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SUMMARY

Synaptic transmission is critically dependent on syn-
aptic vesicle (SV) recycling. Although the precise
mechanisms of SV retrieval are still debated, it is
widely accepted that a fundamental role is played
by clathrin-mediated endocytosis, a form of endocy-
tosis that capitalizes on the clathrin/adaptor protein
complex 2 (AP2) coat and several accessory factors.
Here, we show that the previously uncharacterized
protein KIAA1107, predicted by bioinformatics anal-
ysis to be involved in the SV cycle, is an AP2-interact-
ing clathrin-endocytosis protein (APache). We found
that APache is highly enriched in the CNS and is
associated with clathrin-coated vesicles via interac-
tion with AP2. APache-silenced neurons exhibit a
severe impairment of maturation at early develop-
mental stages, reduced SV density, enlarged endo-
some-like structures, and defects in synaptic
transmission, consistent with an impaired clathrin/
AP2-mediated SV recycling. Our data implicate
APache as an actor in the complex regulation of
SV trafficking, neuronal development, and synaptic
plasticity.

INTRODUCTION

High-frequency and sustained neurotransmitter release is

dependent on the correct reformation of exocytosed synaptic

vesicles (SVs) by efficient endocytosis. During physiological ac-

tivity, clathrin-mediated endocytosis (CME) represents the best-

characterized pathway for recycling of fully fused SVs (Heuser

and Reese, 1973; Granseth et al., 2006; Dittman and Ryan,
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2009; Saheki and De Camilli, 2012), although the precise

mechanisms of SV membrane retrieval and functional SV

reconstitution remain highly controversial (Soykan et al., 2016;

Cousin, 2017).

At the plasma membrane, the most abundant adaptor coordi-

nating coat recruitment and cargo selection into endocytic pits

is the heterotetrameric adaptor protein complex 2 (AP2),

comprised of two large a and b2 subunits, a medium-size m2

subunit, and a small d2 subunit. Among the numerous accessory

proteins believed to control the internalization pathway (Slepnev

and De Camilli, 2000), clathrin and AP2 constitute the two main

protein interaction hubs, around which an extensive and highly

dynamic endocytic network is organized to achieve clathrin-

coated vesicle (CCV) formation (Schmid and McMahon, 2007).

However, other alternate clathrin-associated sorting proteins

(CLASP) have recently been identified for the internalization of

selected cargo membrane proteins (Traub and Bonifacino,

2013). Thus, synapses have evolved distinct mechanisms to

maintain membrane homeostasis and the dominant mode for

SV recycling may depend on the type of neuron and its activity

pattern (Valtorta et al., 2001; Kononenko and Haucke, 2015;

Park et al., 2016). Despite intense research, much remains to

be learned about the exact molecular components of the endo-

cytic pathways.

Here, we characterize the highly conserved AP2-interacting

clathrin-endocytosis protein APache (NP_001007575.2) and

investigate its physiological role in neuronal development and

synaptic function. APache is a neuron-specific protein, ex-

pressed in axonal processes and presynaptic terminals, that

specifically interacts with AP2 on CCVs. Our data indicate that

APache plays a role in neuronal development and is required

to maintain normal SV recycling in mature neurons. APache

can thus be considered an important actor of the clathrin-

mediated endocytic machinery at the synapse that is required

for normal synaptic transmission.
uthors.
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Figure 1. Expression and Localization of Endogenous KIAA1107 in Neurons

(A) Real-time PCR analysis of Kiaa1107 mRNA levels in various mouse tissues. Means ± SEM of n = 3 animals; one-way ANOVA/Bonferroni’s multiple com-

parison test; *p < 0.05; **p < 0.01; ***p < 0.001 versus liver.

(legend continued on next page)
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RESULTS

Identification of KIAA1107 by GAMMA
Global Microarray Meta-Analysis (GAMMA) is a program previ-

ously developed to identify highly correlated transcripts within

microarray experiments, which can then be used to infer func-

tion, phenotype, genetic network, and disease relevance for

uncharacterized genes (Wren, 2009). GAMMA was used to

search for uncharacterized genes associated with SV recycling,

and KIAA1107 was the highest scoring gene without prior publi-

cations. The predicted phenotypes associated with KIAA1107

disruption, predicted disease relevance, and predicted cellular/

anatomical structures of relevance to KIAA1107 activity are

shown in Figure S1.

KIAA1107 is evolutionarily conserved from zebrafish to human.

The murine Kiaa1107 gene (official symbol: A830010M20Rik) is

located on chromosome 5 (forward strand). According to the

Ensembl database, the gene gives rise to five differentially

spliced transcripts, four of which are predicted to be protein

coding. Conversely, the NCBI database includes only two

splicing variants (NCBI Refseq NM_001007574.2 and

NM_001168557.1, corresponding to ENSMUST00000112671.8

and ENSMUST00000060553.7, respectively, in the Ensembl

database). Among these two, one transcript codes for a protein

of 1,088 amino acids (aas) and is considered the main isoform,

whereas the other codes for a smaller protein of 443 aas. We

cloned the major isoform, with an expected molecular mass of

117 kDa, and will refer to it as KIAA1107 throughout. No signifi-

cant similarity with other proteins could be identified with a

BLAST search of themurine KIAA1107 against theMusmusculus

RefSeq protein database. No conserved protein domains were

predicted using bioinformatics tools, such as SMART and Inter-

ProScan, but one coiled-coil region was predicted at aa position

820–841with COILS2 (probability 62.9%withwindow21;MTIDK

matrix; no weights). Hence, the sequence of KIAA1107 does not

reveal any particular information about its possible function or

localization, but the GAMMA predictions on its involvement in

synaptic function were really strong and persuaded us to investi-

gate it further.

To characterize KIAA1107, we first generated a polyclonal

antibody directed against a conserved region comprising aas

732–894 of the mouse ortholog (Figure S2A). The affinity-purified
(B) Real-time PCR analysis of Kiaa1107 mRNA expression in the cerebral cortex

Means ± SEM of n = 3 animals/developmental stage; one-way ANOVA/Bonferro

(C) Real-time PCR analysis of Kiaa1107 mRNA expression in primary cultures

Means ± SEM of n = 3 independent cultures/developmental stage; one-way ANO

(D) Regional expression of KIAA1107 in the adult mouse brain. Representative

tubulin levels (bottom) are shown. Means ± SEM of n = 4 animals. Bs, brain stem; C

(E) Temporal expression profile of KIAA1107 in the developing mouse cerebral cor

relative densitometric quantification normalized on bIII tubulin (bottom) are

ANOVA/Bonferroni’s multiple comparison test; **p < 0.01; ***p < 0.001 versus E1

(F) Temporal expression profile of KIAA1107 in primary cortical neurons at vario

KIAA1107 levels (top) and relative densitometric quantification normalized on

cultures/developmental stage; one-way ANOVA/Bonferroni’s multiple compariso

(G and H) Localization of KIAA1107 in cultured neurons during development. Rep

(green) and SMI312 (red) at 5 DIV (G) or for KIAA1107 (green) and synaptotagmin

bottom panel, linear intensity profiles of KIAA1107 (green) and Syt1 (red) fluoresce

the presynaptic localization of KIAA1107 in mature neurons. The scale bar repre

See also Figures S1 and S2.
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antibody recognized both overexpressed and endogenous

KIAA1107 as a band of �140 kDa in immunoblotting assays

(Figures S2B and S2C). Its specificity was further proved by

preadsorbing the primary antibody with a molar excess of the

recombinant immunizing peptide (Figure S2D).

