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Abstract

The penta-2,4-dieniminium cation (PSB3) displays similar ground state and first

excited state potential energy features as those of the retinal protonated Schiff base

(RPSB) chromophore in rhodopsin. Recently, PSB3 has been used to benchmark

several electronic structure methods, including highly correlated multireference wave

function approaches, highlighting the necessity to accurately describe the electronic

correlation in order to obtain reliable properties even along the ground state (thermal)

isomerization paths. In this work, we apply two quantum Monte Carlo approaches, the

variational Monte Carlo and the Lattice Regularized Diffusion Monte Carlo, to study

the energetics and electronic properties of PSB3 along representative minimum energy

paths and scans related to its thermal cis-trans isomerization. Quantum Monte Carlo is

used in combination with the Jastrow Antisymmetrized Geminal Power ansatz, which

guarantees an accurate and balanced description of the static electronic correlation,

thanks to the multiconfigurational nature of the Antisymmetrized Geminal Power term,

and of the dynamical correlation, due to the presence of the Jastrow factor explicitly

depending on electron-electron distances. Along the two ground state isomerization

minimum energy paths of PSB3, CASSCF calculations yield wave functions having

either charge transfer or diradical character in proximity of the two transition state

configurations. Here, we observe that at the quantum Monte Carlo level of theory,

both the two transition states show only a leading charge transfer character, and the

conical intersection is observed only if the path connecting the two transition states is

extended beyond the diradical transition state, namely by increasing the bond-length-

alternation (BLA). These findings are in good agreement with the results obtained by
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MRCISD+Q calculations, and they demonstrate the importance of having an accurate

description of the static and dynamical correlation when studying isomerization and

transition states of conjugated systems.

1 Introduction

The retinal protonated Schiff Base (RPSB, represented in Fig. 1a) is the chromophore respon-

sible for the photochemical properties of a vast family of biological photoreceptors referred

to as retinal proteins which are, among other functions, involved in the mechanism of vi-

sion of dim light in vertebrates1–3. RPSB undergoes a very fast cis-trans isomerization in

the protein (opsin) environment (∼ 200 fs) with high quantum yield (∼ 0.68) upon photon

absorption1. This isomerization process has been deeply investigated by different spectro-

scopic techniques4 and theoretical calculations5,6. In particular, femtosecond spectroscopy7

and hybrid quantum mechanics / molecular mechanics (QM/MM) molecular dynamics cal-

culations7,8 highlight the essential role played by the surrounding protein environment and

by the hydrogen-out-of-plane motion9 in the isomerization mechanism, which involves de-

cay via a S1/S0 conical intersection (CI)10 reached by the selective torsion of the central

(C11=C12) double bond.

The penta-2,4-dieniminium cation (PSB3, represented in Fig. 1a) is a small conjugated

molecular system widely used as reduced computational model of the full RPSB, since PSB3

and RPSB exhibit similar ground and excited state features. First, both PSB3 and RPSB

have equilibrium cis and trans isomers where the positive charge is localized on the nitrogen-

containing side of the conjugated chain. Second, the transition from the ground state (S0) to

the first excited state (S1) is characterized by a transfer of the positive charge from the nitro-

gen region towards the opposite end of the conjugated chain. Third, twisting the conjugated

chain along one of the central double bonds leads to a CI structure between the S0 and S1

electronic states. Such a CI plays an important role in the photoisomerization mechanism of

RPSB since it mediates population transfer from S1 to S0 along the isomerization coordinate.
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Not only do PSB3 and RPSB have similar near-equilibrium and S1 potential energy surface

features, but it was recently found that they have similar ground state potential energy fea-

tures in the vicinity of the CI as well. In a hybrid quantum mechanics/molecular mechanics

(QM/MM) study of the thermal isomerization mechanism of bovine rhodopsin, it was found

that thermal 11-cis to all-trans isomerization of RPSB may occur via one of two distinct

saddle points that are in the vicinity of the S0/S1 CI2. Both saddle points (i.e., chemically,

transition states) feature an almost orthogonally twisted C11=C12 double bond, similar to

the CI, but very different bond length alternations (BLA). We define the BLA as the differ-

ence between the average bond length of formal single bonds (C1-C2 and C3-C4) and the

average bond length of formal double bonds (C1=N, C2=C3, and C4=C5), such that BLA

is positive if there is no bond inversion and negative if there is. The situation is analogous

in the case of PSB3. Indeed, PSB3 also features two transition states which are almost 90

degrees twisted along the central (C2=C3) double bond, but having different BLA patterns.

In both PSB3 and RPSB, the two transition states not only have different BLA geometries,

but also different electronic structures. One transition state (TSCT) is characterized by

a transfer of the positive charge from the nitrogen-containing side of the molecule to the

other end of the conjugated chain. The other transition state (TSDIR) retains the positive

charge on the nitrogen side of the chain, and therefore has covalent/diradical character due

to the homolytic breaking of the isomerizing double bond. In order to characterize the re-

gions of the ground state potential energy surface driving the thermal isomerization, Gozem

et al. 11 optimized the two transition states in PSB3 and used them to map three pathways

at the CASSCF/6-31G* level of theory. The first two pathways are minimum energy paths

(MEPs) leading away from each transition state and towards the two equilibrium structures,

cis-PSB3 and trans-PSB3. These paths are called MEPCT (for the path passing through

the charge transfer transition state TSCT) and MEPDIR (for the path passing through the

covalent/diradical transition state TSDIR). The third path is an interpolation/extrapolation

of coordinates between the two transition states. Since the transition states essentially have
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different BLAs but otherwise are almost geometrically identical, this scan follows a BLA co-

ordinate and is therefore called the BLA scan. This scan intercepts a S1/S0 CI structure. For

a simplified representation of the three paths see Fig. 1b; further information are reported

in Ref. 11.

The three aforementioned paths served useful as benchmarks to understand the impor-

tance of a balanced description of electronic correlation in correctly describing the topology

of the potential energy surface in that region, as well as in computing the relative energies of

TSCT and TSDIR. If the CASSCF(6,6)/6-31G* can be considered a good compromise be-

tween accuracy and computational effort for mapping (small) parts of the potential energy

surface of complex molecular systems, using more sophisticated methodologies for single-

point energy calculations on the CASSCF paths is seen to be a reliable strategy to explicitly

include dynamic correlation in the wave function11–13,15 allowing one to correct the original

CASSCF findings such as CI location, energy of the π2 and ππ∗ configurations and relative

stability of the TSCT and TSDIR.

Thanks to the tremendous progress in High Performance Computing (HPC) in recent years,

Quantum Monte Carlo (QMC) methods represent a powerful alternative to other ab-initio

and DFT approaches for the accurate description of systems where electronic correlation

plays an essential role. QMC methods16,17 have been widely applied to several problems

of physical and chemical interest such as materials18–22, molecular properties23–34, reaction

pathways35,36 and geometry and excited states of biochromophores37–41. The good scalabil-

ity with respect to the system size (Nd, with 3 < d < 4 and N the number of electrons)16,39

and the use of massively parallel algorithms make QMC methods particularly suitable for

Petascale architectures. All these aspects justify the growing number of applications of QMC

in problems of quantum chemistry and molecular physics.

