 = σ2

1 − 〈n̂1〉
〈n̂1〉2

X2 + 〈n̂1〉 , (6.20)

which is a parabola centered in X = 0 (that means perfect balancing between the
two branches, and so |R|2 = |T |2 = 1

2).
For superpoissonian statistics (σ2

1 > 〈n̂1〉) the minimum noise is reached at σ2
3−4(X =

0) = 〈n̂1〉, which is the shot noise level3, therefore any deviation from the perfect
50:50 splitting (X 6= 0) induces an increase of the measured variance. Notice that
for a poissonian statistics (σ2

1 = 〈n̂1〉) the shot noise limit is always guaranteed, since
σ2

3−4 does not depend on the unbalancing X.

The shot noise test for our detector is plotted in Figure 6.9

3X = 0 means 〈n̂3〉 = 〈n̂4〉 or |T |2 = |R|2 = 1
2
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Fig. 6.9.: Shot noise test for our detection system. The blue dots represent the mea-
surements of the variance as a function of the beam intensity, while the line is a
linear fit. The positive background is due to the electronic noise and is detectable
through a variance measurement with no light on the diodes. The axis (peak)
represents the maximum value (in meV) provided by the shaper of the detection
system using just one photodiode to measure the initial beam. The value is
proportional to the light intensity.

6.5 Beam attenuation

We can increase the complexity of the model by adding two BSs, one on each branch,
in order to consider the possible attenuation of the beams. The attenuation can be
produced by filters, polarizers, couples λ/2-polarizer, mirrors etc...

Performing the same calculations of the previous sections, but starting from the
initial states n̂3 (reference beam) and n̂4 (signal beam), one finds out that the
measured mean value is

〈n̂5−6〉 = 〈n̂5 − n̂6〉 = |T1|2 |R|2 〈n̂1〉 − |T2|2 |T |2 〈n̂1〉 , (6.21)

where |T |2 and |R|2 refers to the first Beam Splitter, whereas |T1|2 and |T2|2 represent
the transmittance of the Beam Splitters on the branches 3 (reference beam) and 4
(probe beam) respectively. For a perfect 50:50 beam splitter, we obtain

〈n̂5 − n̂6〉 = 1
2 |T1|2 〈n̂1〉 −

1
2 |T2|2 〈n̂1〉 . (6.22)
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Equation 6.22 is the expression of the unbalancing between the two branches. The
measured variance is

σ2
5−6 =

〈
(n̂5 − n̂6)2

〉
− (〈n̂5 − n̂6〉)2

=
(
|T1|2 |R|2 − |T2|2 |T |2

)2
σ2

1+

+
(
|T1|4 |R|2 |T |2 + |T1|4 |R1|2 |R|2 + |T2|4 |T |2 |R|2

+ |T2|4 |R2|2 |T |2 + 2 |T2|2 |T1|2 |R|2 |T |2
)
〈n̂1〉

(6.23)

which reduces to

σ2
5−6 = 1

4
(
|T1|2 − |T2|2

)2
σ2

1

+
(
|T1|4

4 + |T1|4 |R1|2

2 + |T2|4

4 + |T2|4 |R2|2

2 + |T2|2 |T1|2

2

)
〈n̂1〉 .

(6.24)

for a perfect 50:50 initial BS.

From Equations 6.23 and 6.24 the reader understands that the variance depends
on the mean value 6.22, even in absence of a sample: the knowledge of this
dependence is fundamental to distinguish the interesting contribution of the sample
from the systematic effects of the set-up. To characterize the response of the system
we measured the dependence of the variance on the unbalancing of the beams
intensities (n̂5−6), obtained by tuning the intensity of the n̂6 beam (that is, the
transmittance |T2|2 in the model).
The plot of the variance σ2

5−6 as a function of the measured mean value signal
〈n̂5−6〉 is plotted in Figure 6.11. The graph shows a quasi-quadratic dependence
in which the minimum value of the noise does not occur at the perfect balancing
(|T1|2 = |T2|2). The position of the minimum variance point xMIN as a function of
the initial variance and of the filter on the reference branch is studied in Figure 6.12.
Notice that the value of xMIN decreases as the input variance increases, although it
remains always positive. This means that in this configuration the minimum noise
limit can be reached only for |T1|2 > |T2|2, that is if the reference beam (n̂5) is less
attenuated than the signal one (n̂4).

Contributions

In this subsection we focus on the several terms of the characterization function 6.24,
in order to understand their contribution to the characteristic response of Figure
6.11. The following observations refer to the simplified case of a 50:50 first beam
splitter; more general results will be briefly discussed in the next sections.
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Fig. 6.10.: First approximation of the experimental set-up. The top picture shows a
model set-up in which the first Beam Splitter represents real Beam Splitter, while
BS1 and BS2 stand for dissipative optical elements of the set-up. n̂2, n̂7, n̂8
represent vacuum states. The bottom picture is an example of set-up which
could be described by the model of the top picture.

We can rewrite equation 6.24 as

σ2
5−6 =

[1
2
(
|T1|2 − |T2|2

)]2
σ2

1

+
[1

2
(
|T1|2 + |T2|2

)]2
〈n̂1〉

+ |T2|4 |R2|2

2 〈n̂1〉

+ |T1|4 |R1|2

2 〈n̂1〉 .

(6.25)

Notice that during a measurement the acquired quantity is the difference x =
〈n̂5−6〉 = 1

2

(
|T1|2 − |T2|2

)
〈n̂1〉, whose only tunable parameter in this case is |T2|2

(x ∈
[
−1

2 〈n̂1〉 , 1
2 〈n̂1〉

]
, since |T1,2|2 ≤ 1). Therefore the last term of equation 6.25 is
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Fig. 6.11.: Characterization function. Measurement of the variance as a function of the
mean value for the set-up dislplayed in Figure 6.10. The red dots represent a
measurement of the variance dependence on the mean value in a set-up like
the one sketched in figure 6.10, in which |T2|2 can be tuned. The black line is
a fit of the data starting from equation 6.24 and free parameters |T1|2, n̂1 and
σ1. The number of photons and the related variance on the x and y axis are
expressed as the voltage provided by the detector (which is proportional to the
beam intensity).

constant with respect to x. On the contrary the other terms contribute to the shape
of the detector response in the following way:

1. The first term can be rewritten as

y(1) = σ2
1

〈n1〉2
x2 (6.26)

(where we have substituted 〈n̂1〉 with 2x
|T1|2−|T2|2

), which is a convex parabola
centered in x = 0. Therefore the minimum value of this portion of variance is
reached when the two measured beams have the same intensity. The strength
of this contribution to the total shape depends on the features of the initial
beam, and in particular on the ratio σ1

〈n1〉 .

2. Since the intensity of the tunable beam |T2|2 〈n̂1〉 can be expressed as a function
of the variable x through the relation

|T2|2 〈n̂1〉 = 〈n̂1〉 |T1|2 − 2x, (6.27)
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Splitter).
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Fig. 6.13.: Characterization function: contributions. Contribution to the total variance
σ2

5−6 for an initial perfect 50:50 BS. The inset displays a zoom of the third order
term y(4).

the second term becomes

y(2) = 1
〈n̂1〉

(
x2 − 2x |T1|2 〈n̂1〉+ |T1|4 〈n̂1〉2

)
= 1
〈n̂1〉

(
x− |T1|2 〈n̂1〉

)2 (6.28)
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that is again a convex parabola, whose minimum value (zero) occurs at
x = |T1|2 〈n̂1〉, that is |T2|2 = − |T1|2, which is not experimentally reach-
able unless |T2|2 = |T1|2 = 0. Moreover the coefficient 1

〈n̂1〉 associated to the
second order term makes it almost negligible with respect to the linear one.

3. The third term contains also the reflectivity |R2|2, which makes us suppose
that if Beam Splitter 2 is used to select a certain signal (|T2|2 〈n̂1〉), a print of
the non-selected signal (|R2|2 〈n̂1〉) will be visible in the variance. This can be
particularly interesting if T2 and R2 are time dependent.
Using the relation |R1|2 = 1 − |T1|2, the last term can be separated in two
contributions:

•
y(3) = 1

2 〈n̂1〉 |T2|4

= 1
2 〈n̂1〉

(
4x2 − 4x 〈n̂1〉 |T1|2 + 〈n̂1〉2 |T1|4

)
= 1

2 〈n̂1〉

(
2x− 〈n̂1〉 |T1|2

)2
,

(6.29)

which represents again a second order polynomial.
The total contribution of the obtained terms (y(1) +y(2) +y(3)) is a convex
parabola, centered in

xMIN = 4 |T1|2 〈n̂1〉2

σ2
1 + 3 〈n̂1〉

, (6.30)

which reduces to |T1|2 〈n̂1〉 if the input photon distribution s Poissonian.
The minimum of the parabola approaches zero if σ2

1 >> 〈n̂1〉 or if |T1|2 →
0.

• The remaining term

y(4) = −1
2 〈n̂1〉 |T2|6

= 1
2 〈n̂1〉2

(
8x3 + 〈n̂1〉3 |T1|6 + 12x2 〈n̂1〉 |T1|2 − 6x 〈n̂1〉2 |T1|4

)
= 1

2 〈n̂1〉2
(
2x− 〈n̂1〉 |T1|2

)3
,

(6.31)
is a third order polynomial, which is responsible for the light asymmetry
of the variance response.

All contributions to the total variance σ2
5−6 are displayed in Figure 6.13.
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First BS dependence

Notice that a difference in the transmittance |T |2 of the first Beam Splitter could
change the response of the variance as a function of mean value. The results of the
calculations are plotted in Figure 6.14: both the minimum variance and the related
mean value xMIN change as a function of T , although the general shape remains
the same. Moreover the point of minimum variance xMIN does not change sign for
all possible values of |T |2.
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Fig. 6.14.: Variance for non-50:50 beam splitter. Simulated variance as a function of the
integrated mean value for different values of transmittance of the first beam
splitter. The input parameters of the function (〈n̂1〉 and σ2

1 ) comes from the fit
plotted in figure 6.11

.

6.6 Additional dissipation effects

The described model provides a qualitative description of the set-up, but it cannot
account for all the dissipative processes of the system. As an example consider
that each mirror used in the set-up dissipates at least the 2% of the impinging
radiation intensity. The introduction of such a number of Beam Splitters in the
model would increase considerably the complexity of the calculations, so we work
in the approximation in which a single Beam Splitter represents a sum of all the
dissipative processes in a certain optical path. For instance, BS1 in Figure 6.10
stands for the sum of the contributions of filters and mirrors of the “upper” branch.
As a consequence the parameter |T1|2, obtained by the characterization fit of Figure
6.11 underestimates the actual filter transmittance. Moreover, when performing
this characterization, it could be worth to add another Beam Splitter on the second
branch, in order to take into account all “non-tunable” dissipation effects.
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Fig. 6.15.: Additional dissipation: model set-up. Top: Model set-up for the characteri-
zation of the detected noise: BS1 and BS2 serves as the sum of all dissipation
effects on the two branches, whereas BS3 is used to tune the unbalancing be-
tween them. Bottom: Example of experimental set-up, which can be described
by the model shown in the top picture.

The new set-up is plotted in Figure 6.15: to sum up, the first Beam Splitter (BS)
represents a real Beam Splitter, that splits the input light beam in two, BS1 and
BS2 serve as the sum of dissipative or absorbing processes (mirrors, filters etc.)
with fixed transmittance, whereas BS3 has the tunable transmittance that allows to
characterize the variance response as a function of the unbalancing between the two
beams impinging on the detector photodiodes.

The results of the calculations are

〈n̂5 − n̂10〉 =
(
|T1|2 |R|2 − |T3|2 |T2|2 |T |2

)
〈n̂1〉 , (6.32)

σ2
5−10 =

〈
(n̂5 − n̂10)2

〉
− (〈n̂5 − n̂10〉)2

=
(
|T1|2 |R|2 − |T3|2 |T2|2 |T |2

)2
σ2
n1+

+
(
|T3|4 |T2|2 |R|2 |T |2 + |T3|4 |T2|2 |R2|2 |T |2 +

+ |T3|4 |R3|2 |T2|2 |T |2 + |T1|4 |R|2 |T |2 +

+ |T1|4 |R1|2 |T |2 + 2 |T3|2 |T2|2 |T1|2 |R|2 |T |2
)
〈n̂1〉 .

(6.33)
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The variance characterization is plotted in Figure 6.16 and 6.17.
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Fig. 6.16.: Additional dissipation: effects of the filtering. a Variance response to the
unbalancing (Equations 6.32 and 6.33) as a function of the filtering of the
reference branch (parameter |T1|2). b Differential mean value corresponding
to the minimum noise level, as a function of |T1|2. c Minimum noise level, as a
function of |T1|2.
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Fig. 6.17.: Additional dissipation: effects of the splitting. a Variance response to the
unbalancing (Equations 6.32 and 6.33) as a function of the splitting ratio per-
formed the first Beam Splitter (parameter |T |2). b Differential mean value
corresponding to the minimum noise level, as a function of |T |2. c Minimum
noise level, as a function of |T |2.

Despite the variance maintains the same almost quadratic dependence in the unbal-
ancing, important differences can be detected in its minimum value:

• first of all Figures 6.16 and 6.17 show that different values of the first Beam
Splitter (the one which divides the initial beam) and of BS1 (representing the
filter on the reference beam) affect the lower noise limit of the system. In
particular the minimum level increases if the transmittance |T1|2 is increased
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(Figure 6.16 c) or if a larger portion of the initial beam is sent to the reference
branch (Figure 6.17 c).

• the unbalancing needed to reach the minimum noise level is affected by the
transmittances |T1|2 (Figure 6.16 b) and |T |2 (Figure 6.17 b). In both cases an
increase of the transmittance requires a more and more negative unbalancing
(which means an increase of |T3|2).

