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We report variational Monte Carlo calculations for the spin- 1
2 Heisenberg model on the kagome lattice in the

presence of both nearest-neighbor J1 and next-nearest-neighbor J2 antiferromagnetic superexchange couplings.
Our approach is based upon Gutzwiller projected fermionic states that represent a flexible tool to describe
quantum spin liquids with different properties (e.g., gapless and gapped). We show that, on finite clusters, a
gapped Z2 spin liquid can be stabilized in the presence of a finite J2 superexchange, with a substantial energy
gain with respect to the gapless U (1) Dirac spin liquid. However, this energy gain vanishes in the thermodynamic
limit, implying that, at least within this approach, the U (1) Dirac spin liquid remains stable in a relatively large
region of the phase diagram. For J2/J1 � 0.3, we find that a magnetically ordered state with q = 0 overcomes
the magnetically disordered wave functions, suggesting the end of the putative gapless spin-liquid phase.
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Introduction. In modern condensed matter physics, frus-
trated magnets provide us a window enabling a glimpse of
the vast and intriguing world of physics beyond the Landau
symmetry-breaking and Fermi-liquid theories. One of the
promising paths towards acquiring an understanding of this
world is through the study of simple microscopic models. In
this respect, the spin- 1

2 Heisenberg antiferromagnetic model
on the highly frustrated kagome lattice holds a distinguished
position by virtue of its promise in hosting a rich and exotic
phase diagram, which is still attracting substantial attention.
However, a solution of this problem still proves to be an
onerous task, and indeed many studies in the past have
emphasized the difficulty in reaching a final understanding of
its ground-state and low-energy properties [1–6]. A multitude
of different ground states have been proposed, depending
upon the approximate numerical and analytical techniques
employed. A fully gapped Z2 topological spin-liquid ground
state has been claimed for using density-matrix renormal-
ization group (DMRG) [7–11], pseudofermion functional
renormalization group [12], and Schwinger boson mean-field
calculations [13–16]. On the other hand, a gapless (algebraic)
and fully symmetric U (1) Dirac spin liquid has been proposed
as the ground state and widely studied using a variational
Monte Carlo approach [17–26]. In addition, valence-bond
crystals of different unit cell sizes and symmetries have been
also suggested from other techniques [27–37]. The coupled-
cluster method suggested a q = 0 (uniform) state [38]. Finally,
extending the construction of tensor network Ansätze of
gapped Z2 spin liquids [39], a recent calculation, based upon
the so-called projected entangled simplex states that preserve
lattice symmetries, gave remarkably accurate energies [40].
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In this Rapid Communication, we focus on the spin- 1
2

Heisenberg antiferromagnet in the presence of both nearest-
neighbor (J1) and next-nearest-neighbor (J2) antiferromag-
netic exchange couplings. Recent, state-of-the-art pseud-
ofermion functional renormalization group studies [12] have
claimed for a quantum paramagnetic ground state for 0 �
J2/J1 � 0.7, with the J2 = 0 point corroborating a spin liquid
with a small correlation length of about one lattice spacing,
which is found to stay fairly similar as J2 is turned on. This is
followed by a region hosting a q = 0 magnetically ordered
phase, i.e., for 0.7 � J2/J1 � 1.5. Finally, a nonmagnetic
phase prevails again for J2 � 1.5, but its nature is unclear.
On the other hand, studies using projected Schwinger boson
wave functions have suggested that, at least on a small
36-site cluster, the q = 0 magnetically ordered state may be
defeated by a topological Z2 spin liquid for J2/J1 � 1 [41].
Similar conclusions of a topological Z2 state are obtained for
J2/J1 = 0.1 and 0.15, by a measurement of the topological
entanglement entropy using DMRG [10]. More recent DMRG
calculations pointed out that the transition from the quantum
spin liquid to the q = 0 state may take place for relatively
small values of J2/J1 [42,43]. In this regard, the issue of
having magnetic order in the ground state of the J1-J2 model
is still controversial and, so far, only few investigations have
been done.

