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3D shear wave velocity model of 
the crust and uppermost mantle 
beneath the Tyrrhenian basin and 
margins
D. Manu-Marfo1,2, A. Aoudia1, S. Pachhai  1,3,4 & R. Kherchouche1,5

The Tyrrhenian basin serves as a natural laboratory for back-arc basin studies in the Mediterranean 
region. Yet, little is known about the crust-uppermost mantle structure beneath the basin and its 
margins. Here, we present a new 3D shear-wave velocity model and Moho topography map for the 
Tyrrhenian basin and its margins using ambient noise cross-correlations. We apply a self-parameterized 
Bayesian inversion of Rayleigh group and phase velocity dispersions to estimate the lateral variation 
of shear velocity and its uncertainty as a function of depth (down to 100 km). Results reveal the 
presence of a broad low velocity zone between 40 and 80 km depth affecting much of the Tyrrhenian 
basin’s uppermost mantle structure and its extension mimics the paleogeographic reconstruction of 
the Calabrian arc in time. We interpret the low-velocity structure as the possible source of Mid-Ocean 
Ridge Basalts- and Ocean Island Basalts- type magmatic rocks found in the southern Tyrrhenian basin. 
At crustal depths, our results support an exhumed mantle basement rather than an oceanic basement 
below the Vavilov basin. The 3D crust-uppermost mantle structure supports a present-day geodynamics 
with a predominant Africa-Eurasia convergence.

The Tyrrhenian basin is a back-arc basin in the Mediterranean region which opened in relation to the retreating 
Adriatic-Ionian slab in the geodynamic context of the African and Eurasian plates convergence1–3. Being the 
youngest basin in the Central Mediterranean region, the Tyrrhenian is considered as a reference natural labo-
ratory for investigating the geodynamics of back-arc basins4–8. However, the crust and upper mantle velocity 
structure is poorly understood beneath the basin and adjacent margins. The distribution of seismic stations on 
land makes it seismically challenging to image the shallow lithosphere below the Tyrrhenian basin, as it inhibits 
proper illumination of the shallow structures by teleseismic compressional (P) and shear (S) waves9. Additionally, 
teleseismic surface waves mostly lack short periods sensitive to the crust and uppermost mantle structure beneath 
the basin. Consequently, previous tomographic studies have limited resolution of the shallow lithospheric struc-
ture beneath the basin10–12.

An alternative method to study the lithosphere, particularly the crust, is active seismological observations. In 
fact, most of our knowledge about the crust beneath the Tyrrhenian basin stems from such studies. For instance, 
Moeller et al.8 have shown that the north Tyrrhenian basin is underlain by a continental crust of about 17 km 
thick but Vp values of the lower crust are higher than those found for the average continental crust. Again, Prada 
et al.13 have found evidence for exhumed mantle rocks beneath the Vavilov basin, contrary to the previous sugges-
tion of an oceanic crust14,15. However, the problem with active seismological studies is that it provides very little 
information about the lithospheric structure beneath the Moho and also yields relatively limited information on 
the lateral variation of the velocity structure.

In over a decade now, ambient noise tomography has proven to be a valuable tool for imaging crust and lith-
ospheric mantle velocity structure16,17. The method has become particularly essential in areas where there exist 
difficulties in achieving high-resolution images of the lithosphere using data from ‘traditional’ seismic imaging 
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techniques18,19. This method has been already applied in the Tyrrhenian area20–23, but in the framework of regional 
studies covering the whole Europe20–22 or the Italian peninsula23 and therefore does not provide much detailed 
structure beneath the Tyrrhenian basin.

