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Abstract— Indoor Air Quality monitoring is an essential
ingredient of intelligent buildings. The release of various
airborne contaminants into the buildings, compromises the
health and safety of occupants. Therefore, early contaminant
detection is of paramount importance for the timely activation
of proper contingency plans in order to minimize the impact of
contaminants on occupants health. The objective of this work
is to enhance the performance of a distributed contaminant
detection methodology, in terms of the minimum detectable
contaminant release rates, by considering the joint problem
of partitioning selection and observer gain design. Towards
this direction, a detectability analysis is performed to derive
appropriate conditions for the minimum guaranteed detectable
contaminant release rate for specific partitioning configuration
and observer gains. The derived detectability conditions are
then exploited to formulate and solve an optimization problem
for jointly selecting the partitioning configuration and observer
gains that yield the best contaminant detection performance.

I. INTRODUCTION

Intelligent buildings improve the comfort and productivity
of occupants and ensure their health and safety by monitoring
and controlling the building environment [1]. Indoor Air
Quality (IAQ) has been identified as one of the three most
important factors (apart from visual and thermal comfort)
that influence the quality of occupants’ life [2]. However,
IAQ is often at risk by various airborne contaminants [3].
Given these safety-compromising conditions, the prompt
detection of contaminant events and the isolation of the
contaminant source location are of paramount importance
to ensure people’s safety.

A building can be considered as a system of intercon-
nected elements (zones) interacting through airflows, which
can potentially transport air contaminants between them.
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The contaminant existence in the system can be modeled
as a fault, enabling the use of fault diagnosis tools for
detecting and isolating a contaminant source. In our previous
works [4], [5], we have developed both a centralized and
a distributed state-space model for describing the conta-
minant dispersion in the building interior along with the
development of Contaminant Detection and Isolation (CDI)
algorithms. The building partitioning problem has also been
considered in [5] for defining the individual subsystems
for the distributed CDI algorithms. The partitioning appro-
ach in [5] develops a mathematical programming approach
that groups the building zones into individual subsystems
while minimizes the interconnection uncertainty (in terms
of airflow influence) between the contaminant detection
agents and creates partitions of similar size. In the areas
of distributed system monitoring and control approaches,
considering system partitioning from the system design phase
has been shown to decrease the complexity and improve the
performance of the approach [6]–[8].

In this work, we aim at improving the contaminant de-
tection performance through the selection of the best par-
titioning solution that enables the detection of the smallest
contaminant release rates. The influence of the subsystem
configuration to the possible detectable contaminant release
rate is defined based on the detectability analysis of the CDI
approach. Specifically, the analysis shows the effects of a
contaminant source on the residuals and adaptive thresholds
and expresses the contaminant detection capabilities, in terms
of minimum detectable release rate and observer gains [9].
In order to enable the comparison of all possible partitioning
solutions, an optimization algorithm is developed for ex-
tracting the observer gains that give the minimum detectable
contaminant release rate in every zone, similar to [10], where
an optimization methodology was developed for the design of
a centralized observer-based, sensor fault detection scheme
for a class of nonlinear systems. The optimization algorithm
proposed in this work considers two different objectives:
(a) minimize the sum of the contaminant release rates of
the zones with the worst detection performance in each
subsystem (among the zones of each subsystem), and (b)
minimize the sum of the detectable contaminant release rates
in all building zones.

In summary, the main contributions of this work are:
1) The modeling of the impact of partitioning on the

ability of a CDI scheme to detect contaminants.
2) The formulation of a Semi-Definite Programming

(SDP) optimization problem for the selection of ob-



server gains for a specific system partitioning.
3) The selection of the partitioning solution that has the

best contaminant detection performance.
The paper is organized as follows. Section II introduces

the system model and the problem of interest. Section III
describes a distributed contaminant detection scheme, while
Section IV performs the detectability analysis which quanti-
fies the lowest detectable contaminant release rate for a given
partitioning solution. Section V develops an optimization
approach for extracting the best observer gains and partitio-
ning solution. Section VI examines the effectiveness of the
proposed approach for a real building model, while Section
VII provides concluding remarks and future directions.

