Theory of the (m, σ)-general functions over infinite-dimensional Banach spaces

Claudio Asci

Abstract

In this paper, we introduce some functions, called (m, σ) general, that generalize the (m, σ)-standard functions and are defined in the infinite-dimensional Banach space E_{I} of the bounded real sequences $\left\{x_{n}\right\}_{n \in I}$, for some subset I of \mathbf{N}^{*}. Moreover, we recall the main results about the differentiation theory over E_{I}, and we expose some properties of the (m, σ)-general functions. Finally, we study the linear (m, σ) general functions, by introducing a theory that generalizes the standard theory of the $m \times m$ matrices.

Keywords: Infinite-dimensional Banach spaces, infinite-dimensional differentiation theory, (m, σ)-general functions.
MS Classification 2010: 28A15, 46B99.

1. Introduction

In this paper, we generalize the results of the articles [3] and [4], where, for any subset I of \mathbf{N}^{*}, we define the Banach space $E_{I} \subset \mathbf{R}^{I}$ of the bounded real sequences $\left\{x_{n}\right\}_{n \in I}$, the σ-algebra \mathcal{B}_{I} given by the restriction to E_{I} of $\mathcal{B}^{(I)}$ (defined as the product indexed by I of the same Borel σ-algebra \mathcal{B} on \mathbf{R}), and a class of functions over an open subset of E_{I}, with values on E_{I}, called (m, σ) standard. The properties of these functions generalize the analogous ones of the standard finite-dimensional diffeomorphisms; moreover, these functions are introduced in order to provide a change of variables' formula for the integration of the measurable real functions on $\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right)$. For any strictly positive integer k, this integration is obtained by using an infinite-dimensional measure $\lambda_{N, a, v}^{(k, I)}$, over the measurable space $\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right)$, that in the case $I=\{1, \ldots, k\}$ coincides with the k-dimensional Lebesgue measure on \mathbf{R}^{k}.

In the mathematical literature, some articles introduced infinite-dimensional measures analogue of the Lebesgue one (see for example the paper of Léandre [8], in the context of the noncommutative geometry, that one of Tsilevich et al. [10], which studies a family of σ-finite measures on \mathbf{R}^{+}, and that one of Baker [5], which defines a measure on $\mathbf{R}^{\mathbf{N}^{*}}$ that is not σ-finite).

In the paper [3], we define the linear (m, σ)-standard functions. The motivation of this paper follows from the natural extension to the infinite-dimensional case of the results of the article [2], where we estimate the rate of convergence of some Markov chains in $[0, p)^{k}$ to a uniform random vector. In order to consider the analogue random elements in $[0, p)^{\mathbf{N}^{*}}$, it is necessary to overcome some difficulties: for example, the lack of a change of variables formula for the integration in the subsets of $\mathbf{R}^{\mathbf{N}^{*}}$. A related problem is studied in the paper of Accardi et al [1], where the authors describe the transformations of generalized measures on locally convex spaces under smooth transformations of these spaces. In the paper [4], we expose a differentiation theory for the functions over an open subset of E_{I}, and in particular we define the functions C^{1} and the diffeomorphisms; moreover, we remove the assumption of linearity for the (m, σ)-standard functions, and we present a change of variables' formula for the integration of the measurable real functions on $\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right)$; this change of variables is defined by the (m, σ)-standard diffeomorphisms, with further properties. This result agrees with the analogous finite-dimensional result.

In this paper, we introduce a class of functions, called (m, σ)-general, that generalizes the set of the (m, σ)-standard functions given in [4]. In Section 2, we recall the main results about the differentiation theory over the infinitedimensional Banach space E_{I}. Moreover, we expose some properties of the (m, σ)-general functions. In Section 3, we study the linear (m, σ)-general functions and we expose a theory that generalizes the standard theory of the $m \times m$ matrices and the results about the linear (m, σ)-standard functions, given in [3]. The main result is the definition of the determinant of a linear (m, σ)-general function, as the limit of a sequence of the determinants of some standard matrices (Theorem 3.6 and Definition 3.7). Moreover, we study some properties of this determinant, and we provide an example (Example 3.19). In Section 4, we expose some ideas for further study in the probability theory.

2. Theory of the (m, σ)-general functions

Let $I \neq \emptyset$ be a set and let $k \in \mathbf{N}^{*}$; indicate by τ, by $\tau^{(k)}$, by $\tau^{(I)}$, by \mathcal{B}, by $\mathcal{B}^{(k)}$, by $\mathcal{B}^{(I)}$, and by Leb, respectively, the euclidean topology on \mathbf{R}, the euclidean topology on \mathbf{R}^{k}, the topology $\bigotimes_{i \in I} \tau$, the Borel σ-algebra on \mathbf{R}, the Borel σ-algebra on \mathbf{R}^{k}, the σ-algebra $\bigotimes_{i \in I} \mathcal{B}$, and the Lebesgue measure on \mathbf{R}.
Moreover, for any set $A \subset \mathbf{R}$, indicate by $\mathcal{B}(A)$ the σ-algebra induced by \mathcal{B} on A, and by $\tau(A)$ the topology induced by τ on A; analogously, for any set $A \subset \mathbf{R}^{I}$, define the σ-algebra $\mathcal{B}^{(I)}(A)$ and the topology $\tau^{(I)}(A)$. Finally, if $S=\prod_{i \in I} S_{i}$ is a Cartesian product, for any $\left(x_{i}: i \in I\right) \in S$ and for any $\emptyset \neq H \subset I$, define
$x_{H}=\left(x_{i}: i \in H\right) \in \prod_{i \in H} S_{i}$, and define the projection $\pi_{I, H}$ on $\prod_{i \in H} S_{i}$ as the function $\pi_{I, H}: S \longrightarrow \prod_{i \in H}^{i \in H} S_{i}$ given by $\pi_{I, H}\left(x_{I}\right)=x_{H}$.

Henceforth, we will suppose that I, J are sets such that $\emptyset \neq I, J \subset \mathbf{N}^{*}$; moreover, for any $k \in \mathbf{N}^{*}$, we will indicate by I_{k} the set of the first k elements of I (with the natural order and with the convention $I_{k}=I$ if $|I|<k$); furthermore, for any $i \in I$, set $|i|=|I \cap(0, i]|$. Analogously, define J_{k} and $|j|$, for any $k \in \mathbf{N}^{*}$ and for any $j \in J$.

Definition 2.1. For any set $I \neq \emptyset$, define the function $\|\cdot\|_{I}: \mathbf{R}^{I} \longrightarrow[0,+\infty]$ by

$$
\|x\|_{I}=\sup _{i \in I}\left|x_{i}\right|, \forall x=\left(x_{i}: i \in I\right) \in \mathbf{R}^{I}
$$

and define the vector space

$$
E_{I}=\left\{x \in \mathbf{R}^{I}:\|x\|_{I}<+\infty\right\}
$$

Moreover, indicate by \mathcal{B}_{I} the σ-algebra $\mathcal{B}^{(I)}\left(E_{I}\right)$, by τ_{I} the topology $\tau^{(I)}\left(E_{I}\right)$, and by $\tau_{\|\cdot\|_{I}}$ the topology induced on E_{I} by the the distance $d: E_{I} \times E_{I} \longrightarrow$ $[0,+\infty)$ defined by $d(x, y)=\|x-y\|_{I}, \forall x, y \in E_{I}$; furthermore, for any set $A \subset E_{I}$, indicate by $\tau_{\|\cdot\|_{I}}(A)$ the topology induced by $\tau_{\|\cdot\|_{I}}$ on A. Finally, for any $x_{0} \in E_{I}$ and for any $\delta>0$, indicate by $B\left(x_{0}, \delta\right)$ the set $\left\{x \in E_{I}\right.$: $\left.\left\|x-x_{0}\right\|_{I}<\delta\right\}$.