6.7 Summary and observations

In the present chapter we described the expected results of a differential optical
measurements through a simple quantum model. The key assumption of this picture
is the use of the quantum formalism for Beam Splittes to describe each optical
element of the set-up, which is, by nature, a dissipator. The progressive increase of
the number of Beam Splitters provides a better approximation of the system itself.

The calculations highlighted some curious behaviors of the noise of the detected
number of photons and some critical points related to the measurements. The
consequences of these features are summarized in the following.

Experimental issues in Shot Noise measurements

The topic of dissipation allows to open a short parenthesis about the validity of
the shot noise measurement, that is the detection of the intrinsic noise due to the
quantum nature of light. The optical element require to detet this quantum noise
is a 50:50 Beam Splitter, which eliminates the classical contribution of the noise
(proportional to the mean value) and keeps the partition one (see Equation 6.18 and
6.19).

Experimentally it is very hard to find a perfect 50:50 BS, so sometimes, in order to
balance the outputs of the BS, one uses to filter the intensity on one branch. This
small variation can be described by the set-up shown in Figure 6.10, where BS 1 and
2 are filters or couple λ/2-polarizer, while the first beam splitter has |R|2 = 1

2 ± δ
and |T |2 = 1

2 ∓ δ, with δ << 1
2 . In the present section we want to briefly comment

on the difference between this measurement and the shot noise one and whether
the former could substitute the latter.

If we consider the set-up of Figure 6.10 and the two output beams are perfectly bal-
anced, the first term of σ2

5−6 (equation 6.24) is zero and the variance is proportional
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to the mean number of photons, as in the shot noise case. The result of the model
for this measurement is plotted in Figure 6.18.

Fig. 6.18.: Shot noise test with non-50:50 BS. Calculation of the variance as a function
of the original beam intensity for perfect balancing obtained through the use of
filters (or other attenuators) on the two branches, after the Beam Splitter.

On the other hand Figure 6.14 and 6.12 point out that in this kind of set-up the min-
imum value of the variance is not reached at the perfect balancing, while this is not
the case for the shot noise set-up, as demonstrated in section 6.4. So, a non-perfect
50:50 beam splitter does not allow to reach the shot noise level, compromising the
measurement result, although the measured noise is still proportional to the initial
intensity.

Characterization

The model points out also the necessity to characterize the system before each
measurement: as a matter of fact the variation of a number of parameters can
completely change the detected noise, even in absence of peculiar features of the
sample.

Mean value dependence

As pointed out in section 6.5 and 6.6 the detected variance strictly depends on the
number of photons. This effect is not surprising, since we intuitively expect an
increase of the noise due to an increase of the signal (or better, to the increase of its
modulus).
On the other hand calculations (as well as characterizations performed on our set-up)
show that the minimum noise is rarely reached at the minimum of the signal (see
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Figure 6.12, 6.16 and 6.17) and that this minimum point is strictly related to the
presence of dissipators in the set-up, that can, in principle, change from measurement
to measurement (consider the rotation of a λ/2, or the use of a different filter, for
example).

Improvement of the signal-to-noise ratio

Most of the time the aim of the experimentalist is to enhance the signal-to-noise ratio,
in order to get the most defined results possible. Even in statistical measurements
this requirement is fundamental, since classical and external noise in general could
overcame the inner quantum fluctuations of the probe pulse. On the other hand a
reduction of the noise related to a certain differential mean value does not necessarily
mean that the experimental conditions improved.

Consider for instance Figures 6.16 and 6.17, where the expected variance has been
calculated for different filtering and splitting coefficients (|T1|2 and |T |2 respectively).
All plotted cases have the same initial conditions (number of photons and related
variance) and no other noise contribution is taken into account. From the figures it is
clear that for a fixed value of

〈
n̂(5−10)

〉
(for example zero, that is, perfect balancing

between the two beams detected the photodiodes), the value of the noise could
change just because of the “ hotizontal shift” of the characterization function.

Nevertheless the distance of the mean values
〈
n̂(5−10)

〉
from the point of minimum

variance xMIN is a key parameter for understanding the noise effects. For this reason
a complete characterization of the set-up (as the one plotted in Figure 6.11 - red
points) must be taken into account before each measurement.

Effects on time resolved measurements

Up to now we have considered the effects of the set-up on the noise in static
measurements: we chose a certain value of the differential current (proportional
to the difference of the mean number of photons impinging on the detector) and
calculate the expected variance.

However the consequences of the experimental choices become more and more
evident and peculiar when associated to a pump-probe measurement. In the latter
case, the mean value signal changes in time because of the sample excitation due
to the pump pulse, so a time dependence is expected also for the variance. This
dynamics can actually present very different features, depending on the position of
the minimum variance point xMIN .
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Fig. 6.19.: Signal-to-noise ratio: minimum noise. Minimum variance level (blue line)
and variance at perfect balancing (orange line) as a function of the transmittance
of the Beam Splitter on the reference beam (parameter: |T1|). Notice that the
increase of the noise is much quicker in the latter case.

In particular, if the mean value is always bigger than xMIN in the whole considered
time interval (see the green area of Figure 6.20), the characterization function
σ2 (〈n̂〉) (black line) is a monotonic increasing function. Therefore we expect to
measure a variance dynamics qualitatively similar to the mean photon number one
(that is, if the latter increases, also the former increases etc...)
If the mean value moves to the other side (orange area of Figure 6.20), σ2 (〈n̂〉) is
a decreasing function and we expect a “reversed” variance dynamics (if the mean
value increases, the noise decreases). Moreover in both the cases the distance of the
mean value from xMIN determines the amplitude of the noise signal, because of
the non-linear dependence of the characterization function (see the right graphs of
Figure 6.20).

Finally if the mean value oscillates around xMIN and if the amplitude of the signal is
wide enough, strange dynamical effects could come out, since the function σ2 (〈n̂〉)
is not monotonic any more (yellow area in Figure 6.20).

The expected effects for a sample signal with different balancing are shown in Figure
6.20, whereas their measurement is the argument of the next chapter.
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Fig. 6.20.: Systematic effects on the variance. In the top left panel a characterization
function of the set-up is plotted (black line) and three different mean value
regimes are highlighted. The arrows marks the (non-)monotonic dependence of
the variance on the mean and so how the increase of the mean value is related to
the increase/decrease of the variance. The graphs in the bottom panel show the
time resolved mean value signal for different initial unbalancings between the
probe and the reference. The right graphs represent the corresponding variance
dynamics, calculated applying the characterization function to the mean value
signals of the bottom plot. The variance graphs show the predicted “reversing”,
the difference in amplitude (green and orange curves) and the different time
dependence expected for low noise measurements (yellow curve - the bottom
inset is a zoom of the same signal).
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7Noise in time domain
measurements: an effective
description

The attempt to interpret the information carried by the noise of a pump-probe
experiment revealed itself to be as intriguing as complex, since any detail must be
taken into account. I will show here that many of the feature which are commonly
observed in noise measurements can be described in the theoretical framework
established in the previous chapter. Most importantly, I will show that unintuitive
results can occur and a formal description of all overall measurements, not only the
dynamical response of the sample, should be included in the description.

In the previous chapter we described the repercussions of the dissipation from the
set-up optical elements on a pump-probe differential measurement. We were able to
define a characterization function σ2 (〈n̂〉), which determines the noise dependence
on the signal intensity and in particular on the unbalancing between the probe beam
and the reference one (see Figure 3.8). We have also analyzed the variation of this
function due to the increasing number of set-up elements and to their dissipation
rates (that is, their transmittance |T |2). The treatment allowed to derive some
important consequences for time resolved measurements, and revealed that the
noise dynamics is determined by the whole experimental apparatus and not only by
the photon number fluctuations associated to the sample response.

The purpose of the present chapter is to verify experimentally what we predicted
with the Beam Splitter model described in Chapter 6 and in particular (see Figure
6.20):

1. the “reversing” of the variance dynamics 1 due to the relative change of
intensity of the two optical beams (probe and reference) impinging on the
differential detector;

1Of course the variance does not change sign. With the term reversing we mean a reversing of its
derivative (so if in one case the variance increases in a certain time interval, in the second it
decreases and analogously a maximum in the first case corresponds to a minimum in the second
one and vice versa). The effect is clear in Figure 6.20 (green and orange lines).
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2. the variance behavior around the minimum of the characterization function
(in this case the qualitative difference between of the signal and the noise
dynamics could be due to the non-monotonicity of the function itself, see
section 6.7);

3. the effects of more than one phonon excitation.

In order to present an extensive study of this effect we performed measurements on
different samples: Bismuth (Bi), Quartz (SiO2) and Strontium Titanate (SrT iO3);
the choice of three samples allowed to check the generality of the model and of
its effects in different experimental conditions. In particular we will show than
the model can account for reflectivity and transmission measurements as well as
measurements with samples with more than one phonon mode visible in time domain
measurements.

The chapter is structured as follows: after a short and general introduction on the
measurements and the samples (section 7.1), each section is dedicated to one of the
three effects listed above. For each of the experiments discussed we will present both
time dependent intensity and time dependent noise, complemented by a separate
measurement of the apparatus characterization functions σ2 (〈n̂〉).

7.1 Measurement and samples

The general idea of the measurement has already been introduced in section II:
the aim is to measure the dynamics of the statistical distribution of the number of
photons after the interaction with the sample. It is possible through the detection of
hundreds of pulses for each time delay from the pump excitation.

In the measurements presented in this chapter, the pump and the probe pulses have
the same photon energy (hν = 1.55 eV) and are obtained through a laser system
made up of Ti:Sapphire oscillator (Coherent Mira Seed), pumped by a Nd : Y V O4

laser (Coherent Verdi V-18), and the amplifier Coherent RegA. The final outputs are
ultrashort pulses (≈ 150 fs), with repetition rate of 250 kHz: the latter feature
determines the time response of the detector, which must be lower than 4µs. Further
details on the acquisition system are given in appendix C.

All samples considered in the present chapter show coherent phononic modes
at few THz. In this case the oscillation frequency can be detected not only by
Raman spectroscopy, but also by time resolved experiments: the pump pulse induces
the phononic excitation, which results in an oscillating time dependence of the
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dielectric function. The transmitted (or reflected) probe intensity is affected by the
“instantaneous” sample dielectric function and therefore is modulated with the same
frequency of the phonon.
Notice that the pump radiation is not resonant with the phonon energy, which is
about one hundredth of the photon one. The excitation of the vibrational mode is
anyway possible if the spectrum of the light pulse is broad enough: as a matter of
fact, it can excite Raman active modes with frequency Ω = ν1 − ν2, where ν1 and
ν2 are both contained in the envelope of the pulse in frequency domain (see Figure
7.1).

Fig. 7.1.: ISRS: frequency difference. Sketch of the spectral envelope of the pump pulse
in frequency domain. Three different couples of frequencies (ν1; ν1) for which
ν1 − ν2 = Ω are shown.

The described process is called Impulsive Stimulated Raman Scattering (ISRS) and is
formally described by a third order process in which the ith of the final Polarization
is defined by the relation

P
(3)
i (z, ω) ∝

∑
jkl

χ
(3)
ijklE1,j (z, ω1)E2,k (z, ω2)E3,l (z, ω3) , (7.1)

where E2,k (z, ω2) and E3,l (z, ω3) represent the two spectral components of the
pump pulse, with propagation direction z, frequency ω2,3 and polarization in the
k and l direction respectively, whereas E1,j (z, ω1) is the probe pulse electric field.
χ

(3)
ijkl is the fourth order susceptibility tensor and is obtained through the sum

χ
(3)
ijkl =

∑N
n=1M

[n]
ij M

[n]
kl (where M [n]

ij is the susceptibility tensor related to the nth

Raman mode) and reflects the two step nature of ISRS: in the first one phonons are
created from the pump photons, while in the second probe photons interact with the
newly created phonons, producing the final scattered photons.
Equation 7.1 reveals also the importance of the polarization contributions (indices
i, j, k, l) and suggests the presence of selection rules, as for static Raman measure-
ments (see, for instance, section 3.1.2).
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In particular, the results presented in this chapter concerns the the measurements of
the Raman active modes of three different samples:

• BISMUTH: Ag mode, with frequency Ω = 2.8 THz. Both beams propagates
along the trigonal axis [0001] and the mode detection does not require any
polarization selection after the interaction with sample. The time resolved Ag
signal is a very intense, while footprints of the Eg mode at Ω = 2 THz are rarely
visible and just in the differential contribution Ag − Eg [45]. Measurements
have been performed at room temperature.

• QUARTZ: Eg mode, with frequency Ω = 3.8 THz. This mode is obtained when
the probe polarization direction is parallel to the a or b crystal axis, the pump
polarization is rotated of 45◦ with respect to the probe one and the selected
emitted field polarization is orthogonal to the probe. Because of the strength
of the total symmetric mode at Ω = 6.2 THz, sometimes it can be observed,
despite the final polarization selection. Also in this case measurements have
been performed at room temperature.

• STRONTIUM TITANATE: Eg mode, with frequency Ω = 0.4 THz. The signal
is obtained choosing a pump polarization rotated of 45◦ with respect to the
[100] axis, while the probe polarization direction is parallel or perpendicular
to the same axis [51]. Measurements have been performed at 10 K: for higher
temperatures the phonon is expected to soften, to finally disappear at the
structural transition temperature Tc = 105 K, which leads the sample from a
tetragonal (D4h) to a cubic perovskite structure (Oh) [51].

7.2 Reversing of the variance dynamics

The model predicts that the difference between the variance of the data (at a
given pump and probe delay) with the equilibrium variance changes by different
unbalancing of the detector. This can be measured with the rigid shift of the
measured intensity above or below the point of minimum variance xMIN changing
the number of photons that impinges on the two photodiodes of the differential
detector. We observed the effect for the first time in a pump-probe measurement on
Bismuth.

