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We consider the use of adaptive Volterra filters, implemented in the form of multichannel filter banks, as nonlinear active noise
controllers. In particular, we discuss the derivation of filtered-X affine projection algorithms for homogeneous quadratic filters.
According to the multichannel approach, it is then easy to pass from these algorithms to those of a generic Volterra filter. It is
shown in the paper that the AP technique offers better convergence and tracking capabilities than the classical LMS and NLMS
algorithms usually applied in nonlinear active noise controllers, with a limited complexity increase. This paper extends in two
ways the content of a previous contribution published in Proc. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing
(NSIP ’03), Grado, Italy, June 2003. First of all, a general adaptation algorithm valid for any order L of affine projections is
presented. Secondly, a more complete set of experiments is reported. In particular, the effects of using multichannel filter banks
with a reduced number of channels are investigated and relevant results are shown.
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1. INTRODUCTION

Methods for active noise control are nowadays intensively
studied and have already provided promising applications
in vibration and acoustic noise control tasks. The initial ac-
tivities originated in the field of control engineering [1, 2],
while in recent years a signal processing approach has been
successfully applied. This approach strongly benefited of the
advances in electroacoustic transducers, flexible digital sig-
nal processors, and efficient adaption algorithms [3, 4]. The
technique used in a single-channel active noise controller is
based on the destructive interference in a given location of
the noise produced by a primary source and the interfering
signal generated by a secondary source.

Most of the studies presented in the literature refer to lin-
ear models, while it is often recognized that nonlinear effects
can affect actual applications [5, 6, 7, 8, 9, 10, 11, 12, 13, 14].
Such effects may arise from the behavior of the noise source
which rather than a stochastic process may be depicted as a
nonlinear deterministic noise process, sometimes of chaotic
nature. Moreover, the primary path may exhibit a nonlinear
behavior thus motivating the use of a nonlinear controller.

Recently, a model for a nonlinear controller based on
Volterra filters [15] has been presented in [9] with interest-

ing results. The model actually exploits the so-called diagonal
representation introduced in [16]. This representation allows
a truncated Volterra system to be described by the “diagonal”
entries of its kernels. In fact, if the pth-order kernel is repre-
sented as a sampled hypercube of the same order, the diag-
onal representation implies the change of the Cartesian co-
ordinates to coordinates that are aligned along the diagonals
of the hypercube. In this way, the Volterra filter can be rep-
resented in the form of a filter bank, where each filter corre-
sponds to a diagonal of the hypercube. This representation is
particularly useful for processing carrier-based input signals,
since the frequency content of the output signal is directly
related to the frequency response of the diagonal elements of
the kernel. It has been exploited in the derivation of efficient
implementations of Volterra filters for processing carrier-
based input signals using fast convolution techniques [16].

A similar representation has been used in [17, 18] to
define the so-called simplified Volterra filters (SVF). Even
though this model can be applied to kernels of arbitrary
order, the simplest example of a Volterra filter, that is, the
homogeneous quadratic filter, has been specifically consid-
ered in [17, 18] with reference to the acoustic echo can-
cellation problem. An SVF is still implemented as a filter
bank, but here the stress is on the fact that, according to
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the characteristics of the measured second-order kernel, it is
possible to use a reduced number of active channels. In fact,
it has been noted that the relevance of the quadratic kernel
elements is strongly decreasing moving far from the main
diagonal. Therefore, remarkable savings in implementation
complexity can be achieved. It is worth noting that similar
behaviors have been observed also in other real-world non-
linear systems.

The other relevant idea in [17, 18] is that, exploiting the
SVF structure, it is possible to extend the affine projection
(AP) adaptation algorithm, originally proposed by Ozeki and
Umeda [19] for linear filters, to quadratic filters. It has been
shown that the AP technique offers also for quadratic filters
better convergence and tracking capabilities than the classical
LMS and NLMS.

Based on these premises, we present in this paper a cou-
ple of novel filtered-X AP (F-X AP) algorithms for non-
linear active noise control. The derivation of these algo-
rithms is given according to the SVF model of a homoge-
neous quadratic filter. Extensions to higher-order Volterra
filters can be obtained using the general diagonal represen-
tation mentioned above. The advantages given by the AP al-
gorithms can be appreciated when changes in the character-
istics of the noise source or of the room acoustics occur. It is
also shown that the complexity increase with respect to the
F-X LMS algorithm may be relatively small.