Notation: The symbol | · | denotes the absolute value
for scalars, the Euclidean norm (`2-norm) for matrices and
vectors, and the cardinality for sets, if not explicitly stated
otherwise. Sets are represented with calligraphic letters and
the identity matrix with the symbol I.

II. SYSTEM MODEL

Given a n-zone building, a matrix A∈Rn×n with elements
a(i, j) can be used to describe the dependencies between the
zones, mainly as a result of the airflows between zones. An
element a(i, j) is non zero only if there is a leakage path (door,
window, HVAC ducts, etc.) between zone i and zone j. The
distributed model describing the contaminant dispersion in
each of K interconnected subsystems ΣI , I ∈K = [1, . . . ,K],
with nI zones resulting by a system partitioning is:

ΣI : ẋI(t) = (AI +∆AI)xI(t)+Q−1
I BIuI(t)+Q−1

I GIgI(t)

+(HI +∆HI)zI(t), (1)
yI(t) =CIxI(t)+wI(t), (2)

where xI ∈ RnI represents the contaminant concentration of
all building zones in ΣI (x( j)

I ∈ R, denotes the concentration
in the j-th zone of ΣI), variables uI ∈ RpI , represent the
controllable inputs in the form of doors, windows, fans
and air handling units, while BI ∈ BnI×pI is a zone index
matrix concerning their locations in ΣI , with B = {0,1}.
Interconnection variables zI ∈ RlI refer to the state of the
neighboring subsystems having a direct connection with ΣI
i.e. zI is made up of states of xI that belongs to subsystems
different from ΣI . The local contaminant source and its
location are represented by terms gI ∈ RnI and GI ∈ BnI×nI

respectively. Note that QI ∈RnI×nI is a diagonal matrix, i.e.
QI = diag(q(1)I ,q(2)I , . . . ,q(nI)

I ) where q( j)
I is the volume of

the j-th zone in ΣI . It is also worth noting that the existence
of a maximum of one contaminant source per subsystem
at a time is considered while the term gI(t), is equivalent
to process faults that impact the normal system operation.
Vector yI ∈RmI in (2), represents the contaminant concentra-
tion as measured by the sensors monitoring ΣI , CI ∈ BmI×nI

is a zone index matrix specifying the sensors’ locations in
ΣI and wI ∈ RmI represents an additive measurement noise.
Finally matrices AI ,HI are sub-matrices of matrix A while
matrices ∆AI and ∆HI collectively account for the presence
of modeling and interconnection uncertainty of ΣI as a result

of disturbances due to variable wind speed, wind direction
and leakage openings.

III. DISTRIBUTED CONTAMINANT DETECTION

In this section, a methodology for detecting multiple
contaminant sources is presented. For each subsystem ΣI ,
a contaminant detector agent denoted by DI is responsible
for detecting a possible contaminant source. The agents are
allowed to exchange measurement information with their
neighboring agents, defined as the agents that share physical
interconnections represented by the terms HI ,zI . The design
of contaminant detectors (DI) relies on comparing residual
signals to corresponding adaptive thresholds.

A. Contaminant Event Detection

1) Residual Generation: The estimation model of DI is
computed by selecting the following observer:

˙̂xI(t)=AI x̂I(t)+Q−1
I BIuI(t)+HIyzI (t)+LI (yI(t)−CI x̂I(t)) , (3)

where x̂I ∈ RnI is the estimation of xI with x̂I(0) = 0,
LI ∈ RnI×mI is the observer gain matrix (the design of LI
will be discussed in Section V) and yzI (t)= zI(t)+wzI (t) is
the transmitted sensor information, where wzI ∈ R`I is the
corresponding measurement noise vector.