The variational Monte Carlo (VMC) method42 is the simplest QMC approach: thanks to

a combined use of the Monte Carlo integration and the variational principle for the ground

state, the many-body trial wave function ΨT can be efficiently optimized and used to ex-
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Figure 1: Panel a: Lewis representation of the full chromophore, the 11-cis retinal protonated
Schiff base (RPSB), covalently bound to a lysine of the opsin protein, and of the cis-, trans-
penta-2,4-dieniminium cations (PSB3). Panel b: schematic representation of the thermal
isomerization from the cis to the trans configuration of PSB3, following the two minimum
energy paths (obtained in Ref. 11 from CASSCF calculations) undergoing respectively a
charge transfer (CT) and a diradical (DIR) transition state. The former minimum energy
path (MEPCT) is represented in red with a saddle point in the charge transfer transition
state (TSCT), and the orange region indicates that the ground state potential energy surface
is characterized by a charge transfer character. The latter minimum energy path (MEPDIR)
is represented in blue with a saddle point in the diradical transition state (TSDIR), and the
cyan region indicates that the ground state potential energy surface is characterized by a
diradical character. The energy barriers corresponding to TSCT and TSDIR are comparable,
and most of the computational studies agree that TSCT represents to lowest barrier.11–13

The main difference between TSCT and TSDIR configurations lies in their bond length
alternation (BLA), that is positive for the TSDIR and negative for the TSCT (see discussion
in the text). A scan of the configurations connecting TSCT with TSDIR (called BLA scan)
presents a conical intersection (CI) for a positive BLA, but the actual value varies with the
adopted computational method.11–14
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tract information other than just the energy of the molecular target. Higher accuracy in the

determination of the system properties (energy, geometrical and electronic parameters, etc.)

is usually achieved by the fixed node projection Monte Carlo methods, such as the diffusion

Monte Carlo (DMC)43,44 or the lattice regularized diffusion Monte Carlo45,46 (LRDMC).

The choice of the functional form of ΨT represents a crucial step determining the overall qual-

ity of QMC calculations, both in the variational and in the fixed node projection schemes.

The Jastrow Antisymmetrized Geminal Power (JAGP)47–52 has been seen to be very efficient

in the investigation of chemical systems,28–30,32,33,35,39–41 with accuracy comparable to that of

high-level quantum chemistry methods. Its compactness, coupled to the use of efficient algo-

rithms for the optimization of all parameters, including linear coefficients and exponents of

the atomic basis set,25,53,54 leads to a fast convergence of the variational results for electronic

and geometrical properties with the size of the basis set28,55,56, with a computational cost

comparable to that of a simple wave function defined by the product of a Jastrow factor and

a single Slater determinant. Although AGP is not size consistent, the presence of a flexible

Jastrow factor makes JAGP size consistent for systems which splits in fragments with spin

zero or 1/2.25,49,57 JAGP has already proven to give a good description of the static and

dynamical correlation in several crucial benchmarks32,50,51,58, like in the estimation of the

torsional energy of the ethylene and of the singlet-triplet gap of methylene32.

In the following, we compute the energy and electronic structure of PSB3 along the

MEPCT, MEPDIR, and BLA paths reported previously11. As shown below, the combination

of QMC and JAGP ansatz allows us to get a proper description of both static and dynamical

correlation; for this reason, using the QMC and JAGP wave functions represents an optimal

choice to study the intrinsic properties of the PSB3 model.

The paper is organized as follows: in Section 2 we report the main features of VMC

and LRDMC schemes, and a detailed analysis of the JAGP ansatz and of its potential to

correctly describe multiconfigurational systems, such as diradicals; computational details on

our calculations are given in Section 3; the current results are shown in Section 4, pointing
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out the importance of the electronic correlation properly introduced by the QMC/JAGP

study for the characterization of the conical intersection; conclusions and comments on

future perspectives are reported in the last Section.

2 Quantum Monte Carlo

2.1 Variational and Lattice Regularized Diffusion Monte Carlo

The accuracy of QMC approaches, both in the simplest VMC scheme and in the fixed-node

projection schemes, are strictly related to the wave function ansatz. Typically, the electronic

wave function ΨT in QMC16,17,56 is defined by the product

ΨT (x̄; R̄) = D(x̄; R̄)J (x̄; R̄), (1)

where D is the antisymmetric function taking into account the fermionic nature of electrons

and J is the Jastrow factor depending explicitly on the inter-particle (electrons and nuclei)

distances; x̄ and R̄ represent the collective electronic (x̄ refers to space r̄ and spin σ̄) and

nuclear coordinates, respectively.

The Jastrow factor is a symmetric positive function of the electronic positions; therefore

it does not change the nodal surface (determined by the antisymmetric term D), but it

introduces the dynamical correlation among electrons and satisfies the electron-electron and

electron-nucleus cusp conditions16,56,59.

In VMC, the parameters that define ΨT are optimized in order to minimize the electronic

energy within the functional freedom of the ansatz. The VMC results can further be improved

by using the fixed-node (FN) projection Monte Carlo techniques, which provide the lowest

possible energy with the constraint that the wave function ΦFN has the same nodal surface

of an appropriately chosen guiding function ΨT
16,43, which is usually optimized using the

VMC method. The fixed-node projection Monte Carlo method that we have adopted is
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LRDMC45,46, which is efficient for systems with a large number of electrons46 and preserves

the variational principle even when used in combination with nonlocal pseudopotentials46.

Since the LRDMC calculations are much more demanding than the VMC calculations, in

terms of computational time, they have been performed only for a few key structures.

2.2 The Jastrow Antisymmetrized Geminal Power

The trial wave function ansatz used in the QMC calculations presented in this paper is the

Jastrow Antisymmetrized Geminal Power (JAGP),47,48,56 that is the product

ΨT (x̄) ≡ ΨJAGP (x̄) = ΨAGP (x̄) ·ΨJ(x̄) (2)

of the Antisymmetrized Geminal Power (AGP) function ΨAGP and the Jastrow factor ΨJ ,

where the dependance on the nuclear coordinates R̄ is here omitted.

For an unpolarized system (zero total spin S) of N = 2Np electrons and M atoms, the

AGP function is defined as:

ΨAGP (x̄) = Â
[
Np∏
i

G
(
xi; xNp+i

)]
, (3)

where Â is the antisymmetrization operator, and the geminal pairing function G is a product

of a singlet function and a spatial wave function symmetric with respect to the particle

exchange G:

G(xi; xj) = G (ri, rj)
α(i)β(j)− β(i)α(j)√

2
. (4)

The spatial function G is a linear combination of products of atomic orbitals φµ:

G (ri, rj) =
L∑
µ

L∑
ν

gµνφµ (ri)φν (rj) (5)

where the indexes µ and ν run over all the basis in all the atoms in the system, for a total of
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L atomic orbitals (note that L is determined by the overall basis set size). The coefficients

gµν have to be optimized in order to minimize the variational energy of the system (together

with the other parameters in the wave function).

