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Ubiquitination is a post-translational modification that consists of ubiquitin attachment
to target proteins through sequential steps catalysed by activating (E1), conjugating
(E2), and ligase (E3) enzymes. Protein ubiquitination is crucial for the regulation of many
cellular processes not only by promoting proteasomal degradation of substrates but also
re-localisation of cellular factors and modulation of protein activity. Great importance
in orchestrating ubiquitination relies on E3 ligases as these proteins recognise the
substrate that needs to be modified at the right time and place. Here we focus
on two members of the TRIpartite Motif (TRIM) family of RING E3 ligases, MID1,
and MID2. We discuss the recent findings on these developmental disease-related
proteins analysing the link between their activity on essential factors and the regulation
of cytokinesis highlighting the possible consequence of alteration of this process in
pathological conditions.

Keywords: ubiquitination, MID1, MID2, TRIM E3 ligase, cytokinesis, X-linked Opitz syndrome

INTRODUCTION

Cytokinesis and Ubiquitination
Cytokinesis is the final step of cell division that consists in the physical separation into two
cells after nuclear and cytoplasmic content portioning. It requires coordinated actions of the
cytoskeleton, membrane systems, and cell cycle engine, which are precisely controlled in space and
time. Cytokinesis starts after anaphase and consists of different steps: central spindle assembly,
division plane specification, contractile ring assembly, cytokinetic furrow ingression, midbody
appearance, and abscission (Echard et al., 2004; Eggert et al., 2006). Following abscission, the
residual midbody is either released in the extracellular medium, degraded by selective autophagy or
persists in the cytoplasm of one daughter cell (Agromayor and Martin-Serrano, 2013). Interestingly,
inherited midbodies can affect cell polarity, cell communication, stemness (Bernabe-Rubio et al.,
2016; Antanaviciute et al., 2018; Li et al., 2018). Cytokinesis failure leads to defective mitosis and
high chromosomal instability. Thus, for proper organisms growth and development a correct cell
division is essential (D’Avino et al., 2015).

The activity of cytokinesis factors must be precisely orchestrated and oscillates by regulated
post-translational modifications such as ubiquitination. Covalent conjugation of ubiquitin to a
substrate is operated through sequential action of activating (E1), conjugating (E2), and ligase (E3)
enzymes. Importantly, the E3 ubiquitin ligases recognise the specific substrates to be ubiquitinated
(Komander and Rape, 2012). Ubiquitination is long known for driving cell cycle transitions.
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For example, metaphase-to-anaphase transition is triggered
by the E3 ligase APC/CCDC20 that promotes the degradation
of cyclin B and securin, allowing mitotic exit (Teixeira
and Reed, 2013). Ubiquitination is a signal not only for
protein degradation but also for non-proteolytic fate through
the building of chains with different ubiquitin linkages and
topologies (Kulathu and Komander, 2012). As example, the
E3 CRL3KLH21 mono-ubiquitinates Aurora B allowing its
MKLP2-mediated translocation to promote correct kinetochore–
microtubule attachments during metaphase (Krupina et al.,
2016). Further, a giant protein possessing E2/E3 activity, BRUCE,
interacts with midbody components affecting the distribution
of ubiquitin at the midbody site, in that being fundamental for
abscission (Pohl and Jentsch, 2009).

Many other E3 ligases have been described to dynamically
control cell cycle events through both proteolytic and non-
proteolytic signals (Gilberto and Peter, 2017). The TRIpartite
Motif (TRIM) family is the major sub-class of RING-E3
ubiquitin ligases counting over 70 members implicated in several
physiological and pathological processes (Reymond et al., 2001;
Meroni and Diez-Roux, 2005; Short and Cox, 2006; Hatakeyama,
2017). Here, we will focus on the role of two members of this
family, TRIM18/Midline1/MID1 and TRIM1/Midline2/MID2
(from here onward MID1 and MID2), in cytokinesis.