A typical result of a pump probe measurement on a Bismuth single crystal is shown
in Figure 7.2 a, where the transient reflectivity is plotted as a function of the time
delay between the pump and the probe. As reported in many literature results
[45, 42], the signal oscillations due to the phononic excitation are very intense and
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Fig. 7.2.: Bismuth time-resolved response. a Transient reflectivity of a bismuth sample as
a function of the time delay between the pump and the probe. The probe signal
after the pump excitation is modulated at the phonon frequency. b Comparison
between the signal (blue) and a fit with fixed oscillation period. The analysis
marks the time dependence of the phonon frequency. c Wavelet analysis of the
measurement plotted in a. d Fourier transforms for different pump-probe delays
(purple: 3.8 ps, red: 8.5 ps): the lines corresponds to vertical cuts of the map c.

allow, through a simple Fourier transform, to calculate the phonon frequency, which
is about 2.8 THz. On the other hand, a growth of the frequency value in time is
expected for long time delays [42]. We checked this effect in Figure 7.2 b: the blue
line represents the original signal, while the black one is a fit with a fixed oscillation
frequency2. It is evident that after 5 ps, the difference between the two curves is no
more negligible, demonstrating the variation of the phonon frequency in time.

The effect can be checked with another tool, called Wavelet Analysis, which allows to
study the time evolution of the frequency component of a signal. In order to perform
this analysis, we multiplied the signal by a normalized gaussian function, centered
on a certain time delay between pump and probe, and then perform the Fourier
Transform of the new signal. This analysis allows to study a short time interval
without reducing too much the frequency resolution. The tuning of the time position
of the gaussian in the whole time interval, provides the complete frequency dynamics.

2The fitting function is the product of a sinusoidal function with ν = 2.8 THz and a negative
exponential, which takes into account the oscillation damping. Another exponential decay is added
in order to fit the electronic contribution.
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The crucial parameter of this analysis is the width of the gaussian function: if is
to large the frequency resolution improves, because of the increasing number of
oscillation considered, but on the other hand, the time resolution worsens, since the
frequency evolution cold be no more appreciable averaging on lots of periods.
The result for our measurement is plotted in map 7.2 c: the x-axis represent the
time delay between the pump and the probe, whereas the y-axis is the frequency
one. The decrease of the amplitude of the only Fourier peak during the de-excitation
is clearly visible, while the frequency shift is hard to detect: in order to highlight it,
we plotted the Fourier Transform at each time delay in Figure 7.2 d.

Once we have understood the main features of our “standard” pump-probe data we
are ready to measure and interpret the noise dynamics, provided that we know the
characterization function for our system.

In Figure 7.3 and 7.4 the same measurement for different unbalancings between the
probe and the reference beams are shown.
Let us start from Figure 7.3. Figure 7.3 a shows the time dependence of the mean
photon number (blue line) and the variance one (red curve). The vertical dashed
lines highlights that mean value and variance are in phase.
The inset of the right panel of Figure 7.3 b shows the characterization function of
the apparatus. The purple line represents the noise characteristic of the apparatus
as a function of the detector unbalancing, which can be controlled by changing the
intensity of the beams. The black line is obtained through a fit of the model used in
the previous chapter to the experimental data (red curve). The fitting function is
given by Equation 6.33, whereas the red points represent the mean and variance
values of the time resolved measurement, that is, the data plotted in the left panel.
The characterization plot reveals that the mean photon number data never reach the
point of minimum noise and that the σ2(〈n̂〉) is monotonic in the considered region.
In this case the model predicts that the main features of the mean and variance
dynamics should be qualitatively similar (see Figure 6.20). This effect is checked
in the right panel of Figure 7.3, where the detected variance (red curve) and the
model variance are plotted. In order to obtain the variance dynamics, we inserted
the mean value at a certain time delay in the characterization function and repeated
the process for each time delay. The model variance (black curve) fits the data,
especially concerning the oscillation, both in frequency and phase.

In order to test the validity of our model we performed an experiment decreasing
the intensity of the reference beam. If the mean value 〈n̂〉 is lower than the point of
minimum noise xMIN (Figure 7.4) the BS model predicts that the variance dynamics
is “reversed” with respect to the mean photon number one (and so also to the
variance in case of positive balancing). The effect is confirmed by the experimental
data plotted in Figure 7.4 and highlighted by the vertical dashed lines: you can
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Fig. 7.3.: Bismuth noise dynamics: positive balancing. Mean photon number and vari-
ance time resolved measurement for values of the balancing higher than xMIN

(point of minimum variance). Left panel: transient reflectivity mean (blue curve)
and variance (red curve). The vertical dashed lines facilitate the comparison
between the two time resolved signals, revealing that their oscillations are in
phase. Right panel: Comparison between the acquired variance (red curve) and
the one predicted by the Beam Splitter model (black line). The inset shows the
acquired characterization function (purple line), the fit with the characterization
function predicted by the Beam Splitter model (black curve) and the relation
between mean and variance obtained from the data plotted in the left panel (red
dots). The described plot highlights the set-up contribution (fileting, splitting of
the beam etc...) to the variance results, even in absence of the sample.

notice that the minima of the variance oscillation correspond to a the maxima of
the mean one and vice versa. The final verification of the model validity (and of
its reversing effect in particular) is given by the comparison between the acquired
variance and the calculated one, plotted in the right panel of Figure 7.4.
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Fig. 7.4.: Bismuth noise dynamics: negative balancing. Mean photon number and vari-
ance time resolved measurement for a value of the balancing lower than xMIN

(see Inset. The plots have the same meaning of Figure 7.3. Notice that in the
present case the mean value is below the minimum noise one (inset) and the
variance oscillation is reversed with respect to the mean one (left panel). Also in
this case the phenomenon can be explained by the Beam Splitter model (whose
variance calculation is compared with the experimental data in the right panel
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7.3 Minimum noise

Looking at the results described in section 7.2, a question immediately comes
out: since the variance dynamics changes moving from one arm to the other of
the characterization function σ2 (〈n̂〉), what happens at the center, that is, when
the differential mean photon number approaches the point of minimum variance?
Different results are expected, depending on the range of the reflectivity variation in
time.

7.3.1 Oscillation amplitude dependence

Let us consider, first of all, the same measurement of section 7.2, in which the probe
and reference intensities have been tuned in order to obtain a differential intensity
close to the minimum point of the characterization function. Notice that in this
particular measurement the condition is really closed to the perfect balancing, but it
is not necessarily the case, as shown in the previous chapter (see Figures 6.12, 6.14
and 6.19).
In this measurement ∆R is very low and the mean value moves in a small (quasi-
flat) range of the characterization function (see inset of Figure 7.5). Therefore we
expect a very small (if any) time dependence of the variance. The experimental
data confirms the hypothesis: no variance dynamics is detected after the arrival of
the pump (see Figure 7.5). Moreover the Fourier Transform (left inset of Figure
7.5) reveals that no oscillation is detected in the variance (red curve), despite the
usual 2.8 THz one is recognizable in the modulation of the transient reflectivity (blue
curve). The same evidence is observed in the calculated variance (black line of the
right panel), which is almost time independent after 1 ps).

The results can change completely if the amplitude of the intensity signal is enhanced.
You find an example in Figure 7.6 a, where the range of the transient reflectivity
variation (blue line) is about 10 times larger than the one of Figure 7.5. The
corresponding variance dynamics (red curve of Figure 7.6 a) is characterized by a
second frequency contribution, whose value is twice the one detected in the mean
signal (see the inset of Figure 7.6 a in which the Fourier Transform of the time
resolved photon number and of its variance are plotted). This effect is due to the
oscillation of the mean in time around the point the minimum variance. Since the
characterization function around this point is almost quadratic, both an increase or
a decrease of the intensity value with respect to xMIN gives rise to an increase of
the variance signal. The effect is pointed out in Figure 7.6 a, where the horizontal
gray line represents the point of minimum variance xMIN , which in this case is close
to zero. The vertical dashed lines highlight the times delay in which the mean value
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Fig. 7.5.: Noise dynamics: minimum noise and low signal intensity. Mean photon
number and variance time resolved measurement for the minimum noise values.
The plots have the same meaning of Figure 7.3 and 7.4. Noise oscillation are
neither predicted by the model nor observed experimentally, as highlighted by
the left inset, in which the Fourier transform of the mean (blue curve) and the
variance (red curve) are plotted. Also in this configuration the model fits the
general behavior of the variance dynamics (right panel)

time resolved signal (blue curve) crosses the xMIN line, that is the points for which
we expect a change of slope of the variance. The variance dynamics below (red line)
confirms the hypothesis. Figure 7.6 b shows again the variance dynamics and the
fit obtained with the Beam Slitter model (black line), whereas the characterization
function (both data and fit) and the measurement variance (red dots) are plotted in
the inset.
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Fig. 7.6.: Noise dynamics: minimum noise and higher signal intensity. a Mean photon
number (blue) and variance (red) time resolved measurement for the minimum
noise values. The horizontal gray line represents the value of the mean where the
minimum variance is reached (xMIN ), whereas the vertical dashed lines mark the
time delays for which this value is reached. Inset: Fourier Transform of the same
signals; the second peak of the variance is clearly visible. b Comparison between
the acquired variance and the model fit, performed using the characterization
function shown in the inset (the purple point are the characterization data, the
black line is the model fit and the red dots represent the points of a, displayed in
a variance versus mean graph).
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7.3.2 Double frequency amplitude

In order to test the general validity of the model we performed experiments on
different samples in transmission: quartz and strontium titanate. In particular notice
that these materials are transparent to the pump and probe radiation, conversely to
bismuth, so in this case, there is no electronic mediation between the radiation and
the phonon excitation.

In order to study the second frequency oscillation of the variance, we performed
three time resolved measurement on quartz in which the unbalancing between probe
and reference have been slightly modified. In all cases the oscillations reach the
point of minimum variance but, while in the first case (blue dots and line) the mean
oscillations are almost centered in xMIN , in the other cases they concern only the
upper (or lower) part of the oscillation.
In Figure 7.7 the three variance measurements as a function of their unbalancing
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Fig. 7.7.: Noise dynamics: double frequency amplitude. Amplitude of the double fre-
quency component for quartz in the variance dynamics as a function of the
unbalancing. a Characterization function of the experiment (black lines) and
balancing between the probe beam and the reference one before the excitation
(colored dots). b Variance dynamics for balancing around xMIN (blue dots in
a): the second frequency contribution is clearly visible for about 2 ps after the
excitation and its amplitude immediately after the pump arrival is comparable
with the phonon frequency one. c and d Variance dynamics for balancing far from
xMIN (green and orange dots in a): the second frequency amplitude is smaller
with respect to the phonon frequency one.

are shown. Figure 7.7 a displays the characterization function (black line) and three
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possible values of the balancing (blue, orange and green dots), acquired without
exciting the sample. Figure 7.7 b shows the variance dynamics related to the blue
points: the double frequency is clear for about 2 ps, although its time decay is much
faster than the phonon frequency one. On the other hand, in Figures 7.7 c and
d the ratio between the amplitudes of the second and first oscillation is definitely
decreased. The effect is even more visible by plotting the variance dynamics of the
three measurements in the same graph (Figure 7.8 a). This representation highlights
that the presence of the second Fourier component is actually more visible if the
mean value oscillations are closed to the point of minimum variance. Moreover the
plot shows that the amplitude of the variance changes with the unbalancing: this
phenomenon is also predicted by the model, since the variance dynamics is related
to the slope of the characterization function for a certain mean value (see Figure
6.20).
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Fig. 7.8.: Noise dynamics: variance comparison. Comparison between the different vari-
ance dynamics displayed in Figure 7.7. a First 2 picoseconds after the excitation
of the variance dynamics for the three signals. If the mean oscillates around the
minimum variance point, the value of the variance is small, but the ratio between
the amplitude of the two frequency contributions (Ω and 2Ω, where Ω is the
phonon frequency) is relatively high (blue curve). On the other hand, far from
xMIN (orange and green lines), the amplitude of the Ω contribution is enhanced
and the 2Ω one is reduced. b Corresponding Fourier Transform for the three
signals.

In section 6.5 we observed that, although the characterization function is very similar
to a parabola, it is characterized also by a small third order contribution, so we
wonder whether this third order term can be observed in the acquired variance. We
observed a small evidence of the described dependence in the measurement plotted
in Figure 7.9 a. Again, the mean value oscillates around xMIN , which is about -5
now3, and correspondingly a double frequency signal is observed in the variance.
Anyway another piece of information can be extracted from the Fourier Transform
of the mean number of photons and variance signal, where a third peak appears

3In all the measurements the mean value and the variance are expressed in the units provided by the
detection and acquisition system (V) and are proportional to the differential intensity and so to the
differential number of photons impinging on the diodes.
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Fig. 7.9.: Noise dynamics: 3Ω component. a Mean (blue line) and variance (red line)
dynamics for a quartz measurement. The horizontal line represents the point of
minimum variance xMIN , while the vertical dashed ones are the time delays in
which we expect a change of the variance slope in time. b Fourier transforms
of the average and variance signal. A small peak at 3Ω ≈ 11.5 THz is visible in
the variance Fourier Transform. Inset: characterization function (black line) and
variance versus mean points (red) for the measurement plotted in a.

(only in the noise Transform) at three times the phonon frequency. This is a quite
strong evidence of a third order dependence of the variance on the mean value, and
a possible further proof of the validity of the Beam Splitter model.

7.3.3 Double frequency decay

In the previous measurements the amplitude of the double frequency (2Ω) compo-
nent has always a different time decay with respect to the Ω one. The aim of the
present section is to understand how this difference is related to the Beam Splitter
model and, in particular, to the characterization function.