The k-th residual of the detector DI , is denoted by ε
(k)
yI ∈R

and is defined as:

ε
(k)
yI (t)=C(k)

I εxI (t)+w(k)
I (t), (4)

where C(k)
I is the k-th row of CI , k ∈ {1, . . . ,mI} and vector

εxI (t),xI(t)−x̂I(t) represent the state estimation error.
2) Computation of Adaptive Thresholds: The k-th adap-

tive threshold of DI , denoted by ε
(k)
yI
(t), is designed to

consider modeling uncertainties ∆AI , ∆HI and sensor noise
wI ,wzI to ensure robustness of the detector DI . The modeling
uncertainty and the noise corrupting the measurements of
each sensor, are assumed unknown but uniformly bounded
for all I ∈ {1, . . . ,K}, j ∈ {1, . . . , `I} and k ∈ {1, . . . ,mI}:

|∆AI | ≤ ∆AI , |∆HI | ≤ ∆HI , (5)∣∣∣w(k)
I (t)

∣∣∣≤ w(k)
I

∣∣∣wz
( j)
I (t)

∣∣∣≤ wz
( j)
I . (6)

Under healthy conditions (i.e., gI(t) = 0), the state estima-
tion error is denoted by:

ε̇xI (t)=ALI εxI (t)+∆HIzI(t)+∆AIxI(t)−HIwzI (t)−LIwI , (7)

where, ALI = AI−LICI and the bound of its solution can be
calculated as:

εxI (t), E1(t)+
∫ t

0
ρIe−(ξI−ρI∆AI)(t−τ)E1(τ)dτ, (8)

E1(t)=ρIe−ξI txI+
ρI

ξI

((
|HI |+∆HI

)
wzI + |LI |wI

)(
1− e−ξI t

)
+
∫ t

0
ρIe−ξI(t−τ)

(
∆HI |yzI (τ)|+∆AI |x̂I(τ)|

)
dτ,

(9)



where xI ∈ R is a known bound satisfying |εxI (0)| ≤ xI

and ρI , ξI are positive constants selected such that
∣∣∣eALI t

∣∣∣≤
ρIe−ξI t , for all t and ξI > ρI∆AI .

The k-th adaptive threshold of the detector DI bounding
the residual under healthy conditions is described by:

ε
(k)
yI
(t) =

α
(k)
I

ζ
(k)
I

((
|HI |+∆HI

)
wzI + |LI |wI

)(
1− e−ζ

(k)
I t
)

+α
(k)
I e−ζ

(k)
I txI +

∫ t

0
α
(k)
I e−ζ

(k)
I (t−τ)

(
∆HI |yzI (τ)|

+∆AI |x̂I(τ)|+∆AIεxI (τ)
)

dτ +w(k)
I , (10)

where α
(k)
I , ζ

(k)
I are positive constants chosen such that∣∣∣C(k)

I eALI t
∣∣∣ ≤ α

(k)
I e−ζ

(k)
I t , for all t. A detailed description of

the bound derivation process can be found in [5]. The k-th
adaptive threshold in (10) of the detector DI is designed to
bound the residual under healthy conditions such that:

|ε(k)yI (t)| ≤ ε
(k)
yI
(t). (11)

3) Detection Decision Logic: If there is a time instant t
at which for at least one k ∈ {1, . . . ,mI}∣∣∣ε(k)yI (t)

∣∣∣> ε
(k)
yI
(t), (12)

then the detector DI infers the presence of a contaminant
source in subsystem ΣI , I ∈ {1, . . . ,K}.

IV. DETECTABILITY ANALYSIS

In the previous section, it was shown that if the residual
error exceeds the threshold then a contaminant source is
present. In this section, we derive the conditions which must
be satisfied in order for a contaminant to be detected in a
zone. The detectability analysis aims to isolate the varia-
bles that affect the contaminant detection performance [9].
Specifically, the goal is to assess and quantify the impact
of partitioning solutions through the detectability conditions.
This information will later be used in order to formulate an
optimization algorithm to define the best possible partitioning
solution and the observer gains in order to ensure high
contaminant detection performance.