To silence KIAA1107 expression, we designed 3 short

hairpin RNAs (shRNAs) based on the coding sequence

(shRNA#1) and the 30 UTR (shRNA#2 and #3) of the mouse

Kiaa1107 transcript, inserted them into a bicistronic lentiviral

vector expressing the fluorescent reporter mCherry, and vali-

dated their specificity and efficacy by immunoblotting (Figures

S2B and S2C). shRNA#2 was chosen for the subsequent

studies, being themost active in knocking down the endogenous

KIAA1107 expression. The specificity of the KIAA1107 antibody

was subsequently demonstrated by immunocytochemistry of

silenced neurons (Figure S2E).

KIAA1107 Is a Neuron-Specific and Developmentally
Regulated Protein
We evaluated Kiaa1107 mRNA and protein levels in various

tissues and brain areas of adult mice and determined its devel-

opmental expression profile in the intact mouse cortex and pri-

mary neuronal cultures (Figures 1A–1F). KIAA1107 was primarily

expressed in brain, with the highest mRNA and protein levels in

the cerebral cortex, hippocampus, and striatum (Figures 1A and

1D). It was already present in the mouse brain at prenatal and

early postnatal stages (embryonic day 18 [E18]–postnatal day

5 [P5]), and its expression increased during postnatal develop-

ment to reach a plateau at 1 month of age (Figures 1B and 1E).

A similar pattern was reproduced in primary cortical neurons,

where Kiaa1107 mRNA and protein levels were discernible at

early stages of development (1–3 days in vitro [DIV]) and were

greatly enhanced between 7 and 21 DIV (Figures 1C and 1F).

Consistent with the strictly neuron-specific expression of the

protein, KIAA1107 was not detected in primary astroglial

cultures.

To examine the localization of KIAA1107 in neurons during

development, 5 and 17 DIV primary cortical neurons were

analyzed by immunocytochemistry. In early stages of in vitro

development, KIAA1107 was expressed in the cell body and

growing processes, including the axon, as shown by the coloc-

alization with the pan-axonal neurofilament marker SMI312
of developing mice (from embryonic day 18 [E18] to postnatal day 60 [P60]).

ni’s multiple comparison test; ***p < 0.001 versus E18.

of cortical neurons at various stages of development (from 1 to 21 DIV).

VA/Bonferroni’s multiple comparison test; ***p < 0.001 versus DIV 1.

immunoblot (top) and relative densitometric quantification normalized on bIII

b, cerebellum; Cx, cortex; Hip, hippocampus; Ob, olfactory bulb; Str, striatum.

tex (from E18 to P60). Representative immunoblot of KIAA1107 levels (top) and

shown. Means ± SEM of n = 3 animals/developmental stage; one-way

8.

us stages of development (from 1 to 21 DIV). Representative immunoblot of

calnexin (bottom) are shown. Means ± SEM of n = 3 independent neuronal

n test; **p < 0.01; ***p < 0.001 versus DIV 1.

resentative images of cortical neurons fixed and double stained for KIAA1107

-1 (Syt1) (red) at 17 DIV (H) are shown. The scale bars represent 10 mm. In the

nce (measured along the dashed lines as indicated in the merge field) illustrate

sents 2 mm.



(Figure 1G). In mature neurons, the antibody also revealed a

punctate nerve terminal pattern that partially colocalized with

the presynaptic marker synaptotagmin-1 (Figure 1H). These

data indicate that KIAA1107 is a developmentally regulated,

widely expressed neuron-specific protein, mainly present at

axonal and presynaptic terminal levels.

KIAA1107 Is an AP2 Interactor
In order to identify KIAA1107 protein-interacting partners, we

employed a mass spectrometry (MS) approach using FLAG-

KIAA1107, purified from SH-SY5Y human neuroblastoma or

COS-7 cells, as a bait to pull-down KIAA1107 interactors

from SH-SY5Y cell or subcellular fractions of mouse brain

extracts (Figure 2A). The bands of interest were excised

from the Coomassie-blue-stained gels, analyzed by liquid

chromatography (LC)-MS/MS, and the MS/MS spectra were

assigned to peptides with a >95% confidence level. In two

independent preparations, a total of 163 proteins were

reproducibly identified as specific KIAA1107-binding part-

ners (MSdataSHSY5Y_XTandem.sf3 and MSdataCOS7_

XTandem.sf3 in Data S1), seven of which resulted to be in

common between the human and murine cellular models (Fig-

ure 2B). These included AP2 (a1 and b subunits) and AP3 (b2

and d1 subunits) found in CCVs that traffic cargoes from the

plasma membrane and between the endosomal and lysosomal

systems, respectively (Robinson, 2004); Numb-like protein

(NUMBL) involved in neural development and clathrin-depen-

dent endocytosis (Sestan et al., 1999; Nishimura et al., 2003;

Santolini et al., 2000); Bcl-2-associated transcription factor

that interacts with antiapoptotic members of the Bcl-2 family

(Kasof et al., 1999); V-type proton ATPase catalytic subunit A,

a component of vacuolar ATPase (van Hille et al., 1993); and

dynactin subunit1 (DCTN1) involved in organelle transport

(Schroer, 2004).

We first focused our attention on AP2, the main adaptor

protein responsible for CME (Conner and Schmid, 2003) and

proceeded to co-immunoprecipitation assays to validate the

potential interaction with KIAA1107. After verifying by MS

analysis that the �140-kDa protein band immunoprecipitated

from mouse brain extract with the KIAA1107 polyclonal anti-

body was indeed the endogenous 1,088-aa KIAA1107 isoform,

we found that both AP2 a and b subunits were specifically

co-immunoprecipitated with endogenous KIAA1107 from

mouse brain extracts (Figure 2C), whereas no interaction of

KIAA1107 with clathrin was observed under the same condi-

tions in which the AP2/clathrin binding was evident (Figure 2D).