The following measurements have been performed on strontium titanate (SrT iO3)
at about 10 K, selecting an Eg mode, with frequency Ω = 0.5 THz. The measurement
is shown in Figure 7.10, where both the mean and the variance dynamics are plotted,
together with the characterization function of the system.
The 2Ω component is not clearly visible from the measurement, so we moved to a

Fourier analysis. In particular, since we are interested in the duration of a certain
frequency component, we opted for the wavelet analysis described in section 7.2,
which is plotted in Figure 7.11 c.

The Ω ≈ 0.5 THz is quite intense and visible (red and yellow area) in the variance
wavelet analysis. The second contribution (2Ω ≈ 1 THz) is also present for about
2 ps (light blue area in the map). In order to understand the reason of this fast
decay, we plotted the mean dynamics in Figure 7.11 a: the blue line is the signal,
the horizontal line marks the value of xMIN and the vertical line highlights the last
time delay in which the signal crosses xMIN , that is, the last time delay for which
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Fig. 7.10.: SrTiO3 measurement. Mean (blue line) and variance (red line) dynamics for
a SrT iO3 measurement. The horizontal line represents the point of minimum
variance xMIN . Inset: characterization function (black line) and variance versus
mean points (red) for the considered measurement.

we expect a double frequency contribution, according to the model. The same time
delay is marked by the continuous vertical straight line in the map c: notice that the
main contribution of the double frequency signal decays before this time delay. The
small broadening until the time marked by the dashed line is due to the width of
the gaussian function used in the wavelet analysis (for example, if the gaussian is
centered at 7.5 ps and its σ is 1 ps, we could still observe a small contribution of
the frequency content at 6.5 ps). Therefore, the analysis points out that the reason
for the different time decays between the first and second frequency components is
simply the crossing between the average signal and the point of minimum variance.
Another proof of the double frequency dependence on the balancing between probe

and reference beam is given by the absence of the 2Ω component in case of no
crossing between the signal and xMIN (Figure 7.12).

7.4 Two pumps measurements

In the present section we are presenting time resolved measurements in which two
pumps impinges on the sample and the probe beam measures the variation in the
reflectivity or transmission. In particular the pulses are set in order to create the
phonon excitation with the first pump and destroy it with the second. The aim was
to understand the effect of this exciting-destroying couple on the noise dynamics.

In the following we consider two samples: the results on Bismuth allows to un-
derstand the measurement concept and the main consequences of the presence of
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Fig. 7.11.: 2Ω component: wavelet analysis. a Mean value time dependent signal (blue
line) for a SrT iO3 measurement after the pump excitation. The oscillation
has the frequency of the Eg phonon mode at Ω ≈ 0.5 THz. The horizontal
line represents the point of minimum variance xMIN , while the vertical one
marks the last time delay in which the signal crosses xMIN b characterization
function (black line) and variance versus mean points (red) for the considered
measurement. c Wavelet analysis for the variance dynamics after the excitation:
the x-axis represents the time delay between the pump and the probe, and the
y-axis the frequencies. The Ω component is present (and intense) for all time
delays, whereas the 2Ω one has a faster time decay. The vertical continuous
line highlights the relation between the 2Ω decay and the last crossing between
signal and the point of minimum variance. The time difference between the two
vertical lines in the map represents the width of the gaussian function used for
the analysis. Therefore the dashed line highlights the time delay until which
we still expect a small contribution of the 2Ω component. d Fourier Transform
at two fixed time delays (they are obtained as vertical cuts of the map c. We
observe that the 2Ω component, visible immediately after the excitation (blue
line), completely disappears at longer time delays (orange line).

the second pump on the mean photon number and the variance dynamics. The
same approach on a quartz sample leads to the unexpected measurement of more
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Fig. 7.12.: Absence of 2Ω component: wavelet analysis. Same analysis and plots of
Figure 7.11 in absence of crossing between the mean photon number dynamics
and the point of minimum variance (a and b). In this case no frequency com-
ponent at 2Ω is visible (c and d), reinforcing the hypothesis of the connection
between the mean value oscillation around the minimum of the characterization
function and the appearance of the double frequency component in the variance
dynamics.

phonon contributions, with interesting results and connections with the Beam Split-
ter model.

7.4.1 Bismuth: measurement concept

The results on the mean photon number dynamics in a Bismuth measurement are
shown in Figure 7.13.
In a the results obtained with each of the the two single pumps are shown. The

vertical dashed lines marks the phase difference between the two excited phonons:
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Fig. 7.13.: Two pump measurement on Bismuth. a Mean photon number time resolved
signal for the two pumps used in the double pump measurement. The vertical
lines are guides to compare the phase difference between the oscillations mapped
on the reflected probe. b Complete time resolved measurement, in which the
phonon mode is excited by the first pump pulse and destroyed by the second
one. A small periodic component is still present after the second pulse and its
frequency content is analyzed in Figure 7.14.

when the first signal is in its minimum value the second is at the maximum and
vice versa. This π-shift in the phonon phase is the first essential condition to make
the second pump pulse destructive of the phonon excitation. The second one is
related to the pulse intensity: the two pumps must have different intensities since
after few signal periods the reflectivity amplitude has already experienced a small
de-excitation decay, so, the second pump should be less intense than the previous
one. The result of the two pump measurement is plotted in Figure 7.13 b: from
about 1.8 to 3.5 ps the phonon exitation produces the expected strong oscillations in
the transient reflectivity. After the second pump (t > 4 ps) the oscillation amplitude
is strongly suppressed, although small periodic signals are still visible. This can be
due to the reflectivity dynamics, which presents two “different” decays for the two
single pump measurements, as well as to experimental issues, such as the slight
variation of the pumps fluences.

The wavelet analysis of the mean dynamics after the destructive pulse (Figure
7.14 c) unveils the presence of two frequency components: the usual one at the
phonon frequency (Ω = 3 THz) and another one at about 1 THz. Notice that no
phonon mode has been observed at this frequency and the Eg mode of Bismuth (at
ΩEg = 2 THz) is very hard to measure; usually it is detected just through signals at
the frequency sum or difference with the more intense Ag mode. So the a possible
explanation for this 1 THz oscillation is the difference of the Ag (Ω ≈ 3 THz) and
Eg (Ω ≈ 2 THz)4.

4The symbol “≈” is used since the frequency of both phonons is both fluence and time dependent, as
discussed in section 7.2
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Fig. 7.14.: Two pumps measurement: wavelet analysis. a Mean value signal subtracted
of the non-coherent de-excitation. The new signal has the advantage of eliminate
the 0 frequency component in the Fourier transform, which could overcome
weaker low frequency contributions. b Wavelet of the mean photon number
dynamics after the second pump (orange signal in a). In c vertical cuts of map b
at different time delays are plotted.

Concerning the analysis of the noise dynamics, the detected time resolved variance
can be obtained once more by applying the Beam Splitter model (and so the charac-
terization function) to the new mean value signal. The result is plotted in Figure
7.15, where the red line represents the acquired noise signal and the black one is
the fit obtained by the model. The data can be quite well fitted by the model, a
part for the time delays in which the pump impinges on the sample (at about 0.7,
2 ps and probably with a small delay even at 2.3 ps), since a small portion of the
pump pulse is scattered by the sample and reaches the photodiodes, increasing the
variance value. This effect is not included in the model and so cannot be fitted.
On the other hand both the big oscillations between 0.7 and 2 ps and the small

ones after the second pump are obtained by the model, as well as the average
increase of the noise after the destructive pump (with respect to the equilibrium
condition). Moreover, the variance oscillations are characterized by the same periods
of the mean value dynamics, as expected from an unbalancing between probe and
reference beam far from the point of minimum variance (as highlighted in the inset
of Figure 7.15).

7.4.2 Quartz: two phonon contributions

The measurement described in the previous section was useful to characterize the
technique (two pump time resolved measurement) and to study the effects on the
noise due to the excitation and sudden de-excitation of one phonon mode.
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Fig. 7.15.: Two pumps measurement: variance. Variance dynamics (red line) associated
to the double pump mean value signal plotted in Figure 7.13 b and the results
of the model calculations

The same measurement, performed on a quartz sample (see Figure 7.16), allowed
us to generalize the effect to the case of more excited phonons and suggested a study
of the external noise contribution to the variance dynamics.
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Fig. 7.16.: Two pump measurement on Quartz. a Mean photon number time resolved
signal for the two pumps used in the double pump measurement. The vertical
lines are guides to compare the phase difference between the oscillations mapped
on the reflected probe. b Complete time resolved measurement, in which the
Eg phonon mode is excited by the first pump pulse and destroyed by the second
one. A small periodic component is still present after the second pulse and its
frequency content is analyzed in Figure 7.17.

Multiple Phonon contribution

As in the measurements described in section 7.3.2, the polarization directions of the
pumps, the probe and the analyzer after the sample should select a single Raman

136 Chapter 7 Noise in time domain measurements: an effective description



mode of quartz, that is the Eg mode with frequency Ω = 3.8 THz. On the other
hand, the wavelet analysis plotted in Figure 7.17 reveals the presence of a second
frequency component at about 6 THz after the destructive excitation (and eventually
a small contribution at about 2 THz, which could represent the difference between
the two previous modes). This frequency is associated to the total symmetric Ag
mode, which is much more intense than the Eg one and therefore can be detected
even in Eg configurations, since a very small misalignment (or imperfection) of the
final analyzer is enough not to perfectly select the crossed polarization.

The presence of the second phonon can be even enhanced by a three pulses
measurement, since the intensity and time of application of the second pump is
chosen to wash out the Eg oscillation, but the Ag one is characterized by a different
amplitude and especially a different period. So, an accurate choice of the timing for
the second pump could deplete the Eg oscillation and increase the amplitude of the
Ag one.

These two defects of the measurement (the non-complete depletion of the Eg mode
and the Ag signal passing through the last polarizer) leads to a time resolved mean
signal in which at least two frequency components are present and their amplitudes
are almost comparable (although the Eg one is still about 10 times the Ag).

External noise contribution

Before going on with the effects of multiple phonon excitation on the variance
dynamic, a small digression to discuss the “external noise” contribution must be
done. As a matter of fact, up to now we considered the variance as the consequence of
the initial beam noise (both quantum and classical, there was no defined assumption)
and of the interaction between the optical elements, which, in the model description
of Chapter 6, are perfect and lossless Beam Splitters. The aim of this short section is
to understand weather an external noise can significantly affect the measurements
and, in particular, the variance dynamics. Moreover this aspect must be taken into
account in the comparison between the data and the expected results calculated
with the Beam Splitter model.

This study becomes important at this stage, since the measurement is quite delicate
and the acquired signals are small with respect to the usual mean and variance
dynamics (because of the depletion due to the destructive second pump). As a
proof, we compare a single measurement and the average of tens of scans in Figure
7.18: notice that the single scan (light blue signal in Figure 7.18 a) has very strong
fluctuations after τ = 3 ps, which completely overcome the small oscillations visible
in the average of several scans (dark blue line).
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Fig. 7.17.: Multiple phonon contribution: mean value. a Mean photon number time
resolved signal on quartz after the second pump (zoom of Figure 7.16 b): the
oscillation due to the phonon excitation is still present. b Wavelet analysis of
the mean signal plotted in a. The most evident component is the Eg one, with
frequency ΩEg = 3.8 THz. A small contribution at 6 THz is visible too. c Vertical
cuts of the map b at 1.6 and 3.8 ps, that is the Fourier transform of the signal for
a short time interval around these time delays. The second frequency component
is observed at the shorter time delay. d Comparison between the mean value
dynamics (blue line) and a fit performed with a periodic function with frequency
ΩEg multiplied by an exponential decay (black line). e Wavelet analysis of
the difference between the two signals plotted in d. This operation allows to
exclude the most intense Fourier component (Eg), in order to better analyze the
remaining one (Ag, with ΩAg = 6 THz). f Vertical cuts of the map e at 1.6 and
3.8 ps.

The effect of the noise contribution in the model calculations is shown in Figure
7.19. If the measurement is very stable, most of the time the variance dynamics can
be calculated from the averaged mean value, using the characterization function of
the system. This means that the variance of average signal (on tens of time resolved
scans) is almost equal to the average (on the same scan number) of the single scan
variances. This is not the case for a noisy system, as highlighted by Figure 7.19,
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Fig. 7.18.: External noise contribution. a Comparison between the mean photon number
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line) of a double pump quartz measurement, as the one plotted in Figure 7.16
b. Notice that the single scan fluctuations completely overcome the intrinsic
signal oscillations due to the phonon excitation. b Single scan (light red) and
averaged (dark red) variance dynamics. c Characterization function fitted with
the BS model(purple line) and experimental data (variance vs mean photon
number, red dots) of a single scan. d Characterization function (purple line) and
experimental data (averaged variance vs averaged mean photon number).

where the comparison between the acquired variance5 (red line) and the model one
(black curve), calculated from the average mean value (a) or as the average of the
single scans variances (b) is plotted.

0 1 2 3 4 5 6 7
t (ps)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Va
ria

nc
e

a

0 1 2 3 4 5 6 7
t (ps)

b data
model
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quired variance, averaged on 30 scans (see Figure 7.18 b) and the model one,
calculated from the mean photon number dynamics averaged on the same scans
a or as the average variance computed starting from the single scans mean
values.

5For all the measurements presented in this thesis, the acquired variance is the average of the single
scans variance dynamics.
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The comparison shows that the first calculation definitely underestimates the vari-
ance level: the main reason for this is that the calculation does not take into account
the strong fluctuations of the single scans. The effect is clear if we consider the
characterization function of the system: for a single scan high unbalacings can be
reached (red points of Figure 7.18 c), producing relatively high variance values.
On the other hand, if we consider the mean photon number dynamics obtained by
averaging several scans, the predicted variance fluctuations will be underestimated,
as shown in Figure 7.19 a.

