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PREFACE 

This thesis is submitted in fulfillment to the requirements of the Graduate School of 

Nanotechnology for the academic title of Ph.D. in Nanotechnology at the University of Trieste. The 

work has been carried out mainly at the Department of Life Sciences at the University of Trieste 

under the supervision of Prof. Sergio Paoletti and co-supervised by Dr. Eleonora Marsich, Dr. 

Gianluca Turco. Part of the activity was performed at Biomaterial Lab of the Dental Clinic of 

Maggiore Hospital.  

This study was supported by the INTERREG V-A ITALIA- SLOVENIA 2014-2020 BANDO 

1/2016 ASSE 1 - project BioApp 1472551605. I also acknowledge the support by the ERA-

MarineBiotech project Mar3Bio. 

The thesis consists of a general introduction, aim of the study and a detailed discussion of results 

divided into three chapters. 
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SUMMARY 

The repair of articular cartilage represents a huge challenge in the biomedical field. Articular 

cartilage is a thin layer between bone at the joint site, and despite its dimension, plays a key role in 

the distribution of the loads through the bones, and allows free movements of the joint, avoiding 

friction. Articular cartilage lacks of innervations, lymphatic stream and blood stream, and the 

chondrocytes (the main cell type) presented a poor proliferation ability. These conditions determine 

a serious problem when the tissue is damaged or affected by a disease. Unfortunately, articular 

cartilage is subjected to numerous trauma that can occur during life from long term wear, to 

physical injuries, but also inflammatory and genetic diseases. As a result, a progressive and 

irreversible degeneration of the cartilage could lead to changes also in the adjacent synovial and 

bone tissue resulting in an arthritis disease. Nowadays researchers are trying to overcome the more 

classical therapies (pharmacological treatment, viscosupplementation, arthroscopy, and autologus 

chondrocytes implantation), that are not able to completely restore the native tissue, by tissue 

engineering approaches.  

The aim of the present work is to develop a biomaterial that could fit in the cartilage defect. Such 

biomaterial should possesses mechanical properties resemble that of the native tissue, intrinsic 

bioactivity to guide the repair, and a long-lasting sustained release of a therapeutic molecule. 

In Chapter I, the miscibility studies of two oppositely charged polysaccharides , namely hyaluronic 

acid and CTL (lactose modified chitosan) were described. Investigations on the influence of several 

parameters that could affect the behavior of the two polymers were conducted. The possibility to 

prepared complex coacervates via electrostatic interaction between the two polyelectrolites was 

explored by Transmittance and Dynamic Light Scattering analyses. 
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The characterization of the coacervates is reported in Chapter II. Here, the possibility to stabilize 

the system in physiological conditions was investigated. The stability in physiological ionic 

strength, temperature and pH was achieved by using an EDC/NHS chemistry. The possibility to 

freeze-dry and store the coacervates for commercial purposes were also investigated. The loading 

efficacy and release kinetic of this system was accessed using a model payload. Lastly, the 

biocompatibility of the coacervates is reported and analysed. 

The development of a bioactive hydrogel is described in Chapter III. Alginate, CTL and chondroitin 

sulfate were employed for hydrogel preparation. The gelification occurred by exploiting the ion 

diffusion technique. After the mechanical characterization of the structure, the integration of 

coacervates within the hydrogel was successfully explored.  

Further in vitro and in vivo experiment should be conducted to complete the characterization of the 

whole system, but the data collected in this thesis proposed a promising biomaterials that may be 

considered for the treatment of articular cartilage defects. 
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SOMMARIO 

La riparazione della cartilagine articolare rappresenta una grande sfida in campo biomedico. La 

cartilagine articolare è uno strato sottile che si trova tra due ossa a livello delle giunzioni articolari. 

Nonostante il suo spessore, svolge un ruolo chiave nella distribuzione dei carichi e permette alle 

ossa articolari di muoversi evitando l’attrito. La cartilagine articolare non presenta innervazione, e 

non è raggiunta da vasi linfatici o sanguigni. Inoltre, le cellule che compongono la cartilagine, i 

condrociti, presentano una scarsa capacità proliferativa. Tali condizioni determinano una scarsa 

capacità rigenerativa del tessuto. Sfortunatamente, la cartilagine articolare è soggetta a numerosi 

traumi che possono verificarsi durante la vita per usura a lungo termine, lesioni fisiche, o malattie 

infiammatorie e genetiche. Conseguentemente, una degenerazione progressiva e irreversibile della 

cartilagine potrebbe portare a cambiamenti anche nei tessuti sinoviale e osseo adiacenti, con 

conseguente sviluppo di patologie quali osteoartrite e malattie reumatiche.  

Attualmente i ricercatori stanno cercando di superare le terapie più classiche (trattamento 

farmacologico, viscosupplamentazione, artroscopia e impianto di condrociti autologhi), che non 

sono in grado di ripristinare completamente il tessuto nativo, sfruttando l'approccio dell'ingegneria 

tissutale.  

Lo scopo del presente lavoro è quello di sviluppare un biomateriale capace di riempire il difetto 

cartilagineo, dotato di proprietà meccaniche simili a quelle del tessuto nativo, di bioattività 

intrinseca per guidare la riparazione della cartilagine e capacità di garantire un rilascio prolungato di 

una molecola bioattiva (farmaco o fattore di crescita). 

Nel Capitolo I sono stati descritti gli studi di miscibilità di due polisaccaridi con carica opposta, 

vale a dire acido ialuronico e CTL. E’ stata esaminata l’influenza di pH, forza ionica, peso 

molecolare e rapporto quantitativo tra i due polimeri sul comportamento della soluzione binaria. La 
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possibilità di preparare coacervati tramite l'interazione elettrostatica tra i due polielettroliti è stata 

valutata mediante analisi di trasmittanza e dynamic light scattering. 

La caratterizzazione dei coacervati è riportata nel Capitolo II. Qui è stata studiata la possibilità di 

stabilizzare il sistema in condizioni fisiologiche. La formazione dei coacervati avviene 

immediatamente dopo il gocciolamento dell’acido ialuronico nella soluzione di CTL. I coacervati si 

sono subito dimostrati stabili in condizioni di forza ionica e temperatura fisiologiche, mentre hanno 

mostrato una dissoluzione dipendente dal pH. La stabilità in funzione del pH è stata ottenuta 

utilizzando un cross-linker chimico. E’ stata valutata anche la possibilità di liofilizzare e conservare 

i coacervati per scopi commerciali. L'efficienza di caricamento e la cinetica di rilascio di questo 

sistema è stata valutata utilizzando una molecola modello. Infine, viene presentata una valutazione 

della biocompatibilità dei coacervati. 

Lo sviluppo di un idrogele bioattivo è descritto nel Capitolo III. Alginato, CTL e condroitin solfato 

sono stati impiegati per la preparazione dell’idrogele. La gelificazione avviene sfruttando la tecnica 

della diffusione ionica. Dopo la caratterizzazione meccanica della struttura, l'integrazione dei 

coacervati all'interno dell'idrogele è stata ottenuta con successo. 

Ulteriori esperimenti in vitro e in vivo devono essere condotti per completare la caratterizzazione 

dell'intero sistema, ma i dati raccolti in questa tesi propongono un biomateriale che può essere preso 

in considerazione per il trattamento dei difetti della cartilagine articolare. 
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1. INTRODUCTION 

1.1 Articular Cartilage 

Articular cartilage is a thin layer of hyaline cartilage that covers opposing articulating 

bones.[1] Despite the size of the tissue, ranging from 2 to 4 mm thick, articular cartilage has a 

primary importance allowing free movements between bones, distributing the loads and resisting to 

compressive, tensile and shear forces.  

 

Figure 1: representation of human knee articular cartilage. 

 

From a biological point of view, articular cartilage is composed of a dense extracellular 

matrix (ECM) with a sparse distribution of highly specialized cells named chondrocytes.[2] 

Conversely to the majority of the body tissues, chondrocytes are the only one cell type within the 

tissue, accounting for 1% of the total tissue volume. [1] They are devoted to the development and 
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maintaining of the tissue integrity, but unfortunately the poor proliferation ability and the low 

anabolic activity limited the repair of damages. Those features are due to the lack of innervations, 

lymphatic stream and, most importantly, blood stream, leading the chondrocytes metabolism to be 

dependent upon diffusion of oxygen, nutrients and other regulatory factors from the synovial fluid 

and subchondral bone through the ECM. Such diffusion is aided by the joint motion and load, 

which create the flow of extracellular fluid in and out of the tissue. [1] The ECM is mainly 

constitute by fibers of collagen type II, built to last forever, proteoglycans (e.g. aggrecan), and other 

non-collagenous protein present in lesser amount that undergo variable turnover. The organization 

of chondrocytes and ECM within the tissue varies greatly with respect to the zone take into 

consideration: superficial, middle or deep zone. Approximately the 10-20% of the thickness of 

articular cartilage is composed by the superficial layer in which chondrocytes are present in a 

relatively great amount showing a flattened morphology, surrounded by collagen fibers (type II and 

IX) aligned parallel to the surface. This layer is in deep contact with the synovial fluid, allowing the 

passage of nutrients and protecting the inner zones from shear stresses. Moreover, together with the 

synovial fibroblast, the superficial chondrocytes secrete lubricin, the latter helping the lubrication of 

the joint surface. The middle zone is the thicker layer, counting for the 40-60% of the articular 

cartilage volume. In this zone, chondrocytes have a spherical shape and a lower density; moreover 

the middle zone is characterized by the presence of proteoglycans and collagen fibers that become 

more thicker and are organized obliquely for resisting to compressive forces. The deep zone 

represents the remaining 30% of the cartilage volume. Chondrocytes are arranged in columns, 

parallel to the collagen fibers and perpendicular to the joint line. The large diameter of the collagen 

fibers in addition to their radial disposition, the increase of proteoglycans population in the ECM 

and a decrease of water content provide the greatest resistance to compression. The collagen fibers 

of the deep zone are anchored to the subchondral bone by a calcified layer formed by hypertrophic 

chondrocytes surrounded by apatite and calcified salt. In addition to this classification, three main 

regions can be distinguished within the cartilage tissue, based on the distance from chondrocytes. 
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The pericellular region, mainly composed by proteoglycans, which surrounds chondrocytes that are 

arranged in chondrons (single or clusters groups of chondrocytes), and it is responsible for the 

initiation of the signal transduction cascade. The territorial region borders to the pericellular 

region, protecting the chondrocytes from mechanical stresses thanks to the distribution of collagen 

fibers in a basket network around the cells. The interterritorial region is the most distant region 

with the greatest biomechanical properties, thanks to the presence of both large collagen fibrils and 

proteoglycans. 

1.2 Osteoarthritis 

Under normal condition, chondrocytes retain a very similar differentiation status through all 

the adulthood, defined as immature. In this state, chondrocytes do not proliferate and are devoted to 

remodel and maintain the ECM before entering the proliferative state, becoming hypertrophic and 

terminally mature. The absence of blood stream, lymphatic stream and innervations is at the root of 

the poor proliferation and regeneration ability of the tissue. Unfortunately, articular cartilage is 

subjected to numerous traumas that can occur during life from long term wear, repetitive 

mechanical loading and physical injuries, but also inflammatory and genetic diseases can arise. As a 

result, a progressive and irreversible degeneration of the cartilage could lead to changes also in the 

adjacent synovial and bone tissue resulting in a group of diseases referring to osteoarthritis (OA) 

and rheumatoid arthritis (RA).  
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Figure 2: representation of the degeneration of knee articular cartilage. Bone is exposed, promoting knee pain and further 

damages. 

 

Worldwide, more than 10% of men and 18% of women older than 60 years is estimated to 

be affected by OA [3] which represents the leading cause of human pain and disability in the United 

States [1], and the most common degenerative disorder affecting one or multiple diarthrodial joints 

(hand, knee and hip joints). Women are more prone to develop structural osteoarthritis respect to 

man at any give age > 50 years, with the sex difference most pronounced for knee and hand OA.[4] 

Despite the great diffusion, the risk factors and the pathophysiology of this disease are not 

completely elucidated. Apart from sports trauma, accident and heavy work, the increasing of life 

expectation and obesity are recognized as the leading causes in developing OA. Regarding obesity, 

Jones and co-workers [5] demonstrate that children that are physically active present a higher 

volume of cartilage with respect to those who are more sedentary, thus concluding that physical 

activity is associated with a beneficial effect on knee articular cartilage in healthy adults, whereas a 

wrong diet can increase risks for OA. Some genetic traits are associated with OA of the hand and 

the spine, whereas loci associated with knee OA are not yet discovered. [6] [7] The discovery of a 

potential involvement of specific genes could lead to the use of selective biomarkers that could be 
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integrated with the preventive intervention for higher efficacy of the therapies, improving patient 

outcome. The evolution of the disease is usually slow, with symptoms that could include pain, 

structural abnormalities, transient morning stiffness, crepitus on joint motion and disabilities, even 

if the intensity of the pain vary greatly between patients and may depend also from the affected 

joint.  

1.3 Molecular mechanism of joint degeneration 

As mentioned hereinbefore, chondrocytes represent the only cell type present in the articular 

cartilage tissue. Under physiological conditions, chondrocytes exhibit no mitotic activity, while they 

maintain an appropriate turnover of proteoglycans and glycosaminoglycans. Collagen fibers instead 

are produced to last forever, so their turnover is minimal (limited). Chondrocytes exist in a low-

oxygen tension environment, and intracellular survival factors, such as hypoxia-inducible factor 1α, 

are required for maintenance of homeostasis and adaptation to the mechanical environment. [8] 

Mechanosensitive-receptor and primary cilia, atop the cell membrane, are useful tool to capture 

physical stimuli and monitor the external environment. Normally, the collagen network provides 

tensile strength while the retention of water between the negative proteoglycans chains provides 

great compressive resilience. With aging, the secretion and the turnover of molecules decrease, as 

noticed also in OA in which a final complete remodeling of the whole joint occurs. The initial 

erosion, or fibrillation, of the ECM involves the pericellular region around chondrocytes, that is 

degraded, leaving the receptor of the cell membrane exposed to components of the interterritorial 

region deregulating chondrocytes functions via cell surface receptors, including integrin and 

discoidin domain receptors. [4] The process evolves in a deep fissuring associated with exfoliation 

of cartilage fragments, depletion of proteoglycans and collagen fibers, ultimately causing the 

exposure and expansion of the calcified cartilage.  
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Figure 3: schematic representation of partial thickness defect (left) and full thickness defect (right). Partial thickness defects 

involved only the articular cartilage and may be, in some extent, repaired by native chondrocytes. In full thickness defects 

there is the exposure of the subchondral bone. Bone marrow stromal cells invade the joint defect and differentiate forming a 

fibrous cartilage that is not able to restore the native tissue. 