First, let us define the time instant TR as the time that a
contaminant is released anywhere in the system:

TR = min
t

⋃
I∈{1,...,K}

{
min

t
{t : |gI(t)|> 0}

}
. (13)

For t ≥ TR, the state vector xI and the state estimation
vector provided by the observer described in (3), can be se-
parated into healthy and faulty dynamics as xI(t) = xI H(t)+
xI F(t) and x̂I(t) = x̂I H(t) + x̂I F(t) respectively, where xI H
and x̂I H correspond to the state and state estimation vectors
assuming gI(t) = 0. In turn, the estimation error for t ≥ TR
can be written as εxI (t) = εxI H (t)+ εxI F (t) where εxI H (t) is
the solution of (7), where xI(t) = xI H(t). Using (4), the k-th
residual of the detector DI for t ≥ TR can be expressed as:

ε
(k)
yI (t)=C(k)

I (εxI H (t)+εxI F (t))+w(k)
I =ε

(k)
yI H (t)+ε

(k)
yI F (t) (14)

where the term ε
(k)
yI F (t) represents the effects of a contaminant

release on the residual and is given by:

ε
(k)
yI F (t)=

t∫
TR

C(k)
I eALI (t−τ)

(
∆AIxI F(τ)+Q−1

I GIgI(τ)
)

dτ (15)

The k-th adaptive threshold in (10) is affected by the
contaminant release in the system and for t ≥ TR can be
expressed as ε

(k)
yI
(t) = ε

(k)
yI H

(t)+ ε
(k)
yI F

(t) where ε
(k)
yI H

is given
using εxI = εxI H and x̂I = x̂I H in (10). It is important to men-
tion that ε

(k)
yI H

is a time-varying threshold bounding the effects
of modeling uncertainties and noise, |ε(k)yI H (t)| ≤ ε

(k)
yI H

(t) for
all t. Finally, the effect of the contaminant release on the k-th
threshold of detector DI is derived as:

ε
(k)
yI F

(t) =
t∫

TR

a(k)I e−ζ
(k)
I (t−τ)

∆AI (εxI F (τ)+ |x̂I F(τ)|)dτ. (16)

Remark 4.1: If there is zero uncertainty (i.e., ∆AI =
∆HI = 0) then the threshold in (10) is not affected by the
contaminant release (i.e., ε

(k)
yI F

(t) = 0).
Theorem 4.2: If there exist a time instant t∗ > TR such

that the contaminant source gI satisfies the condition∣∣∣ε(k)yI F (t
∗)
∣∣∣− ε

(k)
yI F

(t∗)> 2ε
(k)
yI H

(t∗), (17)

for at least one k ∈ [1, . . . ,mI ], the presence of contaminant
in subsystem ΣI is guaranteed to be detected.

Proof: Using (14), the following bound can be derived as:∣∣∣ε(k)yI (t∗)
∣∣∣≥ ∣∣∣ε(k)yI F (t

∗)
∣∣∣− ∣∣∣ε(k)yI H (t

∗)
∣∣∣ . (18)

Given that |ε(k)yI H | ≤ ε
(k)
yI H

, we obtain∣∣∣ε(k)yI (t∗)
∣∣∣≥ ∣∣∣ε(k)yI F (t

∗)
∣∣∣− ε

(k)
yI H

(t∗). (19)

Combining (17) and (19) yields∣∣∣ε(k)yI (t∗)
∣∣∣>2ε

(k)
yI H

(t∗)+ ε
(k)
yI F

(t∗)− ε
(k)
yI H

(t∗) = ε
(k)
yI
(t∗),

which based on (12) ensures that the presence of contaminant
in ΣI is detected at time instant t∗.

A. Partitioning Effect on Detection Performance

The detectability bound presented in (17), characterizes
the ability of a detector DI to detect the presence of a
contaminant in each zone of ΣI . This ability is expressed
by the relationship of the contaminant gI(t) with the com-
puted adaptive thresholds. It is important to note that the
detectable contaminants are expressed considering worst-
case detectability conditions. However, it does not provide a
clear indication on how the bound is affected by the system
partitioning, since for each selected partitioning solution,
variable selections (i.e., observer gains and positive constants
ζI ,αI used in the threshold calculation) change, to follow
stability and convergence constraint satisfiability.