Multiple phonon contribution in a noisy measurement

In the present section we are going to observe the effects of both external noise and
multiple phonon excitation on the variance dynamics and to compare them with the
predictions of the Beam Splitter model.

The results of the measurements are plotted in Figure 7.20 a, where the dynamics
of the mean photon number for a single scan is displayed; the inset shows the
characterization function σ2(〈n̂〉) (purple line) and the acquired variance vs mean
(red dots). Panel b displays the result of the wavelet analysis on the acquired
variance for three time delays. The use of this analysis is due to the fact that in
this case the Fourier transform on the complete (noisy) signal washed out most
of the frequency components. The black dashed lines represents the (shifted)
average of the three signals: it is not really a significant quantity, it serves mainly
as a guide for the eye. The yellow vertical lines highlight the phonon frequencies
(ΩEg = 3.8 THz, ΩAg = 6.2 THz and eventually ΩAg2 = 10.9 THz), whereas the
green lines represent the sum or difference of the listed phonon frequencies; in
particular the dark green line is the 2ΩEg = 7.6 THz component. Notice that the
only observable Fourier component of the variance dynamics after the second pump
interaction are the ones related to the sum/difference of phonon modes, and in
particular ΩAg−ΩEg = 2.4 THz (observed at all time delays), ΩAg2−ΩAg = 4.7 THz
(especially visible at 4.1 and 1.6 ps) and the double frequency 2ΩEg = 7.6 THz.
This result is completely different from the ones presented in the previous sections,
in which the variance dynamics always showed a Fourier component at the phonon
frequency and then, for particular values of the mean photon number oscillation, a
2Ω component.

In order to understand the reason for these unexpected experimental results we
simulated several mean photon number dynamics, different for amplitude of the
phonon oscillations, random noise added and balancing between the probe and
reference beams and calculated the corresponding variance (through the character-
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ization function obtained by the Beam Splitter model) and its Fourier Transform.
The aim is to understand which noise, amplitude and unbalancing configuration can
give rise to the result plotted in Figure 7.20 b.

Figure 7.20 c shows the case of weak phonon oscillations, low noise level and
unbalancing higher that xMIN (notice that for 〈n̂〉 < xMIN and 〈n̂〉 > xMIN the result
is similar. A different behavior occurs if the mean oscillation crosses the minimum
variance point xMIN ). The corresponding variance Fourier Transform (d) reveals that
in this case the most visible noise contributions have the phonon frequency, although
very small peaks are visible even at the sum and differential frequency components.
Notice that the addition a higher random noise to the previous simulation (Figure
7.20 e) produces the complete disappearance of these weaker Fourier component
(Figure 7.20 f), suggesting that the considered configuration (and especially the
choice of 〈n̂〉 > xMIN for each time delay) is not descriptive of our experiment.

The scenario completely change if we shift the mean average value around xMIN . A
somewhat conunterintuitive result shows that small oscillation amplitudes with low
noise (Figure 7.20 g) produce variance contributions both at the phonon frequencies
and at their sums and differences (Figure 7.20 h). A slight increase of the random
external noise in the signal makes the weaker Fourier component indistinguishable.
It also deplete the ΩEg peak, which was actually quite high in the low noise case
(Figure 7.20 j).
The increase of the oscillation amplitude (Figure 7.20 k and l) reduces the phonon
peaks of the variance Fourier Transform, maintaining the additional and differential
ones (Ωi ± Ωj , Figure 7.20 l). Finally the enhancement of the random noise (Figure
7.20 k) completely overcome the Ωi variance signals, letting just the sum/difference
components (Figure 7.20 n.
The following table summarizes the features of the simulations and the obtained
results, in terms of frequencies contributions (phonons and sums/differences).

features a-b c-d e-f g-h i-j k-l m-n

DATA x

SIMULATION x x x x x x

NON-CENTERED x x

CENTERED x x x x

LOW AMPLITUDE x x x x

HIGH AMPLITUDE x x

LOW EXT. NOISE x x x

HIGH EXT. NOISE x x x

PHONONS x x x x

SUM/DIFFERENCE x x x x x x
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The simulation reveals that the essential conditions which prevent detection of
the phonon frequencies in the time resolved variance signal are the relatively high
added noise level (as expected) and a mean phonon number dynamics, which
must oscillates around xMIN . The oscillation amplitude with respect to the added
noise can define better (or worse, until they disappear) the peaks of the variance
Fourier Transform. Since the experimental data plotted in Figure 7.20 a and the
Fourier Transform of the related variance are quite noisy, but they show some
frequency component at Ω = Ωi ± Ωj , the configuration which better describes our
measurement is the one with mean oscillations centered on xMIN and a high ratio
between the external noise fluctuations and the Ωi amplitudes in the mean photon
number dynamics.

7.5 Summary and conclusions

The aim of the chapter was to verify the validity of the Beam Splitter model intro-
duced in chapter 6 and to analyze the effects related to the noise of a time resolved
measurement. In particular we observed the following phenomena:

1. REVERSING OF THE VARIANCE. The variance dynamics is reversed (in the
acceptation of inversion of the slope, as already defined at the beginning of the
Chapter) if the mean photon number shifts from low values (below the point
of minimum variance xMIN) to high values (above xMIN). Moreover if the
mean is close to the point of minimum variance and its variation is relatively
small, the variance has no dynamics after the excitation. Both the effects are
predicted by the model and can be calculated through the characterization
function of the experimental set-up: in first approximation, the higher is the
slope of the characterization function for a certain mean measurement, the
bigger is the variance dynamic range. Therefore around the point of minimum
variance the amplitude of the variance oscillation is about zero.

2. DOUBLE FREQUENCY COMPONENT. Phononic excitations of the sample produce
an oscillating time dependence of the probe intensity, with the same frequency
Ω of the excited phonon mode. In some experimental configurations (that is,
if 〈n̂〉 crosses the xMIN value), the acquired variance could present a Fourier
component at 2Ω: this effect is due to the almost quadratic behavior of the
characterization function σ2 (〈n̂〉) around the minimum. In order to exclude
any other possible reason for this double frequency component, we checked
that both its amplitude and the time decay are strictly related to the mean
photon number dynamics and especially to its position with respect to xMIN .
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Fig. 7.20.: Experimental condition: variance simulation. Left column: Mean photon
number dynamics after the second pump excitations. Inset: Characterization
function (black line) and experimental points (red dots). Right column: related
variance Fourier Transform.

Finally we performed the measurement on different samples, in order to
exclude peculiar material effects.
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3. THREE PULSE MEASUREMENT. We performed two-pumps measurements, in
which the first pulse excited a phonon mode in the second, whereas the second
one destroys the same mode. The measurements and the comparison with the
model reveals that in this case the characterization function can describe the
variance dynamics.

4. MULTIPLE PHONON EXCITATION. If the pump pulse(s) is able to excite more
than one phonon mode, with comparable amplitude, the variance dynamics
can oscillates at Ωi (phonon frequencies) and/or Ωi ± Ωj , depending on
i. the unbalancing (〈n̂〉 < xMIN or 〈n̂〉 > xMIN): it determines the relative
amplitude between the phonon components and the sum/difference ones.
ii. the ratio between the external noise and the oscillation amplitude. If the
noise is high enough it can eliminate some Fourier components: in the case
of oscillations around the point of minimum variance the Ωi are completely
overcome by the experimental noise, while in appropariate condition the
difference between the frequencies of the phonon modes can remain visible.

When performing a noise measurement all these aspect must be taken into ac-
count.

144 Chapter 7 Noise in time domain measurements: an effective description



8Noise detection in Bi2212
measurements

The measurement of the complete photon number distribution of a light beam
(after the interaction with a sample), is expected to provide additive information
than a “simple” intensity measurement. The application of this concept to a pump
probe measurement could be a way to understand intriguing and still unexplained
properties of strongly correlated materials. On the other hand the interpretation of
the results is not easy and lots of side effects must be taken into account.

In the previous chapters we tried to find the key for these measurements interpre-
tation and to distinguish the set-up effects from the sample ones. In particular
we

1. introduced the measurement concept, the single pulse acquisition (essential
to evaluate a photon number distribution), with some technical details on the
calculations of the significant quantities;

2. developed a theoretical model (BS model) to describe the experimental set-up
and to predict the behavior of the variance on the phonon number from the
variation of the acquired mean value;

3. verified the validity of the model, comparing its predictions with the experi-
mental data. In particular, we focused on the systematic effects of this kind of
measurement, analyzing the acquired signal and noise dynamics on different
samples (in order to exclude any material dependence).

Keeping in mind all these results, we are ready now to move to more interesting
samples and to check if and how this acquisition system is able to provide new and
interesting pieces of information on the sample. Therefore we decided to go back
to our initial sample, the high Tc superconductor Yttrium substituted Bi2212 (see
chapter 5).

145



8.1 Measurements and results

Contrarily to the measurements presented in Chapter 7, in this case the sample
was excited by a MIR pump (hν ≈ 170 meV) and probed with a 1.63 eV ultrashort
pulse (details on the pulse generation are given in section 3.3). The pump and the
probe propagation direction are parallel to the sample c-axis, while their polarization
directions have always been kept parallel to the copper-copper axis. The same
polarization is selected by the final analyzer.

The first goal of the measurement was to compare the variances dynamics after
a mid-infrared excitation at room temperature (that is, in metallic phase) and in
superconducting state. The preliminary results are plotted in Figure 8.1, where the
transient reflectivity (blue curve) and the variance dynamics (red line) are compared
for certain experimental conditions.
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Fig. 8.1.: Mean and variance reflectivity measurements. Mean value (blue) and variance
(red) time resolved measurements for different sample phases and pump fluences.
In the first row: low fluence measurement (f = 0.1 mJ · cm−2) a and high fluence
measurement (f = 1 mJ · cm−2) b at room temperature (T = 300 K). In c and
d measurements the superconducting responses (T ≈ 12 K) for low and high
fluence respectively are plotted.

Figure 8.1 a and b show the results for different pump fluences at room temperature:
in both cases the variance shows a dynamics, which seems to be strictly related
to the mean value. On the contrary, in superconducting phase mean and variance
have different behaviors (Figure 8.1 c and d), depending on the pump fluence.
In particular, while low fluence excitations in superconducting phase produce a
qualitatively similar time evolution for intensity and fluctuations, the variance
dynamics induced by a high pump fluence in superconducting phase does not follow
the mean value one. This evident discrepancy in the de-excitation process can be
the clue for a hidden sample features, probably related to the material phase.
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8.2 Model comparison

Because of the peculiarity of its results, we will focus at first on the measurement
with high pump fluence in the superconducting phase.
The experimental concept is shown in Figure 8.2.

Fig. 8.2.: Variance as a function of the unbalancing. a Mean value for initial balanced
differential signal. The mean value present a “negative” response, since in our
set-up the probe signal is subtracted from the reference one, as shown in b. In
the measurements plotted in Figure 8.1 the signal has been reversed, in order to
show the real time evolution. From now on raw data will be plotted, in order to
better explain the results and the developed model. c and d show the variance
dynamics for negative and positive initial unbalancing respectively.

Performing several measurements in various conditions we noticed that the variance
dynamics is visible only if the differential signal is far from the point of minimum
variance xMIN . Moreover, a change in the initial reflectivity can “reverse” the shape
of the variance as shown in Figure 8.2 c and d, where the variance time dependence
for different initial unbalancing is shown. Both the described effects can be explained
by the BS model and have been observed on other samples (see Chapter 7)

Anyway, if we try to fit the acquired variance with the BS model (using the related
characterization function σ2 (〈n̂〉)) as for the data of Chapter 7, we cannot end up
with satisfactory results (Figure 8.3). As a matter of fact the model does not really
fit the variance dynamics, since the modeled noise of the de-excitation is usually
much more similar to the mean one. The effect is evident in Figure 8.3 a and c. It is
clear from the simulation that the model (as described up to now) is not enough to
fit the data and some other effects must be taken into account.

8.2 Model comparison 147



0.0094

0.0096

0.0098

0.0100

0.0102

0.0104
2

a

2

b

0 2 4 6
t (ps)

0.0086

0.0087

0.0088

0.0089

0.0090

2

c data
model

n

2

d

Fig. 8.3.: BS model (1): data and simulation. Comparison between the calculation of the
time evolution of the variance obtained through the BS model (black) and the raw
variance data (red), for 〈n̂〉 < xMIN a and 〈n̂〉 > xMIN c. The characterization
function (black line) and the acquired variance vs mean points (red dots) are
plotted in b and d respectively.

8.3 Polarization selection

In the Bi2212 pump-probe measurement a key role is played by the last optical
element of the experiment: the final analyzer, whose aim is the selection of the
light polarization parallel to the probe initial one. Notice that the signal obtained in
crossed polarization is much less intense than the measured one (about 1

100) and no
qualitative modification can be observed in the transient reflectivity at first glance.
Like all other dissipators this last polarizer can be described as a beam splitter.

In order to take into account this last optical element, we consider the same model
set-up used in section 6.6, but we attribute different meanings to the Beam Splitters.
The new interpretation is sketched in Figure 8.4.
In this case BS2 represents the sample, whereas BS3 stands for the last polarizer

(analyzer)1.

1Notice that now we are working in the approximation that no other dissipation occurs on the probe
beam.
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Fig. 8.4.: Bi2212 noise measurement: set-up. a Set-up used for the mean and variance
measurement of the Bi2212 sample. The most important difference with respect
to the experiments described in chapters 6 and 7 is the presence of the last
polarizer on the probe beam. b Beam Splitter model for the same set-up. On both
representations light blue area indicates the set-up used to calculate the (time
dependent) value of |T2|2.