Interestingly, KIAA1107 was also co-immunoprecipitated from

mouse brain extracts with anti-AP2a antibodies (Figure 2D),

demonstrating the reciprocity of the interaction between

KIAA1107 and AP2.

To restrict the part of the protein that interacts with AP2, we

performed additional pull-down assays in mouse brain extracts

using FLAG-KIAA1107 full-length, N- and C-terminal fragments.

Interestingly, AP2a and AP2b were affinity purified only by the

N-terminal fragment, whereas no interactions were observed

with the C-terminal fragment (Figures S3A and S3B). In addition,

the possibility of a nonspecific immunoprecipitation of AP2 was

excluded by performing analogous co-immunoprecipitation
assays in mouse liver extracts, a tissue that expresses AP2,

but not KIAA1107 (Figure S3C).

We then combined the KIAA1107 binding proteins detected

in our study with the results of another large proteomic study

(Hein et al., 2015) that also identified KIAA1107 as a potential

NUMBL interactor. Thus, we searched for additional shared in-

teractions and overlaps with genes that GAMMA predicted to

be relevant to KIAA1107 to infer a potential genetic neighbor-

hood for KIAA1107 (Figure 2E). Such a predictive study

revealed connections between KIAA1107 and clusters of

genes playing key roles in exocytosis (SNAP25, syntaxin, syn-

taxin-binding protein, VAMP, NSF, and synaptotagmin-1),

endocytosis (dynamin1, AP2, AP3, and Eps15), and neuronal

development (Notch1, NUMB, and NUMBL).

KIAA1107 Is Expressed at Nerve Terminals and
Associates with CCVs
As AP2 is one of the major coat proteins of CCVs, it was impor-

tant to determine whether KIAA1107 is associated with CCVs.

We isolated a CCV-enriched fraction from cultured rat neurons,

successively stripped it and analyzed by immunoblotting the

various fractions. The CCV preparation was highly enriched in

the coat proteins clathrin and AP2, which were efficiently strip-

ped from the purified vesicles, and in the integral vesicle

membrane proteins synaptotagmin-1 and synaptophysin, which

were not stripped (Figure 3A). In contrast, an accessory protein

of CME, such as dynamin, was neither enriched on CCVs nor

stripped, indicating that it does not function as classical clathrin

adaptor (Slepnev and De Camilli, 2000). KIAA1107 was signifi-

cantly enriched in the CCV fraction, although to a lesser extent

than clathrin, and could be stripped by treatment with Tris buffer

(Figure 3A). These data show that KIAA1107 is a protein

associated with the coat component and not with the vesicle

fraction.

In subcellular fractions prepared from rat forebrain, KIAA1107

immunoreactivity was mostly associated with the S2 fraction,

consistent with the widespread localization of the protein in

neurons (Figure 3B). However, it co-enriched with AP2 in the

nerve-terminal-derived fractions LS1 and LP2, containing SVs

and endosomal membranes, and its distribution roughly

paralleled that of AP2 in other fractions (Figure 3B). Consistent

with the biochemical data, a close colocalization of endogenous

KIAA1107 with the essential components of the endocytic

machinery AP2 and dynamin1 was observed in primary cortical

neurons (17 DIV; Figure 3C). Notably, dynamin1 was identified

as an indirect KIAA1107 interactor in a recent proteomics study

(Gorini et al., 2010). These data suggest that KIAA1107 is closely

associated with intracellular vesicular structures and binds

specifically to AP2 on CCVs.

KIAA1107 Silencing Affects the Early Neuronal
Development
CME controls cell surface expression of receptors, including

those for axon guidance cues (Tojima et al., 2010), and AP2

plays a key role in directed cell migration (Raman et al.,

2014). To interrogate the role of KIAA1107 in neuronal develop-

ment, we acutely downregulated KIAA1107 expression in

primary cortical neurons by RNAi with KIAA1107 shRNA#2
Cell Reports 21, 3596–3611, December 19, 2017 3599



Figure 2. Identification of AP2 as a Specific

KIAA1107 Interactor

(A and B) MS analysis of KIAA1107 interactors.

(A, top) Coomassie blue stained SDS-PAGE gels

for proteins affinity purified by pull-down with

overexpressed FLAG-KIAA1107 or FLAG-control

in extracts of either SH-SY5Y cells (left panel) or

subcellular fractions of mouse brain (cytosolic/

microsomal S2 fraction or synaptosomal P2 frac-

tion; right panel) are shown. Selected gel bands

(arrows) were excised from the gels and analyzed

by LC-MS/MS. (Bottom) KIAA1107 expression and

specificprecipitation in the sampleswas confirmed

by western blotting (WB). The procedure was

repeated twice with independent preparations.

(B) Venn diagram of the number of proteins iden-

tified by LC-MS/MS analysis exclusively in FLAG-

KIAA1107 samples. The result showed 7 proteins

(orange area) shared by both experimental models

(protein and gene names are listed in the table)

within 44 (yellow area) and 119 (red area) specific

proteins for SH-SY5Y cells and mouse brain,

respectively.

(C and D) Co-immunoprecipitation of KIAA1107

and AP2. Mouse brain extracts were subjected

to immunoprecipitation (IP) with anti-KIAA1107

polyclonal antibodies (C), anti-AP2a monoclonal

antibodies (D), or control immunoglobulin Gs

(IgGs). Equal aliquots (2% of total) of the starting

material (INPUT) and the supernatants (SUP)

together with the IP samples were subjected to

immunoblotting with the indicated antibodies

(CHC [clathrin heavy chain]). The same mem-

branes were stripped and re-probed for AP2a

and b. The IPs were performed three times with

similar results.

(E) Putative KIAA1107 genetic neighborhood

based uponprotein-protein interactions (PPIs). Our

data (light green) were combinedwith PPIs found in

a large proteomics study by Hein et al. (2015; dark

green). Then, we searched for their shared PPIs

(blue), as documented in Entrez Gene, and looked

for overlap with GAMMA-predicted genes that

fit into this network (yellow) to infer a potential ge-

netic neighborhood for KIAA1107. Exocytic (yellow

area), endocytic (blue area), and developmental

(green area) clusters of genes are highlighted.

See also Figure S3 and Data S1.
(Figure S4). Cell morphology analysis revealed that silenced

neurons displayed a significant impairment in neuronal devel-

opment in terms of neurite number and length at early stages

in vitro (3 and 5 DIV) compared to cells treated with control

shRNA (shRNActr) (Figures 4A–4C). Interestingly, silenced

neurons also showed a reduced expression level of AP2

(Figure S4), potentially due to partial degradation of the

protein in the absence of complex formation with KIAA1107.
3600 Cell Reports 21, 3596–3611, December 19, 2017
The defective neurite outgrowth was

completely rescued by the expression

of EGFP-KIAA1107, a construct intrin-

sically resistant to shRNA#2 (Figures

4A–4C), indicating that the develop-
mental impairment was specifically due to the downregulation

of endogenous KIAA1107 and not to shRNA-mediated off-

target effects. Moreover, KIAA1107 overexpression per

se did not affect neuronal maturation, as length and number

of processes did not differ between control and EGFP-

KIAA1107-overexpressing neurons at both 3 and 5 DIV.

