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Abstract: Background: Viral infections of the anal/rectal tract of men who have sex with men (MSM)
have been poorly studied. Methods: In total, 158 swab samples (81 anal/rectal, 65 throat/oral and
12 urethral) were collected from 126 MSM. DNA was isolated and subjected to real-time PCR assays
for the detection of the sexually transmitted (ST) pathogens Chlamydia trachomatis, Neisseria gonorrhoeae
and Mycoplasmas ssp, human papillomavirus (HPV) and six human polyomaviruses (HPyVs;
JCPyV, BKPyV, Merkel cell PyV–MCPyV-, HPyV-6, HPyV-7 and HPyV-9). Results: C. trachomatis
(31/126, 24.6%) and M. genitalium (30/126, 23.8%) were the most frequently detected ST pathogens.
Thirty-one/126 (24.6%) patients were positive for at least one HPyV. The significantly (p < 0.05)
prevalent HPyV in the anal tract was MCPyV, which was amplified in 27/81 (33.3%) samples,
followed by HPyV-6, which was amplified in 6/81 (7.4%) swabs. Coinfections with MCPyV and
C. trachomatis or Mycoplasmas were found in 4/21 (19.0%) and 5/21 (23.8%) anal/rectal swabs,
respectively. Three/4 MCPyV-C. trachomatis coinfected patients were symptomatic. Conclusions:
Based on the high prevalence of MCPyV in the anal/rectal swabs from MSM patients and on the
well-known oncogenic properties of MCPyV, sexual transmission and possible involvement of HPyVs
in the pathogenesis of diseases of the anal canal should be further studied.

Keywords: men who have sex with men (MSM); sexually transmitted infection (STI); Merkel cell
polyomavirus (MCPyV)

1. Introduction

Polyomaviruses (PyVs) are nonenveloped, double-stranded small DNA viruses with an
icosahedral capsid [1]. Over the last 10 years, the number of identified species-specific PyVs has
grown; in particular, 14 have been found in human tissues or specimens, including the well-known
JC polyomavirus (JCPyV), BK polyomavirus (BKPyV) and Merkel cell polyomavirus (MCPyV) and
the three new human polyomaviruses (HPyVs), human polyomavirus-6 and -7 (HPyV-6, -7), which,
like MCPyV, commonly inhabit healthy human skin, and -9 (HPyV-9), which has been isolated from
the serum of kidney transplant patients [2–7]. Most HPyV infections are common, with seropositivity
values ranging from 60% to 90% in the general adult population, depending on the virus [8]. After
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the asymptomatic primary infection, a life-long persistence is established in different anatomical sites,
such as lymphoid tissue (JCPyV), renal epithelium (JCPyV and BKPyV), and skin (MCPyV, HPyV-6
and -7) [9]. HPyV-associated diseases typically occur in patients with a deficient immune system [10].
Transmission is mostly by direct person-to-person contact and occurs in early childhood [11]. Detection
of HPyVs in tonsils, prostate and kidney tissues as well as in urine and stool are well described in
the literature, confirming the urino-oral and feco-oral routes of transmission [12]. Furthermore,
Comar et al. and Rotondo et al. reported evidence of the presence of HPyVs, particularly the high
prevalence of JCPyV in semen, suggesting the sexual route as a possible alternative for interhuman
HPyV transmission [13,14].

Only two manuscripts have focused on the prevalence of HPyV infection in anal samples from
men who had sex with men (MSM), which demonstrated that MCPyV was present in approximately
30% of the analyzed specimens [15].

Based on these limited results and on the severity of the diseases caused by HPyVs, we aimed to
describe the prevalence of six HPyVs (JCPyV, BKPyV, MCPyV, HPyV-6, -7, and -9) in oral, anal/rectal
and urethral samples from a cohort of MSM and to evaluate the presence of coinfection with other
sexually transmitted (ST) pathogens responsible for ST infections (STIs).