The outline of our paper is the following. In Section 2,
the quadratic model used for the nonlinear active noise con-
trol is briefly described. The derivation of the novel F-X AP
algorithms for homogeneous quadratic filters is presented in
Section 3. Results of extensive computer simulations are pre-
sented in Section 4 for typical nonlinear situations and a few
concluding remarks are given in Section 5.

2. MODELING THE NONLINEAR
ACTIVE NOISE CONTROLLER

A single-channel acoustic noise controlling scheme is de-
picted in Figure 1. The corresponding block diagram is
shown in Figure 2. The noise source is sensed by a reference
microphone and the primary path P consists of the acoustic
response from the reference microphone to the error micro-
phone located at the canceling point. The signal to be atten-
uated is marked as dp(n). The reference microphone collects
the samples x(n) of the noise source and feeds them as input
to the adaptive controller. The controller is adapted accord-
ing to the feedback signal e(n) coming from the error mi-
crophone. The controller output y(n) generates an acoustic
signal that, traveling through the secondary path S, gives a
signal ds(n) which destructively interferes with the undesired
signal dp(n). It is usually assumed that the secondary path is
linear and time invariant, and that its impulse response s(n)
has been obtained by separate estimation procedures. Then,
the signal ds(n) is given as the linear convolution of s(n) with
the signal y(n) and thus the error signal can be expressed as
e(n) = dp(n) + ds(n) = dp(n) + s(n) ∗ y(n), where ∗ in-
dicates the operation of linear convolution. In the nonlinear
situation we are dealing with, the controller is described as

Adaptive
controller Secondary path

e(n)y(n)
x(n)

Reference
microphone

Error
microphone

Primary path

Noise
source

Figure 1: Single-channel adaptive controller.

F-X AP

Volterra
filter

y(n)
S

ds(n)

x(n)
P

dp(n)
+

e(n)

Figure 2: F-X AP adaptive nonlinear controller.
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Figure 3: Simplified Volterra filter structure.

a Volterra filter implemented by a multichannel filter bank.
The adaptation of the nonlinear filter is controlled by means
of the F-X AP algorithms introduced in the next Section.

3. SINGLE-CHANNEL F-X AP ALGORITHMS

We illustrate here the main steps leading to the derivation of
F-X AP algorithms for a homogeneous quadratic filter repre-
sented as a filter bank according to the SVF implementation
shown in Figure 3. The output y(n) in Figure 3 is obtained as

y(n) =
M
∑

i=1

yi(n), (1)

where M is the number of channels actually used, with M ≤

N . N is the memory length of the quadratic filter and yi(n)
is the output of the FIR filter in the generic channel i in
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Figure 3, given by the following equation:

yi(n) =
N−i
∑

k=0

h(k, k + i− 1)x(n− k)x(n− k − i + 1). (2)

Using a vector notation, (2) becomes

yi(n) = hT
i (n)xi(n), (3)

where hi(n) is the vector formed with the N−i+1 coefficients
of the ith channel (1 ≤ i ≤M),

hi(n) =
[

h(0, i− 1) h(1, i) · · · h(N − i,N − 1)
]T
. (4)

The corresponding input vector xi(n), again formed withN−
i + 1 entries, is defined as

xi(n) =













x(n)x(n− i + 1)
x(n− 1)x(n− i)

...
x(n−N + i)x(n−N + 1)













. (5)

If we now define two vectors of K =
∑M

k=1(N−k+1) elements

h(n) =
[

hT
1 (n) · · · hT

M(n)
]T

,

x(n) =
[

xT
1 (n) · · · xT

M(n)
]T

(6)

formed, respectively, with the vectors hi(n) and xi(n) related
to single channels of the filter bank, then the output of the
homogeneous quadratic filter can be written as

y(n) = hT(n)x(n). (7)

While the F-X LMS algorithm minimizes, according to the
stochastic gradient approximation, the single error at time n,

e(n) = dp(n) + ds(n) = dp(n) + s(n)∗
[

hT(n)x(n)
]

, (8)

the aim of an F-X AP algorithm of order L is to minimize the
last L F-X errors. The desired minimization can be obtained
by finding the minimum norm of the coefficient increments
that set to zero the last L a posteriori errors. More in detail,
the a posteriori error at time n − j + 1, with j = 1, . . . ,L, is
defined as

ε(n− j + 1) = dp(n− j + 1) + s(n− j + 1)

∗
[

hT(n + 1)x(n− j + 1)
]

.
(9)