In this study, we extract interstation Empirical Green’s functions (EGFs, e.g., Supplementary Fig. S1) from 
the cross-correlation of ambient noise data using a dense network of 73 broadband stations surrounding the 
Tyrrhenian basin (Fig. 1). This allows for the retrieval of high-quality Rayleigh wave group and phase disper-
sions, which are inverted to obtain group and phase tomography maps, respectively. Local dispersion curves 
are then extracted from the tomographic maps. These dispersion curves are traditionally inverted for S-wave 
velocity applying linearized inversion, which iteratively minimizes the objective function until certain misfit value 
is achieved24. However, such inversion can often lead to a misleading solution if the starting model is not close 
to the true one and can encounter challenges on the estimation of proper uncertainties, particularly for highly 
non-linear problems. Here, we implement a highly efficient trans-dimensional Bayesian approach25,26 and provide 
a new 3D shear wave velocity structure beneath the Tyrrhenian basin and its margins (down to 100 km depth) 
along with the related uncertainties. In this approach, layer properties including the number of layers remain 
unknown in the inversion and fully constrained by data. To provide efficient sampling and achieve faster conver-
gence, we adapt an interacting Markov chain Monte Carlo Sampling approach in which parameters are allowed 
to exchange between different chains. We identify new structural features in the Tyrrhenian basin and at the 
transition with the surrounding Apennines, Calabrian arc, and Sardinia block. We discuss our results in light of 
the published recent findings in terms of structure, magmatism, and geodynamics.

Results
Group and phase tomography maps. Figure 2 shows the ambient noise tomography maps for group 
and phase velocities at different periods (between 5 and 50 s). The tomography maps at short periods (5–10 s, 
Fig. 2a,b,i,j) show pronounced high-velocity anomalies in the southern Tyrrhenian basin, which likely indicates 
the presence of a high velocity material at shallow depth. In contrast, the northern Tyrrhenian basin is charac-
terized by low-velocity anomalies which distinguish it from the south, and suggest a different crustal structure 
compared to the southern Tyrrhenian. A noteworthy observation is that the boundary between the north and 
south anomalies approximately coincides with the 41° Parallel Line which is generally considered as the divide 
between the northern and southern Tyrrhenian basin. Observed low-velocity anomalies below the Apennines, 
Sicily, and the Corsica sedimentary basin are consistent with previous studies8,23,27 and are likely related to sedi-
mentary basins.

Figure 1. Bathymetric and topographic map of the Tyrrhenian basin and surroundings. Black triangles 
represent the location of broadband stations used in this study. Inset map shows the ray density with all inter-
station paths used in this study. VB = Vavilov basin; MB = Marsili basin.

https://doi.org/10.1038/s41598-019-40510-z


3Scientific RepoRts |          (2019) 9:3609  | https://doi.org/10.1038/s41598-019-40510-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

Velocity maps at 15–30 s periods (Fig. 2c–f,k–n) are substantially sensitive to the crustal thickness and the 
transition between the crust and uppermost mantle. Consequently, high-velocity anomalies in the Tyrrhenian 
basin likely correspond to the shoaling of mantle material beneath the basin. The low velocity anomalies coincide 
with regions having thicker than average crust such as below the Apennines where we observe a continuous low 
velocity belt mimicking the Apenninic mountain ranges. The long-period group and phase tomography maps (40 
and 50 s, Fig. 2g,h,o,p) do not preserve the anomaly contrast at the basin-margin transition as reported in shorter 
period maps likely due to Rayleigh wave velocities sampling upper mantle materials beneath both regions. Note 
that the group velocity anomalies are stronger than phase velocity as sensitivity amplitudes are higher for group 
velocity in comparison to phase velocity (Supplementary Fig. S3).

Shear velocity structure. We construct a 3D shear-wave velocity model with errors by combin-
ing 1D velocity-depth profiles at each node of a 0.5° by 0.5° grid across the Tyrrhenian Sea and its margins. 
Supplementary Figs S4 and S5 show the one standard deviation from the estimated mean S-wave velocity. The 
uncertainties are higher near the location of interfaces due to smearing of velocity structure. In Supplementary 
Fig. S6, we plot the mean S-wave velocities on horizontal sections at different depths. Overall, the uncertainties 
are approximately 4% of the mean velocity which suggests that the velocity is reasonably well constrained.