Let me remind the differential mean photon number (that we often define “unbal-
ancing”) and the variance formula for the described set-up:

〈n̂5 − n̂10〉 =
(
|T1|2 |R|2 − |T3|2 |T2|2 |T |2

)
〈n̂1〉 , (8.1)

σ2
5−10 =

〈
(n̂5 − n̂10)2

〉
− (〈n̂5 − n̂10〉)2

=
(
|T1|2 |R|2 − |T3|2 |T2|2 |T |2

)2
σ2
n1+

+
(
|T3|4 |T2|2 |R|2 |T |2 + |T3|4 |T2|2 |R2|2 |T |2 +

+ |T3|4 |R3|2 |T2|2 |T |2 + |T1|4 |R|2 |T |2 +

+ |T1|4 |R1|2 |T |2 + 2 |T3|2 |T2|2 |T1|2 |R|2 |T |2
)
〈n̂1〉 .

(8.2)

The characterization function of the system would be σ2
5−10 (〈n̂5 − n̂10〉).
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The question is then how to describe the measured dynamics due to the pump
excitation. Again, we will consider a time-dependent |T2|2, which represents the
fraction of beam reflected by the sample and its time dependence is obtained by a
normalized “standard” pump-probe measurement on the same sample, integrated in
polarization, that is to say, a measurement obtained by the set-up highlighted by the
light blue square in Figure 8.4. Notice that this set-up have already been modeled in
section 6.5, therefore the transmittance |T2|2 can be derived from the relation 6.22
and one gets

|T2|2 = |T1|2 |R|2 〈n̂1〉
|T |2 〈n̂〉

, (8.3)

where n̂1 is the initial number of photons, Ti and Ri are the Beam Splitter parameters
and n̂ is the mean photon number signal measured in absence of the analyzer.

Notice that, in this sample, the pump induces not only an intensity dynamics, but
also a polarization one, whose consequence is the detection of different time resolved
signals for different (and in particular orthogonal) polarization selections. These
signals are the Ag and B1g modes, already discussed in sections 3.1.2, 4.3 and 5.4.
To sum up, the measured signal is characterized by:

Fig. 8.5.: BS model: parameters dynamics. a Dynamics of the transmittance |T2|2 of the
Beam Splitter representing the sample. b Dynamics of the transmittance |T3|2
of the Beam Splitter representing the last polarizer and so the selection of the
vertical polarization. c Comparison between the signal obtained by selecting the
probe vertical polarization and the one obtained by the product of the initial beam
times the contributions of a and b. d Sketch of the polarization selection at a
fixed time delay: the tangent of the angle α(t̃) is obtained dividing the horizontal
component (B1g signal) at t = t̃ from the vertical component (Ag) at the same
time delay.

i. a certain intensity STOT (t) (integrated in polarization and proportional to |T2|2,
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in this model)
ii. a time dependent angle α(t) between the probe polarization before and after the
interaction with the sample.
Thus, the last analyzer can be introduced by putting |T3|2 = cos2 (α (t)) and so the
signal detected by the negative diode will be proportional to |T3|2 |T2|2 |T |2 〈n̂1〉 (see
equation 8.1), that is, STOT · cos2 (α (t)), in agreement with the Malus Law for a
polarizer.
The dynamics of |T2|2 and of |T3|2 are shown in Figure 8.5 a and b respectively,
whereas the calculation of the angle α(t) between the orthogonal components of the
probe is sketched in Figure 8.5 d.

Figure 8.6 shows the comparison between experimental data and simulation (starting
from equation 8.2 ), for 〈n̂〉 < xMIN (a) and 〈n̂〉 > xMIN (b). Notice that not only
the model variance is reversed depending on the initial value of |T1|2 (as we observed
also in the previous cases), but also the time evolution is similar to the experimental
one and not related just to the reflectivity response.
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Fig. 8.6.: BS model: data and simulation. The red lines in a and c represent a pump-
probe variance measurements on a optimally doped Bi2212 sample for different
mean photon number values with respect to the point of minimum variance
xMIN , while the black line is the fit obtained from Equation 8.2. In b and d the
characterization function (black line) and the experimental data (red dots) are
plotted, for in a and c respectively.

This parameter definition (and especially their time dependence) allowed to obtain
a better fit of the experimental data, as shown in Figure 8.6. Differently from the
simulation of Figure 8.3, here the variance dynamics can be fitted for both mean
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values “unbalancings” and, especially, it does not follow any more the mean photon
number de-excitation.
According to the model the core of the difference between the two time depen-
dences is that, while the mean value is affected just by T2 and T3 (Equation 8.1),
the variance keeps also the information coming from R2 and especially from R3

(Equation 8.2), which in our case stands for the signal in the orthogonal polarization
with respect to the detected one. In this picture the variance actually carries more
information than the mean value, since it keeps a signature of every interaction as a
product between measured signal and “non-selected signal” (for example the term
|T3|4 |R3|2 |T2|2 |T |2 in equation 8.2), as it is clear from the last interaction with the
analyzer.

8.4 Temperature and fluence dependence

Up to now we were able to explain the variance dynamics of our Y-Bi2212 sample at
low temperatures (T < Tc) and in high pump fluence regimes. On the other hand
the model does not take into account neither the pump fluence nor the temperature
(and so the phase of the sample), while we observed completely different results in
the measurements just by tuning these parameters (see Figure 8.1). In particular the
time dependence of the noise is qualitatively similar to the mean photon number one
both for high temperatures (T ≈ 300 K) and low fluences (even at low temperatures).
How can this behavior be explained by the same BS model?

Fig. 8.7.: Ag and B1g signals at room temperature. Ag (a) and B1g (b) pump-probe
signals at room temperature: the two dynamics are almost proportional for every
pump fluence [74]

The difference between the two cases (variance dynamics similar/different from the
signal one) is related to the sample response in the orthogonal (that is, non-selected)
polarization. Let us consider the room temperature case: in metallic phase the
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transient reflectivity measured in the horizontal (B1g) and vertical (Ag) polarization
is very similar, almost proportional (Figure 8.7).

Notice that in equation 8.2 the terms which are affected by the orthogonal polar-
ization are the ones containing |R3|2; in the approximation in which horizontal and
vertical signals are proportional (SH(t) = k ·SV (t), where SH and SV are the signals
obtained by selecting the horizontal and the vertical polarization respectively) |R3|2

becomes constant in time and so it does not contribute to the time evolution of the
total signal. As a matter of fact

|R3(t)|2 = 1− |T3(t)|2 = sin2 (α(t))

=

 SH(t)√
S2
H(t) + S2

V (t)

2

= k2 · S2
V (t)

k2 · S2
V (t) + S2

V (t)

= k2

k2 + 1 .

(8.4)

The same linear (or quasi-linear) relation between different polarization signals can
be observed for high pump fluences at room temperature and for low fluences in
the superconducting state [74], thus explaining the strict connection between mean
value and variance in these conditions.

8.5 Conclusions

To sum up, performing time resolved single pulse measurements on Bi2212 we
noticed that the time evolution of the variance is strictly connected to the initial
balancing of the signal with a reference beam: in particular, the variance seems to
“reverse” its dynamics for different initial unbalancings between the pump and the
reference signal. This effect can be explained by a model in which all dissipators (BS,
sample, filters, polarizers) are described as beam splitters. The pump interaction is
introduced by a time evolution of the transmittance of the BS representing the sample
and the analyzer, in order to mimic both the intensity and polarization variation
induced by the pump excitation. A key role in the model is played by the description
of the polarization selection, which makes the variance be affected not only by the
mean value signal (mainly Ag symmetry), but also by the orthogonal polarization
(B1g symmetry), that are characterized by different de-excitation dynamics.

We observed also that the qualitative similarity of the variance dynamics and the
mean photon number one at high temperature or low pump fluences is induced by
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the ratio between the vertical (Ag) and horizontal (B1g) signal in these conditions.
If the two signals are (almost) proportional, from the BS model the variance is
expected to follow the mean photon number dynamics.
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9Conclusion

Time resolved spectroscopy is a powerful tool to study complex materials: the strong
correlations between the system degrees of freedom (electrons, spins, lattice etc.)
can be studied measuring the relaxation of the different parameters after an external
excitation. In pump-probe experiments the excitation is provided by an intense
ultrashort light pulse and the de-excitation process is probed by a second laser pulse,
whose intensity (proportional to the mean photon number) is detected after the
interaction with the sample.

We used this technique to study the phase transition of an High Temperature Super-
conductor (optimally doped Y-Bi2212) through a temperature resolved pump-probe
measurement across the critical temperature Tc. The results revealed that two excita-
tion parameters are incisive: the pump photon energy and polarization. Concerning
the photon energy, the discrimination is related to the characteristic energy of the
system, that is, the superconducting gap ∆, while the choice of the polarization is
related to the anisotropy of the system in real but especially in the reciprocal space.
In particular, we noticed that the combination of low excitation photon energy
(hν < 2∆) with a polarization parallel to the Copper-Copper axis of the system
produces an enhancement of the superconducting dynamical response both below
and above Tc.

The experimental results are supported by an effective theoretical model, based on
BCS theory: despite the non conventional superconducting character of cuprates,
their dynamical response can be qualitatively described by conventional models
(for instance the Rothwarf Taylor equations). The additional terms of the BCS
hamiltonian needed to effectively describe our system are the anisotropy of the su-
perconducting gap (characteristic of cuprates) and the description of the pseudogap
phase, which is not expected in a conventional superconductor. The interpretation
of the pseudogap phase is not unique and we adopted a non-competing order hy-
pothesis, for which paring (typical of the superconducting phase) is predicted even
above Tc, but the macroscopic superconducting properties are destroyed by phase
fluctuations.

The effective model produced the following results:
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1. it predicted the transient enhancement of the superconducting behavior due
to a low photon energy excitation polarized along the Cu-Cu direction;

2. it highlighted the importance of phase coherence in order to obtain supercon-
ducting macroscopic features: if the pump excitation provokes strong phase
fluctuations, the net effect is the reduction of the superconducting properties;

3. it suggested the possibility of inducing phase coherence in a strongly correlated
material through a perturbation (with specific characteristics).

The relevance of the superconducting fluctuations, when approaching the critical
temperature, encourages a deeper investigation of the probe pulses, in order to
understand if and how quantum fluctuations of the material under study can be
directly mapped in the quantum fluctuations of light. In particular, we focused
on the fluctuations of the photon number of each pulse after the interaction of the
sample, which can be obtained through a single pulse acquisition. Although quite
similar to a “standard” pump-probe (intensity) measurement, the noise dynamical
results require a completely different (and deeper) interpretation, which goes beyond
the simple comparison with the intensity dynamics. For this reason we developed a
model based on the quantum description of the Beam Splitter, and we performed
several measurements on benchmark samples.

The characterization of the technique allowed to move to our usual sample (Y-
Bi2212) and to compare the dynamics of the noise after the pump excitation in
metallic and superconducting states. The observed difference can be described by
the Beam Splitter model adding a polarization rotation of the probe pulse induced
by the interaction with the excited sample. Therefore the experimental results and
their interpretation through the Beam Splitter model suggests that:

1. the fluctuation measurement is very delicate and sensitive both to external
factors and to set-up configurations, even the ones which are not expected
to produce noise (for example the presence of a filter). Consequently the
interpretation of the experimental results is much more complicated than
the intensity one. It requires a detailed set-up characterization before each
measurement, in order to discriminate the sample contribution;

2. footprints of each interaction are kept in the noise;

3. in metallic and superconducting phase the main noise results are induced
by intensity and polarization changes, generated by the interaction between
the probe pulse and the excited sample. Further investigations could concern
the pseudogap phase (especially about the critical temperature), where we
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expect larger phase fluctuations. The comparison with the superconducting
and metallic phases could give some hints about the interactions at the basis
of the sample properties and phase transitions.

The new technique potentially provides a tool to detect an increasing number of
(dynamical) phenomena in complex systems.
As a matter of fact the preliminary results presented in this thesis show that, not
only the variance on the photon number conveys more information than a “standard”
pump probe signal, but also, unexpectedly, its dynamical range can be consciously
amplified without reducing the quality of the measurement. The controlled increase
of the variance of the time resolved signal allows on one side to reduce (or optimize)
the ratio between the external noise and the inner light fluctuations and, on the
other hand, to amplify the light-matter interaction footprints contained in the photon
number distribution, but completely hidden in an intensity (or mean photon number)
“standard” measurement.

This approach opens new perspectives in the study of complex systems, in which
quantum fluctuations are expected to be relevant to describe intriguing proper-
ties, such as high temperature superconduction, quantum paraelectricity [27] and
quantum phase transitions in general [82, 81].
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A
Short summary of BCS theory

In this appendix we want to briefly summarize the main quantities and equations
introduced by the BCS model1.
BCS theory is a microscopic model which describes conventional superconductivity:
the solution is based on three main intuitions:

1. COOPER INSTABILITY: L. Cooper found that an arbitrarily weak electron-
electron attraction induces a two particle bound state that destabilizes the
Fermi surface.

2. SCHRIEFFER HYPOTHESIS: J. R. Schrieffer proposed that the ground state of
a conventional superconductor can be described as a coherent state of the
electron pair (or “Cooper pair”) operator Λ =

∑
k φkc↓−kc↑k (with c is the

single particle annihilation operator, the arrown ↑↓ refer to the z-component
of the spin and φk =

∫
dxe−ik·xφr is a sort of weight of the Cooper pairs

contributions: in BCS it is isotropic)

|ΨBCS〉 = eΛ† |0〉 . (A.1)

3. PHONON MEDIATION: J. Bardeen, L. N. Cooper and J. R. Schrieffer proposed in
their paper2 the interaction between electrons resulting from virtual exchange
of phonons is attractive when the energy difference between the electrons
states involved is less than the phonon energy. The calculations were then
developed by A. B. Migdal3 and Y. Nambu4.

