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Abstract Although experimental efforts have been active
for about 30 years, a direct laboratory observation of vac-
uum magnetic birefringence, due to vacuum fluctuations, still
needs confirmation: the predicted birefringence of vacuum is
�n = 4.0 × 10−24 @ 1 T. Key ingredients of a polarimeter
for detecting such a small birefringence are a long optical
path within the magnetic field and a time dependent effect.
To lengthen the optical path a Fabry–Perot is generally used
with a finesse ranging from F ≈ 104 to F ≈ 7 × 105.
Interestingly, there is a difficulty in reaching the predicted
shot noise limit of such polarimeters. We have measured
the ellipticity and rotation noises along with Cotton-Mouton
and Faraday effects as a function of the finesse of the cavity
of the PVLAS polarimeter. The observations are consistent
with the idea that the cavity mirrors generate a birefringence-
dominated noise whose ellipticity is amplified by the cav-
ity itself. The optical path difference sensitivity at 10 Hz is
S�D = 6×10−19 m/

√
Hz, a value which we believe is con-

sistent with an intrinsic thermal noise in the mirror coatings.
Our findings prove that the continuous efforts to increase the
finesse of the cavity to improve the sensitivity has reached a
limit.

1 Introduction

The development of extremely sensitive polarimeters has
been driven in recent years by attempts to measure directly
vacuum magnetic birefringence, a non linear quantum elec-
trodynamic effect in vacuum closely related to light-by-light
elastic scattering. Non linear electrodynamic effects in vac-
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uum were first predicted in 1935 by the Euler–Kockel per-
turbative effective Lagrangian density [1–12],

LEK = 1

2μ0

(
E2

c2 − B2
)

+ Ae

μ0

[(
E2

c2 − B2
)2

+ 7

(
E
c

· B
)2

]
, (1)

which takes into account vacuum fluctuations with the cre-
ation of electron-positron pairs. As of today, LEK still
needs direct experimental confirmation at low energies. This
Lagrangian density is valid for field intensities much lower
than the critical values: B � Bcrit = m2

ec
2/eh̄ = 4.4 ×

109 T, E � Ecrit = m2
ec

3/eh̄ = 1.3 × 1018 V/m. Here

Ae = 2

45μ0

α2λ̄3
e

mec2 = α

90π

1

B2
crit

= 1.32 × 10−24 T−2, (2)

describes the entity of the quantum correction to Classical
Electrodynamics. The Lagrangian density (1) predicts that
vacuum becomes birefringent in the presence of either an
external electric or magnetic field [8–12]. In the case of an
external magnetic field the unitary birefringence, to order α2,
is expected to be,

�n

B2 = 3Ae = 2

15μ0

α2λ̄3
e

mec2 = 3.96 × 10−24 T−2. (3)

In the presence of an external electric field, B2 is replaced
by − (E/c)2.

Due to this birefringence, a linearly polarised beam of
light propagating perpendicularly to the external magnetic
field acquires an ellipticity ψ ,
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ψ = ψ0 sin 2ϑ = π

∫ L
0 �n dl

λ
sin 2ϑ

= π
3Ae

∫ L
0 B2 dl

λ
sin 2ϑ, (4)

where ψ0 is the ellipticity amplitude, λ is the wavelength
of the light, L is the length of the magnetic field and ϑ is
the angle between the magnetic field and the polarisation
direction. With the parameters of the PVLAS experiment
[13], B = 2.5 T, L = 1.64 m and λ = 1064 nm, the induced
ellipticity is ψ = 1.2 × 10−17, an extremely small value. As
we will see in the following section, one way to enhance the
induced ellipticity is to increase the effective length of the
magnetic field region using a Fabry–Perot cavity with finesse
F . Such a cavity enhances an ellipticity (or a rotation) by a
factor N = 2F/π [14–17] which, today, can be as high as
N = 4.5 × 105 [18].

Several experiments are underway, of which the most sen-
sitive at present are based on polarimeters with such very
high finesse Fabry–Perot cavities [19–22]. Furthermore all
of these experiments use variable magnetic fields in order
to induce a time dependent effect hence further increasing
their sensitivities. This time dependence can be obtained
either by varying the magnetic field intensity, in which case
�n = �n(t), or by rotating the field direction in a plane per-
pendicular to the propagation direction such that ϑ = ϑ(t).
In this second case, adopted by the PVLAS experiment [19]
with N = 4.5 × 105, the signal to be measured is,

�(t) = Nψ(t) = Nπ
3Ae

∫ L
0 B2 dl

λ
sin 2ϑ(t)

= 5 × 10−11 sin 2ϑ(t). (5)

At present the lowest measured value for �n/B2 is [23],

�nPVLAS/B2 = (1.9 ± 2.7) × 10−23 T−2. (6)

The experimental uncertainty on this value is a factor of about
seven above the predicted QED value in Eq. (3).

2 Polarimetry: state of the art

A scheme of the PVLAS polarimeter is shown in Fig. 1.
A beam first passes through a polariser and then enters the
Fabry–Perot cavity composed of two high-reflectance mir-
rors placed at a distance D = 3.303 m apart. Between
the mirrors is a magnetic field of length L which, in the
case of the PVLAS experiment, is generated by two iden-
tical rotating permanent magnets characterised by the total
parameter

∫ L
0 B2dl = 10.25 T2m resulting in an average

field B = 2.5 T over a length L = 1.64 m. These two
magnets have been rotated up to a frequency νB = 23 Hz.
Given the dependence of the induced ellipticity ψ(t) with

Fig. 1 A polarimeter based on a Fabry–Perot cavity with a time-
dependent signal and heterodyne detection.PDE extinction photodiode;
PDT transmission Photodiode

2ϑ(t), the ellipticity signal due to magnetic birefringence
has a frequency component at 2νB . Since the magnetic field
could in principle also generate rotations φ(t) due to a mag-
netic dichroism (for example from axion-like particles [24])
in Fig. 1 the total effect is indicated with a complex number
ξ = φ + iψ . Indeed one can assign an absolute phase to
the electric field of the light such that a rotation is described
by a pure real number whereas an ellipticity is a pure imag-
inary quantity. After the output mirror, an ellipticity modu-
lator adds a known ellipticity of amplitude η0 � 1 to the
polarisation at a frequency νm � νB . The beam of power
I0 then passes through an analyser (a polariser set to extinc-
tion) which divides the light into two polarisation compo-
nents: parallel and perpendicular to the input polariser, I‖
and I⊥ respectively. These beams are collected by the two
photodiodes PDT and PDE with efficiencies q = 0.7 A/W.

If all ellipticities (and rotations) are small these add alge-
braically. In the presence of both a rotation (t) = Nφ(t)
and an ellipticity �(t) = Nψ(t) (,� � 1) and without
the presence of the quarter-wave plate shown in Fig. 1, the
power reaching PDE is

I ell⊥ (t) =
∫

beam

ε0c|E⊥(t)|2d�� I0 |iη(t)+i�(t) + (t)|2

= I0
[
η2(t) + 2η(t)�(t) + (t)2 + �(t)2

]
. (7)

As can be seen, only the ellipticity �(t) beats with the effect
of the modulator η(t). The modulation amplitude η0 must
be chosen such that the term η2

0/2 is well above the noise
in the PDE signal: generally (t),�(t) � η0. If η(t) and
�(t) are sinusoidal functions at frequencies νm and ν respec-
tively (having chosen νm ≈ 50 kHz), the product 2η(t)�(t)
generates Fourier components at νm ± ν.