Here, we address the J1-J2 Heisenberg model within the
realm of Gutzwiller projected Abrikosov fermion wave func-
tions, by using state-of-the-art implementation of a variational
Monte Carlo technique. In addition, we also consider the
q = 0 magnetic state, by using a Jastrow wave function, which
represents an accurate way of describing ordered phases [44].
For J2 = 0, within the class of projected fermionic wave
functions, there is strong evidence in support of a gapless
scenario described by an algebraic U (1) Dirac spin liquid.
Indeed, explicit numerical calculations have shown the U (1)
Dirac spin liquid to be stable with respect to dimerizing
into all known valence-bond crystal phases [18,20,21,23]. In
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addition, it was shown that, within this class of states, all the
fully symmetric, gapped Z2 spin liquids have a higher energy
compared to the U (1) Dirac spin liquid [22,41,45–47]. Only
a minor energy gain can be obtained by fully relaxing all the
variational freedom of the wave function, namely, by a direct
optimization of the pairing function; however, this energy
gain decreases upon increasing the cluster size [48]. Most
importantly, it was shown that upon application of a couple of
Lanczos steps on the U (1) Dirac spin liquid, very competitive
energies can be achieved, still retaining a gapless state [24,25].
So far, a full treatment of the J1-J2 antiferromagnetic model
has not been attempted within this approach.

Here, we compute the variational energies of both the S = 0
ground state and the first S = 2 excitation, by considering
spinon excitations around the Dirac nodes. We show that the
best variational wave function is gapped for all the clusters
that we can assess by our numerical technique. However, the
energy difference between the gapped Z2 state and the gapless
U (1) state decreases with increasing the size of the cluster
and vanishes in the thermodynamic limit for all the values of
J2 that we have considered, i.e., J2/J1 � 0.5. Similarly, also
the S = 2 spin gap extrapolates to zero in the thermodynamic
limit. For J2/J1 � 0.3, the magnetic Jastrow state overcomes
the spin-liquid ones (both gapped and gapless), indicating that
these kind of magnetically disordered states are no longer
competitive. Here, we do not consider other quantum states,
with topological or valence-bond order.

Model and Method. The Hamiltonian for the spin- 1
2

Heisenberg J1-J2 antiferromagnetic model is

H = J1

∑
〈ij〉

Si · Sj + J2

∑
〈〈ij〉〉

Si · Sj , (1)

where both J1 and J2 > 0; 〈ij 〉 and 〈〈ij 〉〉 denote sums over
nearest-neighbor and next-nearest-neighbor pairs of sites,
respectively. The Si are spin- 1

2 operators at each site i. All
energies will be given in units of J1.

The variational wave function is constructed by considering
a mean-field Hamiltonian that contains hopping and pairing.
In particular, here we will focus on the so-called Z2[0,π ]β
state, as defined in Ref. [45]:

HMF{Z2[0,π ]β}
= χ1

∑
〈ij〉,α

sij c
†
i,αcj,α

+
∑
〈〈ij〉〉

νij

{
χ2

∑
α

c
†
i,αcj,α + �2(c†i,↑c

†
j,↓ + H.c.)

}

+
∑

i

{
μ

∑
α

c
†
i,αci,α + ζR(c†i,↑c

†
i,↓ + H.c.)

}
, (2)

where sij and νij encode the sign structure of the first and
second nearest-neighbor bonds, respectively, as shown in
Fig. 1. c

†
i,α (ci,α) are the creation (annihilation) fermionic

spinon operators at site i with spin index α = ↑,↓. The real
nearest-neighbor hopping (χ1) will be taken as a reference,
and hence set to unity hereafter. This Ansatz is particularly
interesting since it represents the only way of opening a gap
in the U (1) Dirac state, without breaking lattice symmetries.

FIG. 1. The Z2[0,π ]β spin-liquid Ansatz; black (gray) bonds
denote nearest-neighbor real hopping (next-nearest-neighbor real
hopping and real spinon pairing) terms; solid (dashed) black bonds
have sij = 1 (−1) and solid (dashed) gray bonds have νij = 1 (−1)
[see Eq. (2)].

Indeed, whenever pairing terms (�2 and ζR) vanish, the
mean-field Hamiltonian reduces to the one defining the gapless
U (1) spin liquid. Given the extreme accuracy of the latter state,
the Z2[0,π ]β Ansatz has been considered for describing the
topological liquid obtained by DMRG [7,8].

Other possible (gapless) Z2 Ansätze, suggested by the
classification of Ref. [45], like the so-called Z2[0,π ]α state,
have also been studied by us, but they do not present any
significant improvement with respect to the U (1) Ansatz.

