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Abstract

The paper introduces the concept of design for resilience in the context of space systems engineering and proposes a method to account

for imprecision and epistemic uncertainty. Resilience can be seen as the ability of a system to adjust its functioning prior to, during,

or following changes and disturbances, so that it can sustain required operations under both expected and unexpected conditions.

Mathematically speaking this translates into the attribute of a dynamical system (or time dependent system) to be simultaneously

robust and reliable. However, the quantification of robustness and reliability in the early stage of the design of a space systems is

generally affected by uncertainty that is epistemic in nature. As the design evolves from Phase A down to phase E, the level of

epistemic uncertainty is expected to decrease but still a level of variability can exist in the expected operational conditions and system

requirements. The paper proposes a representation of a complex space system using the so called Evidence Network Models (ENM):

a non-directed (unlike Bayesian network models) network of interconnected nodes where each node represents a subsystem with

associated epistemic uncertainty on system performance and failure probability. Once the reliability and uncertainty on the performance

of the spacecraft are quantified, a design optimisation process is applied to improve resilience and performance. The method is finally

applied to an example of preliminary design of a small satellite in Low Earth Orbit (LEO). The spacecraft is divided in 5 subsystems,

AOCS, TTC, OBDH, Power and Payload. The payload is a simple camera acquiring images at scheduled times. The assumption is

that each component has multiple functionalities and both the performance of the component and the reliability associated to each

functionality are affected by a level of imprecision. The overall performance indicator is the sum of the performance indicators of all

the components.

Keywords: Epistemic uncertainty, Resilient satellite, Complex systems, Evidence Theory

Nomenclature

d Deterministic design variables

ui Uncoupled uncertain epistemic variables

uij Coupled uncertain epistemic variables

θ Focal elements

C Generic constraint function
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F Generic objective function

t Continous time variable

Acronyms

AOCS Attitude and Orbit Control Subsystem

bpa basic probability assignment

DST Dempster Shafer Theory

ENM Evidence Network Model

FE Focal Element

LEO Low Earth Orbit

MPAIDEA Multi–Population Adaptive Inflationary Dif-

ferential Evolution Algorithm

OBDH On-board Data Handling

TTC Telemetry, Tracking and Command

1. Introduction

The adverse environment of space makes risk reduction

a key objective in satellite design. The maintenance of

an on-orbit satellite is very limited or even impossible.

Therefore, risk reduction is achieved by designing the

satellite for robustness and reliability considering the entire

lifetime. Robustness is here considered by evaluating the

worst case scenario; this approach was introduced in [1, 2].

A generalisation is then provided by [3] that introduces the

constraints satisfaction.

Traditionally, safety margins and redundancy are employed

to reach reliable performance. This traditional method

lacks of estimating the uncertainties properly. Uncertainty

overestimation can lead to significant increase of the

expenses. Contrarily, underestimation of the uncertainties

can lead to unrecoverable failure of the entire system. This

motivated the community to develop various taxonomy and

uncertainty quantification methods for engineering design.

In this paper, we divide the uncertainty into two categories:

aleatory uncertainty and epistemic uncertainty.

Aleatory uncertainty is a natural randomness which cannot

be reduced. The precise probability theory provides a sound

mathematical tool to describe its characteristics. Epistemic

uncertainty is due to the lack of information or incomplete

data. This type of uncertainty is reducible by acquiring

more knowledge on the problem. Epistemic uncertainty

can be modelled by Evidence Theory which also known as

Dempster-Shafer theory (DST) [4, 5, 6].

A recent technique for engineering system design based on

the Evidence Theory was introduced in [7]. The technique

is called Evidence Network Model (ENM) and the method

was extended in [8] to make ENM computationally more

efficient.

This work extends the ENM and [9] - that introduces

time-dependencies reliability in the system model - to

enable its usage for resilient system design.

In this work, a small satellite in Low Earth Orbit (LEO)

is designed with the proposed method. The satellite is

designed to take pictures of the Earth and reliably operate

during its entire lifetime. The space system is composed

of 5 subsystems. The reliability and performance of each

subsystem is subjected to epistemic uncertainties.

2. Evidence Network Models

DST combines different and conflicting sources of infor-

mation and assigns to each possible event a probability mass

called basic probability assignment (bpa).

A generic engineering system is affected by both design pa-

rameters d ∈ D and uncertain parameters u ∈ U . Then DST

assigns to each u one or more sets with a corresponding bpa.

The system can be represented as a network of nodes that

share information (see Figure 1 for example) where each

node is a subsystem and information is shared through the

links between subsystems. The generic objective function

can then be defined as:

F (d,u) =

N∑

i=1

gi(d,ui,hi(d,ui,uij)), (1)

where N is the number of subsystems involved,

hi(d,ui,uij) is the vector of scalar functions

hij(d,ui,uij) where j ∈ Ji and Ji is the set of in-

dexes of nodes connected to the i-th node; ui are the

uncertain variables of subsystem i not shared with any

other subsystem and uij are the uncertain variables shared

among subsystems i and j.
Given a design, or decision, value d̃ ∈ D, we will call

worst case scenario the vector u that corresponds to the

maximum of F over the space U :

u = argmax
u∈U

F (d̃,u). (2)

Likewise we can call best case scenario the quantity:

ū = argmin
u∈U

F (d̃,u). (3)
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We can now define an event in the space U , or a proposi-

tion on the value of F , as the set A such that:

A = {u ∈ U |F (d,u) ≤ ν}. (4)

We can finally define two quantities associated to the belief

in the occurrence of the event A:

Bel(A) =
∑

θ⊂A,θ∈U

bpa(θ), (5)

Pl(A) =
∑

θ∩A 6=0,θ∈U

bpa(θ), (6)

where bpa(θ) is the basic probability assignment associated

to the FE θ. More details about the theory can be found in

[6]. Accordingly, with DST the computational cost of ex-

act Belief (Bel) - (Plausibility (Pl) respectively) - curve is

exponential with the system dimension because a maximi-

sation (minimisation respectively) for each FE θ is needed,

where the FEs are constructed from the cross product of all

the intervals of all the parameters u ∈ U .

3. Decomposition Algorithm

The computational issue expressed at the end of the pre-

vious section is motivated the use of the Decomposition ap-

proach based on the ENM. The algorithm aims at decou-

pling the subsystems over the uncertain variables in order to

optimise only over a small subset of the FEs. The approach

is explained by Agorithm 1 for the reconstruction of the Bel

curve and it can be summarised as follow:

1. Solution of the optimal worst case scenario problems

(lines 12, 13 and 14).

2. Maximisation over the coupled variables and computa-

tion of mc partial Belc(A) curves.

3. Maximisation over the uncoupled variables.

4. Reconstruction of the approximation B̃el(A).

The Plausibility curve can be calculated analogously by

replacing the steps of uncertainty maximisation with uncer-

tainty minimisation.

The effectiveness of the Decomposition algorithm is well

presented by the cost reduction. As explained in the previ-

ous section, the total number of FEs to explore for a problem

with m uncertain variables, each defined over Nk intervals,

is:

NFE =

m∏

k=1

Nk. (7)

In terms of coupled and uncoupled uncertain vectors we can

write:

NFE =




mu∏

i=1

pu
i∏

k=1

Nu
i,k






mc∏

i=1

pc
i∏

k=1

N c
i,k


 , (8)

where pui and pci are the number of components of the ith

uncoupled and coupled vector, respectively, and Nu
i,k and

N c
i,k are the numbers of intervals of the kth components of

the ith uncoupled and coupled vector respectively. The to-

tal number of FE, over which we have to optimise in the

decomposition, is instead:

NDec
FE = Ns

mu∑

i=1

Nu
FE,i +

mc∑

i=1

N c
FE,i, (9)

considering the vector of uncertainties ordered as:

u = [u1, ...,umu︸ ︷︷ ︸
uncoupled

,u1, ...,umc︸ ︷︷ ︸
coupled

], (10)

where and Ns is the number of samples in the partial belief

curves, N c
FE,i =

∏pc
i

k=1N
c
i,k and Nu

FE,i =
∏pu

i

k=1N
u
i,k.

This means that the computational complexity to calculate

the maxima of the function F within the FEs remains

exponential for each individual uncoupled or coupled

vector but it is polynomial with the number of subsystems.

A comprehensive presentation of the Decomposition ap-

proach is in [8].

4. Constrained Minmax

The approach to the design of complex systems under

uncertainty proposed in this paper requires the solution of

one or more constrained minmax optimisation problems:

mind∈D maxu∈U F (d,u)
s.t.
C(d,u) ≤ 0.

(11)

The solution to this class of problem is here approached

with a constrained variant of Multi-Population Adaptive

Inflationary Differential Evolution Algorithm (MPAIDEA),

an adaptive version of Inflationary Differential Evolution

[2]. This section describes only the strategy to handle

constraints in the minmax version of MPAIDEA. More

details on the approach to the solution of unconstrained

minmax problems with Inflationary Differential Evolution

can be found in [1].
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Algorithm 1 Decomposition

1: Initialise

2: Uncoupled vectors uu = [u1,u2, ...,ui, ...,umu
]

3: Coupled vectors uc = [u12,u13, ...,uij , ...,umc
]

4: for a given design d̃ do

5: Compute (d̃,uu,uc) = argmaxF (d̃,uu,uc)

6: for all uij ∈ uc do

7: for all FE θk,ij ⊆ Θij do

8: F̂k,ij = maxuij∈θk,ij
F (d̃,u

u
,uij)

9: ûk,ij = argmaxuij∈θk,ij
F

10: Evaluate bpa(θk,ij)
11: Evaluate partial Belief curve Bel(F (uij) ≤ ν)
12: end for

13: for number of samples do

14: Evaluate ∆Belq , ûk,ij and F̂k,ij

15: end for

16: end for

17: for all the combinations of samples do

18: for all ui ∈ uu do

19: for all FE θk,i ⊆ Θi do

20: Fmax,k,i = maxui∈θk,i
F (d̃, ûc,ui)

21: Evaluate bpa(θk,i)
22: end for

23: end for

24: for all the combinations of FE

25: θt ∈ Θ1 ×Θ2 × ...×Θmu
do

26: Evaluate Fmax,k ≤ ν
27: Evaluate bpak
28: end for

29: Evaluate the Belief for this sample by constructing

collection Γν

30: end for

31: Add up all belief values for all samples

32: end for

The minmax algorithm proposed in this paper iteratively

solves a bi-level optimisation, first minimising over the de-

sign vector d (outer loop) and then maximising over the un-

certainty vector u (inner loop). The inner loop provides so-

lutions that satisfy the constraint; while the outer loop main-

tains the constraint satisfaction while minimising the cost

function F . The constraint handling procedure, summarised

in Algorithm 2, implements the following steps:

• Initialisation of a population of d and u vectors;

• While the number function evaluations is lower than

Nmax
feval function evaluations, do the following

– [Outer Loop] Constrained minimisation of the

objective function over the design space, evalu-

ating the cost function F over all the uncertainty

vectors stored in an archive A = Au ∪Ac:

mind∈D∧u∈A F (d,u)
s.t.
maxu∈A C(d,u) ≤ 0

(12)

– [Inner Loop] Constrained maximisation of the

cost function F over the uncertain parameters u

and parallel maximisation of the constraint viola-

tion over the uncertainty space:

maxu∈U F (dmin,u)
s.t.
C(dmin,u) ≤ 0

(13)

max
u∈U

C(dmin,u) (14)

ua,F = argmaxu∈U F (dmin, u) is added to the

archive Au and ua,C = argmaxu∈U C(dmin, u)
is added to Ac if maxu∈U C(d,u) > 0. This ap-

proach pushes the optimiser to find design con-

figurations that are feasible for all values of the

uncertain variables. If a feasible solution cannot

be found, the constraints are relaxed (line 24 in

Algorithm 2) in the Inner Loop by computing a

new constraint C∗ = C + ǫ with ǫ the minimum

constraint violation over U .

In the multi-objective optimisation:

• Cross-check of the final solutions and choice of the

best design;

• Final maximisation over U .

5. The performance function

The test case function used to validate the proposed ap-

proach describes the operations of a cube-sat in Low Earth

Orbit (LEO). The problem is affected by epistemic uncer-

tainty modelled with the use of DST [4, 5, 6] and in particu-

lar the ENM presented in [7, 8] is used to evaluate the asso-

ciated Belief and Plausibility curves. The robustness of the

solution is guaranteed by the minmax algorithm described in

[1, 2, 3] and finally, considering three possible operational

states, the resilience of the system during its mission is op-

timised.

The problem is to minimise the mass of the satellite and

maximise the amount of data sent back to the ground station.

These performance indeces depend on 16 design parameters
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Table 1: Design parameters.

SYSTEMS d LB UB

PAYLOAD BD 1 5

Pday (W) 2.5 4

Pnight (W) 0 9.75

image size (pixel) 307200 5038848

FRmax (sec−1) 6.6 26.6

OBDH type 1 6

AOCS tslew (sec) 30 90

φslew (deg) 10 60

TTC f (GHz) 7 10

modulation 0 1

amplifier TWP SSP

POWER Vbus (V) 3 5

Vdrop (%) 1 5

configuration DET MPPT

ηcell 0.15 0.3

Ecell (Wh) 135 145

Table 2: Uncertain parameters.

SYSTEMS u interval 1 interval 2

PAYLOAD H (km) [600 800] [800 1000]

ǫ (deg) [0 5] [5 10]

δ I (%) [0 5] [5 10]

OBDH δ P (%) [0 10] [10 20]

δ M (%) [0 10] [10 20]

AOCS l (m) [0.005 0.01] [0.01 0.02]

A (m2) [0.034 0.0885] [0.0885 0.15]

q [0.5 0.6] [0.6 0.7]

m (mA ·m2) [0.5 1] [1 1.5]

CD [2 2.2] [2.2 2.5]

δI (%) [-10 5] [5 10]

TTC ηant [0.6 0.8] [0.8 0.9]

Gt (dB) [1 3] 3 5

Lt (dB) [0.1 0.5] [0.5 1]

Lother (dB) [0.5 1.5] [1.5 2.0]

Mrfdn (kg) [0.1 0.3] [0.2 0.5]

POWER Dcell [0.025 0.0275] [0.3 0.0375]

ηa [0.8 0.85] [0.85 0.9]

ρsa (kg/m2) [3.5 3.6] [3.6 4]

δP (%) [0 10] [10 20]

Tmax (C) [0 10] [10 15]

Algorithm 2 Constrained minmax

1: Initialise d̄ at random and run ua = argmaxF (d̄, u)
s.t. C(dmin,u) ≤ 0

2:

3: Au = Au ∪ {ua}; Ac = ∅; Ad = ∅
4: while Nfval < Nmax

fval do

5: Outer loop:

6:

7: dmin = argmind∈D{maxu∈Au∪Ac
F (d, u)} s.t.

8: maxu∈Au∪Ac
C(d,u) ≤ 0

9:

10: Ad = Ad ∪ {dmin}
11: Inner loop:

12:

13: ua,F = argmaxu∈U F (dmin, u) s.t. C(dmin,u) ≤ 0
14:

15: ua,C = argmaxu∈U C(dmin, u)
16:

17: Au = Au ∪ {ua,F }
18: if Nfval < Nrelaxation

fval ∨
19: ∃d ∈ Ad t.c. maxu∈U C(d, u) ≤ 0 then

20: if maxu∈U C(dmin, u) > 0 then

21: Ac = Ac ∪ {ua,C}
22: end if

23: else

24: update ǫ
25: Ac = {Ac \ ua,C | C(dmin, u) ≤ ǫ}
26: if maxu∈U C(dmin, u) > ǫ then