1The summary follows treatment found in P. Coleman (P. Coleman, Introduction to Many Body Physics,
Cambridge University Press (2015))

2J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of Superconductivity, Physical Review, 108,
1175 (1957)

3A. B. Migdal, Interaction between electrons and lattice vibrations in a normal metal, Soviet Physics
jetp 34, 6 (1958)

4Y. Nambu, Quasi-Particles and Gauge Invariance in the Theory of Superconductivity Physical Review
117, 648 (1960)
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From the Schrieffer hypothesis A.1 one can expand the exponential and, keeping in
mind that two electrons with the same k and σ cannot be created (Pauli principle),
you end up with the non-normalized BCS wavefunction

|ΨBCS〉 =
∏
k

(1 + φkc
†
↑ (k) c†↓ (−k)) |0〉 . (A.2)

A.1 Hamiltonian

The general quantum Hamiltonian which describes the interaction between two
electrons can be written as:

H =
∑
k,σ

εσ (k) c†σ (k) cσ (k) + +
∑
k,k′

Vkk′c
†
↑ (k) c†↓

(
−k′

)
c↓
(
−k′

)
c↑ (k) , (A.3)

where σ = {↑, ↓}.

In BCS superconductors the scattering between the electrons is produced by the
exchange of a virtual phonon, so the interaction can be described by the Fŕ’olich
potential

V EFF
kk′ = g2

k−k′
2ωk−k′

ε (k)− ε (k′)2 − ω2
k−k′

, (A.4)

where k refers to the first electron and k′ to the second one, ε is the electronic
energy and ω the phoninc one.

Cooper suggested that the interaction is not strongly k dependent and that it becomes
attractive within the Debye energy ωD from the Fermi surface, so

Vkk′

−
g0
V if ε (k) , ε (k′) < ωD

0, otherwise.
(A.5)

In this approximation the Hamiltonian expression becomes:

H =
∑
kσ
εσ (k) c†σ (k) cσ (k)− g0

V
Â†Â, (A.6)

where Â =
∑
εk<ωD

c↓ (−k) c↑ (k).

Let us define
∆ = −g0

V

〈
Â
〉

(A.7)
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and move to the mean field approximation Â =
〈
Â
〉

+ δÂ, with
〈
Â
〉

= − V
g0

∆.

In this approximation and neglecting the second order terms in δÂ one finally gets
the BCS Hamiltonian

H =
∑
kσ
εkc
†
σ (k) cσ (k)−

∑
k

∆c†↓ (−k) c†↑ (k) + ∆∗c↑ (k) c↓ (−k) + V

g0
∆∗∆. (A.8)

A.2 Eigenvualues

A part from the constant term proportional to ∆∗∆, the Hamiltonian A.8 can be
written in matrix form as

H =
∑

k

[
c†↑ (k) c↓ (−k)

] [εk ∆
∆∗ −εk

] [
c↑ (k)
c†↓ (−k)

]
(A.9)

If we diagonalize the matrix we get

det

[
εk − E ∆

∆∗ −εk − E

]
= E2 − εk − |∆|2 = 0⇒ E1,2 = ±

√
εk + |∆|2 (A.10)

A.3 Eigenstates

The system


det

εk ∆

∆∗ −εk

Ãk

B̃k

 = ± |E|

Ãk

B̃k


Ã2

k + B̃2
k = 1

(A.11)

allows to calculate the eigenstates

v1 =

Ak

Bk


v2 =

−Bk

Ak,

 (A.12)

where Ak =
√

1
2

(
1 + εk√

ε2
k+|∆|2

)
and Bk =

√
1
2

(
1− εk√

ε2
k+|∆|2

)
.
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The unitary matrix which diagonalizes the Hamiltonian is

U =
[
Ak −Bk

Bk Ak

]
(A.13)

and it can be used to move from the single particle operator cσ (k) to quasiparticle

creation and annihilation operators though the relation U
[
γ↑(k)
γ†↓(−k)

]
=
[
c↑(k)
c†↓(−k)

]
and

one gets γ↑ (k) = Akc↑ (k) +Bkc
†
↓ (−k)

γ†↓ (k) = Bkc↑ (k)−Akc
†
↓ (−k) .

(A.14)

Notice that the quasi-particles are non-interacting fermions, since they fulfill the
Dirac-Fermi distribution 〈

γ†σ (k) γσ (k)
〉

= 1

e
εk
kBT + 1

. (A.15)

In this picture an excitation corresponds to break a Cooper pair and create two
quasi-particles. The energy needed by this process E↑ (k) +E↑ (k) = 2

√
ε2

k + |∆|2 >
2 |∆|5.

Once we have introduced Ak andBk, we can write the normalized BCS wavefunction
as

|ΨBCS〉 =
∏
k

(Ak +Bkc
†
↑ (k) c†↓ (−k)) |0〉 . (A.16)

A.4 Gap equation

From the definition of the parameter ∆ (equation A.7), substituting single particle
operators with quasi-particle ones and keeping in mind the Fermi-Dirac distribution
A.15, one gets

∆ = 1
2g0N(0)

∫
|εk|<ωD

|∆|√
ε2

k + |∆|2

(
1− 2f

(√
ε2

k + |∆|2, T
))

, (A.17)

where N(0) is the density of states per spin per unit volume at the Fermi energy.

5You cannot have single particle excitations for E < 2 |∆|: there is no dissipation, which is the reason
why the resistance drops to zero in a superconductor.
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Equation A.17 allows to calculate important parameters of the system, such as:

• the transition temperature Tc (you have to impose |∆| = 0 and invert the
equation)

• the maximum value of the gap |∆| (in the limit for T −→ 0). The result is
∆ = 2ωDe

− 1
g0N(0)
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BIrreducible representation

The following table summarizes the Mulliken symbols for irreducible representations
[95].

SYMBOL PROPERTY
A symmetric with respect to rotation

around the principal rotational axis

B anti-symmetric with respect to rotation
around the principal rotational axis

E degenerate (entartet in German)
- higher order principal axes -

subscript 1 symmetric with respect to a vertical mirror
plane perpendicular to the principal axis

subscript 2 anti-symmetric with respect to a vertical mirror
plane perpendicular to the principal axis

subscript g symmetric with respect to a center
of symmetry (gerade in German)

subscript u anti-symmetric with respect to a center
of symmetry (ungerade in German)

prime (’) symmetric with respect to a mirror plane
horizontal to the principal rotational axis

double prime (”) anti-symmetric with respect to a mirror plane
horizontal to the principal rotational axis
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D4h character table [95]:

D4h E 2C4 C2 2C′2 2C2
′′ i 2S4 σh 2σv 2σd

A1g 1 1 1 1 1 1 1 1 1 1

A2g 1 1 1 -1 -1 1 1 1 -1 -1

B1g 1 -1 1 1 -1 1 -1 1 1 -1

B2g 1 -1 1 -1 1 1 -1 1 -1 1

Eg 2 0 -2 0 0 2 0 -2 0 0

A1u 1 1 1 1 1 -1 -1 -1 -1 -1

A2u 1 1 1 -1 -1 -1 -1 -1 1 1

B1u 1 -1 1 1 -1 -1 1 -1 -1 1

B2u 1 -1 1 -1 1 -1 1 -1 1 -1

Eg 2 0 -2 0 0 -2 0 2 0 0
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CAcquisition system in noise
measurements

In this appendix some details about features and requirements for the acquisition
system of a fluctuation measurements are given. In particular we will focus on two
steps of the acquisition: the detection, with particular attention on the electronics
features, such as noise and acquisition rate, and the integration process, needed to
get the final output.

C.1 Detection system

The experimental set-up is the same of the temperature measurement on Bi2212 (see
Figure 3.8: the laser optical beam (λ = 760 nm) is split in two by a beam splitter. The
first beam, adequately attenuated, is used a reference, while the second is reflected
by the sample and then sent to the differential detector. The excitation of the sample
is provided by a mid-infrared pulse (λ ≈ 8µm). The time delay between pump and
probe can be tuned by changing the latter optical path through a µm-translation
stage. The detector measures the difference between the reference beam and the
probe one. The two beams are balanced in order to have zero signal in absence of
excitation.

The only difference with respect to a standard pump-probe measurement is related
to the acquisition system, which must have the following fundamental features:

1. SHOT-TO-ELECTRONIC NOISE RATIO: the detection system must be able to
work in the shot noise limit, that is, it must be sensitive to instrinsic fluctuation
of the photon number, due to the quantum nature of light. A very naif idea of
this concept can be given by considering a single light beam split by a perfect
50:50 beam splitter. Classically the initial intensity is separated in two identical
final beams. On the other hand, from the quantum point of view, we expect
fluctuations on the photon number of the two resulting pulses, because of the
particle nature of photons. This example becomes clear if you consider an
input pulse of 3 photons: the output pulses can have respectively 0-3, 1-2, 2-1,
3-0 photons. So, in this case, although the mean intensities in time on the
output branches are equal, single pulse acquisition shows an intinsic variation,
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or noise, in the photon number (for further information see section 6.4). In
order to detect this kind of fluctuations the electronic noise must be very low.

2. ACQUISITION RATE: the laser system produces ≈ 20 fs pulses with 50 KHz
repetition rate, that is a pulse every τ = 20µs. In order to acquire single pulses
the detection rate should be bigger than 1/τ .

Our system is made up of a custom highly efficient differential detector, based on
the work of Hansen [41], and a fast digitizer.

The detector consists of two Hamamtsu S3883 Silicon PIN photodiodes with 0.94
quantum efficiency (that is, the ratio between number of electrons produced by the
diode and the number of impinging photons) at 800 nm, connected in reverse bias
and followed by a low noise charge amplifier. The reverse bias allows to physiscally
subtract the photocurrents produced by the diodes, while the amplification takes
place only at the final stage, in order not to increase the value of the noise produced
by the electronic system. The preamplifier sensitivity is 5.2 mV/fC, i.e. a detector
response of 1 mV corresponds to about 1.15 · 103 electrons. Notice that the total
efficiency (called equivalent efficiency) of the detector is not the same as the diodes
one, because of the presence of the electronic noise. The measured efficiency
(defined as the ratio between the shot noise value and the total noise for a certain
photon number input) of our detector is about ηeq ≈ 0.86. All preliminary tests on
our detection system can be found in [33].

Fig. C.1.: Scheme of the multiple recording acquisition system: only a defined time interval
of the signal is saved. The beginning of the acquisition is determined by a trigger

The output voltage is the digitized by a high speed digitizer PC plug in card (Spec-
trum M2i), with 16 bit resolution. The Multiple Recording option allows to acquire
just the “interesting” portion of the signal (that is the detection response, about 1µs,
discarding the remaining 19µs time delay between two subsequent pulses), in order
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to reduce the amount of acquired data. The Multiple Recording scheme is sketched
in Figure C.1.

C.2 Integration process

Once the detector response has been digitized, we need a technique to convert the
signal (as the one plotted in Figure C.1) to a single number representing the pulse
intensity. Multiple choices are possible:

• PEAK: one could collect the absolute peak value of the detector response: it
is a correct procedure in principle, but it is very sensitive to external noise
and, since we are interested in small intensity variations, this could affect the
measurement, especially when the differential photocurrent is close to zero.

• INTEGRATION: a second possibility consists in the integration of the detector
response in time. The integral is proportional to the peak value of the previous
point, but it is less affected to “random” external noise. The limit of this kind
of acquisition is the “weight” associated to the noise: the noise before and after
the pulse detection has the same weight as the one related to the maximum
of the signal. Again, this could be problematic when the differential signal
oscillates around zero.

• SCALAR PRODUCT: a good compromise between the two previous options is a
sort of scalar product between the measured signal and an expected (normal-
ized) one. The latter is usually measured with just one diode and represent
the typical detector response. This option keeps the stability reached in the
second point, but applies different weights to different noise contributions.

Once the conversion is done, the probe intensity (actually the difference between
the probe and the reference intensity) can be acquired pulse by pulse and then
the needed quantities (i.e. mean Ī = 1

N

∑
i Ii, variance σ2 = 1

N−1
∑
i(Ii − Ī)2 etc.,

where Ii is the intensity of the ith pulse and N is the number of pulses) can be
computed for hundreds of pulses. In the plots presented here, both mean value and
avariance have been average on tens of scans, in order to improve the quality of the
measurement.

C.2 Integration process 169





Bibliography

[1]URL: https://en.wikipedia.org/wiki/High-temperature_superconductivity
(cit. on p. 8).

[2]A. Abanov et al. „Fingerprints of spinmediated pairing in cuprates“. In: J. Electron
Spectrosc. Relat. Phenom. (2001), pp. 117–129 (cit. on p. 19).

[3]N. W. Ashcroft and N. D. Mermin. Solid State Physics. Cornell University, 1976 (cit. on
p. 10).

[4]R. D. Averitt et al. „Nonequilibrium superconductivity and quasiparticle dynamics in
Y Ba2Cu3O7−δ“. In: Phys. Rev. B 63.140502 (2001) (cit. on pp. 39, 67).

[5]L. N. Bardeen J. Cooper and J. R. Schrieffer. „Theory of Superconductivity“. In: Physical
Review 108.5 (1957) (cit. on pp. 7, 11).

[6]D. N. Basov et al. „Electrodynamics of high-Tc superconductors“. In: Rev. Mod. Phys.
77.721 (2005) (cit. on p. 67).

[7]J. G. Bernordz and K. A. Müller. „Possible High Tc superconductivity in the Ba-La-Cu-O
system“. In: Zeitschrift für Physik B - Condensed Matter 64 (1986), pp. 198–193 (cit. on
pp. 7, 12).