The set of constraints for an Lth order F-X AP algorithm is
written in the following form:

dp(n) + s(n)∗ hT(n + 1)x(n) = 0,

dp(n− 1) + s(n− 1)∗ hT(n + 1)x(n− 1) = 0,

...

dp(n− L + 1) + s(n− L + 1)∗ hT(n + 1)x(n− L + 1) = 0.
(10)

The function J to be minimized can then be defined as

J = δhT(n + 1)δh(n + 1)

+
L
∑

j=1

λ j
(

dp(n− j + 1) + s(n− j + 1)

∗ hT(n + 1)x(n− j + 1)
)

,

(11)

where

δh(n + 1) = h(n + 1)− h(n) (12)

and λ j are Lagrange’s multipliers. By differentiating J with
respect to δh(n + 1), the following set of K equations is ob-
tained

2δh(n + 1) = −
L
∑

j=1

λ js(n− j + 1)∗ x(n− j + 1), (13)

where the linearity of the convolution operation has been ex-
ploited. Equation (13) can be also rewritten as

2δh(n + 1) = −G(n)Λ, (14)

where the K × L matrix G(n) is defined as

G(n)

=
[

s(n)∗x(n) s(n−1)∗x(n−1) · · · s(n−L+1)∗x(n−L+1)
]

,

(15)

Λ =
[

λ1λ2 · · · λL
]T
. (16)

By premultiplying equation (14) by GT(n), the following
equation is obtained:

Λ = −
(

GT(n)G(n)
)−1

GT(n)2δh(n + 1). (17)

The L× 1 vector GT(n)2δh(n + 1) can be also written as

GT(n)2δh(n + 1)

= 2













{

s(n)∗ xT(n)
}

δh(n + 1)
{

s(n− 1)∗ xT(n− 1)
}

δh(n + 1)
...

{

s(n− L + 1)∗ xT(n− L + 1)
}

δh(n + 1)













.

(18)

Apart from the factor 2, the jth element of this vector ( j =
1, . . . ,L), can be written, after some manipulations, as

[

s(n− j + 1)∗ xT(n− j + 1)
][

h(n + 1)− h(n)
]

= s(n− j + 1)∗
[

hT(n + 1)x(n− j + 1)
]

− s(n− j + 1)∗
[

hT(n)x(n− j + 1)
]

= −dp(n− j + 1)− s(n− j + 1)

∗
[

hT(n)x(n− j + 1)
]

= −e j(n).

(19)

In deriving this expression, the linearity of the convolu-
tion operation and the constraints given by (10) have been



1844 EURASIP Journal on Applied Signal Processing

Initialization: hi = 0 ∀i

y(n) =
∑M

i=1 hT
i (n)xi(n)

e j(n) = dp(n− j + 1) + s(n− j + 1)∗
∑M

i=1 hT
i (n)xi(n− j + 1)

for j = 1, . . . ,L

e(n) = [e1(n) e2(n) · · · eL(n)]T

Gi(n) =

[s(n)∗ xi(n) s(n−1)∗xi(n−1) · · · s(n−L+1)∗xi(n−L+1)]

hi(n + 1) = hi(n)− µiGi(n)(GT(n)G(n))−1e(n) for i = 1, . . . ,M

Algorithm 1: F-X AP adaptive algorithm of order L for an SVF
using the direct matrix inversion.

exploited. As a conclusion, (18) can be rewritten as

GT(n)2δh(n + 1) = −2e(n), (20)

where e(n) is the L × 1 vector of the F-X a priori estimation
errors,

e(n) =
[

e1(n) e2(n) · · · eL(n)
]T
. (21)

By combining (14), (17), and (20), the following relation is
derived:

δh(n + 1) = −G(n)
(

GT(n)G(n)
)−1

e(n). (22)

By splitting the vector δh(n + 1) in its components, that is,

δh(n + 1) =
[

δhT
1 (n + 1) · · · δhT

M(n + 1)
]T

, (23)

and accordingly partitioning the matrix G(n) in submatrices
Gi(n) of congruent dimensions, the following set of equa-
tions is obtained:

δhi(n + 1) = −Gi(n)
(

GT(n)G(n)
)−1

e(n) (24)

for i = 1, . . . ,M. As a consequence, the updating relations for
the coefficients of each branch are given by

hi(n + 1) = hi(n)− µiGi(n)
(

GT(n)G(n)
)−1

e(n) (25)

for i = 1, . . . ,M, where µi is a parameter that controls both
the convergence rate and the stability of the F-X AP algo-
rithm. The L × L matrix GT(n)G(n) represents an estimate
of the filtered-X autocorrelation matrix of the signal formed
with products of couples of input samples, obtained using
the last L input vectors. The computation of its inverse is re-
quired at any time n.