By demodulating the current signal from PDE iell⊥ (t) =
q I ell⊥ (t) at the frequencies νm and 2νm , one obtains the in-
phase Fourier components,

iνm (ν) = 2I0qη0�0(ν) and i2νm (dc) = q I0η
2
0/2 (8)

from which one can extract the amplitude (with relative sign)
for �0:

�0(ν) = iνm (ν)

2q I0η0
= iνm (ν)

2
√

2q I‖i2νm (dc)
= η0

4

iνm (ν)

i2νm (dc)
. (9)
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By inserting the quarter-wave plate with one of its axes
aligned with the polarisation, the ellipticity generated by the
magnetic field becomes a rotation and vice-versa [25]. In this
case, the power reaching PDE is,

I rot⊥ (t) =
∫

beam

ε0c|E⊥(t)|2d�� I0 |iη(t) ± �(t) ∓ i(t)|2

= I0
[
η2(t) ± 2η(t)(t) + (t)2 + �(t)2

]
(10)

where the signs depend on whether the polarisation is aligned
with the fast or the slow axis of the λ/4 wave plate. Again
the value of 0(ν) can be extracted using the same expres-
sions in Eq. (9). We explicitly note that Eqs. (7), (9) and (10)
hold for both an ellipticity/rotation signal and for an elliptic-
ity/rotation noise.

In the spectra obtained from Eq. (9), an ellipticity gen-
erated by a magnetic birefringence or a rotation generated
by a magnetic dichroism will appear at ν = 2νB whereas a
rotation due to a time dependent Faraday effect at νF will
appear at ν = νF .

Given the scheme in Fig. 1, one can determine the expected
peak ellipticity sensitivity S�(ν) of the polarimeter in the
presence of various noise sources (see Fig. 2). All noise con-
tributions will be expressed as electric currents. In general
the rms noise measured at the output of the demodulator at a
frequency ν is the incoherent sum of the rms noise densities
S+ and S− respectively at the frequencies νm +ν and νm −ν.
Generally |S+| = |S−| = Sν . Using Eq. (9) one finds,

S�(ν) =
√

2
√
S2+ + S2−

2q I0η0
= Sν

q I0η0
. (11)

The ultimate peak sensitivity S� of such a polarimeter is
given by the shot-noise limit. The rms current spectral density
i shot at PDE due to an incident d.c. light power I⊥(dc) is,

i shot = √
2eq I⊥(dc), (12)

constant over the whole spectrum. Equation (11) then leads
to,

Sshot
� (ν) =

√
2e

q I‖

(
η2

0/2 + σ 2
)

η2
0

, (13)

where we have introduced the extinction ratio of the polaris-
ers σ 2 and we have introduced I‖ as a measurement of I0.
If the modulation term is η2

0/2 � σ 2, the above expression
simplifies to,

Sshot
� (ν) =

√
e

q I‖
. (14)

Iout = 0.7 mW

RIN(50 kHz) = 3·10
-7

 1/√Hz

σ
2
 = 1·10

-7

G = 0.7·10
6
 V/W

Fig. 2 Noise budget of the principal noise sources as a function of
the modulation amplitude η0 for the PVLAS polarimeter. A minimum
which coincides with shot-noise sensitivity exists. Superimposed on
the plot is the experimental sensitivity between 10 and 20 Hz with
η0 = 10−2

Typical working values for the extinction ratio σ 2 and the
modulation amplitude η0 are σ 2 � 10−7 and η0 ≈ 10−2. The
extinction ratio reported is with the cavity and the modulator
crystal inserted. It does not change significantly when the
QWP is also inserted. As will be discussed below, the value
of the power I0 ≈ I‖ at the output of the cavity used in
the PVLAS setup during the measurements presented in this
work is I‖ = 0.7 mW from which one obtains a shot noise
peak sensitivity of,

Sshot
� (ν) = 1.8 × 10−8 /

√
Hz. (15)

With the effect to be measured � = 5.4×10−11 and with the
above shot noise the measurement time for a unitary signal-

to-noise ratio should be T = (
Sshot
� /�

)2 = 1.1 × 105 s, in
principle a reasonable integration time.

Considering other known noise sources such as the John-
son noise, i JN, the diode dark current noise iDN and the laser’s
relative intensity noise iRIN one obtains the curves shown
in Fig. 2 for the sensitivity as a function of the modulation
amplitude η0 [19]. As can be seen there is a region in the
modulation amplitude around η0 ≈ 2 × 10−2 which should
in principle allow shot noise sensitivity.

The out-of-phase quadrature signal iqu
νm (ν) at the output of

the demodulator can be used as a good measurement of noise
contributions uncorrelated to ellipticity noise. In principle, if
S�(ν) was limited by one of the wide band noises reported in
Fig. 2 then iνm (ν) = iqu

νm (ν). Unfortunately this is not the case
and the measured sensitivity of the PVLAS polarimeter when
measuring ellipticities with N = 4.5 × 105 is significantly
worse than the values in Fig. 2: SPVLAS

� ∼ 3−5×10−7/
√

Hz
for frequencies ν ∼ 10–20 Hz and η0 = 10−2.

To better understand the actual sensitivity reached by the
PVLAS experiment one should consider, rather than the
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S Δ

λ

Fig. 3 Measured optical path difference sensitivity for past and present
experiments as a function of their typical working frequency. BFRT
[28], PVLAS-LNL [25,29], PVLAS-TEST [30], BMV [21], PVLAS-
FE [19], OVAL [22]. The line is a fit with a power law having excluded
the BFRT values. The resulting power is (−0.78 ± 0.03)

ellipticity, the sensitivity in optical path difference �D =∫
path �n dl:

S�D = SPVLAS
�

λ

πN
∼ 3 − 6 × 10−19 m/

√
Hz, (16)

between 10 and 20 Hz. This value can be compared to the
ones for gravitational wave detection using interferometer
techniques [26]. Indeed the quantities to be compared are,

SPVLAS
�

λ

2πN
⇐⇒ hsenslarm, (17)

where larm is the arm length of the gravitational wave inter-
ferometer and hsens is its sensitivity in strain [26]. For
example in Advanced LIGO (Figure 2 of Ref. [27]) with
larm = 4000 m and hsens ≈ 1.5 × 10−22/

√
Hz @20 Hz, one

finds S�D ≈ 10−18 m/
√

Hz, a value slightly above the one
of the PVLAS experiment. It must also be noted that grav-
itational wave interferometers are not shot noise limited at
these frequencies but are limited by technical noises [27].

Interestingly, all of the past and present experimental
efforts also have been limited by a yet to be understood wide
band noise. In Fig. 3 we report the optical path difference
sensitivities of past and present experiments dedicated to
measuring vacuum magnetic birefringence with optical tech-
niques. These sensitivities are plotted as a function of the fre-
quencies at which each experiment typically works/worked
at. Although each experiment is characterised by a different
finesse of the cavity and uses different detection schemes
(heterodyne, homodyne), the sensitivities lie on a common
power law ∝ νx with x = −0.78 ± 0.03. The only experi-
ment significantly above this common curve is BFRT [28].

This is the oldest effort and used a multi-pass cavity with sep-
arate optical benches rather than a Fabry–Perot. The mirrors
were also of different fabrication. Furthermore all of these
sensitivities are well above their expected shot noise limit
with the exception of the OVAL experiment which uses a
very low power of 10 µW at the output of the cavity and
whose sensitivity coincides with its expected one [22].