MID1 and MID2 E3 Ubiquitin Ligases
Among the TRIM family, MID1, and MID2 are very close
paralogues originating from a common ancestor after the
invertebrate/vertebrate separation and predating the bony
vertebrates appearance (Sardiello et al., 2008). Consistently,
human MID1 and MID2 genes have a conserved genomic
structure, are both located on the X chromosome, and share a
high degree of identity (70%) at nucleotide level (Quaderi et al.,
1997; Buchner et al., 1999). This similarity is patent also in
their domain structure. MID1 and MID2 present the N-terminal
hallmark of the TRIM family, the tripartite motif, composed of
the catalytic RING domain followed by tandem B-Box 1 and
B-box 2 and a Coiled-coil region. The TRIM family is further
subdivided into 9 classes (C-I to C-IX) according to the domains
present C-terminal to the tripartite module with the SPRY-
containing C-IV subfamily being the most numerous (Reymond
et al., 2001; Short and Cox, 2006). MID1 and MID2 C-terminus
displays a COS domain, a Fibronectin type III repeat and a PRY-
SPRY domain as all C-I sub-family TRIM members (Reymond
et al., 2001; Short and Cox, 2006; Table 1). While the Fibronectin
type III repeat and PRY-SPRY domain role in MID proteins is
unclear, the COS domain was shown to mediate MID1 and MID2
association with the microtubular apparatus (Buchner et al.,
1999; Cainarca et al., 1999; Short and Cox, 2006). Microtubular
binding of MID1 is detectable also during mitosis and on the
central spindle and midbody during cytokinesis (Cainarca et al.,
1999). Recently, localisation at the midbody was reported also for
MID2 (Gholkar et al., 2016). Whether MID proteins co-localise
at the midbody in a mutual manner is still not unravelled. The
coiled-coil region of MID1, besides mediating self-interaction,
is also responsible for hetero-interaction with MID2 (Short
et al., 2002; Meroni and Diez-Roux, 2005). The extent and

stoichiometry of MID1/MID2 interaction is at present not known
but one can envisage functions elicited by either homo- or
hetero-complexes resulting in partial functional redundancy
between MID proteins. Indeed, redundancy between the chicken
orthologues of MID genes, cMid1, and cMid2, has been reported
during the determination of avian left/right axis (Granata
et al., 2005). Intriguingly, both human genes are implicated
in genetic diseases: MID1 is mutated in patients presenting
a complex neurodevelopmental disorder, the X-linked Opitz
G/BBB syndrome (OS) (OMIM 300000) (Quaderi et al., 1997);
and MID2 is mutated in an X-linked intellectual disability
(OMIM 300928) (Geetha et al., 2014). This further suggests MID1
and MID2 overlapping functions. Along the same line, analyses
of these genes during embryonic development in human, mouse
and chicken show partial overlapping expression. MID1 is mainly
found in the central nervous system (CNS), the developing
branchial arches, the gastrointestinal and the urogenital systems,
and the developing heart correlating with the tissues affected
in OS (Dal Zotto et al., 1998; Richman et al., 2002; Pinson
et al., 2004). MID2 displays low embryonic expression in the
developing CNS, thymus and heart (Buchner et al., 1999). On the
contrary, in human adult tissues, MID1 and MID2 have a distinct
expression pattern: MID2 is mainly expressed in thyroid, smooth
muscle, prostate, breast, and ovary whereas MID1 is found in
the cerebellum, lung, colon, urinary bladder, prostate, placenta,
breast, and ovary and retina (source1,2).

Regarding their E3 ligase function, in vitro activity for
both MID1 and MID2 has been described (Han et al., 2011;
Napolitano et al., 2011). In more physiological contexts, both
unique and common MID proteins partners have been identified,
some of which are reported as MID E3 ligases bona fide
substrates. These data are briefly summarised in Table 1 and
recently thoroughly reviewed in Li et al. (2016); Winter et al.
(2016). These findings suggest that the two TRIM paralogues
evolved maintaining common roles while developing their own
specificity, likely in a context-specific manner. Their expression
analyses during embryonic development revealed a preference
for mitotically active compartments suggesting a role during
cell cycle progression and here below we will discuss recent
findings that support a role of MID1 and MID2 during the
cytokinetic process.

MID1 AND MID2 INVOLVEMENT IN
CYTOKINESIS

As mentioned above, recent reports suggest an involvement
of MID1 and MID2 in cytokinesis. Indeed, in HeLa cells, the
depletion of either MID1 or MID2 leads to cell division defects,
namely, cytokinetic arrest often followed by cell death and delay
or failure to divide with regression into binucleated cells (Gholkar
et al., 2016). This role is likely elicited through the interaction
with several partners that we discuss here below.