Since this step is often a critical one, we can distinguish
the solution for the F-X AP algorithms of low orders, that is,
with L = 2, 3 from that for greater orders. In fact, for L = 2, 3,
even the direct inversion of the matrix is an affordable task.
The only necessary care in order to avoid possible numerical
instabilities is to add a diagonal matrix δI , where δ is a small
positive constant, to the matrix GT(n)G(n). The equations
employed for updating the coefficients and filtering the input
signal using SVFs are summarized in Algorithm 1.

A general and efficient solution which can be applied to
any order L of affine projections is derived by resorting to a
simpler and more stable estimate for the inverse of the matrix
GT(n)G(n). We introduce the vectors

x̃i(n) = s(n)∗













x(n)x(n− i + 1)
x(n− 1)x(n− i)

...
x(n− L + 1)x(n− i− L + 2)













(26)

for i = 1, . . . ,M, and the M × L matrix

X̃(n) =
[

x̃1(n) x̃2(n) · · · x̃M(n)
]T
. (27)

Then a recursive approximation of the GT(n)G(n) matrix is
given by

R(n) = λR(n− 1) + (1− λ)X̃T(n)X̃(n), (28)

where λ is a forgetting factor (0 < λ < 1) which determines
the temporal memory length in the estimation of the auto-
correlation matrix. The higher the forgetting factor, the more
insensitive to noise is the estimate. In practice, λ is always
taken close to 1. The recursive estimate can now be used in
the coefficient updating equation (25), where the computa-
tion of the inverse matrix is still required. To avoid such an
inversion, it is convenient to directly update the inverse ma-
trix R−1(n), as done for the recursive least square (RLS) algo-
rithm. We define the following matrices:

R0(n) = λR(n− 1), (29)

Rl(n) = Rl−1(n) + (1− λ)x̃l(n)x̃T
l (n) (30)

for l = 1, . . . ,M. Since, from (28),

R(n) = λR(n− 1) + (1− λ)
[

x̃1(n)x̃T
1 (n) + x̃2(n)x̃T

2 (n)

+ · · · + x̃M(n)x̃T
M(n)

]

,
(31)

it immediately follows that R(n) = RM(n). By using the ma-
trix inversion lemma [20], it is possible to derive from (30)
the following updating rule:

R−1
l (n) = R−1

l−1(n− 1)

−
R−1
l−1(n− 1)x̃l(n)x̃T

l (n)R−1
l−1(n− 1)

1/(1− λ) + x̃T
l (n)R−1

l−1(n− 1)x̃l(n)
.

(32)

These expressions can be written in a more compact form by
defining

kl(n) =
R−1
l−1(n− 1)x̃l(n)

1/(1− λ) + x̃T
l (n)R−1

l−1(n− 1)x̃l(n)
, (33)

P(n) = R−1(n), and Pl(n) = R−1
l (n). Therefore, P(n) =

PM(n) and P0(n) = (1/λ)P(n − 1). As a consequence, the
following recursive estimate for Pl(n) is derived:

Pl(n) = Pl−1(n)− kl(n)x̃T
l (n)Pl−1(n). (34)
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Initialization: P(−1) = δI, hi = 0 ∀i

y(n) =
∑M

i=1 hT
i (n)xi(n)

e j(n) = dp(n− j + 1) + s(n− j + 1)∗
∑M

i=1 hT
i (n)xi(n− j + 1)

for j = 1, . . . ,L

e(n) = [e1(n) e2(n) · · · eL(n)]T

Gi(n) =

[s(n)∗ xi(n) s(n− 1)∗ xi(n−1) · · · s(n−L+1)∗xi(n−L+1)]
P0(n) = (1/λ)P(n− 1)

kl(n) = Pl−1(n)x̃l(n)/(1/(1− λ) + x̃T
l (n)Pl−1(n)x̃l(n))

Pl(n) = Pl−1(n)− kl(n)x̃T
l (n)Pl−1(n),

for l = 1, . . . ,M

P(n) = PM(n)

hi(n + 1) = hi(n)− µiGi(n)P(n)e(n)

for i = 1, . . . ,M

Algorithm 2: Filtered-X AP adaptive algorithm of order L for an
SVF using the matrix inversion lemma.