When a particle-hole transformation is performed on down
electrons:

c
†
i,↓ → ci,↓, (3)

c
†
i,↑ → c

†
i,↑, (4)

the mean-field Hamiltonian (2) commutes with the total
number of particles (while it does not conserve the total spin
along the z axis). Therefore, the noncorrelated state is defined
by filling suitable single-particle orbitals. Boundary conditions
should be taken in order to have a unique state (i.e., filling all
orbitals in a shell with the same mean-field energy). Here, we
consider states with S = 0 and S = 2, both having k = 0; these
are particularly simple to handle, since they correspond to a
single “Slater” determinant constructed by filling the lowest
single-particle orbitals, i.e., |	MF(χ2,�2,μ,ζR)〉.

We would like to stress that the particle-hole transformation
does not change the physical content of the model. Indeed,
after this canonical transformation, the local Hilbert space of
the spin model is changed into empty and doubly occupied
sites (i.e., |↓〉 → |0〉 and |↑〉 → |↑↓〉), but the corresponding
matrix elements of any operator are the same as in the original
representation.

Then, in order to have a bona fide variational state for the
spin model, the Gutzwiller projection PG = ∏

i(1 − ni,↑ni,↓)
must be applied, enforcing the one fermion per site constraint,
to the uncorrelated state:

|	Z2[0,π]β (χ2,�2,μ,ζR)〉 = PG|	MF(χ2,�2,μ,ζR)〉. (5)

On the contrary, a simple and accurate variational wave
function to describe magnetically ordered phases can be

020402-2



RAPID COMMUNICATIONS

SPIN- 1
2 HEISENBERG J1-J2 . . . PHYSICAL REVIEW B 91, 020402(R) (2015)

defined in terms of the original spins as [44]

|	Magnetic〉 = JzPSz
tot=0|SW〉, (6)

where |SW〉 is a spin wave state, described by a wave vector
q and a phase shift η (one for each site in the unit cell):

|SW〉 =
∏

i

(|↓〉i + eı(q·Ri+ηi )|↑〉i).

|SW〉 is equivalent to a classical state where each spin points in
a given direction in the XY plane. PSz

tot=0 is the projector onto
the subspace with Sz = 0. Quantum fluctuations are included
through the long-range Jastrow factor:

Jz = exp

⎛
⎝1

2

∑
ij

uijS
z
i S

z
j

⎞
⎠ , (7)

where, in a translationally invariant system, the pseudopo-
tential uij depends on the distance |Ri − Rj | of two sites.
Here, we consider the case with q = 0, the three spins in the
unit cell forming 120◦ with each other. All the independent
parameters in the pseudopotential are optimized via Monte
Carlo simulations.

Results. Our variational calculations are performed on
square clusters (i.e., 3 × L × L) with periodic boundaries in
the spin Hamiltonian of Eq. (1). Let us start by a comparison
between spin-liquid and magnetic states. In Fig. 2, we show the
energy per site for different cluster sizes (i.e., L = 4, 8, and 12)
for both the best gapped spin liquid and the gapless one, as well
as for the optimized magnetic state with q = 0. In the presence
of the next-nearest-neighbor coupling J2, on small systems
there is a finite energy gain in stabilizing spinon pairing.
Moreover, this energy gain increases monotonically with J2.
The simple magnetic state, which is clearly unfavorable for
small J2, overcomes these spin-liquid states for J2/J1 � 0.3.
Whether a different kind of spin-liquid state or a valence-bond
crystal may in turn overcome this magnetic state or not is an
important problem that, however, we do not discuss here. We
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M

FIG. 2. (Color online) Energies per site as a function of J2/J1 for
various competing phases are shown on different cluster sizes. The
point M at J2/J1 = 0.3 marks the level crossing between spin-liquid
(SL) and q = 0 magnetically ordered (MO) phases.

only want to mention that, unfortunately, the topological state
proposed in Ref. [41] cannot be considered on large sizes, since
a computation of permanents is required, so it is impossible
to accurately estimate size effects. However, we would like
to mention that recent DMRG calculations [42,43] pointed
out that a magnetic state with q = 0 is obtained for small
values of J2/J1, in rather good agreement with our variational
calculations.