 

When the damage arrives to the underlying bone, there is the penetration of vascular 

elements from bone marrow, sensory and sympathetic nerves. Mesenchymal stromal cells from 

bone marrow arrive at the injured site, and they undergo a differentiation process, leading to the 

formation of fibrous cartilage, the latter lacking of the physical and mechanical properties of the 

native tissue. During the later stage of OA, matrix degradation continues with chondrocytes that 

increase the production of metalloproteinases and aggrecanases and other proteins related to 

hypertrophy. Both in senescence and OA there is the increase of reactive oxygen species (ROS) 

production and the up-regulation of gene expressing proteins associated with inflammation. The 

pro-inflammatory mediators act both in an autocrine and paracrine pathway, thereby deregulating 

chondrocytes functions and stimulating the adjacent synovium in maintaining a proliferation state 

and a pro-inflammatory response. As osteoarthritis is a whole joint disease, changes occur also at 

bone level. Normally, bone is a highly structured material whose homeostasis depends on the 

balance between the activity of osteoclasts and osteoblasts, and the biomechanical factors that are 

involved in this process of remodeling of the bone. The progressive degradation of articular 

cartilage and the narrowing of the joint space lead to the direct contact between opposite bones 

causing pain. The altered balance between osteoblasts and osteoclasts activity alter the 

mineralization state, with the increasing of fissuration and decreasing of bone mass. Bone lesions 
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result in further subchondral bone cystis, bony outgrowths (osteophytes, localized on the joint 

margins), bone marrow edema and fibrosis. Inflammation of the synovial membrane, synovitis, is 

also present in late stages of OA. The synovial membrane becomes semi-permeable with further 

infiltration of lymphocytes T and B and hyperplasia. Proteinases that are released by chondrocytes 

lead to the generation of pro-inflammatory cartilage degradation products, which act as damage 

associated molecular patterns (DAMPs). DAMPs interact with Toll-like receptors and they act on 

the adjacent synovium to induce inflammation, that in turn generates additional pro-inflammatory 

and catabolic products, that feedback on the chondrocytes to further deregulate their functions. [4] 

1.4 Current therapies  

Nowadays there are no safe and complete approaches in the repair of cartilage defects and 

arthritic diseases. Personalized management strategies are customized on patients presenting 

cartilaginous defects in which cartilage and the surrounding tissues are not irreparably damaged. 

Patients experienced a multidisciplinary approach involving weight management, the maintaining 

of muscle mass and education for an healthy life. Those indications are associated with less pain 

and better functional outcomes. Patients are encourage in achieving goals, their progresses are 

followed and the therapy recalibrated based on patient improvements. In association with self-

management, pharmacological therapies are proposed in patients with OA. Paracetamol and topical 

or oral nonsteroidal anti-inflammatory drugs (NSAIDs) are standard first line therapies. Also 

cyclooxygenase 2 (COX2) inhibitors are common pharmacological agents for the treatment of OA, 

whereas opioids are used only in few countries. Other procedures aimed at treating the symptoms 

deal with intra-articular injections of hyaluronic acid solutions, or in case of great pain, intra-

articular injection of corticosteroids. If self-managements and pharmaceutical treatments fail to 

improve the life quality of patients, surgical procedures - based on the severity of the situation - are 

used. Arthroscopy lavage and debridement are used in the early stage of osteoarthritis. Both 

approaches involve the removal of cartilage fragments and debris of damage tissue during 
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arthroscopy to improve the mobility of the joint and alleviate the pain. These kind of approaches do 

not induce the repair of cartilage defects and the pain relief presents variability in the duration.  

 

Figure 4: surgical procedure for the repair of a knee articular cartilage defect. 

 

Arthroscopy approaches aimed at repairing cartilage damages are abrasion arthroplasty, 

Pridie drilling and microfracture. These procedures gain advantage from the full thickness defect in 

which there is the drilling and exposure of the underling subchondral bone and bone marrow, 

obtaining access to the vasculature and stimulating the bleeding. The clinical outcomes of these 

procedures are unpredictable, and in some cases the formation of the blood clot lead to the 

development of a fibrous cartilage tissue, which could not sustain the mechanical properties of the 

native tissue. [9] [10] In cases of more severe symptoms, soft tissue grafts are employed. 

Periosteum (or perichondrium) is harvested and implanted in a full thickness defect. It was 

demonstrated that both chondrocytes precursor cells, present in the cambial layer, and the 

mesenchymal stromal cells, derived from the exposed suchondral bone, are able to contribute to the 

repair of cartilage defects. [11] Mosaicplasty is a procedure that refers to the removal of a 
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cylindrical plug of osteochondral tissue from non-load bearing region of the articular cartilage of 

the patient, or from cadaveric donors. Several studies demonstrate good outcomes following to this 

procedure [12] [13] [14] , with decrease of pain and improved joint function, but the fact that the 

grafted tissue derived from a non load-bearing zone rise question about the ability to withstand 

mechanical forces. Laszlo Hangody et al. [15] reported 10 years of clinical successful autologous 

osteochondral mosaicplasties. Sixty-nine of eighty-three patients who were followed 

arthroscopically showed congruent gliding surfaces, histological evidence of the survival of the 

transplanted hyaline cartilage, and fibrocartilage filling of the donor sites. However, mosaicplasty 

can be used for lesion ranging from 1 to 4 cm
2
, whereas the implantation of multiple osteochondral 

plugs in bigger defects lead to higher rate of donor-site morbidity. Grande et al. [16] described the 

first use of in vitro autologous cultured chondrocytes prior to grafting. Autologous chondrocyte 

implantation is indeed a valid option for lesions ranging from 2 to 12 cm
2
, and when mosacplasty 

and other arthroscopy fail to decrease patient’s pain. A biopsy of healthy cartilage of the patient is 

made and chondrocytes isolated via enzymatic methods. Chondrocytes are cultured for 14 days in 

order to increase the initial cell number of 20-50 times. The monolayer is then trypsinized and cell 

suspension included into a periosteal flap and injected into the defect. Numerous other studies 

[17][18][16] reported a great success of this procedure, with the formation of a fully integrated 

hyaline cartilage. Still the procedure is subjected to minimal immunological response and 

variability of outcomes based on patient’s clinical history and limitations such as unmatched 

mechanical property of the repaired region, lack of integration, and donor-site morbidity. When all 

the medical interventions named before failed to improve patient life and a persistent degeneration 

of articular tissues continues, a total joint replacement using prostheses is needed. Of course, patient 

age should be considered, given the fact that prostheses last only 15 years. 
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1.5 Tissue Engineering of articular cartilage 

Giving the uncertain outcomes of the procedures described before for the restoration of a 

natural hyaline cartilage, researchers are focusing their attention on the development of new 

strategies for this aim. The bone, articular cartilage and the thin region of calcified cartilage in 

between form a biocomposite material, which is uniquely adapted to transfer loads during weight 

bearing and joint motion [19]. Therefore, a tissue engineering approach could be used in order to 

restore such complexity of the tissue. Tissue engineering (TE) emerged in the mid 80’s thanks to 

the efforts of Robert Langer and Joseph Vacanti [20], who precisely described (and define) the aim 

of Tissue Engineering. The main idea is to combine cells and signaling molecules within a 

biomaterial (scaffold, hydrogel, membrane), the latter should be able to fully sustain the growth of 

the embedded cells. The biomaterial must be able to integrate with the native environment and 

degrade following the regeneration of the tissue; moreover it should preserve the mechanical 

properties of the surrounding tissue. Besides, the cytotoxicity must be kept into consideration.  

In order to completely restore the articular cartilage tissue, two types of cells are currently 

used: chondrocytes and mesenchymal stromal cells. Chondrocytes harvested from articular cartilage 

of the patient are the best candidate, producing cartilage specific-ECM. Unfortunately the isolation 

is quite difficult and there is the risk of donor site morbidity. Nasoseptal or auricular chondrocytes 

are investigated as potential substitutes of articular chondrocytes, since they are easier to harvest, 

associate with lower donor-site morbidity, and possess a higher proliferation rate [21], even if there 

are some doubts about their ability to produce a hyaline cartilage capable of sustaining the 

mechanical stresses that occur at the joint site. Moreover, articular, nasoseptal and auricular 

chondrocytes need precise culture conditions such as a 3D environment, low oxygen tension, and 

they should not fall into many expansion cycles in vitro, otherwise they could lose their classical 

phenotype. Mesenchymal stromal cells (MSCs) are the main alternative to the use of chondrocyte 

for articular cartilage repair. This kind of cells are able to differentiate into the three main 
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mesechymal cell lines (ostecytes, chondrocytes and adipocytes), maintaining their multipotency 

after numerous cell passage in culture. Moreover they can be harvested from different sites (bone 

marrow, adipous tissue, tooth) which do not affect negatively the said damaged cartilage. Both 

autologus and non-autologus MSCs could be used because they generally do not express molecules 

of the class II of major histocompatibility complex (MHC-II), responsible for immune rejection. 

[22] 

Cells are seeded into a 3D material that should mimic the native environment of the articular 

cartilage. Both natural and synthetic polymers are currently used in order to develop specific 

biomaterials (e.g. hydrogels, solid dried scaffolds, micro-beads or nanoparticles) that could sustain 

the cells growth or deliver specific factors that could stimulate the proliferation or the 

differentiation of the cells. Natural derived polysaccharides (e.g. chitosan, alginate, carrageenan and 

chondroitin sulfate) are hitherto widely used for their versatility, tunable properties 

biocompatibility, biodegradability, non-toxicity and for their economical benefits. Several TE 

approaches are investigated for cartilage repair and regeneration. As for transplant, also 

biomaterials can be subjected to rejection, hence Yuan and co-workers [23] investigated the ability 

of a collagen based hydrogel of reducing the immunogenicity when MSCs or chondrocytes were 

seeded, underling how the presence of a natural molecule, i.e. collagen, can mimic the ECM of the 

articular cartilage, decreasing the rejection possibility. Three-dimensional culture of infant 

chondrocytes and MSCs from human hip seeded in a polyglycolic acid – fibrin – platelet rich 

protein (PGA-fibrin-PRP) scaffold initiates re-differentiation that is accompanied by the induction 

of typical chondrocytes and mesenchymal markers such ad collagen II and cartilage oligomeric 

matrix protein (COMP). [24] Again, TE does not encompass cells and scaffolds, but the delivery of 

growth factors or active molecules able to sustain the regeneration of the tissue is mandatory. Often, 

different release kinetics of said molecules is needed. Nanostructured systems may guarantee to 

achieve this goal. Hence, the combination of such nanosystems with scaffolds could be potentially 
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of paramount importance. Several nanocarriers have been investigated for this purpose, but 

polymeric nanoparticles based both on synthetic or natural polymers remain largely preferred. This 

integrated system offers an adequate presentation of the bioactive molecule to the surrounding cells 

and a controlled release over time [25].  

Currently there are some commercially available products for cartilage repair that are based 

on a TE approach as Novocart®, Cartipatch ® or BioCart™II. [26] Nevertheless, due to difficulties 

in evaluating the quality of the engineered cartilage, including its safety, cost-effectiveness, and 

complications in the procedure, most of the new developments in cartilage TE have yet to translate 

into the clinical market. 

1.6 Complex coacervates 

Complex coacervation refers to a phenomenon in which two oppositely charged 

polyelectrolytes (PE) are combined to form a ionically cross-linked coacervate in the nano/micro 

size range. Under appropriate conditions it is obtained a liquid-liquid phase separation, resulting in 

a biphasic system in which the coacervate-rich phase is in equilibrium with the PE-poor solution 

phase. In the recent years, this system was widely investigated for the delivery of therapeutics 

molecules. Several examples of PE coacervates are reported in the literature. For instance, 

chitosan/nucleic acid polyplexes were designed for the in vitro delivery of RNA or DNA in 

mammalian cells. [27][28] Similarly, hybrid PEGylated nanoparticles formed via complex 

coacervation mechanism have shown to enhance the in vivo gene transfection efficiency compared 

with traditional carriers. [29] Butyrate loaded chitosan/hyaluronic acid nanoparticles have 

demonstrated excellent anti-inflammatory properties, decreasing ROS production by TNF-

stimulatated neutrophils in vitro. [30] Furthermore, poly(ethylene argininylaspartate diglyceride) 

and heparin coacervates were loaded with bone morphogenetic protein 2 improving the osteogenic 

potential of muscle-derived stem cells. [31]  
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The phase separation of oppositely charged macromolecules can be influenced by ionic 

strength (salt concentration), pH, temperature, stoichiometry of PEs involved in the process, 

molecular weight and charge density of polyelectrolytes, chain flexibility, and polyion 

concentration. [32] By appropriately tuning these features, coacervates efficiently encapsulate 

proper payloads [33] [34] and release them in a pH dependent fashion, by degradation, or by 

diffusion, depending on the desired purpose.  

1.7 Hydrogels  

A hydrogel is a 3D network of polymer chains able to absorb a great water amount. 

Hydrogels can be composed up to 99% of water, depending on the polymer content. The high water 

content offers a good hydrophilicity that allows cells attachment and an optimal integration with the 

surrounding tissue. From a mechanical point of view, hydrogels may behave as purely elastic or 

viscoelastic materials, depending on the type of network and water movements into the polymeric 

matrix when exposed to a stress. The stiffness of the material can be modified by changing the 

polymer concentration, chain entanglement, the ligand density and network porosity in order to 

obtain appropriate mechanical properties. In fact, cells are influenced by several parameters such as 

rigidity, elasticity, roughness, hydropilicity and molecular pattern of the hydrogel surface. All these 

features are important when the bulk material for the hydrogel formation is considered. Both 

synthetic and natural polymers are used for the preparation of hydrogels, but natural biopolymers 

offer particular advantages as they are abundant, low cost, biocompatible, bioactive and can mimic 

the ECM of the natural tissue. Hydrogels gelation is achieved by either physical or chemical cross-

link methods. The first approach involves the formation of weak interactions within the polymer 

networks (e.g. ionic crosslink or H-bonds), whereas chemical cross-linking methods form strong 

bonds between polymer chains. [35] The complexation of the guluronic-units of alginate with 

divalent cations is an easy approach for the preparation of different forms of hydrogels that have 

been used in the biomedical field for cells encapsulation [36], or delivery of therapeutic molecules. 
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[37][38][39] Furthermore, mechanical and biological properties of chitosan hydrogels, fabricated 

using multivalent anions such as tripolyphosphate (TPP) or pyrophosphate (PPi), have been 

extensively investigated. The good homogeneity of the system and the possible colonization by cell 

lines represent very important features for the co-delivery of cells and growth factors in cartilage 

regeneration. [40][41] Recently, the behavior of a lactose-modified chitosan in the presence of 

borax as cross-linking agent was studied, shedding light on the marked non-linear behavior 

depending on the amount of borax added to the system. Such transient reticulation between the 

polymer and borax results in a mechanical performance that mimic the behavior of the 

macromolecules composing the ECM of natural tissues. [42] Stimuli-sensitive hydrogels have also 

been explored for site-specific drug release. Thermosensitive hydrogel of chitosan/beta 

glycerophosphate displayed a tunable sol-to-gel temperature from 35 to 56 °C, which can be 

controlled by changing the composition, and found possible applications in the wound healing field. 