2. Materials and Methods

2.1. Subjects’ Enrollment and Sample Collection

The cross-sectional study was conducted retrospectively on a total of 158 samples; throat/oral
(65), anal/rectal (81) and urethral (12) swab samples were collected from 126 MSM with a mean age
of 34.8 ± 10.9 that were negative for human immunodeficiency virus (HIV) infection, and at risk for
STI. Symptomatic patients showed pruritic and dyskeratotic dermatitis of the anal area, proctitis and
pelvic pain. For 29 subjects, both throat and anal swabs were available.

Samples were sent to the Advanced Translational Microbiological Department, Burlo Garofolo
Institute, in Trieste (Italy) for molecular diagnosis of the STIs. Part of the DNA was used for subsequent
HPyV screening. The study was approved by the local Ethics Committee, and all patients signed a free
and informed consent form during the clinical examination.

2.2. Nucleic Acid Extraction

The swabs were diluted in 1 mL of physiological solution and were vortexed. Genomic DNA was
extracted from 500 µL using the NucliSENS® EasyMAG (Biomérieux S.p.a. Florence, Italy) automated
system, according to the manufacturer’s instructions. All DNA samples were eluted in a final volume
of 100 µL and stored at −80 ◦C prior to further processing.

2.3. STI Detection

Chlamydia trachomatis (C. trachomatis), Neisseria gonorrhoeae (N. gonorrhoeae), Mycoplasma
genitalium/hominis and Ureaplasma urealyticum/parvum (Mycoplasmas ssp.). DNA was explored from
the samples of participants using a multiplex Real Time PCR following the manufacturer’s instructions
(Dia. Pro, Italy). HPV detection and genotyping were performed using the Anyplex™ II HPV Detection
assay (Seegene Inc., Arrow diagnostics, Italy), as previously described [16].

2.4. Quantitative Real-Time PCR Assay (Q-PCR) for HPyVs

Each DNA sample was tested for the presence of six HPyVs: JCPyV, BKPyV, MCPyV, HPyV-6,
HPyV-7, and HPyV-9. Q-PCR assays were performed using the Applied Biosystems 7500 Real-Time
PCR System (Applied Biosystems, Foster City, CA, USA) with specific primers and TaqMan probe
technology, targeting the Viral Protein 1 (VP1) sequence of BKPyV, MCPyV, HPyV-6, HPyV-7 and
HPyV-9 and the Large T Antigen (LT) sequence of JCPyV (Table 1). In particular, MCPyV/BKPyV,
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JCPyV/HPyV6, HPyV7/HPyV9 duplex Q-PCRs were run in accordance with previously published
protocols [17].

Table 1. Primer and probe sequences for HPyVs.

Virus Target
Region

Nucleotide
Numbering

Forward Primer
Reverse Primer

Probe

Concentration
µM

JCV 1 LT
4299–4321 5′-GAGTGTTGGGATCCTGTGTTTTC-3′ 0.4
4352–4375 5′-GAGAAGTGGGATGAAGACCTGTTT-3′ 0.4
4323–4350 5′-FAM-TCATCACTGGCAAACATTTCTTCATGGC-MGB-3′ 0.15

BKPyV 2 VP1
2511–2531 5′-AGTGGATGGGCAGCCTATGTA-3′ 0.2
2586–2605 5′-TCATATCTGGGTCCCCTGGA-3′ 0.4
2535–2556 5′-VIC-TATGGAATCCCAGGTAGAAGA-MGB-3′ 0.2

MCPyV 3 VP1
4053–4072 5′-TGCCTCCCACATCTGCAAT-3′ 0.2
4090–4112 5′-GTGTCTCTGCCAATGCTAAATGA-3′ 0.4
4074–4089 5′-FAM-TGTCACAGGTAATATC-MGB-3′ 0.15

HPyV-6 4 VP1
1767–1786 5′-GGCCTGGAAGGGCCTAGTAA-3′ 0.9
1847–1823 5′-ATTGGCAGCTGTAACTTGTTTTCTG-3′ 0.9
1789–1806 5′-JOE-AGAACCAACCATCTGTTG-BHQ1-3′ 0.25

HPyV-7 5 VP1
1774–1796 5′-AGGTCAATGAAGCCCTAGAAGGT-3′ 0.2
1840–1822 5′-TGCTTTCTGAGGGCTTGCA-3′ 0.9
1798–1817 5′-FAM-CAGGCAATACTGATGTAGC-MGB-3′ 0.15

