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We study the Z → γγ̄ process in which the Z boson decays into a photon γ and a massless dark photon γ̄,
when the latter couples to standard-model fermions via dipole moments. This is a simple yet nontrivial
example of how the Landau-Yang theorem—ruling out the decay of a massive spin-1 particle into two
photons—is evaded if the final particles can be distinguished. The striking signature of this process is a
resonant monochromatic single photon in the Z-boson center of mass together with missing momentum.
LEP experimental bounds allow a branching ratio up to about 10−6 for such a decay. In a simplified model
of the dark sector, the dark-photon dipole moments arise from one-loop exchange of heavy dark fermions
and scalar messengers. The corresponding prediction for the rare Z → γγ̄ decay width can be explored with
the large samples of Z bosons foreseen at future colliders.
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Consider the decay of a massive spin-one particle into
two massless spin-one particles. At first glance, this
channel should vanish—as it does in the case of two final
photons—as dictated by the Landau-Yang theorem [1]. Yet
the theorem need not apply if the two final states can be
distinguished. This is the case when the final state is made
of a photon γ and a dark photon γ̄.
The possibility of extra Uð1Þ gauge groups—with dark

photons mediating interactions among the dark-sector
particles, which are uncharged under the standard-model
(SM) gauge groups—is the subject of many theoretical
speculations and experimental searches (see Ref. [2] for
recent reviews, mostly for the massive case).
The case of massless dark photons is perhaps the most

interesting because the dark photon can be completely
decoupled from the SM [3], and interactions between SM
fermions and dark photons take place only by means of
higher-order operators [4], which are automatically sup-
pressed. Possible experimental tests of this scenario have
been investigated in Higgs physics [5], flavor-changing
neutral currents [6], and kaon physics [7]. Its relevance for
dark-matter dynamics has been discussed in Ref. [8].
The decay of a Z boson into one SM and one dark photon

would be a most striking signature for both the existence of
dark photons, and the embodiment of the nonapplicability

of the Landau-Yang theorem. The process can proceed at
one loop via SM-fermion exchange. To bypass the theorem,
the photon and dark photon must couple differently to the
fermions in the loop so as to be distinguishable. This
naturally occurs for massless dark photons since they do
not have a Dirac (i.e., mediated by a single γ matrix)
interaction but only a Pauli (i.e., mediated by two γ
matrices) dipole interaction:

L ∼ ψ̄σμνðdM þ iγ5dEÞψBμν; ð1Þ

where Bμν is the field strength associated with the dark
photon field Bμ, and σμν ¼ 1=2½γμ; γν�.
For massive dark photons, z0, the leading interaction

would be of the same SM-photon Dirac type as the photon,
eψ̄γμψBμ, decreased by the mixing parameter ϵ [2]. The
Z → γz0 channel would then be doubly suppressed by an ϵ2

factor and an extra termOðm2
z0=M

2
ZÞ, which brings back the

outcome of the Landau-Yang theorem for mz0 → 0. In this
case too then, the higher-order Pauli dipole interaction
might be the most relevant, as it is in the case of a massless
dark photon. The following analysis can then be extended
in a straightforward way to the massive dark-photon case.
The experimental signature for Z → γγ̄ is quite simple

and distinctive. In the Z-boson center-of-mass frame, the
photon is monochromatic with an energy of about 45 GeV.
A massless dark photon has a neutrinolike signature in a
typical experiment [5], and appears as missing momentum
in the Z → γ þ X final state. Such a process has been
explored at LEP (in the assumption of X being either a νν̄
pair or a hypothetical axion, if sufficiently light) to find the
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limit of 10−6 (95% C.L.) for the corresponding branching
ratio (BR) [9].
Effective dipole moments in a simplified model of the

dark sector.—We compute the dipole operators of Eq. (1) in
a simplified-model framework, where we make as few
assumptions as possible on the structure of the dark sector.
We extend the SM field content by a new (heavy) dark

fermion Q, which is a singlet under the SM gauge
interactions, but is charged under the unbroken UDð1Þ
gauge group associated to the massless dark photon. We
focus on the up-quark kind of interaction. The dark fermion
couples to SM fermions by means of a Yukawa-like
interaction given by