Remark 2.2: For any $A \subset E_{I}$, one has $\tau^{(I)}(A) \subset \tau_{\|\cdot\|_{I}}(A) ;$ moreover, E_{I} is a Banach space, with the norm $\|\cdot\|_{I}$.
Proof. The proof that $\tau^{(I)}(A) \subset \tau_{\|\cdot\|_{I}}(A), \forall A \subset E_{I}$, follows from the definitions of $\tau^{(I)}$ and $\tau_{\|\cdot\|_{I}}$; moreover, the proof that E_{I} is a Banach space can be found, for example, in [3] (Remark 2).

The following concept generalizes the definition 6 in [3] (see also the theory in the Lang's book [7] and that in the Weidmann's book [11]).

Definition 2.3. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}$ be a real matrix $I \times J$ (eventually infinite); then, define the linear function $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow \mathbf{R}^{I}$, and write $x \longrightarrow A x$, in the following manner:

$$
\begin{equation*}
(A x)_{i}=\sum_{j \in J} a_{i j} x_{j}, \forall x \in E_{J}, \forall i \in I \tag{1}
\end{equation*}
$$

on condition that, for any $i \in I$, the sum in (1) converges to a real number. In
particular, if $|I|=|J|$, indicate by $\mathbf{I}_{I, J}=\left(\bar{\delta}_{i j}\right)_{i \in I, j \in J}$ the real matrix defined by

$$
\bar{\delta}_{i j}= \begin{cases}1 & \text { if }|i|=|j| \\ 0 & \text { otherwise }\end{cases}
$$

and call $\bar{\delta}_{i j}$ generalized Kronecker symbol. Moreover, indicate by $A^{(L, N)}$ the real matrix $\left(a_{i j}\right)_{i \in L, j \in N}$, for any $L \subset I$, for any $N \subset J$, and indicate by ${ }^{t} A=\left(b_{j i}\right)_{j \in J, i \in I}: E_{I} \longrightarrow \mathbf{R}^{J}$ the linear function defined by $b_{j i}=a_{i j}$, for any $j \in J$ and for any $i \in I$. Furthermore, if $I=J$ and $A={ }^{t} A$, we say that A is a symmetric function. Finally, if $B=\left(b_{j k}\right)_{j \in J, k \in K}$ is a real matrix $J \times K$, define the $I \times K$ real matrix $A B=\left((A B)_{i k}\right)_{i \in I, k \in K}$ by

$$
\begin{equation*}
(A B)_{i k}=\sum_{j \in J} a_{i j} b_{j k} \tag{2}
\end{equation*}
$$

on condition that, for any $i \in I$ and for any $k \in K$, the sum in (2) converges to a real number.

Proposition 2.4. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}$ be a real matrix $I \times J$; then:

1. The linear function $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow \mathbf{R}^{I}$ given by (1) is defined if and only if, for any $i \in I, \sum_{j \in J}\left|a_{i j}\right|<+\infty$.
2. One has $A\left(E_{J}\right) \subset E_{I}$ if and only if A is continuous and if and only if $\sup _{i \in I} \sum_{j \in J}\left|a_{i j}\right|<+\infty$; moreover, $\|A\|=\sup _{i \in I} \sum_{j \in J}\left|a_{i j}\right|$.
3. If $B=\left(b_{j k}\right)_{j \in J, k \in K}: E_{K} \longrightarrow E_{J}$ is a linear function, then the linear function $A \circ B: E_{K} \longrightarrow \mathbf{R}^{I}$ is defined by the real matrix $A B$.
Proof. The proofs of points 1 and 2 are analogous to the proof of Proposition 7 in [3]. Moreover, the proof of point 3 is analogous to that one true in the particular case $|I|,|J|,|K|<+\infty$ (see, e.g., the Lang's book [7]).

The following definitions and results (from Definition 2.5 to Proposition 2.19) can be found in [4] and generalize the differentiation theory in the finite case (see, e.g., the Lang's book [6]).

Definition 2.5. Let $U \in \tau_{\|\cdot\|_{J}}$; a function $\varphi: U \subset E_{J} \longrightarrow E_{I}$ is called differentiable in $x_{0} \in U$ if there exists a linear and continuous function A : $E_{J} \longrightarrow E_{I}$ defined by a real matrix $A=\left(a_{i j}\right)_{i \in I, j \in J}$, and one has

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\left\|\varphi\left(x_{0}+h\right)-\varphi\left(x_{0}\right)-A h\right\|_{I}}{\|h\|_{J}}=0 \tag{3}
\end{equation*}
$$

If φ is differentiable in x_{0} for any $x_{0} \in U, \varphi$ is called differentiable in U. The function A is called differential of the function φ in x_{0}, and it is indicated by the symbol $d \varphi\left(x_{0}\right)$.

Remark 2.6: Let $U \in \tau_{\|\cdot\|_{J}}$ and let $\varphi, \psi: U \subset E_{J} \longrightarrow E_{I}$ be differentiable functions in $x_{0} \in U$; then, for any $\alpha, \beta \in \mathbf{R}$, the function $\alpha \varphi+\beta \psi$ is differentiable in x_{0}, and $d(\alpha \varphi+\beta \psi)\left(x_{0}\right)=\alpha d \varphi\left(x_{0}\right)+\beta d \psi\left(x_{0}\right)$.

Remark 2.7: A linear and continuous function $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$, defined by

$$
(A x)_{i}=\sum_{j \in J} a_{i j} x_{j}, \forall x \in E_{J}, \forall i \in I
$$

is differentiable and $d \varphi\left(x_{0}\right)=A$, for any $x_{0} \in E_{J}$.
Remark 2.8: Let $U \in \tau_{\|\cdot\|_{J}}$ and let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a function differentiable in $x_{0} \in U$; then, for any $i \in I$, the component $\varphi_{i}: U \longrightarrow \mathbf{R}$ is differentiable in x_{0}, and $d \varphi_{i}\left(x_{0}\right)$ is the matrix A_{i} given by the i-th row of $A=d \varphi\left(x_{0}\right)$. Moreover, if $|I|<+\infty$ and $\varphi_{i}: U \subset E_{J} \longrightarrow \mathbf{R}$ is differentiable in x_{0}, for any $i \in I$, then $\varphi: U \subset E_{J} \longrightarrow E_{I}$ is differentiable in x_{0}.

Remark 2.9: Let $U \in \tau_{\|\cdot\|_{J}}$ and let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a function differentiable in $x_{0} \in U$; then, φ is continuous in x_{0}.

Definition 2.10. Let $U \in \tau_{\|\cdot\|_{J}}$, let $v \in E_{J}$ such that $\|v\|_{J}=1$ and let a function $\varphi: U \subset E_{J} \longrightarrow \mathbf{R}^{I}$; for any $i \in I$, the function φ_{i} is called differentiable in $x_{0} \in U$ in the direction v if there exists the limit

$$
\lim _{t \rightarrow 0} \frac{\varphi_{i}\left(x_{0}+t v\right)-\varphi_{i}\left(x_{0}\right)}{t}
$$

This limit is indicated by $\frac{\partial \varphi_{i}}{\partial v}\left(x_{0}\right)$, and it is called derivative of φ_{i} in x_{0} in the direction v. If, for some $j \in J$, one has $v=e_{j}$, where $\left(e_{j}\right)_{k}=\delta_{j k}$, for any $k \in$ J, indicate $\frac{\partial \varphi_{i}}{\partial v}\left(x_{0}\right)$ by $\frac{\partial \varphi_{i}}{\partial x_{j}}\left(x_{0}\right)$, and call it partial derivative of φ_{i} in x_{0}, with respect to x_{j}. Moreover, if there exists the linear function defined by the matrix $J_{\varphi}\left(x_{0}\right)=\left(\left(J_{\varphi}\left(x_{0}\right)\right)_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow \mathbf{R}^{I}$, where $\left(J_{\varphi}\left(x_{0}\right)\right)_{i j}=\frac{\partial \varphi_{i}}{\partial x_{j}}\left(x_{0}\right)$, for any $i \in I, j \in J$, then $J_{\varphi}\left(x_{0}\right)$ is called Jacobian matrix of the function φ in x_{0}.

