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We consider two qubits interacting with a common bosonic bath, but not directly between them-
selves. We derive the (bipartite) entanglement generation conditions for Gaussian non-Markovian
dynamical maps and show that they are similar as in the Markovian regime; however, they depend
on different physical coefficients and hold on different time scales. Indeed, for small times, in the
non-Markovian regime entanglement is possibly generated on a shorter time scale (∝ t2) than in the
Markovian one (∝ t). Moreover, although the singular coupling limit of non-Markovian dynamics
yields Markovian ones, we show that the same limit does not lead from non-Markovian entangle-
ment generation conditions to Markovian ones. Also, the entanglement generation conditions do not
depend on the initial time for non-Markovian open dynamics resulting from couplings to bosonic
Gaussian baths, while they may depend on time for open dynamics originated by couplings to
classical, stochastic Gaussian environments.
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I. INTRODUCTION

One of the most interesting features of quantum theory is entanglement. It has been the focus of much investigation
in the last decades as it plays a crucial role in quantum information theory and its applications, such as quantum com-
putation [1] and quantum cryptography [2]. With them, the interest in understanding how independent, uncorrelated
systems may get entangled has been constantly growing [3]. Also, many studies have been performed to investigate
the robustness of entanglement against noise, analyzing the behaviour of correlated quantum systems asymptotically
in time [4].

In this paper we consider a bipartite system consisting of two qubits that interact with a common environment,
but not with each other: we shall thus be dealing with open quantum systems, but we will not assume any Markovian
approximation. Indeed, purpose of the paper is to investigate the (bipartite) entanglement generation properties of
Gaussian non-Markovian dynamics and to compare them with those holding in a Markovian regime. Entanglement
generation will be identified with the ability of the time-evolution to turn an initial separable two-qubit state into an
entangled one [5]. The initial states can be taken to be pure: indeed, if the dynamics is not able to entangle pure
separable states, it cannot entangle mixed states either. Furthermore, as we are not interested in the fate of already
entangled states, we will focus upon the behaviour of pure separable states at small times. In particular, since partial
transposition is in this case an exhaustive entanglement witness [6], the study can be limited to checking the lack of
positive semi-definiteness in the small time expansion of time-evolving two-qubit states.

This kind of analysis has already been performed in the Markovian regime that is for dissipative quantum dynamics
obeying a semigroup composition law [5, 7, 8], where necessary and sufficient conditions for dissipative entanglement
generation have been given [9, 10]. However, the behaviour of many open quantum systems is not adequately described
by a Markovian dynamics [12]: it is thus natural and interesting to investigate the issue of entanglement generation in a
non-Markovian setting, the results obtained in the Markovian regime thus providing a benchmark. Precisely, the study
of entanglement generation will now be extended to the specific class of Gaussian non-Markovian dynamics: these
include models widely used in the description of physical systems, ranging from the spin-boson model [13], quantum
Brownian motion [14] and collapse models [15]. Gaussian non-Markovian dynamics are described by families of maps
that can be obtained either from a microscopic, namely quantum, or from an effective, classical stochastic description
of the bath [16], both completely characterized by their two-point correlation functions.

We stress that we call these maps non-Markovian because they do not compose as a two-parameter semigroup.
Many different definitions and witnesses of non-Markovianity in the quantum domain have been proposed in the
literature and a complete agreement on which one to prefer has not yet been reached. Some of them are based on the
distinguishability of quantum states [17], others rely on the CP-divisibility of dynamical maps [18], on the volume of
accessible states [19], on the mutual information between system and environment [20], on the capacity of quantum
channels [21]. The relation among different definitions of non-Markovian dynamics is an open issue outside the scope
of the present work. Some results in this direction can be found in [22]; see also the recent reviews [23].

In the above physical context, we prove 1) that non-Markovian entanglement generation occurs, for small times,
on a shorter time-scale (∝ t2) than in the Markovian one (∝ t); 2) that, though similar, the entanglement generation
conditions in the two regimes involve different physical coefficients, 3) that, the conditions in the Markovian regime
cannot be derived as a singular limit of the non-Markovian ones even if the Markovian open dynamics can be derived in
this way from the non-Markovian one, 4) that the non-Markovian entanglement generation conditions do not depend
on the initial time for open dynamics derived from coupling to microscopic bosonic baths, while they may vary in
time for open dynamics resulting from coupling to classical, stochastic Gaussian fields.

The paper is organized as follows: in Section II, we briefly review the entanglement generation criterion for two qubits
in the Markovian regime. In Section III, we introduce a generic Gaussian non-Markovian dynamics for two qubits and
discuss the possibility of environment induced entanglement generation at general initial time t0. Finally, Section IV
is devoted to the analysis of the differences between Markovian and non-Markovian entanglement generation, while
in Section V we draw our conclusions.