[43][44] Moreover, thermosensitive hydrogel employed in the tissue engineering of articular 

cartilage can be injected, limiting the possible risk of a surgical procedure. 

1.8 Hyaluronic Acid 

 

Figure 5: representation of the two monomers forming hyaluronic acid polymer. 

 

Hyaluronic acid (HA) was first discovered in 1934 by Karl Meyer and John Palmer, who 

isolated it from the vitreous body of a cows’ eye [45]. After that Endre Balazs developed a method 



 

 

15 

 

to isolate hyaluronic acid from the rooster comb, and nowadays it can be biotechnologically 

produced using several bacteria, e.g. Bacillus Subtilis. From a chemical point of view, hyaluronic 

acid (also known as hyaluronan) is a linear polysaccharide composed of a very stable structure of 

repeating disaccharides units of N-acetyl-D-glucosamine and D-glucuronic acid. Hyaluronic acid is 

a high molecular weight non sulphated glycosaminoglycan, and the only one produced outside the 

Golgi. The synthesis of HA occurs at the plasma membrane level and it is extruded directly in the 

ECM. Its lubricant and viscoelastic properties were first noticed, deriving from its great water 

retention. Deeper investigations of HA nature underlined its emerging role in several biological 

processes such as embryogenesis, signal transduction, [46] cell migration, proliferation [47], and its 

scavenger activity against free radicals. HA is present in several human tissues, in particular skin, 

eye, synovial and articular cartilage. Its diffusion in different tissues and its stunning properties 

have driven the development of several products based on this macromolecule. Commercially 

available HA-based products like Hyalomatrix and Hyalosafe are medical devices dedicated to 

wound healing [48], whereas Restylane and Hylaform are fillers used in plastic surgery [46]. HA 

has raised great interest in the field of viscosupplementation for the treatment of arthritic and 

rheumatic problems, thanks to its pivotal role as component of the ECM of cartilage and as 

lubricant in the synovial fluid. Hyaluronic acid usage in knee OA is conditionally recommended by 

the 2012 ACR guidelines in individuals with knee OA who are > 74 years old, with symptoms 

refractory to standard pharmacological treatments. [4] Modified HA such as HYAFF® (Fidia 

Advanced Biopolymers, Abano Terme, Italy) in combination with mesenchymal stromal cells are 

suitable for the development of scaffolds for articular cartilage regeneration [49] [50] [51] [52], 

giving promising input for the TE field. 
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1.9 CTL: a Lactose-modified Chitosan 

 

Figure 6: lactose modified chitosan (CTL): glucosamine (D), N-acetyl-glucosamine (A) units and lactitol side chain (L). 

 

Chitosan is a linear polysaccharides derived from deacetylation of chitin, a naturally abundant 

mucopolysaccharide, structural component of the cell wall of crustaceans, insects and fungal,[53] and 

the second most abundant polysaccharide on earth. Chitosan is almost the only cationic polysaccharide 

present in nature [54], and this unique property is of great interest for several applications from food 

packaging to biomedical ones. It is well known that chitosan has muco-adhesive properties and it is also 

biocompatible, biodegradable and possesses anti-bacterial and anti-inflammatory activities. Although 

biotechnologically relevant, chitosan can be solubilized only at low pH and it is poorly soluble at neutral 

pH conditions. This is reasonably valid if classical commercial chitosans with medium to high 

molecular weight (MW) and fraction of acetylated units (FA) < 0.4 are considered, albeit the solubility at 

neutral pH can be sensibly improved by reducing MW thereof in the order of few consecutive sugars, 

i.e. showing a degree of polymerization (DP) < 10. In order to overcome these limitations evidenced for 

medium to high MW and low acetylated chitosans, several chemical modifications may be undertaken. 

Quaternized derivatives as N,N,N-trimethyl chitosan chloride presents a much higher solubility in water, 

whereas trimethylation of chitosan improved the muco-adhesive properties. Furthermore, chitosan could 

be alkylated for DNA delivery [29] or modified with the addition of different sugars. Yalpani et al., [55] 
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explored several modifications of chitosan with the addition of pendants. In our laboratory, we are 

interested in studying a lactose-modified chitosan firstly named “Chitlac” and then called CTL. This 

highly branched polysaccharide gained biological significance in terms of good solubility at neutral pH, 

cell-stimulation effects toward bone and cartilage cells and specific ligand-receptor interaction mediated 

by lectins. [56] [57] CTL has been investigated for its bactericidal and non-cytotoxic effects in 

combination with silver nanoparticles [58], as a bioactive coating of BisGMA/TEGDMA thermoset 

materials [59], for the possibility of preparing binary polymer mixtures with an opposite charged 

polysaccharide like alginate, [57] to create three-dimensional hydrogels able to sustain chondrocytes 

growth [60], and more recently used in combination with tripolyphosphate to create highly 

monodisperse nanoparticles [61]. Marcon et al. investigated the involvement of Galectin-1 as a 

molecular bridge between CTL and chondrocyte cell surfaces, demonstrating the bioactive role of such 

polymer. [62] Furthermore, the mechanical properties of CTL upon treatment with boronic acids 

derivatives such as boric acid was explored, showing peculiar dilatant behavior in conditions of 

steady flow and oscillatory state, [63] that rose interest in our group in order to further explore this 

branched polysaccharide for applications in the TE field. 

1.10 Alginate 

Among the several natural biopolymers that are used for TE application, alginate is one of 

the most versatile. From a chemical point of view, the name alginate refers to a whole family of 

natural, linear copolymers, first described by the British chemist E.C.C. Standford in 1881[64], 

composed by blocks of (1,4)-linked D-mannuronate (M) and L-guluronate (G) residues. Such residues 

are distributed differently, based on the type of alginate considered.  
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Figure 7: schematic representation of the monomers composing Alginate. 

 

This copolymer is mainly obtained from brown algae, bacteria like Pseudomonas aeruginosa, 

and, nowadays, it is also biotechnologically produced. The abundance of sources of alginate has 

decreased greatly its price, making this polymer widely used from food industry to tissue engineering 

materials or drug delivery systems. The use of alginate in several applications derived from its good 

scaffold-forming properties thanks to the ability to form stable gels in the presence of divalent cations, 

such as Ca2+, which are bound by the guluronic monomers in a highly cooperative manner, with the 

consequent formation of structures called “egg-boxes”, described for the first time Grant et al. in 1973. 

[65] Alginate displays an optimal biodegradability, biocompatibility and non-immunogenicity, these last 

two related to the lack of interaction with proteins and cells. In order to improve the affinity of the cells 

for alginate, its properties can be tailored with the addition of small peptides or bioactive molecules. 

Alginates constructs can be easily shaped based on the final application. Currently, alginate is used in 

combination with hydroxyapatite to obtain composite materials for bone regeneration [66] [67], to 

prepare beads for efficiency encapsulation of mesenchymal stromal cells [68] or used in combination 

with chitosan to form polyelectrolyte complexes membrane for wound healing [69] and nanoparticles 

for drug delivery systems. [70][38]  
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1.11 Chondroitin Sulfate 

Chondroitin sulfate (CS) is a sulfated glycosaminoglycan composed by a linear 

polysaccharide chain of repeated units of N-acetyl-galactosamine and glucuronic acid. CS is one of 

the major components of the extracellular matrix of several connective tissues, including articular 

cartilage, and in this precisely tissue contributes to its resistance and elasticity.  

 

Figure 8: schematic representation of chondroitin sulfate. 

Nowadays, CS is obtained from bovine, porcine or shark cartilage, and the safety of this drug 

has allowed its use in medicine from many years, alone or in combination with other compounds. In 

particular its chondroprotective properties attracted great interest as potential agent against arthritic 

and rheumatic disorders. It was shown that CS possesses anti-apoptotic, anti-oxidant and anti-

inflammatory properties by inhibiting in vitro the synthesis of several pro-apoptotic and 

inflammatory mediators, and in vivo by reducing synovitis in collagen-induced arthritis in mouse. 

[71] Moreover, CS presents an anabolic effect by increasing the synthesis of collagen type II and 

proteoglycans and downregulating the expression of metalloproteinases which usually destroy the 

ECM. [72] Chondroitin sulfate is reported as a symptomatic slow-acting drug used as ground 

therapy for OA, [73] and can be used alone via oral administration or as intra-articular injection in 

order to reduce the administration of NSAIDs and the consequent risk of gastro-intestinal tract 

erosion and renal failure. However, CS is also applied in the TE field contributing to the formation 

of hydrogels and scaffolds in combination with chitosan and hyaluronic acid [74] or in combination 

with chitosan for the delivery of hydrophilic molecules.[75][76][77] 
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2. AIMS 

The work of this three year thesis aimed at the development and characterization of a 

biomaterial for cartilage repair that combines an intrinsic capability to promote tissue regeneration 

with a long-term sustained-release of bioactive molecules. The biomaterial will be designed in form 

of an hydrogel prepared with bioactive polymers encapsulating polysaccharides-based coacervates 

able to load small molecules. 

A schematic overview of the project is reported in Figure 9: the main idea was to combine 

micro/nano-size delivery systems with a bulk matrix, presenting similar characteristics of those of 

articular cartilage. As mentioned before, such tissue-engineering application needs the use of 

appropriate materials that should be devoid of toxicity and, possibly, with intrinsic bioactivity with 

respect to the target tissue. 

 

 

Figure 9: schematic representation of the final biomaterial obtained during the three years of work 

  

The research activity developed through the following intermediate objectives:  

 Analyses of the miscibility of two oppositely charged polymers (CTL and hyaluronan) under 

different conditions (namely: ionic strength, polymer mixing, molecular weight of the 

polymer, pH, weight fraction of the polymer). 

 Formation of stable complex coacervates between CTL and hyaluronan, providing novel 

insights and further prospective in the field of coacervates between oppositely charged 

polyelectrolytes. 
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 Evaluation of the loading capacity and the release kinetic of the coacervates system using a 

model payload (i.e. Dexamethasone). 

 Evaluation of the possible biological contribution of the HA/CTL coacervates in the repair 

of articular cartilage. 

 Preparation of a hydrogel based on polymers that could promote the repair of the articular 

cartilage. 

 Embedding of the coacervates system into the hydrogel in order to obtain a long term 

sustained release of a model molecule. 
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3. EXPERIMENTAL SECTION 

CHAPTER 1: Miscibility studies of HA and CTL solutions 

3.1.1 Aim of the work 

This first section of the thesis is dedicated to the miscibility studies between two oppositely 

charged polyelectrolytes, namely hyaluronic acid (anionic ) and CTL (cationic ), analyzing the main 

parameters affecting the transition from binary solution to complex coacervation. In particular, the 

key parameters investigated are: pH, weight ratio of the two polymers, ionic strength and molecular 

weight. 

3.1.2 Materials and Methods 

3.1.2.1 Materials 

Sodium hyaluronates, HAs, at different molecular weight (see Table 1) were kindly provided by 

Sigea s.r.l. (Trieste, Italy). Two samples of the hydrochloride form of CTL (CTL60 and CTL47) 

with different fractions of lactose-modified glucosamine units (i.e. N-(1-deoxylactit-1-yl)), were 

provided by biopoLife s.r.l. (Trieste, Italy). They had been obtained from two different chitosan 

batches from Chitoceuticals Heppe Medical Chitosan GmbH, Germany. The viscosity- average 

molecular weight, Mv, of the starting chitosans were 360 000 for CTL47 and 380 000 for CTL60, 

respectively. According to the determined composition, the corresponding (derived) Mv values of 

the CTL derivatives were 760 000 and 910 000, respectively (see Table 2). The physical−chemical 

features of CTL samples are summarized in Table 2. 
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HEPES buffer, acetic acid, sodium acetate and sodium hydroxide were purchased from Sigma 

Aldrich Chemical Co. (Milwaukee, WI). Hydrochloric acid was purchased from Carlo Erba 

(Milano, Italy). Deionized Milli-Q water was used throughout.  

 

Table 1: Resuming table of the three HAs used with their intrinsic viscosity and viscosity-average molecular mass t at pH 7.4 

and 4.5. 

 

 

Table 2: Chemical composition of CTL samples used in this study. FA stands for the fraction of acetylated units, FD for the 

fraction of deacetylated units and FL for the fraction of lactose-modified units.   v is the viscosity-average molecular mass of 

CTL samples, calculating on the basis of the corresponding   v values of the parent chitosans and of the values of FL.  

 

3.1.2.2 Determination of Intrinsic viscosity for HAs and CTL  

The intrinsic viscosity     of polymers used in this work was determined by means of a CT 

1150 Schott Geräte automatic measuring apparatus and a Schott capillary viscometer. In the case of 

CTL60 and CTL47, the same protocol described in [78] was used. In the case of HA samples, a 

known amount of polymer was solubilized using NaCl 0.15 M as buffer solution. Subsequently, 

solutions were filtered through a 0.45 μm Millipore (Germany) nitrocellulose filter before the 

measurement. The intrinsic viscosity was calculated at T = 25 °C by analyzing the polymer 
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concentration dependence of the reduced specific viscosity 
   

   and of the reduced logarithm of 

the relative viscosity 
      

   calculated from Huggins (1) and Kramer (2) equations, respectively: 

   

 
          

                     (1) 

     

 
          

                    (2) 

where k and k′ are the Huggins and Kraemer constants, respectively. The intrinsic viscosity values 

obtained were averaged. In the case of HA samples, the corresponding viscosity average molecular 

weight (  
    ) was calculated using the Mark-Houwink-Sakurada (MHS) equation (eq. 3) 

           
                                (3) 

where K and a parameters correspond to 2.63 x 10
-4 

and 0.81, respectively.[79] The measurement of 

the capillary viscosity of the polymers were carried on also at pH 4.5 using 20 mM of AcOH/AcNa 

as buffer), conforming to the pH of subsequent miscibility experiments. 