Remark 2.11: Let $U \in \tau_{\|\cdot\|_{J}}$ and suppose that a function $\varphi: U \subset E_{J} \longrightarrow E_{I}$ is differentiable in $x_{0} \in U$; then, for any $v \in E_{J}$ such that $\|v\|_{J}=1$ and for any $i \in I$, the function $\varphi_{i}: U \subset E_{J} \longrightarrow \mathbf{R}$ is differentiable in x_{0} in the direction v, and one has

$$
\frac{\partial \varphi_{i}}{\partial v}\left(x_{0}\right)=d \varphi_{i}\left(x_{0}\right) v
$$

Corollary 2.12. Let $U \in \tau_{\|\cdot\|_{J}}$ and let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a function differentiable in $x_{0} \in U$; then, there exists the function $J_{\varphi}\left(x_{0}\right): E_{J} \longrightarrow \mathbf{R}^{I}$, and it is continuous; moreover, for any $h \in E_{J}$, one has $d \varphi\left(x_{0}\right)(h)=J_{\varphi}\left(x_{0}\right) h$.

Theorem 2.13. Let $U \in \tau_{\|\cdot\|_{J}}$, let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a function differentiable in $x_{0} \in U$, let $V \in \tau_{\|\cdot\|_{I}}$ such that $V \supset \varphi(U)$, and let $\psi: V \subset E_{I} \longrightarrow E_{H}$ a function differentiable in $y_{0}=\varphi\left(x_{0}\right)$. Then, the function $\psi \circ \varphi$ is differentiable in x_{0}, and one has $d(\psi \circ \varphi)\left(x_{0}\right)=d \psi\left(y_{0}\right) \circ d \varphi\left(x_{0}\right)$.

Definition 2.14. Let $U \in \tau_{\|\cdot\|_{J}}$, let $i, j \in J$ and let $\varphi: U \subset E_{J} \longrightarrow \mathbf{R}$ be a function differentiable in $x_{0} \in U$ with respect to x_{i}, such that the function $\frac{\partial \varphi}{\partial x_{i}}$ is differentiable in x_{0} with respect to x_{j}. Indicate $\frac{\partial}{\partial x_{j}}\left(\frac{\partial \varphi}{\partial x_{i}}\right)\left(x_{0}\right)$ by $\frac{\partial^{2} \varphi}{\partial x_{j} \partial x_{i}}\left(x_{0}\right)$ and call it second partial derivative of φ in x_{0} with respect to x_{i} and x_{j}. If $i=j$, it is indicated by $\frac{\partial^{2} \varphi}{\partial x_{i}^{2}}\left(x_{0}\right)$. Analogously, for any $k \in \mathbf{N}^{*}$ and for any $j_{1}, \ldots, j_{k} \in J$, define $\frac{\partial^{k} \varphi}{\partial x_{j_{k}} \ldots \partial x_{j_{1}}}\left(x_{0}\right)$ and call it k-th partial derivative of φ in x_{0} with respect to $x_{j_{1}}, \ldots x_{j_{k}}$.

Definition 2.15. Let $U \in \tau_{\|\cdot\|_{J}}$ and let $k \in \mathbf{N}^{*}$; a function $\varphi: U \subset E_{J} \longrightarrow E_{I}$ is called C^{k} in $x_{0} \in U$ if, in a neighbourhood $V \in \tau_{\|\cdot\|_{J}}(U)$ of x_{0}, for any $i \in I$ and for any $j_{1}, \ldots, j_{k} \in J$, there exists the function defined by $x \longrightarrow$ $\frac{\partial^{k} \varphi_{i}}{\partial x_{j_{k}} \ldots \partial x_{j_{1}}}(x)$, and this function is continuous in $x_{0} ; \varphi$ is called C^{k} in U if, for any $x_{0} \in U, \varphi$ is C^{k} in x_{0}. Moreover, φ is called strongly C^{1} in $x_{0} \in U$ if, in a neighbourhood $V \in \tau_{\|\cdot\|_{J}}(U)$ of x_{0}, there exists the function defined by $x \longrightarrow J_{\varphi}(x)$, this function is continuous in x_{0}, and one has $\left\|J_{\varphi}\left(x_{0}\right)\right\|<+\infty$. Finally, φ is called strongly C^{1} in U if, for any $x_{0} \in U, \varphi$ is strongly C^{1} in x_{0}.

Definition 2.16. Let $U \in \tau_{\|\cdot\|_{J}}$ and let $V \in \tau_{\|\cdot\|_{I}}$; a function $\varphi: U \subset E_{J} \longrightarrow$ $V \subset E_{I}$ is called diffeomorphism if φ is bijective and C^{1} in U, and the function $\varphi^{-1}: V \subset E_{I} \longrightarrow U \subset E_{J}$ is C^{1} in V.

Remark 2.17: Let $U \in \tau_{\|\cdot\|_{J}}$ and let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a function C^{1} in $x_{0} \in U$, where $|I|<+\infty,|J|<+\infty$, then φ is strongly C^{1} in x_{0}.

Theorem 2.18. Let $U \in \tau_{\|\cdot\|_{J}}$, let $\varphi: U \subset E_{J} \longrightarrow \mathbf{R}$ be a function C^{k} in $x_{0} \in U$, let $i_{1}, \ldots, i_{k} \in J$, and let $j_{1}, \ldots, j_{k} \in J$ be a permutation of i_{1}, \ldots, i_{k}. Then, one has

$$
\frac{\partial^{k} \varphi}{\partial x_{i_{1}} \ldots \partial x_{i_{k}}}\left(x_{0}\right)=\frac{\partial^{k} \varphi}{\partial x_{j_{1}} \ldots \partial x_{j_{k}}}\left(x_{0}\right) .
$$

Proposition 2.19. Let $U=\left(\prod_{j \in J} A_{j}\right) \cap E_{J} \in \tau_{\|\cdot\|_{J}}$, where $A_{j} \in \tau$, for any $j \in J$, and let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a function C^{1} in $x_{0} \in U$, such that

$$
\begin{equation*}
\varphi_{i}(x)=\sum_{j \in J} \varphi_{i j}\left(x_{j}\right), \forall x=\left(x_{j}: j \in J\right) \in U, \forall i \in I, \tag{4}
\end{equation*}
$$

where $\varphi_{i j}: A_{j} \longrightarrow \mathbf{R}$, for any $i \in I$ and for any $j \in J$; moreover, suppose that, in a neighbourhood $V \in \tau_{\|\cdot\|_{J}}(U)$ of x_{0}, there exists the function defined by $x \longrightarrow J_{\varphi}(x)$ and one has $\sup _{x \in V}\left\|J_{\varphi}(x)\right\|<+\infty$. Then, φ is continuous in x_{0}; in particular, if φ is strongly C^{1} in x_{0} and $|I|<+\infty, \varphi$ is differentiable in x_{0}.

Definition 2.20. Let $m \in \mathbf{N}^{*}$ and let $U=\left(U^{(m)} \times \prod_{j \in J \backslash J_{m}} A_{j}\right) \cap E_{J} \in \tau_{\|\cdot\|_{J}}$, where $U^{(m)} \in \tau^{(m)}, A_{j} \in \tau$, for any $j \in J \backslash J_{m}$. A function $\varphi: U \subset E_{J} \longrightarrow E_{I}$ is called m-general if, for any $i \in I$ and for any $j \in J \backslash J_{m}$, there exist some functions $\varphi_{i}^{(I, m)}: U^{(m)} \longrightarrow \mathbf{R}$ and $\varphi_{i j}: A_{j} \longrightarrow \mathbf{R}$ such that

$$
\varphi_{i}(x)=\varphi_{i}^{(I, m)}\left(x_{J_{m}}\right)+\sum_{j \in J \backslash J_{m}} \varphi_{i j}\left(x_{j}\right), \forall x \in U
$$

Moreover, for any $\emptyset \neq L \subset I$ and for any $J_{m} \subset N \subset J$, indicate by $\varphi^{(L, N)}$ the function $\varphi^{(L, N)}: \pi_{J, N}(U) \longrightarrow \mathbf{R}^{L}$ defined by

$$
\begin{equation*}
\varphi_{i}^{(L, N)}\left(x_{N}\right)=\varphi_{i}^{(I, m)}\left(x_{J_{m}}\right)+\sum_{j \in N \backslash J_{m}} \varphi_{i j}\left(x_{j}\right), \forall x_{N} \in \pi_{J, N}(U), \forall i \in L \tag{5}
\end{equation*}
$$

