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Flow harmonics (vn) in the Fourier expansion of the azimuthal distribution of particles are widely 
used to quantify the anisotropy in particle emission in high-energy heavy-ion collisions. The symmetric 
cumulants, SC(m, n), are used to measure the correlations between different orders of flow harmonics. 
These correlations are used to constrain the initial conditions and the transport properties of the 
medium in theoretical models. In this Letter, we present the first measurements of the four-particle 
symmetric cumulants in Au+Au collisions at √sN N = 39 and 200 GeV from data collected by the STAR 
experiment at RHIC. We observe that v2 and v3 are anti-correlated in all centrality intervals with similar 
correlation strengths from 39 GeV Au+Au to 2.76 TeV Pb+Pb (measured by the ALICE experiment). The 
v2–v4 correlation seems to be stronger at 39 GeV than at higher collision energies. The initial-stage 
anti-correlations between second and third order eccentricities are sufficient to describe the measured 
correlations between v2 and v3. The best description of v2–v4 correlations at √

sN N = 200 GeV is 
obtained with inclusion of the system’s nonlinear response to initial eccentricities accompanied by the 
viscous effect with η/s > 0.08. Theoretical calculations using different initial conditions, equations of 
state and viscous coefficients need to be further explored to extract η/s of the medium created at 
RHIC.

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

High-energy heavy-ion collisions at the Relativistic Heavy Ion 
Collider (RHIC) and the Large Hadron Collider (LHC) are believed 
to have created a QCD medium at extremely high energy densities. 
The properties of this medium are under persistent investigations. 
An extensively studied subject is “flow”, the collective anisotropic 
expansion of the medium. Flow originates from the initial spatial 
anisotropy (and/or fluctuations in the position) of the colliding nu-
cleons, and develops due to the strong interaction among particles 
produced in the collision [1–6]. The anisotropy in the momen-
tum space is quantified by the Fourier coefficients of the azimuthal 
emission distribution of produced particles with respect to the nth
order event plane [7,8]:

dN

dϕ
∝ 1 +

∞∑
n=1

2vn cos [n(ϕ − �n)] , (1)

where ϕ is the azimuthal particle emission angle and �n is nth
order event plane angle. These vn are the single-particle Fourier 
coefficients that can be derived without the determination of the 
event plane which is discussed later on. The flow harmonics, vn , 
quantify the nth order anisotropy of particles of interest, and its 
magnitude imprints the initial anisotropy [1], the expansion dy-
namics [9,10] and the equation of state of the medium [2,11]. 
Various efforts have been made to understand the measured flow 
harmonics and extract the transport properties of the medium, 
but different models need a different value of η/s (viscosity over 
entropy density) to describe the same experimental measure-
ments [12,13]. For example, the NeXSPheRIO model with η/s = 0
(described in Ref. [12]) explains all vn in all centralities whereas 
the MUSIC model (described in Ref. [13]) indicates that a vis-
cous medium with η/s ∼ 0.08 is needed to explain the vn data in 
Au+Au collisions at 

√
sN N = 200 GeV. This suggests that besides 

the choice for η/s, other transport properties, equation of state, 
and the initial state also affects these calculations and using only 
vn data it is difficult to have control on these parameters. There-
fore, more inputs from experimental observables are warranted to 
further constrain theoretical models.

To probe the initial conditions, it is important to measure the 
distributions of vn and event-by-event correlations among vn val-
ues in an event sample [14,15] as the event-by-event correlations 
between different orders of flow harmonics are theorized to be 
sensitive to the transport properties of the medium [16,17]. Re-
cently, the four-particle symmetric cumulants [18–22] have been 
proposed to unravel the initial-stage phenomena and the later-
stage medium properties. These four-particle symmetric cumulants 
SC(m, n) are defined as [18]