L ⊃ gfLðQ̄Lq
f
RÞSR þ gfRðQ̄Rq

f
LÞSL þ H:c:; ð2Þ

where SL and SR are new (heavy) messenger scalar
particles, and SL is an SUð2Þ doublet. In Eq. (2), qfL and
qfR stand for SM fermions of flavor f—that is, SUð3Þ
triplets and, respectively, SUð2Þ doublets and singlets. The
SL messenger field is a SUð2Þ doublet, SR is a SUð2Þ
singlet, and both are SUð3Þ color triplets (singlets) for
quark (lepton) messengers. Both fields are also charged
under UDð1Þ, carrying the same dark-fermion charge.
In order to generate chirality-changing processes, the

mixing terms of the kind (see Ref. [10] for more details)

L ⊃ λSS0ðH̃†SLS
†
R þ S†LSRHÞ; ð3Þ

are required, where H is the SM Higgs boson, H̃ ¼ iσ2H�,
and S0 a scalar singlet. After both S0 and H take a vacuum
expectation value (VEV) (μS and v—the electroweak
VEV—respectively), the Lagrangian in Eq. (3) gives rise
to the mixing.
Then, each of the messenger fields S� (obtained from

SL;R by diagonalization) couples to both left- and right-

handed SM fermions of flavor f with strength gfL=
ffiffiffi
2

p
and

gfR=
ffiffiffi
2

p
, respectively. We can assume that the size of the

mixing [proportional to the product of the VEVs (μsv)] is
large and of the same order of the heavy-fermion and
heavy-scalar masses.
The resulting model can be considered as a template for

many models of the dark sector, and is a simplified version
of the model in Ref. [10], which might provide a natural
solution to the SM flavor-hierarchy problem.
The SM Lagrangian plus the terms in Eqs. (2)–(3) and

the corresponding kinetic terms provides a simplified
model for the dark sector and the effective interaction of
a massless dark photon γ̄ with the SM fields. Then, SM
fermions couple to γ̄ only via non-renormalizable inter-
actions [4] induced by loops of dark-sector particles. The
corresponding effective Lagrangian is equal to

L ¼
X

f

eD
2Λ

ψ̄fσμνðdfM þ iγ5d
f
EÞψfBμν; ð4Þ

where the sum runs over all the SM fields, eD is the UDð1Þ
dark elementary charge (we assume universal couplings),Λ
the effective scale of the dark sector, ψf a generic SM
fermion field. The magnetic and electric dipoles are
given by

dfM ¼ 1

2
Re

gfLg
f�
R

ð4πÞ2 and dfE ¼ 1

2
Im

gfLg
f�
R

ð4πÞ2 ; ð5Þ

respectively.
The operators in Eq. (4) arise via one-loop diagrams after

integrating out the heavy dark-sector states (see Fig. 1).
Two mass parameters are relevant in the integration: the
dark-fermion mass MQ, parametrizing chiral-symmetry
breaking in the dark sector, and the mass of the lightest-
messenger mS. As far as the contribution to the magnetic-
dipole operator (with vanishing quark masses) is con-
cerned, for mS ≫ MQ one has a chiral suppression, with
a MQ=m2

S scaling, while for mS ≪ MQ one has a 1=MQ

behavior, due to the decoupling built in the theory. In order
to reduce the number of dimensionful parameters, we have
introduced in Eq. (4) a dark-sector effective scale Λ,
defined as the common mass of the dark fermion and
the lightest messenger scalar. This choice corresponds to
the maximal chiral enhancement. Nevertheless, because
the dipole moment in Eq. (4) is proportional to the
messenger mixing [see Eq. (3) and following text], the
effective scale 1=Λ is also proportional to the ratio vμS=m2

S,
as expected from the SUð2Þ symmetry breaking. Since we
are assuming a large-mixing scenario, vμS=m2

S is of order 1,
and one can express the effective scale as in Eq. (4)
with Λ ∼mS ∼MQ.
Stringent limits on the scale and couplings of the dark

sector come from flavor physics [6,7] and astrophysics
[11]. In order to evade them, we restrict ourselves to flavor
diagonal interactions of heavier quarks and leptons for
which there are currently no bounds.
Amplitudes.—We are interested in the decay process of a

Z boson into two massless spin-one particles:

FIG. 1. One-loop vertex diagrams giving rise to the effective
dipole operators in Eq. (4) between SM fermions and the dark
photon γ̄. Dark-sector fermions (Q) and scalars (S�) run inside
the loop. ψL and ψR are SM chiral fermions of arbitrary flavor.
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ZðqÞ → γðk1Þγ̄ðk2Þ; ð6Þ

where k1 and k2 are the photon and dark-photon
4-momenta, respectively, and q ¼ k1 þ k2 is the Z-boson
4-momentum. The total amplitudeM for the decay process
is obtained by computing the one-loop diagrams repre-
sented in Fig. 2. It is given by