Furthermore, for any $\emptyset \neq L \subset I$ and for any $\emptyset \neq N \subset J \backslash J_{m}$, indicate by $\varphi^{(L, N)}$ the function $\varphi^{(L, N)}: \pi_{J, N}(U) \longrightarrow \mathbf{R}^{L}$ given by

$$
\begin{equation*}
\varphi_{i}^{(L, N)}\left(x_{N}\right)=\sum_{j \in N} \varphi_{i j}\left(x_{j}\right), \forall x_{N} \in \pi_{J, N}(U), \forall i \in L \tag{6}
\end{equation*}
$$

In particular, suppose that $m=1$; then, let $j \in J$ such that $\{j\}=J_{1}$ and indicate $U^{(1)}$ by A_{j} and $\varphi_{i}^{(I, 1)}$ by $\varphi_{i j}$, for any $i \in I$; moreover, for any $\emptyset \neq L \subset I$ and for any $\emptyset \neq N \subset J$, indicate by $\varphi^{(L, N)}$ the function $\varphi^{(L, N)}$: $\pi_{J, N}(U) \longrightarrow \mathbf{R}^{L}$ defined by formula (6).

Furthermore, for any $l, n \in \mathbf{N}^{*}$, indicate $\varphi^{\left(I_{l}, N\right)}$ by $\varphi^{(l, N)}, \varphi^{\left(L, J_{n}\right)}$ by $\varphi^{(L, n)}$, and $\varphi^{\left(I_{l}, J_{n}\right)}$ by $\varphi^{(l, n)}$.

Definition 2.21. Let $m \in \mathbf{N}^{*}$, let $U=\left(U^{(m)} \times \prod_{j \in J \backslash J_{m}} A_{j}\right) \cap E_{J} \in \tau_{\|\cdot\|_{J}}$, where $U^{(m)} \in \tau^{(m)}, A_{j} \in \tau$, for any $j \in J \backslash J_{m}$, and let $\sigma: I \backslash I_{m} \longrightarrow J \backslash J_{m}$ be an increasing function; a function $\varphi: U \subset E_{J} \longrightarrow E_{I}$ m-general and such that $|J|=|I|$ is called (m, σ)-general if:

1. $\forall i \in I \backslash I_{m}, \forall j \in J \backslash\left(J_{m} \cup\{\sigma(i)\}\right), \forall t \in A_{j}$, one has $\varphi_{i j}(t)=0$; moreover

$$
\varphi^{\left(I \backslash I_{m}, J \backslash J_{m}\right)}\left(\pi_{J, J \backslash J_{m}}(U)\right) \subset E_{I \backslash I_{m}} .
$$

2. $\forall i \in I \backslash I_{m}, \forall x \in U$, there exists $J_{\varphi_{i}}(x): E_{J} \longrightarrow \mathbf{R}$; moreover, $\forall x_{J_{m}} \in$ $U^{(m)}$, one has $\sum_{i \in I \backslash I_{m}}\left\|J_{\varphi_{i}^{(I, m)}}\left(x_{J_{m}}\right)\right\|<+\infty$.
3. $\forall i \in I \backslash I_{m}$, the function $\varphi_{i, \sigma(i)}: A_{\sigma(i)} \longrightarrow \mathbf{R}$ is constant or injective; moreover, $\forall x_{\sigma\left(I \backslash I_{m}\right)} \in \prod_{j \in \sigma\left(I \backslash I_{m}\right)} A_{j}$, one has $\sup _{i \in I \backslash I_{m}}\left|\varphi_{i, \sigma(i)}^{\prime}\left(x_{\sigma(i)}\right)\right|<+\infty$ and $\inf _{i \in \mathcal{I}_{\varphi}}\left|\varphi_{i, \sigma(i)}^{\prime}\left(x_{\sigma(i)}\right)\right|>0$, where $\mathcal{I}_{\varphi}=\left\{i \in I \backslash I_{m}: \varphi_{i, \sigma(i)}\right.$ is injective $\}$.
4. If, for some $h \in \mathbf{N}, h \geq m$, one has $|\sigma(i)|=|i|, \forall i \in I \backslash I_{h}$, then, $\forall x_{\sigma\left(I \backslash I_{m}\right)} \in \prod_{j \in \sigma\left(I \backslash I_{m}\right)} A_{j}$, there exists $\prod_{i \in \mathcal{I}_{\varphi}} \varphi_{i, \sigma(i)}^{\prime}\left(x_{\sigma(i)}\right) \in \mathbf{R}^{*}$.

Moreover, set

$$
\mathcal{A}=\mathcal{A}(\varphi)=\left\{h \in \mathbf{N}, h \geq m:|\sigma(i)|=|i|, \forall i \in I \backslash I_{h}\right\}
$$

If the sequence $\left\{J_{\varphi_{i}^{(I, m)}}\left(x_{J_{m}}\right)\right\}_{i \in I \backslash I_{m}}$ converges uniformly on $U^{(m)}$ to the matrix $(0 \ldots 0)$ and there exists $a \in \mathbf{R}$ such that, for any $\varepsilon>0$, there exists $i_{0} \in \mathbf{N}, i_{0} \geq m$, such that, for any $i \in \mathcal{I}_{\varphi} \cap\left(I \backslash I_{i_{0}}\right)$ and for any $t \in A_{\sigma(i)}$, one has $\left|\varphi_{i, \sigma(i)}^{\prime}(t)-a\right|<\varepsilon$, then φ is called strongly (m, σ)-general.

Furthermore, for any $I_{m} \subset L \subset I$ and for any $J_{m} \subset N \subset J$, define the function $\bar{\varphi}^{(L, N)}: U \subset E_{J} \longrightarrow \mathbf{R}^{I}$ in the following manner:

$$
\bar{\varphi}_{i}^{(L, N)}(x)= \begin{cases}\varphi_{i}^{(L, N)}\left(x_{N}\right) & \forall i \in I_{m}, \forall x \in U \\ \varphi_{i}(x) & \forall i \in L \backslash I_{m}, \forall x \in U \\ \varphi_{i, \sigma(i)}\left(x_{\sigma(i)}\right) & \forall i \in I \backslash L, \forall x \in U\end{cases}
$$

Finally, for any $l, n \in \mathbf{N}, l, n \geq m$, indicate $\bar{\varphi}^{\left(I_{l}, N\right)}$ by $\bar{\varphi}^{(l, N)}, \bar{\varphi}^{\left(L, J_{n}\right)}$ by $\bar{\varphi}^{(L, n)}, \bar{\varphi}^{\left(I_{l}, J_{n}\right)}$ by $\bar{\varphi}^{(l, n)}$, and $\bar{\varphi}^{(m, m)}$ by $\bar{\varphi}$.

Definition 2.22. A function $\varphi: U \subset E_{J} \longrightarrow E_{I}(m, \sigma)$-general is called (m, σ)-standard (or (m, σ) of the first type) if, for any $i \in I \backslash I_{m}$ and for any $x_{J_{m}} \in U^{(m)}$, one has $\varphi_{i}^{(I, m)}\left(x_{J_{m}}\right)=0$. Moreover, a function $\varphi: U \subset E_{J} \longrightarrow$ $E_{I}(m, \sigma)$-standard and strongly (m, σ)-general is called strongly (m, σ)-standard (see also Definition 28 in [4]).