HPyV-9 6 VP1
1449–1469 5′-CCCCAAAGAAAAGGCAAGAG-3′ 0.4
1509–1493 5′-GCGGGTGTTGGACAGGTTT-3′ 0.9
1472–1488 5′-VIC-CGGAGCATGTCCTGTAA-MGB-3′ 0.25

1 Strain MAD 1 (GenBank accession number J02226.1); 2 Strain WW (GenBank accession number AB211371);
3 Isolate MCC 350 (GenBank accession number EU375803); 4 Complete genome (GenBank accession number
HM011563); 5 Complete genome (GenBank accession number HM011566); 6 Complete genome (GenBank accession
number HQ696595).

Briefly, each reaction contained 1× Universal Taqman PCR Master Mix (Solis BioDyne, Estonia),
5 µL of DNA and a variable amount of forward and reverse primers and probes, as summarized in
Table 1. The thermal cycles were as follows: 50 ◦C for 2 min, 95 ◦C for 15 min followed by 40 cycles of
95 ◦C for 15 s and 60 ◦C for 1 min. Standard curves were constructed using a ten-fold dilution series
of plasmids containing the entire VP1 gene of BKPyV, MCPyV, HPyV-6, HPyV-7 and HPyV-9 and
the entire LT of JCPyV (dilution range: 108–10 copies/µL). The limit of detection of each assay was
10 copies/µL. To determine the quality and percentage of infected cells, a concomitant Q-PCR assay
targeting the β-globin gene was performed on the same samples using the primer set and thermal
cycles previously published [18]. Negative and positive controls were included in each run. Each
sample, standard and control, was tested in triplicate. The results were analyzed by the absolute
quantification method and reported as copies/mL and percentage of infected cells, calculated as
follows: ([viral copies]/[beta-globin copies/2]) × 100.

2.5. PCR Assays and Sequencing Analysis for MCPyV Molecular Characterization

MCPyV-positive DNA samples were subjected to two different PCR protocols for the amplification
of two fragments belonging to the LT gene. The first set of primers, the outer TAg FwE and TAg RvE,
and the inner TAg FwI and Tag RvI, amplify a 183-bp fragment [19]. The second seminested PCR
was conducted using the outer primer set LT3FE and LT3RE and the semi-inner pair set LT3FI and
LT3RE, which amplify a fragment of 151 bp (Table 2) [4]. The amplifications were carried out in a total
volume of 50 µL containing 5 µL of DNA template, 500 nM each primer, 0.4 mM dNTPs, 2 mM and
1 mM MgCl2 for the outer and the inner amplification, respectively, and 2 U of Taq DNA Polymerase
(Solis BioDyne, Tartu, Estonia) in the presence of 10× Reaction Buffer supplied by the manufacturer.
The amplification protocols were as follows: an initial denaturation at 95 ◦C for 5 min, followed by
30 cycles of 30 s denaturation at 95 ◦C, 30 s annealing at 55 ◦C for the external amplifications and 50 ◦C
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and 59 ◦C for the internal amplifications with the primer sets FwI-RvI and LT3FI-LT3RE, respectively,
and 30 s extension at 72 ◦C, followed by a final extension step at 72 ◦C for 5 min. Amplification
products were analyzed on a 2% agarose gel in 0.5× TBE.

Table 2. Primer sequences for MCPyV LTAg.

Outer/Inner PCR Primers Nucleotide
Numbering * Sequence Fragment

Length

Outer
Tag FwE 1716–1736 5′-GCCTGTGAATTAGGATGTATTTT-3′ 477 bp
Tag RevE 2210–2198 5′-TGGAAATGACCAGGACAGAAATG-3′

Inner
Tag FwI 2010–2033 5′-GCCCATTATCTAGACTTTGCAAA-3′ 183 bp
Tag RevI 2192–2173 5′-TAGCCAAAAGGAGGTTAGA-3′

Outer
LT3FE 571–590 5′-TTGTCTCGCCAGCATTGTAG-3′ 280 bp
LT3RE 860–879 5′-ATATAGGGGCCTCGTCAACC-3′

Inner
LT3FI 741–760 5′-ATCTGCACCTTTTCTAGACTCC-3′ 151 bp
LT3RE 860–879 5′-ATATAGGGGCCTCGTCAACC-3′

* Nucleotide position refers to strain EU375803.