SC(m,n) ≡ 〈〈cos(mϕ1 + nϕ2 − mϕ3 − nϕ4)〉〉c

= 〈〈cos(mϕ1 + nϕ2 − mϕ3 − nϕ4)〉〉
− 〈〈cos[m(ϕ1 − ϕ2)]〉〉 〈〈cos[n(ϕ1 − ϕ2)]〉〉

=
〈
v2

m v2
n

〉
−

〈
v2

m

〉 〈
v2

n

〉
. (2)

Here subscript c is used to indicate the cumulant and 〈〉 denotes 
average over all events weighted with the number of quadruplet 
(doublet) combinations. The 〈〈〉〉 denotes the average over all dis-
tinct particle quadruplets (doublets) in an event and over all events 
weighted with the number of quadruplet (doublet) combinations. 
Positive (negative) values of SC(m, n) suggest the (anti-)correlation 
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between v2
n and v2

m; in other words, v2
n being larger than 〈v2

n〉 in 
an event enhances (suppresses) the probability of v2

m being larger 
than 〈v2

m〉 in that same event. The SC(m, n) observables focus on 
the correlations between different orders of flow harmonics, and 
facilitate the quantitative comparison between experimental data 
and model calculations. A normalized symmetric cumulant will 
facilitate a quantitative comparison between different collision en-
ergies or between data and model calculations as the magnitude 
of symmetric cumulant depends on magnitude of flow harmonics. 
The normalized symmetric cumulant, N SC(m, n), is defined as

N SC(m,n) = 〈v2
n v2

m〉 − 〈v2
n〉〈v2

m〉
〈v2

n〉〈v2
m〉 . (3)

The ALICE collaboration has recently measured SC(2, 3) and 
SC(2, 4) in Pb+Pb collisions at 

√
sN N = 2.76 TeV, and found that 

the centrality dependence of SC(2, 4) cannot be captured by hy-
drodynamics model calculations with a constant η/s [19]. In this 
Letter, we present the first measurements of symmetric cumulants 
in Au+Au collisions at 

√
sN N = 39 and 200 GeV. Due to limited 

statistics, results from Au+Au collisions at 
√

sN N = 62.4 GeV are 
not presented in this letter. Section 2 discusses experiment details 
and the analysis method, and Section 3 describes the results for 
SC(2, 3) and SC(2, 4) as functions of centrality and compares them 
with available model predictions. The summary is in Section 4.

2. Experiment and analysis

The data used in this measurement were collected from Au+Au 
collisions by the STAR [23] in the years 2010 (39 GeV) and 2011 
(200 GeV). We analyzed 1.1 × 108 and 4 × 108 minimum-bias 
Au+Au events at 

√
sN N = 39 and 200 GeV, respectively. The col-

lision centrality determination was validated by comparing Monte 
Carlo Glauber calculations to the charged-hadron multiplicity mea-
sured with the time projection chamber (TPC) within a pseudora-
pidity window of |η| < 0.5. The detailed procedures to obtain the 
simulated multiplicity are similar to that described in Ref. [24]. 
Events were required to have collision vertex positions (in the 
radial direction) within 2 cm of the beam axis to reduce contribu-
tions from beam-pipe (at a radius of 4 cm) interactions, and within 
a limited distance from the center of the detector along the beam 
direction (±40 cm for the 39 GeV data set and ±30 cm for the 
200 GeV data set). Charged particles used in this analysis were re-
constructed by the STAR TPC with |η| < 1.0. The distance of closest 
approach (DCA) of a track to the primary vertex was required to be 
less than 3 cm. We also required the number of fit points (nhits) 
used to reconstruct a track to be greater than 15 and the ratio 
of the number of fit points to maximum possible hits (nhits/hit-
max) to be greater than 0.52. In addition we applied a transverse 
momentum cut (0.2 < pT < 2 GeV/c) to the charged tracks to min-
imize nonflow effects e.g. low and high pT cuts used to minimize 
resonance and jet contribution, respectively. These default cut set-
tings were later varied for a systematic analysis.