Towards simplification of the detectability bound the fol-
lowing assumptions have been considered:



1) There is a maximum of one contaminant source (e.g.,
in ΣI) with constant release rate indicated by g(k)I ,

2) All states are measurable CI = I,
3) There is zero modeling uncertainty ∆AI = 0,∆HI = 0

and zero initial concentration xI(0) = 0.
Constant contaminant source and zero modeling uncer-

tainty assumptions allow to extract the solution of the left
part of inequality (17) and the detectability bound for the
k-th zone of subsystem ΣI is simplified to:

g(k)I >
2ε

(k)
yI H

(t)∣∣∣C(k)
I eALI tA−1

LI

(
e−ALI TR − e−ALI t

)
QI
−1

GI(k)

∣∣∣ , (20)

where GI(k) is the k-th column of matrix GI .
The measurable states allow the observer gain matrix LI to

be chosen such that matrix ALI = (AI−LICI) is diagonal and
the detectability bound (20) can be further simplified into:

g(k)I >
2ε

(k)
yI H

(t)
∣∣∣A(k,k)

LI
q(k,k)I

∣∣∣∣∣∣∣eA(k,k)
LI

(t−TR)−1
∣∣∣∣ , (21)

where A(k,k)
LI

and q(k,k)I indicate the k-th diagonal elements of
matrices ALI and QI respectively. Note that by considering
full sensor measurements, the positive constants defined for
(10) can be selected as ζ

(k)
I =

∣∣∣ALI
(k,k)
∣∣∣ and α

(k)
I = 1 for all

I ∈K ,k ∈ [1, . . . ,nI ].
Using the assumptions of zero model uncertainty and zero

contaminant concentration under healthy conditions, ε
(k)
yI H

becomes:

ε
(k)
yI H

(t)=(wzI |HI |+|LI |wI)

1− e−|A
(k,k)
LI
|t

|A(k,k)
LI
|

+w(k)
I . (22)

In steady-state conditions, terms eA(k,k)(t−TR)
LI and e−|A

(k,k)
LI
|t

of (21) and (22) tend to zero, so that (21) becomes:

g(k)I >2
∣∣∣q(k,k)I

∣∣∣(wzI |HI |+ |LI |wI +w(k)
I

∣∣∣A(k,k)
LI

∣∣∣). (23)

Condition (23) indicates that the detectability performance
of different partitioning solutions depends on the observer
gains. Therefore, in the next section we develop an optimiza-
tion algorithm for designing the observer gains and selecting
the partitioning solution that results in the best detectability
performance.

V. DETECTABILITY BOUND OPTIMIZATION

To solve the joint partitioning and observer gain selection
problem the approach taken is to consider all possible partiti-
oning configurations that satisfy connectivity (i.e., every pair
of zones in the same subsystems is connected through at least
one airflow path) and size constraints (minimum number of 2
zones per subsystem), and optimally solve the observer gain
selection problem.

Given a partitioning solution as a set V = ∪h∈K Vh, that
hold the global indices of zones included in each Σh,h ∈K

and matrix A that describes the dependencies between the
zones, one can define the following constant quantities:

A(i, j)
ad j =

{
1, if a(i, j) 6= 0
0, if a(i, j) = 0

i, j ∈ {1, . . . ,n}, (24)

lh = ∑
i∈V h
j/∈Vh

A(i, j)
ad j

∑
i∈V h

A(i, j)
ad j

, h ∈K (25)

wh =w
√
|Vh| h ∈K (26)

wzh =w
√

lh h ∈K (27)

H(i, j)
h =

{
a(i, j)h
0

j∈Vh, i /∈Vh,h∈K
otherwise (28)

Hh =|Hh| h ∈K (29)

Note that we have assumed without loss of generality the
same sensor noise bounds, w, for all sensors.

A. Optimization Formulation

The formulation optimizes the observer gains for a given
partitioning solution in order to minimize the detectable
contaminant release rate, i.e. to satisfy condition (23) for
the smallest possible contaminant release rates. The observer
gains are also constrained to guarantee convergence for the
designed observer-based estimators (i.e., matrix ALI is sta-
ble). The problem can be formulated using different objective
functions depending on the specific application needs. In this
paper we utilize the objectives

Obj. 1 : min
β ,λ

∑
i∈V

gz
i , (30)

Obj. 2 : min
β ,λ

∑
h∈K

gp
h , (31)

where variable gz
i shows the resulting minimum detectable

contaminant release rate in each zone i = [1, . . . ,n], while
variable gp

h = maxi∈Vh{g
z
i},h∈K indicates the contaminant

release rate of the zone with the worst detection performance
in subsystem h∈K . Obj. 1 minimizes the sum of detectable
contaminant release rates in all zones of the building, while
Obj. 2 only minimizes the sum of the contaminant release
rates of the zones with the worst detection performance in
each subsystem.