II. MARKOVIAN ENTANGLEMENT GENERATION

We consider two qubits interacting with a common bath but not directly between themselves. Firstly, we assume
that their reduced dynamics is Markovian and given by a one-parameter semigroup of completely positive, trace-
preserving maps Gt. Under these conditions, the master equation for the time-evolving two-qubit density matrix
ρt := Gt[ρ] is of the typical form [7, 8]

∂tρt = −i[HS + H̃S , ρt] +
3∑

j,k=1

2∑
α,γ=1

Kαγ
jk

(
σαj ρt σ

γ
k −

1

2
{σγkσ

α
j , ρt }

)
, (1)
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3

with initial condition ρ. The right hand side of the above expression is the Gorini-Kossakowski-Sudarshan-Lindblad
generator G of the reduced dynamics, Gt = exp(tG). The second term in G is a purely dissipative contribution due
to the presence of the bath, with σαj , α = 1, 2, the Pauli matrices associated with qubit α. Instead, the first term is
the commutator with a Hamiltonian, where HS is the initial two qubit Hamiltonian without interaction as in Eq. (13)
below, and

H̃S =
3∑

j,k=1

2∑
α,γ=1

hαγjk σ
α
j σ

γ
k , (2)

is a dynamical coupling mediated by the bath, resulting from Markovian approximations like the so called weak
coupling limit [24].

The Kossakowski coefficients Kαγ
jk = Kγα

kj , where the bar denotes complex conjugation, form a self-adjoint matrix
K which must be positive semi-definite in order to guarantee the complete positivity of the maps Gt. This matrix can
be conveniently written as a 6× 6 matrix in qubit blocks,

K :=

(
K11 K12

K21 K22

)
, K21 = (K12)† , (3)

with Kαγ 3× 3 matrices: K11 and K22 are positive semi-definite and pertain to the two qubits independently, while
K12 and K21 statistically correlate them.
For the sake of comparison with the non-Markovian time evolution that will be introduced in Eq. (19), we will now
pass to the interaction representation with respect to the Hamiltonian HS . The formal integration of the master
equation (1) then gives a dynamical map Ft,t0 [ρ] = ρt of the form

Ft,t0 = T exp

{∫ t

t0

dτ
∑
j,k,α,γ

[
Kαγ
jk

(
σ̂αjL(τ − t0)σ̂γkR(τ − t0)− 1

2
σ̂γkL(τ − t0)σ̂αjL(τ − t0)− 1

2
σ̂αjR(τ − t0)σ̂γkR(τ − t0)

)

−ihαγjk

(
σαjL(τ − t0)σγkL(τ − t0)− σγkR(τ − t0)σαjR(τ − t0)

)]}

= T exp

{∫ t−t0

0

dτ
∑
j,k,α,γ

[
Kαγ
jk

(̂
σαjL(τ)σ̂γkR(τ)− 1

2
σ̂γkL(τ)σ̂αjL(τ)− 1

2
σ̂αjR(τ)σ̂γkR(τ)

)
−iH̃SL(τ)+ iH̃SR(τ)

]
=: Ft−t0 .(4)

In the above expression, T is the time ordering operator and we used the following short-hand notation for the left
and right operator multiplication (note that superoperators are denoted with hats, while operators are not):

σ̂αjL(τ) ρ = σαj (τ) ρ , σ̂γkR(τ) ρ = ρ σγk (τ) (5)

with

σαj (τ) = eiHS τσαj e−iHS τ . (6)

The dynamical maps Ft,t0 are thus time homogeneous, Ft,t0 = Ft−t0 , and form a two-parameter semigroup, i.e. they
satisfy the composition law Ft,t0 = Ft,s ◦ Fs,t0 for all t ≥ s ≥ t0, and thus describe a regime commonly agreed to
call Markovian [7, 8]. Such a property has relevant consequences for entanglement generation since, as we shall see,
it then becomes sufficient to investigate the dynamics around time t0 = 0. We shall thus expand the action of Ft as
follows:

Ft ' Ft=0 + tF ′t=0 + . . . . (7)

Then, the short time expansion of the two-qubit density matrix ρt about the initial condition ρ is

ρt ' ρ+ t
3∑

j,k=1

2∑
α,γ=1

(
Kαγ
jk

(
σαj ρ σ

γ
k −

1

2

{
σγkσ

α
j , ρ

})
− ihαγjk

[
σαj σ

γ
k , ρ
])

. (8)

We stress that, as expected, both Hamiltonian and dissipative terms of Eq. (1) contribute to the short time evolution of
the dynamics. In the following we are interested in the entanglement generation properties of the dynamics. Since the
free HS does not contain interactions between the two qubits, such properties can be studied in the chosen interaction
representation, without need of going back to the physical representation. Indeed, entanglement generation can only
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4

come from the bath contributed terms in the generator G. We now exploit the fact that, for two qubits, partial
transposition is an exhaustive entanglement witness [6]. By performing this operation on the second qubit (id⊗ T ),
and setting ρ∗t = id⊗ T [ρt], we find

ρ∗t ' ρ∗ + t
3∑

j,k=1

[
K11
jk

(
σ1
j ρ
∗ σ1

k −
1

2
{σ1

kσ
1
j , ρ

∗}
)
− εk

(
<(K12

jk ) + ih12jk
)(

σ1
j ρ
∗ σ2

k −
1

2
{σ2

kσ
1
j , ρ

∗}
)