27: Ac = Ac ∪ {ua,C}
28: end if

29: end if

30: end while

(listed in Table 1) and 21 uncertain parameters (listed in Ta-

ble 2) where the uncertain vector can be decomposed by the

following Equation 10:

uuncoupled = [uOBDH ,uTTC ,uPOWER,uAOCS ]

and

ucoupled =[uAOCS−POWER,uAOCS−PL,

uTTC−POWER,uOBDH−POWER]

and dim(uOBDH ) = 1, dim(uTTC) = 2, dim(uPOWER)

= 5, dim(uAOCS) = 2, dim(uAOCS−POWER) = 4,

dim(uAOCS−PL) = 3, dim(uTTC−POWER) = 3,

dim(uOBDH−POWER) = 1. In our scenario, the per-

formance of the satellite is measured by the amount of

information transmitted back to the ground station, or total

Data Volume, V , and the overall mass of the system, M .
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For a given value of the design and uncertain parameters,

one can calculate the amount of information transmitted

during each orbit, Vi. The total amount of transmitted in-

formation is the sum of the data volume over all completed

orbits within the predefined mission time, TMission.

The total data volume is a function of the possible failure

states of the satellite. The type of failure influences how the

satellite operates and, consequently, how much information

is transmitted. The transition between states of the satellite

is described by a (precise) stochastic process. Thus the

value of the data volume is affected by the uncertain

parameters u but also by the sequence of state transitions.

Hence, in the following, we use as performance indicator

the expected cumulative value of the data volume:

fDV (d,u, t) = E

{
No∑

i=1

V c
i (X,d,u, t)

}
, (15)

where V c
i denotes the volume of (compressed) data (see

Equation 30) transmitted during the i-th orbit, X is a ran-

dom variable representing the whole evolution of state of the

system, No is the total amount of orbits during the planned

mission of the satellite and the evaluation of the expected

value is explained in Sections 6 and 6.1.

In order to account for both objectives M and fDV we con-

sider the following two problems:

min
d∈D

max
u∈U

MTOT (d,u, t)

fDV (d,u, t)
(16)

min
d∈D

(
max
u∈U

MTOT (d,u, t), max
u∈U

fDV (d,u, t)
)

(17)

Problem (16) uses a single scalarised objective function

while Problem (17) solves a full multi-objective problem

with a vector objective function.

5.1 Cube-sat system

AOCS TTC PAYLOAD OBDH

POWER

MTOT =

∑5
k=1Mk

fDV = E

{∑No

i=1 Vi

}

PAOCS

PTTC

PPayload POBDH

V
c

Tac
VPL

Tac

Iz

MAOCS

MTTC

Mp
MAOCS

MAOCS

V
c

Fig. 1: Representation of the cube-sat as a complex system. The

two quantities of interest are the mass of the cubesat MTOT and the

total amount of data transmitted to the ground station fDV ; MTOT

is the sum of the mass of the 5 subsystems and fDV is the quantities

of data sent by the TTC after the compression in OBDH.

The considered cube-sat is a complex system composed

of 5 subsystems interconnected as in Figure 1.

5.2 Payload

The payload is a camera that takes images of the atmo-

sphere and send them to the OBDH for the compression.

Images are taken only during light-time; for the generic i-th
orbit is T i

light = Torbit − Teclipse where the eclipse time is

approximated as function of the altitude only:

Teclipse(H) =
EAD · Torbit

360◦
(18)

with the Earth Angular Diameter EAD =
2arcsin( RE

(H+RE) ) where RE is the Earth radius and

H is the altitude of the cube-sat. Both EAD and Torbit are

functions of the altitude H which is an uncertain parameter.

For each completed orbit the amount of images generated

is:

Npic(FR,H) = [N1, N2, ..., No] (19)
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whereNo is the number of pictures in the last completed or-

bit and FR is the frame rate - function of H and bounded by

the FRmax. The corresponding amount of data generated

in the Payload System in all the orbits is accounted in the

vector VPL:

VPL =
IS ·BD ·Npic

8 · 230
(20)

where IS (image size) and BD (bit depth) depends on the

type of payload and the denominator change units from bits

to Giga bytes.

Data is compressed and accumulated in the OBDH System

and sent to the ground station when the cubesat is in view.

The coverage area of the satellite is a circular area on the

Earth surface in which the satellite can be seen under an

elevation angle ǫ

Scoverage = 2πR2
E(1− cos ζ) (21)

with ζ the earth central angle that can be evaluated from:

ǫ+ η + β = 90 (22)

d · cos ǫ = r · sin ζ (23)

d · sin η = Re · sin ζ (24)

where ǫ is the elevation angle, η the nadir angle, β the

central angle, d the distance between ground station and

cube-sat, Re the distance between the ground station and

the Earth centre and r = Re + H where H is the altitude.

The biggest area correspond to ǫ = 0 but it can be affected

by some natural barriers or general obstacles, then the min-

imum acceptable ǫmin is modelled as an uncertain angle >
0. The total time in view, the access time Tac, is:

Tac =
Torbit
180◦

arccos
cos (ζmax)

cos (ζmin)
(25)

where

ζmax = 90◦ − ǫmin − ηmax (26)

sin (ηmax) = sin
EAD

2
cos ǫmin (27)

sin (ζmin) = sin (latpole) sin (latGS)+ (28)

cos (latpole) cos (latGS) cos (∆long) (29)

with ǫ the elevation angle, η the nadir angle,

latpole = 90◦ − I with I the inclination, latGS the

latitude o the ground station and ∆long the difference in

longitude between orbit pole and ground station [10].