1www.proteinatlas.org
2www.ncbi.nlm.nih.gov/gene
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TABLE 1 | Summary of principal MID1 and MID2 features.

Official symbol MID1 MID2

Official name midline 1 midline 2

Gene ID 4281 11043

Aliases FXY, MIDIN, TRIM18, RNF59 FXY2, TRIM1

Location Xp22.2 Xq22

CDS length 2,004 nt 2,148 nt

Protein length 667 aa 715 aa

Associated Syndromes X-linked Opitz G/BBB syndrome (OMIM #300000) Mental retardation, X-linked (OMIM #300928)

Protein domains RING domain; B-box type 1 and 2; coiled-coil; COS domain;
fibronectin type 3 domain; PRY/SPRY domain

RING domain; B-box type 1 and 2; coiled-coil; COS domain;
fibronectin type 3 domain; PRY/SPRY domain

Protein function E3 ubiquitin ligase E3 ubiquitin ligase

Subcellular location/component
(UniProt)

cytosol, microtubule, spindle (www.uniprot.org/uniprot/O15344) cytosol, microtubule, exosome
(www.uniprot.org/uniprot/Q9UJV3)

Amino acid modification
(UniProt)

Phosphoserine 92, 96, 511 (www.uniprot.org/uniprot/O15344) Phosporylated on serine and threonine residues
(www.uniprot.org/uniprot/Q9UJV3)

Interactors (common
interactors are indicated in bold
and the relative references are
listed)

MID1, MID2 (Short et al., 2002); ALPHA-4, PPP2CB,
PPP2CA, PPP2R1A (Liu et al., 2001; Watkins et al., 2012);
PTPA (Du et al., 2014); ASTRIN (Gholkar et al., 2016); BRAF35
(Zanchetta et al., 2017); MID1IP1 (Berti et al., 2004); ANXA2,
EEF1A1, NPM1, HSP90AA1, RACK1, RPS3, RPS8;
(Aranda-Orgilles et al., 2008b); PAX6 (Pfirrmann et al., 2016);
STK36 (Schweiger et al., 2014); TRIM16 (Bell et al., 2012);
TUBB, TUBB4B (Gholkar et al., 2016); UBC (Trockenbacher
et al., 2001); UBE2D1, UBE2D2, UBE2D3, UBE2D4,
UBE2E1, UBE2E2, UBE2E3, UBE2N (Napolitano et al., 2011)

MID2, MID1 (Short et al., 2002); ALPHA-4 (Short et al., 2002);
ASTRIN, ASPM, CEP128 (Gholkar et al., 2016); LNX1 (Lenihan
et al., 2017); TRIM27, TRIM42, TRIM54 (Rolland et al., 2014);
TRIM29, TRIM32 (Reymond et al., 2001); TUBB, TUBB4B
(Gholkar et al., 2016); UBE2D1, UBE2D2, UBE2D3, UBE2D4;
UBE2E1; UBE2E2, UBE2E3, UBE2N; (Napolitano et al., 2011)

Astrin
A recent work uncovered that both MID1 and MID2 bind the
microtubule-associated protein Astrin (also known as SPAG5)
(Gholkar et al., 2016). Astrin is important in the regulation
of mitotic progression since its depletion causes centrosome
instability and mitotic spindle malformation in HeLa cells.
Astrin associates with the spindle throughout mitosis allowing
chromosome alignment and segregation (Mack and Compton,
2001; Gruber et al., 2002). Diverse kinases, such as GSK3, Aurora
A and Plk1, phosphorylate Astrin to regulate its mitotic function
during spindle assembly (Cheng et al., 2008; Chiu et al., 2014;
Chung et al., 2016).

The interaction between Astrin and the two TRIM proteins
occurs independently from the cell cycle but has consequences
only on cytokinesis. MID1 and MID2 partially co-localise
with Astrin at the midbody of dividing cells. Interestingly,
MID2 alone promotes Astrin ubiquitination at a unique site
(K409) at mitotic exit targeting the protein to proteasomal
degradation. Inappropriate accumulation of Astrin at the
midbody provokes cytokinetic arrest, increased binucleation and
cell death. Consistently, MID2 depletion leads to minor defects
in early mitosis and major defects in cytokinesis supporting
the importance of its E3 ligase activity in regulating Astrin
degradation (Gholkar et al., 2016).