To further investigate the role of KIAA1107 in neocortical

development in vivo, we downregulated its expression by in



Figure 3. KIAA1107 Is a CCV-Associated Protein

(A) KIAA1107 is enriched in CCVs. (Left) The distribution of KIAA1107 immunoreactivity is compared with that of components of clathrin coats (CHC and AP2a),

SVs (Syt1 and synaptophysin [SYP]), and CCV accessory proteins (dynamin1 [DYN]). Representative immunoblots are shown. Equal amounts of protein were

loaded. H, total homogenate; s-CCV, stripped-CCV. (Right) Densitometric quantification of protein levels in the CCV-enriched fraction expressed asmean (±SEM)

percentages of H is shown (n = 3 independent experiments); **p < 0.01, ***p < 0.001 versus H, unpaired Student’s t test; �p < 0.05, ���p < 0.001 versus CHC,

one-way ANOVA/Bonferroni’s multiple comparison test.

(B) KIAA1107 co-fractionates with AP2. (Top) Subcellular fractions of rat forebrain were analyzed by immunoblotting using KIAA1107, AP2a, and CHC antibodies.

The distribution of the specific SV marker SYP in the same fractions is shown for comparison. LP1, crude synaptic plasma membranes; LP2, crude SVs; LS1,

SV-enriched supernatant fraction; LS2, synaptosol; P2, crude synaptosomes; S1, post-nuclear supernatant; S2, cytosolic and microsomal fraction. (Bottom)

Densitometric quantification of KIAA1107 and AP2a immunoreactivities in the various subcellular fractions is shown. Data are expressed in percent of the

relative H value (means ± SEM of n = 4 independent experiments).

(C) KIAA1107 colocalizes with the endocytic network. Representative confocal images of mature cortical neurons (17 DIV) double stained for KIAA1107 (green)

and AP2a (red, left panels) or dynamin1 (DYN) (red, right panels) showing a largely overlapping staining of the proteins (magnified in the insets) are shown.

The scale bars represent 10 mm (4.2 mm in the insets). Pearson’s correlation coefficient is 0.846 ± 0.041 and 0.796 ± 0.039 for KIAA1107/AP2a and

KIAA1107/DYN, respectively (n = 25 images obtained from n = 2 independent experiments were used for each protein).
utero electroporation (IUE) at E15.5 and analyzed the develop-

ment of newly generated cortical pyramidal neurons (PNs)

derived from shRNA#2-positive progenitors at P7. Whereas

the knockdown (KD) of KIAA1107 did not affect radial migra-

tion of neural progenitors to layer II/III of the somatosensory

cortex (Figures 4D and 4E), it significantly impaired maturation
of PNs that exhibited an aberrant morphology with a significant

reduction of total number and length of neurites (Figures 4F

and 4G).

These data suggest a crucial role of KIAA1107 in the early

stages of in vitro and in vivo neuronal development, when active

SV exo/endocytotic activity at the growth cone is essential for
Cell Reports 21, 3596–3611, December 19, 2017 3601
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process outgrowth (Matteoli et al., 1992; Sabo and McAllister,

2003).

KIAA1107 Markedly Alters the Synaptic Ultrastructure
In view of the potential implication of KIAA1107 in SV endocy-

tosis at mature synapses, we examined the presynaptic

ultrastructure of KIAA1107-KD neurons by performing conven-

tional transmission electron microscopy (TEM). Mouse cortical

neurons were transduced with a lentiviral vector driving

the expression of shRNA#2 or shRNActr at 12 DIV. After

5 days, KIAA1107 became undetectable (Figure S5A), whereas

no difference in viability was observed between uninfected (ctr)

and infected cells (Figure S5B). Notably, KIAA1107-KD synapses

were characterized by a markedly reduced density of total SVs

(�50% reduction; Figures 5A and 5B), whereas synaptic area,

active zone (AZ) length, density of docked SVs, and distribution

of SVs with respect to the AZ were comparable to control synap-

ses (Figure 5C). These data were corroborated by a reduced

expression level of synaptophysin and AP2 in KIAA1107-KD

neurons compared to control (�40% reduction; Figure S5A).

Moreover, the density of CCVs was dramatically reduced in

silenced synapses (Figure 5B). Finally, KIAA1107-KD synapses

displayed enlarged endosome-like structures (�50% increase

in size) but with a preserved endosome density (Figure 5B), as

confirmed by the increased immunoreactivity of the endosomal

marker Rab5 at KIAA1107-KD synapses (Figures S6A and S6B).

To analyze in greater detail the morphology of synaptic

terminals, we performed serial sectioning followed by 3D recon-

struction of control and KIAA1107-KD synapses (Figure 5D). The

morphometric analysis confirmed the severe reduction in the

number of SVs and the parallel depletion of CCVs in silenced

synapses compared to control (Figure 5E) and revealed that

the enlarged endosome-like structures were fully separated

from the plasma membrane (Figure 5D). Notably, the ultrastruc-

tural effects of KIAA1107 KD were reversible; the silencing

phenotype was completely rescued by coinfection of the neu-

rons with EGFP-KIAA1107 (Figures 5D and 5E) resistant

to shRNA#2 silencing (Figure S5C). These results show that

KIAA1107-silenced synapses, in spite of a normal gross

morphology, display severe ultrastructural defects that are

consistent with an important role of KIAA1107 in the regulation

of SV recycling and in the maintenance of SV pools.
Figure 4. KIAA1107-Silenced Cortical Neurons Display an Impaired Ma

(A) Representative merged images of 3 and 5 DIV cortical neurons nucleofected

KIAA1107 (green). The scale bars represent 50 mm.

(B and C) Quantification of total process length and number of processes at 3 (B) a

neurons; n = 98 and 105 for ShRNA#2 neurons; n = 74 and 89 for ShRNActr+KIAA

respectively, from n = 3 independent experiments). *p < 0.05; ***p < 0.001 versu

(D–G) KIAA1107-silencing in vivo does not impair radial migration but causes im

(D, top) Cartoon depicting the experimental design of the in vivo experiments

transfected with either ShRNActr (black) or ShRNA#2 (red) in the somatosenso

visualization of cortical layers 2/3/4 (L2/3 and L4), here divided in 8 sub-layers (n

(E) Quantification of the percentage of total transfected cells in each layer is sho

(F) Representative high-magnification images of GFP fluorescence in neurons t

somatosensory cortex are shown. The scale bars represent 15 mm.