REmARK 2.23: Let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a m-general function; then:

1. Let $\emptyset \neq L \subset I$ and let $J_{m} \subset N \subset J$ such that $\varphi^{(L, N)}\left(\pi_{J, N}(U)\right) \subset E_{L}$; then, for any $n \in \mathbf{N}, n \geq m$, the function $\varphi^{(L, N)}: \pi_{J, N}(U) \longrightarrow E_{L}$ is n-general.
2. Let $\emptyset \neq L \subset I$ and let $\emptyset \neq N \subset J \backslash J_{m}$ such that $\varphi^{(L, N)}\left(\pi_{J, N}(U)\right) \subset E_{L}$; then, for any $n \in \mathbf{N}^{*}$, the function $\varphi^{(L, N)}\left(\pi_{J, N}(U)\right) \longrightarrow E_{L}$ is n-general.
3. If $m=1$, let $\emptyset \neq L \subset I$ and let $\emptyset \neq N \subset J$ such that $\varphi^{(L, N)}\left(\pi_{J, N}(U)\right) \subset$ E_{L}; then, for any $n \in \mathbf{N}^{*}$, the function $\varphi^{(L, N)}: \pi_{J, N}(U) \longrightarrow E_{L}$ is n-general.

Proof. The proof follows from the definition of $\varphi^{(L, N)}$.

Proposition 2.24. Let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a (m, σ)-general function; then:

1. σ is bijective if and only if $|\sigma(i)|=|i|, \forall i \in I \backslash I_{m}$.
2. $\prod_{j \in J \backslash J_{m}} A_{j} \subset E_{J \backslash J_{m}}$ if and only if there exist $a \in \mathbf{R}^{+}$and $m_{0} \in \mathbf{N}$, $m_{0} \geq m$, such that, for any $j \in J \backslash J_{m_{0}}$, one has $A_{j} \subset(-a, a)$.
3. Let $I_{m} \subset L \subset I$ and let $J_{m} \subset N \subset J$; then, one has $\varphi^{(L, N)}\left(\pi_{J, N}(U)\right) \subset$ E_{L} and $\bar{\varphi}^{(L, N)}(U) \subset E_{I} ;$ moreover, the function $\bar{\varphi}^{(L, N)}: U \subset E_{J} \longrightarrow E_{I}$ is (m, σ)-general.
4. For any $x \in U$, there exists the function $J_{\varphi_{\left(I \backslash I_{m}, J\right)}}(x): E_{J} \longrightarrow E_{I \backslash I_{m}}$, and it is continuous.
5. If, for any $j \in J \backslash J_{m}$ and for any $t \in A_{j}$, one has $\sum_{i \in I \backslash I_{m}}\left|\varphi_{i, j}^{\prime}(t)\right|<+\infty$, then, for any $n \in \mathbf{N}, n \geq m, \varphi$ is (n, ξ)-general, where the increasing function $\xi: I \backslash I_{n} \longrightarrow J \backslash J_{n}$ is defined by:

$$
\xi(i)=\left\{\begin{array}{ll}
\sigma(i) & \text { if } \sigma(i) \in J \backslash J_{n} \tag{7}\\
\min \left(J \backslash J_{n}\right) & \text { if } \sigma(i) \notin J \backslash J_{n}
\end{array}, \forall i \in I \backslash I_{n} .\right.
$$

6. Suppose that σ is injective; moreover, for any $I_{m} \subset L \subset I$ such that $|L|<+\infty$ and for any $J_{m} \subset N \subset J$, let $\widehat{m}=|\max L| \in \mathbf{N} \backslash\{0, \ldots m-1\}$; then, for any $n \in \mathbf{N}, n \geq \widehat{m}$, the function $\bar{\varphi}^{(L, N)}$ is $\left(n,\left.\sigma\right|_{I \backslash I_{n}}\right)$-standard.

Proof.

1. The proof follows from the fact that σ is increasing.
2. The proof follows from the definition of $E_{J \backslash J_{m}}$.
3. $\forall x \in \pi_{J, N}(U)$, let $y \in U$ such that $y_{N}=x$; then, $\forall i \in L \backslash I_{m}$, we have $\varphi_{i}^{(L, m)}\left(x_{J_{m}}\right)=\varphi_{i}(y)-\varphi_{i, \sigma(i)}\left(y_{\sigma(i)}\right)$, and so

$$
\sup _{i \in L \backslash I_{m}}\left|\varphi_{i}^{(L, m)}\left(x_{J_{m}}\right)\right| \leq \sup _{i \in L \backslash I_{m}}\left|\varphi_{i}(y)\right|+\sup _{i \in L \backslash I_{m}}\left|\varphi_{i, \sigma(i)}\left(y_{\sigma(i)}\right)\right|<+\infty ;
$$

then, we obtain
$\sup _{i \in L \backslash I_{m}}\left|\varphi_{i}^{(L, N)}(x)\right| \leq \sup _{i \in L \backslash I_{m}}\left|\varphi_{i}^{(L, m)}\left(x_{J_{m}}\right)\right|+\sup _{i \in L \backslash I_{m}}\left|\varphi_{i, \sigma(i)}\left(y_{\sigma(i)}\right)\right|<+\infty$,
from which $\varphi^{(L, N)}\left(\pi_{J, N}(U)\right) \subset E_{L}$. Moreover, $\forall z \in U, \forall i \in I \backslash I_{m}$, we have

$$
\left|\bar{\varphi}_{i}^{(L, N)}(z)\right| \leq\left|\varphi_{i}^{(I, m)}\left(z_{J_{m}}\right)\right|+\left|\varphi_{i, \sigma(i)}\left(z_{\sigma(i)}\right)\right|
$$

and so $\sup _{i \in I \backslash I_{m}}\left|\bar{\varphi}_{i}^{(L, N)}(z)\right|<+\infty$; then, $\bar{\varphi}^{(L, N)}(U) \subset E_{I}$. Finally, from the definition of $\bar{\varphi}^{(L, N)}$, the function $\bar{\varphi}^{(L, N)}: U \subset E_{J} \longrightarrow E_{I}$ is (m, σ) general.
4. $\forall x \in U, \forall i \in I \backslash I_{m}$, we have

$$
\left\|J_{\varphi_{i}}(x)\right\|=\left\|J_{\varphi_{i}^{(I, m)}}\left(x_{J_{m}}\right)\right\|+\left|\varphi_{i, \sigma(i)}^{\prime}\left(x_{\sigma(i)}\right)\right|
$$

furthermore, since $\sum_{i \in I \backslash I_{m}}\left\|J_{\varphi_{i}^{(I, m)}}\left(x_{J_{m}}\right)\right\|<+\infty$, we have

$$
\sup _{i \in I \backslash I_{m}}\left\|J_{\varphi_{i}^{(I, m)}}\left(x_{J_{m}}\right)\right\|<+\infty
$$

and so

$$
\begin{aligned}
& \sup _{i \in I \backslash I_{m}}\left\|J_{\varphi_{i}}(x)\right\| \\
& \leq \sup _{i \in I \backslash I_{m}}\left\|J_{\varphi_{i}^{(I, m)}}\left(x_{J_{m}}\right)\right\|+\sup _{i \in I \backslash I_{m}}\left|\varphi_{i, \sigma(i)}^{\prime}\left(x_{\sigma(i)}\right)\right|<+\infty
\end{aligned}
$$

then, from Proposition 2.4, there exists the function $J_{\varphi_{\left(I \backslash I_{m}, J\right)}}(x): E_{J} \longrightarrow$ $E_{I \backslash I_{m}}$, and it is continuous.
5. $\forall n \in \mathbf{N}, n \geq m$, and $\forall x_{J_{n}} \in \pi_{J, J_{n}}(U)$, we have

$$
\begin{aligned}
\sum_{i \in I \backslash I_{n}} & \left\|J_{\varphi_{i}^{(I, n)}}\left(x_{J_{n}}\right)\right\| \\
& =\sum_{i \in I \backslash I_{n}}\left\|J_{\varphi_{i}^{(I, m)}}\left(x_{J_{m}}\right)\right\|+\sum_{j \in J_{n} \backslash J_{m}}\left(\sum_{i \in I \backslash I_{n}}\left|\varphi_{i, j}^{\prime}\left(x_{j}\right)\right|\right)<+\infty
\end{aligned}
$$

then, by Definition 2.21 and by definition of ξ, φ is (n, ξ)-general.
6. From points 3 and 5 and since σ is injective, $\forall n \in \mathbf{N}, n \geq \widehat{m}, \bar{\varphi}^{(L, N)}$ is $\left(n,\left.\sigma\right|_{I \backslash I_{n}}\right)$-general; moreover, since σ is increasing, $\forall i \in I \backslash I_{n}$ and $\forall x_{J_{n}} \in \pi_{J, J_{n}}(U)$, we have $\varphi_{i}^{(I, n)}\left(x_{J_{n}}\right)=0$; then, we have the statement.