3.1.2.3 Miscibility studies of HA and CTL 

HAs and CTL60 were dissolved separately in deionized filtered water, with a final 

concentration of 1.5 g/L. The polymers solutions were both prepared at two different pH value, 

namely 7.4 and 4.5. NaOH 0.1 M or HCl 0.1 M were used to adjust the pH of solutions to desired 

values before mixing. Polymers were then filtered through 0.45 μm filters. The two polymers were 

used for the preparation of a binary polymer mixture by mixing different amounts of a 1.5 g/L 

HA90 solution and a 1.5 g/L CTL60 solution, respectively, hence obtaining different HA weight 

fractions (rHA 0.15 – 0.25 – 0.50 – 0.75). A total polymer concentration of 1.5 g/L was kept. The 

binary solution was gently stirred for 20 min at room temperature before performing further 

analyses. In order to better investigate the behavior of such polymers under different conditions, 
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several parameters that could influence the mixing were taken into consideration: the dropped 

polymer during mixing, the molecular weight of the used polymers and the presence of supporting 

salt (i.e. NaCl 150 mM - 100 mM - 75 mM - 50 mM - 25 mM). Hepes and AcOH/AcNa buffers 

were used to stabilize the pH of solutions with increased ionic strength in the case of final pH 7.4 

and 4.5, respectively. Supporting salt (NaCl)/buffer ratio equal to 15 was kept constant throughout 

the measurements.[80] 

3.1.2.4 Turbidity measurements 

The Transmittance (T) of the solutions both at pH 7.4 and 4.5 were measured at 550 nm with 

a Ultrospec 2100 pro spectrophotometer (Bioscience, England). As blank, the transmittance of 

separate polysaccharides and that of deionized water was measured as well. At least three replicates 

were recorded for each sample and the results were averaged. 

3.1.2.5 ζ-potential measurements 

Ζ-potential measurements were performed using a Zetasizer Nano ZS system (Malvern 

Instruments, Inc., Southborough, MA). Briefly, HA90 and CTL60 were dissolved separately at a 

final concentration of 1.5 g/L, pH 4.5, as described before. HA90 was added to CTL60 solution 

drop-wise, during stirring, in order to obtain solutions with different rHA (i.e. 0.15 – 0.25 – 0.50 – 

0.75). Samples were diluted 1:10 in deionized filtered water before ζ-potential analyses. Values are 

reported as mean of three replicates. The same analyses were repeated for formulations prepared by 

dropping CTL60 into HA90. 

3.1.2.6 Dynamic Light Scattering Analyses 

Dynamic Light Scattering (DLS) measurements were performed using a Zetasizer Nano ZS 

system (Malvern Malvern Panalytical, Malver, UK), in order to evaluate the presence of 

coacervates in solutions. Such technique uses a monochromatic laser to detect spherical particles in 
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a solution. The incidence of the light with the particles in Brownian motion causes a Doppler Shift 

when the light hits the moving particle, changing the wavelength of the incoming light. This change 

is related to the size of the particle. [81] 

The intensity of 173° scattered light (Derived Count Rate - kilocounts per second, kcps), the 

average hydrodynamic diameter and the polydispersity index (PDI) of the coacervates were 

considered. Coacervates solutions were diluted 1:10 v/v in filtered deionized water (pH 4.5) and 

DLS measurements were performed at 25 °C, analyzing each sample in triplicate. 
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3.1.3 Results and Discussion 

During the first year of PhD, the behavior of two oppositely charged polymers mixed 

together was analyzed. Hyaluronan and CTL are biopolymers presenting beneficial effects on 

damaged articular cartilage. Studies on the preparation and characterization of binary or ternary 

mixtures of natural polyelectrolytes have been conducted in the past years[80], [82], [57], underling 

the importance of these polymers in the tissue engineering field. Both hyaluronan and chitosan, 

from which CTL derived, are natural polysaccharides widely used for biomedical applications. The 

structures of these polysaccharides resemble the biological network of macromolecules composing 

the ECM of a complex tissue such as the articular cartilage, whose role is to embed cells and 

provide structural, mechanical and biological support. The combination of these two different 

polysaccharides is expected to induce notable variation of the physical-chemical properties of the 

system, fostering the formation of complex coacervates. The formation of such system is influenced 

by parameters such as the pH of the solution, the ionic strength, the molecular weight of the 

involved polymers and the charge density. [32] 

 Several variables were investigated in order to better understand the behavior of these 

polyelectrolytes, thereby optimizing the coacervation process. First it was analyzed the miscibility 

of CTL60 and HA90 at physiological pH of 7.4 and very negligible ionic strength. More in detail, it 

was investigated the role played by polymer mixing (e.g. CTL60 solution dropped into HA90 

solution during stirring - indicated as CTL60/HA90 - and vice versa, i.e. HA90/CTL60) and the 

final weight fraction of HA on CTL, simply indicated as rHA. The Transmittance (T) of the 

solutions was the analytical parameter for this study. As shown in Figure 10, the transmittance of 

the solutions prepared is comparable of that recorded for the single polymeric solutions and of pure 

distilled water used as control (T = 100). The absence of turbidity proves the mutual solubility of 

the two oppositely charged polysaccharides without apparent interactions, mainly due to the 

(almost) fully uncharged CTL at pH 7.4. 
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Figure 10: Influence of the pH, weight fraction and polymer mixing on the transmittance of binary mixturesprepared at pH 

7.4. A) Formulations prepared by dropping CTL60 solution into HA90 solution. B) Formulations prepared by dropping 

HA90 solution into CTL60 solution. Results are reported as means (± SD, n= 3). Single polymers solution were used as 

controls. 

 

The complexity of the system was increased by preparing binary mixture solutions in the 

presence of different amounts of NaCl as to vary the total ionic strength. In these experimental 

conditions no turbidity was detected for different weight ratio of the two polymers, since T values 

flattened around 100% (Figure 11). As anticipated above, the reason of these findings can be 

explained by the fact that the pKa of primary and secondary amines of CTL60 are 6.69 and 5.87, 

respectively [56], hence they are mostly uncharged at pH 7.4. This means that inter-chain 

electrostatic interactions between the polysaccharides are strongly impaired. Therefore, in these 

conditions of pH (and ionic strength), no complex coacervation phenomena occurred. Similar 

behavior was already observed by Donati et al. [57] for a binary mixture solution of the polyanion 

alginate with CTL, where the mutual solubility was achieved at neutral pH and 150 mM of ionic 

strength. 
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Figure 11: Influence of the ionic strength on the binary mixture solutions prepared at pH 7.4. A) Formulations prepared by 

dropping CTL60 solution into HA90 solution. B) Formulations prepared by dropping HA90 solution into CTL60 solution. 

Results are reported as means (± SD, n = 3). Single polymers solution were used as controls. 

 

By mixing the polymer solutions at pH 4.5 and I ~ 0 mM, the onset of liquid-liquid phase 

separation was clearly highlighted by the increase of turbidity immediately after the polymer 

injection, which was then confirmed by a drastic decrease in the transmittance values (Figure 12A 

and 12B). The phase separation, with the consequent formation of coacervates, is entropically 

driven by the release of counterions and water molecules from polysaccharides, and by the onset of 

electrostatic interactions between CTL60 and HA90 at pH 4.5. In this conditions CTL60 is in fact 

expected being (almost) fully positive charged whereas HA showing around 70% of total repetitive 

(disaccharide) units negatively charged, given a dissociation degree,  , of 0.7 at said pH (pKa ≈ 3). 

The pH and the ionic strength of the solutions are therefore very important factors affecting the 

degree of ionization, hence influencing the complexation rate and phase separation of 

polyelectrolytes.[83]  
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Figure 12: Influence of pH (A and B) and ionic strength (C and D) on the Transmittance of the binary mixture solutions of 

HA and CTL prepared at different rHA. A) and C) Formulations prepared by dropping CTL60 solution into HA90 solution. 

B) and D) Formulations prepared by dropping HA90 solution into CTL60 solution. Results are reported as means (± SD, n = 

3). 

 

In Figure 12C and 12D it is reported the analysis of the Transmittance, expressed as 

percentage, as a function of the ionic strength, for binary solutions prepared at pH 4.5 with different 

weight fraction of polymers. It can be observed that, conversely to the analyses at pH 7.4, the 

different formulations present a decrease of the transmittance values with a consequent increase of 

the turbidity of the system. However, some important aspects about the formulations have to be 

considered. First of all, the formulations prepared at pH 4.5 and without supporting salt not only 

manifested an increased turbidity, but also the presence of few micro-size precipitates was 

observed. By preparing the binary mixtures using the single polymeric solutions with the addition 

of NaCl a change in the behavior of the different formulation was noticed. Curiously, the 

formulations with rHA0.15 and 0.25 prepared by dropping HA90 into CTL60 did not display any 
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precipitate, when considering the all ionic strength range from 25 to 150 mM, and the turbidity 

suggests the presence of colloidal coacervates in solution.  

Strikingly, it seems that the polymer mixing could influence the behavior of the final 

solution given the fact that when CTL60 is dropped into the HA90 solution at the same rHA cited 

above, the formation of precipitates occurred, albeit the turbidity of the systems was anyhow 

evident. By changing the content of HA in the final binary solution (rHA 0.75) it was observed that 

for formulations prepared by dropping CTL60 into HA90, a net turbidity of the system without the 

presence of precipitates for ionic strengths up to 75 mM was observed. As the ionic strength 

increased up to 150 mM, a pronounced increase of the transmittance of the formulations marked, at 

variance, the dissolution of coacervates and the formation of precipitates. Finally, when polymers 

were present at a weight ratio of 1:1 (rHA 0.50), T values were found very similar to that of pure 

water for all the ionic strengths analyzed, meaning that none complex coacervation occurred. 

However, large precipitates were present on the bottom of the vial. As already discussed, the charge 

ratio between the polyelectrolytes greatly influences the formation of complex coacervates. A 

qualitative representation of the physical behavior of the different formulation analyzed is reported 

in Figure 13. 
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Figure 13: Schematic representation of the behavior of binary mixture solutions reported for different rHA as a function of 

ionic strength. 

 

To better understand the behavior of the two polymers when mixed together, an evaluation 

of the theoretical ratio of positive on negative charges (+/-) with respect to rHA is reported (Figure 

14A). By assuming that both HA and CTL are fully charged at pH 4.5, the charge ratio was found to 

scale with rHA according to the following power law, 
   

            , thus indicating that the 

amount of positive charges decreases with the increasing of HA. In the case of rHA0.50, an almost 

stoichiometric balance between positive and negative charges ((+) / (-) = 0.96) was calculated, 

meaning that such a condition is at the root of aggregation and ensuing precipitation of colloidal 

coacervates. In fact, the loss of repulsive forces among complexes would increase the polymer mass 

per volume unit up to a certain limit, beyond which supramolecular assembly phenomena occur. 

The theoretical approach was verified experimentally by evaluating the dependence of coacervates 

surface charge on rHA.  -potential analyses on formulations at different rHA were performed by 

DLS technique (Figure 14B). As expected, the decrement of the positive surface charge was 

recorded upon increasing the HA amount. The sigmoidal plot profile of the  -potential on rHA 
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allows for the extrapolation of rHA at which the charge ratio is equal to zero, yielding ~ 0.45, hence 

in nice agreement with theoretical calculations (see above).  

 

Figure 14: A) Theoretical evaluation of the ratio between positive and negative charges of the binary solutions with respect to 

rHA. Calculations were performed assuming that at pH 4.5 both polymers were fully charged B)  -potential analyses of the 

surface charge of formulation prepared at pH 4.5, dropping of HA into CTL and without supporting salts. Results are 

reported as means (± SD, n = 3). 

 

Finally, the impact of HA molecular weight on complex coacervation was herein investigated. 

An increment of turbidity was observed whatever HA (HA310 or HA500) used for coacervates 

preparation (Figures 15 and 16). The modality of mixing had negligible effect on T, since 

transmittance remained below 40% for all the formulations investigated, confirming the associative 

phase separation. The presence of small amounts of precipitates was also found for binary mixtures 

using HA310 and HA570, in line with that previously reported. Hence, one can conclude that only 

in the case of rHA 0.15 and dropping of HA into CTL60 the formation of insoluble aggregates may 

be prevented.  
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Figure 15: Panel representing the analyses of the Transmittance of the formulations prepared using CTL60 and HA310. 

Influence of pH (A and B) and ionic strength (C and D) on the Transmittance of the binary mixture solutions of HA and CTL 

prepared at different rHA. A) and C) Formulations prepared by dropping CTL60 solution into HA310 solution. B) and D) 

Formulations prepared by dropping HA310 solution into CTL60 solution. Results are reported as means (± SD, n = 3). 
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Figure 16: Panel representing the analyses of the Transmittance of the formulations prepared using CTL60 and HA570. 

Influence of pH (A and B) and ionic strength (C and D) on the Transmittance of the binary mixture solutions of HA and CTL 

prepared at different rHA. A) and C) Formulations prepared by dropping CTL60 solution into HA570 solution. B) and D) 

Formulations prepared by dropping HA570 solution into CTL60 solution. Results are reported as mean (± SD, n = 3). 

 

DLS technique was used to prove the presence of coacervates in the solutions prepared at pH 

4.5 and to deeply investigate the influence of HA molecular weight and rHA on the size, 

polydispersity and surface charge.  

We started by analyzing the simplest system in pure deionized water. A comparison of the 

size and volume distribution profiles of three formulations prepared at the same rHA but different 

HA molecular weight is reported in Figure 17. Coacervates prepared with HA90 and rHA of 0.75 

displayed good homogeneity (PDI = 0.28 ± 0.02), in line with what reported in literature for 

biopolymer-based nanoparticles [33,84], whereas a more heterogeneous distribution was noticed for 

systems prepared using HA310 (PDI 0.56 ± 0.05) and HA570 (PDI 0.55 ± 0.21). Two peaks with 

weak intensity were detected for formulations using HA310, ascribed to the presence of very small 
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scatters (peak around 70 nm) or aggregates (> 1000 nm). More variable results were obtained using 

HA570. Our findings suggest that, by increasing HA molecular weight, the size and polydispersity 

of coacervates tend to increase, thus diverging from a homogeneous ensemble of colloids. It can be 

hypothesized that CTL60 is more prone to accommodate HA90 due to very different molecular 

weight between polysaccharides, i.e. 910 000 vs. 90 000, favoring associative phenomena. In this 

view, HA90 may be envisaged as a cross-linker for CTL60. A further consideration stems from the 

dimensional shift of the main intensity peak toward larger values by increasing HA molecular 

weight (Figure 17A), confirming again the role played by the macromolecule size in modulating the 

final dimension of caocervates. In this view, higher molecular weight HAs lead to steric hindrance, 

thereby enabling the formation of heterogeneous and larger aggregates rather than homogeneous 

spherical coacervates. These findings are in line with what reported in literature for colloidal 

coacervates chitosan/tripolyphosphate (TPP)-based [85] [86], where lower molecular weight 

chitosans were found being the best choice for synthetizing monodispersed particles [87][88]. The 

comparison of the intensity and the volume size distributions highlight that the curves match almost 

perfectly in the case of coacervates with HA90, whereas deviation from linearity together with the 

presence of multiple peaks are evidenced when HA310 and HA570 were used (Figure 17B). Again, 

it has to be recalled the negative role played by higher molecular weight HAs for the final 

homogeneity of the system.  
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Figure 17: DLS analyses of the influence of the three different molecular weight HAs on the formulation prepared at pH 4.5, 

rHA 0.75 and by dropping HA into CTL60. A) Size distribution and B) Volume distribution. HA90/CTL60 spectrum is 

reported in green, HA310/CTL60 spectrum is reported in red and HA570/CTL60 spectrum is reported in blue. 