In our calculations we used this Jastrow factor

ΨJ = exp(Uen + Uee + Ueen + Ueenn),

that involves: the one-electron interaction term Uen, the homogeneous two-electron interac-

tion term Uee, and the inhomogeneous two-electron interaction terms Ueen and Ueenn (repre-

senting respectively an electron-electron-nucleus function and an electron-electron-nucleus-

nucleus function). They are defined as follows:

Uen(r̄) =
M∑
a

N∑
i

[
−Za

1− e−b1 4√2Zaria

b1
4
√

2Za
+

la∑
µ

faµχ
a
µ(ria)

]
(6)

Uee (r̄) =
N∑
i<j

[
1− e−b2rij

2b2

]
(7)

Ueen (r̄) =
M∑
a

N∑
i<j

[
la∑
µ

la∑
ν

f̄aµ,νχ
a
µ (ria)χ

a
ν (rja)

]
, (8)

Ueenn (r̄) =
M∑
a6=b

N∑
i<j

[
la∑
µ

lb∑
ν

f̃a,bµ,νχ
a
µ (ria)χ

b
ν (rjb)

]
, (9)

where the vector ria = ri −Ra is the difference between the position of the nucleus a and

the electron i, ria is the corresponding distance, rij is the distance between electrons i and

j, Za is the electronic charge of the nucleus a, which is described by la atomic orbitals

χaµ (with index µ = 1, . . . , la),
1 and b1, b2, f

a
µa , f̄aµ,ν , f̃

a,b
µ,µ are variational parameters. The

leading contribution for the description of electronic correlation is given by Uee, but also the

inhomogeneous two-electron interaction terms Ueen and Ueenn are particularly important in

1Note that the atomic orbitals χ used in the Jastrow term are similar to the atomic orbitals φ used for
the AGP, although they are not the same orbitals, and in general a reliable description of molecular systems
requires a much smaller number of orbitals in the Jastrow than the number of orbitals used in the AGP, see
for instance Ref. 56.
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the JAGP ansatz, because they reduce the unphysical charge fluctuations included in the

AGP function, as discussed in Refs. 25,49.

The pairing spatial function G in Eq. (5) is written in terms of the (localized) atomic

orbitals φµ, offering an interesting correspondence between the AGP ansatz and the Res-

onating Valence Bond framework60,61. An equivalent way to write the pairing function G is

obtained by using the molecular orbitals (MOs) ψk. The expansion of the pairing function

in terms of MOs is obtained by performing a generalized (the atomic orbitals φµ are not

necessarily orthonormal, so the overlap matrix Sµν = 〈φµ|φν〉 6= δµν) diagonalization of the

coupling matrix G, which is the L× L matrix of the gµν coefficients:

GSP = PΛ (10)

where Λ = diag(λ1, . . . , λL)

and |λ1| ≥ |λ2| ≥ . . . ≥ |λL| ≥ 0. (11)

The resulting pairing function G is:

G (ri, rj) =
L∑
k=1

λkψk (ri)ψk (rj) , (12)

where the orthonormal single particle functions are written as

ψk(r) =
L∑
µ=1

Pµkφµ(r) (13)

with the Pµk coefficients defining the eigenvectors P.

It is interesting to investigate the connection between the expansion of the pairing func-

tion G in terms of MOs and the standard configuration interaction expansion of the wave

function in multiconfigurational approaches.

By substitution of Eq. (12) in Eq. (3), and expanding the summation out of the antisym-

11



metrization operator, the following multi-determinant expansion is obtained for the AGP

function:

ΨAGP = c0 |Ψ0〉+

Np∑
i=1

L∑
a=Np+1

caaii |Ψaa
ii 〉+

Np∑
i,j=1

i 6=j

L∑
a,b=Np+1

a6=b

caabbiijj

∣∣Ψaabb
iijj

〉
+ . . . (14)

where the coefficients are given by:

c0 =

Np∏
i

λi ; caaii = c0
λa
λi

; caabbiijj = c0
λaλb
λiλj

; . . . , (15)

|Ψ0〉 is the leading closed-shell Slater determinant:

|Ψ0〉 = Â
{[

Np∏
i

ψi(ri)α(i)

][
Np∏
j

ψj(rNp+j)β(j)

]}
, (16)

the determinant |Ψaa
ii 〉 is equal to |Ψ0〉, but with the virtual orbital ψa substituting the valence

orbital ψi, etc. From the expression of the coefficients in Eq. (15) and the ordering of the

eigenvalues λk in Eq (11), it follows that the leading contribution beyond the determinant

|Ψ0〉 is given by the determinant |Ψaa
ii 〉 with i = Np and a = Np + 1. The multideterminant

expansion of ΨAGP in Eq. (14) allows us to directly compare the ΨAGP with wave functions

from other quantum chemical frameworks. In ΨAGP all the odd excited determinants (single,

triple, etc.) are excluded, whereas a subset of the even excitations (those with a multiple

excitation to the same virtual orbital) are taken into account; only doubly occupied molecular

orbitals are present. In other words, ΨAGP is contained in the seniority zero sector of the

electronic full configuration interaction, and its expansion coefficients are determined by the

ratios of the eigenvalues of the Λ matrix.

The seniority number Ω represents an alternative tool to classify singlet wave functions.

Ω is defined as the number of unpaired electrons in the Slater determinant, e. g. the number

of singly occupied molecular orbitals. In cases when the static correlation plays a major
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role Ω-based selection of important Slater determinants in the expansion has been seen

to be superior than the traditional one, based on the number of excitations with respect

to the reference configuration.62 Wave functions with Ω = 0 for benchmark systems are

accurate enough to recover most of the static correlation, but the FCI limit (including

dynamic correlation) is achieved only when configurations from Ω = 2, 4, 6... sectors are

explicitly included.62 In the case of JAGP wave function, the combination between a Ω = 0

determinantal term and a Jastrow factor allows us to estimate the correlation energy more

accurately than Ω = 0 CI wave functions. The set of MOs ψk is optimized within the JAGP

framework, i.e. in presence of the Jastrow factor and of the multiconfigurational character of

the wave function: MOs extracted from our optimization procedure represent therefore the

optimal choice for the correlated description of the system under study. The way to move

from the AGP MOs to the standard ones and vice versa is explained in the next Paragraph

and in the Appendix.

2.3 AGP for diradicals

The multiconfigurational nature of the AGP function, clearly shown by Eq. 14, has been

extensively discussed by Zen et al. in a recent paper on the use of AGP for diradicals32. Here

we focus the attention on the application of the AGP ansatz to the ππ∗ state of PSB3 (see

the discussion in Section 4), starting from the simple but accurate model with two electrons

in two orbitals, originally introduced by Salem and Rowland63,64. For a generic diradical

system, two atomic orbitals φA and φB are centered on nuclei A and B. Such model is

a representative scheme for molecules undergoing a double bond breaking, like the twisted

ethylene or the twisted PSB3: in these cases, the two involved orbitals are of p type and

positioned on two (central) carbon atoms.

The main goal of this discussion is to demonstrate that the AGP ansatz, a formally Ω = 0

wave function, contains the ππ∗ configuration, needed for a proper description of the ground
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state surface of PSB3 along the paths.2

In case of two orbitals, the pairing function G term in the AGP formulation is explicitly

given by

G (r1, r2) = gAAφA(r1)φA(r2)+gBBφB(r1)φB(r2)+gABφA(r1)φB(r2)+gBAφB(r1)φA(r2) (17)

where gµν coefficients represent the coupling terms of the G matrix in the expansion of

the AGP spatial factor: gAA and gBB are referred to the ionic terms φA(r1)φA(r2) and

φB(r1)φB(r2) in which the two electrons are localized on the same atom, whereas the elements

gAB and gBA are related to the covalent terms φA(r1)φB(r2) and φB(r1)φA(r2).

In terms of molecular orbitals, G (r1, r2) becomes (L = 2)

G (r1, r2) = λ1ψ1(r1)ψ1(r2) + λ2ψ2 (r1)ψ2(r2). (18)

On the other hand, in the standard delocalized picture63,64 two ψ+ and ψ− molecular orbitals

are defined:

ψ+ =
φA + φB√

2
(19)

ψ− =
φA − φB√

2

assuming zero overlap between φA and φB (the assumption is easily verified for two orthogonal

p orbitals).