2.6. Statistical Analysis

Count and percentage were used for qualitative variables. The number of samples positive for
one HPyV/STI over the total number of collected samples was used to calculate the prevalence of
each type of HPyV/STI infection in the cohort of studies. The presence of at least two HPyVs/STI or
HPyVs and STIs in patients’ samples was used to calculate the percentage of patients with coinfection.
Comparisons between different types of specimens were performed using the chi-square test or
Fisher’s exact test. Unpaired t-tests were performed to evaluate the differences among the viral loads.
The results were considered significant when the p values were < 0.05.

3. Results

3.1. HPyV and STI Prevalence among Patients

All patients were clinically asymptomatic, but four showed clinically severe symptomatic
conditions. The STI most frequently detected was C. trachomatis (31/126, 24.6%), followed by
M. genitalium (30/126, 23.8%) and N. gonorrhoeae (4/126, 3.1%). One/126 (0.8%) patient was positive
for HPV, while 31/126 (24.6%) patients were positive for at least one HPyV (Table 3).

Among HPyVs, either BKPyV, MCPyV or HPyV6 were found in the clinical specimens, whereas
JCPyV, HPyV-7 and HPyV-9 DNA were not amplified in any patient’s sample. The significantly
(p < 0.05) most prevalent HPyV was MCPyV, which was amplified in 28/126 (23.0%) patients, followed
by HPyV-6, which was amplified in 5/126 (4.8%) patients, and by BKPyV, which was found in 1/126
(0.8%) patient (Table 4). Two/126 (1.6%) patients showed the presence of MCPyV in both throat and
anal swabs. The four symptomatic patients were MCPyV positive.

Table 3. STI prevalence among patients.

Sexually Transmitted Infections

Patients
(n)

HPyV+/Tot
(%)

HPV +/Tot
(%)

C. trachomatis +/Tot
(%)

M. genitalium +/Tot
(%)

N. gonorrhoeae +/Tot
(%)

126 31/126 *
(24.6)

1/126 *,**
(0.8)

31/126 **
(24.6)

30/126
(23.8)

4/126 *,**
(3.1)

*= p < 0.0001; ** = p ≤ 0.001, Tot: Total.
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Table 4. HPyV prevalence among patients.

HPyVs

Patients (n) BKPyV+/Tot *,**
(%)

MCPyV+/Tot **
(%)

HPyV-6+/Tot *
(%)

126 1/126 *,**
(0.8)

28/126 *,**
(23.0)

5/126 *
(4.8)

*= p < 0.0001; ** = p ≤ 0.001, Tot: Total.

3.2. STI and HPyV Detection in Clinical Specimens

Analyzing the distribution of the STIs among the different clinical specimens, C. trachomatis and
M. genitalium sequences were most frequently detected in urethral swabs (50% and 33.3%, respectively).
Regarding HPyVs, 40/158 (25.3%) samples were positive for at least one HPyV. The HPyV genomes
were mostly amplified (p < 0.05) in the anal/rectal swab samples (27/81, 33.3%) and in the throat/oral
swab samples (12/65, 18.5%), as described in Table 5.

Table 5. STI and HPyV distribution among samples.

Sample n HPV+/Tot
(%)

HPyV+/Tot
(%)

C. trachomatis+/Tot
(%)

M. genitalium +/Tot
(%)

N. gonorrhoeae +/Tot
(%)

Anal/rectal 81 1/81
(1.2)

27/81
(33.3)

22/81
(27.1)

21/81
(26)

3/81
(3.7)

Throat/oral 65 0/65
(0.0)

12/65
(18.4)

10/65
(15.3)

8/65
(12.3)

3/65
(4.6)

Urethral 12 0/12
(0.0)

1/12
(8.3)

6/12
(50)

4/12
(33.3)

0/12
(0.0)

Total 158 1/158
(0.6)

40/158
(25.3)

38/158
(24)

33/158
(20)

6/158
(3.8)

The distribution of HPyVs in the different types of swab samples is summarized in Table 6.
MCPyV was the significantly (p < 0.05) prevalent HPyV, being amplified in 33/158 (20.9%) samples,
followed by HPyV6, isolated in 6/158 (3.8%) samples, and by BKPyV, present in 1/158 (0.6%) sample.