REMARK 2.25: Let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a (m, σ)-general function such that $U^{(m)}=\prod_{j \in J_{m}} A_{j}$, where $A_{j} \in \tau$, for any $j \in J_{m}$, and

$$
\varphi_{i}^{(I, m)}\left(x_{J_{m}}\right)=\sum_{j \in J_{m}} \varphi_{i j}\left(x_{j}\right), \forall x_{J_{m}} \in U^{(m)}, \forall i \in I
$$

where $\varphi_{i j}: A_{j} \longrightarrow \mathbf{R}$, for any $i \in I$ and for any $j \in J_{m}$; moreover, suppose that, for any $j \in J_{m}$, for any $t \in A_{j}$, one has $\sup _{i \in I \backslash I_{m}}\left|\varphi_{i, j}(t)\right|<+\infty$, and, for any $j \in J \backslash J_{m}$, for any $t \in A_{j}$, one has $\sum_{i \in I \backslash I_{m}}\left|\varphi_{i, j}^{\prime}(t)\right|<I \backslash+\infty$; furthermore, let $\emptyset \neq L \subset I$ and let $\emptyset \neq N \subset J$ such that $|I \backslash L|=|J \backslash N|<+\infty$. Then, for any $n \in \mathbf{N}, n \geq m$, the function $\varphi^{(L, N)}: \pi_{J, N}(U) \longrightarrow \mathbf{R}^{L}$ is (n, ρ)-general, where the function $\rho: L \backslash L_{n} \longrightarrow N \backslash N_{n}$ is defined by

$$
\rho(i)=\left\{\begin{array}{ll}
\sigma(i) & \text { if } \sigma(i) \in N \backslash N_{n} \\
\min \left\{j>\sigma(i): j \in N \backslash N_{n}\right\} & \text { if } \sigma(i) \notin N \backslash N_{n}
\end{array} \quad, \forall i \in L \backslash L_{n} .\right.
$$

Proof. We have $|L|=|N|$; moreover, $\forall n \in \mathbf{N}, n \geq m, \forall i \in L \backslash L_{n}$ and $\forall x \in$ $\pi_{J, N}(U)$, let $y \in U$ such that $y_{N}=x$; we have

$$
\begin{gathered}
\left|\varphi_{i}(x)\right| \leq \sum_{j \in N \cap J_{m}}\left|\varphi_{i, j}\left(x_{j}\right)\right|+\left|\varphi_{i, \sigma(i)}\left(y_{\sigma(i)}\right)\right| \\
\Rightarrow\|\varphi(x)\|_{L \backslash L_{n}} \leq \sum_{j \in N \cap J_{m}} \sup _{i \in L \backslash I_{n}}\left|\varphi_{i, j}\left(x_{j}\right)\right|+\sup _{i \in L \backslash I_{n}}\left|\varphi_{i, \sigma(i)}\left(y_{\sigma(i)}\right)\right|<+\infty,
\end{gathered}
$$

from which $\varphi\left(\pi_{J, N}(U)\right) \subset E_{L}$. Analogously, $\forall n \in \mathbf{N}, n \geq m$, and $\forall x_{N_{n}} \in$ $\pi_{J, N_{n}}(U)$, we have

$$
\begin{aligned}
& \sum_{i \in L \backslash L_{n}}\left\|J_{\varphi_{i}^{\left(L, N_{n}\right)}}\left(x_{N_{n}}\right)\right\| \\
& =\sum_{i \in L \backslash L_{n}}\left\|J_{\varphi_{i}^{\left(L, N_{n} \cap J_{m}\right)}}\left(x_{N_{m} \cap J_{m}}\right)\right\|+\sum_{j \in N_{n} \backslash J_{m}}\left(\sum_{i \in L \backslash L_{n}}\left|\varphi_{i, j}^{\prime}\left(x_{j}\right)\right|\right)<+\infty
\end{aligned}
$$

then, by definition of $\rho, \varphi^{(L, N)}$ is (n, ρ)-general.

Proposition 2.26. Let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a (m, σ)-general function such that there exists $m_{0} \in \mathbf{N}, m_{0} \geq m$, such that, for any $j \in J \backslash J_{m_{0}}, A_{j}$ is bounded; moreover, suppose that $\sigma\left(I \backslash I_{m}\right) \cap\left(J \backslash J_{m_{0}}\right) \neq \emptyset$ and, for any $i \in I \backslash I_{m}$, $\varphi_{i}^{(I, m)}$ is bounded; then, there exists $m_{1} \in \mathbf{N}, m_{1} \geq m$, such that, for any $i \in I \backslash I_{m_{1}}, \varphi_{i}$ is bounded. In particular, if $|I|=+\infty, \varphi$ is not surjective.

Proof. Let $j_{0}=\min \left(\sigma\left(I \backslash I_{m}\right) \cap\left(J \backslash J_{m_{0}}\right)\right)$, let $i_{0}=\min \left(\sigma^{-1}\left(j_{0}\right)\right) \in I$, let $\widehat{m}=$ $\left|i_{0}\right|-1$ and let $\mathcal{H}=\left\{i \in I \backslash I_{\widehat{m}}: \varphi_{i, \sigma(i)}\right.$ is not bounded $\}$; we have $|\mathcal{H}|<+\infty$; indeed, $\forall i \in \mathcal{H}$, the set $A_{\sigma(i)}$ is bounded, and so there exists $t_{i} \in A_{\sigma(i)}$ such that $\left|\varphi_{i, \sigma(i)}^{\prime}\left(t_{i}\right)\right|>|i|$; then, $\forall x_{\sigma\left(I \backslash I_{m}\right)} \in \prod_{j \in \sigma\left(I \backslash I_{m}\right)} A_{j}$ such that $\left(x_{\sigma(i)}: i \in \mathcal{H}\right)=$ ($t_{i}: i \in \mathcal{H}$), by supposing by contradiction $|\mathcal{H}|=+\infty$, we would obtain

$$
\sup _{i \in I \backslash I_{m}}\left|\varphi_{i, \sigma(i)}^{\prime}\left(x_{\sigma(i)}\right)\right| \geq \sup _{i \in \mathcal{H}}\left|\varphi_{i, \sigma(i)}^{\prime}\left(x_{\sigma(i)}\right)\right|=\sup _{i \in \mathcal{H}}\left|\varphi_{i, \sigma(i)}^{\prime}\left(t_{i}\right)\right|=+\infty
$$

(a contradiction). Then, there exists $m_{1} \in \mathbf{N}, m_{1} \geq m$, such that, $\forall i \in I \backslash I_{m_{1}}$, $\varphi_{i, \sigma(i)}$ is bounded, and so φ_{i} is bounded. In particular, $\forall i \in I \backslash I_{m_{1}}, \varphi_{i}$ is not surjective; then, if $|I|=+\infty, \varphi$ is not surjective.

Proposition 2.27. Let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a (m, σ)-general function such that $\varphi_{i j}\left(x_{j}\right)=0$, for any $i \in I_{m}$, for any $j \in J \backslash J_{m}$ and for any $x_{j} \in A_{j}$; then:

1. If the functions $\varphi_{i, \sigma(i)}$, for any $i \in I \backslash I_{m}$, and $\varphi^{(m, m)}$ are injective, and σ is surjective, then φ is injective.
2. If the functions $\varphi_{i, \sigma(i)}$, for any $i \in I \backslash I_{m}$, and $\varphi^{(m, m)}$ are surjective, and σ is injective, then φ is surjective.

Proof.