Finally, without the presence of the Fabry–Perot cavity
the PVLAS polarimeter reaches shot-noise sensitivity above
ν ∼ 10 Hz. Below this frequency the noise is due to point-
ing fluctuations of the laser beam coupled to birefringence
gradients present in all optical elements.

A possibile interpretation of the general behaviour shown
in Fig. 3 is that there is an intrinsic birefringence noise being
generated in the mirror reflective coatings. Given the order
of magnitude of the sensitivities in Fig. 3 we believe that we
have reached a thermal intrinsic noise in birefringence, not
induced by the laser power, but due to the mirrors in thermal
equilibrium at T ≈ 300 K.

To verify whether the excess noise present in the PVLAS
experiment is indeed a birefringence noise originating from
the reflective coatings of the mirrors we performed a series of
measurements both in ellipticity and in rotation as a function
of the finesse of our cavity. The measurements were per-
formed with a pure birefringence signal due to Argon gas at
a pressure P ≈ 0.85 mbar and with an external solenoid gen-
erating a Faraday rotation on the input mirror of the cavity.
In this paper the results of these measurements are presented
showing that indeed the excess noise is dominated by bire-
fringence noise and that the ellipticity noise is proportional
to the finesse of the cavity.

3 Method

The basic scheme of our polarimeter was described above
but to fully understand the measurements we are going to
present, we must here include some extra details.

3.1 Mirror birefringence

The most important point is that the mirrors of Fabry–Perot
cavities always present an intrinsic structured birefringence
[32] over the reflecting surface. The composition of the bire-
fringence of the two mirrors can be treated as a single bire-
fringent element [33] inside a perfect non birefringent cav-
ity. If α1 and α2 are the phase retardations upon reflection
on each mirror for two polarisations parallel and perpendic-
ular to their slow axis and if we take as a reference angle
the slow axis of the first mirror then, per round trip, the two
mirrors are equivalent to a single birefringent element with a
total retardation αEQ at an angle ϑEQ with respect to the first
mirror’s slow axis [33]:
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αEQ =
√

(α1 − α2)2 + 4α1α2 cos2 ϑWP, (18)

cos 2ϑEQ = α1 + α2 cos 2ϑWP√
(α1 − α2)2 + 4α1α2 cos2 ϑWP

, (19)

where ϑWP is the angular position of the slow axis of the sec-
ond mirror. Typical values for α1,2 are ∼ 10−7 to 10−5 rad.
This leads to a high finesse cavity having two non degenerate
resonances slightly separated in frequency by,

�νsep = ν f sr
αEQ

2π
(20)

where ν f sr = c
2D is the cavity’s free spectral range. This

separation is to be compared with each resonance’s FWHM
�νcav = ν f sr/F .

To reach a good extinction, necessary to have a good sen-
sitivity, the input polarisation must be aligned to one of the
axes of the cavity’s equivalent birefringence. In this way no
component perpendicular to E‖ will be generated by the cav-
ity itself. The reflected light used to lock the laser to the cavity
has a polarisation parallel to the input polariser. For this rea-
son the laser is locked to only one of the two resonances
whereas the ellipticity (or rotation) signal will respond to the
resonance shifted by �νsep.

As discussed in Refs. [17,19] the ratio �νsep/�νcav =
F

αEQ
2π

= 1
2
NαEQ

2 leads to an extra phase between the two
perpendicular polarisation states and to a reduction of the
signal. Assuming the presence of only an ellipticity �0 the
resulting expression for E⊥(t) is:

E⊥(t) = E0

[
i�0k(αEQ)

(
1 − i

NαEQ

2

)
sin 2ϑ(t) + iη(t)

]

(21)

where,

k(αEQ) = 1

1 + N 2 sin2(αEQ/2)
. (22)

The expression for E⊥(t) is actually only valid in the limit
of low frequencies with ν � �νcav, as will be discussed in
Sect. 3.2. Apart from a reduction of the accumulated ellip-
ticity �0 by a factor k(αEQ), E⊥(t) is no longer a pure imag-
inary number but also has a real component corresponding
to a rotation NαEQ

2 k(αEQ)�0. The result of this modification
of E⊥(t) is therefore a mixing of an ellipticity and a rotation
by a factor NαEQ

2 . The same mixing occurs in the presence of
a pure rotation.

In the presence of both an accumulated rotation 0 =
Nφ0 and an accumulated ellipticity �0 = Nψ0 the mea-
sured ellipticity �meas

ν→0 and the measured rotation meas
ν→0 can

therefore be determined from (ν � �νcav),

�meas
ν→0 = k(αEQ)

[
�0 − NαEQ

2
0

]
, (23)

meas
ν→0 = k(αEQ)

[
0 + NαEQ

2
�0

]
. (24)

Measuring αEQ is thus fundamental to disentangle elliptici-
ties and rotations.

Having measured the finesse of the cavity and considering
the presence of a pure ellipticity only (0 = 0) one finds that
(ν � �νcav),

meas
ν→0

�meas
ν→0

∣∣∣∣
0=0

= NαEQ

2
, (25)

gives a direct value for αEQ. The same is true in the presence
of a pure rotation (�0 = 0) in which case,

�meas
ν→0

meas
ν→0

∣∣∣∣
�0=0

= −NαEQ

2
. (26)

The determination of αEQ can therefore be easily done either
by measuring a Cotton-Mouton signal or a Faraday effect, in
either case with and without the quarter-wave plate inserted.
In the next sections we will see how these must be modified
to determine αEQ also for frequencies ν � νcut.

As we will see below, the mixing of an ellipticity with a
rotation will also help us understand the origin of the excess
noise typically observed in polarimeters based on high finesse
cavities.

3.2 Frequency response

In the previous paragraph we introduced the mixing between
ellipticities and rotations due to the cavity birefringence in
the low frequency limit. Due to the relatively narrow cavity
width �νcav ∼ 65 Hz with respect to the frequencies of
our signals it is important to take into account the frequency
response of the system.

An ideal Fabry–Perot behaves as a first order low pass
filter with a frequency cutoff νcut determined by the cavity
line width �νcav:

νcut = �νcav

2
= c

4DF
. (27)

Therefore in the presence of a non birefringent cavity the
measurement of an ellipticity signal generated by a time
dependent birefringence at a frequency ν will be filtered
according to [31],

h0(ν) = 1√
1 +

(
ν

νcut

)2
= 1√

1 + ( 2πνDN
c

)2
. (28)
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With a finesse F = 7 × 105 and a Fabry–Perot length
D = 3.303 m, as is the case in the PVLAS experiment,
the frequency cutoff is νcut = 32 Hz.

3.2.1 The case for NαEQ � 1

Considering now a birefringent cavity, it can be shown [34]
that for NαEQ � 1 the frequency response of the measured
rotation signal in the presence of a time dependent pure bire-
fringence (or vice-versa the ellipticity signal in the presence
of an effect generating a pure rotation) is well approximated
by,

H0(ν) = h0(ν)2 = 1

1 +
(

ν
νcut

)2 . (29)

The expressions given in Eqs. (23) and (24) therefore
become,

�meas
NαEQ�1 = k(αEQ)h0(ν)

[
�0 − NαEQ

2
0h0(ν)

]
, (30)

meas
NαEQ�1 = k(αEQ)h0(ν)

[
0 + NαEQ

2
�0h0(ν)

]
. (31)

Significant filtering is therefore present already for frequen-
cies ν � νcut. Furthermore the two mixing quantities have
different frequency responses.