−εj
(
<(K12

kj )− ih12kj
)(

σ2
j ρ
∗ σ1

k −
1

2
{σ1

kσ
2
j , ρ

∗}
)

+ εj εkK
22
kj

(
σ2
j ρ
∗ σ2

k −
1

2
{σ2

kσ
2
j , ρ

∗}
)

−ih11jk
[
σ1
jσ

1
k, ρ
∗
]

+ iεj εk h
22
jk

[
σ2
kσ

2
j , ρ
∗
]

+ =(K12
jk ) εk

[
σ1
jσ

2
k , ρ

∗
]]

,

where < and = denote real and imaginary parts, while the factors ε1,3 = 1, ε2 = −1 come from choosing the standard
representation of the Pauli matrices, so that, under transposition, σT1 = σ1, σT3 = σ3, while σT2 = −σ2. One has now
to check whether ρ∗t is positive semi-definite or not: in the latter case ρt is entangled. Notice that partial transposition
yields an expression similar to (8), with the Kossakowski matrix K in (3) replaced by

K̃ :=

(
1 0
0 E

)(
K11 <(K12) + ih12

(<(K12)− ih12)T (K22)T

)(
1 0
0 E

)
, (9)

with E := diag(−1, 1,−1) and <(K12) the 3 × 3 matrix with entries given by the real parts of the entries of K12,

(K12)T denoting its transposed. As much as the matrix K of the generator G in (1), the matrix K̃ is connected

with the generator G̃ of a semigroup of maps G̃t = id ⊗ T ◦ Gt ◦ id ⊗ T , t ≥ 0, such that ρ∗t = G̃t[ρ∗]. However,

unlike K, K̃ need not be positive semidefinite. Should K̃ result positive semi-definite, the maps G̃t would then be
completely positive and thus preserve the positivity of any initial two-qubit state, namely also that of separable states
ρ = |ψ〉〈ψ| ⊗ |φ〉〈φ|. In such a case, due to the semigroup property, entanglement could not be generated either at

small or at any other time t ≥ 0. On the other hand, if K̃ is not positive semi-definite the conditions for entanglement
generation have already been extensively investigated [9, 10]. One finds that Gt is able to entangle |ψ〉〈ψ| ⊗ |φ〉〈φ|, at
first order in t > 0, if and only if

〈u|K11|u〉〈v|(K22)T |v〉 − |〈u|<(K12) + ih12|v〉|2 < 0 , (10)

where

|u〉 = (〈ψ|σi|ψ⊥〉)3i=1 , |v〉 = (〈φ⊥|σi|φ〉)3i=1 , (11)

with |ψ〉, |ψ⊥〉 and |φ〉, |φ⊥〉 two orthonormal bases in the qubit Hilbert space C2.
In the non-Markovian regime, an open quantum dynamics is generated by a master equation of the form

∂tρt = −i[HS + H̃S(t), ρt] +
3∑

j,k=1

2∑
α,γ=1

Kαγ
jk (t)

(
σαj ρt σ

γ
k −

1

2
{σγkσ

α
j , ρt }

)
(12)

with explicitly time-dependent Hamiltonian H̃S(t) and coefficients Kαγ
jk (t) which form a hermitian, but not positive

semi-definite matrix. The above expressions are the most general non-Markovian master equations under the assump-
tion that the generated dynamical maps Λt posses an inverse Λ−1t : in such cases, as proved in [11], also time non-local
master equations of the form

∂tρt =

∫ t

0

dτ K(t− τ)ρτ ,

with a given operatorial kernel K(t), can be turned into time local ones

∂tρt = Lt[ρt] .

Furthermore, the latter can always be written as in (12), however with in general a non-positive matrix [Kαγ
jk (t)].

Because of the explicit time-dependence, one expects that the entanglement generation conditions differ from those
in the Markovian case and themselves explicitly depend on time. In the following, we approach this issue by means of
the environment two-point correlation functions upon which the coefficients Kαγ

jk (t) depend and show that different
behaviours emerge depending on whether the environment is a bosonic thermal bath, or consists of classical, Gaussian
stochastic fields.
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5

III. NON-MARKOVIAN ENTANGLEMENT GENERATION

Unlike Markovian dynamics, non-Markovian ones cannot in general be recast in a unique form. However, a complete
characterization has recently been achieved for the class of Gaussian non-Markovian dynamics [16]. These dynamics
can be obtained either by a microscopic description of the environment by means of non-commuting bosonic fields,
or by an effective description of the environment based on commuting, that is classical, stochastic Gaussian fields. It
turns out that there are dissipative time-evolutions resulting from the stochastic approach that cannot be obtained
from the microscopic one [25].