There is a variable lateral resolution of our model, due to the variation in path density from the 
cross-correlation (Supplementary Fig. S2). Lateral resolvable structures are on the order of ~30 km in the 
short-period part of the model and degrade to ~150 km at longer periods (Supplementary Fig. S2). In general, 
the structures beneath the portion of the basin parallel to the Italian Peninsula are highly resolved due to a large 
number of stations used from this area and consequent good path coverage. The best vertical resolution is ~5 km 
at shallow depth and resolution decreases for deeper structure (Supplementary Fig. S3). Inversion results indicate 
that our model is reasonably well resolved from the surface down to about 100 km (see Supplementary info for 
depth resolution test).

Figure 3a–c show selected horizontal slices at 5 km, 20 km, and 60 km depth, respectively and Fig. 3d shows 
the Moho topography (discussed later). In general, the shear velocity model shows similar characteristics as the 
Rayleigh wave tomography results, yet highlights tectonic and geological features associated with the Tyrrhenian 
lithosphere. At shallow crustal depths (5 km map, Fig. 3a), low shear velocities are confined to the northern 
Tyrrhenian basin, Sicily, Calabria, and below the Italian peninsula. The highest velocities occur below the Vavilov 
basin and are somewhat surrounded by moderate high velocities in the Cornaglia and Campania terraces which 
extend southeast to reach the Marsili basin.

At 20 km depth (Fig. 3b), we see a clear distinction between the Tyrrhenian basin and its margins, with high 
velocities delineating the triangular shape of the Tyrrhenian basin. At this depth, we do lose the velocity contrast 
between the northern and southern Tyrrhenian basin which suggest a likely uniform uppermost mantle structure 
beneath the basin. Low velocities observed below continental regions can be explained by the presence of crustal 

Figure 2. Rayleigh wave tomographic maps. (a–h) Group velocity and (i–p) phase velocity maps at periods 
of 5, 10, 15, 20, 25, 30, 40 and 50 s. Colours represent the percentile deviation from the average velocity at each 
period shown at the bottom of each plot. Results are shown only for the resolution length shorter than 150 km 
(Supplementary Fig. S2).
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material that extends beyond 20 km depth28. The 60 km depth map (Fig. 3c) shows a reversal in the velocity 
pattern, having high velocities beneath the continental regions (Sicily, Calabria, and Italian peninsula) and low 
velocities below the basin.

Figure 4 shows the velocity-depth vertical cross sections along six lines. On these cross sections, the black 
continuous line depicts the Moho topography along the profiles based on the maximum interface probability 
and the dash-dotted line indicates the depth where the velocity becomes mantle velocity and gradient of velocity 
is approximately infinite. This can also represent an approximate uncertainties for the determination of Moho. 
The vertical profiles in Fig. 4 suggest a variable crustal thickness both within the basin and across the margin 
between the basin and the continental regions. We see that the geometry of the crust is one that thins gradually 
from about 20 km below the margins to ~10 km beneath the Vavilov and Marsili basins (Profile C and E, Fig. 4). In 
the northern Tyrrhenian basin, a crust of ~16 km thick is found (Profile D, Fig. 4). The greatest crustal thickness 
is observed beneath Calabria, extending down to the top of the downgoing high velocity Ionian slab at ~55 km 
depth (Profiles A and C, Fig. 4). The crustal thicknesses observed in our model are consistent with previously 
reported results28–30.

We see a low velocity zone emerging at about 40 km and extending to ~80 km depth or the base of the model 
depending on the area crossed by the profile (Profiles B–E, Fig. 4). In profile D crossing the Northern Tyrrhenian, 
Fig. 4, a high velocity body, likely a remnant of the European lithosphere, sits on top of the low velocity layer. 
We interpret the high velocity body seen at the start of Profile E (Fig. 4), as the northernmost part of the African 
lithosphere. The geometry of the mantle lithosphere beneath the Vavilov basin in Profile C and E (Fig. 4), suggests 
that strong extension that caused the opening of the southern Tyrrhenian may have involved the uppermost 
mantle, indicated by some form of break-up within the overriding plate. The geometry of the mantle lithosphere 
along Profile E suggests an ongoing compression between the African block and the already extended mantle 
lithosphere beneath the Tyrrhenian basin. High upper mantle velocities observed below Calabria are associated 
with the Ionian slab (Profile A–C and F, Fig. 4).