3.2.2 The case for NαEQ � 1

If NαEQ � 1, as is the case under consideration as we will see
below, the first and second order filters of the Fabry–Perot,
h0(ν) and H0(ν), deviate significantly from the standard
curves given in Eqs. (28) and (29), respectively. Remember-
ing that �0 = Nψ0 and that similarly 0 = Nφ0, the multi-
plicative factors Nk(αEQ)h0(ν) and Nk(αEQ)H0(ν)

NαEQ
2 in

Eqs. (30) and (31) must be substituted with the more com-
plicated expressions [34]:

Nk(αEQ)h0(ν)

→
√

4 [1 − R cos αEQ(2 cos δ − R cos αEQ)][
1 + R2 − 2R cos(αEQ − δ)

] [
1 + R2 − 2R cos(αEQ + δ)

]
(32)

Nk(αEQ)H0(ν)
NαEQ

2

→
√

4 R2 sin2 αEQ[
1 + R2 − 2R cos(αEQ − δ)

] [
1 + R2 − 2R cos(αEQ + δ)

]
(33)

where δ = 2π
ν f sr

ν and R is the reflectance of the mirrors
(assumed to be equal). In the limits for αEQ � 1 and δ � 1,
the righthand sides of these expressions correctly reduce to
their lefthand sides.

Fig. 4 Comparison of hαEQ (ν) (solid lines) with h0(ν) (dashed lines)
for two finesse values and for αEQ = 2 × 10−6 rad. As can be seen the
two functions differ significantly especially at the higher finesse value
where NαEQ/2 approaches unity

Although these expressions are rather bulky separately, it
can be shown that the ratio of the righthand sides of Eqs. (33)–
(32) reduces to the same expression as in the case NαEQ � 1:

√
R2 sin2 αEQ

1 − R cos αEQ(2 cos δ − R cos αEQ)

≈ NαEQ

2

1√[
1 +

(
ν

νcut

)2
] [

1 − NαEQ
2 αEQ

]

≈ NαEQ

2
h0(ν). (34)

Even for NαEQ/2 ∼ 1 this ratio is proportional to a simple
first order filter h0(ν). We will therefore define a modified
first order filter function hαEQ(ν) from,

Nk(αEQ)hαEQ (ν)

=
√

4 [1 − R cos αEQ(2 cos δ − R cos αEQ)][
1 + R2 − 2R cos(αEQ − δ)

] [
1 + R2 − 2R cos(αEQ + δ)

]
(35)

and in Eqs. (30) and (31) we can therefore make the substi-
tutions,

k(αEQ)h0(ν) → k(αEQ)hαEQ(ν), (36)

k(αEQ)H0(ν)
NαEQ

2
→ k(αEQ)hαEQ(ν)

NαEQ

2
h0(ν). (37)

In Fig. 4 we report the comparison of h0(ν) with hαEQ(ν)

for two different values of NαEQ
2 : 0.50 and 0.17. Given that

our values of NαEQ/2, as we will see below, are close to the
values reported in the Fig. 4, to correctly interpret our noise
spectra the more general expression of hαEQ(ν)must be used.
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With all these considerations the measured values for
�meas and meas as a function of �0, 0 and αEQ are finally,

�meas = k(αEQ)hαEQ(ν)

[
�0 − NαEQ

2
0h0(ν)

]
(38)

meas = k(αEQ)hαEQ(ν)

[
0 + NαEQ

2
�0h0(ν)

]
(39)

where the ratio,

meas

�meas

∣∣∣∣
0=0

= NαEQ

2
h0(ν) (40)

gives a direct value for αEQ. The same is true in the presence
of an effect generating a pure rotation (�0 = 0) in which
case,

�meas

meas

∣∣∣∣
�0=0

= −NαEQ

2
h0(ν). (41)

These last four Eqs. (38)–(41) will be used when analysing
our data in what follows.

3.3 Noise studies

By studying the noise spectra in ellipticity and rotation and
the Cotton-Mouton and Faraday signals one can understand
whether the noises S�(ν) and S(ν) are proportional to N or
not and therefore if they originate from inside or outside of the
cavity. Moreover by comparing the measured ellipticity noise
S�meas(ν) with the measured rotation noise Smeas(ν) one can
determine whether they are dominated by an ellipticity noise
S�(ν) or a rotation noise S(ν).

Since the measured noise both in ellipticity and in rotation
is significantly greater than the expected noise, we assume
independent contributions by both ellipticity and/or rota-
tion noises, S�meas(ν) and Smeas(ν), generated and ampli-
fied inside the cavity. Hence we use, for the noise densities,
the same expressions (38) and (39) used for the signals. We
therefore model the measured spectral noise densities as,

S�meas (ν) = k(αEQ)hαEQ (ν)

×
√√√√S�(ν)2 +

(
NαEQ

2
S(ν)h0(ν)

)2

+
(

Se
k(αEQ)hαEQ (ν)

)2

,

(42)
Smeas (ν) = k(αEQ)hαEQ (ν)

×
√√√√S(ν)2 +

(
NαEQ

2
S�(ν)h0(ν)

)2

+
(

Sr
k(αEQ)hαEQ (ν)

)2

,

(43)

where S�(ν) = Nsψ(ν) and S(ν) = Nsφ(ν) are respec-
tively the ellipticity and the rotation spectral densities and

where we have added white noise contributions Sr and Se to
Smeas(ν) and S�meas(ν) respectively.

4 Measurements

Let us remind the reader that the aim of the present work is
to study the signal-to-noise ratio in the PVLAS apparatus as
a function of the finesse of the Fabry–Perot cavity. To reduce
the finesse of the cavity we have introduced controlled extra
losses p to the Fabry–Perot cavity. Given the transmittance
T and the intrinsic losses p0 of the mirrors, p will cause the
finesse F and the output intensity I0 to change according to,

F (p) = π

T + p0 + p
(44)

I0(p)

Iin
=

[
T

T + p0 + p

]2

=
[
TF (p)

π

]2

. (45)

In the case of the PVLAS cavity, the best finesse mea-
sured was F ≈ 7.7 × 105 with a 25% transmission [18],
corresponding to p0 = (1.7 ± 0.2) ppm and a transmittance
of each mirror (assumed to be equal) T = 2.4 ± 0.2 ppm.
Therefore an extra loss p ≈ 0 ÷ 10 ppm will change the
finesse from F = 7.7 × 105 to F = 2.5 × 105.

To introduce these extra losses we have used one of the
manual vacuum gate valves present in front of the output
mirror to clip the Gaussian mode between the mirrors. With
a width r0 of the intensity profile of the Gaussian mode and
therefore σ = r0

2 , clipping at (4.5 − 5)σ level is sufficient
to achieve the desired losses p. An estimate can be made
considering a circular aperture of radius a. The power loss
per pass of the beam inside the cavity is,

p ≈ e−2 a2

w2 = e− a2

2σ2 . (46)

With a ratio x = a/σ = 4.8 the resulting extra losses are
p = 10 ppm. Given the relatively large value of x , these
extra power losses are therefore obtained without signifi-
cantly altering the Gaussian beam profile. It is also true,
though, that very small position variations of the gate valve
with respect to the beam generate significant variations of
the finesse. We have observed that, with the valve inserted,
the stability of the finesse is of the order of 1%. In our mea-
surements this is the dominant uncertainty factor.