We consider a model described by a Hamiltonian

H = HS +HB +HI , HS =
∑
α,j

ωαj σ
α
j , (13)

and we distinguish two cases. In the case of a derivation based on a microscopic description of the environment, one
assumes that the system is bilinearly interacting with a bath of independent bosons:

HB =
∑
j

ωjb
†
jbj , HI =

∑
α,j

σαj φ
α
j , (14)

where the fields φαj are hermitian linear combinations of the bath creation and annihilation operators such that

[bj , b
†
k] = δjk. The environment state ρB is then assumed to be central Gaussian that assigns zero mean values to

the fields φαj and is completely characterized by two-point correlation functions

Dαγ
jk (τ, s) := TrB [φγk(s)φαj (τ)ρB ] , (15)

where ρB is not necessarily invariant under HB .
As an alternative approach, one can choose an effective description of the environment, by assuming that the

qubits are interacting with (classical) complex stochastic Gaussian fields φαj completely characterized by the following
correlation functions

Dαγ
jk (τ, s) = E

[
φαj (τ)φγk(s)

]
, (16)

Sαγjk (τ, s) = E
[
φαj (τ)φγk(s)

]
, (17)

where E denotes the stochastic average. In this case HB = 0, and HI is defined as in (14).
If the interaction starts at t0, by generalising the result of [16], one finds that the Gaussian non-Markovian reduced

map describing the qubits dynamics reads

Mt,t0 = T exp(Mt,t0) , (18)

with

Mt,t0 =

∫ t

t0

dτ

∫ τ

t0

ds
∑
j,k,α,γ

[
σ̂αjL(τ − t0)− σ̂αjR(τ − t0)

] [
Dαγ
jk (τ, s; t0)σ̂γkR(s− t0)−Dαγ

jk (τ, s; t0)σ̂γkL(s− t0)
]
. (19)

The time dependence of the actions of the σ̂ is a direct consequence of Eq. (6) when the initial time is t0 > 0. The
two-point correlation function is defined as follows: Dαγ

jk (τ, s; t0) := Dαγ
jk (τ − t0, s− t0) if one considers a microscopic

description; Dαγ
jk (τ, s; t0) := Dαγ

jk (τ, s) for the stochastic case. One can easily check that Dαγ
jk (τ, s; t0) = Dγα

kj (s, τ ; t0),

and that the matrix [Dαγ
jk (t, t; t0)] is positive semi-definite for all t, t0. One can rearrange the terms of Eq. (19) in order

to write it in a form closer to Eq. (4), by separating a purely dissipative contribution, with coefficients Dαγ
jk (τ, s; t0),

from a commutator with respect to a Hamiltonian of the form

H̃S(τ, s; t0) =
1

2

∑
j,k,α,γ

[
−i<

(
Dαγ
jk (τ, s; t0)

) [
σ̂αj (τ − t0), σ̂γk (s− t0)

]
−=

(
Dαγ
jk (τ, s; t0)

){
σ̂αj (τ − t0), σ̂γk (s− t0)

}]
(20)

We stress that the main difference between Eq. (4) and Eq. (19) is that, while the first one displays a single integration
in time, the latter one presents two integrations. Accordingly, as a direct consequence of the properties of time-ordering
T, Ft,t0 satisfies the two-parameter semigroup property, but Mt,t0 does not: the lack of such a time-composition law
is what we mean by non-Markovian maps. Interestingly, a Markov limit of Mt,t0 is simply obtained by choosing
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6

singular two-point correlation functions of the type Dαγ
jk (t− s) = Kαγ

jk δ(t− s), corresponding to an uncorrelated bath:

then, direct substitution in Eq. (19) leads to a Markovian map of the type (4).
In order to investigate the entanglement generation properties of Mt,t0 , we adopt the same strategy as in the

Markovian case. We expand it in Taylor series:

Mt 'Mt=t0 + (t− t0)M′t=t0 +
(t− t0)2

2
M′′t=t0 + . . . . (21)

One finds that Mt=t0 = I and M′t=t0 = 0, while

M′′t=t0 =
∑
j,k,α,γ

(σ̂αjL − σ̂αjR)
(
Dαγ
jk σ̂

γ
kR −D

αγ
jk σ̂

γ
kL

)
, (22)

where we set Dαγ
jk := Dαγ

jk (t0, t0; t0). Therefore, the following short time behaviour holds:

ρt ' ρt0 +
(t− t0)2

2

3∑
j,k=1

2∑
α,γ=1

Dαγ
jk

(
σαj ρt0 σ

γ
k −

1

2
{σγkσ

α
j , ρt0}

)
. (23)

Remarkably, unlike the Markovian regime, in the non-Markovian one the Hamiltonian terms do not contribute to

entanglement generation. Indeed, the property Dαγ
jk (τ, s; t0) = Dγα

kj (s, τ ; t0) implies that <(Dαγ
jk ) = <(Dγα

kj ), and

=(Dαγ
jk ) = −=(Dγα

kj ). Exploiting these properties in Eq. (20), one easily finds that H̃S(t0, t0; t0) = 0. This is a first

hint of the fact that the small time expansion, performed to obtain Eq. (8) and Eq. (23), and the Markov limit do not
commute. This issue will be further discussed in Sec.IV. Concerning the dissipative contributions of Eq. (23), besides
the quadratic dependence on time, the small time expansion in the non-Markovian regime has the same structure as
the small time expansion in the Markovian regime in Eq. (8). The only difference is that the Kossakowski matrix with
entries Kαγ

jk proper of the Markovian regime is replaced by the matrix D with entries Dαγ
jk . As already observed after

Eq. (19), the matrix D is automatically positive semi-definite. Then, one can use the Markovian techniques of the
previous section to derive the following small time entanglement generation criterion for the non-Markovian Gaussian
dynamics:

〈u|D11|u〉〈v|(D22)T |v〉 − |〈u|<(D12)|v〉|2 < 0 , (24)

where Dαγ are the 3× 3 matrices with entries Dαγ
jk .