(G) Quantification of total process length (left) and number (right) using ImageJ

ShRNActr; n = 23 cells from 8 different animals for ShRNA#2); **p < 0.01; unpair

See also Figure S4.
Clathrin/AP2-Mediated Endocytosis Is Impaired in
KIAA1107-Silenced Synapses
Mutations in the genes that encode AP2 and other adaptor-like

proteins, which are intrinsic components of the clathrin coat

and are implicated in the early steps of SV recovery, lead to ultra-

structural phenotypes that are similar to that induced by

KIAA1107 silencing (González-Gaitán and Jäckle, 1997; Ferges-

tad et al., 1999; Zhang et al., 1998).

To uncover whether SV recycling is impaired in KIAA1107-KD

synapses, we imaged shRNActr- and shRNA#2-infected neu-

rons by electron microscopy upon action potential (AP) firing in

the presence of soluble horseradish peroxidase (HRP) to visu-

alize the formation of endocytic intermediates.

We first analyzed synapses under conditions of low-frequency

stimulation, when compensatory during-stimulus membrane

retrieval largely (but not exclusively) occurs through CME (Gran-

seth et al., 2006; Dittman and Ryan, 2009; Kononenko et al.,

2014). Samples were fixed under basal conditions, immediately

at the end of the field stimulation (200 APs at 5 Hz) or after 2- and

20-min wash in the absence of HRP. At the end of the stimulus, a

significantly decreased density of HRP-positive (HRP+) SVs,

HRP+ CCVs, and HRP+ endosome-like structures, all represen-

tative of active cycling during stimulation, was observed in

KIAA1107-KD terminals compared to control (Figures 6A and

6B). Moreover, the percentage of synapses displaying HRP+

CCVs at the end of the stimulus versus total synapses was

decreased by about 75% in silenced neurons compared to

control (40.9% ± 2.7% and 10.3% ± 6.9% for shRNActr and

shRNA#-2-infected neurons, respectively). After 2-min wash in

the absence of HRP, a significant impairment in the formation

of HRP+ SVs was still evident in KIAA1107-KD terminals,

whereas the formation of HRP+ endosomal vacuoles recovered

to control levels. Finally, after 20-min wash in the absence of

HRP, SVs and endosomal structures lost their HRP content in

both experimental groups, indicating an active and complete

recovery. These results indicate that, in KIAA1107-KD synapses,

the recovery of SVs, budding either directly from the plasma

membrane or from endosome-like structures, was delayed dur-

ing mild stimulation. The formation of HRP+ endosomal struc-

tures derived from either homotypic fusion of CME-derived

vesicles or fusion of such vesicles with early endosomes (Heuser

andReese, 1973; Rizzoli et al., 2006; Hoopmann et al., 2010) was
turation at Early Stages of In Vitro and In Vivo Development

before plating with either ShRNActr or ShRNA#2 (red) and Sh-resistant EGFP-

nd 5 (C) DIV using ImageJ. Data are means ±SEM (n = 101 and 83 for ShRNActr

1107 neurons; n = 66 and 61 for ShRNA#2+KIAA1107 neurons; at 3 and 5 DIV,

s ShRNActr neurons; one-way ANOVA/Bonferroni’s multiple comparison test.

pairment in pyramidal neurons’ morphology.

is shown. (Bottom) Representative images of GFP fluorescence in neurons

ry cortex are shown. The slices were counterstained with DAPI to allow the

amed from A to G, left). The scale bars represent 50 mm.

wn. Data are means ± SEM (n = 8 animals per condition, 1 slice per animal).

ransfected with either ShRNActr (black) or ShRNA#2 (red) in layer II/III of the

is shown. Data are means ± SEM (n = 21 cells from 8 different animals for

ed Student’s t test.
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Figure 5. Reduced SV Density and

Increased Size of Endosome-like Structures

at KIAA1107-Silenced Cortical Synapses

(A) Representative TEM images of nerve terminals

from cultured cortical neurons transduced with

either ShRNActr or ShRNA#2 at 12 DIV and pro-

cessed at 17 DIV. Note the reduced SV density in

the KIAA1107-KD synapse compared to control

(CCVs, red arrowheads). The scale bar represents

200 nm.

(B) Morphometric analysis from serial ultrathin

sections obtained from ShRNActr- (black bars)

and ShRNA#2- (red bars) treated synapses re-

vealed (from left to right) a reduction in the density

of total SVs and CCVs and an increase in the area

of endosome-like structures in KIAA1107-KD

synapses compared to control. *p < 0.05; **p <

0.01; unpaired Student’s t test.

(C) No changes were observed in the density of

AZ-docked SVs and in the spatial distribution of

SVs in the nerve terminals of KIAA1107-KD neu-

rons compared to control. The density of SVs

located within successive 50-nm shells from the

AZ was normalized for the total SV content of each

terminals and is given as a function of the distance

from the AZ. Nerve terminal areas (0.716 ±

0.059 mm2 and 0.800 ± 0.024 mm2 for ShRNActr

and ShRNA#2-infected neurons, respectively)

and AZ lengths (0.350 ± 0.016 mm and 0.335 ±

0.007 mm for ShRNActr and ShRNA#2-infected

neurons, respectively) were similar in the

two experimental groups. Data are means ± SEM

(n = 157 and n = 160 synapses for ShRNActr and

ShRNA#2-infected neurons, respectively, from

n = 4 independent preparations).

(D) Representative 3D reconstructions of synaptic

terminals from 60-nm-thick serial sections ob-

tained from cortical neurons confirmed the severe

reduction in SV (light blue spheres) and CCV

(yellow spheres) number in ShRNA#2-treated

neurons, which was completely rescued in

ShRNA#2+KIAA1107-treated neurons. Endo-

somal structures (green), not connected with the

plasma membrane, are also visible. The AZ and

AZ-docked SVs are shown in red and blue,

respectively. The scale bar represents 200 nm.

(E) Morphometric analysis of the number of SVs

and CCVs in 3D-reconstructed synapses from

neurons transduced with ShRNActr (black bars),

ShRNA#2 (red bars), or ShRNA#2+KIAA1107

(white bars). Docked SVs (19.3 ± 2.38, 14.57 ±

2.37, and 20.37 ± 4.15 for ShRNActr,

ShRNA#2, and ShRNA#2+KIAA1107-infected

neurons, respectively) were similar in the three experimental groups. Data aremeans ±SEM (n = 10 synapses per genotype from n = 3 independent preparations).

*p < 0.05; **p < 0.01; one-way ANOVA/Bonferroni’s multiple comparison test.