1. Let $x, y \in U$ be such that $\varphi(x)=\varphi(y)$; we have $\varphi^{(m, m)}\left(x_{J_{m}}\right)=$ $(\varphi(x))_{I_{m}}=(\varphi(y))_{I_{m}}=\varphi^{(m, m)}\left(y_{J_{m}}\right)$; then, if $\varphi^{(m, m)}$ is injective, we have $x_{J_{m}}=y_{J_{m}}$; moreover, $\forall i \in I \backslash I_{m}$:

$$
\begin{aligned}
& \varphi^{(\{i\}, m)}\left(x_{J_{m}}\right)+\varphi_{i, \sigma(i)}\left(x_{\sigma(i)}\right) \\
& \quad=\varphi_{i}(x)=\varphi_{i}(y)=\varphi^{(\{i\}, m)}\left(y_{J_{m}}\right)+\varphi_{i, \sigma(i)}\left(y_{\sigma(i)}\right)
\end{aligned}
$$

from which $\varphi_{i, \sigma(i)}\left(x_{\sigma(i)}\right)=\varphi_{i, \sigma(i)}\left(y_{\sigma(i)}\right)$; then, if $\varphi_{i, \sigma(i)}$ is injective, we have $x_{\sigma(i)}=y_{\sigma(i)}$; finally, if σ is surjective, we obtain $x_{J \backslash J_{m}}=y_{J \backslash J_{m}}$, and so $x=y$; then, φ is injective.
2. Let $y \in E_{I}$; moreover, if the functions $\varphi_{i, \sigma(i)}$, for any $i \in I \backslash I_{m}$, and $\varphi^{(m, m)}$ are surjective, and σ is injective, define $x \in U^{(m)} \times \prod_{j \in J \backslash J_{m}} A_{j}$ in the following manner:

$$
\begin{aligned}
x_{J_{m}} & =\left(\varphi^{(m, m)}\right)^{-1}\left(y_{I_{m}}\right) \in U^{(m)}, \\
x_{j} & =\varphi_{\sigma^{-1}(j), j}^{-1}\left(z_{i}\right) \in A_{j}, \forall j \in \sigma\left(I \backslash I_{m}\right), \\
x_{j} & =0, \forall j \in J \backslash \sigma\left(I \backslash I_{m}\right),
\end{aligned}
$$

where

$$
\begin{equation*}
z_{i}=y_{i}-\varphi_{i}^{(I, m)}\left(x_{J_{m}}\right), \forall i \in I \backslash I_{m} . \tag{8}
\end{equation*}
$$

Let $x_{0}=\left(x_{0, j}: j \in J\right) \in U ; \forall i \in I \backslash I_{m}$, we have

$$
\begin{align*}
& \left|x_{\sigma(i)}\right|=\left|\varphi_{i, \sigma(i)}^{-1}\left(z_{i}\right)-x_{0, \sigma(i)}+x_{0, \sigma(i)}\right| \\
& \quad \leq\left|\varphi_{i, \sigma(i)}^{-1}\left(z_{i}\right)-\varphi_{i, \sigma(i)}^{-1}\left(\varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right)\right)\right|+\left|x_{0, \sigma(i)}\right| \tag{9}
\end{align*}
$$

moreover, the function $\varphi_{i, \sigma(i)}^{-1}: \mathbf{R} \longrightarrow A_{\sigma(i)}$ is derivable, and

$$
\begin{equation*}
\left(\varphi_{i, \sigma(i)}^{-1}\right)^{\prime}(t)=\frac{1}{\varphi_{i, \sigma(i)}^{\prime}\left(\varphi_{i, \sigma(i)}^{-1}(t)\right)} \in \mathbf{R}^{*}, \forall i \in I \backslash I_{m}, \forall t \in \mathbf{R} \tag{10}
\end{equation*}
$$

then, the Lagrange theorem implies that, for some

$$
\xi_{i} \in\left(\min \left\{z_{i}, \varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right)\right\}, \max \left\{z_{i}, \varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right\}\right),\right.
$$

we have

$$
\begin{aligned}
\mid \varphi_{i, \sigma(i)}^{-1}\left(z_{i}\right)-\varphi_{i, \sigma(i)}^{-1}\left(\varphi_{i, \sigma(i)}(\right. & \left.\left(x_{0, \sigma(i)}\right)\right) \mid \\
& =\left|\left(\varphi_{i, \sigma(i)}^{-1}\right)^{\prime}\left(\xi_{i}\right)\right|\left|z_{i}-\varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right)\right|
\end{aligned}
$$

thus, from (9) and (10), we obtain

$$
\begin{equation*}
\left|x_{\sigma(i)}\right| \leq \frac{\left|z_{i}-\varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right)\right|}{\left|\varphi_{i, \sigma(i)}^{\prime}\left(\varphi_{i, \sigma(i)}^{-1}\left(\xi_{i}\right)\right)\right|}+\left|x_{0, \sigma(i)}\right| \tag{11}
\end{equation*}
$$

Furthermore, from point 3 of Proposition 2.24, we have $\varphi^{(I, m)}\left(U^{(m)}\right) \subset$ E_{I}, and so, from (8), we have

$$
\begin{equation*}
\|z\|_{I \backslash I_{m}} \leq\|y\|_{I \backslash I_{m}}+\sup _{i \in I \backslash I_{m}}\left|\varphi_{i}^{(I, m)}\left(x_{J_{m}}\right)\right|<+\infty, \tag{12}
\end{equation*}
$$

and analogously

$$
\begin{align*}
\varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right) & =\varphi_{i}\left(x_{0}\right)-\varphi_{i}^{(I, m)}\left(\left(x_{0}\right)_{J_{m}}\right), \forall i \in I \backslash I_{m} \\
\Longrightarrow \sup _{i \in I \backslash I_{m}} & \left|\varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right)\right| \\
& \leq\left\|\varphi\left(x_{0}\right)\right\|_{I \backslash I_{m}}+\sup _{i \in I \backslash I_{m}}\left|\varphi_{i}^{(I, m)}\left(\left(x_{0}\right)_{J_{m}}\right)\right|<+\infty . \tag{13}
\end{align*}
$$

Moreover, we have $\inf _{i \in \mathcal{I}_{\varphi}} \mid \varphi_{i, \sigma(i)}^{\prime}\left(\varphi_{i, \sigma(i)}^{-1}\left(\xi_{i}\right) \mid>0\right.$; furthermore, since, $\forall i \in$ $I \backslash I_{m}, \varphi_{i, \sigma(i)}$ is surjective, then $\varphi_{i, \sigma(i)}$ is injective too, and so $\mathcal{I}_{\varphi}=I \backslash I_{m} ;$ then, there exists $c \in \mathbf{R}^{+}$such that $\sup _{i \in I \backslash I_{m}}\left|\varphi_{i, \sigma(i)}^{\prime}\left(\varphi_{i, \sigma(i)}^{-1}\left(\xi_{i}\right)\right)\right|^{-1} \leq c$, and so formulas (11), (12) and (13) imply

$$
\sup _{i \in I \backslash I_{m}}\left|x_{\sigma(i)}\right| \leq c\left(\|z\|_{I \backslash I_{m}}+\sup _{i \in I \backslash I_{m}}\left|\varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right)\right|\right)+\left\|x_{0}\right\|_{J}<+\infty
$$

then, we have $x \in E_{J}$, from which $x \in U$. Finally, it is easy to prove that $\varphi(x)=y$, and so φ is surjective.

Proposition 2.28. Let $m \in \mathbf{N}^{*}$, let $\emptyset \neq L \subset I$, let $J_{m} \subset N \subset J$ and let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a function m-general and C^{1} in $x_{0}=\left(x_{0, j}: j \in J\right) \in U$; then:

1. If $\varphi^{(L, N)}\left(\pi_{J, N}(U)\right) \subset E_{L}$, then the function $\varphi^{(L, N)}: \pi_{J, N}(U) \longrightarrow E_{L}$ is C^{1} in $\left(x_{0, j}: j \in N\right)$.
2. If φ is (m, σ)-general and $I_{m} \subset L$, then the function $\bar{\varphi}^{(L, N)}: U \subset E_{J} \longrightarrow$ E_{I} is C^{1} in x_{0}.
3. If φ is (m, σ)-general, $I_{m} \subset L$ and $|N|<+\infty$, then there exists the function $J_{\bar{\varphi}^{(L, N)}}\left(x_{0}\right): E_{J} \longrightarrow E_{I}$, and it is continuous.
4. If φ is strongly (m, σ)-general, $I_{m} \subset L$ and $|N|<+\infty$, then $\bar{\varphi}^{(L, N)}$ is differentiable in x_{0}.
5. If φ is strongly C^{1} in x_{0} and strongly (m, σ)-general, then φ is differentiable in x_{0}.