Besides showing a coefficient matrix D = [Dαγ
jk ] different from the K = [Kαγ

jk ] of the Markovian regime, the non-

Markovian regime presents a small time expansion that starts with (t− t0)2 instead of t− t0: this is due to the fact
that, in the Markovian limit, the singular (delta) correlation function eliminates one of the integrals in the exponent
of Mt. This different time-dependence is an interesting feature that allows to discriminate Gaussian non-Markovian
dynamics from Markovian ones. Indeed, for small times, in the non-Markovian regime, entanglement is generated on
a shorter time scale (∝ t2) than in the Markovian one. This issue will be further discussed in the next section.

Some comments are in order at this point. In the Markovian case, if entanglement generation occurs at time t = t0,
it then occurs at any later time t > t0. This fact is due to the semigroup composition law, but need not be true if the
the law fails as in the non-Markovian case. In such a case, the criterion (24) can only establish whether the mapMt is
able to entangle factorized states at the second order in time around t = t0. In order to infer entanglement generation
at generic later times t1 > t0, after the initial state ρt0 has evolved into ρt1 =Mt1,t0ρt0 , one should explicitly study
the interpolating map Nt,t1 , formally given by

Mt,t0 = Nt,t1 ◦Mt1,t0 , Nt,t1 :=Mt,t0 ◦M−1t1,t0 , (25)

which links the dynamics from t = t0 to t > t0 to that from t1 to t > t1. Unfortunately, apart from very simple
systems [13, 26], Nt,t1 is not available in analytic form (see e.g. the discussion in [27]), also preventing us from
comparing our definition of non-Markovian dynamics with that relying on CP-divisibility [18].

A. Microscopic description

As we have previously seen, if one considers a microscopic description the mapMt,t0 depends on the environmental
correlation functions

Dαγ
jk (τ, s; t0) := Dαγ

jk (τ − t0, s− t0) . (26)
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7

This kind of correlation functions is obtained by means of Gaussian initial states that are not invariant under the
environment time-evolution. On the other side, if [HB , ρB ] = 0, the correlation functions become time-translation
invatiant: Dαγ

jk (τ − s), loosing their dependence on the initial time t0. With correlation functions of the type (26)

one can perform a change of variables in the integrals of Eq. (19) and obtain Mt,t0 = Mt−t0,0. Accordingly, the
ability of generating entanglement of Mt,t0 for small times t− t0 is the same as that of Mt,0 for small t > 0, i.e. the
entanglement generation criterion (24) for this dynamics does not depend on t0. However, as will be shown in the next
section, the specific time dependence of Eq. (26) need not be satisfied if one considers a stochastic derivation ofMt,t0

which indeed allows for more general non time-homogeneous non-Markovian dynamics such that Mt,t0 6= Mt−t0,0.

1. Examples

In order to illustrate which environment correlation functions lead to entanglement generation in the case of a
microscopic derivation, we assume that the qubits couple to each environment degree of freedom with different
strength, i.e. that the bath coupling operators have the following form:

φαj =
∑
`

(
cαj` b` + cαj` b

†
`

)
, (27)

where cαjl are arbitrary complex constants. Note that this is the most general linear bath operator one can choose. Let
us now consider the case of a microscopic derivation of the open system dynamics based on an environment consisting

of bosonic fields, [bj , b
†
k] = δjk, in a thermal state at inverse temperature β and invariant under its own free dynamics

HB =
∑
j ωjb

†
jbj . One finds the following time-translation invariant two-point correlation functions:

Dαγ
jk (t− s) =

∫
dω
{
Jαγjk (ω) e−iω(t−s)

eβω

eβω − 1
+ Jαγjk (ω) eiω(t−s)

1

eβω − 1

}
,

where we have introduced the spectral densities:

Jαγjk (ω) :=
∑
`

cαj` c
γ
k` δ(ω − ω`) . (28)

We stress that any set of generic time-translation invariant correlation functions Dαγ
jk (t − s) can be derived from

suitable microscopic bosonic baths in thermal equilibrium with respect to HB [16]. Notice that this is not true for not
time-translation invariant two-point correlation functions Dαγ

jk (t, s) 6= Dαγ
jk (t − s): these ones can be obtained either

by coupling the qubits to a Gaussian environment state not invariant under HB (see Eq. (13) and Eq. (14)) or, as we
shall see in the next Section, by coupling them to commuting and stochastic Gaussian fields.

Instead, when Dαγ
jk (t, s) = Dαγ

jk (t− s), as discussed before, the entanglement criterion (24) does not depend on the
initial time and is based on the entries

Dαγ
jk =

∑
`

{
cαj`c

γ
k`

eβω`

eβω` − 1
+ cαj`c

γ
k`

1

eβω` − 1

}
=
∑
`

{
<(cαj`c

γ
k`) coth

(
βω`

2

)
+ i=(cαj`c

γ
k`)
}
. (29)

These, as required, make for a positive semi-definite matrix D. Let us consider a few cases.