The diradical Ψ(r1, r2) = ψ+ψ− wave function (ψ+ψ− is a short notation for ψ+(r1)ψ−(r2) +

ψ−(r1)ψ+(r2)) is written in the atomic basis as the following

Ψ(r1, r2) =
φA(r1)φA(r2)− φB(r1)φB(r2)√

2
(20)

2The π and π∗ orbitals have to be intended here as π-molecular orbitals residing on highly twisted
configurations.
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Since the AGP formally contains the terms introduced in Eq. 20, the comprehension of a

consistent way to link together Eqs. 17, 18 and 20 is a mandatory task. Some questions are

therefore arising: i) which relation occurs between ψ1, ψ2, ψ+ and ψ− ; ii) which relation

exists between the atomic basis, φA and φB, and the molecular orbitals, ψ1 and ψ2 obtained

by the diagonalization of the G matrix (Eq. 18); iii) finally, if a diradical ground state ψ+ψ−

can be properly described by the AGP ansatz.

An unitary matrix Û transforms the ψ+ and ψ− molecular orbitals, by rotating them with a

certain angle θ, into ψ̃+ and ψ̃−

ψ̃+

ψ̃−

 = Û

ψ+

ψ−

 =

 cos θ sin θ

− sin θ cos θ


ψ+

ψ−

 (21)

If θ = π/4, the normalized orbitals become

ψ̃+ =
1√
2

(ψ+ + ψ−) (22)

ψ̃− =
1√
2

(ψ+ − ψ−) . (23)

By defining ψ1 ≡ ψ̃+ and ψ2 ≡ ψ̃−, which become ψ1 = φA and ψ2 = φB by taking into

account the relations in Eqs. 19, and by substitution in Eq. 18, we obtain

G (r1, r2) = λ1φA(r1)φA(r2) + λ2φB(r1)φB(r2), (24)

which is equivalent to Eq. 20 for λ1 = −λ2 = 1/
√

2. We also observe that Eq. 17 is

equivalent to Eqs. 20 for gAB = gBA = 0 and gAA = −gBB = 1/
√

2.

Summarizing, it is always possible to transform a ψ+ψ− configuration into a combination

of ψ̃2
+ and ψ̃2

− by applying an opportunely chosen proper unitary transformation. In this sim-

ple model for diradicals, the AGP molecular orbitals are a linear combination of the orbitals

deriving from the traditional picture of electronic delocalization. The detailed derivation of
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Figure 2: Comparison between CASSCF frontier (π and π∗) and AGP frontier (ψ1 and ψ2,
see Eq. 18) orbitals; corresponding combinations, given the unitary transformation Û (Eq.
21), are also shown.

CASπ π∗
(π + π∗)/

√
2 (π − π∗)/

√
2

AGP ψ1 ψ2 (ψ1 + ψ2)/
√

2 (ψ1 − ψ2)/
√

2

ψ1ψ1 − ψ2ψ2

ππ∗

the mapping procedure is reported in the Appendix A, where the generalization from the

(2,2) to the (2,n) active space (where n is the number of orbitals) is shown and the proof of

the capability of AGP to represent such active space is reported. The expansion in Eq. 17

shows that the AGP ansatz contains all the terms reported by the picture in terms of delo-

calized molecular orbitals and localized atomic orbitals. The gµν coefficients are variational

parameters optimized by the stochastic methods mentioned before and for this reason the

AGP optimization is a fundamental step to select the right wave function for the ground

state of interest.

As a conclusion of this discussion, the graphical representation of CASSCF and AGP molec-

ular orbitals for highly twisted diradical ππ∗ state of a certain structure of PSB3 (the last

structure of the BLA path, see the discussion below), together with the combinations ex-

plained in this paragraph, is reported in Fig. 2: the AGP frontier orbitals (ψ1 and ψ2, Eq.

18) are identical to the normalized sum and difference of the corresponding CASSCF orbitals

(π and π∗ orbitals), according to the rotation given by the unitary transformation Û .

16



3 Computational details

The QMC calculations reported in this paper have been obtained using the TurboRVB pack-

age developed by S. Sorella and coworkers65, that includes a complete suite of variational

and diffusion Monte Carlo codes for wave function and geometry optimization of molecules

and solids. The scalar-relativistic energy consistent pseudopotentials (ECP) of Burkatzki et

al.66 have been used in order to describe the two core electrons of the carbon and nitrogen

atoms. In detail, the basis sets we have used for the AGP part are: (10s,9p,2d,1f) contracted

in {8} hybrid orbitals for the carbon atom, (8s,9p,2d,1f) contracted in {8} hybrid orbitals

for the nitrogen atom, (6s,5p,1d) contracted in {1} hybrid orbitals for the hydrogen atom.

As basis sets for the atomic orbitals included in the inhomogeneous terms of the Jastrow

factor, namely in Uen, Ueen and Ueenn reported in Eqs. 6, 8 and 9, we used an uncontracted

basis for the Uen and Ueen term, and a contracted with hybrid orbitals basis for Ueenn. This

allowed us to have an accurate basis set for the Jastrow factor while keeping the number of

parameters of the wave function reasonably small. In more details, in Uen and Ueen we used

a (4s,2p,1d) basis set for the carbon or nitrogen atoms, and a (3s,2p) for hydrogen atom,

whereas in Ueenn the orbitals are contracted in {2} hybrid orbitals for the oxygen, nitrogen

or hydrogen atoms.

The parameters of the wave function ΨT , including the values of the exponents of the

atomic orbitals, have been optimized by using the already validated and stable optimization

schemes discussed in Ref. 56. In particular, the optimization that we have followed for the

singlet π2 and triplet states of PSB3 considered here in the different structures, starts from

an initial configuration where the AGP matrix is diagonal, the exponents are initialized to

values taken from standard Dunning’s basis sets (where too small and too large values are

eliminated because they are not not necessary due to the presence of our Jastrow factor, see

discussion in Ref. 56) and all the Jastrow parameters are set to zero, with the exception

of b1 = b2 = 1. Next, the optimization procedure follows the protocol: (i) optimization of

the AGP, namely of the matrix elements and the contraction coefficients of the basis set,
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with fixed exponents and Jastrow parameters b1 = b2 = 1; (ii) optimization of the AGP

and relaxation of the values of the exponents of the AGP basis set and of the b1 and b2

parameters; (iii) optimization of the Jastrow terms, keeping the AGP parameters fixed; (iv)

optimization of the overall JAGP, keeping fixed the exponents in the basis set, both for

the AGP and the Jastrow; (v) optimization of all the parameters, including the exponents

of the basis set, with increasing statistical accuracy. For the single diradical state (ππ∗

configuration) of PSB3 in the proximity of the conical intersection, we have used a slightly

different procedure to avoid the possibility to be trapped in a local minimum. Therefore, we

forced the wave function to be in the correct electronic configurations by taking the triplet

JAGP optimized wave function, and obtained from that the corresponding singlet diradical

configuration. This wave function has been used as the starting point of an optimization

that started form the step (iii) of the previously stated optimization schedule. We have

verified a posteriori for every nuclear structure where we have calculated both the π2 and

the ππ∗ singlet configurations, that the overlap 〈Ψππ∗
JAGP |Ψπ2

JAGP 〉 between the two JAGP wave

functions (calculated using the correlated sampling techniques) is almost zero, thus the two

wave functions actually correspond to different electronic states.

It is important to note that QMC approaches use stochastic methods both to evaluate an

observable, and to optimize the variational parameters of the wave function. The stochastic

uncertainty due to the former point is easy to calculate and it has been reported in figures

and tables of the present work. The latter point is instead much more difficult to evaluate.