Access Time and Data Volume are time dependent: Tac(t)
and DV (t) ∀t ∈ [T0, TMission]. Finally, some of the

outputs - the amount of uncompressed data DV, the access

time Tac, the required power Ppayload and the momentum

of inertia Iz - are inputs for other nodes in the network, as

it is explained by Figure 1.

5.3 On board data handling (OBDH)

Ground station can communicate with the LEO satellite

only when it is in the visibility region; since is not afford-

able to sent all the data accumulated during each orbit to

the ground station during this small fraction of time, OBDH

system is needed to compress the images arriving from the

payload and store them. JPEG compression is used to obtain

Vc and high quality (10:1) for land pictures while medium

quality (20:1) for water areas. Mass MOBDH and power

POBDH are evaluated as function of uncompressed data V

and the access time Tac.

The amount of data after the compression, for each orbit, is

evaluated from Equation 20:

V
c = [V c

1 , V
c
2 , ..., V

c
i , ..., V

c
o ]← VPL (30)

where V c
o is the compressed amount of data of the last orbit

No and all the V c
i are considered in order to evaluate the

performance indicator in Equation 15.

5.4 Telecommunication (TTC)

Telecommunication subsystem, composed of an antenna

(ant), an amplified transponder (amp) and a radio frequency

distribution network (rfdn), connects the transmitter antenna

on the cube-sat with the receiving antenna on the ground sta-

tion.

First the type of antenna is chosen with regard to the trans-

mitter antenna gain Gt: patch antenna when 5 ≤ Gt < 10,

horn antenna when 10 ≤ Gt < 20 and parabolic antenna

when Gt ≥ 20. Evaluated the diameter D and half-power

beam-width θ as:

D =
wl

π

√
Gt

ηant
(31)

θ = 41253
ηant
Gt

(32)

with ηant the antenna efficiency and wl the wave length,

mass is calculated for the chosen antenna type. For patch

antenna:

Mant = π
D2

4
(0.0005ρc + 0.0015ρd) (33)

with ρc and ρd respectively density of copper and density of

dielectric material. For a horn antenna:

Mant = Shorn · ρhorn (34)
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with Shorn the lateral surface of the conic horn and ρhorn
the surface density. For a parabolic antenna:

Mant = 2.89D2 + 6.11D − 2.59 (35)

where the formula can be found in [11].

Mass of Mrfdn is given as input while mass Mamp, as well

as power requirement Pamp, for the amplified transponder

are derived from available data as described in [12], as func-

tion of the transmitter power Pt (power in output from the

antenna).

Pt =
Eb

N0
−Gt−Lt−Ls−Lp−

Gr

Ts
+10 · log10R−228.6

(36)

where Eb

N0

is the ratio of received energy-per-bit to noise

density, Lt is the on board loss, Ls is the free space

path loss, Lp is the propagation loss, Gr the receiver

antenna gain, Ts the system noise temperature and

R = V
Tac

the data rate where V (bits) is the transmitted

data and Tac the access time (seconds) to the ground station.

Finally, the mass of the TTC is the sum of the compo-

nents:

MTTC =Mant +Mamp +Mrfdn (37)

and the power is function of the transponder only:

PTTC = Pamp (38)

5.5 Attitude and orbit control (AOC)

Attitude and orbit control system is in charge to control

the position and the orientation of the cubesat with a three

axis stabilisation; the actuators used are reaction wheels

(RW) and magneto-torques (MT).

During the mission, the cube-sat is affected by some dis-

turbances, in particular the solar pressure Ts, the magnetic

torque Tm, the aerodynamic drag Ta and the gravity gradi-

ent torque Tg .

Ts =
Is
c
Al(1 + q) (39)

with Is the incident solar array, c the speed of light, A the

area of the cube-sat normal to the Sun, l the offset between

the centre of gravity and centre of pressure of the satellite

and q the reflectance factor.

Tm = m
B0R

3
e

(Re + h)3

√
3 sin2 (lat) + 1 = mB (40)

where m is the spacecraft residual dipole, B0 is the plan-

ets magnetic field strength, Re is the planet radius, h is the

altitude, lat is the magnetic latitude.

Ta =
1

2
ρv2CDAl (41)

where ρ is the atmospheric density at the spacecraft altitude,

v is the spacecraft velocity, CD is the drag coefficient of

the spacecraft, A is the area of the spacecraft normal to the

velocity vector.

Tg =
3µ

2(Re + h)3
|Iz −min(Ix, Iy)|sin 2ψ (42)

where µ is the planet gravitational parameter, Iz is the max-

imum moment of inertia of the satellite, and ψ is the angle

between the spacecraft z axis and the nadir vector.

The total disturbance is the sum:

Td = Ts + Tm + Ta + Tg (43)

The momentum stored due to the disturbance in the RW,Hd,

the momentum required for the slew manoeuvresHslew and

the detumbling manoeuvre Hdet are:

Hd =
TdP

4e
(44)

Hslew = Tslew · tslew (45)

Htumbl = Iz · spinrate (46)

with P the orbital period, e the pointing accuracy, Tslew
,tslew ,Iz and spinrate .