 

 

Figure 18: DlS analysis of the influence of the weight fraction of HA (rHA) on the coacervates formation. Coacervates were 

both prepared by dropping HA90 into CTL60, pH 4.5 and negligible ionic strength. Light green peak (rHA0.75), dark green 

peak (rHA0.25) 

 

 DLS analyses displayed also the influence of rHA on the size of coacervates prepared with 

HA90 (Table 3). The size of coacervates passed from around 200 nm (rHA 0.75) to almost 1 μm 

(rHA0.25) by increasing the content of CTL, whereas the PDI of the system remain the same. Such 

difference is related to the increase of CTL content; its higher molecular weight, with respect to 

HA90, leads to the formation of larger coacervates. 
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Sample Size (nm) PDI 

HA90/CTL60   rHA0.75 255 ± 6 0.28 ± 0.02 

HA310/CTL60 rHA0.75 295 ± 5 0.56 ± 0.05 

HA570/CTL60 rHA0.75   487 ± 83 0.55 ± 0.21 

HA90/CTL60   rHA0.25 978 ± 3 0.27 ± 0.02 

 

Table 3: Comparison of size and PDI of coacervates prepared with HAs at different molecular weight and weight fraction 

(rHA). 

 

To recapitulate, the present results demonstrate that variables as pH, ionic strength, weight 

ratio between the polysaccharides and macromolecular dimensions are pivotal factors in 

determining positive complex coacervation outcomes with good control of the whole process. 
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CHAPTER 2: Preparation and characterization of HA/CTL 

coacervates 

3.2.1 Aim of the work 

This second chapter deeply analyze the features of complex coacervates. In particular, one 

formulation, namely HA90/CTL60 with rHA0.25, was selected as the best candidate for 

coacervates preparation. The stability in physiological ionic strength, pH and temperature was 

investigated. Moreover the storage stability of the coacervates for commercial purposes was 

assessed by freezing-drying of the coacervates solution. The possibility to efficiently encapsulate 

and release a model payload was explored, giving the final aim of preparing a system for drug 

release. Biological evaluation of the influence of coacervates both on neutrophils and on osteoblast 

cell line was carried on. 

3.2.2 Materials and Methods 

3.2.2.1 Materials 

HEPES buffer, acetic acid, sodium acetate, Percoll, 2-(N-morpholino)ethanesulfonic acid 

(MES), bovine serum albumin (BSA, Cohn fraction V, ≥96% cell culture-tested), 

dihydrorhodamine 123 (DHR), horseradish peroxidase (HRP), fluoresceinamine isomer I, 

dexamethasone, type VI, fibrinogen (FBG) from human plasma, Alamar Blue, and sodium 

hydroxide were purchased from Sigma-Aldrich Chemical Co. Hydrochloric acid was purchased 

from Carlo Erba (Milano, Italy). Deionized Milli-Q water was used throughout. All solutions used 

in the biological assays were prepared in endotoxin-free water or saline (0.9% w/v NaCl) for 

clinical use. DMEM High Glucose, Trypsin-EDTA 1X, Penicillini-streptomycin were purchased by 

Euroclone s.p.a (Milano, Italy) 
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3.2.2.2 Characterization of coacervates 

Dynamic Light Scattering (DLS) measurements were performed using a Zetasizer Nano ZS 

system (Malvern Instruments, Inc., Southborough, MA), in order to evaluate the intensity of 173° 

scattered light (Derived Count Rate - kilocounts per second, kcps), the average hydrodynamic 

diameter and the polydispersity index (PDI) of the coacervates prepared in the presence of NaCl. 

Coacervates solutions were diluted 1:10 v/v in the same buffer in which the soluzion are prepared 

(pH 4.5) and DLS measurements were performed at 25 °C, analyzing each sample in triplicate. The 

morphology and the size of HA/CTL coacervates were examined by Transmission Electron 

Microscopy (TEM). 10 μL of colloids were placed on a carbon film 300 mesh copper grid and air-

dried. The sample was stained with 10 μL of a 0.1% w/v uranyl acetate solution for 2 min at room 

temperature before acquiring images by means of Philips EM 208 microscope, using an accelerating 

voltage of 100 kV. 

3.2.2.3 Dissolution stability as a function of pH and time 

DLS analyses were performed in order to check the stability of coacervates at different pH 

values. Specifically, coacervates were synthetized at pH 4.5 (see paragraph 3.1.2.3) and pH 

increased by addition of NaOH 0.1 M under gently stirring. The transmittance, T, and the light 

scattered at 173° (i.e. derived count rate) were analyzed for solutions at selected pH values. 

Coacervates stability was also evaluated by incubating the samples at 37 °C. DLS measurements 

were performed immediately after the synthesis of coacervates and after 1, 3, 7, 14 and 21 days of 

incubation, respectively. 

3.2.2.4 Effect of freeze-drying on coacervate stability 

The stability of coacervates after freeze-drying was evaluated both in the presence and 

absence of trehalose as cryoprotectant. Trehalose was solubilized in deionized water (10% w/v final 
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concentration). Coacervates were diluted 1:2 v/v with cryoprotectant, and the resulting solutions 

were further diluted 1:5 v/v in deionized water prior DLS analyses. Samples in the 

presence/absence of cryoprotectant were placed in 1.5 mL tubes and freeze-dried overnight. 

Resulting formulations were then suspended in the same volume of buffer, vortexed and analyzed in 

triplicate by DLS after dilution 1:5 v/v in deionized water. 

3.2.2.5 Encapsulation of a model molecule 

Fluoresceinamine isomer I and dexamethasone were selected as model-payloads to 

determine the encapsulation efficiency and drug loading capacity of the selected formulation. The 

former molecule was solubilized in methanol (1 mg/mL final concentration) and used to prepare 

serial dilutions using acetate buffer 10 mM and NaCl 150 mM as the solvent. The linear range of 

fluorescence intensity as a function of concentration (buffer without fluorophore as blank) was 

recorded using a BMG LABTECH 96 spectrofluorometer, with λex = 485 nm and λem = 520 nm. 

The fluorophore was added at a final concentration of 2 μg/mL to 1.5 mL of CTL solutions. In the 

case of dexamethasone, the final concentration was 20 μg/mL; the absorbance was recorded at λ = 

241 nm using a Ultrospec 2100 pro (Bioscience, England). Molecule-loaded coacervates were left 5 

min under stirring to homogeneously distribute the payload. Finally, 500 μL of HA were added 

dropwise and the mixtures stirred for 15 min. 500 μL of the particles solution were placed in 1.5 mL 

tubes and centrifuged at 9 000g for 1 h. After centrifugation, the supernatants were collected and 

analyzed. The supernatant of coacervates prepared without payload was used as blank. Calibration 

curves were used to determine the molecules concentration in the supernatant. Encapsulation 

efficiency (%) was determined according to eq 4: 

    
      

  
                           (4) 
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where Ci corresponds to the initial concentration of the payload, Cx is the payload concentration in 

the supernatant after sample centrifugation. Loading capacity (expressed as w/w ratio) was 

determined as eq 5: 

    
      

  
                      (5) 

where wt corresponds to the total mass of the encapsulated molecule, wx is the mass recovered from 

the supernatant, and wp is the mass of coacervates. [89] Payload-loaded samples were also analyzed 

by DLS to evaluate their hydrodynamic diameter and PDI. 

3.2.2.6 Release experiments 

The leakage of dexamethasone from HA/CTL47 coacervates was measured in AcOH/AcNa 

buffer 10 mM as final concentration (pH 4.5, NaCl = 150 mM) at 37 °C. Dexamethasone was 

encapsulated at a final concentration of 20 μg/ mL, and resulting coacervate dispersions were sealed 

in a dialysis tube (Sigma-Aldrich, cutoff 12 kDa) and placed in 2 mL of the same buffer under 

shaking conditions. The dialysis solution was collected and replaced with fresh buffer after each 

time investigated. The amount of dexamethasone was quantified as indicated in paragraph 3.2.2.5. 

The release of dexamethasone from HA/CTL47 coacervates was monitored up to 4 h, and results 

are reported as the percentage of cumulative release over time. 

3.2.2.7 Isolation of human neutrophils 

Venous blood was collected from healthy volunteers after obtaining written informed 

consent, with the approval of the Institutional Ethical Committee. Neutrophils were isolated by a 

discontinuous Percoll gradient centrifugation as previously described, [90] and suspended in PBS 

solution, pH 7.4, containing 5 mM glucose and 0.2% BSA. Immediately before use, cell 

suspensions were washed in MES-buffered saline solution (MBS) containing 140 mM NaCl, 5 mM 
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KCl, 5 mM glucose, 10 mM MES (pH 6.0), and 0.2% BSA (MBS-BSA), and suspended in the 

same medium. 

3.2.2.8 Preparation of FBG-coated surfaces 

Flat-bottom poly(styrene) wells (F16 MaxiSorp Nunc-Immuno Modules or F16 Black 

MaxiSorp Fluoronunc Cert, Thermo Fisher Scientific, Roskilde, Denmark) were coated with FBG 

as described elsewhere. [91] Briefly, 50 μL of a FBG solution (400 μg/mL in PBS) were placed in 

each well, and the plate was left at 37 °C for 2 h in a humidified chamber. Prior to use, the wells 

were rinsed three times with PBS. 

3.2.2.9 Evaluation of H2O2 production 

H2O2 generation was assessed using DHR. Neutrophils (1.25 × 106 cells/mL in MBS-BSA) 

were loaded with 40 μM DHR for 30 min at 37 °C in a shaking water bath, in the dark. Five to ten 

minutes before starting the assay, the cell suspension was supplemented with 1 mM CaCl2 and 1 

mM MgCl2. Then, 60 μL aliquots of this suspension were dispensed into FBG-coated black wells 

containing the HA/CTL coacervates (50 - 150 μg/mL final concentration) or the same volume of 

acetate buffer solution, and HRP (1 μg/mL final concentration), in a total volume of 0.15 mL MBS-

BSA supplemented with 1 mM CaCl2 and 1 mM MgCl2 (Ca2+/Mg2+ MBS-BSA). The plate was 

incubated at 37 °C in the dark and at the desired times readings were taken with a microplate 

fluorescence reader (Tecan Infinite F200; Tecan Austria GmbH, Grodig, Austria) at 485 nm (λex) 

and 535 nm (λem). H2O2-independent oxidation of DHR was measured in wells containing DHR 

loaded neutrophils pretreated for 10 min with the NADPH-oxidase inhibitor DPI (5 μM final 

concentration), and the fluorescence values registered at each incubation time were used as a 

baseline and subtracted from the actual experimental ones. 
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3.2.2.10 Measurement of neutrophil adhesion 

The number of neutrophils adherent to FBG was assessed by quantifying myeloperoxidase 

activity as described in Reference. [90] Adhesion tests were conducted in FBG-coated transparent 

wells to monitor cell morphology by light microscopy, and were run in parallel and in the same 

experimental conditions of those used to evaluate H2O2 production, except for the omission of DHR 

and HRP. 

3.2.2.11 Assessment of cells viability 

To assess the biocompatibility of complex coacervates at pH 7.4, viability studies on MG-63 

cell line were conducted. Coacervates were prepared using the EDC-NHS chemistry to stabilize 

them at physiological pH. MG-63 cells were seeded in a 96 well plate at a final concentration of 

5x10
3
 cells/well and treated with different amount of coacervates, namely 150 μg/mL, 100 μg/mL 

and 50 μg/mL. Cells cultured in DMEM without coacervates or in DMEM with hydrogen peroxide 

were used as positive and negative viability control. Cell viability was verified after 4 hours, 1 and 

3 days. 4 replicates were analyzed for each condition. 

3.2.2.11 Statistical Analysis 

Statistical analysis was performed with Student’s t-test, using GraphPad Prism 5.0 

(GraphPad Software, San Diego, CA). p-values less than 0.05 were considered statistically 

significant. 
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3.2.3 Results and discussion 

Previous analyses of Transmittance and DLS pointed out the formation of complex 

coacervates fostered by the electrostatic interaction between CTL60 and HA90. DLS analyses 

confirmed the presence of spherical particles in solution. Moreover, by comparing formulation of 

HA90/CTL60 prepared with rHA0.75 and rHA0.25 it was shed light on the influence of the ratio of 

the two polymer on the size of the coacervates. We decided to move forward with further analyses 

using the formulation HA90/CTL60 with rHA0.25. Even though this formulation displayed a 

higher particle size with respect to the formulation HA90/CTL60 rHA0.75, the Transmittance 

values underlined its great stability through all the range of ionic strengths investigated. Such 

stability is of primary importance, giving the final aim of using this system for biomedical purposes. 

 By comparing the Transmittance values of the HA90/CTL60 formulation with rHA0.25 at 

negligible ionic strength and in the presence of 150 mM of ionic strength it is evident an increased 

of the turbidity of the system, without precipitates in the solution (Figure 19A). This result joints 

other works on coacervation demonstrating that the increase of turbidity following salt addition - up 

to some extent - is a typical behavior of nonstoichiometric polyelectrolyte complexes. [92,93] To 

give further insights into the complex coacervation between hyaluronan and CTL60, dynamic light 

scattering analyses were carried out on the same samples (Figure 19B). The size distributions by 

intensity indicate a monodispersity curve profile for coacervates synthesized both without 

supporting salt and in the presence of NaCl 150 mM, thus suggesting that a homogeneous ensemble 

of (spherical) scatters was present. Strikingly, a significant shift toward smaller size values was 

noticed in the latter case, with the hydrodynamic diameter passing from 980 ± 90 nm to 454 ± 29 

nm. These results are in line with what was found by Kayitmazer and co-workers. [83] Specifically, 

in the quoted paper the authors identified a decrement of colloids dimension following the increase 

of the ionic strength up to 0.15 M; beyond this value, an abrupt coacervates size increase was 

detected. Though the latter behavior may be reasonably interpreted in terms of large clusters 
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formation due to the vanishing of electrostatic repulsions among smaller colloids, the reduction of 

coacervates dimensions in the presence of 150 mM NaCl should conversely take into account the 

simple role played by the ionic strength in reducing the (overall) hydrodynamic diameter of both the 

macromolecules. It is therefore expected that CTL and HA would assemble in smaller, more 

compact, and homogeneous coacervates. As expected, the homogeneity of the system increased in 

the presence of the supporting salt, showing a significant decrease of the polydispersity index (PDI) 

from 0.27 ± 0.02 for the coacervates fabricated without supporting salt to 0.14 ± 0.03 for those 

formed in NaCl 150 mM.  