1. The coupling constants cαj` are such that <(D12
jk) = 0: then, the analog of the matrix K̃ in Eq. (9) with Dαγ in

the place of Kαγ reads

D̃ =

(
1 0
0 E

)(
D11 0

0 (D22)T

)(
1 0
0 E

)
. (30)

Since D is positive semi-definite, so are D11, (D22)T and D̃. Therefore, the master equation (1) with Kossakowski

matrix given by D̃ generates completely positive maps G̃τ , with semigroup parameter τ = t2. These, as argued in the
previous section, cannot fulfill the inequality (10) and entanglement cannot be generated.
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2. The coupling constants are all real or all purely imaginary: then, the 3 × 3 matrices D11 and D22 are both
symmetric and <(D12) = (D12 + ((D12)†)T )/2, so that

D̃ =

(
1 0
0 E

)
D +DT

2

(
1 0
0 E

)
. (31)

Therefore, D̃ is positive semidefinite and as, in the previous point, entanglement cannot be generated.

3. The two qubits couple to a same set of fields: then, φ1j = φ2j = φj , c
1
jk = c2jk = cjk and the matrix D reduces to

the form D =

(
∆ ∆
∆ ∆

)
where ∆ is a 3× 3 matrix with entries

∆jk =
∑
`

{
<(cj` ck`) coth

(
βω`

2

)
+ i=(cj` ck`)

}
. (32)

By choosing |u〉 = |v〉 in (24), namely |ψ〉 = |φ⊥〉, the (strict) inequality becomes

|〈u|=(∆)|u〉| > 0 , (33)

where

=(∆) =
∆−∆T

2i
=

1

2i

 0 x12 x13
−x12 0 x23
−x13 −x23 0

 , (34)

with xjk = =(〈Ck|Cj〉) with |Cj〉 the vector of components cj`. Then one computes

〈u|=(∆)|u〉 =
3∑

j,k=1

xjk =(uj uk) . (35)

If for instance x12 6= 0, inequality (33) is satisfied by choosing |ψ〉 such that σ3|ψ〉 = |ψ〉. In such a case |u〉 = (1,−i, 0)
and 〈u|=(∆)|u〉 = −1 so that the separable state |ψ〉 ⊗ |ψ⊥〉 becomes entangled.

B. Stochastic derivation

Non-Markovian dynamical maps different from those microscopically derived as in the previous Section result from
from an alternative approach where one chooses an effective description of the environment.

It has been recently shown [16] that, if the correlation functions Dαγ
jk (τ, s; t0) := Dαγ

jk (τ, s) are inserted into the

map (19), then it is unravelled by the following stochastic Schrödinger equation:

d|ψt〉
dt

= −i
3∑

j,k=1

2∑
α,γ=1

σαj (t)

(
φαj (t) +

∫ t

0

ds[Dαγ
jk (t, s)− Sαγjk (t, s)]

δ

δφγk
(s)

)
|ψt〉 , (36)

where δ/δφγk(s) denotes a functional derivative, and the stochastic correlation functions are defined in (16)-(17). This
means that the average dynamics of an initial state |ψt0〉 provided by this equation recovers Mt,t0 , i.e.

E [|ψt〉〈ψt|] =Mt[|ψt0〉〈ψt0 |] . (37)

Notice that Eq. (19) does not contain S: this reflects the fact that there is an infinite number of stochastic Schrödinger
equations unraveling the same map. Furthermore, none of them can be reduced to a Hamiltonian coupling with
classical stochastic fields, unless they are real [16], in which case, the term in (36) with the functional derivative
disappears.

We now show that, unlike microscopically derived non-Markovian dynamics where the entanglement generation
properties do not depend on the initial time t0 ≥ 0, the possibilities offered by the stochastic derivation are larger in
that the entanglement generation properties may change in time.

Such a different behaviour can be explained as follows: in the Markovian regime each stochastically derived Gaussian
open dynamics also admits a microscopic derivation. Indeed, as previously mentioned, time-translation invariant
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correlation functions can be obtained from coupling to suitable microscopic thermal environments in equilibrium that
include those with Dirac delta correlation functions that result in Markovian open dynamics. On the other hand, this
is no longer true in the non-Markovian regime, where there may exist stochastically generated dissipative Gaussian
dynamics characterized by correlation functions that do not obey the time dependence in (26), i.e. which cannot
be obtained from coupling to bosonic Gaussian baths. As a consequence, if the reduced dynamical maps Mt,t0 of
Eq. (19) involve two-point correlation functions with time-dependence not of the form D(t− t0, s− t0), the maps do
not in general depend just on t− t0 only and may display, depending on t0, different entangling generation properties
compared with Mt,0. These properties are determined by Eq. (24) where now Dαγ

jk have an explicit dependence on
t0.