Moho topography. In general, surface wave dispersion measurements are sensitive to absolute shear wave 
velocities but are poor in constraining discontinuities. Hence, for most surface wave studies, the Moho interface 
is taken as the depth of the 4.2 km/s velocity contour (e.g., ref.31). In the Tyrrhenian basin, the complex tectonic 

Figure 3. Shear velocity structure in map view and Moho topography map for the study area. (a–c) Shear 
velocity structure at 5, 20 and 60 km depth. (d) Moho topography map for the Tyrrhenian area.
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history has undoubtedly affected the lithospheric structure and using the 4.2 km/s velocity contour to define the 
Moho interface in our model produce results that are inconsistent with previous studies. Here, we determine the 
Moho depth by picking where strong interface probability for a discontinuity occurs at a pertinent shear velocity 
on the 1-D velocity depth profile (see Supplementary info and Figs S7, S8 and S9).

In Fig. 3d, we present a new Moho topography map for the Tyrrhenian basin and margins. The contour map 
of the Moho topography is shown in Fig. S10. These maps show strong lateral variation in crustal thickness but 
very consistent result within the different tectonic provinces of the study area. The Moho is very shallow (about 
10–12 km thick) below the southern Tyrrhenian basin. We observe similar shallow Moho depths (~11 km) in the 
northern Tyrrhenian right above the Vavilov basin (Fig. 3d), in agreement with the results from recent wide-angle 
seismic reflection studies32. The deepest Moho is found below the northern Apennines and Calabria, where the 
Moho depths exceeds ~50 km. The general characteristics of the Moho thicknesses found here are very consistent 
with previously reported depths28–30. The significant improvement achieved in our model lies in the resolution of 
the Tyrrhenian basin’s Moho topography which is not well resolved in previous models (e.g., ref.29).

Figure 4. Shear velocity structure along six different cross-sections. The black lines on the cross-sections depict 
the undulation of the Moho along the profile and the dash-dotted line shows the uncertainties of the Moho 
depth. The depth scale in the cross sections is exaggerated by a factor of 2 or 3 depending on the length of the 
profile.
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Discussion
It can readily be seen from our images (Figs 2 and 3) that two rheologically different domains underlain the 
northern and southern Tyrrhenian basin. The continental crust under the northern Tyrrhenian basin8,33,34 is char-
acterized by low shear velocities in our model (Fig. 3a). The nature of the crust in the southern Tyrrhenian basin 
is rather complex. At shallow depths (<10 km), we observe the highest velocities in the central part of the basin, 
below the Vavilov-Magnaghi basin (Figs 3a and 5). Here, recent active seismological results suggest that strong 
extension in the southern Tyrrhenian resulted in mantle exhumation beneath the Vavilov basin7,13,35 contrary 
to previous studies suggesting the emplacement of an oceanic crust14,15. Our highest velocities at crustal depths 
(profiles A and B, Fig. 5) occur below the Vavilov basin, which corroborates an exhumed mantle basement below 
the Vavilov basin7,13,35. Integrating our crustal model for the Tyrrhenian basin and margins (Figs 3–5) with recent 
publications13,36, we see a clear delineation of the three basement domains in the southern Tyrrhenian suggested 
by Prada et al.13: stretch continental crust (beneath Sardinia and Campania margins), oceanic crust (beneath 
Cornaglia and Campania terraces) and exhumed mantle basement (below the Vavilov basin). We interpret the 
structure of the crust under the Marsili basin as oceanic as supported by recent magnetic studies37,38.

Remarkably, the contrast in shear velocity structure between the northern Tyrrhenian and the southern 
Tyrrhenian in our model coincides approximately with the location of the 41° Parallel Line (Fig. 3a, see also the 
tomography maps at short periods, Fig. 2). The 41° Parallel Line is defined as a regional magnetic and free-air 
gravity anomaly that is conventionally regarded as separating the northern Tyrrhenian continental structure from 
the heterogeneous structure in the southern Tyrrhenian39–42. The structural significance of 41° Parallel Line in the 
geodynamic evolution of the basin is still debated3,40,41,43, nevertheless, our results provide the first comprehensive 
seismological evidence for the presence of this lithospheric feature.