Note also that even if the noise is generated within the
whole thickness of the reflecting layers, the physical struc-
tures of the multilayer dielectric mirrors corresponding to the
highest and the lowest finesses used would differ by no more
than a pair of dielectric layers [35]; this justifies the use of
an extra loss located outside the mirrors as a means to study
the intrinsic birefringence noise of the mirrors as a function
of the finesse.
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Fig. 5 Intensity decay curves for the six different positions of the gate
valve clipping the beam to increases the losses inside the cavity. F1–F6
represent the relative finesse values. As an example, an exponential fit
is superimposed to the curve relative to F6

Since a reduction by a factor 3 of the finesse results in a
factor 9 reduction at the output of the cavity and given that
the output power is I‖ = T Icav this also means a factor 9
reduction of the power on the mirrors. We therefore chose to
change the input power to the cavity so that at each finesse
the output power was the same during all measurements: we
chose I0 = 0.7 mW.

The theoretical sensitivity for I0 = 0.7 mW was already
shown in Fig. 2. Superimposed is also the measured sensi-
tivity between 10 and 20 Hz with a modulation η0 = 10−2.
This measured sensitivity does not change by increasing or
decreasing the output power by a factor ten.

During our measurements the magnets were kept in rota-
tion at two different frequencies, να = 4 Hz and νβ = 5 Hz
generating Cotton-Mouton peaks at twice these frequencies
due to the presence of Argon gas at 850 µbar. The frequency
of the Faraday rotation signal induced on the input mirror
using an external solenoid was chosen to be νF = 19 Hz.

Six different values of the finesse were chosen for the mea-
surements, each separated by approximately 20%. For each
finesse value we first measured in the ellipticity configura-
tion and then in the rotation configuration by inserting the
quarter-wave plate. The finesse was determined by measur-
ing the intensity decay exiting the cavity after unlocking the
laser at the end of each series of measurements.

The intensity decay graphs for the six positions of the
gate valve, resulting in the six finesse values used during
the measurements, are shown in Fig. 5. These correspond
respectively to,

F = (6.88, 5.72, 4.81, 3.83, 3.17, 2.56) × 105, (47)

with a 1% uncertainty.
The main goal of the present work is to show whether

the noise present in the two configurations of the polarimeter
is dominated by an ellipticity noise generated by a fluctuat-
ing birefringence inside the cavity, i.e. whether it is multi-
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Fig. 6 Ellipticity (top panel) and rotation (bottom panel) raw spectra
for an integration time of t = 512 s for F1 = 6.88 × 105. In red is
the FFT of the in-phase component whereas in black is the quadrature
component. A zoom from 0 Hz to 20 Hz is shown to better appreciate
the peaks at 2να = 8 Hz, 2νβ = 10 Hz, of equal amplitudes, and
at νF = 19 Hz. Peaks at να and νβ are also present due to a slight
non orthogonality between the beam and the magnetic field direction
generating a time dependent Faraday rotation in the Argon gas

plied by the gain factor N of the Fabry–Perot. To accomplish
this, for each finesse value we first determined the value of
αEQ from Eqs. (40) and (41) for both the Faraday and the
Cotton-Mouton measurements. The dependence of both the
Cotton-Mouton and Faraday signals are expected to follow
the relations given in Eqs. (38) and (39). We have then stud-
ied the signal-to-noise ratios of the various signals both in
the rotation and in the ellipticity configurations to study their
behaviour as a function of the finesse.

5 Results and discussion

Typical raw ellipticity (top) and rotation (bottom) spectra
measured in a time t = 512 s at the highest finesse of
F1 = 6.88 × 105 are shown in Fig. 6. Data sampling was
performed at 256 Hz resulting in spectra with a frequency
resolution of �νres = 1.5 × 10−5 Hz. In both the ellipticity
and rotation channels the Argon Cotton-Mouton signals at
2να = 8 Hz and 2νβ = 10 Hz are clearly visible, with equal
amplitudes due to identical magnets, along with the Faraday
rotation signal at νF = 19 Hz induced in the input mirror
of the cavity. The small sidebands around 2να,β are due to
small oscillations of the rotation frequency of the magnets
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Fig. 7 Determination of αEQ as a function of N for both the Cotton-
Mouton signals at 2να,β and for the Faraday rotation at νF

generated by the driving system of the magnets. The ampli-
tude error on the main peaks due to these sidebands is less
than 1 ‰. In both panels of the Fig. 6 one can also distin-
guish two peaks at να = 4 Hz and νβ = 5 Hz due to a small
component of the magnetic field along the beam direction
generated by a small non orthogonality of the magnetic field
with respect to the beam propagation direction. This small
component of the magnetic field generates a Faraday rotation
in the gas inside the cavity. Indeed these peaks are higher in
the rotation spectrum. A small Faraday effect is also gener-
ated in the mirrors due to the stray field but this rotation is
negligible with respect to the rotation generated in the gas.

Notice how in the rotation spectrum the integrated noise
and the two Cotton-Mouton signals are smaller with respect
to the ellipticity spectra whereas the Faraday signals are
larger.

In Fig. 6 we have also reported (in black) the quadra-
ture demodulation spectra integrated over the same time t .
This integrated noise corresponds to a peak spectral density
of Squad = 1.6 × 10−8/

√
Hz, in agreement with the sen-

sitivity, shown in Fig. 2, due to noise sources independent
of ellipticity such as shot-noise, Johnson noise, diode dark
current noise and laser relative intensity noise considering
I0 = 0.7 mW and η0 = 10−2. This noise is the same in both
the ellipticity and the rotation spectra. The in-phase noise is
clearly of a different origin. Small peaks, less than 1% of the
in-phase peaks, are present in the quadrature channel which
are consistent with a phase error in the demodulation of about
1◦.

5.1 Determination of αEQ

For each value of the finesse we have first determined the
value of αEQ , necessary to evaluate the true ellipticities and
rotations due to the Cotton-Mouton and Faraday effects,
according to Eqs. (40) and (41). In Fig. 7 we have plotted
the values of the ratios,

meas

�meas

2

Nh0(ν)

∣∣∣∣
ν=8 Hz,10 Hz

= αEQ, (48)

at 8 and 10 Hz as a function of the number of passes N = 2F
π

and

�meas

meas

2

Nh0(ν)

∣∣∣∣
ν=19 Hz

= αEQ. (49)

Since αEQ is a property of the mirror coatings it is indepen-
dent of N , as expected. The average value for αEQ at 8 and
10 Hz is

αEQ|ν=8 Hz,10 Hz = 2.30 × 10−6 rad

σαEQ |ν=8 Hz,10 Hz = 2 × 10−8 rad (50)

where σαEQ is the standard deviation obtained from the plot-
ted data. This value is consistent with the statistical error of
each single measurement.