We have carefully tested the reliability of the optimization schemes used in this work, and

indeed the profiles reported in the following figures, although not perfectly smooth, are

pretty regular, both for energy and charge transfer values. Moreover, the most interesting

configurations (cis, trans, and structures close to TSCT and TSDIR) have been optimized

with some extra-effort, thus the results reported in the tables are fully reliable.

In this work we also report several results computed at the level of the fixed-node projec-

tion Monte Carlo scheme, that has been realized by performing LRDMC calculations with
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mesh size a = 0.3 a.u. Although we have not performed, for computational reasons, the

continuous extrapolation of the lattice mesh size a → 0, we know from previous works32,56

and preliminary calculations that the bias given by the finite mesh size a = 0.3 a.u. is almost

negligible in the evaluations of the considered energy differences.

4 Results and Discussion

In this section we present the energetic and electronic features of the MEPCT, MEPDIR and

BLA paths computed using VMC and LRDMC with the JAGP ansatz. A high-level treat-

ment of electron correlation is crucial for the correct description of the energy surface of the

ground state isomerization of PSB3. As discussed in Ref. 11, dynamic electron correlation

modifies the mapped CASSCF potential energy surface in two ways: the TSCT transition

state is found lower in energy than the TSDIR, at variance with the CASSCF findings, and

the CASSCF CI is seen shifted to larger BLA values when dynamic correlation is included

in the calculations. The energies along the three paths have been computed using a number

of electronic structure methods, namely: multiconfigurational approaches11, multi-reference

perturbation theory11, DFT schemes13,67, EOM-CC12 and SORCI15. All the most accurate

methods qualitatively predict similar changes in the potential energy surface with respect to

CASSCF. In particular, in the case of MRCISD+Q (the most accurate method tested pre-

viously), TSCT becomes more stable than TSDIR by 4.7 kcal/mol (compared to CASSCF

where it is less stable by 1.2 kcal/mol), and the CI gets shifted to a BLA value of ∼0.03

Å (compared to ∼0.00 Å for CASSCF).

Before starting, we validated our computational protocol by looking at the electronic prop-

erties of the cis isomer of PSB3 such as the dipole moment µ and the charge-transfer of

the ground state S0, defined as the partial charge on the allyl moiety H2C=CH-CH= (the

net charge of the system is +1). The charge transfer character at cis-PSB3 is 0.313 at the

CASSCF/6-31G* level of theory and 0.355 at the MRCISD+Q level of theory, as derived
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from Mulliken population analyses11 (see Tab. 1). Since we cannot define Mulliken charges

in our QMC framework, we compute the charge transfer by finding the portion of the elec-

tronic density in the region of the allyl moiety up to the plane perpendicular to the C2=C3

bond and cutting it in the middle. This method of obtaining the charge-transfer character is

tested on densities extracted from DFT and wave function methods and is shown to produce

very similar charge transfer character as Mulliken charges.

The single-reference nature of the S0 state is highlighted by the fact that charge-transfer

values computed with standard DFT (with PBE and B3LYP functionals) and HF are in

good agreement with the MRCISD+Q result. The effect of applying pseudopotentials on

the carbon and nitrogen atoms on the charge transfer is found to be negligible when compar-

ing all-electron (AE) and ECP results obtained using similar basis sets, as shown in Tab. 1.

A further evidence of the reliability of our approach is given by the performance of several

variants of the single-determinant (SD) wave function (J1-bodySD, where only the 1-body

term for the Jastrow is used; JSD-proj, the SD wave function is projected out from the full

AGP; JSD-opt, the SD wave function is optimized after projection) in the VMC framework

(e. g., taking into account only the first term of the AGP expansion in Eq. 14) that, using

ECP, are in full agreement with the more accurate VMC/JAGP (0.358, the best variational

result) and the MRCISD+Q. LRDMC/JAGP only slightly corrects (0.352) the VMC/JAGP

result for the charge-transfer. The same conclusions are easily extended to the dipole mo-

ment.

4.1 MEPCT and MEPDIR paths

As first, we consider the energy difference between the cis and trans isomers of PSB3.

VMC/AGP and LRDMC/AGP values (Tab. 2), -2.9(2) and -3.0(2) kcal/mol respectively, and

the VMC/JSD value (-2.9(2) kcal/mol) are fully consistent with the reference MRCISD+Q

(-3.1 kcal/mol)11,12, XMCQDPT2 (-2.8 kcal/mol)11 and EOM-CCSD (-3.0 kcal/mol)12. The
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Table 1: Singlet ground-state energy (in Hartree, H), total dipole µ (in Debye, D) and charge-
transfer value for the cis isomer of PSB3, evaluated with several computational methods, as
defined in the first column. J1-bodySD, JSD-proj and JSD-opt are defined in the text, and
the basis sets for the QMC calculations are defined in Section 3. In the Core column, AE
stands for all-electron calculation, ECP for energy-conserving pseudo-potential calculation.
The reported numbers in the last column represent the net charge on the allyl moiety. VMC
and LRDMC errors on µ and charge-transfer are of the order of 10−3.

Method Ref. Core Energy [H] µ [D] Charge-transfer

CASSCF(6,6)//6-31G* 11 AE — — 0.313
MRCISD+Q//6-31G* 11 AE — — 0.355

PBE//cc-pVTZ this work AE — 3.784 0.375
PBE//VTZ-ANO this work ECP — 3.758 0.369
B3LYP//cc-pVTZ this work AE — 3.718 0.380

B3LYP//VTZ-ANO this work ECP — 3.639 0.376
HF//cc-pVTZ this work AE — 3.441 0.405

HF//VTZ-ANO this work ECP -41.7258 3.472 0.396
VMC/SDa this work ECP -41.7048(9) 3.625 0.365

VMC/J1-bodySDb this work ECP -41.7130(7) 3.633 0.365
VMC/JSD-proj this work ECP -42.8361(2) 3.895 0.363
VMC/JSD-opt this work ECP -42.8373(2) 3.900 0.360
VMC/JAGP this work ECP -42.8490(2) 3.983 0.356

LRDMC/JAGP this work ECP -42.9160(3) 4.066 0.352
a Wave function optimization by DFT/LDA; EDFT/LDA = −42.6663848 H.
b Wave function optimization by DFT/LDA; EDFT/LDA = −42.6769218 H.

21



Table 2: Energy differences ∆E (in kcal/mol) between the singlet ground state of cis PSB3
isomer and: the singlet ground state trans isomer, the TSCT and TSDIR obtained by Gozem
et al. 11 from CASSCF-based calculations. The energy difference ∆ES−T between the first
singlet and the first triplet electronic states of the cis isomer is also reported. The reported
QMC results are compared with MRCISD+Q, XMCQDPT2 and EOM-CCSD calculations.

Method Ref. ∆E trans ∆E TSCT ∆E TSDIR ∆ES−T cis
VMC/JSD This work -2.9(2) 44.7(2) 51.1(2) 62.9(2)

VMC/JAGP This work -2.9(2) 45.2(2) 51.7(2) 66.2(2)
LRDMC/JAGP This work -3.0(2) 45.5(2) 51.4(2) 63.9(2)

MRCISD+Q 11,12 -3.1 48.7 54.9 —
XMCQDPT2 11 -2.8 46.9 50.5 —
EOM-CCSD 12 -3.0 46.6 52.5 —

negative value indicates that trans-PSB3 is more stable than cis-PSB3, since throughout this

work the cis-PSB3 energy is taken as the reference.