Four samples were coinfected with 2 HPyVs and distributed as follows: 3/4 with MCPyV/HPyV-6
were detected in anal samples, while the remaining one was coinfected with MCPyV/BKPyV in
a throat sample.

Table 6. Distribution of HPyVs in the clinical specimens.

Sample n BKPyV+/Tot (%) MCPyV+/Tot (%) HPyV-6+/Tot (%)

Throat/Oral 65 1/65 (1.5) 11/65 (16.9) 0/65 (0.0)
Anal/Rectal 81 0/81 (0.0) 21/81 (25.9) 6/81 (7.4%)

Urethral 12 0/12 (0.0) 1/12 (8.3) 0/12 (0.0)

Total 158 1/158 (0.6) * 33/158 (20.9) *,** 6/158 (3.8) **

*= p < 0.0001; ** = p ≤ 0.001, Tot: Total.

3.3. STI and HPyV Coinfection

The coinfection rates of HPyVs with other ST microorganisms are detailed in Table 7 and stratified
by type of sample.

MCPyV sequences were more frequently detected in anal/rectal samples coinfected with
C. trachomatis (4/21, 19.0%) and M. genitalium (5/21, 23.8%). Specifically, MCPyV and C. trachomatis
(4/21, 19.0%) or M. genitalium (5/21, 23.8%) coinfections were significantly detected in anal/rectal
samples. Notably, 3/4 symptomatic patients were MCPyV-C. trachomatis coinfected. Among the
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6 anal/rectal swabs positive for the presence of HPyV-6, 2 were coinfected with C. trachomatis and 3
with M. genitalium.

Table 7. Distribution of HPyVs in samples coinfected with ST microorganisms.

STI
MCPyV+ BKPyV+ HPyV-6+

Anal/Rectal (%) Throat/Oral (%) Anal/Rectal Throat/Oral (%) Anal/Rectal (%) Throat/Oral

C. trachomatis 4/21 (19.0) 1/11 (9.1) 0/0 0/1 2/6 (33.3) 0/0
M. genitalium 5/21 (23.8) 1/11 (9.1) 0/0 1/1 (100) 3/6 50.0) 0/0
N. gonorrhoeae 0/21 1/11 (9.1) 0/0 0/1 0/6 0/0

HPV 1/21 (9.1) 0/11 0/0 0/1 0/6 0/0

3.4. HPyV Load

The mean HPyV loads were between 3.77× 105 copies/mL (range 1.6× 103–3.8× 106 copies/mL)
for MCPyV and 77 copies/mL for BKPyV. The mean HPyV6 load was 4.2 × 104 copies/mL (range
8.3 × 103–7.6 × 104 copies/mL). The mean percentage of infected cells was 130.5% for MCPyV, 0.01%
for BKPyV and 0.90% for HPyV-6. Analytical description of the loads and percentage of infected cells
in the different clinical specimens are summarized in Table 8.

Table 8. The mean viral load and percentage of HPyV-infected cells in the clinical specimens.

Sample

BKPyV MCPyV HPyV-6

% Infected
Cell

(Range)

Mean Viral Load
Copies/mL

(Range)

% Infected
Cell (Range)

Mean Viral Load
Copies/mL

(Range)

% Infected
Cell (Range)

Mean Viral Load
Copies/mL

(Range)

Throat/Oral 0.01% 77 8.7%
(0.03%–68.9%)

3.6 × 104

(8.2 × 103–1.5 × 105)
- -

Anal/Rectal - - 194.3%
(0.1%–3377.0%)

5.4 × 105

(1.6 × 103–3.8 × 106)
0.90%

(0.01%-4.1%)
4.2 × 104

(8.3 × 103–7.6 × 104)
Urethral - - 0.34% 2.5 × 103 - -

Total 0.01% 77 130.5%
(0.1%–3377.0%)