The same can be done by considering the measured rota-
tion and ellipticity peaks at ν = 19 Hz:

αEQ|ν=19 Hz = 2.35 × 10−6 rad

σαEQ |ν=19 Hz = 6 × 10−8 rad (51)

Here the standard deviation σαEQ |ν=19 Hz obtained from
the plotted data is significantly larger than the statistical error
of each data point due to the significantly smaller value of
αEQ at N = 161000 with respect to the other data points.
Furthermore the average value of αEQ for the data at the
higher finesses is significantly larger than the average value
obtained using the Cotton-Mouton effect. There is clearly
a small systematic effect when using the Faraday effect by
applying a magnetic field on the mirrors which at the moment
is not well understood but may be due to the substrate of the
mirror. The weighted average of the two values considering
the standard deviations reported in (50) and (51), which we
will use in the following, is αEQ = 2.305 × 10−6 rad with
standard deviation σαEQ = 2 × 10−8 rad.

5.2 Cotton-Mouton and Faraday signals in the ellipticity
channel versus N

In Fig. 8 we have plotted the peak amplitudes �meas of the
ellipticity signals at 8 and 10 Hz as a function of N . In the
same figure we have also plotted the values of �0 obtained
from Eq. (38) taking into account the frequency dependence
hαEQ(ν) of the signals and the amplitude reduction due to
k(αEQ). As expected these lie on a line passing through the
origin indicating that indeed the signal is �0 = Nψ0. The
slope of the lines give the value of the ellipticity per pass
ψ0 = (7.20 ± 0.04) × 10−11 acquired by the light resulting
in a Cotton-Mouton constant [36] �nu = �n/B2 = (5.63±
0.14)×10−15 T−2 @1064 nm with PAr = (850±20) µbar.
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are not corrected for the cavity response. The dots lying on the linear fit
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In Fig. 9 we have plotted the values of �meas of the ellip-
ticity at 19 Hz. This signal is due to the Faraday rotation
being transformed into ellipticity because of the birefrin-
gence of the cavity. In the same figure we have also plotted
the values of N 2 αEQ

2 φ0, obtained having normalised the val-
ues �meas for the response of the polarimeter, as a function of
N according to the expression deduced from Eq. (38) having
set �0 = 0:

Fig. 10 Ellipticity spectra for the six finesse values rescaled to a 1 s
integration time. The raw spectra have been rebinned by taking rms
averages of the raw spectra in 0.5 Hz frequency intervals. The peak at
50 Hz is due to the mains

∣∣∣∣∣
�meas

h0(ν)hαEQ(ν)k(αEQ)

∣∣∣∣∣
19 Hz

= NαEQ

2
0 = N 2 αEQ

2
φ0.

(52)

As expected from this last equation these values lie on a
parabolic curve allowing the determination of the rotation per
pass φ0 = (1.96±0.04)×10−11 rad/pass. It is estimated that
the contribution of the substrate is less than 1%, compatible
with the parabola passing through the origin within the errors.

5.3 Ellipticity noise versus N

In Fig. 10 one can see the ellipticity rms spectra at the six
different finesse values, where the raw spectra have been
rebinned in 0.5 Hz frequency bins.

These spectra have not been normalised for the amplifica-
tion factor N and frequency response k(αEQ)hαEQ(ν) given
by Eq. (32). As can be seen not only do the Cotton-Mouton
ellipticity signals and the peaks at νF = 19 Hz decrease with
decreasing N , as already discussed, but so does the noise. By
normalising each spectrum with the cavity response given by
Eq. (38) and assuming the noise to be dominated by the intra-
cavity ellipticity noise sψ (sφ = 0 and Se = 0) in Eq. (42),
one finds the plot shown in Fig. 11. In this figure, all the noise
components of the spectra lie on a common curve (except
for a small broad structure between 5 and 10 Hz at the lower
finesse values). The Cotton-Mouton peaks also indicate a
common value whereas the signal at νF does not, as expected.

Instead, by normalising the noise spectra assuming an
intracavity rotation noise sφ (sψ = 0 and Se = 0) in equation
(42), one obtains the plots in Fig. 12. In this case the peaks
at νF , which have an origin from a Faraday effect, overlap
whereas the noise and the Cotton-Mouton peaks do not. It is
also apparent that the noise does not behave as an intracavity
rotation noise sφ .
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Fig. 11 The six ellipticity spectra of Fig. 10 rescaled assuming an ellip-
ticity noise S� proportional to N and taking into account the frequency
response of the cavity

Fig. 12 The six ellipticity spectra of Fig. 10 rescaled assuming a rota-
tion noise S proportional to N and taking into account the frequency
response of the cavity

In Fig. 13 we report the signal-to-noise ratios for both the
Cotton-Mouton signals at 2να = 8 Hz (purple) and 2νβ =
10 Hz (green) extracted from Fig. 10. On the same plot we
have also reported the ratio of the Cotton-Mouton signal at
2νβ = 10 Hz with respect to the noise at 20, 30, 40 and
90 Hz to see whether indeed the noise is independent of the
finesse also at higher frequencies. The value of the noise at
8 and 10 Hz is determined as the average of the noise on
either side of the peaks in a frequency range of 0.5 Hz. For
the other frequencies the noise is determined as the average
over a 0.5 Hz frequency range.

As can be seen, the ratios at 8 and 10 Hz are indeed inde-
pendent of the finesse. The apparent increase of the signal-
to-noise ratio with N at higher noise frequencies is actually
only due to the different frequency response of the cavity at
the frequency of the signal and at the frequency of the noise.

Following the hypothesis that the noise in the polarimeter
is dominated by an ellipticity noise per pass sψ we have fitted
the different signal-to-noise ratios with the expression,
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Fig. 13 Signal-to-noise ratios of the Cotton-Mouton peaks with
respect to the noise at different frequencies. The fits take into account
the cavity response at the different frequencies according to Eq. (53)

�meas(νsig)

S�meas(νnoise)
= hαEQ(νsig)

hαEQ(νnoise)

ψ0

sψ(νnoise)
, (53)

obtaining the superimposed fits.
Considering the more complicated expression (42) in

which one fixes a common ellipticity noise per pass sψ , a
common rotation noise per pass sφ for each value of N and
a flat baseline noise contribution Se according to the expres-
sion,

�meas(νsig)

S�meas (νnoise)

= hαEQ (νsig)ψ0√
sψ(νnoise)2 +

(
NαEQ

2 sφ(νnoise)h(νnoise)
)2 + S2

e
Nk(αEQ)hαEQ (νnoise)

,

(54)

does not improve the quality of the fitted data estimated using
χ2

ndf . A global fit considering all the data in Fig. 13 gives the
following limits: sφ/sψ < 0.4 and Se < 2 × 10−8 1/

√
Hz.

The noise therefore behaves as an ellipticity noise sψ gen-
erated within the cavity and multiplied by a factor N , just
like the Cotton-Mouton signals: the total noise S� = Nsψ is
proportional to the number of passes N . We therefore con-
clude that the dominating noise source at frequencies up to
ν = 90 Hz is due to a pure ellipticity noise generated in the
dielectric coatings of the cavity mirrors.

By rescaling Fig. 11 to obtain an optical path difference
sensitivity one finds the graph in Fig. 14.
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Fig. 14 The six ellipticity spectra of Fig. 11 rescaled to show the com-
mon optical path difference sensitivity independent of the number of
passes N assuming an ellipticity noise S� proportional to N and taking
into account the frequency response of the cavity

Fig. 15 Rotation spectra for the six finesse values rescaled to a 1 s
integration time. The raw spectra have been rebinned by taking rms
averages of the raw spectra in 0.5 Hz frequency intervals

5.4 Ellipticity noise versus rotation noise

In the previous section we have discussed the ellipticity spec-
tra for the six finesse values. In Fig. 15 we report the respec-
tive rotation spectra.