Mass, Mrw, and power, Prw, for the RW are computing

by interpolation from available real data, in function of the

maximum between Hd, Hslew and Htumbl:

Mrw ∝ max (Hd, Hslew, Htumbl) (47)

Prw ∝ max (Hd, Hslew, Htumbl) (48)

To unload momentum stored in the RW, mass and power

of MT are interpolated in function of the required magnetic

dipole Dmag :

MMT ∝ Dmag (49)

PMT ∝ Dmag (50)

where

Dmag =
Td
B

(51)

with B given in Equation 40.

Finally, the outputs of the AOCS node are:

MAOCS =Mrw +MMT (52)

PAOCS = Prw + Pmt (53)

5.6 Power

The electrical power system (EPS) is composed of a solar

array, a battery pack, a power conditioning and distribution
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unit (PCDU). The mass of the power system is the sum of

the individual masses of the components

Mpower =MSA +MBP +MPCDU (54)

The power produced by the system is the power converted

by the solar array

Ppower = Psa (55)

Given the power requirement Pn for the spacecraft night,

as well as the duration tn of the night, the energy capacity

requirement of the battery system is

Ereq =
Pntn

ηb−lDOD
(56)

where ηb−l is the transfer efficiency between battery and

loads, and is the product of the efficiencies of the battery

discharge regulator, the distribution unit, and the harness:

ηb−l = ηbdrηdistrηharn (57)

The efficiency ηbdr of the battery discharge regulator is a

function of the bus voltage, and can assume values between

0.9 at 20 V and 0.97 at 100 V. In case of unregulated bus,

ηbdr, as there is no discharge regulator. The harness effi-

ciency ηharn is

ηharn1−
Vdrop
100

(58)

and is therefore dependent on the allowable voltage drop

Vdrop given as a percentage of the bus voltage. The ef-

ficiency of the distribution unit is ηdist = 0.99. The

depth of discharge DOD is function of the number CL of

charge/discharge cycles, that is dependent on the mission

time. Their relationship is estimated as [9]

DOD(t) = −36.76ln
CL(t)

207800
(59)

Given the energy requirement for the battery, the mass of

the battery pack is

Mbatt =
Ereq

Ecell

(60)

where Ecell is the energy density (Wh/kg) of the cell, given

in input. Finally, the charging efficiency ηbatt of the bat-

tery is computed by interpolation of efficiencies [0.82, 0.83,

0.835, 0.95] and energy densities [37, 44, 51, 135] Wh/kg.

The power Psa required from the solar array is computed

from the power requirements Pd and Pn for the spacecraft

daylight and night periods respectively, as well as the dura-

tions td and tn of the periods

Psa =
Pntn

ηa−bηb−ltd
+

Pd

ηa−l

(61)

where ηa−b is the transfer efficiency between solar array and

battery pack, ηa−l is the transfer efficiency between solar

array and loads. The power requirements are a typical epis-

temic uncertainty in preliminary design, therefore an uncer-

tainty factor δP is applied to Pd and Pn. The transfer effi-

ciencies can be expressed as the product of the efficiencies

of the components:

ηa−b = ηsarηbcrηbatt (62)

ηa−l = ηsarηdistηharn (63)

where ηbcr is the efficiency of the battery charge regulator

and, as for the discharge regulator, can assume values be-

tween 0.9 at 20 V and 0.97 at 100 V, or 1 if the bus is un-

regulated, and sar is the efficiency of the solar array regu-

lator, and assumes values between 0.94 at 20 V and 0.99 at

100 V for direct energy transfer (DET) configuration, or be-

tween 0.93 at 20 V and 0.97 at 100 V for maximum power

peak tracking (MPPT) configuration. Solar cells suffer from

several factors that decrease their efficiency. Increasing the

temperature of the cell reduces the power generated by the

cell. At a certain temperature T, the change in efficiency is

given by

ηtemp = 1− ηT (T − Tnom) (64)

where ηT is the degradation per centigrade, which assumes

values between 0.005 for cell efficiency of 0.16, and 0.002

for cell efficiency of 0.28, and Tnom is the nominal temper-

ature of the solar cell, usually 28 oC. Several other factors

concur at degrading the efficiency of the solar cell. The ar-

ray pointing loss factor is

ηp = cosα (65)

where α is the solar incidence angle. The distance rS (in

AU) from the Sun involves a loss, or gain, that is

ηr =
1

rS

2

(66)

Furthermore, cells degrade with time mainly due to radia-

tion fluence, and such degradation can be estimated as in

[8]

ηlife(t) = (1−Dcell)
t (67)

where Dcell is the cell degradation per year, and TMission

is the cell life time (the mission time). A further im-

portant factor affecting the efficiency of the solar array is

the assembly efficiency ηa. The efficiency of the array

is lower than the efficiency of the single cells because of

a loss due to assembly. Such factor is usually uncertain

and is given as input. The total cell efficiency is therefore
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ηtot = ηaηtempηpηrηlife. The specific power (Wh/m2) of

the array is

Pcell = 1370ηcellηtot (68)

From this, the required area of the array is computed

Asa =
Psa

Pcell

(69)

and finally the mass of the solar array

Msa = Asaρsa (70)

The PCDU is a modular unit composed of modules such as

battery charge and discharge regulators, solar array regula-

tors, maximum power point tracker, shunt regulator, distri-

bution unit (latching current limiters), telemetry interface.

