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The replica theory of the ”Random First Order Transition” (RFOT) from a supercooled liquid
to an ”ideal” glass of a system of ”soft spheres” is revisited. Following the seminal work of Mézard
and Parisi (J. Chem. Phys. 111, 1076 (1999)), the number m of weakly interacting replicas of
the system is varied continuously from m = 2 to m < 1. Relevant order parameters and the free
energy of the liquid and glass phases are calculated using the hyper-netted (HNC) approximation
for the pair correlation functions. The scenario observed for all m confirms the existence of two
glass branches G1 and G2. The latter has the lowest free energy for all m > 1, while the former has
a lower free energy for m < 1, but is shown to be unstable against spinodal decomposition for any
non-zero value of the attractive inter-replica coupling. The critical temperature Tcr of the RFOT
turns out to depend on m, which may reflect the thermodynamic inconsistency of the HNC closure.
The RFOT is predicted to be weakly first order, characterized by a small jump in density between
the coexisting liquid and G2 phases for all m > 1. Estimating Tcr in the limit m −→ 1 requires
a proper extrapolation of high resolution HNC calculations. The present protocol allows a direct
access to the free energy of the ideal glass phase below Tcr.
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I. INTRODUCTION

Our understanding of the transition of a supercooled liquid to an amorphous solid, or glass, has evolved dramatically
over the last two decades. A generic scenario for fragile structural glasses (whose viscosity does not follow a simple
Arrhenius behaviour as a function of temperature [1]) is by now generally accepted (for extensive reviews, see e.g. [2]
and [3]). According to that scenario, when a liquid is rapidly cooled (i.e. quenched) below its equilibrium freezing
temperature Tf , it undergoes a succession of dynamical and thermodynamic transformations towards an ”ideal” glass
phase, a state which is thermodynamically stable after an infinitely long relaxation time, and hence experimentally
unobservable. The successive stages of the scenario upon lowering the temperature are the following:

- A ”kinetic” glass transition (GT) at a temperature Tk <Tf , characterized by a dramatic structural slowing down,
as detected by inelastic neutron scattering experiments [4], and predicted by ”mode coupling” theory (MCT) [5].

- A ”laboratory” GT, at a temperature Tg, where relaxational and experimental time scales become comparable;
the latter are typically of the order of 103 sec. Tg is not an intrinsic property of the glass former, but depends on the
quench rate: the slower the cooling rate, the lower Tg. The ”laboratory” GT is signalled by a rapid change in slope
of the measured thermodynamic properties, like the molar volume [6].

- Below Tg, ”aging” of the material sets in, i.e. measured time-dependent correlation functions are no longer time-
translational invariant, signalling that the system has not reached thermodynamic equilibrium. Moreover the local
molecular dynamics are increasingly heterogeneous (”dynamical heterogeneity”), with quiescent (or frozen) nano-scale
regions coexisting with regions undergoing structural rearrangement at any instant of time [7].

- It has long been conjectured that the deeply supercooled liquid finally undergoes a ”random first order transition”
(RFOT) to the ”ideal” glass phase at some critical temperature Tcr. On the basis of formal analogies with the mean-
field predictions of some classes of spin glasses (corresponding to infinite dimensionality), it is generally accepted that
Tcr =TK for structural glasses as well [8, 9], where TK is the Kauzmann temperature [10] at wich the configurational
entropy, related to the number of accessible metastable thermodynamic states of the system, vanishes. It must be
remembered that the ”ideal” glass is a ”virtual” phase, since it requires an infinitely long relaxation process.