See also Figures S5 and S6.
also delayed in silenced terminals compared to controls. The

increased endosomal size observed in silenced synapses both

under basal conditions (Figures 5B, S6A, and S6B) and after

stimulation (Figure S6C) is compatible with a longer retention

of SVs at endosomal level, strongly suggesting an impaired

clathrin-mediated SV reformation from endosomal structures.

When neurons were stimulated at higher frequency (200 APs

at 40 Hz), i.e., a frequency known to trigger fast membrane
3604 Cell Reports 21, 3596–3611, December 19, 2017
retrieval via endocytic intermediates upstream of clathrin-coat

assembly (Clayton et al., 2008; Cheung et al., 2010; Kononenko

et al., 2014; Watanabe et al., 2013, 2014), a decreased density of

HRP+ SVs was observed only at the end of the stimulus in

KIAA1107-KD terminals compared to control (Figure 6C), evi-

dence of amoderate impairment of SV reformation at this intense

activity level. HRP+ CCVs were nearly absent in both genotypes,

consistent with the idea that CME is largely dispensable for



Figure 6. KIAA1107 Knockdown Impairs Clathrin-Mediated Endocytosis in Cortical Synapses

(A) Representative TEM images of presynaptic terminals from control (ShRNActr) and KIAA1107-KD (ShRNA#2) neurons infected at 12 DIV and stimulated at

17 DIV with 200 APs at 5 Hz in the presence of soluble HRP. Synaptic ultrastructure was evaluated by fixing neurons under basal conditions (rest), immediately

after the stimulus (0 min), and after 2 or 20min of recovery in the absence of HRP (HRP+ SVs, black arrowheads; HRP+ CCVs, red arrowheads; HRP+ endosomes,

green arrowheads). The scale bars represent 200 nm.

(B and C) Morphometric analysis of HRP-labeled structures after the train stimulation at 5 (B) and 40 (C) Hz (200 APs). The density of HRP-positive (HRP+) SVs,

HRP+ endosome-like structures, and HRP+ CCVs in control (black bars) and KIAA1107-KD (red bars) neurons are reported as mean (±SEM) percentages of

the respective values observed in the control (ShRNActr) group at 0 min (5 Hz: ShRNActr HRP+SVs, 3.15 ± 0.25; ShRNActr HRP+CCVs, 0.90 ± 0.23; ShRNActr

HRP+endosomes, 1.11 ± 0.17; 40 Hz: ShRNActr HRP+SVs, 1.54 ± 0.23; ShRNActr HRP+endosomes, 0.1 ± 0.07). n = 150 and n = 120 images per genotype for

the 5- and 40-Hz protocols, respectively, from n = 4 independent preparations. *p < 0.05; **p < 0.01; ***p < 0.001 across genotype, two-way ANOVA/Bonferroni’s

multiple comparison test.

(D) Ensemble average normalized traces of SypHy fluorescence plotted for control (black trace, n = 8) and KIAA1107-KD (red trace, n = 5) neurons sequentially

stimulated with 200 APs at 5 Hz (dotted line) in the absence or presence of 30 mM Pitstop-2.

(E) Representative control data points (red dots) and relative fitting (black traces) by a single exponential function (y = y0+a
�bx). The a values in the absence (a) or

presence (ap) of Pitstop-2 are shown.

(legend continued on next page)
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plasma membrane retrieval at this stimulation frequency (Kono-

nenko et al., 2014; Park et al., 2016). In addition, the density of

HRP+ endosomal vacuoles was not altered in silenced synapses

(Figure 6C), although their size was increased also at this stimu-

lation frequency (Figure S6D).

We then used Synaptophysin-pHluorin (SypHy) (Tagliatti et al.,

2016), co-expressed in hippocampal neurons transduced with

either shRNActr or shRNA#2, to further assay membrane recy-

cling following low-frequency stimulation (200 APs at 5 Hz).

Surprisingly, no differences in the fluorescence increase, indica-

tive of the rate of release, as well as in the fluorescence decay,

representative of post-stimulus endocytosis, were observed in

KIAA1107-KD synapses compared to control synapses (Fig-

ure 6D). The inability of the SypHy assay to detect an endocytic

phenotype in silenced terminals could in principle be due either

to a compensatory SV membrane retrieval contributed by cla-

thrin-independent endocytosis (CIE) or, alternatively, to a major

involvement of KIAA1107 in SV budding from endosomes rather

than from the presynaptic membrane. To sort this out, we chal-

lenged neurons with the clathrin inhibitor Pitstop-2 (von Kleist

et al., 2011; Figure 6D). The inhibitory effect of Pitstop-2 on

endocytosis was severe in both control and KIAA1107-KD

synapses, despite the presence of a modest compensation

mediated by CIE in the latter (Figures 6D–6F). This suggests

that KIAA1107 silencing does not primarily impair SV membrane

retrieval or vesicle reacidification but rather SV reformation from

endosomes.

In summary, these functional data provide strong evidence

that KIAA1107 plays an important role both in CME at the

plasma membrane and in the reformation of SVs by clathrin

coats budding from endosomes. The kinetics of SV reforma-

tion, especially under conditions of low-frequency activity

when CME is the predominant pathway for SV recycling, is

affected by KIAA1107 silencing. Based on these data, we

named the KIAA1107 protein APache, for AP2-interacting cla-

thrin-endocytosis protein.

APache-Silenced Autaptic Neurons Exhibit Impaired
Presynaptic Function
To determine whether APache plays a role in synaptic transmis-

sion, we performed whole-cell patch-clamp recordings in autap-

tic hippocampal neurons silenced for APache at 6 DIV and

analyzed 5 or 6 days after infection. We preliminarily analyzed

the effects of APache silencing on the autapse density and found

that the density of synaptic contacts was preserved in APache-

KD autaptic neurons (Figure S7A).

Then, we proceeded to the analysis of synaptic transmission.

Neuronswere stimulatedwith paired stimuli (50-ms interpulse in-

terval) to evaluate evoked excitatory postsynaptic current

(eEPSC) amplitude and paired-pulse facilitation, a presynaptic

form of short-term plasticity and an indirect measure of the

release probability (Pr) (Fioravante and Regehr, 2011). APache-

KD neurons displayed a significant reduction of eEPSC ampli-
(F) The ap/a ratio, representing the percentage of retrieved SVs in the presence of P

n = 8) and KIAA1107-KD (red bar, n = 5) synapses. Data aremeans ±SEM from the

unpaired Student’s t test.