At VMC/JAGP level, the TSCT (45.5(2) kcal/mol) is lower in energy than the TSDIR (51.7

kcal/mol), making the CT path energetically favored, similarly to what as reported by the

aforementioned correlated approaches11,12. LRDMC and VMC findings are equal within the

stochastic error to the VMC/JAGP values, evidence that the trial wave function ΨT is fully

optimized. The singlet-triplet gap for the cis-PSB3 is also reported, with a difference of

2.3(3) kcal/mol between VMC and LRDMC using the complete JAGP.

The VMC/JAGP energy profile of the MEPCT path (Fig. 3a) is characterized by a shallow

plateau around the transition state structure, at variance with the shape of the MEPDIR

path (Fig. 3c); moreover, expensive LRDMC calculations do not alter the picture. Panels b)

and d) of Fig. 3 show the ratio between λLUMO and λHOMO, according to the AGP expansion

given in Eq. 14; as already discussed by some of us in the case of the application of the AGP

ansatz on the diradical twisted ethylene C2H4
32, very small values of this ratio correspond

to a single-reference wave function, with the lowest molecular orbitals doubly occupied (the

ratio is exactly zero in the limit of a pure single Slater determinant), whereas large values

of the ratio indicate two (near)-equivalent configurations. Following the analysis in Ref. 32,

the absolute value of λLUMO/λHOMO approaching to unity means that two configurations are

contributing with the same weight to the electronic structure. λHOMO and λLUMO correspond
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to λ1 and λ2 in the simple (2,2) model in Eq. 18. The wave function along the MEPCT

path (Fig. 3b) is dominated by a single configuration, with the λLUMO/λHOMO oscillating

around the value for the cis isomer (-0.0635), as expected by the previous investigations on

the MEPCT path of PSB3. Similar arguments can be found in Ref. 67. The same behaviour

has been found along the MEPDIR path (Fig. 3b), with no appreciable contribution given

by higher-energy configurations: this result unequivocally shows that the introduction by

QMC of balanced dynamic correlation strongly alters the CASSCF description of the elec-

tronic structure of PSB3 along the MEPDIR path, similarly to what found in MRCISD+Q

calculations.

The AGP wave function can be formally expanded into a linear combination of Slater de-

terminants (Eq. 14), so the single-electron molecular orbitals are obtained by the diag-

onalization of the geminal coupling matrix (Eq. 10) and are defined within a correlated

framework. The AGP spans the seniority number Ω = 0 sector in Hilbert space, with dou-

ble occupation for each orbital. The terms “closed-shell” and “open-shell” are widely used

to indicate systems without and with unpaired electrons, respectively, implying that the

molecular orbitals come from single-reference approaches, like Hartree-Fock or DFT. In the

case of highly twisted configurations of PSB3, for instance, the π2 state, involving charge

transfer with respect to the equilibrium ground state, has closed-shell character, while the

diradical ππ∗ state has open-shell character: for ππ∗ static correlation plays an important

role, and a multi-configurational approach must be used. Such definitions strictly depend

on the choice of the reference for the molecular orbitals, as explained in Section 2.3. Even

though the AGP wave function is formally characterized by only doubly occupied orbitals,

its application is not limited so far to the study of closed-shell systems since the molecular

orbitals involved in the AGP expansion are the results of a variational optimization and they

can be qualitatively different from the Hartree-Fock ones, as explicitly shown in Section 2.3.

Data show that the MEPDIR path does not have a diradical character anymore; the VMC/JAGP

description of MEPCT and MEPDIR paths produces a ground state of closed-shell π2 char-
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acter, similarly to the MRCISD+Q13.

The results above are again reflected in the charge transfer profiles along both MEPCT and

MEPDIR paths shown in Fig. 4. Indeed, it is clear that in both MEPCT and MEPDIR,

the wave function gains charge transfer character, with TSCT and TSDIR both having ca.

65% of the positive charge on the allyl moiety. The picture presented at the VMC/JAGP

and LRDMC/JAGP levels is again at variance with what is found at the CASSCF level

of theory. With CASSCF, MEPDIR passes through a transition state, TSDIR, that has

diradical character and has almost no charge transfer at all, with all the charge localized on

the nitrogen-containing moiety. This difference is due to the change in CI position on the

energy surface after introducing a balanced description of electronic correlation in the calcu-

lations. At the CASSCF level of theory, the CI is peaked and lies in between the TSCT and

TSDIR transition states, causing them to have wave functions with different character. At

correlated levels of theory, the CI is shifted to a larger BLA value than that corresponding

to TSDIR. As a result, both TSCT and TSDIR lie on the same side of the CI (which is

now intermediate/sloped) and therefore both have the same wavefunction character (charge

transfer). This change in local topology causes only one of the transition states to remain as

a saddle point, TSCT, while TSDIR is no longer a transition state on the S0 potential energy

surface. The charge transfer character in both MEPCT and MEPDIR decreases as PSB3

moves towards the cis or trans isomers of PSB3, converging to the values corresponding to

the two minima.

Furthermore, the MEPCT maxima (i.e. the TSCT) region is flatter for the two QMC levels

than for MRCISD+Q level; this may be due to a better treatment of the electron dynamic

correlation in this region.

4.2 BLA path

In the CASSCF(6,6)/6-31G* landscape the CI is located between the TSCT and TSDIR.

Consistently with the other approaches, PSB3 assumes a closed-shell, charge transfer char-
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Figure 3: Left column: a) thermal isomerization energy profile (with respect to the cis PSB3)
and b) ratio between λLUMO and λHOMO (see Eq. 14) along the MEPCT reaction coordinate.
Right column: c) thermal isomerization energy profile and d) ratio between λLUMO and
λHOMO along the MEPDIR reaction coordinate. SD stands for Single Determinant, e. g. a
single configuration (with ratio λLUMO/λHOMO exactly equal to zero). Error bars are within
the symbols. For both paths CASSCF and MRCISD+Q energy profiles are taken from Refs.
11,12.
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Figure 4: Charge-transfer along the MEPCT and MEPDIR paths. CASSCF and MRCISD
charge-transfer profiles are taken from Refs. 11,12.
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acter (π2) at smaller BLA values than the CI, while its wave function becomes covalent and

diradical (ππ∗) at larger BLA values (upper panel of Fig. 5). As anticipated above, the

crossing between the two states does not produce a peaked CI, like in the CASSCF case,

but instead a sloped and intermediate CI. Even though we are not able to identify the exact

position of the CI, VMC/JAGP calculations clearly show that CI moves towards large val-

ues of BLA (∼0.075 Å), beyond the TSDIR. The present result differs from the collection

of data obtained by other correlated approaches, locating the CI around 0.03-0.04 Å11–13,15,

with the exception of the QD-NEVPT2/CAS(6,6) analysis (extrapolated value at 0.05 Å)11.

When using the LRDMC/JAGP approach, the CI position (∼0.06 Å) comes closer to MR-

CISD+Q data. We observe that the charge transfer (π2) curves obtained using VMC/JAGP

and LRDMC/JAGP are actually more stable – with respect to cis-PSB3 energy – than that

obtained with MRCISD+Q, consistently with the lower energy TSCT of VMC/JAGP and

LRDMC/JAGP. Meanwhile, the diradical (ππ∗) curve from VMC/JAGP or LRDMC/JAGP

are less stable that those from MRCISD+Q. This is what causes the CI from VMC/JAGP

and LRDMC/JAGP to shift to higher BLA than in MRCISD+Q. Moreover, it is important

to point out that relaxing the structures and the minimum energy paths of PSB3 at the

QMC correlated level may produce slightly different topologies for the BLA and MEP scans

close to the CI.