 

Figure 19: (A) Influence of the ionic strength on the transmittance of coacervate solutions prepared at pH 4.5, dropping 

hyaluronan into CTL60 solutions. Results are reported as mean (±SD, n = 5). Statistical analysis: coacervates formed without 

NaCl vs coacervates formed in the presence of NaCl 150 mM: Student’s t-test: ***, p < 0.001. (B) DLS investigation on the 

influence of ionic strength on coacervates formation. Size distribution of formulations prepared without supporting salt 

(blue) and with NaCl 150 mM (red). (C) TEM images of coacervates synthesized in the presence of NaCl 150 mM and 

subsequently diluted 1:100 v/v in deionized water to acquire images. 

 

Sample-case transmission electron microscopy (TEM) images of coacervates synthesized in 

the presence of NaCl 150 mM corroborated the good homogeneity and the spherical shape of 

colloids (Figure 19C). Finally, it is of primary importance to underline that CTL60 and HA not only 

were able to form spherical and homogeneous coacervates in the presence of high salt content 
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(resembling the physiological ionic strength), but even that the formation of coacervates occurred 

immediately after the polymer dropping, without any phase separation lag or equilibration times. 

These results highlight an important difference between simple coacervation (i.e., involving one 

macromolecule) and complex coacervation (involving two or more macromolecules): indeed, in 

several studies, the ionotropic gelation of chitosan and its derivative CTL using tripolyphosphate 

(TPP) as cross-linker is drastically hampered by elevated NaCl (i.e., 150 mM) and low TPP 

amounts, [94] [61] mostly in the first stage of macromolecular assembly. Therefore, the use of 

hyaluronan - presently envisaged as a low MW “cross-linker” for CTL - in fostering the formation 

of complex coacervates in physiological osmolarity is more effective than the multivalent anion 

TPP. 

 

Figure 20: (A) Dissolution stability of HA/CTL60 coacervates as a function of pH: transmittance (black dots) and intensity of 

173° scattered light (red dots) recorded from DLS measurements: dashed lines are drawn to guide the eye. (B) Dissolution 

stability of HA/CTL60 coacervates as a function of time. 173° scattered light (black dots) and polydispersity index?PDI?(red 

dots). Coacervates were kept at 37 °C for 21 days and DLS measurements performed at selected timepoints; dashed lines are 

drawn to guide the eye. All results are reported as mean (±SD, n = 3). 

 

The stability of coacervates as a function of pH and time was studied thereafter. 

Transmittance studies pointed at constant values for T (below 40%) up to pH 5.5; beyond that, an 

increase of T of about 20% marked the initial instability of the system (Figure 20A). Moreover, the 

formation of visible aggregates was detected above pH 6.3. The complete dissolution of coacervates 

was noticed in the high pH range, as noticed by T values reaching those of disentangled polymers. 
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The opposite trend of the scattering intensity data at 173° reported in the same figure validated the 

instability of the system at pH ≥ 6. Specifically, a sudden decrement of scattering intensity 

paralleled by an increase of T was observed at pH > 6, thus pointing at the onset of coacervates 

dissolution. The polydispersity index computed from DLS supported the transition from almost 

homogeneous colloids (PDI = 0.14 ± 0.03) to aggregates with variable dimensions (PDI = 0.48 ± 

0.20). It can be concluded that coacervates largely dissolve in a range of pH 6.0−6.3, even if the 

presence of residual chain aggregates cannot be excluded given the residual scattering intensity.  

Coacervates stability was subsequently studied as a function of time at 37 °C and pH = 4.5. 

An almost constant profile of scattering intensity was observed up to 14 days of incubation (Figure 

20B). A slight increase of both derived count rate and PDI occurred after 3 weeks at 37 °C, 

indicating a reasonable swelling or partial aggregation of the coacervates. Size distribution curves 

were almost comparable after 21 days of incubation (data not shown); moreover, the absence of 

visible aggregates indicated that coacervates remained stable throughout the experiment. This result 

indicated a clear difference with the CTL/ TPP case, indicating that the use of hyaluronan provides 

an additional benefit with respect to TPP. [61] Indeed, the replacement of the multivalent anion 

with low molecular weight hyaluronan produced stable particles at physiological temperature.  

To further improve the stability of coacervates against dissolution at slightly acidic pH 

values tending to neutrality, the hypothesis to use CTL samples with different fraction of lactose-

modified units (FL) was considered. CTL samples having different FL values present different 

fraction of both primary and secondary amines, meaning that they would be differently influenced 

by pH variation. Indeed, the calculated pKa values for primary and secondary amines were 6.69 and 

5.87, respectively. It is therefore expected that CTL samples endowed with a lower degree of 

substitution would better withstand the pH increase from 5.5 to 6.5. Hence, a second CTL sample 

with FL = 0.47, CTL47, was used to form coacervates. The comparison of the size intensity 

distributions for the two types of formulations is reported in Figure 21A. The two different 
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formulations peak at almost identical size (HA/ CTL60 = 454 ± 29 nm, HA/CTL47 = 461 ± 67 nm) 

and show a very similar (Gaussian-like) distribution. This finding clearly indicates that a 13% 

difference in the values of lactitol branching and the slight discrepancy in terms of CTL molecular 

weight did not greatly influence the formation and the homogeneity of coacervates. At variance, it 

seems that the almost identical charge [−]/[+] ratio - i.e. 0.24 and 0.26 in the case of coacervates 

prepared with CTL47 and CTL60, respectively - contributes to such a similar behavior. The pH 

profile of the turbidity of the HA/CTL47 system paralleled that of HA/CTL60, transmittance, T, 

increasing with increasing pH. However, for pH = 6.0 and beyond, the T values of the systems 

containing CTL47 showed a progressively lower value of T, up to pH 6.3, for which T = 39.4 ± 0.4 

for FL = 0.47 and T = 76.9 ± 1.3 for CTL with FL = 0.60. This finding was also supported by DLS 

analysis, where, although the scattering intensity decreased in a similar fashion, the data of the 

systems based on CTL47 always showed intensity values larger than those of the CTL60 systems 

(Figure 21C). Hence, the stability against dissolution can be improved by decreasing the fraction of 

lactose-modified units from 0.60 to 0.47. By further increasing pH, it was found that coacervates 

made of FL = 0.47 CTL remained stable at pH 6.6 for approximately 40 min, whereas a complete 

dissolution of the system occurred subsequently, suggesting that a kinetically controlled effect is 

also involved in the dissolution of coacervates. Finally, the time-stability at 37 °C and pH = 4.5 was 

verified up to 21 days for the latter formulation, showing a very similar behavior if compared with 

FL = 0.60 counterparts (data not shown). 

 

Figure 21: (A) DLS size distribution curves of coacervates synthesized with different CTL samples. All formulations were 

prepared at pH 4.5, AcOH/AcNa buffer 10 mM and NaCl = 150 mM. Dissolution stability as a function of pH: (B) 

transmittance and (C) DLS analyses. Color legend: HA/CTL60 (red dots) and HA/CTL47 (green dots). Results are reported 

as mean (±SD, n = 3). Dashed lines are drawn to guide the eye. 
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The possibility to freeze-dry suspensions of coacervates for long storage purposes was 

investigated. DLS results obtained on both freshly prepared and dried coacervates are reported in 

Figure 22. Both formulations, i.e. with FL = 0.60 or FL = 0.47, were freeze-dried in the presence or 

absence of trehalose as cryoprotectant. [95] The results in Figure 22A indicate that freeze-drying 

without trehalose brought about a massive and uncontrolled aggregation of particles. The presence 

of trehalose was beneficial for the impact of the freeze-drying process for both FL values. The 

values of both PDI and intensity showed a net benefit using trehalose as a cryoprotectant. In 

particular, coacervates based on CTL47 and containing trehalose showed both PDI and intensity 

values after freeze-drying practically equal to the corresponding values before freeze-drying. DLS 

analyses clearly proved that the use of trehalose as cryoprotectant is necessary for the storage of 

HA/CTL coacervates. The present results differ from what was reported in our previous 

contribution for simple coacervation systems based on CTL60 and TPP, where the presence of 

trehalose resulted as detrimental for the freeze-drying process. [61] This difference could stem from 

a different alignment of the polycationic (CTL) part with the polyanionic counterpart in the case of 

TPP with respect to HA. Possibly, in the former case, the much shorter dimension of the cross- 

linking agent could leave a large number of lactitol side-chains still free to interact with water 

ensuring an antifreezing effect. The observation that, in such conditions, the addition of trehalose is 

detrimental for the coacervate integrity might suggest a sort of “competition” between the lactitol 

side-chains and the added trehalose with respect to the ability of interfering with water-freezing. At 

variance, in the latter case the longer stretch of the polymeric arrangement could immobilize longer 

lactitol-containing sequences of CTL, thus canceling their potential of interference with water-

ordering (and crystallization) upon freeze-drying. As a result, the addition of trehalose could act as 

a restoring agent of the anti-freezing potential of the intact CTL moiety. The effect of the lactitol 

content on both PDI and dimension of coacervates was of interest. Whereas in the case of CTL47 

the proposed polycation/polyanion alignment seemed to cancel the lactitol effect on water 

crystallization in the absence of trehalose, the addition of the latter seemed to be able to restore the 
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antifreeze effect. At variance, in the case of CTL60 the larger amount of lactitol partially 

counterbalanced the positive effect of the addition of trehalose as suggested by the fact that with 

trehalose neither PDI nor dimensions reattain the values of the “normal” condition, providing an 

indirect support to the hypothesis of a “competition” between lactitol and trehalose in their 

antifreeze ability.  
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Figure 22: Storage stability of coacervates. PDI (A) and average hydrodynamic diameter (B). Coacervates were analyzed 

before (Normal) and after the freeze-drying process in the presence (Lyophilized-w) or absence (Lyophilized-w/o) of 

trehalose. Color legend: HA/CTL60 (red), HA/ CTL47 (green). Results are reported as mean (±SD, n = 3). Statistical analysis: 

HA/CTL60 vs HA/CTL47. Student’s t-test: *, p < 0.05; **, p < 0.01; NS, not significan. 

 

The ability of coacervates to encapsulate proper payloads was investigated to consider them 

as potential drug delivery systems. Fluoresceinamine isomer I was used at first as model molecule 

and the synthesis of coacervates was performed as described in paragraph 3.2.2.5. CTL samples at 

two different FL values formed coacervates with similar dimensions and homogeneity even when 

hosted the payload, as detected by DLS analysis (data not shown). The two formulations showed an 

identical ability to encapsulate fluoresceinamine isomer I (Table 4). The calculated loading capacity 

was 0.65 μg payload/mg carrier, with an encapsulation efficiency around 96%, which is in line with 
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similar systems. [33] [34] The encapsulation efficiency and drug loading for HA/CTL47 

coacervates were verified also using dexamethasone as payload, yielding 56 ± 1% and 3.74 ± 0.07 

μg payload/mg carrier, respectively. In vitro release experiments were undertaken to study the 

leakage of dexamethasone from HA/CTL47 coacervates, and results are reported in Figure 23. The 

release profile of the payload over time was almost constant up to 1 h of incubation, with around 

80% of total drug released. After longer incubation time, the release profile tended to reach a 

plateau with almost total dexamethasone released during 4 h of incubation. Overall, our findings 

demonstrated that HA/CTL47 coacervates were able to gradually release the selected payload in the 

early stages of incubation. 

Payload Sample 
Encapsulation 

Efficiency (%) 

Loading Capacity 

(μg/mg) 

Fluoresceinamine HA/CTL60 97 ± 6 0.65 ± 0.04 

 HA/CTL47 98 ± 5 0.65 ± 0.03 

Dexamethasone HA/CTL47 56 ± 1 3.74 ± 0.07 

 

Table 4: Encapsulation Efficiency and Loading Capacity of Coacervates Prepared with Hyaluronan and CTL at Different 

Fractions of Lactose-Modified Units (FL). Conditions: synthesis at pH 4.5, NaCl = 150 mM, room temperature. 
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Figure 23: Cumulative release of dexamethasone from HA/CTL47 coacervates. Conditions: AcOH/AcNa buffer 10 mM, NaCl 

= 150 mM, pH 4.5, T =37 °C. The results are reported as mean (±SD, n = 3). Dashed line is drawn to guide the eye. 
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Both HA/CTL60 and HA/CTL47 systems resulted to be unstable at neutral pH. However, 

the HA/CTL47 system proved to be reasonably stable at acidic pH, namely at pH 6. Extracellular 

acidosis is a condition commonly associated with inflammatory processes, where extracellular pH 

values as low as 6.1 have been documented. [96] [97] Moreover, acidic pH values were found in the 

cancer microenvironment. [98] pH-dependent features of chitosan/hyaluronic acid-based 

nanoparticles have been a matter of investigation by other authors. [33][99] In view of its potential 

use in vivo as a drug carrier, the HA/CTL47 system was selected to perform in vitro experiments in 

acidic pH conditions, namely pH 6.0. We decided to evaluate the effect of CTL47-based 

coacervates on neutrophils, which represent a key first-line defense of the immune system. 