[8]A. V. Boris et al. „In-Plane Spectral Weight Shift of Charge Carriers in Y Ba2Cu3O6.9“.
In: Science 304.5671 (2004), pp. 708–710 (cit. on p. 67).

[9]F. Boschini et al. „Collapse of superconductivity in cuprates via ultrafast quenching of
phase coherence“. In: Nature Materials 17 (2018), 416–420 (cit. on pp. 42, 65, 78).

[10]C. Buzea and K. Robbie. „Assembling the puzzle of superconducting elements: a
review“. In: Superconductor Science Technology 18 (2005), R1–R8 (cit. on p. 9).

[11]C. Buzea and T. Yamashita. „Review of the superconducting properties of MgB2“. In:
Superconductor Science and Technology 14.11 (2001) (cit. on p. 12).

[12]M. Cardona. „Raman scattering in high Tc superconductors: Phonons, electrons, and
electron-phonon interaction“. In: Physica C 317–318 (1999), pp. 30–54 (cit. on pp. 24–
29).

[13]E. W. Carlson et al. „Concepts om High Temperature Superconductivity“. In: The
Physics of Superconductors. Ed. by Ketterson J.B. (eds) Bennemann K.H. Springer,
Berlin, Heidelberg, 2004, pp. 275–451 (cit. on pp. 15, 16, 18).

171

https://en.wikipedia.org/wiki/High-temperature_superconductivity


[14]E. Casandruc et al. „Wavelength-dependent optical enhancement of superconducting
interlayer coupling in La1.885Ba0.115CuO4“. In: Physical Review B 91.17 (2015) (cit.
on p. 66).

[15]Laboratoire National des Champs Magnetiques Intenses Toulouse. URL: http://www.
toulouse.lncmi.cnrs.fr/spip.php?rubrique149&lang=en (cit. on p. 13).

[16]U. Chatterjee et al. „Nondispersive Fermi Arcs and the Absence of Charge Ordering in
the Pseudogap Phase of Bi2Sr2CaCu2O8+δ“. In: Phys. Rev. Lett. 96.107006 (2006)
(cit. on p. 65).

[17]Y. Chuntang et al. „Structure Refinement of Bi2Sr1.855Ca1.145Cu2O8 from Neutron
Data“. In: Chin. Phys. Lett. 8 (1991), pp. 521–524 (cit. on p. 20).

[18]F. Cilento. „Non-equilibrium Phase Diagram of Bi2212 Cuprate Superconductors
revealed by ultrafast optical spectroscopy“. PhD thesis. Università degli Studi di
Trieste, 2012 (cit. on pp. 13, 16, 21, 37).

[19]F. Cilento et al. „Photo-enhanced antinodal conductivity in the pseudogap state of
high-Tc cuprates“. In: Nature Communications 5.4353 (2014) (cit. on p. 55).

[20]P. Coleman. Introduction to Many Body Physics. Cambridge University Press, 2015
(cit. on p. 11).

[21]P. Coleman and A. Schofield. „Quantum Criticality“. In: Nature 433 (2005), pp. 226–
229 (cit. on p. 91).

[22]J. Corson et al. „Vanishing of phase coherence in underdopedBi2Sr2Y0.08Ca0.92Cu2O8+δ“.
In: Nature 398.221 (1999) (cit. on pp. 65, 78).

[23]T Cuk et al. „A review of electron–phonon coupling seen in the high-Tc superconductors
by angle-resolved photoemission studies (ARPES)“. In: Phys. Stat. Sol. b 242.1 (2005)
(cit. on p. 19).

[24]P. Dai et al. „The Magnetic Excitation Spectrum and Thermodynamics of High-Tc
Superconductors“. In: Science 294 (1999), pp. 1344–1347 (cit. on pp. 15, 17).

[25]S. Dal Conte et al. „Disentangling the electronic and phononic glue in a high-Tc
superconductor“. In: Science 335.6076 (2012), pp. 1600–1603 (cit. on p. 42).

[26]R. Daou et al. „Broken rotational symmetry in the pseudogap phase of a high-Tc
superconductor“. In: Nature 463 (2010), 519–522 (cit. on p. 65).

[27]N. Das and S. G. Mishra. „Fluctuations and criticality in quantum paraelectrics“. In:
Journal of Physics: Condensed Matter 21 (2009) (cit. on pp. 2, 91, 157).

[28]J. Demsar et al. „Pair-breaking and superconducting state recovery dynamics inMgB2“.
In: Phys. Rev. Lett. 91.26 (2003) (cit. on pp. 38, 67).

[29]J. Demsar et al. „Quasiparticle dynamics and gap structure in HgBa2Ca2Cu3O8+δ
investigated with femtosecond spectroscopy“. In: Phys. Rev. B 63.054519 (2001) (cit.
on p. 67).

[30]J. Demsar et al. „Superconducting Gap ∆c, the Pseudogap ∆p, and Pair Fluctua-
tions above Tc in Overdoped Y1−xCaxBa2Cu3O7−δ from Femtosecond Time-Domain
Spectroscopy“. In: Phys. Rev. Lett. 82.4918 (1999) (cit. on p. 67).

[31]T. P. Devereaux et al. „Inelastic light scattering from correlated electrons“. In: Rev.Mod.Phys.
79 (2007), pp. 175–233 (cit. on pp. 23, 24, 30, 34, 67).

172 Bibliography

http://www.toulouse.lncmi.cnrs.fr/spip.php?rubrique149&lang=en
http://www.toulouse.lncmi.cnrs.fr/spip.php?rubrique149&lang=en


[32]V. J. Emery and S. A. Kivelson. „Importance of phase fluctuation in superconductors
with small superfluid density“. In: Nature 374 (1995), 434–437 (cit. on p. 18).

[33]M. Esposito et al. „Photon number statistics uncover the fluctuations in non-equilibrium
lattice dynamics“. In: Nature Communications 6.10249 (2015), pp. 1714–1716 (cit. on
p. 168).

[34]D. Fausti et al. „Light-Induced Superconductivity in a Stripe-Ordered Cuprate“. In:
Science 331.6014 (2011), pp. 189–191 (cit. on pp. 38, 66).

[35]M. Gedik et al. „Abrupt Transition in Quasiparticle Dynamics at Optimal Doping in a
Cuprate Superconductor System“. In: Phys. Rev. Lett. 95.117005 (2005) (cit. on p. 67).

[36]N. Gedik. „Recombination and Propagation of Quasiparticles in Cuprate Supercon-
ductors“. PhD thesis. Department of Physics University of California, Berkeley, 2004
(cit. on p. 18).

[37]C. Giannetti et al. „Discontinuity of the ultrafast electronic response of underdoped
superconducting Bi2Sr2CaCu2O8+δ strongly excited by ultrashort light pulses“. In:
Phys. Rev. B 79.224502 (2009) (cit. on p. 67).

[38]C. Giannetti et al. „Revealing the high-energy electronic excitations underlying the
onset of high-temperature superconductivity in cuprates“. In: Nature Communications
2.353 (2011) (cit. on pp. 39, 56).

[39]C. Giannetti et al. „Ultrafast optical spectroscopy of strongly correlated materials
and high-temperature superconductors: a non-equilibrium approach“. In: Advances in
Physics 65 (2016), 58–238 (cit. on pp. 8, 19, 36, 65, 67, 72).

[40]J. Graf et al. „Nodal quasiparticle meltdown in ultrahigh-resolution pump–probe
angle-resolved photoemission“. In: Nature Physics 7 (2011), pp. 805–809 (cit. on
p. 38).

[41]H Hansen. „An ultra-sensitive pulsed balanced homodyne detector : Application to
time-domain quantum measurements“. In: Optics letter 26 (2001), pp. 1714–1716
(cit. on p. 168).

[42]M. Hase et al. „Dynamics of Coherent Anharmonic Phonons in Bismuth Using High
Density Photoexcitation“. In: Physical Review Letter 88.6 (2002) (cit. on pp. 122, 123).

[43]S. Hellmann et al. „Ultrafast melting of a charge-density wave in the Mott insulator
1T − TaS2“. In: Phys. Rev. Lett. 105.187401 (2010) (cit. on p. 38).

[44]W. Hu et al. „Optically enhanced coherent transport in Y Ba2Cu3O6.5 by ultrafast
redistribution of interlayer coupling“. In: Nature Materials 13 (2014), 705–711 (cit. on
p. 66).

[45]K. Ishioka et al. „Temperature dependence of coherent Ag and Eg phonons in bismuth“.
In: Journal of Applied Physics 100.093501 (2006) (cit. on p. 122).

[46]R. A. Kaindl et al. „Dynamics of Cooper pair formation in Bi2Sr2CaCu2O8+δ“. In:
Phys. Rev. B 72.060510 (2005) (cit. on pp. 39, 67).

[47]S. Kaiser et al. „Optically induced coherent transport far above Tc in underdoped
Y Ba2Cu3O6+x“. In: Phys. Rev. B 89.184516 (2014) (cit. on p. 66).

[48]Y. Kamihara. „Iron based layered superconductor: LaOFeP“. In: Journal of the American
Chemical Society 128.31 (2006) (cit. on p. 12).

Bibliography 173



[49]S. A. Kivelson et al. „How to detect fluctuating stripes in the high-temperature super-
conductors“. In: Rev. Mod. Phys. 75 (2003) (cit. on p. 65).

[50]M. Knap et al. „Dynamical Cooper pairing in nonequilibrium electron-phonon systems“.
In: Phys. Rev. B 94.21 (2016) (cit. on p. 36).

[51]K. Kohmoto et al. „Observation of coherent phonons in strontium titanate: Structural
phase transition and ultrafast dynamics of the soft modes“. In: Physical Review B
74.064303 (2006) (cit. on p. 122).

[52]T. Kondo et al. „Point nodes persisting far beyond Tc in Bi2212“. In: Nature Communi-
cation 6.7699 (2015) (cit. on pp. 65, 78).

[53]P. Kusar et al. „Controlled Vaporization of the Superconducting Condensate in Cuprate
Superconductors by Femtosecond Photoexcitation“. In: Phys. Rev. Lett. 101.227001
(2008) (cit. on pp. 53, 67).

[54]A. Lanzara et al. „Evidence for ubiquitous strong electron-phonon coupling in high-
temperature superconductors“. In: Nature 412 (2001), 510–514 (cit. on p. 19).

[55]J. Lee and S. A. Kivelson. „Interplay of electron-lattice interactions and superconduc-
tivity in Bi2Sr2CaCu2O8+δ“. In: Nature 442 (2006), 546–550 (cit. on p. 18).

[56]J. Lee et al. „Spectroscopic Fingerprint of Phase-Incoherent Superconductivity in the
Underdoped Bi2Sr2CaCu2O8+δ“. In: Science 325.5944 (2009), pp. 1099–1103 (cit.
on p. 65).

[57]W. S. Lee et al. „Abrupt onset of a second energy gap at the superconducting transition
of underdoped Bi2212“. In: Nature 450 (2007), pp. 81–84 (cit. on p. 67).

[58]L. Li et al. „Diamagnetism and Cooper pairing above Tc in cuprates“. In: Phys. Rev. B
81.054510 (2010) (cit. on p. 78).

[59]J. W. Loram et al. „Electronic specific heat of Y Ba2Cu3O6+x from 1.8 to 300 K“. In:
Journal of Superconductivity and Novel Magnetism 7.1 (1994), 243–249 (cit. on pp. 15,
16).

[60]R. Loudon. The Quantum Theory of Light. 3rd ed. Oxford Science Publications, 1973
(cit. on pp. 98, 104).

[61]I. Madan et al. „Separating pairing from quantum phase coherence dynamics above
the superconducting transition by femtosecond spectroscopy“. In: Scientific Report
4.5656 (2014) (cit. on pp. 39, 42, 53, 65, 78).

[62]R. Mankowsky et al. „Nonlinear lattice dynamics as a basis for enhanced superconduc-
tivity in Y Ba2Cu3O6.5“. In: Nature 516 (2014), pp. 71–73 (cit. on p. 38).

[63]W. Meissner and R. Ochsenfeld. „Ein neuer Effekt bei eintritt der Supraleitfaehigkeit“.
In: Naturwissenschaften 21 (1933), pp. 797–788 (cit. on p. 7).

[64]M. Mitrano et al. „Possible light-induced superconductivity in K3C60 at high tempera-
ture“. In: Nature 530 (2016), 461–464 (cit. on pp. 38, 66).

[65]H. J. A. Molegraaf et al. „Superconductivity-Induced Transfer of In-Plane Spectral
Weight in Bi2Sr2CaCu2O8+δ“. In: Science 295.5563 (202), pp. 2239–2241 (cit. on
p. 67).

174 Bibliography



[66]F. Novelli. „In search of selective excitations for studying out-of-equilibrium properties
in strongly correlated electron systems and high temperature superconductors“. PhD
thesis. Università degli Studi di Trieste, 2012 (cit. on p. 38).

[67]H. K. Onnes. „The Superconductivity of Mercury“. In: Comm. Phys. Lab. Univ., Leiden
(1911), pp. 122–124 (cit. on p. 7).

[68]D. Pelc et al. „Emergence of superconductivity in the cuprates via a universal percola-
tion process“. In: arXiv 1710.10219 (2017) (cit. on p. 78).

[69]D. Pelc et al. „Unusual behavior of cuprates explained by heterogeneous charge
localization“. In: arXiv 1710.10221 (2017) (cit. on p. 78).

[70]L. Perfetti et al. „Ultrafast dynamics of fluctuations in high-temperature supercon-
ductors far from equilibrium“. In: Phys. Rev. Lett. 114.067003 (2015) (cit. on pp. 65,
78).
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