Unexpectedly, also MID1-deprived cells display division
defects, including cytokinetic arrest, delayed or aborted
abscission, inducing cell binucleation or death (Gholkar et al.,
2016). At present it is not known if the observed cytokinetic
phenotype is related to the lack of MID1-Astrin association and
which is the mechanism involved. Further, whether MID1, MID2,

and Astrin form a single protein complex is still undefined. An
intriguing possibility is that distinct and dynamic homo- or
hetero-MID complexes exist to target not only Astrin but also
other cytokinesis-related proteins.

Alpha4/PP2Ac
The first reported target of MID1 E3 ligase activity was the
catalytic subunit of serine/threonine protein phosphatase 2A
(PP2Ac) driven to ubiquitin-mediated proteasomal degradation
(Trockenbacher et al., 2001). MID1 directly interacts through the
B-box 1 domain with Alpha4 (α4) that is one of the atypical
regulatory subunits of PP2A (Nanahoshi et al., 1998; Liu et al.,
2001; Trockenbacher et al., 2001; Short et al., 2002; LeNoue-
Newton et al., 2011). Later on, α4 was reported to be a MID1
substrate as well (Watkins et al., 2012; Du et al., 2013). Active
PP2A is a heterotrimeric holoenzyme composed of a catalytic (C
subunit), a scaffold (A subunit) and a variable regulatory subunit
(B, B′, B′′, or B′′′ subunits) that dictate substrate selectivity and
subcellular localisation of the phosphatase holoenzyme. A small
pool of PP2Ac was shown to form a complex containing α4
instead of the B subunit (Baskaran and Velmurugan, 2018). At
cytokinesis, PP2Ac, A and B′γ1 subunits are all localised at the
midbody in HeLa cells (Wu et al., 2017). In addition, PP2A-
B′ holoenzyme counteracts Aurora B kinase activity controlling
the length of spindle midzone through KIF4A dephosphorylation
(Bastos et al., 2014).

The mechanism of self-regulation of the MID1/α4/PP2Ac
complex involves a series of ubiquitination and dephospho-
rylation events that have been long studied but still remain to
be completely unravelled. Initially, α4 was described to protect
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FIGURE 1 | Model for MID1 and MID2 complexes distribution during cytokinesis. MID1 and MID2 localise on the microtubules both at early (A) and late (B)
telophase where they possibly hetero-interact. We propose action of MID proteins during both steps. At the central spindle, MID1 poly-ubiquitinates PP2Ac to
regulate PP2A levels (i) and mono-ubiquitinates a4 to disrupt the association of a4-PP2Ac (ii). Available PP2Ac can be assembled into active PP2A holoenzymes that
dephosphorylate KIF4A to control the length of spindle midzone (v). At early telophase, MID2 ubiquitinates Astrin inducing its proteasomal degradation and removal
from the intercellular bridge in order to allow completion of cytokinesis (iii). BRAF35 abundance and localisation at the intercellular bridge is regulated through
MID1-dependent ubiquitination using non-canonical ubiquitin linkages (K6, K27, and K29) (iv); there, BRAF35 associates with KIF4A and/or BRCA2 (vi); (vii) BRCA2
is recruited to the midbody through Filamin A and forms a complex with Cep55, Alix and Tsg101, allowing the recruitment of ESCRT-III to complete abscission. It is
still unknown to what extent MID proteins activity on these substrates is interconnected and this is highlighted in the model with question marks (?). One intriguingly
possibility is that KIF4A might represent the central player linking all the complexes regulate by MID1 and MID2.

PP2Ac from degradation. Although in vitro assays suggested
that MID1 catalyses mono- and di-ubiquitination of PP2Ac it
is likely that other E3 ligases synergistically or alternatively are
required to target its proteasomal degradation (Watkins et al.,
2012; Du et al., 2014). Interestingly, MID1 not only targets a
sub-pool of α4 for poly-ubiquitination-mediated degradation but
also mono-ubiquitinates α4, triggering calpain mediated cleavage
and degradation of its C-terminus containing the MID1 binding
region (Watkins et al., 2012; Du et al., 2013). Whatever the

mechanism, α4 cleavage disrupts the MID1/α4/PP2Ac complex,
influencing PP2Ac stability (Winter et al., 2016). Altered PP2Ac
activity affects mTORC1 complex formation and signalling (Liu
et al., 2011). This pathway can play a significant role in the
pathogenesis of OS and it would be interesting to investigate a
possible MID1-mediated mTORC1 involvement in cytokinesis.