3.77 × 105

(1.6 × 103–3.8 × 106)
0.90%

(0.01%–4.1%)
4.2 × 104

(8.3 × 103–7.6 × 104)

3.5. MCPyV Molecular Characterization

The automatic sequencing analysis of the amplified LT fragments confirmed that the amplicons
belong to the MCPyV genome. In particular, the amplicons showed the highest homology scores
with the strain M-cg-9-11.3 (GenBank: MG241580.1), M-cg-28.8.16 (GenBank: MG241582.1), JPN-SK98
(GenBank: LC097004.1), and MCPyV-124 Sweden (GenBank: KX827417.1), with no difference in
distribution among the different types of samples. Notably, among symptomatic patients, the strain
JPN-SK98 was mostly detected, although without statistical significance (data not shown).

4. Discussion

Studies on the prevalence of viral infections in the anal canal of patients are very rare and are
mainly focused on HPV infections.

In our study, HPV prevalence was very low compared to all the analogous published
studies [20–22]. However, rates of anal HPV have been consistently observed to be higher in
HIV-positive men compared to HIV-negative men, while our population consists only of HIV-negative
subjects [23–26].

HPV has been detected in over 90% of anal carcinoma biopsy specimens from MSM, and the
standardized incidence ratio of anal cancer reported in patients with HIV was 28.75, while patients
immunosuppressed after organ transplant had an incidence of 4.85, confirming that HIV is strongly
associated with HPV infection and the development of anal cancer [27–29].

However, HPV is considered a necessary but independently insufficient factor for
carcinogenesis [30,31]. The fact that anal carcinoma can develop even in the absence of HPV infection
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leads to the hypothesis that other risk factors, including infectious agents, enhance the pathogenetic
outcome. Among these, HPyVs assume an increased interest due to their carcinogenic potential and
their possible transmission via sexual intercourse.

To date, only two manuscripts reported results from HPyV screenings in MSM [15]. The first,
conducted by Peng and colleagues, showed the presence of the genome of at least one HPyV in the
anal swabs of 34.2% of the HIV-negative population studied, with the MCPyV genome being isolated
in 24.3% of the patients [15]. In the second, Wieland and colleagues detected MCPyV DNA in 30% of
normal anal mucosal samples, and in 26% of anal intraepithelial neoplasia samples [32].

In our population, a slightly different general prevalence of HPyV but a very similar prevalence of
MCPyV was observed, confirming that the virus is widespread in the adult population [32]. Sequence
analysis confirmed the high homology of the strains amplified in our population with strains previously
isolated from the healthy skin of the worldwide population [33,34].

To date, there is no evidence of any association between MCPyV infection and anal intraepithelial
neoplasia development or other anal tumors; on the contrary, Wieland and colleagues observed
a higher frequency of MCPyV infection in normal anal tissue compared to AIN tissues [32]. However,
the oncogenic properties of MCPyV, the etiological agent of Merkel cell carcinoma (MCC), a rare and
aggressive neoplasia of the skin, [4] are well defined, showing a carcinogenic model similar to that of
HPV. Interestingly, the mean percentage of MCPyV-infected cells in the anal swabs of our series was
very high, reaching values of up to 1.94 MCPyV copies per β-globin gene copy, but it is also true that
a very high variability in viral load was observed. In this regard, it has been assessed that a number
between 0.06 and 1.2 viral copies per cell would be sufficient to contribute to neoplasia in MCC cases
and that a high abundance of the viral genome is associated with the loss of p53 and pRb activity [35].

Lower MCPyV prevalence and lower percentage of infected cells were found in the throat/oral
samples compared to anal swabs. The MCPyV prevalence is in line with what we found in a previous
study focused on tonsil specimens [36] and with a recently published study [37] that showed that the
oral cavity may represent a latent site of the virus, rather than a site of active replication.

In this regard, Vergori and colleagues speculated that because of differences in local mucosal
immunity, nongenital site infections are less likely to reactivate from latency when compared to genital
infections, where microtraumatisms and the occurrence of sexually transmitted diseases may decrease
the ability of the host to clear viruses [20].