In Fig. 3d, we see two expressions of very shallow Moho (~10–12 km) which we infer to be related to the differ-
ent style of rifting that opened the north and south Tyrrhenian basin44. In the north, we interpret the feature of the 
shallow Moho oriented approximately N-S as the likely expression of the initial eastward retreat of the Adriatic 
slab that caused the opening of the northern Tyrrhenian basin3,44. The second observed shallow Moho feature in 
Fig. 3d is oriented approximately NW-SE in the south. This feature is clearly the effect of the ESE retreat of the 
Ionian slab which resulted in the opening of the south Tyrrhenian basin2,3.

The most pronounced feature in the upper mantle is the presence of a low velocity zone (LVZ) extending from 
40 to 80 km and affecting much of the Tyrrhenian basin upper mantle structure (Fig. 4). Similar velocity decrease 
has been reported in previous models by Greve et al.11 and Marone et al.45. Low velocities in the Tyrrhenian upper 
mantle likely originate from a number of contributing factors. First, asthenospheric upwelling due to lithospheric 
extension in the basin may cause decompressional melts which can explain the observed low velocities beneath 
the basin. Second, the likely presence of a hydrous upper mantle structure below the basin due to past subduction 
and rollback. Last, the effect of mantle potential temperature on velocity.

Generally, variation in seismic velocity simultaneously depends on temperature, pressure, and composition 
and the uncertainty in the estimation of these controlling factors makes it difficult to separate their effects on 
velocity46. Nevertheless, seismic velocity anomalies in the upper mantle are generally interpreted in terms of tem-
perature, being that the effect of temperature on seismic velocity is thought to be greater than other controlling 
factors10. Wiens et al.47 attributed a significant low velocity zone extending from 40 to 100 km depth observed in 

Figure 5. Zoom-in of the crustal velocity model in the Southern Tyrrhenian basin. Section A-A′ is along the 
active seismic profile by ref.13.
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the shear-velocity structure of four back-arc basins to variations in mantle potential temperature, as the observed 
velocity decrease show no apparent correlation with variation in water content.

In the Tyrrhenian basin, Greve et al.11 explained the velocity decrease from 70 to 110 km depth range in terms 
of variations in water content, alluding that temperature plays a smaller role compared to other back-arc basins47. 
However, considering that the strongest lithospheric extension occurred in the central part, beneath the Vavilov 
basin2,3, we expect the mantle to upwell and decompressional melt to occur similar to a mid-ocean ridge system. 
The low seismic velocities observed at shallow depth beneath the Tyrrhenian basin is consistent with such a shal-
low melt zone. We argue that the top of the LVZ at 40 km depth seen in our images (Fig. 4) suggest that in addition 
to water content variation and temperature, decompressional melts contribute to the observed LVZ under the 
Tyrrhenian basin.

Volcanism of the Tyrrhenian basin and its margins shows large variations in time and space reflecting the 
complex tectonic history of the region. Igneous activities in the southern Tyrrhenian basin emplaced a wide 
variety of magmatic rocks spanning Mid-Ocean Ridge Basalts (MORB)-, Ocean Island Basalts (OIB)-, and Arc- 
type geochemical signatures48. This wide range of magmatism point to a variety of mantle sources and melting 
processes48–50. Below the Vavilov basin, our images (Fig. 4) show low velocities extend from 40 to 80 km depth, 
well within the estimated range for primary MORB production based on geochemical considerations51. We infer 
that the LVZ below the Vavilov basin feeds the Vavilov–Magnaghi shallow structures and may perhaps be the 
source of MORB- and OIB- type magmatic rocks found here15,48. Although the LVZ is a broad feature beneath the 
Tyrrhenian basin (see Profile E, Fig. 4), it is still interesting that we see a conduit-like feature below the Vavilov 
volcanic complex which appears to connect the shallow lithospheric structures to the top of the LVZ at 40 km 
(Profile C, Fig. 4). Differently from Vavilov, the structure beneath the Marsili seamount is dominated by the high 
velocity Ionian slab (profile C, Fig. 4), so volcanism here may require a different dynamics which may not be 
related to the observed velocity decrease in the upper mantle.