In the lower panel of Fig. 5 the VMC/JAGP points corresponding to the ππ∗ state are

characterized by a high ratio (in absolute value) between λHOMO and λLUMO, close to 1.

As already mentioned, this is due to the multi-configurational nature of the diradical state,

where the frontier orbitals are near-degenerate and singly occupied. From the AGP anal-

ysis, near-degeneracy for S0 is therefore found in the large-BLA portion of the path. This

reinforces the results of the MEPCT and MEPDIR paths above, since it is clear here that

TSCT and TSDIR both lie on the same side of the CI after introduction of the dynamic

electron correlation. Also, one can see here that while TSCT remains a saddle point on the

S0 potential energy surface, TSDIR actually becomes a minimum on the S1 surface and is
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no longer a transition state as in CASSCF. The π2 state, also extending in the diradical

portion of space previously defined by the CASSCF study, is clearly single-reference, and it

dominates the wave function of PSB3 up to a BLA of 0.05 Å.

The reliability of the present results is further confirmed looking at the triplet energy profile

along the BLA path (blue triangles in the upper panel of Fig. 5, filled and open symbols

for VMC and LRDMC, respectively). Since the comparison of the π2 and ππ∗ energies

along the BLA scan is a fundamental step in order to give an accurate representation of

the ground state potential energy surface of PSB3 surrounding the CI, the triplet energy

profile can be considered a lower bound for the ππ∗ energy. For diradicals, triplet should

be the ground-state spin multiplicity, according to the molecular version of Hund’s rule63,64:

this is the case, for instance, of the orthogonally twisted ethylene molecule32 where, due to

the homolytic cleavage of the double bond, the wave function is dominated by two config-

urations with the same weight and the two involved p atomic orbitals have zero overlap.

The structures of the BLA path with diradical character are characterized by a torsion of

about 90 degrees around the formal central double bond of PSB3, similar to the prototypical

example given by C2H4 system: the central double bond is broken and the two p orbitals

are mutually (almost) perpendicular. This manifest similarity between the twisted diradical

PSB3 and the prototypical C2H4 system yields to reasonably expect that the ground state

of the twisted diradical PSB3 is also a triplet3, as we observe a posteriori with VMC/JAGP

and LRDMC/JAGP calculations.

As one can see from the upper panel of Fig. 5, the triplet energy is higher than the π2

singlet energy for BLA values smaller than 0.055 Å for VMC and 0.05 Å for LRDMC, and

consequently the same certainly occurs for the ππ∗ state. A similar gap of ∼ 10-12 kcal/mol

is also found at CASSCF(6,6)/6-31G* level in the diradical portion of the BLA path.

These simple arguments, combined with the fact that the convergence of the wave function

3However, it is not true in general for all diradicals that the triplet state has a a lower energy that the
singlet state: for example, disjointed and non-Kekule molecules, like the tetramethyleneethane31,68, have a
very small singlet-triplet gap with the singlet lower in energy in some specific geometries, while the ground
state of oligacenes larger than hexacene69 is also a singlet.
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optimization for a triplet state is easier to achieve in the VMC/AGP framework, allow us

to be extremely confident with the robustness of the present results for the location of CI

along the BLA path.

The ground state wave function is dominated by the π2 state before the CI (i.e., at lower

Figure 5: Energy profile along the BLA path (with respect to the cis PSB3) and the related
λLUMO/λHOMO ratio for the π2 and ππ∗ configurations, calculated by VMC and LRDMC
methods on the variationally optimized JAGP wave functions. The triplet energy profile is
also reported. The MRCISD+Q, MRCISD and CASSCF profiles are shown, for comparison,
and the conical intersections (CI) obtained with the different approaches are marked in the
plot.

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
40

45

50

55

60

65

70

75

80

85

90

Δ
E(

kc
al

/m
ol

)

VMC π2 

VMC ππ*
VMC triplet

LRDMC π2 

LRDMC ππ*
LRDMC triplet

CASSCF π2

CASSCF ππ*

MRCISD π2

MRCISD ππ*

MRCISD+Q π2

MRCISD+Q ππ*

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
BLA (Å)

-1.0

-0.5

0.0

 λ
 LU

M
O

 / 
 λ

 H
O

M
O

TS-CT
CASSCF TS-DIR

CASSCF

CI
CASSCF

CI
MRCISD+Q

CI
VMC

CI
LRDMC

CI
MRCISD

BLA values), while it assumes ππ∗ character after the crossing; it is interesting to under-

stand how the charge distribution changes in the two configurations. Fig. 6 reports, as an

example, the charge density difference between the π2 and ππ∗ states for VMC/JAGP and

LRDMC/JAGP CI points along the BLA path, more precisely, for the closest structures to

CI found at VMC and LRDMC level. The shape of the isosurfaces obviously resembles the p
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atomic orbitals involved in the π electronic structure of the twisted PSB3. The most evident

changes in the charged distribution are observed for the two central carbon atoms, where the

double bond has been broken because of the torsion: the yellow part of the plot (online color

version) corresponds to an accumulation of electronic charge in the π2 state with respect to

the ππ∗, whereas the green isosurfaces indicate the opposite situation.

Such analysis is consistent with the charge transfer nature of π2 configuration and with the

covalent and diradical character of ππ∗. We know from Fig. 7 that the charge-transfer of π2

along the path oscillates between 0.63 and 0.72, and that the charge-transfer of ππ∗ is much

smaller (∼ 0.10). A large (small) value of charge-transfer means an excess (reduction) of

electronic charge on the protonated imine heteroallyl moiety, according to the plot reported

in Fig. 7 for VMC and LRDMC calculations, with the charge-transfer of the triplet coincid-

ing with the ππ∗ values.

5 Conclusions

VMC and LRDMC methods have been used to compute electronic and energetic properties

of PSB3, using the JAGP ansatz.

VMC/JAGP and LRDMC/JAGP calculations on three different CASSCF paths reveal the

fundamental role played by a balanced description of the dynamic correlation for the correct

representation of the ground state energy surface in the proximity of the conical intersection.

The VMC and LRDMC calculations significantly alter the CASSCF landscape, inverting the

relative stability of the MEPCT and MEPDIR paths, similarly to what obtained by other

correlated approaches.11–13,15 However the region surrounding the TSCT appears more flat

when computed at the QMC levels.

On both MEPCT and MEPDIR paths, the PSB3 wave function assumes a charge trans-

fer and single-reference character: the MEPDIR path is therefore not diradical anymore
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Figure 6: Graphical representation of the charge density difference between the π2 and
the ππ∗ configurations for VMC/JAGP and LRMDC/JAGP CI points: the yellow (green)
isosurface indicates an excess (reduction) of 0.01 in terms of electronic charge in the π2 state
with respect to ππ∗.

CI for VMC/JAGP

CI for LRDMC/JAGP

ρπ2 > ρππ∗ρπ2 < ρππ∗
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Figure 7: Charge-transfer along the BLA path for the π2, ππ∗ and triplet configurations,
obtained by VMC and LRDMC approaches (stochastic errors are smaller than point size).
The MRCISD and CASSCF profiles are shown, for comparison.
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when analyzed at correlated level. This finding is immediately confirmed by the fact the

CI is pushed towards values of BLA larger than that corresponding to the TSDIR (∼0.075

Å with VMC/JAGP and ∼0.06 Å with LRDMC/JAGP, while the reference calculations

give a CI located at around 0.03-0.04 Å).