The two- and four-particle correlations in Eq. (2) can be evalu-
ated in terms of flow vectors [25]. The flow vector (or Q vector) for 
nth harmonic is defined as Q n,p ≡ ∑M

k=1 w p
k einϕk , where M is the 

multiplicity of an event. The weights (wk = weff wϕ ) were applied 
to correct for the pT -dependent efficiency (weff = 1

eff(pT )
) and for 

imperfections in the detector acceptance (wϕ ). The event-by-event 
v2

n and v2
n v2

m in Eq. (2) were calculated with the multi-particle 
Q -cumulant method [18,25]:

v2
n = 〈cos[n(ϕ1 − ϕ2)]〉 = N〈2〉n,−n

D〈2〉n,−n
(4)

and
v2
n v2

m = 〈cos(mϕ1 + nϕ2 − mϕ3 − nϕ4)〉
= N〈4〉n,m,−n,−m

D〈4〉n,m,−n,−m
, (5)

where

N〈2〉n,−n = Q n,1 Q −n,1 − Q 0,2 , (6)

D〈2〉n1,n2 = N〈2〉0,0 = Q 2
0,1 − Q 0,2, (7)

N〈4〉n,m,−n,−m = Q n,1 Q m,1 Q −n,1 Q −m,1 − Q n+m,2 Q −n,1 Q −m,1

− Q m,1 Q 0,2 Q −m,1 − Q n,1 Q m−n,2 Q −m,1

+ 2Q m,3 Q −m,1 − Q m,1 Q −n,1 Q n−m,2

+ Q m−n,2 Q n−m,2 − Q n,1 Q −n,1 Q 0,2 + Q 0,2 Q 0,2

+ 2Q −n,1 Q n,3 − Q n,1 Q m,1 Q −n−m,2

+ Q n+m,2 Q −n−m,2 + 2Q m,1 Q −m,3

+ 2Q n,1 Q −n,3 − 6Q 0,4 , (8)

D〈4〉n,m,−n,−m = N〈4〉0,0,0,0

= Q 4
0,1 − 6Q 2

0,1 Q 0,2 + 3Q 2
0,2

+ 8Q 0,1 Q 0,3 − 6Q 0,4 (9)

and

Q −n,p = Q ∗
n,p . (10)

The weights of M(M − 1) and M(M − 1)(M − 2)(M − 3) were used 
to average the 2-particle and 4-particle correlations over events 
(second average in Eq. (2)).

The values of v2
n in the denominator of Eq. (3) are obtained 

with the 2-particle correlations with a pseudorapidity gap of 
|�η| > 1.0 between the two particles to suppress few-particle non-
flow correlations [20]. The expression of v2

n in terms of flow vector 
with a pseudorapidity gap can be written as

v2
n = Q A

n,1.Q
B∗
n,1

M A .MB
. (11)

Here Q A
n,1 and Q B

n,1 are the flow vectors from sub-events A and B , 
with M A and MB the corresponding multiplicities. Although, the 
eta-gap suppresses few-particle nonflow contributions (mainly due 
to short range correlation), nonflow due to long range correlations 
might affect the magnitude of measured normalized SC(m, n).

Reference [26] shows that if N SC(m, n) is measured in a wide 
centrality range, where the multiplicity significantly fluctuates, the 
measurements of the symmetric cumulants will be biased by such 
fluctuations. This is known as the centrality-bin-width (CBW) ef-
fect. Accordingly, in this analysis, the symmetric cumulants were 
measured in small multiplicity windows (bin size equal to one) 
and then combined into 10% centrality bins to reduce statistical 
uncertainties. Note that we have checked, using the AMPT model, 
the magnitude of N SC(m, n) remains unchanged if we use impact 
parameter bins instead of multiplicity.