Two facts are apparent: the rotation noise is smaller than
the ellipticity noise at all frequencies for corresponding
finesse values; the noise spectra in rotation flatten above
about 40 Hz at the lower finesse values. This noise floor
results to be Sr = 3.2×10−8/

√
Hz with a dispersion around

Sr of σSr = 0.2×10−8/
√

Hz. This noise is slightly above the
quadrature noise which corresponds to the intrinsic rotation
noise of the polarimeter.

To further confirm that the dominant noise source orig-
inates from a birefringence fluctuation we have considered
the ratios of the noise spectrum in ellipticity with respect to
the noise spectrum in rotation for the six different finesse
values. These spectra have been fitted with the expressions
(42) and (43),

Fig. 16 Plots of the ratios of the ellipticity noise to the rotation noise.
Fits are taken from 20 and 90 Hz. The peak frequencies have been
excluded in the fits. See text for details

S�meas(ν)

Smeas(ν)
=

√
sψ(ν)2+

(
NαEQ

2 sφ(ν)h0(ν)
)2+ S2

e
Nk(αEQ)hαEQ (ν)√

sφ(ν)2 +
(
NαEQ

2 sψ(ν)h0(ν)
)2 + S2

r
Nk(αEQ)hαEQ (ν)

,

(55)

where we have used a frequency dependence of sψ(ν) =√
(aν−1)2 + (bν−0.25)2 as a result of fitting Fig. 11, from

10 to 90 Hz, and we have assumed that the ratio sφ/sψ is
independent of frequency. The fit of the ratio of the noises
using Eq. (55) has been performed from 20 to 90 Hz and the
frequencies at which a peak is present have been excluded.
With these assumptions we obtain the global fits shown in
Fig. 16 in which the free parameters are the ratio sφ/sψ and
Se and the fixed value of Sr = 3.2 × 10−8/

√
Hz was used as

deduced from Fig. 15 above 40 Hz. The fits indicate a ratio
sφ/sψ = (0.21±0.01) and Se ≤ 3×10−8/

√
Hz compatible

with the shot noise limit shown in Fig. 2. On the same graphs
we have also plotted the two cases for sφ/sψ = 0 (dashed
green) and sφ/sψ = 1 (dashed blue) keeping the values for
Se as obtained from the global fit and Sr = 3 × 10−8.

These results confirm our interpretation of the noise mea-
surements: the observed noise is dominated by an ellipticity
noise generated by a birefringence inside the cavity. Rotation
noise plays only a minor role.

5.5 Consequences of results

A first important consequence of the findings presented in
this section is that the signal-to-noise ratio in a Fabry–Perot
based polarimeter with a calculated optical path difference
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sensitivity equal to or better than the sensitivity shown in
Fig. 14 will not improve by increasing the finesse of the
cavity. Assuming a predicted shot noise sensitivity given by
Eq. (14), the maximum useful finesse up to which one gains
in signal to noise ratio is determined by,

Fmax =
√

e

I‖q
λ

2S�D
, (56)

where S�D can be read off Fig. 14. For the experimental
configuration presented in this paper, where S�D ≈ 6 ×
10−19 m/

√
Hz @10 Hz, one finds Fmax = 1.6 × 104.

The second important fact resulting from these measure-
ments is that the dominant source of noise is indeed due to a
birefringence fluctuation in the cavity mirror coatings.

6 Noise origin

Polarimetric measurements using a Fabry–Perot cavity to
increase the effective optical path length have reached an
intrinsic limit due to the coatings of the cavity mirrors. Our
measurements show that this noise is due to birefringence
fluctuations in the coatings which we believe are of thermal
origin.

As mentioned in Sect. 3.1 cavity mirrors always present an
intrinsic birefringence. There could therefore be two princi-
pal causes for these birefringence fluctuations: a fluctuation
of the intrinsic birefringence; a fluctuation of the birefrin-
gence independent of the intrinsic value. As was shown in
Fig. 3, there is a very strong correlation in the optical path
difference noise between completely different experiments
with very different values of F . This seems to indicate that
the source of the intrinsic birefringence noise is independent
of the intrinsic mirror birefringence inducing the retardations
α1,2. This hypothesis seems confirmed by the estimation of
the thermo-refractive noise in Sect. 6.1.

We also note that any polarization effect intrinsic to the
cavity, be it static or dynamical, is generated in the first
reflecting layers encountered by the light from inside the
cavity. With a transmittance of the mirrors T = 2.4 × 10−6,
as is the case of the PVLAS experiment [18], the electric field
inside the reflective coatings has an exponential decay with,

NLP

λLP
= − ln

√
T , (57)

where NLP ≈ 20 is the total number of high refractive index
- low refractive index pairs composing the reflective coating
and λLP represents the number of coating pairs after which
the electric field (as opposed to the intensity) has decreased
to 1/e of the incident field. One finds λLP = 3.0. Most of
the ellipticity (signal and noise) is therefore accumulated in

the first λLP pairs of dielectric coatings for each reflection.
This corresponds to a geometrical thickness dLP � 1 µm.
These considerations further justify the use of an extra loss
located outside the mirrors as a means to study the intrinsic
birefringence noise of the mirrors.

There are three possible causes for birefringence thermal
noise in a medium: direct temperature dependence of the
index of refraction (thermo-refractive effect); indirect tem-
perature dependence of the index of refraction due to a linear
expansion coefficient coupled to a stress optic coefficient;
volume fluctuations due to Brownian motion. Here we will
only discuss the first two effects.

A lot of literature (see for example [38–41] exists which
deals with the phase noise induced in interferometric grav-
itational wave antennas by thermal fluctuations of mirrors
(coating, substrate). Indeed the main concern in their case
are length variations in the incident direction. Very little (if
none) exists for what concerns the effect of fluctuations in
the plane of the mirror surface causing birefringence. In the
following we will try to estimate this effect.

6.1 Thermo-refractive effect

Let us consider the indeces of refraction of the mirror coatings
along the natural axes of a mirror as n‖ and n⊥ resulting in a
birefringence �n = n‖ − n⊥. The optical path through the
coating of a mirror per reflection for light polarised parallel
and perpendicularly to the slow axis (here considered to be
the ‖ direction) will be,

D‖ ≈ 2
∫
dLP

n‖ dl (58)

D⊥ ≈ 2
∫
dLP

n⊥ dl (59)

where the factor 2 is intended to take into account the round
trip inside the coating. The intrinsic optical path difference
of a mirror coating per reflection will therefore be,

�D = D‖ − D⊥ ≈ 2
∫
dLP

�n dl. (60)

By considering the thermo-refractive effect due to a tem-
perature dependence of n = n(T), the optical path difference
temperature dependence will be,

d�D(T)

dT
≈ 2

∫
dLP

d�n(T)

dT
dl. (61)

Hence d�D(T)/dT �= 0 only if dn‖/dT �= dn⊥/dT. In this
case the optical path difference spectral density S�D (ν) due
to the thermo-refractive effect will be,
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S�D (ν) = d�D(T)

dT
ST(ν), (62)

where ST(ν) is the temperature noise spectral density.
An estimate of �D due to the intrinsic mirror birefrin-

gence can be obtained from the value of αEQ = 2.3 ×
10−6 rad, resulting in,

�D ≈ 2
∫
dLP

�n dl = αEQ

2π
λ ≈ 4 × 10−13 m. (63)