An example of such a possibility follows from considering a map Mt,0 of stochastic origin describing two qubits
coupled to a same set of complex stochastic fields

φj(t) =
3∑
`=1

µj`W`(t) + cj , (38)

where µj` are suitable complex coefficients and W`(t) are Wiener processes with zero mean and two-point correlation
functions E[Wj(t)Wk(s)] = δjk min(t, s), while cj are deterministic values of the fields at t = 0. Then,

Dαγ
jk (t, s) = min(t, s)

3∑
`=1

µj`µk` + cj ck , (39)

for all α, γ = 1, 2, whence, at t0 ≥ 0 one derives a Kossakowski matrix D(t0) =

(
∆(t0) ∆(t0)
∆(t0) ∆(t0)

)
where ∆(t0) has

entries

∆jk(t0) = t0

3∑
`=1

µj`µk` + cj ck . (40)

The entanglement generation criterion (33) can then be applied to the matrix =(∆(t0)) with entries

t0

3∑
`=1

=(µj`µk`) + =(cj ck) , (41)

and explicitly reads

|〈u|=(∆(t0))|u〉| = 1

2

∣∣∣∣∣t0
3∑
`=1

(∣∣∣∑
j

ujµj`

∣∣∣2 − ∣∣∣∑
j

ujµj`

∣∣∣2)+

(∣∣∣∑
j

ujcj

∣∣∣2 − ∣∣∣∑
j

ujcj

∣∣∣2)∣∣∣∣∣ > 0. (42)

Evidently, one can choose the initial fields and the complex coefficients µj` such that =(∆(0)) = 0 while 〈u|=(∆(t0))|u〉 6=
0 so that |ψ〉 ⊗ |ψ⊥〉 cannot be entangled at t = 0, but becomes entangled at any t0 > 0. Vice versa, one can arrange
the coefficients in order to ensure that =(∆(0)) 6= 0, while =(∆(t0)) = 0 at some t0 so that there is entanglement
generation at t = 0 but not at t0 > 0.

Finally, notice that if the classical Gaussian fields are real, there is no entanglement generation, since then the
stochastic Schrödinger equation (36) becomes of Hamiltonian form, describing two independent qubits interacting
with a classical background. Consequently, non-local correlations between non-interacting qubits cannot be created
solely by classical means.

IV. MARKOV VS NON-MARKOV

In the previous section we have seen that the criteria for entanglement generation in the Markovian [Eq. (10)] and
non-Markovian [Eq. (24)] regimes have a similar structure. It is thus important to discuss their differences.

A. Time dependence

A first important difference between Markovian and non-Markovian entanglement generation is the time dependence.
In the previous section we have indeed seen that in non-Markovian dynamics the first order of the expansion of the map
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Mt (see (21)) for small positive times vanishes, while it it does not in the Markovian case. As already remarked, this
fact is strictly related to the singular delta-like correlation functions of Markovian baths. Entanglement is generated
on a time scale (say τG), such that the approximation given by the Dyson expansion is valid, that is 0 < τG < t2 for
non-Markovian dynamics, and 0 < τG < t for Markovian ones. Accordingly, in the Markovian regime and for small
times entanglement generation occurs on a longer time-scale (∝ t) than in the non-Markovian regime (∝ t2).

In order to better illustrate the role of the difference in the time-dependence in the two regimes, let us consider a ‘pure
dephasing’ model of one qubit interacting with a stochastic real Ornstein-Uhlenbeck process through a Hamiltonian

H(t) = ωzσz + σzφ(t) (43)

Dε(τ, s) = E[φ(τ)φ(s)] =
1

2ε
exp

(
− |τ − s|

ε

)
. (44)

Since HS and HI commute, taking the time-derivative ofMt in (18) and (19) yields the following master equation in
the interaction picture:

ρ̇t = −
(∫ t

0

Dε(t− s) ds
)

[σz, [σz, ρt]] . (45)

By integrating this equation as a Dyson series and stopping at the first order, one obtains

ρt ' ρ−
(∫ t

0

dτ

∫ τ

0

Dε(τ − s) ds
)

[σz, [σz, ρ]] (46)

= ρ−
(
t

2
+
ε

2

(
e−t/ε − 1

))
[σz, [σz, ρ]] . (47)

Notice that the bath correlation function approximates the Dirac delta when ε→ 0; one can thus recover a Markovian
dynamics in that limit. Moreover, replacing Dε(t− s) by δ(t− s) in Eq. (46) yields the same result as taking the limit
ε→ 0 in Eq. (47):

ρt ' ρ−
t

2
[σz, [σz, ρ]] . (48)

Instead, performing a short time expansion in (21) or in (47) one obtains

ρt ' ρ−
t2

4ε
[σz, [σz, ρ]] . (49)

While in the Markovian regime the first non-trivial contribution to the Dyson expansion is of order t and independent
of ε [Eq. (48)], the small time expansion of Eq. (49) is of order t2 and diverges when ε → 0. This indicates that the
Markovian limit ε→ 0 cannot be exchanged with the small time expansion: indeed the small parameter t2/ε becomes
large with small ε. Therefore, while the Markovian regime can be derived as a singular limit of the non-Markovian
one, nevertheless one cannot obtain the Markovian entanglement criterion as a limit case of the non-Markovian one.