See also Figure S6.
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tude in response to single stimuli but no changes in paired-pulse

facilitation (Figures 7A and 7B). To investigate which of the

quantal parameters of release was responsible for the

decreased synaptic strength in APache-KD synapses, the cumu-

lative eEPSC amplitude analysis was performed by subjecting

neurons to high-frequency trains (2 s at 40 Hz) that induce a

complete depletion of the readily releasable pool of SVs (RRP)

(Figures 7C–7E). Under this condition, the depression during

the steady-state phase is limited by the constant recycling of

SVs so that an equilibrium is reached between released and

recycled SVs (Schneggenburger et al., 1999). The analysis

showed that the RRP size was significantly decreased in

APache-KD neurons, to the same extent of the reduction in

eEPSC amplitude, whereas Pr was not affected (Figure 7F).

This suggests that the impairment in evoked release in

APache-KD neurons is likely to involve the constant replenish-

ment of the RRP by the recycling SV pool. Despite the change

in RRP, the dynamics of facilitation and depression during the

2-s train at 40 Hz were not significantly affected in silenced

neurons compared to control (Figure 7D). Because the various

endocytic mechanisms are known to be recruited in a fre-

quency-dependent manner, autaptic neurons were challenged

with short 2-s trains at frequencies ranging from 5 to 20 Hz

and with a long 30-s train at 10 Hz to analyze the expression of

facilitation/depression over time (Figures 7G, 7H, S7B, and

S7C). APache-silenced neurons exhibited a more pronounced

depression that was tightly dependent on the stimulus fre-

quency. Synaptic depression was faster, more intense, and

prolonged in APache-KD synapses during 5-Hz stimulation (Fig-

ures 7G and 7H) and progressively attenuated with the increase

in stimulation frequency (Figure S7B). The strong increase in

synaptic depression at 5 Hz, consistent with the RRP depletion

and inactivation of release sites (Fioravante and Regehr, 2011),

is likely due, similarly to other endocytic mutants (Milosevic

et al., 2011), to the impaired clathrin-mediated recycling of

SVs. APache silencing was also associated with an accelerated

kinetics of depression evoked by long trains (30 s at 10 Hz;

Figure S7C). In addition, post-tetanic potentiation (PTP), a form

of short-term plasticity evoked after a short high-frequency

stimulation and contributed by increases in both Pr and RRP

(Valente et al., 2012), was also impaired in APache-KD neurons

(�35% reduction; Figure S7D), consistent with the SV depletion

observed upon APache silencing.

DISCUSSION

In the present study, using the bioinformatics GAMMA program

to search for uncharacterized genes associated with SVs and

presynaptic physiology, we identified KIAA1107 with the highest

score. The mouse KIAA1107 main isoform is a protein of

1,088 aas lacking both structural data and known function. Our

results demonstrate that KIAA1107 is an AP2 interactor that

plays a role in early neuronal development and in CME at mature
itstop-2 versus the retrieved SVs in its absence, is plotted for control (black bar,

indicated number of coverslips from n = 3 independent preparations. *p < 0.05;



Figure 7. KIAA1107 Silencing Decreases Evoked Excitatory Synaptic Transmission and Enhances Synaptic Depression in Autaptic

Hippocampal Neurons

(A) Representative eEPSCs recorded in autaptic neurons transduced with either ShRNActr (black traces, n = 67) or ShRNA#2 (red traces, n = 63). eEPSCs were

elicited by clamping the cell at �70 mV and stimulating it with two voltage steps to + 40 mV lasting 0.5 ms at an inter-stimulus interval of 50 ms (inset).

(B) eEPSC amplitude evoked by the first pulse (I1, left) and paired-pulse ratio (PPR) (I2/I1, right) recorded under the same conditions of (A).

(C) Representative recordings of eEPSC evoked by a 2-s tetanic stimulation at 40 Hz in autaptic neurons transduced with ShRNActr (black) or ShRNA#2 (red).

(D) Normalized values of eEPSC amplitude showing the time course of synaptic facilitation and depression in autaptic neurons stimulated as in (C).

(E) Cumulativemean amplitude profiles for eEPSCs during the tetanic stimulation shown in (C) in neurons infectedwith ShRNActr (black trace, n = 40) or ShRNA#2

(red trace, n = 37). Data points in the 1- to 2-s range were fitted by linear regression and backextrapolated to time 0 (solid lines) to estimate the RRP.

(legend continued on next page)
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synapses. We named the protein APache and consider it a

molecular component of the clathrin/AP2-dependent endocytic

machinery that regulates the fate of endocytosed SVs.

CME has a range of different functions that also include sam-

pling the cell environment for growth and guidance cues and

bringing nutrients into cells in developing neurons. An active

SV exo/endocytosis in the growth cone has been demonstrated

in cultured neurons (Matteoli et al., 1992; Sabo and McAllister,

2003). The present data suggest that, in developing neurons,

APache may function in vesicle trafficking events. APache is

expressed since the early stages of neuronal development

and is present in axonal processes and growth cones, where it

promotes neuronal maturation and process outgrowth both

in vitro and in vivo. Moreover, the expression level of AP2 is

reduced in developing silenced neurons. It is tempting to spec-

ulate that the developmental role of APache is obtained through

the clathrin-mediated trafficking pathways that control axon and

dendrite outgrowth in developing neurons that are character-

ized by abundant CCVs (Roos and Kelly, 1999). Intriguingly,

AP180 and CALM, two clathrin assembly proteins involved in

CME, also play critical roles in controlling the outgrowth of

axons and dendrites in embryonic hippocampal neurons

(Bushlin et al., 2008), and their silencing elicits morphological

phenotypes reminiscent of those of APache-depleted cortical

neurons.

Other potential interactors detected in the MS scans can

contribute to the effects of APache in neuronal development.

NUMBL, an endocytic adaptor binding to the AP2 complex

and Eps15 and implicated in CME and neurite outgrowth

(Santolini et al., 2000; Sestan et al., 1999; Nishimura et al.,

2003) was identified as an APache interactor in our study as

well as in a recent proteomic study (Hein et al., 2015). Dynac-

tin, a direct AP2-binding partner that regulates bidirectional

transport of vesicles in mammalian neurons, microtubule

advance during growth cone remodeling (Kwinter et al.,

2009; Grabham et al., 2007), and trafficking of BDNF-TrkB

signaling endosomes (Kononenko et al., 2017; Zhou et al.,

2012) was also identified as an APache interactor. Thus, in

addition to its role in endocytosis at the plasma membrane,

APache may also play a role in the internal vesicular/endoso-

mal transport.

Several lines of evidence suggest a potential role for APache in

CME atmature synapses. APache ismost abundant in brain and,

in mature synapses, is concentrated at presynaptic terminals,

where it colocalizes with synaptotagmin-1, AP2, and dynamin-1.

We have identified AP2 as an APache interactor with the

following evidence: (1) APache co-immunoprecipitates with

AP2a and b subunits from brain extracts, suggesting that it

may participate in the complex network of interactions regulating
(F) Quantal analysis of release in neurons infectedwith ShRNActr (black bars) or Sh

probability of release (Pr) are shown.