The number of modules, and therefore the mass of the unit,

is dependent on the power system configuration. Indeed,

if the bus is unregulated, there are no battery charge and

discharge regulators, therefore the PCDU is lighter. If the

configuration is DET, there is no maximum power point

tracker, and the PCDU is lighter. On the other hand, an

MPPT configuration extract maximum power from the so-

lar array, therefore the array size decreases, but the presence

of the MPPT module decreases the transfer efficiency and

increases the PCDU mass. The configuration is a typical

trade-off in the design, and is a design parameter. The mass

Mpcdu can be estimated as the sum

Mpcduµpcdu(2Psa + bPd + bPe + cPsa) (71)

where µpcdu = 0.001 kg/W, b is the bus type (0 for unreg-

ulated, 1 for regulated bus), c is the configuration (0 for

DET, 1 for MPPT), and the 2 multiplying the first term in

brackets accounts for a telemetry and a distribution unit.

6. Dynamic multi-state systems

In this section, we will describe, how we include possible

satellite failure modes into our performance calculations.

A system is called multi-state when it can have multiple

states and the number of possible states are finite. The

set of all the possible states is denoted by X . A stochas-

tic process is a collection of random variables {X(t)}|t∈T

representing the system state in time and its dynamics can

be generally described by a family of transition operators

T t
s : X × X → [0, 1], so that T t

s(x, y) models the proba-

bility that the system is in state y at time t given that it was

in state x at time s. By applying a sequence of transition

operators the law of the state of the satellite at any time t
can be derived given the law at time for X(0).

This stochastic dynamics above is continuous in time; how-

ever, the data acquisition procedure explained in the Section

5.2 is discontinuous. Therefore in our model, the data which

was acquired during a complete orbit cycle was distributed

uniformly through the entire cycle to model the instanta-

neous data increment at any time. This assumption makes

it possible to handle the data volume as a continuous vari-

able in time and hence to calculate its expected value with

regard to the stochastic evolution of the system state. In a

given time t, the instantaneous data increment is denoted

as V (t; d, u). The expression for the performance measure

of the accumulated data dependent on the satellite will thus

take the following form:

fDV (d, u) := E

{∫ TMission

0

V (t,X, d, u)

}
dt, (72)

If the evolution of the stochastic process (transition op-

erator T ) is not dependent on V , the integration over time

can be taken out from the expected value calculation by ap-

plying the Fubini theorem [13]. Furthermore, if the instan-

taneous data increment V depends only on the current state

and not on the state history, the expression for computation

of the expected data gain will take the following form:

fDV (d, u) :=

∫ TMission

0

E {V (t,X(t), d, u)} dt, (73)

where X(t) is a random variable modelling the state of

the system at time t.

After the transition operator of the satellite state and the

instantaneous data increments are defined for each states

X(t) = xi (where i = 1..N ) the Equation (73) express the

stochastic law of the accumulated data during the mission

of the satellite.

6.1 Reliability and resilience

Two directions of the system state transition are consid-

ered. The fully or partially functional system can deteriorate

or the partially functional system can recover. Once a total

failure of the system occurred the system is not able to re-

cover anymore and the satellite is considered lost. The time

dependent reliability of a satellite is typically modelled by

a Weibull distribution [14, 15]. This work also adopts the

Weibull distributions for modelling the reliability, the tran-

sition between both functional states to the failure state. The

system can be in 3 states. State 0: total system failure (x0);

state 1: partially functional system (x1) or state 2: fully

functional system (x2). The satellite is assumed to be fully
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functional at the start of its operations (X(0) = x2). The

probability that a system failure occurs at time Tfail have

a Weibull distribution regardless if the system was in x2 or

x1. Before the Tfail, a simple alternation process is used

to model the transition between states x1 and x2 by a time-

homogeneous continuous time Markov Chain. This mod-

els the occurrence of less severe failures and their repair,

by which we model the reconfiguration of the system. The

stochastic dynamics of this alternation process are given by

the following transition operator:

T t
s(x, y) = exp{Q(t− s)}(x, y), (74)

such that the transition rate Q (an analogue to the time

derivative for ordinary differential equations) is dependent

on the design and uncertain parameters,

Q(d, u) =

(
−µ(d, u) µ(d, u)

λ(d, u) − λ(d, u)

)
, (75)

where the first line and column refer to state x1 and the sec-

ond ones to state x2, and µ and λ are some functions of both

design and uncertain parameters. The state changes from x2
to x1 with rate λ and with rate µ in the opposite way.