M ¼ MM þME; ð7Þ

where the MM and ME stand for the magnetic- and
electric-dipole moment contributions.
In both amplitudes in Eq. (7) the ultraviolet divergencies

cancel out in the sum of the two diagrams in Fig. 2, and the
result is finite. We use dimensional regularization. The γ5
matrix can be treated naively as anticommuting with all
other γ matrices as long as the final expression is fixed by
requiring that the Ward identities are satisfied [12]. All
terms are proportional to the fermion masses and no gauge
anomaly is involved.
The CP-conserving part of the amplitude is given by

MM ¼ eDe
4π2

X3

i¼1

CiQ
μαβ
i ϵZμ ðqÞϵαðk1Þϵ̄βðk2Þ; ð8Þ

where e is the electric charge, ϵZμ ðqÞ, ϵαðk1Þ, ϵβðk2Þ are the
Z, γ, and γ̄ polarization vectors, respectively, and

Qμαβ
1 ¼ εαβμλk1λ −

2

M2
Z
εαμλρkβ1k1λk2ρ; ð9Þ

Qμαβ
2 ¼ εαβμλk2λ −

2

M2
Z
εβμλρkα2k1λk2ρ; ð10Þ

Qμαβ
3 ¼ 1

M2
Z
ðkμ1 − kμ2Þεαβλρk1λk2ρ; ð11Þ

are gauge invariant operators. The coefficients Ci are
given by

C1 ¼
X

f

rfmfd
f
M

Λ
ð2þ Bf þ 2CfM2

ZÞ;

C2 ¼
X

f

rfmfd
f
M

Λ
ð3þ 2Bf − 2Cfm2

fÞ;

C3 ¼
X

f

rfmfd
f
M

Λ
ð11þ 5Bf þ 2Cfðm2

f þM2
ZÞÞ; ð12Þ

where rf ¼ Nf
cg

f
AQf. The sum runs over all charged SM

fermions f, with mf the SM fermion masses. Furthermore,

gfA ¼ gTf
3=ð2 cos θWÞ is the Z-boson axial coupling to SM

fermions, with g the weak coupling, θW the Weinberg
angle, and T3

fð¼ �1=2Þ the eigenvalue of the third com-

ponent of weak isospin, Nf
c ¼ 3ð1Þ for quarks (leptons),

and Qf is the electric charge in units of the elementary
charge e. The Bf and Cf terms are defined as

Bf ≡ Disc½B0ðM2
Z;mf;mfÞ�;

Cf ≡ C0ð0; 0;M2
Z;mf;mf;mfÞ; ð13Þ

with B0 and C0 the scalar two- and three-point Passarino-
Veltman functions, respectively (see Ref. [13] for their
explicit expressions), and Disc½B0� the discontinuity of the
function. They are both finite functions that can be
evaluated numerically, for example, by PACKAGE X [14].
Then, one has

1

3

X

pol

MMM
†
M ¼ 2

3

αDα

π
M2

ZjCMj2; ð14Þ

where αD ¼ e2D=4π and α ¼ e2=4π are the fine structure
constants, and CM ¼ P

fd
f
Mξ

fðmfÞ, where

ξfðmfÞ≡ rfmf

Λ
ð3þ Bf þ 2m2

fCfÞ: ð15Þ

The CP-violating contribution to the on-shell ampli-
tude induced by the electric-dipole moment in Eq. (4) is
given by

ME ¼ i
eDe
4π2

CEðkμ1 − kμ2ÞgαβϵZμ ðqÞϵαðk1Þϵ̄βðk2Þ: ð16Þ

Accordingly, we find that

1

3

X

pol

MEM
†
E ¼ 2

3

αDα

π
M2

ZjCEj2; ð17Þ

where CE ¼ P
fd

f
Eξ

fðmfÞ.
The amplitudes in Eq. (8) and Eq. (16) are both

proportional to the Z-boson axial coupling gA. In the limit

FIG. 2. Feynman diagrams for the decay ZðqÞ → γðk1Þγ̄ðk2Þ.
The blob represents the insertion of the dipole operator in Eq. (4).
The case of two photons with the same interaction (no blobs)
would lead to a cancellation as dictated by the Landau-Yang
theorem.
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of restored SUð2Þ symmetry, both squared amplitudes go to
zero as MZ → 0.
In the on-shell amplitude, all polarization vectors satisfy

the transversality condition, namely, ϵμðkÞkμ ¼ 0, with ϵμ a
generic polarization vector. One can verify that the ampli-
tudes in Eq. (8) and Eq. (16) satisfy the Ward identities by
substituting the polarizations ϵαðk1Þ and ϵβðk2Þ with the
corresponding momenta.
For the CP-conserving part, the Ward identity for the