Finally, by replacing in (25) (GT(n)G(n))−1 with the matrix
P(n) = PM(n), the following updating expression for the ith
branch of an SVF is obtained:

hi(n + 1) = hi(n)− µiGi(n)P(n)e(n) (35)

for i = 1, . . . ,M. The corresponding updating algorithm is
described in Algorithm 2. Its complexity is given by O(ML2 +
KL). Since O(K) = O(MN) and usually L < M, the number
of multiplications needed to implement SVFs equipped with
this adaptive AP algorithm is O(LMN), Therefore, its com-
plexity is of the order of L times that of the corresponding
LMS algorithm. More specifically, the complexity of the F-X
AP algorithm for a quadratic filter with M = N is O(LN2)
per sample, while the complexity of the F-X LMS algorithm
is O(N2), as also reported in [9]. On the other hand, for
high values of L, the F-X AP algorithms tend to behave as
the RLS algorithms with similar convergence rates and track-
ing capabilities. However, the complexity of RLS algorithms
for quadratic filters is O(N4) or O(N3) for their fast versions
[15, page 271]. In addition, it is worth noting that often even
small values of L, that is, L = 2, 3, are sufficient to obtain
remarkable convergence improvements with respect to the
F-X LMS algorithm. Moreover, while the F-X AP algorithm
can be applied to complete quadratic filters simply by setting
M = N , using a small number of channels M often permits to
obtain good adaptation performances with a reduced com-
putational complexity, as shown in the next Section. In fact,
with reference to these aspects, the implementation complex-
ity O(LMN) indicates a sort of tradeoff between the number
L of APs used and the number of active channels M in the
filter bank realization.

Finally, it is worth noting that it is easy to pass from the
algorithm for a homogeneous second-order Volterra filter to
that of a generic Volterra filter. The SVF structure can be
completed with the branches associated with the linear term
and the higher-order Volterra operators according to their di-

agonal representation. Each of these channels is then treated
by the algorithms of Tables 1 and 2 in a way similar to the
channels of the homogeneous second-order Volterra filter.

4. SIMULATION RESULTS

In this section, we present some simulation results obtained
with the F-X AP algorithms of Tables 1 and 2.

In the first set of simulations, we consider the same ex-
perimental conditions of [9, Section IV-A]. The source noise
is a logistic chaotic noise, that is, a second-order white and
predictable nonlinear process, generated with the recursive
law,

ξ(i + 1) = 4ξ(i)
(

1− ξ(i)
)

, (36)

where ξ(0) is a real number between 0 and 1 different from
k/4 with k = 0, 1, . . . , 4. The nonlinear process is then nor-
malized in order to have a unit signal power x(i) = ξ(i)/σξ .
The primary and secondary paths are modeled with the fol-
lowing FIR filters, respectively,

P(z) = z−5
− 0.3z−6 + 0.2z−7, (37)

S(z) = z−2 + 1.5z−3
− z−4. (38)

The system is identified with a second-order Volterra filter
with a linear part of memory length 10 and a quadratic part
of memory length 10 and 10 diagonals (M = 10). Figures
4 and 5 plot the ensemble average of the resulting mean
square error for 100 runs of the simulation system, using the
direct matrix inversion as in Algorithm 1 and the recursive
technique in Algorithm 2, respectively. The four curves re-
fer to different values of the affine projection order L. The
order L = 1 corresponds to a normalized LMS adaptation al-
gorithm, which is the same adaptation algorithm employed
in [9] apart from the normalization. In the experiments of
Figure 4, the step size was equal to 0.005. In the experiments
of Figure 5, the λ factor was equal to 0.9 and the step size
value was set to 0.0009 in order to obtain the same conver-
gence characteristics of the first set of experiments when the
affine projection order L equals 1. For higher orders of affine
projections, the improvement in the convergence behavior of
the algorithm is evident. Moreover, the adaptation curves of
Figure 5 indicate a slight but steady reduction of the asymp-
totic error for increasing values of L. This fact confirms the
reliability of the recursive approximation leading to the algo-
rithm of Algorithm 2.

In the second set of experiments, we simulate a sudden
change in the noise source and its propagation model and we
investigate the ability of the F-X AP algorithm to track the
noise conditions. We employ the same experimental condi-
tions of the first set of simulations, but after 100000 signal
samples we modify the primary path model according to the
following equation:

P(z) = z−5 + 0.3z−6
− 0.2z−7 (39)
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Figure 4: Adaptation curves for different orders of affine projec-
tions L using the method in Algorithm 1.
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Figure 5: Adaptation curves for different orders of affine projec-
tions L using the method in Algorithm 2.

and we use as input signal x̂(i) = x2(i)/2, where x(i) is
the normalized logistic noise of the previous experiments.
Figure 6 plots the resulting adaptation curves for different or-
ders of affine projections when the algorithm of Algorithm 2
is applied for the filter adaptation. Again, we can observe the
improvement in the convergence behavior determined by the
AP algorithm.