(G) Representative recordings of eEPSC evoked by a 2-s tetanic stimulation at

ShRNA#2 (red, n = 21).

(H) Normalized values of eEPSC amplitude showing the time course of synaptic fa

currents, stimulation artifacts were blanked for clarity. Data are means ± SEM fro

culture preparations. *p < 0.05; **p < 0.01; unpaired Student’s t test or Mann-Wh

See also Figure S7.
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CME and SV recycling; (2) APache is enriched in CCVs to levels

comparable to the coat proteins AP2 and clathrin and at a much

larger extent than CME accessory proteins, such as dynamin,

synaptojanin, amphiphysin, or endophilin; and (3) APache can

be stripped from purified CCVs by treatment with Tris buffer, a

well-established procedure to remove coat components from

SVs. Synapses that lack APache display the typical features of

endocytic mutants. The ultrastructural changes include a severe

depletion of SVs and CCVs and the presence of enlarged

endosome-like structures. The morpho-functional phenotype

of APache silencing consists in a global impairment of SV

recycling and synaptic strength that peaks under conditions of

low-frequency activity.

Mature synapses usemultiple activity-dependent SV recycling

mechanisms that operate in parallel and influence neurotrans-

mitter release and synaptic plasticity: ‘‘kiss and run’’; CME;

and clathrin-independent mechanisms (i.e., ultrafast or bulk

endocytosis). Whereas the retrieval of the majority of fully fused

SVs during mild electrical activity occurs through CME, with

vesicles reforming directly from the plasma membrane or from

endosomal structures (Hoopmann et al., 2010; Uytterhoeven

et al., 2011), during intense high-frequency activity, SV mem-

branes are mostly retrieved through CIE.

The experimental evidence indicates that APache is required

to maintain normal SV recycling and RRP refilling at the synapse

under conditions of mild stimulation by acting in the clathrin/

AP2-mediated regeneration of SVs both from the cell surface

and from internalized endosomal structures. The latter mecha-

nism seems to be the predominant one, given the lack of effect

of APache silencing on SV reacidification in the SypHy assay.

Consistent with this, enlarged endosomal vacuoles accumulate

at silenced synapses and may contribute to the depression of

neurotransmitter release. On the other hand, APache is dispens-

able for plasma membrane retrieval at high frequencies,

although it may be required for the clathrin-mediated SV refor-

mation from endosomal vacuoles generated by CIE. This model

is consistent with prior data demonstrating that silencing or

conditional knockout of either AP2 (Kim and Ryan, 2009;

Kononenko et al., 2014) or AP2-associated endocytic adaptor

proteins (Fergestad et al., 1999; Kononenko et al., 2013) signifi-

cantly slows down, but does not abolish, SV endocytosis and

validates the view that alternative molecules or different mecha-

nisms that normally operate in conjunction with AP2 are required

to ensure efficient SV and cargo retrieval over a wide range of

stimulation frequencies.

Although further structure function studies will be needed to

unravel the precise molecular mechanisms that mediate the

described APache functions, the identification of an additional

molecular component of the complex endocytic pathway is a
RNA#2 (red bars). From left to right, amplitude of the first eEPSC, RRP size, and

5 Hz in autaptic neurons transduced with either ShRNActr (black, n = 31) or

cilitation and depression in autaptic neurons stimulated as in (G). In all graphed

m the indicated numbers of cells recorded at least from n = 3 independent cell

itney U test.



step forward for getting insights into fundamental aspects of SV

recycling in the healthy and diseased brain.

EXPERIMENTAL PROCEDURES

C57BL/6J mice and Sprague-Dawley rats of either sex were from Charles

River Laboratories (Calco, Italy). All experiments, conducted at various stages

of development (from E18 to adult mice), were carried out in accordance with

the guidelines established by the European Communities Council (directive

2010/63/EU of March 4, 2014) and were approved by the Italian Ministry of

Health. The standard procedures for western blotting, CCV purification, pull-

down and co-immunoprecipitation assays, immunocytochemistry, real-time

PCR, and cultures of low-density and autaptic neurons are reported in detail

in the Supplemental Experimental Procedures.

GAMMA

GAMMA relies on identifying gene-gene expression correlations using

thousands of publicly available microarray datasets available from the GEO

repository. Additional data are reported in the Supplemental Experimental

Procedures.

KIAA1107 Antibodies and Constructs

A polyclonal KIAA1107-specific antibody was raised in the rabbit against a

conserved region comprising aas 732–894 of mouse KIAA1107. cDNA of

Kiaa1107 was amplified from total mRNA extracted from mouse brain and in-

serted into the p3XFLAG-CMV-14 or p277.pCCLsin.cPPT.hPGK.eGFP.WPRE

vector. shRNAs#1–3 and control shRNA were inserted into the pLKO.1-

CMV-mCherry lentiviral vector and used to knockdown the endogenous

KIAA1107 in neurons. For detailed description of antibodies, constructs, and

neuronal and cellular transfection, see the Supplemental Experimental

Procedures.

MS Analysis

Sample preparation, LC-MS/MS analysis, database searching, and criteria

for protein identification were conducted as reported in details in the Supple-

mental Experimental Procedures.

IUE

Standard IUE was performed as previously described (Szczurkowska et al.,

2016). The images were acquired using a confocal laser-scanning microscope

(TCS SP5; Leica Microsystem) or an epifluorescence microscope equipped

with Neurolucida (MicroBrightField) software. For detailed procedures and

reagents, see the Supplemental Experimental Procedures.

TEM

Low-density cultures of cortical neurons were infected at 12 DIV with either

control shRNA or KIAA1107 shRNA and processed for TEM. For detailed pro-

cedures, see the Supplemental Experimental Procedures.

Live Imaging and Patch-Clamp Experiments

Optical recordings with Syphy fluorescent probe were performed at 17 DIV

(5 days postinfection). Whole-cell patch-clamp recordings were made from

autaptic neurons grown on microislands infected at 6 DIV with either control

shRNA or KIAA1107 shRNA. For detailed procedures, see the Supplemental

Experimental Procedures.

Statistical Analysis

Data with normal distribution were analyzed by one- or two-way ANOVA fol-

lowed by the Bonferroni’s multiple comparison test or the unpaired Student’s

t test. Non-normally distributed data were analyzed by the Mann-Whitney’s U

test. Statistical analysis was carried out using Prism (GraphPad Software, La

Jolla, CA, USA) and OriginPro-8 (OriginLab, Northampton, MA, USA) software.

Significance level was preset to p < 0.05. Data were expressed as means ±

SEM for number of samples/cells (n) as detailed in the figure legends.
SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and one data file and can be

found with this article online at https://doi.org/10.1016/j.celrep.2017.11.073.
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