In an ”ideal glass”, atoms vibrate around disordered equilibrium positions ({Ri}; 1 < i < N), rather than around
the periodic positions of a crystal lattice. In this disordered state, the system is ”stuck” in the lowest minimum of
the suitability defined free energy ”landscape” [11]. Although a detailed characterization of such a landscape with an
exponentially large number of local minima is clearly unachievable, the replica method for the study of disordered
systems [12] can be put to good use to probe the landscape by defining a suitable order parameter [13, 14] which
can be calculated, at least approximately, using techniques borrowed from the theory of liquids [15]. In a series of
papers we recently used the replica approach to investigate a system of two weakly coupled replicas to locate the
RFOT of systems of soft spheres [16] and of Lennard-Jones atoms [17]. Based on the hyper-netted chain (HNC)
free energy functional [18] the calculations predicted that the RFOT is characterized by a discontinuity of the order
parameter in the limit of vanishing inter-replica coupling, as expected, and by a small (1 percent) relative volume
change between the liquid (L) and ideal glass G2 phases at the critical temperature Tcr. An independent estimate
of the Kauzmann temperature TK suggested that Tcr >TK, confirming that the RFOT preempts the ”Kauzmann
catastrophe”, i.e. a vanishing configurational entropy. The scenario predicted by HNC theory was confirmed by
calculations on more advanced thermodynamically self-consistent integral equations [16, 17], although with significant
quantitative differences. In a seminal paper, Mézard and Parisi [19] used the same HNC free energy functional
which they extended to non-integer, continuously varying the number m of coupled replicas (as opposed to the more
”pedestrian” choice m = 2 [14, 16, 17]). They determined Tcr (assumed to coincide with TK) in the range m > 1. In
order to calculate the thermodynamic properties of the ”ideal” glass below Tcr, they extended their search to m < 1
and showed that these properties could be related to those of the supercooled liquid at the effective temperature T/m.

Their work was extended recently to explore the influence of critical correlations on slow relaxation in glasses, in
the vicinity of the RFOT [20]. In the present paper, we adopt the strategy of continuously varying the number m of
weakly coupled replicas within the framework of HNC theory [19], to look for liquid-like and glass-like solutions in the
range 1 < m < 2, using the search protocols previously applied to the m = 2 case [16, 17]. The present investigation
is restricted to the well documented model of ”soft spheres” [21]. The two key questions which will be addressed are:

a) Is the RFOT temperature Tcr independent of m, as implicitly assumed in Ref. [19] ?

b) Is the RFOT a weakly first order thermodynamic transition, as for m = 2 [16] or is it a second order transition,
as assumed in Ref. [19], in the limit m −→ 1?

The outline of the paper is the following: Section 2 briefly recalls the model, the order parameters, the HNC
approximation and the replica strategy. In section 3, the range 2 ≥ m > 1 is systematically investigated. The limit
m −→ 1 is examined in section 4. The range m < 1 is explored in section 5. Conclusions are drawn in section 6.
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II. THEORETICAL BACKGROUND

The ”soft sphere” model is a three-dimensional system of atoms interacting via the pair potential

v(r) = ǫ
(σ

r

)n

, (1)

with the exponent n chosen here to be 12; ǫ sets the energy scale while σ is the atomic diameter. The advantage of
this family of potentials lies in the fact that the excess (non-ideal) thermodynamic properties depend only on a single
dimensionless parameter Γ, rather than on density ρ and temperature T separately [21] ; for n = 12:

Γ =
ρσ3

(kBT/ǫ)1/4
=

ρ∗

(T ∗)1/4
, (2)

such that:

βv(r) =
Γ

r12
, (3)

where β = 1/kBT and distances are measured in units of σ. Consider now a system of m identical replicas (or
”clones”), the atoms of which are weakly coupled by a short-ranged inter-replica attraction chosen to be of the form:

βv′(r) = −ǫ′
[

c2

r2 + c2

]6

= −ǫ′w(r), (4)

The range parameter c is chosen to be 0.3 (in units of σ) to ensure that an atom of one replica can interact at most
with one atom of another replica. The exact form of the chosen v′(r) is irrelevant, since we shall be interested in the
limit ǫ′ −→ 0. Such a symmetric m component ”mixture” is characterized by only two pair correlation functions:
the intra-replica correlation function h(r) and the inter-replica correlation function h′(r), whatever the value of m.
The pair correlation functions are related to the corresponding direct correlation functions c(r) and c′(r) via the
Ornstein-Zernike (OZ) relations [15]:

h(r) = c(r) + ρc(r)⊗ h(r) + (m− 1)ρc′(r)⊗ h′(r), (5a)

h′(r) = c′(r) + c(r)⊗ h′(r) + ρc′(r)⊗ h(r) + (m− 2)ρc′(r)⊗ h′(r), (5b)

where ⊗ denotes a three-dimensional convolution product. These relations must be supplemented by approximate
closure relations; the HNC closure relations read [15]:

g(r) = exp [−βv(r) + γ(r)] , (6a)

g′(r) = exp [−βv′(r) + γ′(r)] . (6b)