Specifically, the possibility that coacervates could modulate the generation of H2O2 and/or the 

adhesion of neutrophils to FBG was tested. Figure 24A shows that coacervates, at the tested 

concentrations, had only a minor stimulatory effect on the basal production of H2O2 by human 

neutrophils at pH 6.0. However, the coacervates elicited a marked increase in the number of cells 

adherent to FBG (Figure 24B), which was accompanied by an exacerbation of the elongated 

morphology exhibited by neutrophils at this pH value. The expected increase in cell adherence 

stimulated by HA/CTL47 prompted us to replot the data obtained in the DHR assay and normalize 

them on the basis of cell adhesion (Figure 24C). Surprisingly, the new plotting unraveled that the 

increased number of adhered cells, as a whole, produced a lower amount of H2O2 than control 

neutrophils incubated in the absence of the coacervates. Such a reduction of H2O2 generation could 

be explained by a HA/CTL47-mediated scavenging effect, since both HA and chitosan, from which 

CTL is obtained, have been shown to be efficient ROS scavengers. [34] [96] Moreover, we have 

recently demonstrated that chitosan/HA nanoparticles are capable of scavenging O2−/H2O2 released 

by neutrophils. [30] Taking the cue from some literature data, additional hypotheses to explain the 

effect of HA/CTL47 on adherence and/or ROS production could be proposed. The former one calls 

in the possibility that the interaction between neutrophils and the coacervates, involving as-yet 

unidentified surface receptor(s), somehow enhances the affinity of β2 integrins, thereby improving 
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neutrophil adherence to FBG. [100] Such an increased adherence would then trigger intracellular 

signals which downregulate ROS production, similarly to what has been described to occur after the 

interaction of αvβ3 integrin with fibronectin. [101] As a latter alternative, the contact of HA/CTL47 

with neutrophils could signal for an improved activity of ROS degradative enzymes, such as 

catalase and superoxide dismutase, thus resembling the quercetin-mediated effect that has been 

documented in a model of neuroinflammation using a human neuroblastoma cell line. [102] Clearly, 

specific investigation is additionally required to clarify this interesting point. 
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Figure 24: Effect of HA/CTL47 coacervates on neutrophil H2O2 production and adhesion to fibrinogen (FBG). The 

coacervates were prepared at pH 4.5. The pH was then raised to 6.0 before performing biological experiments. (A) Time-

course of H2O2 generation. Dihydrorhodamine 123 (DHR)-loaded neutrophils (suspended in Ca2+/Mg2+ MBS-BSA) were 

incubated at 37 °C in the absence or presence of coacervates, in FBG-coated wells containing horseradish peroxidase (HRP). 

H2O2 production was evaluated by fluorometric measurement of oxidized DHR. Data are means (±SE) of two triplicate 

experiments. (B) Adhesion of neutrophils to FBG. Adhesion was quantified after 60 min of incubation by measuring 

myeloperoxidase activity as detailed in the Materials and Methods. Data are means (±SE) of two triplicate experiments. (C) 

H2O2 production at 60 min of incubation. Results reported in (A) have been normalized for the number of adherent cells (B). 

Statistical analysis: coacervates-treated neutrophils vs control neutrophils. Student’s t-test: *, p < 0.05; **, p < 0.01; ***, p < 

0.001. 

 

HA90/CTL47 coacervates displayed an improved pH stability with respect to those prepared 

using CTL60, but unfortunately they tended to dissolve if the pH was raised toward neutrality due 

to loss of positive charges on CTL. Given the final application of complex coacervates for 

biomedical purposes, we applied the EDC-NHS coupling to stabilize them. EDC [1-Ethyl-3-(3-

dimethylaminopropyl)carbodiimide] is already used in the TE field as chemical cross-linker for 

biomaterials stabilization. [103] As a matter of fact, EDC is able to couple carboxyl group with 
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primary amines, and its water solubility and the possibility to remove the excess by dialysis made 

this chemical way very attractive for such purposes.  

After 20 min from the preparation of HA90/CTL47 coacervates, 50 μL of a 120 μg/mL 

solution of EDC were added drop-wise, followed by 50 μL of a 30 μg/mL solution of NHS (N-

Hydroxysuccinimide). The latter reactant was used to increase the chemical stability of the reaction. 

Complex coacervates solution was let to proceed under gentle stirring for 3 h, allowing for the 

stabilization of the system. DLS analyses of the coacervates prepared with the cross-linking method 

were carried both at pH 4.5 and 7.4. In Figure 25 the size distributions of HA90/CTL47 coacervates 

in AcOH/AcNa buffer (pH 4.5) and in PBS (pH 7.4) are reported. Coacervates peaked at the same 

size (size at pH 4.5: 461 ± 67 nm; size at pH 7.4: 463 ± 3 nm) and displayed comparable 

homogeneity. The result clearly demonstrated that the use of EDC-NHS coupling fostered the 

stability of coacervates at physiological pH without altering their structure. 

 

 

Figure 25: DLS investigation on the stability of HA90/CTL47 coacervates prepared with EDC/NHS coupling chemistry at pH 

4.5 (green) and 7.4 (blue). 
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A preliminary evaluation of the biocompatibility of EDC-NHS coupled-coacervates was 

performed. Three different concentrations of coacervates were tested (Figure 26). MG-63 cells were 

seeded at day 0 and the proliferation was followed for three days. Figure 26 summarized the results: 

the cells seeded at pH 7.4 with the three different concentrations of coacervates displayed similar 

proliferation rate and no significant difference with respect to the control (cells seeded in plain 

medium). These results proved that HA/CTL coacervates did not affect cell proliferation in vitro 

and the concentration of EDC used for coacervates stabilization had no influence on cell viability.  

 

Figure 26: Cell proliferation of MG-63 cell line as a function of time. The cells were treated with three different amounts of 

coacervtes. Alamar Blue assay was performed after 4 hours, 1 and 3 days after the seeding. Results are reported as means 

(±SD, n =4). 
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CHAPTER 3: Preparation and characterization of 

Alginate/CTL/Chondroitin sulfate hydrogels  

3.3.1 Aim of the work 

This third chapter conclude the development of the biomaterial. Alginate, chondroitin sulfate 

and CTL were chosen for the preparation of a bioactive hydrogel. Rheological measurements were 

carried on to investigate the mechanical properties of this 3D structure. Subsequently, the 

possibility to successfully embed the coacervates into the hydrogel was evaluated by means of a 

confocal laser scanning microscope. The release of Dexamethasone from the coacervates embedded 

into the hydrogel was followed for 7 days, demonstrating the possibility to vehicle a therapeutic 

molecule with this system. 

3.3.2. Materials and Methods 

3.3.2.1. Materials 

Alginate (FG = 0.69; FGG = 0.56; molecular weight (MW) = 130 000) was kindly provided 

by FMC biopolymers (Drammen, Norway). CTL (FA= 0.16; FD= 0.22, FL= 0.62; η= 45.9 mPa) was 

kindly provided by BiopoLife s.r.l. Chondroitin sulfate (molecular weight = 463.363 g/mol), NaCl, 

CaCl2, MgCl2, NaHCO3, K2HPO4 were purchased by Sigma Aldrich Chemical Co. (Milwaukee, 

WI). Deionized filtered water was used for the preparation of hydrogels. 

3.3.2.3. Hydrogel preparation 

Alg/CTL/CS hydrogels were prepared by exploiting an external gelation already reported for 

alginate and chitosan gels. [104] Alginate, CTL and chondroitin sulfate were dissolved separately in 

deionized filtered water at a final concentration of 1% (w/v), 0.5% (w/v) and 0.3% (w/v), respectively. 

The pH of the three solutions was adjusted to 7.4 using NaOH 1M. A constant ratio of 1:15 between 
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Hepes and NaCl was kept for all the solutions. CS and CTL were next added drop-wise to the Alg 

solution and allowed to mix homogenously. NaCl was used as supporting salt to provide a final ionic 

strength, I, of 0.15 M. The solution was casted into a mold (diameter = 22 mm, height = 2.5 mm) closed 

by two dialysis membranes (Molecular weight cut off ~ 12 000, average flat width 25 mm, Sigma 

Aldrich, Chemical Co.) and fixed by double circular stainless iron rings. The system was hermetically 

sealed and immersed into a 50 mM CaCl2 solution (gelling bath, pH 7.4, NaCl 0.15 M). Ion diffusion 

proceed for 30 min under moderate stirring at room temperature. 

3.3.2.4. Rheological measurements 

Rheological characterization of cylindrical Alg/CTL/CS hydrogels was performed by means of 

controlled stress HAAKE MARS III rheometer (Thermo Scientific) operating at T = 25 °C using, as 

measuring device, a shagreened plate apparatus (HPP20 profiliert: diameter = 20 mm). To avoid water 

evaporation from the hydrogel, the measurements were performed in a water-saturated environment 

using a glass bell (solvent trap) containing a wet cloth. First, the gap between plates was adjusted by 

performing a series of short stress sweep tests (  = 1 Hz; stress range 1 - 5 Pa; maximum deformation < 

0.1%) in order to detect the optimum distance that allowed to maximize the elastic modulus,   , without 

causing excessive gel squeezing (which could reflect in the alteration of polymeric network properties). 

For each hydrogel, the linear viscoelastic range was determined by means of a stress sweep test 

consisting in measuring the elastic,   , and viscous,    , moduli variation with increasing shear stress at 

a frequency, ν, of 1 Hz. On the same samples, stress relaxation (SR), creep recovery (CR) and long 

stress sweep (LSSW) tests were performed. In particular, during the stress relaxation test an 

instantaneous strain of 1% was applied and the stress decay was followed for 10 min; conversely, in the 

CR test, the hydrogel was allowed to creep during the imposition of a continuous stress for 15 min, after 

that the recovery of the hydrogel was fallowed for other 15 min.  
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3.3.2.5. Preparation of coacervates/hydrogel systems 

HA/CTL47-FITC coacervates were prepared as described in section 3.1.2.3. HA/CTL47-FITC 

coacervates were dispersed in 2 mL of Alg/CTL/CS solutions and subsequently cast into a mold for 

gelation as described elsewhere. After 30 min, the hydrogel was retrieved from the gelling bath. A 

cross-section from the central part of the cylindrical hydrogel was obtained with a surgical scalpel and 

placed on a glass slide. The sample was mounted on the stage of an inverted microscope (Nikon C1 

Standard Detector) associated with a confocal argon-ion laser scanning microscope. Laser excitation 

light was provided at a wavelength of 488 nm, and fluorescent emissions were collected at wavelengths 

between 510 nm and 580 nm. For the image acquisition, a Nikon Plan Fluor20X was used as objective. 

Confocal Laser Scanning Microscopy (CLSM) images were processed using ImageJ software. 

3.3.2.6. Preparation of a Simulated Body Fluid (SBF) 

The solution in which the hydrogel were placed for in vitro tests was SBF [105] with a pH of 7.4 

and ion concentrations nearly equal to those of human blood plasma (Na
+

 142 mM , K
+

 5 mM, Mg2+
 1.5 

mM, Ca2+
 2.5 mM , Cl

−
 147.8 mM, HCO3

−
 4.2 mM, HPO4

2-
 1 mM, SO4

2-
 0.5 mM). The SBF was 

prepared by dissolving reagent-grade chemicals (NaCl, NaHCO3, KCl, K2HPO4·3H2O, MgCl2·6H2O, 

CaCl2) in distilled water and buffering at pH 7.4 with tris(hydroxymethyl)aminomethane 

((CH2OH)3CNH2 ) and 1.0 M hydrochloric acid at 36.5 °C. SBF was sterilized with a 0.2 μm filter and 

stored between 2° and 8 °C for further use. 

3.3.2.7. Swelling behavior of Alg/CTL/CS hydrogels 

Swelling and dissolution behavior were investigated upon immersion of the hydrogels into SBF. 

Briefly, the specimens were cylindrical in shape with an average thickness of 2 mm and diameter of 23 

mm. The swelling behavior was quantified by measuring the changes in sample weight as a function of 

soaking time in SBF. No erosion of hydrogels was observed throughout measurements. Wet weights 



 

 

61 

 

were determined after blotting with a filter paper to remove the surface liquid and the swelling ratio was 

calculated using the Equation (6): 

        
     

  
                       (6) 

where Esr is the amount of absorbed water (weight percent) by the polymer matrix and Wd and Ws are 

the weights of the samples at time 0 and at the time of the measurements after soaking in SBF, 

respectively. The results were taken as the mean values of three measurements. The dimensions of the 

hydrogel prior and before the immersion were measured with a caliper. Soaking SBF was changed after 

each measurement.  

3.3.2.8. Release of Dexamethasone 

The release of dexamethasone from the hydrogel and from the coacervates/hydrogel system 

was measured in SBF. Dexamethasone was encapsulated at a final concentration of 20 μg/mL, and 

resulting coacervate dispersions was lyophilized as described before. The formation of 

coacervates/hydrogel system occurred as reported in section 3.3.2.3. Coacervate/hydrogel system 

was placed in 2 mL of SBF under shaking and the amount of released dexamethasone was 

quantified as indicated previously. The SBF was collected and replaced with fresh buffer after each 

investigated time. The coacervates/hydrogel system without dexamethasone were used as blank. 

 

  



 

 

62 

 

3.3.3 Results and discussion 

Aiming at the preparation of a long lasting drug release-biomaterial, the loading of complex 

coacervates into a polymeric hydrogel was considered. Moreover, in order to fulfill the cartilage 

defect, the preparation of hydrogels with appropriate mechanics was explored. 

Alginate (Alg), CTL and chondroitin sulfate (CS) were dissolved separately in deionized 

filtered water at a final concentration of 1%, 0.5% and 0.3% w/v respectively. The pH of the three 

polymers was adjusted to 7.4 using Hepes buffer (final concentration 10 mM) and NaOH 1 M, and 

NaCl (150 mM final concentration) was added for all the polymer solutions. Both the neutral pH 

and the presence of NaCl help to shield electrostatic interactions between CTL and Alginate in 

order to obtain a homogenous mixture rather than a phase separation.  

The use of these three polymers has been already investigated for tissue engineering 

purposes. [106] [74] [107] [108] CTL and chondroition sulfate are both chosen for their bioactivity 

towards chondrocytes. On the other hand, alginate does not elicit any cellular response due to its 

lack of bioactivity, and does not provide any anchoring point for cellular adhesion; however, it is 

widely used for the preparation of 3D matrices when treated with gelling cations such as calcium or 

barium. In the present case, the formation of such matrices is achieved by means of an external 

gelation, simply termed “ion diffusion technique”, wherein polymers are initially separate from 

CaCl2 bath. A schematic representation of the technique is reported in Figure 27. 
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Figure 27: Schematic representation of the preparation of Alg/CTL/CS hydrogel exploiting the ion diffusion technique. A 50 

mM CaCl2 bath was used as gelling solution. Ca2+ ions diffused freely in and out the mold in which the Alg/CTL/CS solution 

is casted.  

 

The Ca
2+

 ions are able to diffuse freely within polymer mixture upon external gelation starts. 

The presence of calcium interacting with alginate causes the almost immediate sol-gel transition of 

the polymer mixture. The (overall) effect is the formation of an ordered network. This property is at 

the root of both biological and industrial applications of alginates[109] [110]. In particular, the G-

rich chains display high affinity for the divalent cations at very low concentration with respect to 

the M-rich chains. The explanation for such phenomenon lies in the secondary structure of 

alginates. The diaxial bond in homopolymeric chain of guluronates determines a curved fiber 

structure forming cavities, which facilitates the metal cation accommodation inside these negative 

cavities. The structure formed is reported in Figure 28, and it is commonly known as “egg-box”, in 

which one Ca
2+

 ion interacts with the G-blocks of two facing alginate chains.[111]  
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Figure 28: Schematic interaction of Ca2+ ions with the G-block of Alginate to form the so-called “egg box” structure. 