MID proteins contain two conserved phosphorylation
consensus sites (Ser92 and Ser96) for GSK3 and MAPK,
respectively (Short et al., 2002). Interestingly, MID1 interaction
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with α4 results in PP2Ac recruitment on microtubules and MID1
dephosphorylation at Ser96 (Aranda-Orgilles et al., 2008a). It
is tempting to speculate that a similar regulatory mechanism
involves MID2 as it binds α4 as well (Short et al., 2002). A fine
balance of MID1 phosphorylation and dephosphorylation via
MAPK and PP2A is important for regulating its affinity and its
bi-directional movement along the microtubule network through
kinesins and dyneins (Liu et al., 2001; Trockenbacher et al., 2001;
Aranda-Orgilles et al., 2008a). Whether MID1 phosphorylation
status affects E3 ligase activity or influences the interaction with
α4 have not been addressed yet.

These findings leave some questions open and some issues
still controversial. Indeed, α4 was shown to serve as a
binding partner of PP2Ac rendering the latter catalytically
inactive to avoid improper protein dephosphorylation. Then,
when needed, α4 contributes to stabilise newly synthetised
PP2Ac preventing its ubiquitin-mediated degradation thus
permitting its assembly into functional PP2A holoenzymes
(Kong et al., 2009). It is possible that binding of α4 to MID1
is needed to preserve a pool of newly available PP2Ac that
can be transported along the microtubules to the spindle
midzone. At this point, PP2Ac might become available for
incorporation into active PP2A to dephosphorylate a pool
of microtubule-associated phosphoproteins, such as KIF4A, to
precisely control cytokinesis.

BRAF35
A recently identified MID1 substrate is the BRCA2-associated
factor BRAF35 (also known as HMG20B) (Zanchetta et al., 2017)
that was first isolated as part of a large nuclear multi-protein
complex containing BRCA2 (Marmorstein et al., 2001).

MID1 ubiquitinates BRAF35 and is necessary for its turnover
mainly outside the nucleus. Strikingly, although BRAF35 protein
levels are regulated by the proteasome, atypical linkages are
preferred in MID1-mediated ubiquitination, involving K6, K27,
and K29 poly-ubiquitin chains. Among them, only K6 poly-
ubiquitination promotes BRAF35 proteasomal degradation while
K27 and K29 chains have no degradative effects (Zanchetta
et al., 2017). The present knowledge does not offer insights to
infer the effect of these modifications on BRAF35 (Kulathu and
Komander, 2012). Of note, MID1 and BRAF35 co-localise in
the cytoplasmic compartment and BRAF35 accumulates in larger
cytoplasmic bodies when MID1 is depleted from HeLa cells
(Zanchetta et al., 2017).

Recently BRAF35 was found in a region of the midbody
compatible with MID1 localisation (Cainarca et al., 1999; Lee
and Venkitaraman, 2014; Gholkar et al., 2016). Consistently,
BRAF35 also associates with the previously mentioned PP2A
target KIF4A, a motor protein that is essential for central spindle
midzone and midbody organisation (Lee and Kim, 2003). Direct
interaction between the cargo domain of KIF4A and BRCA2
was also proved, suggesting the existence of a multi-protein
complex in which also BRAF35 takes part (Wu et al., 2008).
BRCA2 is recruited on the midbody by the actin-binding protein
Filamin A and is necessary for correct localisation of other
midbody proteins, such as MKLP1, MKLP2, and PRC1 (Mondal
et al., 2012). On the midbody BRCA2 forms a complex with

CEP55, Alix, and Tsg101 and is required for the recruitment of
the ESCRT machinery, necessary for abscission (Mondal et al.,
2012). Depletion of BRAF35 from HeLa cells results in a delayed
transition from anaphase to the completion of cell division (Lee
et al., 2011). About half of BRAF35-depleted cells start cleavage
furrowing but fail to divide, becoming binucleated (Lee et al.,
2011). Interestingly, the same phenotype had previously been
observed in BRCA2-deficient cells (Daniels et al., 2004). It is
interesting that MID1 depletion phenocopies the cytokinesis
failure-derived defects that were observed in the absence of
BRAF35 or BRCA2 (Gholkar et al., 2016).