The great advantage of the HNC approximation over more advanced closures is that the excess Helmholtz free
energy per particle βfex can be expressed in terms of the pair correlation functions alone [18, 22]:

βfex =
1

2ρm(2π)3

∫

dk{mρĥ(k)

− (m− 1) log(1 + ρĥ(k)− ρĥ′(k))− log(1 + ρĥ(k) + (m− 1)ρĥ′(k))}

+
ρ

2

∫

dr{g(r) [log g(r) + βv(r)]− h(r)−
h2(r)

2
}

+
(m− 1)ρ

2

∫

dr{g′(r) [log g′(r) + βv′(r)]− h′(r)−
h′2(r)

2
}

(7)

where p̂(k) denotes the dimensionless Fourier transform (FT) of any function p(r):
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FIG. 1. Order parameter h′(r = 0) versus Γ for m =2.0, 1.95, 1.85, 1.50, 1.30 and 1.10.

p̂(k) = ρ

∫

e−ik·rp(r)dr, (8)

All other thermodynamic properties then follow by taking appropriate derivatives of (7). In the rest of the paper,
f∗

ex =fex/ǫ denotes the reduced excess free energy per particle.
The thermodynamic properties of the supercooled liquid L phase are calculated by setting ǫ′ = 0, i.e. by considering

fully decoupled clones, implying h′(r) =c′(r) = 0. For finite values of ǫ′, the attraction between atoms of different
clones will favour configurations corresponding to the same local free energy minimum. This tendency can be quantified
by calculating the order parameter Q defined as the statistical average of the overlap function q1,2 [14, 16] between
two clones:

q1,2(
{

r
1
i

}

,
{

r
2
j

}

) =
1

N

N
∑

i=1

w
(∣

∣r
1
i − r

2
i

∣

∣

)

, (9)

where r
1
i and r

2
i are the position vectors of the N particles of two different clones, 1 and 2.

Q = 〈q1,2〉 = 4πρ

∞
∫

0

g′(r)w(r)r2dr. (10)

An alternative order parameter is provided by h′(r = 0). In the absence of inter-replica coupling ǫ′ = 0, h′(r =
0) = 0, while for finite ǫ′, a central peak of the inter-replica correlation function h′(r) is expected to build up as T
is lowered (i.e. Γ increases) [16]. The two order parameters provide the key ”diagnostics” to locate the RFOT. The
search strategy, for a given value of Γ, is to solve the set of HNC equations for h(r) and h′(r), starting from an initial
finite value of the inter-replica coupling ǫ′, and to monitor the values of the order parameters Q and h′(r = 0) upon
gradually reducing ǫ′. If in the limit ǫ′ −→ 0, the order parameters take on their ”random” (or un-correlated) values
Qr (as calculated from Eq. (9b) with g′(r) = 1) and h′(r = 0) = 0, the thermodynamic state Γ corresponds to the
L phase. If, on the other hand, the order parameters take on values Q >> Qr and h′(r = 0) >> 0 in the limit
ǫ′ −→ 0, the system is in a glass phase, where the replicas are all trapped within the same minimum of the free energy
landscape. The process can be repeated for many values of the thermodynamic state parameter Γ, and a free energy
versus Γ curve can be mapped out using Eq. (7), both for the supercooled liquid and glass phases. In fact our earlier
calculations for m = 2 [16, 17] point to the existence of two glass phases, the stable, ”ideal” glass phase G2, and a
metastable glass phase G1 (of higher free energy). In the following sections we report our results for a continuously
varying number m ≤ 2 of clones.
In practice the coupled HNC equations for h(r) and h′(r) were solved numerically, using Gillan’s very efficient

iterative algorithm [23], for several resolutions ∆r of the spatial grid and a corresponding variation of the total
number Ng of grid points such as to keep the overall range in direct and reciprocal space large enough, and the grid
spacing small enough, to minimize truncation and discretization errors of the numerical integrals. In practice, in the
calculations Ng was never smaller than 4097 and ∆r not larger than 0.01.
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FIG. 2. Same as Fig. 1, but for the overlap parameter Q.