The probability that the system is in state x0 is given by the

cumulative distribution function of the Weibull distribution

and is denoted by p0(t).
The probability of that the system is in state x2 given the

system is in state x1 or x2 (i.e. that the fatal failure has not

occurred yet) is:

Pr(X(t) = x2|X(t) ∈ {x1, x2}, X(0) = x2) =

=
µ

µ+ λ
+

λ

µ+ λ
exp(−t(µ+ λ)) =: p2(t). (76)

Respectively, the probability of that the system is in

state x1 given that the system has not been lost is p1(t) =
1− p2(t).
Therefore, the expected value of the instantaneous data in-

crement is expressed as:

E {V (t,X(T )d, u)} =

[V2(t; d, u)p2(t) + V1(t; d, u)p1(t)](1− p0(t))+

+ V0(t; d, u)p0(t), (77)

where Vi represents the instantaneous data increment in the

respective state xi.
The instantaneous V2(t) - totally functioning state - can be

approximated from Equation 30 by interpolation in time:

V2(t)← Vc (78)

while V1(t) - partially functioning state - we will model in

this example as a function of V2(t):

V1(t) =
V2(t)

2
(79)

and V0(t) - the state of total failure - represents generation

(or transmission) of no additional data:

V0(t) = 0. (80)

6.2 Used probability distributions

Disclaimer: The dependency between the design and

uncertainty parameters and the parameters of the probability

laws governing the stochastic evolution of the system state

have both been chosen artificially for the purposes of our

experiments in order to derive and test the methodology.

We choose not to include the actual parameters used in our

computation in order not to mislead anyone. The proper

influence of the parameters will be investigated in the

future work. In the rest of the section, we will only briefly

elaborate on how the laws of the stochastic process were

composed.

The parameters of the distribution governing the total

failure law of the satellite is based on the coefficients

for satellite subsystem failure rate inferred in [15]. The

probability of satellite survival, 1 − p0(t), is calculated as

the probability that all the subsystems have survived, i.e. a

product of their respective survival functions.

The parameters of the alternating process were “elicited”

in the following way. Parameter µ remains fixed on the

value 1/365. For the parameter λ, first, we have chosen

its base value to be λ0 = 1/365. Then, each of the design

and uncertain parameters were assessed, whether it could,

by our guess, influence the partial failure rate λ, and the ex-

treme values of the relative influence. For each parameter,

the relative influence, say ru,i(ui) and rd,i(di), where ui
and di represent elements of the design and uncertainty pa-

rameter vectors, was calculated by an interpolation between

these extreme values. The final value of the partial failure

rate is then calculated as:

λ(d, u) = λ0 ·
∏

i

[ru,i(ui)]
∏

i

[rd,i(di)] .

7. Results

Figure 2 presents the solution of Problem 16 that is the

MO min-max approach: it is a Pareto front between the two
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conflicting objectives Mass and Expected value of the cu-

mulative Data Volume. The red point in the Pareto front,

instead, corresponds to the solution of the Single objective

minmax.
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Fig. 2: Comparison between Single Objective approach and

Multi Objective approach: the red point has been evaluated

with a weighted function between mass and Data Volume.

Solution of problem 17 is, instead:

min
d∈D

max
u∈U

MTOT (d,u, t)

fDV (d,u, t)
= 0.028 (81)

and the parameters [d, u]minmax correspond to:

• Mass= 10.86 kg

• DV = 384.8 GB

The SO solution is added to the Pareto front of figure 2 and

refers to a decision for which objective functions have sim-

ilar weights.

From this solution the Belief surface has been calculated

and plotted in Figure 3 and 4. The 3D Belief has been eval-

uated from Equation 5 with:

A = {u ∈ U |Mass(d,u, t) ≤ ν ∧ fDV (d,u, t) ≥ µ}.
(82)

Finally, Figure 5 shows also a comparison with the clas-

sical approach of margins. For both the quantities of inter-

est, the optimal solution in the design space has been eval-

uated with the nominal values of the uncertainty parameters

(green point). The solution with margins corresponds to the

blue point in figure, where 20% of margin has been applied

to all the quantities that are exchanged between the nodes

of the network in Figure 1 and finally to the quantities of

interest.

Fig. 3: bi-objective belief. The surface show the lower

bound of the probability (the belief) that the two objective

functions are below (mass) or above (fDV ) two given thresh-

olds.

Fig. 4: bi-objective belief. This plot shows the same results

as Figure 3, from a different point of view; cold colours cor-

respond to low belief values while warm colours to high be-

lief values.

8. Conclusions

A method for robust optimisation under the presence of

severe uncertainty has been presented. Due to the com-

plexity of calculations with uncertainty described by the

DST, the optimisation was formulated to minimise the con-

strained worst case scenario, with constraint being the reli-

ability of the satellite during its mission, which was effec-

tively solved by a memetic algorithm for constrained min-

max optimisation described in Section 4. Once the solution

was obtained, it was consequently subjected to an uncer-
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Fig. 5: Colours from blue to yellow represent the value of

belief (from zero to one). The green dot corresponds to the

nominal solution, the blue one to the nominal solution with

margins and the black dot to the worst case scenario.

tainty analysis according to the DST and the corresponding

Belief in the values of the performance of the optimised de-

sign was reconstructed according to the approximation al-

gorithm described in Section 3.

The resilience, the system responsibility to random fail-

ures, has been added into the model specification by con-

sidering possible reconfiguration of the system functionality

after a partial failure. This has been modelled by a simple

homogeneous Markov Chain described in Section 6. Al-

though, the authors are aware, that the used model does not

properly reflect the actual dynamics of the system, not only

because of the usage of artificial dependencies of the pa-

rameters governing the stochastic evolution on the design

and uncertainty parameters, but also because of usage of a

the Markov process and omitting the influence of possible

loss of performance after the reconfiguration of the system.

These simplifications were made mainly in order to simplify

the derivation of the framework of expected performance

optimisation which better reflects the uncertainties about the

performance of a system in uncertain conditions and will be

addressed in more detail in the future work.
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