Regarding the other HPyVs, coinciding with the findings of Peng and colleagues, we found that
HPyV-6 was the second most prevalent HPyV in the anal swabs. HPyV-6 was first discovered from
human skin swabs from healthy volunteers [5], but since then, it has been detected in tonsillar tissue,
cerebrospinal fluid, human bile, respiratory tract, feces, and, interestingly, in the cervical mucosa, as
part of the normal virome [38]. For MCPyV, a high viral load has been associated with diseases, such
as pruritic and dyskeratotic dermatitis, whereas asymptomatic infections have been characterized by
a viral load several orders of magnitude lower [39]. Thus, it is likely that in our population, HPyV-6 is
present but does not play any relevant pathogenetic role.

Our study also aimed to evaluate HPyV coinfections with the most common worldwide STIs
among MSM, including C. trachomatis, N. gonorrhoeae, Mycoplasmas and HPV [40,41].

In our MSM study population, a high prevalence of C. trachomatis has been observed, as well
as a high prevalence of M. genitalium both in rectal and pharyngeal sites. Previously, persistent
C. trachomatis, recognized as an event with oncogenic potential and often found in samples coinfected
with HPV, was reported in this geographic area in urethra samples from heterosexual men at risk for
STIs [42]. Regarding Mycoplasmas, although frequent infections have been reported in sperm from men
affected by infertility [43], controversial opinions on their role as colonizers or pathogens have been
discussed. On the other hand, their ability to induce long-lasting inflammation and tissue damage at
the site of infection [44,45] is emphasized.

Our study did not include any control group, and this is due to the fact that, so far, there are no
recommendations for performing routine screening of the general population for anal infection and/or
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cancer. In a recent review, Leeds and Fang reported a list of National Associations, comprising the
CDC and the British HIV association, that give no recommendations for anal screening in men who
have sex with women (MSW) [46]. Based on this observation, it is hard to obtain IRB approval from
any local ethic committee to collect anal swabs from no-risk subjects. The almost completely lack of
data regarding anal infection in MSW, in the scientific literature, confirms the difficult in obtaining
this type of clinical specimens. So far, there are only seven published manuscripts on the detection of
HPV in the anal canal of HIV-negative men practicing sex with women (MSW), and two regarding
HIV-positive MSW, most from the Americas (Brazil, Mexico, United States and Puerto-Rico), one from
Asia (Korea), and one from Russia. Additionally, five out of ten studies were conducted by the same
work group [47–55]. However, none of these publications is about HPyVs, but they showed only the
high prevalence (33.9%) of any HPV in heterosexual men (Table 9); the difference of HPV prevalence
among these studies and ours may be due to the different analyzed geographical areas.

Interestingly, in our study, C. trachomatis and M. genitalium were the unique STI associated with
MCPyV in the same samples. Symptomatic patients were predominantly infected with MCPyV
and C. trachomatis, and to the best of our knowledge, this is the first description of this coinfection.
We hypothesize that a long-lasting asymptomatic infection of the anal mucosa with C. trachomatis
represents an extremely favorable event for MCPyV acquisition and the possible development of
severe lesions in the presence of a high viral load. The high prevalence of MCPyV in asymptomatic
patients, similar to that observed for C. trachomatis, could represent a new challenge in the field of STIs.

Table 9. HPV anal tract infection in MSW, with no risk factors

Reference HPV+/Total %

[47] 68/386 17.6
[48] 36/222 16.6
[49] 108/902 12.0%
[50] 159/1305 12.2%
[51] 1766/3326 53.1%
[52] 58/144 40.3%
[55] 52/332 15.7%

Total 2247/6617 33.9%

5. Conclusions

This is the first study on HPyV prevalence and other STIs in an Italian group of MSM. MCPyV
prevalence was similar to that already described in other geographical areas, and its widespread
diffusion was confirmed. However, based on the high prevalence of MCPyV in anal swabs, it is
strongly suggested that further studies be conducted to confirm the sexual transmission route of this
virus and other HPyVs, as well as their role in the severity of clinical outcome.

In particular, further evaluation of MCPyV is suggested, especially in association with other ST
pathogens and demographic risk factors, as it could be responsible for cell transformation of the anal
tract based on its well-known oncogenic abilities.
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