In the last set of experiments, we investigate the effects
of modeling an active noise controller as a multichannel
filter bank with a reduced number of channels. The noise
source is the logistic chaotic noise of the first set of exper-
iments. The primary and secondary paths are modeled as
in (37), (38), respectively. The system is identified with an
SVF with a linear part and a quadratic part, both of mem-
ory length 10. Figures 7 and 8 plot the ensemble average
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Figure 6: Adaptation curves with a sudden modification in the
noise conditions.
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Figure 7: Adaptation curves with different number of channels and
linear primary path.

of the resulting mean square error for 100 runs of the sim-
ulation system. The algorithm of Algorithm 2 was applied
with an affine projection order L set to 4 and with λ = 0.9
and µ = 0.0005.The curves in Figure 7 refer to the lin-
ear controller and the quadratic controller with M = 2
and M = 4. The convergence improvement with respect
to the linear case can be easily appreciated, especially for
M = 2. It has been experimentally verified that the curves
for 4 ≤ M ≤ 10 converge with a progressively slower be-
havior to about the residual error of the curve for M = 2.
Therefore, using the full model, as done in [9], does not
allow any improvement. It has been also observed that us-
ing a number L of APs equal to 2 gives, as expected, the
same global performances, but with a reduced convergence
speed.
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Figure 8: Adaptation curves with different number of channels and
nonlinear primary path.

To complete this set of experiments, the primary path has
been then replaced by the following second-order Volterra
filter:

y(n) = x(n− 5)− 0.3x(n− 6) + 0.2x(n− 7)

+ 0.5x(n− 5)x(n− 5)− 0.1x(n− 6)x(n− 6)

+ 0.1x(n− 7)x(n− 7)− 0.2x(n− 5)x(n− 6)

+ 0.05x(n− 6)x(n− 7)− 0.02x(n− 7)x(n− 8)

+ 0.1x(n− 5)x(n− 7)− 0.02x(n− 6)x(n− 8)

+ 0.01x(n− 7)x(n− 9) + 0.5x(n− 5)x(n− 8)

− 0.1x(n− 6)x(n− 9) + 0.1x(n− 7)x(n− 10)

− 0.2x(n− 5)x(n− 9) + 0.05x(n− 6)x(n− 10)

− 0.02x(n− 7)x(n− 11) + 0.1x(n− 5)x(n− 10)

− 0.02x(n− 6)x(n− 11) + 0.01x(n− 7)x(n− 12)

(40)

and all the simulations have been repeated with the same
parameters. The results obtained for different numbers of
branches M of the quadratic part of the SVF are shown in
Figure 8. Of course, the best approximation result is now that
for M = 6, since in this case the SVF exactly corresponds to
the system to be modeled. We observe that when M = 2,
the resulting SVF is inadequate to model the noise gener-
ation system, while for M = 4 a better approximation is
obtained. This case can be considered as a compromise in
terms of modeling accuracy, speed of convergence, and com-
putational cost. From Figure 8, it can be noted again that
overdimensioning the model using a complete second-order
Volterra filter, M = 10, does not offer particular advantages.
In fact, this filter is able to model the noise generation sys-
tem with slightly reduced accuracy and convergence speed at
an increased computational cost with respect to the reference
case M = 6.

5. CONCLUSIONS

In practical applications, methods for active noise control
have often to deal with nonlinear effects. In such environ-
ments, nonlinear controllers based on Volterra filters im-
plemented in the form of multichannel filter banks can be
usefully exploited. One of the crucial aspects is the deriva-
tion of efficient adaptation algorithms. Usually, the so-called
filtered-X LMS or NLMS algorithms are used. In this paper
we proposed the use of the affine projection technique, and
we derived in detail the so-called filtered-X AP algorithms for
homogeneous quadratic filters. According to the multichan-
nel approach, these derivations can be easily extended to a
generic Volterra filter. The extensive experiments we report
confirm that the AP technique offers better convergence and
tracking capabilities than the classical LMS and NLMS algo-
rithms with a limited increase of the computational complex-
ity.
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