III. REDUCING THE NUMBER OF REPLICAS FROM m = 2 TO m = 1.1

This section presents results, using accurate HNC calculations, of the pair structure and RFOT order parameters
h′(r = 0) and Q, to map out the free energies of the L, G1 and G2 phases as functions of the soft sphere coupling
parameter Γ, upon gradually reducing the number of replicas from m = 2 to m = 1.1. In practice, for given values of
m and of the intra-replica coupling Γ, an initial value of the inter-replica coupling ǫ′ = 0.001ǫ is chosen; the variation
of the order parameters h′(r = 0) and Q is then monitored upon gradually reducing ǫ′.

Fig 1 shows the variation of h′(r = 0) with Γ for six values of m. As Γ is lowered the order parameter increases along
the G1 branch, down to a threshold value, where a discontinuous jump occurs towards the G2 branch along which the
order parameter increases rapidly as Γ is increased. The latter behaviour is that expected for an ”ideal glass” trapped
in the lowest free energy minimum. The confinement of different replicas within this state is gradually enhanced as
the temperature is lowered as reflected in the rapid increase of the order parameter. To the contrary, the increase of
the order parameter as Γ is lowered, as observed along the G1 branch is incompatible with the ”ideal glass” behaviour.
It is tentatively interpreted as a ”defective” metastable state, where different replicas are trapped in neighbouring
minima of the free energy hypersurface, separated by a free energy barrier; the latter is more easily overcome as the
temperature increases [16, 17]. The metastable nature of the G1 branch is confirmed by its systematically higher free
energy compared to that the G2 phase (cf Fig. 3).

Fig. 2 shows the corresponding results for the overlap order parameter Q. The overall scenario is identical to that
revealed by Fig. 1, with quantitative agreement as regards the location of the discontinuous jumps from the G1 to
the G2 phase. The differences in reduced excess free energies (per particle), ∆f∗

ex(Γ;m) = f∗L
ex (Γ) − f∗G1

ex (Γ;m) and
f∗L
ex (Γ) − f∗G2

ex (Γ;m) are plotted as functions of Γ for four values of m in Fig. 3. The free energy curves of the L
and G2 phases are seen to intersect at increasing critical values Γcr of Γ as the number m of replicas is continuously
lowered. The intersection at Γcr signals the RFOT which appears to be a weakly first order thermodynamic transition
characterized by a small discontinuity of the molar volume, in agreement with our earlier predictions form = 2 [16, 17].
However the difference in slope of the L and G2 free energy curves gradually decreases upon reducing m, pointing
to the possibility of the weakly first order transition eventually turning into a second order transition as m −→ 1.
This will be the subject of the following section. Table I summarizes the key predictions of our HNC calculations
for 2 ≥ m ≥ 1.1, namely the values of Γ at which the discontinuous jump of the order parameters h′(r = 0) and Q
between the G1 and G2 phases is observed, and the location of the intersection between the free energies of the G2

and L phases, which we identify as the RFOT.

IV. APPROACHING THE LIMIT m = 1

This section focuses on the physically relevant limitm −→ 1. In this regime the differences in free energy between the
three phases tend to become very small over an increasingly large range of couplings Γ, thus requiring an increasingly
high spatial resolution of the HNC calculations.

Fig. 4 shows the dependence on Γ of the difference in reduced excess free energy of the L and G2 phases:



6

FIG. 3. Difference (multiplied by 103) in reduced excess free energies (per particle) of the L and G1 phases (dashed line) and
of L and G2 phases (full line) for m =1.85 (A), 1.50 (B), 1.30 (C) and 1.10 (D).
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FIG. 4. Difference in reduced excess free energies (per particle) of the L and G2 phases (multiplied by 105) for several values
of m (listed in the inset).