The main systematic uncertainties came from 1) event and 
track selection cuts, and 2) corrections for the non-uniform az-
imuthal acceptance and efficiency. Two methods were adopted to 
correct for the azimuthal dependence of the tracking efficiency: 
ϕ-weighting and re-centering [7]. In the ϕ-weighting method, each 
particle is weighted by the inverse of the corresponding efficiency, 
wϕ , determined from the particle azimuthal distribution (averaged 
over many events). In the re-centering method, the event-averaged 
Q-vector is subtracted from the Q-vector of each event and then 
the same equations as described above are used. In this analysis, 
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Fig. 1. (Color online.) SC(2, 4) ×〈Npart〉 and SC(2, 3) ×〈Npart〉 as functions of 〈Npart〉
in Au+Au collisions at √sN N = 39 and 200 GeV. HIJING model results are shown 
only for 200 GeV. Verticals lines are statistical uncertainties and systematic errors 
are shown with cap symbols.

the re-centering correction was applied as a function of multi-
plicity. Both the ϕ-weighting and the re-centering methods were 
applied separately for each run period of data taking and central-
ity interval. The difference between the two correction methods 
was included in the systematic uncertainty. To estimate systematic 
uncertainty due to variation of tracks and event selection cuts, we 
have varied DCA, nhits, nhits/hitmax and Vz values from default 
cut value. The total systematic uncertainty was obtained by adding 
uncertainties from different sources in quadrature. Maximum con-
tribution (∼8–12%) to the systematic uncertainty comes from the 
correction for non-uniform azimuthal acceptance and efficiency.

3. Results

Fig. 1 presents the symmetric cumulants SC(2, 3) and SC(2, 4)

multiplied by the average number of participating nucleons, 
〈Npart〉, as functions of centrality (represented by 〈Npart〉 [24]) at 
midrapidity (|η| < 1.0) for charged hadrons in Au+Au collisions 
at 

√
sN N = 39 and 200 GeV. Systematic errors are shown with 

cap symbols. Due to limited statistics at 39 GeV, the SC(2, 4) is 
measured in two wide centrality bins, 0–20% and 20–40%. Pos-
itive values of SC(2, 4) are observed for all centrality intervals 
at both collision energies, suggestive of a correlation between v2
and v4. On the other hand, the negative values of SC(2, 3) re-
veal the anti-correlation between v2 and v3. The magnitude of the 
SC(2, 3) × 〈Npart〉 and SC(2, 4) × 〈Npart〉 increases from central to 
mid-peripheral events and then again decreases for very peripheral 
events. This is also true for SC(2, 3) and SC(2, 4) (not shown). An 
inherent feature of the symmetric cumulant is the suppression of 
nonflow effects thanks to the use of the four-particle cumulant, 
where nonflow refers to azimuthal correlations not related to the 
reaction plane orientation, arising from resonances, jets, quantum 
statistics, and so on. Fig. 1 also shows HIJING model calculations 
of SC(2, 3) and SC(2, 4) in Au+Au collisions at 

√
sN N = 200 GeV

[27,28]. Comparison to the HIJING model, which includes only non-
flow physics, suggests that nonflow effects cannot explain the data 
of non-zero symmetric cumulants. 

Anisotropic flow is generated by the initial geometric anisotropy 
coupled with a collective expansion of the produced medium. 
There is an intense interest in understanding the origin of the 
initial-stage fluctuations and how these fluctuations manifest 
Fig. 2. (Color online.) N SC(2, 4) and N SC(2, 3) as functions of 〈Npart〉 in Au+Au 
collisions at √

sN N = 200 GeV. The normalized symmetric cumulants of spatial 
eccentricities, N SC(m, n)ε , using the Glauber model, are also shown. N SC(m, n)v

represent normalized symmetric cumulants of flow coefficients using equation (3).

themselves in correlations between measured particles. The nor-
malized symmetric cumulants evaluated in the coordinate space, 
N SC(m, n)ε = (