Z boson—obtained by substituting ϵZμ ðqÞwith qμ—requires
a [SUð2Þ invariant] countertermHH†FμνF̄μν in the effective
theory because of the divergence generated by the insertion
of the dipole operator in the diagram where the Z Goldstone
boson decays. This term does not affect our computation.
Lagrangians.—It is useful to see how the above ampli-

tudes can be derived from a manifestly gauge invariant
Lagrangian in configuration space. In particular, for
the Lagrangian induced by the magnetic-dipole moment,
we have

LðMÞ
eff ¼ eDe

4π2M2
Z

X3

i¼1

C̄iOiðxÞ; ð18Þ

where the dimension-six operators Oi are given by

O1ðxÞ ¼ ZμνB̃μαAν
α; ð19Þ

O2ðxÞ ¼ ZμνBμαÃν
α; ð20Þ

O3ðxÞ ¼ Z̃μνBμαAν
α: ð21Þ

The field strengths Fμν ≡ ∂μFν − ∂νFμ, for Fμν ¼
ðZ; B; AÞμν, correspond to the Z boson (Zμ), dark photon
(Bμ), and photon (Aμ) fields, respectively, and F̃μν ≡
εμναβFαβ is the dual field strength. Matching the on-shell
amplitude for the Z → γγ̄ process—as obtained by using
the effective Lagrangian in Eq. (18)—with the correspond-
ing one in Eq. (8), yields

C̄1 ¼ −
X

f

rfmfd
f
M

Λ
ð5þ 2Bf þ 2Cfðm2

f þM2
ZÞÞ;

C̄2 ¼ −3
X

f

rfmfd
f
M

Λ
ð2þ BfÞ;

C̄3 ¼ 2
X

f

rfmfd
f
M

Λ
ð4þ 2Bf þ CfM2

ZÞ: ð22Þ

The Lagrangian induced by the electric-dipole moment
is instead

LðEÞ
eff ¼ eDe

4π2M2
Z
CEOðxÞ; ð23Þ

where CE is given below Eq. (17) and the dimension-six
operator is

OðxÞ ¼ ZμνAμαBν
α: ð24Þ

The local operators entering the Lagrangians in Eqs. (18)
and (23) are both C odd. The operators in Eq. (18) are also
P odd, and therefore overall CP even. The operator in
Eq. (23) is P even, and therefore overall CP odd. The
corresponding CP properties are hence as expected for
being induced by a magnetic- and electric-dipole operator,
respectively.
The Lagrangians in Eq. (18) and Eq. (23) are different

from those (induced by anomalies) studied in Refs. [15] or
[16], from which the Landau-Yang theorem is bypassed by
having massive final states.
Decay rate.—The total Z → γγ̄ decay width is obtained

from Eq. (14) and Eq. (17), and is given by

ΓðZ → γγ̄Þ ¼ αDαMZ

24π3
ðjCMj2 þ jCEj2Þ; ð25Þ

where CM;E ¼ P
fd

f
M;Eξ

fðmfÞ, and ξfðmfÞ is given in
Eq. (15). In Fig. 3, the function ηfðmfÞ ¼ jξfðmfÞj2 ×
ðΛ=TeVÞ2=r2f [pinpointing themf dependence of a single f
SM-fermion contribution to ΓðZ → γγ̄Þ] is plotted versus
the fermion mass.
The branching ratios BRf ¼ Γf=ΓZ, which by definition

assume a single SM-fermion contribution from flavor f to

FIG. 3. Double logarithmic plot of the function ηfðmfÞ ¼
jξfðmfÞj2ðΛ=TeVÞ2=r2f containing the loop fermion-mass depen-
dence characterizing a single-fermion contribution to ΓðZ → γγ̄Þ
in Eq. (25). The nontrivial behavior around mf ∼ 30 GeV
explains the flavor dependence of Xf in Table I.