A rough value for 1
�n

d�n
dT ∼ 10−5 K−1 for fused silica can

be deduced from the expressions reported in [37] considering
n‖ � n⊥. Therefore,

d�D

dT
= 2

∫
dLP

d�n

dT
dl ∼ 10−5

×2
∫
dLP

�n dl ∼ 4 × 10−18 m

K
. (64)

Following Ref. [38] the temperature fluctuations averaged
over a volume πr2

0dLP/2 occupied by the Gaussian power
profile of waist r0 being reflected using a weight function
q(r),

q(r) = 2

πr2
0dLP

e−(
x2+y2

)
/r2

0 e−2z/dLP , (65)

results in a temperature noise spectral density ST(ν) [38],

S2
T(ν) =

√
2κBT2

πr2
0

√
2πνρCTλT

=
√

2kBT2

2πνρCTr3
T

r2
T

πr2
0

, (66)

where κB is the Boltzmann constant, ρ is the density, CT is
the specific heat capacity, λT is the thermal conductivity and,

rT =
√

λT

ρCT2πν
, (67)

is the characteristic diffuse heat transfer length (dLP � rT �
r0). In Eq. (66) the ratio r2

T/r2
0 represents the inverse of the

number of unit spheres of radius rT covering the beam of
radius r0 thereby averaging out the temperature fluctuations.
Considering fused silica (FS), for which ρ = 2200 kg/m3,
CT = 670 J/(kg K) and λT = 1.4 W/(m K) this results in,

SFS
T (ν) � 2 × 10−8 K√

Hz
@ 1 Hz, (68)

having set the beam diameter r0 ≈ 0.5 mm. Considering
tantala, Ta2O5, (TA) instead (we are assuming this is the
material used for the high-index layer in the mirror coating),

for which ρ = 8200 kg/m3, CT = 300 J/(kg K) and λT =
[0.026 ÷ 15] W/(m K) (for a film) [42], one finds,

STA
T (ν) � (1 ÷ 6) × 10−8 K√

Hz
@ 1 Hz. (69)

With the above values the thermo-refractive noise spectral
density in optical path difference STR

�D (ν) can be estimated
to be of the order,

STR
�D (ν) = d�D

dT

√√
2kBT2rT(ν)

πr2
0 λT

∼ 10−25 m√
Hz

@ 1 Hz,

(70)

well below the measured values reported in Figs. 3 and 14.
We therefore believe that the source of noise in the PVLAS
polarimeter is not due to a thermo-refractive effect.

6.2 Stress induced birefringence

Local length fluctuations will generate stress fluctuations
leading to birefringence through the stress optic coefficient.
Indeed given a stress optical coefficient CSO and a Young’s
modulus Y the induced variation in the index of refraction
due to stress is given by,

δn‖,⊥ = CSOY

(
δl‖,⊥
l

)
, (71)

where δl‖,⊥/ l is a relative length variation along two perpen-
dicular directions ‖ and ⊥ over a length l. Again following the
considerations in Ref. [38] an order of magnitude estimate
of the induced birefringence noise spectral density S�n(ν)

over the spot size of the reflected beam due to temperature
fluctuations related to stress can be made.

The average relative length fluctuations of δrT
rT

over the
spot surface, indicated by the brackets 〈〉‖,⊥ where ‖ and ⊥
indicate two perpendicular directions, will be,

〈
δrT

rT

〉
‖,⊥

= αTST(ν) = αT

√ √
2κBT2

πr2
0

√
2πνρCTλT

, (72)

where αT is the linear expansion coefficient. This will gen-
erate a birefringence noise spectral density,

S�n(ν) � CSOY

√√√√〈
δrT

rT

〉2

‖
+

〈
δrT

rT

〉2

⊥

= CSOYαT

√
2
√

2κBT2

πr2
0

√
2πνρCTλT

. (73)

A very rough estimate of the optical path difference spec-
tral density noise S�D = 2

∫
dLP

S�n dl accumulated in a
reflection results in,
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S�D ≈ 2S�ndLP = CSOY
αTdLP

r0

√
8T2κB

π
√

πνρCTλT
. (74)

For fused silica for which αT = 5 × 10−7 K−1, Y = 70 GPa
and CSO = 3 × 10−12 Pa−1 one finds,

SFS
�D ∼ 7 × 10−21 m√

Hz
@ 1 Hz (75)

whereas for tantala,

STA
�D ∼ (1 ÷ 6) × 10−19 m√

Hz
@ 1 Hz (76)

where the values for tantala are Y = 150 GPa and αT =
8 × 10−6 K−1 and we have use CSO = 3 × 10−12 Pa−1

for fused silica not having found a value for tantala in the
literature. Generally it is found in literature that CSO is ∼
(10−12 ÷ 10−11) Pa−1 with a particularly large value for
Nb2O5 with CSO = 95 × 10−12 Pa−1 [43]. These values
justify our approximation.

The value for STA
�D in the case of tantala is quite close

to the measured values especially at higher frequencies. The
exact expression for S�D is beyond the scope of this paper
but indeed a stress mechanism could generate a birefringence
noise of the same order of magnitude as the one measured.

This stress will be present both in the substrate and in the
mirror coatings. As discussed above, given that the electric
field within the coating is strongest in the first λLP layers
encountered by the light in the cavity, the induced S�D will
be dominated by these first layers and in particular by the
tantala layers.

7 Conclusions

Birefringence noise of the Fabry–Perot cavity limits the sen-
sitivity of precision measurements in polarimeters like those
designed to detect the birefringence of vacuum due to mag-
netic fields. We have measured the noise present in the
PVLAS polarimeter in both ellipticity and rotation modes
along with Cotton-Mouton and Faraday signals as a func-
tion of the finesse of the Fabry–Perot cavity. We have shown
that the signal-to-noise ratio of the Cotton-Mouton ellipticity
signals is independent of the finesse of the cavity as is the
ellipticity noise. We have shown that for the rotation noise
this is not the case. We have also studied the ellipticity noise
to rotation noise ratios which confirm that the dominant noise
source in the polarimeter is a fluctuating birefringence inside
the Fabry–Perot cavity.

We note that the noise is generated in the first few layers
of the mirror coatings and we infer that, with an order of
magnitude estimation, the origin could be due to thermally

induced stress fluctuations namely due to a thermo-elastic
effect.

It is therefore apparent that the continuous search to
improve the sensitivity in optical path difference S�D by
increasing the finesse of the Fabry–Perot cavity has reached
a limit.

The quest to measure vacuum magnetic birefringence
using optical techniques must therefore,

– reduce the optical path difference noise by cooling the
mirrors and/or by finding new materials for the coatings
with a lower stress optic coefficient and/or lower linear
expansion coefficient;

– decrease the number of reflections (finesse) and increase
the cavity and magnetic field lengths to preserve the opti-
cal path length.

– increase the vacuum magnetic birefringence signal using
high, long, static superconducting fields and inducing the
necessary signal modulating for improved sensitivity by
varying the polarisation [44,45].

Finally let us note that if the intrinsic total retardation NαEQ
2

can be kept low in such a way that the mixing between ellip-
ticity and rotation is also small, then increasing the finesse
during rotation measurements is advantageous. Indeed given
that the dominant source of ellipticity noise is due to bire-
fringence fluctuations, rotation sensitivity may not be limited
by an intrinsic thermal source. This could lead to improved
laboratory experimental limits on the existence of axion like
particles [19,23,24,46].
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