〈
ε2

nε2
m

〉− 〈
ε2

n

〉 〈
ε2

m

〉
)/(

〈
ε2

n

〉 〈
ε2

m

〉
), in Au+Au collisions at √

sN N = 200 GeV (using the Monte Carlo Glauber model [26]) are 
shown in Fig. 2 and compared with N SC(m, n)v measured in the 
momentum space [7]. If only eccentricity drives vn , then we expect 
N SC(m, n)v = N SC(m, n)ε . Fig. 2 demonstrates that the initial-
stage anti-correlation between the 2nd (ε2) and 3rd (ε3) order 
eccentricity is mainly responsible for the observed anti-correlation 
between v2 and v3. However, the correlation between ε2 and 
ε4 under-predicts the observed correlation between v2 and v4. 
The difference between N SC(2, 4)v and N SC(2, 4)ε increases from 
central to peripheral collisions. The anisotropic flow v4 has a con-
tribution not only from the linear response of the system to ε4, but 
also has a contribution proportional to ε2

2 . Therefore, the increased 
difference between N SC(2, 4)v and N SC(2, 4)ε from central to 
peripheral collisions is presumably because ε2 has an increased 
contribution in v4 in more-peripheral collisions. This is consistent 
with the observation reported by the ATLAS [29] and ALICE [19]
experiments in Pb+Pb collisions at 

√
sN N = 2.76 TeV. The relative 

contribution of ε2 in v4, as compared to that of ε4 was suggested 
to depend on the viscous properties of the medium [30]. Therefore, 
N SC(2, 4) provides a probe into the medium properties.

We present the collision energy dependence of the normal-
ized symmetric cumulants N SC(2, 4) and N SC(2, 3) in Fig. 3, as 
functions of 〈Npart〉. The magnitude of N SC(2, 4) is systematically 
higher at the lower energy (39 GeV) compared with 200 GeV and 
2.76 TeV, though the observed difference is not statistically sig-
nificant (a ∼2σ effect). This difference could be related to the 
change in the initial conditions and/or in the transport properties 
of the medium with collision energy [30,26]. Future high-statistics 
measurements of N SC(2, 4) at low energies in the phase II of the 
Beam Energy Scan program (BES-II) at RHIC will further our under-
standing of the temperature dependence of η/s. The lower panel of 
Fig. 3 shows a comparison of N SC(2, 3) as a function of centrality 
between 39 GeV and 200 GeV. The results of N SC(2, 3) at 39 and 
200 GeV are consistent with each other. In Fig. 3, the ALICE mea-
surements for 2.76 TeV Pb+Pb [19] are also shown for comparison. 
Since the ALICE results did not take into account the CBW effect, 
we have also illustrated the STAR results without the CBW correc-
tion (labeled as “Wide Mult. Bins” in Fig. 3) at 200 GeV to make a 
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Fig. 3. (Color online.) N SC(2, 4) and N SC(2, 3) as functions of average 〈Npart〉 in 
Au+Au collisions at √sN N = 39 and 200 GeV. ALICE results for 2.76 TeV Pb+Pb [19]
are also shown for comparison. Vertical lines are statistical uncertainties. Systematic 
errors are shown with cap symbols. The CBW corrected results are labeled by “Nar-
row Mult. Bins” and CBW uncorrected results are labeled by “Wide Mult. Bins”.

Fig. 4. (Color online.) N SC(2, 4) and N SC(2, 3) as functions of average 〈Npart〉
in Au+Au collisions at √

sN N = 200 GeV, with hydrodynamics [26] and AMPT 
model [21] predictions for comparison. All results are CBW corrected.

fair comparison. There is a slight difference in N SC(2, 4) between 
results with and without the CBW correction; however, this ef-
fect is larger in N SC(2, 3). The uncorrected values of N SC(2, 3) or 
N SC(2, 4) at 200 GeV and 2.76 TeV are very close to each other 
for all centrality intervals.