B. Entanglement criterion

In this section we investigate in more detail the phenomenon presented in the previous Section, namely that the
entanglement generation properties in the Markovian regime cannot be obtained from the non-Markovian ones through
a continuous family of approximants of the Dirac delta. In order to do so, we consider the following family of functions
parametrized by ε:

dε(t) := εa

(
t

ε

)
+ b

(
t

ε

)
+

1

ε
c

(
t

ε

)
, (50)

where a(t), b(t), c(t) are integrable, continuous functions, and a(0), b(0) 6= 0. We further assume that c is an
approximation of the Dirac delta, i.e. that in the limit ε → 0, c(t/ε)/ε → δ(t). One can readily promote this
description to the matrix formalism by assuming the same structure as in (50) for all correlation functions Dαγ

jk (τ−s).
Correlation functions of this kind provide different entanglement criteria in the two regimes. Indeed, in the non-

Markovian case the criterion (24) is based on the correlation function at t = 0,

dε (0) = εa (0) + b (0) +
1

ε
c (0) . (51)
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Therefore, the entanglement generation properties depend on the three functions a(t), b(t) and c(t).

On the other hand, taking the Markovian limit ε → 0, because of the assumed integrability of the functions, they
vanish at infinity, whence the contribution from a is suppressed, while the one from b is hidden by the divergence of
1/ε. Then, the entanglement generation properties in the Markovian regime are solely determined by the function c(t).
Accordingly, Eq. (50) displays a family of correlation functions providing different entanglement generation properties
in the Markovian and non-Markovian regimes.

In the following we investigate whether it is possible to build correlation functions exhibiting the above behaviour
within the models considered in the previous sections.
Given a microscopic model of two qubits interacting with a bosonic thermal bath with correlation functions as in (28),
in order to achieve a Markovian behaviour, the spectral densities Jαγjk (ω) must ultimately provide Dirac deltas in

time and this can only be achieved by a Ohmic behaviour (∝ ω), and by a sufficiently low inverse temperature β
such that coth (ωβ/2) ' 2/ωβ. Under these conditions, we have that the real parts of the correlation functions in
the criterion (24) behave as in (50) with a = b = 0 [24]. This implies that, in a model of this kind, if entanglement
generation does (does not) occur in the non-Markovian regime, it also does (does not) in the Markovian one.
On the other hand, if one considers an effective stochastic description the situation may be different, thus offering
further evidence that, though the two approaches are equivalent in the Markovian regime [28], instead deriving non-
Markovian dynamics by stochastic means provides a richer scenario than by a microscopic approach. Indeed, consider
two qubits interacting with a same stochastic field

φε

(
t

ε

)
=
√
εφ1

(
t

ε

)
+

1√
ε
φ2

(
t

ε

)
, (52)

where φ1 and φ2 are classical complex stochastic fields where φ2 tends to a white noise when ε goes to zero (e.g. the
Ornstein-Uhlenbeck process of Eq. (44)). One can easily check that the two-point correlation functions Djk(τ, s) can
be recast in the form (50), where

a

(
t

ε

)
= E

[
φ∗1

(
t

ε

)
φ1

]
, (53)

b

(
t

ε

)
= E

[
φ∗1

(
t

ε

)
φ2 + φ∗2

(
t

ε

)
φ1

]
, (54)

c

(
t

ε

)
= E

[
φ∗2

(
t

ε

)
φ2

]
. (55)

Therefore, by an appropriate choice of the stochastic fields φ1,2 and thus of a(0), b(0), this kind of model may generate
entanglement in the non-Markovian regime even if, the parameters of the type c(0) are not able to guarantee it in
the Markovian one. It may also happen that the choice of c(0) enforces entanglement generation in the Markovian
regime, when ε→ 0, but that of a(0) and b(0) could forbid it for large ε.

V. CONCLUSIONS

We have investigated the entanglement generation properties of Gaussian non-Markovian dynamics at initial time
t = t0. We have shown that the entanglement generation criterion has the same structure as in the Markovian regime,
provided that the Kossakowski matrix is replaced by the matrix whose entries are two-point bath correlation functions
at t = t0. Moreover, in the non-Markovian regime, Hamiltonian terms do not contribute to entanglement generation.
Although one recovers the Markovian regime from the non-Markovian one when the two-point correlation functions
become singular, this is not true for the entanglement generation conditions; furthermore, in the Markovian regime
entanglement generation occurs on a longer time-scale (∝ t) than in the non-Markovian regime where the time-scale
is ∝ t2. Finally, if the correlation functions are time-translation invariant, the entangling properties of the dynamics
do not change if the initial qubit state is set, not at t = 0, but at t0 > 0. On the other hand, in absence of time-
translation invariance, we showed that the microscopic and stochastic derivations of Gaussian open dynamics, which
are equivalent in the Markovian regime may differ in the non-Markovian one. Indeed, we proved that two qubit open
dynamics derived from couplings to generic Gaussian bosonic baths, even out of equilibrium, exhibit entanglement
generation properties that cannot vary in time. On the other hand, suitable non-time translation invariant couplings
of the two qubits to Gaussian stochastic fields may in general provide entanglement generation properties that may
depend on time.
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