∆f∗

ex(Γ;m) = f∗L
ex (Γ)− f∗G2

ex (Γ;m), (11)

for 1.1 ≥ m ≥ 1.003. As m decreases, the RFOT, which corresponds to ∆f∗

ex = 0, is shifted to higher critical
values Γcr. Eventually, for m <1.005, Γcr ceases to increase and ”sticks” to the value Γcr=2.12, which may hence
be identified as the location of the RFOT in the limit m −→ 1. In view of the extremely small values of ∆f∗

ex

over a substantial range of couplings, the RFOT may, to all intents and purposes, be considered as a continuous
thermodynamic transition at m = 1.
We now turn our attention to the variation of the order parameter h′(r = 0) as Γ is gradually lowered along the G2

branch in the single replica limit m = 1. The HNC predictions are shown in Fig. 5. As Γ decreases to values below
the RFOT coupling Γcr=2.12, the ”ideal” glass phase becomes metastable relative to the L phase. At Γ = 2.057, a
discontinuous jump of h′(r = 0) is observed towards the G1 branch, while at Γ < 2.057, the order parameter drops
to its L phase value h′(r = 0) = 0. No ”glassy” solutions of the HNC equations exist below this coupling, which
coincides with the dynamical transition point obtained by Franz et al. (cf. Table I of ref. [20]) for the same model,
using a more elaborate approach.

V. EXPLORING THE RANGE m < 1

The HNC calculations for a continuously varying number m of replicas can be extended to m < 1. In the work of
Mézard and Parisi [19,24], the motivation of such an extension is to bypass the RFOT and have access to the free
energy of the ”ideal” glass phase at temperatures T below the critical temperature Tcr via an auxiliary ”molecular
liquid” phase. Although our own HNC-based search protocol does not require this subtle detour, we explore the range

TABLE I. Γjump: Γ at which the order parameters h′(r = 0) and Q jump from values corresponding to the G1 phase to those
corresponding to the G2 phase. Γcr is the critical Γ at which the free energies of the L and G2 phases intersect.

m Γjump Γcr

2.00 1.577 1.650

1.95 1.609 1.675

1.85 1.666 1.734

1.50 1.839 1.910

1.40 1.884 1.955

1.30 1.935 2.060

1.20 1.972 2.044

1.10 2.020 2.088
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FIG. 5. Variation of the order parameter h′(r = 0) with Γ within L (times), G1 (crosses) and G2 (circles) phases in the limit
m = 1: succession of two jumps.

m < 1 to make contact with the Mézard-Parisi predictions. To that purpose we examine the variation of the order
parameters h′(r = 0) and Q for five values of m, namely 0.75, 0.80, 0.85, 0.90 and 0.95. Independently of m, the order
parameters stay close to their L values h′(r = 0) = 0 and Q =Qr upon increasing Γ until they undergo a discontinuous
jump at Γdj = 2.175 in the limit ǫ′ −→ 0, leading to HNC solutions typical of the G1 phase (i.e. decreasing order
parameters upon increasing Γ). Annealing these states yields solutions typical of the G2 phase. The variation of the
order parameter h′(r = 0) with Γ is illustrated in Fig. 6 for m = 0.75.
We next examine the variation of the excess free energy of the G1 and G2 phases with m at fixed temperature, i.e.

f∗G1

ex (Γ;m) and f∗G2

ex (Γ;m). Two examples are shown in Fig. 7. The behaviours of the two branches differ drastically.
Starting from an arbitrary state (m0 < 1,Γ0 >Γcr), f

∗G1

ex (Γ0;m) is seen to be a monotonically increasing function
of m, while f∗G2

ex (Γ0;m) is found to first increase with m before going through a maximum at some m∗ < 1, i.e.
∂f∗G2

ex /∂m
∣

∣

m=m∗
= 0. As the coupling Γ0 of the initial state is lowered, the position m∗ of this maximum is shifted to