Given subsystem configuration Vh,h ∈K and its corre-
sponding subsystem noise bound wh, interconnection noise
bound wzh and interconnection bound Hh calculated through
equations (26), (27) and (29), constraints (32) ensure sa-
tisfaction of the detectability condition (23). In particular,
constraints (32a)−(32c) are used to define gain matrix Lh of
each subsystem. Inequality (32b) ensures observer stability
since a(i,i)− λ (i) ≤ −ω < 0 where ω > 0 a small positive
value. The `2-norm of matrix Lh is nonlinear (but convex)
and equates to finding the maximum singular value of the
matrix. In fact, the Linear Matrix Inequality (LMI) (32c)
ensures that βh = |Lh| [11]. The reason is that condition (23)
requires βh to take the minimum possible value which is
achieved when the LMI is satisfied with equality. Combi-
ning (6), (26), (27), (29) and constraints (32a) - (32c), the



Constraints defining detectability condition (23)

L(i, j)
h =

 a(i, j)h
λ (i)

0
,

i 6= j, i, j ∈ Vh,h ∈K
i = j, i, j ∈ Vh,h ∈K
otherwise

(32a)

ω +a(i,i) ≤ λi ≤ λ , i ∈ V (32b)[
βhI Lh

(Lh)
T

βhI

]
< 0, h ∈K (32c)

gz
i ≥2q(i)(wzhHh+whβh+w(a(i,i)−λ

(i))), i ∈ Vh, h ∈K
(32d)

gz
i ≥2q(i)(wzhHh+whβh−w(a(i,i)−λ

(i))), i ∈ Vh, h ∈K
(32e)

detectability constraint is defined in (32d) and (32e). The
maximization term in gp

h , h ∈ K , in relation to Obj. 2 is
eliminated through the introduction of the constraint

gp
h ≥ gz

i , i ∈ Vh, h ∈K . (33)

In summary, the resulting optimization problems from
Obj. 1 and Obj. 2 are the following:

OP1: min
β ,λ ,gz ∑

i∈V
gz

i

s.t. Constraints (32)

OP2: min
β ,λ ,gz,gp ∑

h∈K
gp

h

s.t. Constraints (32) and (33).

Optimization problem OP1 finds the best observer gains
L∗h and the minimum detectable contaminant release rate in
each zone i is indicated by gz

i
∗. Similarly, OP2 results in

observer gains L∗h and the minimized maximum detectable
contaminant release rate gp

h
∗ in each subsystem Σh. OP1

and OP2 are both linear Semi-definite Programming (SDP)
formulations which are convex, and hence they can be
optimally solved with standard SDP solvers.

Optimization of observer gains enables the comparison
between all possible partitioning configurations in terms of
the solutions from OP1 and OP2, for jointly selecting the
partitioning configuration and observer gains that result in
the best detection performance.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of the deve-
loped optimization approach by conducting simulations on
a real building model of Holmes house1. The building is
comprised of 14 zones (i.e., Z1, . . . ,Z14) and 30 leakage path
openings. For the examined scenario, it is assumed that an
ambient wind of speed 10 m/s blowing from the east is the
cause of air movement in the building interior. The resulting
airflows are calculated using the CONTAM [13] software
and the corresponding matrix A appears in Fig. 1.

1Holmes house refers to a low-rise residential house model scaled up for
Simulating Airflow and Contaminant Transport in buildings [12].
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Fig. 1. Matrix A for the Holmes building.