We compare in Fig. 4 our measurements with available model 
predictions [21,26] for N SC(2, 3) and N SC(2, 4) in Au+Au colli-
sions at 200 GeV. The AMPT calculations [21] are shown for a 
partonic medium with η/s = 0.18 (i.e., 3 mb parton–parton inter-
action cross-section). In the AMPT model, η/s in partonic matter 
is estimated with the assumption that the partonic matter only 
consists of massless u and d quarks [31]. AMPT model calcula-
tions with η/s = 0.18 are in agreement with the vn magnitudes 
in peripheral collisions, but it over-predicts the vn data for the 
most-central collisions [21]. The N SC(2, 3) and N SC(2, 4) from 
data are reasonably well described by the AMPT model, however 
an increasing deviation between data and AMPT model calcula-
tion is observed for N SC(2, 4) at peripheral collisions. Predictions 
from an ideal hydrodynamics model (NexSPheRIO) [26] are also 
shown in Fig. 4. The ideal hydrodynamics model with NexSPheRIO 
initial conditions is able to explain the anti-correlation between 
v2 and v3 within theoretical uncertainties, but under-predicts the 
correlation between v2 and v4. The NexSPheRIO model describes 
the magnitudes of all flow harmonics (v2, v3 and v4) up to 
pT ∼ 2.0 GeV/c within 10%, measured in all centrality intervals 
at the top RHIC energy [26]. The failure of the ideal hydrody-
namics model for the v2–v4 correlation supports the idea that 
the symmetric cumulants provide additional constraints to theo-
retical models. Like the ideal hydrodynamics model, a viscous hy-
drodynamics model (MCKLN initial condition and with η/s = 0.08) 
roughly explains the N SC(2, 3) data and under-predicts N SC(2, 4)

for peripheral collisions. However, the prediction from the viscous 
hydrodynamics model for N SC(2, 4) is closer to data than the ideal 
hydrodynamics model. Note that, all presented models (hydro and 
transport) under-predict N SC(2, 4). This may be improved by re-
visiting model ingredients such as the average initial state, initial 
state fluctuations, energy deposition “smearing”, equation of state, 
the appearance of other forms of transport, etc. Hence, a sound 
conclusion requires further investigation along that line.

4. Conclusions

We have presented the first measurements of the charge-
inclusive four-particle symmetric cumulants as functions of cen-
trality at midrapidity in Au+Au collisions at 

√
sN N = 39 and 

200 GeV. The new data provide additional constraints on the initial 
conditions and the transport properties in theoretical models. Anti-
correlation has been observed between event-by-event fluctuations 
of v2 and v3, while the event-by-event fluctuations of v2 and v4
are found to be correlated. The initial-stage anti-correlation be-
tween ε2 and ε3 appears to describe the observed anti-correlation 
between v2 and v3, which seems to support the idea of the lin-
earity between εn and vn [7]. However, the initial-stage correlation 
alone is not sufficient to describe the measured correlation be-
tween v2 and v4: the nonlinear hydrodynamic response of the 
medium has to be included to reproduce the data. The v2–v4 cor-
relation seems to be different between 200 GeV and 39 GeV, which 
could be attributed to the corresponding difference in the initial 
conditions and/or the transport properties of the medium. We have 
compared the STAR measurements with a number of available the-
oretical model calculations. All the models explain the symmetric 
cumulant between v2 and v3; however, none of them are able 
to describe the v2–v4 correlation for all centralities (though the 
hydrodynamics model (η/s = 0) could successfully reproduce the 
individual flow harmonics). A viscous hydrodynamics model with 
η/s = 0.08 outperforms the ideal hydrodynamics model in explain-
ing the data, but still seems to under-predict N SC(2, 4), whereas 
the AMPT calculations with η/s = 0.18 are even closer to the mea-
surement. A detailed comparison of the presented data to models 
with different equation of states, initial conditions, and transport 
coefficients is needed to determine these coefficients quantita-
tively.
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