The C-terminal portion of BRAF35 spanning aa 173–276 is
the minimal fragment required for BRCA2 binding and is also
sufficient for its midbody localisation (Lee and Venkitaraman,
2014). However, contrary to the entire C-terminal fragment (aa
173–317), expression of the 173–276 aa fragment fails to restore
cytokinesis in BRAF35-depleted cells suggesting the need of an
additional factor (Lee and Venkitaraman, 2014). MID1 could
represent such interactor, as the binding to BRAF35 occurs
in an overlapping region (aa 230–317) to that necessary to
form the BRAF35/BRCA2 complex, thus contributing to proper
cytokinesis (Zanchetta et al., 2017).

The findings discussed here support the role of MID proteins
in cell division through activities on multiple targets likely not
only promoting their proteasomal degradation. However, it is still
not clear to what extent their E3 ligase activity on the substrates
cited in this review and graphically summarised in Figure 1 are
interconnected. In this model, KIF4A might play a central role in
the MID1- and MID2-regulated network. It is a matter of fact that
both MID1 and MID2 are needed for successful cytokinesis with
consequences in physiological and pathological conditions.

CONCLUSION

Although tightly regulated, cytokinesis lacks an effective
checkpoint to ensure its fidelity. Cytokinesis can fail at
different steps, because cleavage furrow ingression is inhibited
or incomplete, or abscission is defective. The originated
cells show increased chromosomal instability resulting in
the generation of multipolar spindles and chromosome
segregation defects (Sagona and Stenmark, 2010). Errors in
cytokinesis may thus have dramatic consequences ranging from
embryonic defects to cancer. Aberrant expression of cytokinesis
regulators is indeed largely associated with many cancer types
(Lens and Medema, 2019).

Recent findings showed elevated MID1 expression in prostate
cancer and alteration of the MID1/a4/PP2A axis in lung
adenocarcinoma and MID1 expression levels positively correlate
with tumour Gleason scores (Kohler et al., 2014; Zhang et al.,
2018). Similarly, high level of MID2 expression was significantly
correlated with breast cancer progression (Wang et al., 2016). On
the contrary, down-regulation of MID1 mediated by miR-135b
has been shown to promote tumour progression of mammary
carcinomas (Arigoni et al., 2013). Of note, high levels of
Astrin have been described in cervical, pancreatic, hepatocellular
carcinoma, and non-small-cell lung cancers (Valk et al., 2010;
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Yuan et al., 2014; Ansari et al., 2015; Liu et al., 2018; Yang
et al., 2018). In the case of BRAF35, the A247P mutation
reported in a case of lung carcinoma was shown to interfere
with its midbody localisation and BRCA2 binding (Lee and
Venkitaraman, 2014). This mutation induces cytokinesis failure
through a dominant negative mechanism possibly affecting
MID1 activity. Thus, it appears that dysregulation of MID1 plays
a role in tumourigenesis, likely affecting factors that control
somatic cell proliferation.

Clinically, MID1 and MID2 are implicated also in genetic
developmental disorders (Quaderi et al., 1997; Geetha et al.,
2014). Their involvement in cytokinesis does not come as
a surprise as embryonic development is the organism phase
with the highest mitotic index. During development, aberrant
cytokinesis can have a strong impact not only on cell proliferation
but also on morphogenetic processes. In fact, inherited
midbodies can affect cell polarity and cell communication
and, in epithelia, midbody positioning influences planar tissue
architecture (Herszterg et al., 2014; Bernabe-Rubio et al., 2016;
Antanaviciute et al., 2018).

The identification of the involvement of MID1 and MID2
in cytokinesis is intriguingly though we are still far from
clarifying the precise dynamics of the occurring events. Further
investigations will be necessary to understand the dynamics of
the complexes containing MID proteins and Astrin, BRAF35
and PP2A and their interplay, if any. The future dissection of
these mechanisms, together with parallel in vivo studies, will
be necessary to get a comprehensive picture and for future
clinical application.
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