The high velocities observed in our images beneath Calabria and extending under the southeast Tyrrhenian 
basin, point to the Ionian slab subducting below the Calabrian Arc (Profile A–C and D, Fig. 4). Tomography 
results and intermediate to deep earthquakes define the NW subducting slab down to nearly 400 km depth9,52. A 
Subduction-Transform Edge Propagator (STEP53) laterally bounds the distinct edges of the Ionian slab in both 
the northeast and southwest54. In profile F (Fig. 4), we are likely sampling the southwest edge of the Ionian slab, 
indicated by the clear transition from fast to slower velocities which occur in proximity of the Ionian Fault54. 
This is consistent with multichannel seismic experiment that shows that the Ionian Fault forms part of a complex 
deformation zone that bounds the southwestern edge of the Calabrian subduction system54. In the northeast, we 
do not see a clear boundary of the Ionian slab beneath the southern Apennines but rather we see a flexing of the 
fast velocity towards shallow depths (profile F, Fig. 4). The Sicily-Tyrrhenian offshore thrust front55 which accom-
modate the Africa-Europe plate convergence through thrusting type seismicity and structural data56 and connects 
to the Ionian fault system57 is seen here as a crustal feature affecting the Moho topography (Fig. 3d).

Overall, the geometry of the crust-upper mantle structure beneath our study area is more in favor of a domi-
nant present-day Africa-Eurasia convergence rather than a slab retreat mechanism that was dominant in the last 
30 Myr55. The nowadays expression of the slab-retreat mechanism is localised at both lateral edges of the Ionian 
slab, on its transition to the Sicilian domain in the southwest and southern Apennines domain in the northeast. 
These two edges delineate the thickest crust in our study area and very well localised beneath Calabria known for 
its low geodetic strain rates58.

Conclusions
We determined a 3D shear velocity model for the Tyrrhenian basin from the inversion of Rayleigh wave group 
and phase velocities derived from ambient noise cross-correlations. The inversion results indicate a pronounced 
low shear velocity layer in the uppermost mantle, between 40 and ~80 km depth, affecting much of the Tyrrhenian 
basin. We suggest that this low velocity zone is possibly the source of the MORB- and OIB- type magmatic rocks 
found in the Vavilov basin. The lateral extent of our Moho topography model likely reflects the initial E-W exten-
sion in the northern Tyrrhenian and the successive NW-SE extension in the southern Tyrrhenian which resulted 
in the formation of the basin. The Moho topography mimics the extent of the Sardinia, Campania and Sicily mar-
gins as well as the Cornaglia and Campania terraces and Magnaghi-Vavilov basin which is characterized by high 
velocity and a very shallow Moho likely reflecting mantle unroofing/exhumation. In the Calabrian subduction 
zone, we find evidence for the Ionian slab edges within the crust and uppermost mantle structure. This is likely 
to be associated with tearing to the southwest and flexing (or immature tearing) to the northeast, as well as slab 
narrowing as reported in recent literature. The 3D crust and upper mantle model favors a geodynamic setting 
where the dominant process is the Africa-Eurasia convergence while slab retreating seems to be less important 
but localised nowadays beneath Calabria where the thickest crust and highest seismogenesis is reported.