Furthermore, in the present study the multi-configurational nature of AGP has been ex-

plained in detail, following the work reported in Ref. 32, for the description of the diradical

ππ∗ configuration of PSB3. Even though the AGP is defined in the seniority number Ω = 0

subsector of the Hilbert space (e.g., the set of molecular orbitals is doubly occupied), an

unitary transformation of the AGP-optimized molecular orbitals allows one to always map

the ππ∗ state of highly twisted PSB3 geometries, with two unpaired electrons, into the AGP

Ω = 0 subsector.

The role of the dynamic electronic correlation has been found to be essential in order to get

a reliable description of the ground state of PSB3 around the CI. Therefore, mechanistic or

dynamics studies using methods which do not incorporate these effects need to be performed

and interpreted critically. The recent improvements in forces calculations using QMC ap-

proaches70 suggest that there will be soon the possibility to compute MEPCT and MEPDIR

minimum energy paths based on the VMC/JAGP method, yielding to a more consistent

comparison with the energies and geometries obtained from CASSCF, in order to further

clarify the main features of PSB3.

A Appendix: comparison between a CASSCF and a

AGP wave function ansätze

In this appendix we will show the relationships between the singlet AGP wave function and

the complete active space CAS ansätze. In particular, we will demonstrate the equivalence

of a CAS(2,n) of 2 electrons in n molecular orbitals and a geminal function for a singlet

system of 2 electrons. Later we will consider the case of an AGP function with two nearly
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degenerate states.

A CAS(2,n) wave function for a singlet state is a linear combination of Slater deter-

minants, where every Slater determinant is identified by the occupation numbers of some

reference orthonormal molecular orbitals ψi, i = 1, . . . , n and the spin state of the two elec-

trons, and the coefficients of the expansion are variationally optimized. If we indicate the

possible combinations of 2 electrons in n orbitals with the second quantization notation:

|2, 0, . . . , 0〉 = â†1,↑â
†
1,↓|0〉

|α, β, . . . , 0〉 = â†1,↑â
†
2,↓|0〉

|β, α, . . . , 0〉 = â†2,↑â
†
1,↓|0〉

|0, 2, . . . , 0〉 = â†2,↑â
†
2,↓|0〉

. . .

(25)

where |0〉 is the empty space, and the operator â†i,↑ (â†i,↓) creates an electron of spin up (α)

or down (β) in the orbitals ψi, and satisfies the canonical anticommutation relations. Using

this notation, a CAS(2,n) wave function can be simply written as:

|CAS(2, n)〉 =
n∑
i=1

ciiâ
†
i,↑â
†
i,↓|0〉+

∑
i<j

cij

(
â†i,↑â

†
j,↓ + â†j,↑â

†
i,↓

)
|0〉 (26)

where the coefficients cii and cij are variationally optimized. In Eq. 26 we have implicitly

used the fact that the coefficients for the configurations â†i,↑â
†
j,↓|0〉 and â†j,↑â

†
i,↓|0〉 have to

coincide in order to have a singlet wave function.

We will prove now that the CAS(2,n) wave function can be generally rewritten in the

following form:

|CAS(2, n)〉 =
n∑
i=1

λib̂
†
i,↑b̂
†
i,↓|0〉 (27)

where b̂†i,↑ and b̂†i,↓ are respectively the creation operators of a spin up and down electron

in a orbital ψ̃i obtained from a unitary transformation of the orbitals ψ1, . . . , ψn. In other
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words, we will prove that the second sum in the right hand size (RHS) of Eq. 26 can be

drop by transforming the reference molecular orbitals with an opportunely chosen unitary

transformation. Since the RHS of Eq. 27 is actually the expression of a geminal in terms of

molecular orbitals (or of its natural orbitals), this will prove that CAS(2,n) is equivalent to

the geminal function that we are using in the AGP framework.

Proof: Eq. 26 can be written in the following way:

â†↑ ·Câ†↓|0〉 (28)

where â†↑ (â†↓) is a vector whose elements are the creation operators â†i,↑ (â†i,↓), C is the n×n

symmetric matrix whose elements are cij, and “·” is a scalar product. The matrix C is

diagonalized by a unitary matrix U, such that C = U†ΛU, being Λ a diagonal matrix with

diagonal elements λ1, . . . , λn and the symbol † indicates the conjugate transpose (in the case

of having the matrix C real, as in this work, we have that U is also real, thus it is actually

an orthogonal matrix). Eq. 28 is easily rewritten as:

b̂†↑ · Λb̂†↓|0〉 (29)

with b̂†↑ ≡ Uâ†↑ and b̂†↓ ≡ Uâ†↓, and the elements of the vector b̂†↑ (b̂†↓) are thus the creation

operators b̂†i,↑ (b̂†i,↓) of an up (down) electron in the orbital ψ̃i =
∑n

j=1 Uijψj. The unitary

transformed orbitals ψ̃i are orthonormal because U is unitary. It is straightforward to show

that (29) is equal to the RHS of Eq. 27, and this concludes the proof. �

If we define the operator Ĝ that creates a singlet pair of electrons:

Ĝ =
n∑
i=1

λib̂
†
i,↑b̂
†
i,↓ , (30)

then, by comparing with Eq. 27, we have that |CAS(2, n)〉 = Ĝ|0〉. On the other hand, an

AGP wave function |AGP 〉 for a singlet system with N electrons, so N/2 singlet pairs, can
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be written as:

|AGP 〉 = ĜN/2|0〉 . (31)

Without los of generality, we can assume that the orbitals ψ̃i such that their corresponding

λi in Eq. 27 are ordered in decreasing order for their absolute value:

|λ1| ≤ |λ2| ≤ . . . ≤ |λn| . (32)

By substitution of (30) into the RHS of Eq. 31, and dropping out the terms that are zero

due to the anticommutation relations of the b† operators, and an irrelevant multiplicative

coefficient c =
∏N/2

i=1 λi, we have that the AGP wave function can be expanded in the following

way (in agreement with Ref. 32):

|AGP 〉 ∝
N/2∏
i=1

b†i,↑b
†
i,↓|0〉+ (33)

+
∑

1≤j≤N/2

∑
N/2<p≤n

λp
λj

N/2∏
i=1
i 6=j

b†i,↑b
†
i,↓

 b†p,↑b
†
p,↓|0〉+

+
∑

1≤j<k≤N/2

∑
N/2<p<q≤n

λpλq
λjλk

 N/2∏
i=1
k 6=i 6=j

b†i,↑b
†
i,↓

 b†p,↑b
†
p,↓b
†
q,↑b
†
q,↓|0〉+

+ . . .

For the specific case of diradical molecules, AGP can provide a reliable description of the

system by having n = N/2 + 1, and
∣∣λN/2+1

∣∣ ∼ ∣∣λN/2∣∣ � ∣∣λN/2−1∣∣. Moreover, for a singlet

system of N electrons, the AGP ansatz is comparable to the complete active space CAS(2, no)

of 2 electrons in no orbitals, if in Eq. 33 we have: n = N/2 + no, and
∣∣λN/2∣∣� ∣∣λN/2−1∣∣. In

this way we have for j ≤ N/2 and p > N/2 that |λp/λj| ≤ ε (where ε ≡
∣∣λN/2/λN/2−1∣∣ is

small) and the absolute value of the coefficients of the third term in the RHS of Eq. 33 are∣∣∣λpλqλjλk

∣∣∣ ≤ ε2, thus negligible. Analogous considerations lead to show that at higher orders of
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expansion the coefficients are of order εm, with m growing with the order of the expansion,

therefore for small ε the only non-negligible terms in the AGP expansion are the first and

second one in the RHS of Eq. 33.
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