 

The formation of hydrogels occurred within 30 min (Figure 29). Resulting systems appeared 

almost transparent, easy to handle and bend without breakage. 

 

Figure 29: Alginate/CTL/chondroitin sulfate hydrogel 

 

Hydrogels displayed a viscoelastic behavior if strained at small deformations. It is well 

known that articular cartilage withstands continuous shear and compressive stresses, and the 

distribution of load through the whole joint causes the deformation of the tissue. The particular 

composition of the ECM based on collagen and proteoglycans entraps water molecules and, at the 
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same time, allows polymer reptation to better distribute the load. An appropriate biomaterial for 

cartilage repair purposes should be able to mimic such mechanical characteristics. 

Given these premises, different rheological measurements were performed to better 

understand the behavior of the biomaterial. First the mechanical spectrum of the hydrogel in 

oscillatory shear conditions was measured. Measurements were performed over a range of 

frequencies spanning from 0.01 to 100 Hz, T = 25 °C. For all the replicates measured, the storage 

modulus,   , was about tenfold the loss modulus,    , and almost independent on the angular 

frequency for at least three decades, thus suggesting that the present system can be safely 

categorized as a strong hydrogel. The mechanical spectrum of one-case sample hydrogel is reported 

in Figure 30A The storage and loss moduli can be modeled in terms of the generalized Maxwell 

model - i.e. a combination of in parallel spring/dashpot elements - according to the following 

equations: 

 

           
      

         
 
         

  

  
                (7) 

       
   

         
 
         

  

  
………..……….(8) 

where n is the number of Maxwell elements considered, Gi, ηi, and λi represent the spring constant, 

the dashpot viscosity, and the relaxation time of the ith Maxwell element, respectively. Ge is the 

spring constant supposed to be purely elastic. The fitting of the experimental data was performed 

assuming that relaxation times are not independent each other but they are scaled by a factor 10. 

Hence, the parameters of the model are Ge, ηi, and λ1. The number of the Maxwell elements was 

selected, based on a statistical procedure, to minimize the product χ
2
*Np, where χ

2
 is the sum of the 

squared errors, while Np (= 2 + n) indicates the number of fitting parameters.  

The use of Maxwell model enabled to calculate the shear modulus, G, which reflects the 
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stiffness of hydrogels under a constant stress at small deformations as  

 

           
 
   ………………(9) 

 

Resulting shear modulus, G, of the hydrogels was calculated to be approximately 20 kPa. This 

result is in line with other biomaterials proposed for cartilage tissue engineering [112], even if still 

lower mechanically compared to the native tissue. 

 

Figure 30: Panel reporting the rheological measurements on the hydrogel. A) Frequency sweep test, B) Stress relaxation test, 

C) Creep recovery test and D) Long stress sweep test. 

 

To deeply investigate the mechanical behavior of hydrogels as a function of time, stress 

relaxation tests (SR) were performed The samples were undergone to an instantaneous strain, and 
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the stress decay was monitored over time (Figure 30B). This kind of test is very important also 

when considering materials that will be subjected to repetitive strain cycles, to determine if the 

stress can be dissipated over the time scale of tissue considered. As a matter of fact, the overloading 

in a material can cause damage and, therefore, negative clinical outcomes. [113] In particular, it was 

observed that the time needed to the material for relaxing the applied stress to half its value during 

the SR test (t2) was about 1 s, whereas the t1 was around 100 s. The former relaxation time refers to 

the initial fast decay whereas the latter one takes into account the slow (and modest) stress 

relaxation regime. The calculated values nicely fall into the relevant timescale at which cells 

respond to force oscillations, i.e. at which exert traction forces with ensuing spreading [114]. 

Hookean and Newtonian materials respond immediately after an applied stress, but when a 

viscoelastic material undergoes the same type of stress, it does not immediately respond with a 

constant flow, even though the stress may be sufficiently above the critical stress or yield point. 

When the stress is removed, this set of materials slowly recovers to almost their original state. This 

behavior is referred to as a creep. Figure 30C display the time dependency of the compliance J. 

After the sample was allowed to creep under load for about 30 min without squeezing,, the imposed 

stress was relieved, measuring the sample recover. The creep compliance was analyzed by means of 

a model composed of a Maxwell element in series with one Voigt element (eq 10), which accurately 

fitted all experimental data points 

                      
 

  
………………(10) 

where J(t) is the measured compliance, J0 and J1 are the compliances of the Maxwell and Voigt 

springs respectively,    is the so-called Newtonian viscosity of the Maxwell dashpot, and τ is the 

retardation time associated with the Voigt element. The resulted    was of about 5*10
7
 Pa*s. Such 

viscosity is related to the concentration of the polymer in the hydrogel and to the cross-linking 

density, so that the frictional forces between the chains connecting the junctions in the hydrogel can 
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explain the resistance of the network toward slipping. [115] It follows that the Newtonian viscosity 

of the hydrogel is directly proportional to the cross-linking density.  

Long stress sweep tests were performed to verify the viscoelastic behavior of hydrogels at 

large deformation regime. This type of tests allows to detect the onset of non-linear regime at which 

the materials starts to soften. In Figure 30D it is reported the elastic modulus as a function of the 

strain. In the first region, it was observed an almost independency of    on applied deformation, 

meaning that the stress scales linearly with the deformation. Above a critical strain value, a strain-

softening profile was identified marking the onset of non-linear region. The critical strain at which 

the network started to weaken was approximately 3.5%. 

The swelling capacity of the Alg/CTL/CS hydrogel was subsequently investigated. If an 

ionically cross-linked hydrogel is considered, we should recall that the present network typically 

rearrange its structure by absorbing the surrounding solvent (swelling behavior) or by expelling it 

(shrinking or deswelling behavior). The swelling - or conversely shrinking - properties depend on 

many factors such as network cross-linking density, solvent nature, polymer/solvent interactions. 

[116] The swelling capacity of the hydrogel was studied in physiological pH conditions using a 

Simulated Body Fluid (SBF) as medium for 7 days. The hydrogels were characterized by an initial 

swelling phase during the first 3 days, after that, a decrement of swelling ratio (%) was noticed. As 

a general consideration, the hydrogels seem to not degrade, however further investigations are 

required to exclude the potential release of singular polymer components, which might determine 

such a behavior. 
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Figure 31: swelling ratio of Alg/CTL/CS hydrogel based on weight variation. Measurements were recorded from day 0 to day 

7. For each sample the diameter, height and weight were measured. Data are reported as means (±SD, n = 3).  

 

Scaffolds suitable for the controlled release of drug therapeutics have been studied, trying to 

solve the structural problems affecting articular cartilage. The combination of hydrogels with 

coacervates could favor a sustained and controlled release of one or more therapeutics or bioactive 

molecules. [117] 

After the mechanical characterization of the hydrogel, it was hypothesized to combine the 

system with coacervates. HA90/CTL47-FITC coacervates were prepared using the EDC/NHS 

coupling chemistry. Coacervates were subsequently lyophilized as described previously, and then 

resuspended in 2 mL of Alg/CTL/CS solution and left under gentle stirring for about 10 min. Then, 

the whole mixture was gelled as described before.  
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Figure 32: 3D rendering of complex coacervates embedded into an Alg/CTL/CS hydrogel. A) and C) top view of hydrogel 

section, B) and D) hydrogel cross section. 

 

The hydrogel was recovered and cut along its cross-section; finally, it was placed on a 

microscope slide to observe the distribution of the coacervates within the hydrogel. The 3D 

rendering of the hydrogel was obtained by analyzing each Z-stack recorded by confocal laser 

scanning microscope analysis and reported in Figure 32. A slight auto-fluorescence of the hydrogel 

can be observed, likely due to CTL;. The coacervates,  represented by green spots embedded in the 

hydrogel, can be clearly detected. This finding would suggest the possibility to successfully 

integrate coacervates within hydrogels. The distribution of the coacervates is not homogeneous, but 

they are mainly present at one side of the network. Such distribution could be attribute to an 

insufficient blending when the lyophilized coacervates were resuspended in the Alg/CTL/CS 

mixture. However, some important considerations can be drawn. The coacervates can be perfectly 

detected, retaining a sphere-like shape and a diameter comparable to not-embedded ones. Some 

aggregates are present, maybe ascribed to an insufficient blending, as previously discussed. The 

loading approach must be fine tuned in order to guarantee a better distribution of the coacervates 

and therefore an improvement of the whole system. 
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The successful loading of coacervates into the hydrogel matrix opened the way to the 

investigation of the whole system performance. In particular, given the final aim of this work to 

promote the release of therapeutics, the leakage of Dexamethasone from the coacervates embedded 

into the hydrogel was studied.  

 

 

 

Figure 33: Cumulative drug release of Dexamethasone from coacervetas embedded into Alg/CTL/CS hydrogel. The release 

was followed up to 7 days. 

 

HA90/CTL47/DEXA coacervates were prepared as described in paragraph 3.2.2.5 and 

subsequently embedded into the Alg/CTL/CS hydrogel. The system was placed in SBF and the 

release of Dexamethasone was followed at selected time points for one week. The cumulative drug 

release expressed as percentage is reported in Figure 33. An initial burst release was detected in the 

first hour, probably due to the leakage of free payload not encapsulated within coacervates, with the 
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50% of the drug released in 24 h. After 7 days, the release of dexamethasone was about 76%. 

Giving the integrity of the hydrogel after this period of time, it is hypothesized that the 

dexamethasone was not completely released. Such result supports the possibility to efficiently 

encapsulate molecule therapeutics in order to favor the controlled release over a prolonged period of 

time. In fact, if we compared the release from the single coacervate system (4 h) with that of the 

complete system (7 days), a prolonged release is clearly evident.  
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4. CONCLUSIONS 

Nowadays, the regeneration of articular cartilage defect is still a great challenge. The lack of 

innervations, lymphatic and blood stream and the poor proliferation ability of chondrocytes prevent 

an appropriate regeneration of the tissue. Sports trauma, long term wear, ageing, obesity and genetic 

diseases can lead to cartilage and bone lesions that refer to arthritic diseases. Numerous approaches 

are employed to treat such diseases, based on the severity of the lesions (from the weight control, to 

visco-supplementation and surgical procedures). Unfortunately, none of them are able to restore the 

native tissue. For these reasons, researchers are exploring the tissue engineering approach which 

combines the use of biomaterials (3D structures), cells and bioactive molecules in order to 

regenerate damage tissues.  

The goal of this project fall in this scenario, aiming at the development of a bioactive 

biomaterial that could fulfill the cartilage defect and promote the repair of the tissue. The structure 

of such biomaterial is designed like a polymeric hydrogel embedding drug-loaded complex 

coacervates in for a long term drug release. 

It was first investigated the possibility to form complex coacervates by exploiting the 

electrostatic interaction between two oppositely charged polysaccharides, namely CTL and 

Hyaluronan. The behavior of such polymers when mixed together was studied, analyzing the 

influence of pH, ionic strength, polymer mixing, molecular weight and charge density. A complete 

miscibility of the two mentioned polymers was achieved at pH 7.4 for all the ionic strengths 

analyzed. As a matter of fact, CTL is almost uncharged in this pH condition, preventing the 

formation of complex coacervates. By decreasing the pH to 4.5, an increased turbidity of the system 

marked the formation of coacervates. By theoretical calculation and ζ-potential analyses it was 

observed that when the ratio of the two polymer is equal to one, the formation of precipitates 

without coacervates in solution occurs. Moreover, preliminary DLS analyses displayed the 
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formation of spherical particles for solution prepared with negligible ionic strength, underlined the 

influence of the molecular weight and the weight fraction of the polymers for coacervates 

preparation. 

The possibility to obtain spheroidal nano-/microparticles when HA was added to CTL in the 

presence of a physiological concentration (i.e., 150 mM) of NaCl was demonstrated, thereby 

overcoming screening phenomena. Interestingly, it was not only found that the supporting salt was 

unable to completely screen electrostatic attractive interactions, but it was even showed that it 

helped the reduction of the size distribution of coacervates. Time dissolution stability studies proved 

that coacervates did not dissolve at 37 °C up to 3 weeks; conversely, they disentangled upon 

increasing pH toward neutrality. Interestingly, the rate of dissolution could be tuned, to some extent, 

by varying CTL chemical composition, thus proving the usefulness of exploiting HA for stabilizing 

CTL- based colloids, with respect to and at variance with tripolyphosphate (TPP). The selected 

systems displayed suitable encapsulation efficiency, exhibited optimal drug loading, and preserved 

physical properties after freeze-drying in the presence of trehalose as cryoprotectant. Biological 

experiments using human neutrophils as cellular model pointed out the ability of HA/CTL 

coacervates to exert a significant ROS scavenging activity. Overall, the present findings - together 

with the documented bioactivity of CTL - suggest that the complex coacervation between CTL and 

low molecular weight hyaluronan can be considered as an effective strategy to form bioactive 

carriers to be used for the delivery of drugs toward confined inflamed sites known to be commonly 

associated with extracellular acidosis. 

 The stability of HA/CTL coacervates in physiological pH was achieved by taking advantage 

of the amino coupling. Biological evaluation demonstrate the compatibility of the coacervates, 

allowing their used for further studies. We prepared bioactive hydrogels based on alginate, CTL and 

chodroitin sulfate. The last two polymers had already demonstrate their  influence on chondrocytes 

proliferation and matrix deposition, whereas alginate is currently used in many biological and 
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industrial application for its gel forming ability. Alginate/CTL/chondroitin sulfate hydrogel was 

formed by casting the polymers solution in a mold and diving in a CaCl2 bath, exploiting the ion 

diffusion technique. Rheological characterizations of the hydrogel shown a behavior similar to other 

biomaterials proposed for similar applications. Although the distribution of coacervates within the 

hydrogel was not homogeneous, the possibility to successfully embed the coacervate into the 

hydrogel was stated using confocal laser scanning microscopy. Such achievement had opened the 

way to the investigation of the release of Dexamethasone from the complex system 

(dexamethasone-loaded coacervates embedded in the hydrogel). The release was followed for 

7days. After an initial burst release, almost the 80% of dexamethasone was release within the time 

of observation. By comparing the release from the coacervates s with the complex system, an 

extension  of the releasing time can be observed.  

 As future activities, a biological characterization, in vitro and in vivo, of the complex system 

will be considered, but the data collected in this three year work presents a valuable biomaterial for 

drug delivery, but also as vehicle of growth factors or other biologically active molecules. 
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