larger m, until reaching m∗ = 1 for Γ0 = 2.13, in close agreement with the critical value Γcr = 2.12 reported in Section
IV upon approaching m = 1 from above (i.e. from m > 1), as illustrated in Fig. 4. As expected, and illustrated in
Fig. 7, the free energies of the G1 and G2 phases are identical for m = 1. While for any m > 1 the free energy of
the G1 phase is systematically higher than that of the G2 phase, the opposite is true for m < 1 which appears to
imply that the G1 phase is the stable phase in that range. This awkward situation can however be interpreted upon
examining the free energy data for non-zero values of the inter-replica coupling ǫ′. For ǫ′ > 0 coexistence of low and
high overlap phases is observed below a critical temperature Tc [24,25]. Plots of ǫ′(Q) as a function of the overlap
order parameter Q for fixed temperature T <Tc (Γ >Γc) exhibit van der Waals-like loops, as one might expect from

FIG. 6. Variation of the order parameter h′(r = 0) with Γ within the G1 phase (crosses) and within the G2 phase (circles) for
m = 0.75.
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FIG. 7. Variation of the excess free energies of the G1 (dashed curves) and G2 (full curves) phases with m for the two couplings
Γ = 2.175 (A) and Γ = 2.15 (B).

a mean-field theory. These loops involve a low Q branch, associated with the supercooled liquid (L) phase, and a
high Q branch, associated with the G2 ”ideal glass” phase, separated by an intermediate branch where ǫ′(Q) is a
decreasing function of Q, typical of the G1 phase. For any T <Tc, the Maxwell equal area construction determines
the order parameters of the coexisting L and G2 phases (see e.g. Fig. 4 of [25]). The maximum and minimum of
ǫ′(Q) are spinodal points, and spinodal curves are mapped out upon varying T <Tc. States inside the spinodal curve,
which correspond precisely to the G1 ”phase” are unstable with respect to spinodal decomposition. Note that in the
limit ǫ′ −→ 0 Tc=Tcr, the RFOT temperature determined in Section IV. Although thermodynamically unstable, the
G1 ”phase” might be observable as a transient state, provided the kinetics of spinodal decomposition is sufficiently
slow.

VI. CONCLUSION

We have generalized the physically transparent ”pedestriant” two-replica analysis of the RFOT to a description
based on a continuously varying number m of replicas in the range 2 ≥ m > 1. This extension is easily achieved
within the HNC framework, which provides an expression for the free energy, valid for arbitrary m, as well as for
the inter-replica pair correlation function h′(r) which allows the calculation of the order parameters h′(r = 0) and
Q (the overlap order parameter). For a given m the free energies of the three competing phases L, G1 and G2, as
identified by the values of the two order parameters, are calculated as functions of the coupling Γ for a supercooled
system of particles interacting via the pair potential (1). The critical coupling Γcr at the RFOT is found to depend
sensitively on m; as m decreases, Γcr increases from Γcr = 1.65 for m = 2 to Γcr = 2.12 in the limit m −→ 1. The
question naturally arises of the origin of this significant variation. Is it associated with the replica methodology itself,
as applied to structural glasses, or is it due to limitations of the HNC approximation? The latter is well known to
be thermodynamically inconsistent, e.g. the virial and compressibility routes lead to significantly different equations
of state, particularly in the strong coupling regime [15]. This deficiency can in principle be overcome, by switching
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to a self-consistent closure relation instead of the HNC closure (6). In our earlier work with m = 2, we showed that
self-consistent closure relations lead to substantially different estimate of Γcr, at the cost of a much larger numerical
effort, since the HNC free energy expression (7) does not carry over to more advanced closures, and must be replaced
by tedious thermodynamic integration protocols [16, 17]. Calculations along these lines, for continuously varying
values of m, will be the object of future work. The gradual decrease of T ∗

cr (increase of Γcr) with m, predicted by
the HNC approximation leads to an additional inconsistency, since for m ≤ 1.84, T ∗

cr drops below the m-independent
Kauzmann temperature T ∗

K = 0.108 (ΓK = 1.74), which is the temperature at which the configurational entropy
(or complexity) of the supercooled liquid vanishes [16]. Such a ”cross-over” is of course unphysical, since the RFOT
is meant to preempt the ”Kauzmann catastrophe”, i.e. a negative complexity! Again, future work based on more
advanced closure relations should be able to resolve this contradiction.
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