In the following we restrict ourself to the region with small
J2/J1, e.g., mainly J2/J1 < 0.3, but also some slightly larger
values, inside the putative magnetic region. The actual energy
gain due to spinon pairing is reported in Fig. 3(a) for three
different values of L. We obtain that on small systems (i.e.,
48- and 192-site clusters) a small energy gain is obtained for
all values of J2, down to J2 = 0. Instead, for larger sizes,
a finite next-nearest-neighbor coupling is needed to obtain a
nonvanishing energy gain due to spinon pairing. For 432 sites,
the best variational wave function is given by the U (1) Dirac
state for J2/J1 � 0.15, as previously reported by us [22]. By
contrast, a sizable gain is obtained for larger values of J2/J1.
The critical value of J2/J1, from which a nonzero energy gain
is obtained, increases with increasing cluster size: for 768
and 1200 sites we obtain J2/J1 � 0.18 and 0.20, respectively.
However, the size scaling of this quantity clearly indicates
that the gain vanishes in the thermodynamic limit, for all the
values of the next-nearest-neighbor superexchange coupling
considered here [see Fig. 3(b)]. By considering both S = 0 and
S = 2 variational states, we can assess the spin gap. Also for
this quantity we obtain similar results [see Figs. 3(c) and 3(d)].
On finite clusters, the gap is finite and increases with J2/J1 but
goes to zero when L → ∞, for all values of J2/J1 considered
here.

In order to better clarify the important changes of the energy
landscape as a function of the cluster size, we report in Fig. 4
the variational energy of theZ2[0,π ]β state for different values
of the pairing strength �2 (all the other variational parameters
being optimized for the fixed value of �2) for L = 4, 8, and
12 and J2/J1 = 0.15. The trend is clear: Both the optimal
value of �2 and the energy gain with respect to �2 = 0 get
systematically reduced, and eventually, for large enough size
of the cluster, the minimal energy is obtained for the gapless
U (1) Dirac state (with �2 = 0).

These results shows that, at least within the Abrikosov
fermion approach, the gapless U (1) Dirac state is remarkably
stable, not only for a particular point of the Heisenberg model
(i.e., J2 = 0) but in an entire region of the phase diagram.
Moreover, our results suggest that the possible stabilization of
a Z2 topological spin liquid found by DMRG calculations in
the presence of a small J2/J1 [10] may possibly be due to the
finiteness of the cluster.

Conclusions. In summary, we have shown that the gapless
spin-liquid state, described by the U (1) Ansatz of Ref. [18], is
remarkably stable also when a next-nearest-neighbor antifer-
romagnetic coupling J2 is considered in the Heisenberg model.
Interestingly, on finite clusters, a notable energy gain may be
obtained by allowing spinon pairing that opens a gap in the
mean-field spectrum and lowers the gauge structure down to
Z2; however, we identify this to be an artifact due to finite-size
effects, since the energy gain vanishes in the thermodynamic
limit, giving back a state with Dirac nodes and, therefore,
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FIG. 3. (Color online) (a) The gain in the energy per site of the Z2[0,π ]β state relative to the U (1) Dirac spin liquid, for different cluster
sizes, as a function of J2/J1 is shown. On the 48-, and 192-site clusters the gain remains finite down to J2 = 0, whereas for the 432-site cluster
it is zero (within error bars) for J2/J1 < 0.15. (b) The corresponding (linear) finite-size scaling of the energy gain per site is shown. (c) The
S = 2 spin gap of the Z2[0,π ]β Ansatz for different clusters, as a function of J2/J1 is shown. (d) The corresponding (linear) finite-size scaling
of the S = 2 spin gap is shown.
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FIG. 4. (Color online) Energy per site of the Z2[0,π ]β state as a
function of the fermionic pairing �2, which leads to the lowering of
the gauge structure from U (1) to Z2 for J2/J1 = 0.15 and L = 4 [left
panel (a)], L = 8 [middle panel (b)], and L = 12 [right panel (c)].

gapless excitations. It is worth mentioning that very recent
state-of-the-art DMRG calculations also provide an inkling of
a gapless ground state [49].

Finally, we would like to remark that, performing the
Lanczos steps procedure that has been used previously [24,25],
we have evidence that the U (1) Dirac state gives a perfectly
stable and linear convergence to the ground state upon
performing a zero-variance extrapolation. This implies a large
overlap and a close connection of the U (1) Dirac state to the
true ground state, similar to what has been obtained for J2 = 0.
On the contrary, upon starting from the gapped Z2[0,π ]β
wave function, we have, for both S = 0 and S = 2 states,
large statistical fluctuations and consequently a large variance
of energy, especially at the second Lanczos step level. Most
importantly, preliminary calculations show that the variance of
energy either remains constant (for S = 0) or even increases
(for S = 2) at the second Lanczos step compared to the first
Lanczos step [50]. These facts may indicate that this gapped
wave function may have a considerable overlap with excited
states, thus implying that it is not a faithful representation of
the true ground state.
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