Data and methods. We use four years continuous data (2010–2013) recorded at 73 broadband stations 
in Italy, France, Tunisia, Croatia, and Malta (Fig. 1) to compute Rayleigh wave group and phase dispersions 
curves. The interstation Empirical Green Functions (EGFs) are determined from the noise data by following 
the processing method of Bensen et al.59. The day-length vertical component waveforms at individual stations 
are first demeaned, detrended, corrected for instrumental response and whitened. We minimize the effect of 
earthquake-generated signals by applying a running-absolute-mean temporal normalization. Finally, the 
day-length waveforms are cross-correlated between all available station pairs and then stacked to form the EGFs 
(e.g., Supplementary Fig. S1). We measure dispersion curves from EGFs with a signal-to-noise ratio (SNR) 
value > 7 and select only cross-correlations with a minimum interstation distance of 100 km. We analyse the 
EGFs using the multiple filter technique24 to measure Rayleigh wave fundamental mode group and phase velocity 
dispersions from 5 to 50 s period.
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The estimation of the velocity structure from the ambient noise data involves a two-step inversion scheme. 
In the first step, we invert for the group and phase tomography maps on every grid (0.5° by 0.5° size) at different 
periods (sensitive to different depths) following Yanovskaya & Ditmar60. The Rayleigh wave tomography maps are 
then inverted to retrieve the 3D S-wave velocity structure in the second step. The estimation of S-wave velocity 
from the dispersion data is a non-linear geophysical inverse problem. Traditionally, the inversion is linearized 
and is solved for velocity with a fixed number of layers. Additionally, a damping parameter is used to stabilize 
the inversion24. Therefore, proper quantification of uncertainties becomes challenging. Here, we apply a fully 
non-linear Bayesian approach25,26,61, which does not require any damping, to compute the 1D shear velocity pro-
files and their uncertainties. The parameter uncertainties can either come from measurement errors or from 
theoretical errors.

In Bayesian inversion, the answer to the inverse problem is expressed in terms of posterior probability density 
(PPD), which combines the prior information (what we know beforehand about the model and is independent of 
data) and the likelihood (incorporates the data information), i.e., ∝m d d m mp p p( / ) ( / ) ( ). Here, p(m/d) is the 
probability of the model parameter vector (m) given the data vector (d) (i.e. posterior probability density), p(d/m) 
is the probability of the data given the model (i.e., likelihood) and p(m) is the prior probability of the model 
parameters (i.e., number of layers, layer thickness and S velocity). The data errors are typically not known and are 
approximated as a difference between the measured and predicted data. Note that the P-wave velocity is derived 
from the fixed Vp/Vs ratio and density is derived from S-wave velocity. In this paper, we consider a uniform prior 
within a range of reasonable S-wave velocity (based on the past studies) as a function of depth while the likelihood 
function is derived based on a Gaussian distribution of data errors.

It is challenging to compute the posterior analytically, particularly for non-linear inversion. Additionally, the 
model complexity (i.e., the number of layers in the case of observed data) is not known in advance and estimated 
parameter uncertainties can highly depend on the model complexity. For example, if we increase the model 
complexity (i.e., increase the number of layers), the fit between the model prediction and observed data can be 
improved, but not necessarily required by data and can result in unrealistically large uncertainties. In contrast, a 
simple model can fit only part of the data resulting in unreasonably small uncertainties. Therefore, a parameter 
sampling approach known as reversible jump Markov chain Monte Carlo (rjMcMC) sampling is applied to com-
pute the PPD26,62.

In rjMcMC approach, the number of layers is allowed to change (between 1 and 35 from the surface to 100 km 
depth) and parameters in each iteration are updated through three different moves: birth, death, and perturba-
tion. In the case of a birth move, a new interface at random depth is introduced and proposed with the perturba-
tion of velocity and thickness from a randomly chosen layer. The proposed model is accepted or rejected based on 
the likelihood ratio of the current model to the previous model. If the proposal is accepted, the model is updated 
with an additional layer and proceeds for the next iteration. If the proposal is rejected then the current model is 
retained and a new model is proposed again. In the case of death move, a random layer is picked and proposed 
to delete (death) with the perturbation of layer thickness and velocity from a randomly chosen layer. Then the 
same procedure as in the case of the birth stage is followed. In the case of perturbation move, the number of layers 
remains the same and only layer properties (layer thickness and velocity) are allowed to change.

The sampling approach, particularly rjMcMC can be highly inefficient when significantly low probability 
regions separate multiple high probability regions. As a result, the sampling takes a long time to converge to the 
true model. Therefore, interacting Markov chains are applied here to achieve faster convergence. For more details, 
we refer to Dettmer & Dosso25 and Pachhai et al.61.

Data Availability
The time series data are available on the Orfeus website (https://www.orfeus-eu.org/). The trans-dimensional code 
can be provided by S. Pachhai (spachhai@ucsd.edu) on request.
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