TABLE I. BRs for the largest single-fermion Zγγ̄-loop con-
tributions. The BR corresponding to each SM fermion of flavor f
would be BRf ¼ αDðjdfMj2 þ jdfEj2Þ=ðΛ=TeVÞ2Xf . The CP-con-
serving and CP-odd parts are equal.

b t s c τ μ

Xf 4.80 0.82 0.014 4.78 1.30 0.017 ×10−9
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Eq. (25), can be obtained from Table I, with BRf ¼
αDðjdfMj2 þ jdfEj2Þ=ðΛ=TeVÞ2Xf. For lighter flavors

(u, d, e)—whose coefficients dfM=Λ and dfE=Λ are strongly
constrained by astrophysics [11]—BRf turns out to be
further suppressed by the loop mf dependence.
Assuming universal magnetic- and electric-dipole

moments, dM and dE, by summing up all fermion con-
tributions (including interferences) for all heavier flavors
in Table I, we obtain

BRðZ → γγ̄Þ ≃ 2.52αD
ðΛ=TeVÞ2 ðjdMj

2 þ jdEj2Þ × 10−8: ð26Þ

The resulting BRðZ → γγ̄Þ is quite suppressed, resulting
from an effective two-loop computation, also featuring a
few partial cancellations. Depending on the values assumed
for the dipole moments in Eq. (5), the dark-sector energy
scale Λ, and coupling αD, this channel could be observable
at colliders collecting large samples of Z bosons.
If we assume that the dipole momenta in Eq. (5) are

produced at the limit for perturbative interactions in
the dark sector, where gfLg

f�
R ≃ ð4πÞ2—we can take

dE ≃ dM ≃ 1=2. In this case, assuming αD of order 0.1
and Λ around 1 TeV, one would get BRðZ → γγ̄Þ ≃ 10−9

from Eq. (26). Smaller (and perhaps more realistic)
couplings, like dE ≃ dM ≃ 0.1, would anyhow give
BRðZ → γγ̄Þ ≃ 4 × 10−11, for the same αD and Λ.
Our prediction stems from a weakly coupled UV

complete model. One could also envisage different frame-
works with effective couplings generated, for instance, by a
nonperturbative dynamics, pushing the effecting Λ scale to
lower values, and correspondingly enhancing BRðZ → γγ̄Þ,
and possibly saturating the present LEP limit of BR < 10−6

on Z monophoton decays [9].
Note that while the processes involving the dark-photon

coupling to the Higgs in Ref. [5] are mainly ruled by the αD
magnitude, the present Z-decay rate, similarly to the FCNC
decays in Ref. [6], is governed also by the Λ scale
parameter. The strongest bounds on the model mass
spectrum, and therefore on Λ, come from messenger-pair
production at the LHC. These (taking into account the
possibility of different signatures) are similar to the current
squarks and sleptons bounds [17].
Experimental perspectives.—Large samples of Z bosons

produced in high-energy collisions will be needed to test
the prediction in Eq. (26). Present and future hadron
colliders will collect a very large number of Z’s. On the
other hand, separating the background for a final state
involving moderate missing momentum (like the typical
final state in Z → γγ̄Þ would be in general very challenging
in proton collisions. One could try to focus on boosted
Z systems, which anyhow would deplete the statistics. The
cross section for Z-boson production at the LHC is about
59 nb (at 13 TeV) [18], which, with an integrated
luminosity of 300 fb−1, would provide about 2 × 1010

Z bosons. Ten times more Z’s will be produced with the
integrated luminosity of 3 ab−1 expected at the HL-LHC.
Assuming the dipole momenta in Eq. (5) at the limit for
perturbative interactions in the dark sector, for αD ≃ 0.1 and
Λ ≃ 1 TeV, corresponding to BRðZ → γγ̄Þ ≃ 10−9, one
could have about 200 Z → γγ̄ events at the HL-LHC. A
more favorable sample (with a less favorable environment)
is expected at a 100 TeV collider—where the production
cross section for the Z boson is about 0.4 μb [19], with the
number of produced Z’s around 1013 for a luminosity of
30 ab−1, and 104 Z → γγ̄ decays.
The study of the final-state angular distribution for

polarized Z bosons would allow us to distinguish the dark
photon from the axion case [16], the two having otherwise
similar signatures.
The best opportunity to study the Z → γγ̄ decay

channel—and possibly discover a dark photon—would
come from the clean environment of the Future Circular
Collider (FCC-ee), with its projected production of 1013

Z bosons [20].
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