TABLE I
POSSIBLE PARTITIONING OF HOLMES HOUSE FOR K = 2 SUBSYSTEMS

PnK Subsystem 1 (V1) Subsystem 2 (V2)
P1 [1,2,3,4,5,6,7,8,9,10,11,14] [12,13]
P2 [1,2,3,4,5,6,7,8,9,10,12,13] [11,14]
P3 [1,2,3,4,5,6,7,8,9,12,13,14] [10,11]
P4 [1,2,3,4,5,6,7,8,9,12,13] [10,11,14]
P5 [1,2,3,4,5,6,7,8,10,11,14] [9,12,13]
P6 [1,2,3,4,5,6,8,9,11,12,13,14] [7,10]
P7 [1,2,3,4,5,6,8,9,12,13,14] [7,10,11]
P8 [1,2,3,4,5,6,8,9,12,13] [7,10,11,14]
P9 [1,2,3,4,5] [6,7,8,9,10,11,12,13,14]
P10 [1,2,3,5] [4,6,7,8,9,10,11,12,13,14]
P11 [1,2,3] [4,5,6,7,8,9,10,11,12,13,14]

All feasible partitioning configuration for K = 2 subsys-
tems are enumerated resulting in N2 = 11 different partiti-
oning solutions and the optimal observer gains are selected
for the considered optimization problem OP1 or OP2. Term
PnK ,nK ∈NK = [1, . . . ,NK ], indicates the nK-th partitioning
configurations for K resulting subsystems. The sets Vh that
hold the zone indices of each subsystem for all partitioning
solutions for K = 2 appear in Table I. All optimization
problems are modelled using YALMIP [14] and solved using
MOSEK SDP solver [15].

The detection performance for OP1 and K = 2 is shown in
Fig. 2 for all zones. The results clearly show that the partiti-
oning choice affects the contaminant detection performance.
Specifically, the resulting contaminant release rate bound
gz

i
∗ for each zone, changes depending on the partitioning

solution. Partitioning P9 can be considered as the best, since
it minimizes the worst case scenario in the whole system.
Similarly, P1 can be considered as the worst, since for Σ1 it
displays the worst performance of all other subsystems of all
possible partitioning. In particular, P1 shows approximately
10% larger bound in 12 out of 14 zones of the building.

While the partitioning solution impacts the performance
of the contaminant detection, the optimization also allows
full exploitation of observer gains. The importance of jointly
optimizing the partitioning configuration and observer gains
is illustrated in Fig. 3 considering OP2. The term Ł indicates
an arbitrary selection of λi = 2, i ∈ V for all zones that
ensures observer stability while L∗ indicates the best observer
gains as resulted from the optimization. It becomes evident
that there is a major performance increase in optimizing
observer gains. In particular, Fig. 3 shows that the detection
performance is about 5 times worst for the arbitrary gain
selection than for the optimized observer gains. Another
important aspect is that the best partitioning solutions for
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Fig. 2. Contaminant detection performance using OP1 for all possible partitioning configurations for K = 2.
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Fig. 3. Comparison of detection performance between optimal selection
of observer gains L∗ and an arbitrary selection Ł using OP2 for all possible
partitioning configurations for K = 2.

equalizing the detection performance for the subsystems are
given by P9 for both optimization objectives as shown in Fig.
2 and Fig. 3.

VII. CONCLUSIONS

Indoor Air Quality monitoring is one of the most important
properties of Intelligent Buildings that ensures the well-being
of the occupants. In this work, a distributed contaminant
detection approach based on a multi-zone system model
is presented. The work focuses in finding the best system
partitioning for the distributed approach in order to improve
the contaminant detection performance. Through a detecta-
bility analysis of the approach, bounds for the lowest detec-
table contaminant release rate have been found, which are
functions of observer gains and the system partitioning. To
optimize performance, a novel approach has been developed
for finding the optimal observer gains for each partitioning
configuration. The results show that optimizing the observer
gains leads to more than five-fold improvement compared
to arbitrary gain selection and two-fold improvement for
selecting the best possible partitioning solution.

Future work includes, the investigation of the partitioning
selection problem for scenarios with limited number of avai-
lable sensors and for the problem of contaminant isolation.
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[14] J. Löfberg, “YALMIP : A Toolbox for Modeling and Optimization in
MATLAB,” in Proceedings of the CACSD Conference, Taipei, Taiwan,
2004.

[15] MOSEK ApS, The MOSEK optimization toolbox for
MATLAB manual. Version 8.1., 2017. [Online]. Available:
http://docs.mosek.com/8.1/toolbox/index.html