Proof.

1. By assumption, there exists a neighbourhood $V=\prod_{j \in J} V_{j} \in \tau_{\|\cdot\|_{J}}(U)$ of x_{0} such that, $\forall i \in I, \forall j \in J$, there exists the function $x \longrightarrow \frac{\partial \varphi_{i}(x)}{\partial x_{j}}$ on V, and this function is continuous in x_{0}; then, $\forall x \in \prod_{j \in N} V_{j}$, let $\bar{x}=\left(\bar{x}_{j}\right.$: $j \in J) \in V$ such that $\left(\bar{x}_{j}: j \in N\right)=x$; since φ is a m-general function, $\forall i \in L, \forall j \in N$, we have

$$
\frac{\partial \varphi_{i}^{(L, N)}(x)}{\partial x_{j}}=\frac{\partial \varphi_{i}(\bar{x})}{\partial x_{j}}
$$

from which $\varphi^{(L, N)}$ is C^{1} in $\left(x_{0, j}: j \in N\right)$.
2. Let $V \in \tau_{\|\cdot\|_{J}}(U)$ be the neighbourhood of x_{0} defined in the proof of point 1 ; if φ is (m, σ)-general and $I_{m} \subset L, \forall x \in V$, we have

$$
\frac{\partial \bar{\varphi}_{i}^{(L, N)}(x)}{\partial x_{j}}= \begin{cases}\frac{\partial \varphi_{i}(x)}{\partial x_{j}} & \text { if }(i, j) \notin\left(I_{m} \times(J \backslash N)\right) \cup\left((I \backslash L) \times J_{m}\right) \\ 0 & \text { if }(i, j) \in\left(I_{m} \times(J \backslash N)\right) \cup\left((I \backslash L) \times J_{m}\right)\end{cases}
$$

and so $\bar{\varphi}^{(L, N)}$ is C^{1} in x_{0}.
3. If φ is C^{1} in x_{0} and (m, σ)-general, $I_{m} \subset L$ and $|N|<+\infty$, then, from point $2, \forall i \in I_{m}$, the function $\bar{\varphi}_{i}^{(L, N)}: U \subset E_{J} \longrightarrow \mathbf{R}$ is C^{1} in x_{0} and depends only on a finite number of variables; then, we have $\left\|J_{\bar{\varphi}_{i}^{(L, N)}}\left(x_{0}\right)\right\|<+\infty$; moreover, $\forall i \in I \backslash I_{m}$, we have

$$
\left\|J_{\bar{\varphi}_{i}^{(L, N)}}\left(x_{0}\right)\right\| \leq\left\|J_{\varphi_{i}}\left(x_{0}\right)\right\| ;
$$

then, from point 4 of Proposition 2.24:

$$
\sup _{i \in I \backslash I_{m}}\left\|J_{\bar{\varphi}_{i}^{(L, N)}}\left(x_{0}\right)\right\| \leq \sup _{i \in I \backslash I_{m}}\left\|J_{\varphi_{i}}\left(x_{0}\right)\right\|<+\infty
$$

then, from Proposition 2.4, there exists the function $J_{\bar{\varphi}^{(L, N)}}\left(x_{0}\right): E_{J} \longrightarrow$ E_{I}, and it is continuous.
4. If φ is strongly (m, σ)-general, there exists $a \in \mathbf{R}$ such that, $\forall \varepsilon>0$, there exists $\widehat{i} \in \mathbf{N}, \widehat{i} \geq m$, such that

$$
\begin{align*}
\left\|J_{\varphi_{i}^{(I, m)}}\left(x_{J_{m}}\right)\right\| & <\frac{\varepsilon}{4}, \forall i \in I \backslash I_{\hat{i}}, \forall x_{J_{m}} \in U^{(m)} \\
\left|\varphi_{i, \sigma(i)}^{\prime}(t)-a\right| & <\frac{\varepsilon}{4}, \forall i \in \mathcal{I}_{\varphi} \cap I \backslash I_{\widehat{i}}, \forall t \in A_{\sigma(i)} . \tag{14}
\end{align*}
$$

Moreover, if $I_{m} \subset L$ and $|N|<+\infty, \forall i \in I$, the function $\bar{\varphi}_{i}^{(L, N)}: U \subset$ $E_{J} \longrightarrow \mathbf{R}$ is C^{1} in x_{0} and depends only on a finite number of variables; then, $\bar{\varphi}_{i}^{(L, N)}$ is differentiable in x_{0}, and so there exists a neighbourhood $D=\prod_{j \in J} D_{j} \in \tau_{\|\cdot\|_{J}}(U)$ of x_{0}, where D_{j} is an open interval, $\forall j \in J$, such that, $\forall x=\left(x_{j}: j \in J\right) \in D \backslash\left\{x_{0}\right\}$, we have

$$
\begin{equation*}
\sup _{i \in I_{\hat{i}}} \frac{\left|\bar{\varphi}_{i}^{(L, N)}(x)-\bar{\varphi}_{i}^{(L, N)}\left(x_{0}\right)-J_{\bar{\varphi}_{i}^{(L, N)}}\left(x_{0}\right)\left(x-x_{0}\right)\right|}{\left\|x-x_{0}\right\|_{J}}<\varepsilon . \tag{15}
\end{equation*}
$$

Observe that, $\forall i \in\left(I \backslash I_{\hat{i}}\right) \backslash L, \forall y=\left(y_{j}: j \in J\right) \in U$, we have $\bar{\varphi}_{i}^{(L, N)}(y)=$ $\varphi_{i, \sigma(i)}\left(y_{\sigma(i)}\right)$; moreover, $\varphi_{i, \sigma(i)}$ is derivable in $A_{\sigma(i)}$ and so, from the Lagrange theorem, $\forall x \in D \backslash\left\{x_{0}\right\}$, there exists $\theta_{i} \in\left(\min \left\{x_{0, \sigma(i)}, x_{\sigma(i)}\right\}\right.$, $\left.\max \left\{x_{0, \sigma(i)}, x_{\sigma(i)}\right\}\right)$ such that

$$
\varphi_{i, \sigma(i)}\left(x_{\sigma(i)}\right)-\varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right)=\varphi_{i, \sigma(i)}^{\prime}\left(\theta_{i}\right)\left(x_{\sigma(i)}-x_{0, \sigma(i)}\right)
$$

from which

$$
\begin{align*}
& \frac{\left|\bar{\varphi}_{i}^{(L, N)}(x)-\bar{\varphi}_{i}^{(L, N)}\left(x_{0}\right)-J_{\bar{\varphi}_{i}^{(L, N)}}\left(x_{0}\right)\left(x-x_{0}\right)\right|}{\left\|x-x_{0}\right\|_{J}} \\
& =\frac{\left|\varphi_{i, \sigma(i)}\left(x_{\sigma(i)}\right)-\varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right)-\varphi_{i, \sigma(i)}^{\prime}\left(x_{0, \sigma(i)}\right)\left(x_{\sigma(i)}-x_{0, \sigma(i)}\right)\right|}{\left\|x-x_{0}\right\|_{J}} \\
& =\frac{\left|\varphi_{i, \sigma(i)}^{\prime}\left(\theta_{i}\right)-\varphi_{i, \sigma(i)}^{\prime}\left(x_{0, \sigma(i)}\right)\right|\left|x_{\sigma(i)}-x_{0, \sigma(i)}\right|}{\left\|x-x_{0}\right\|_{J}} \\
& \leq\left(\left|\varphi_{i, \sigma(i)}^{\prime}\left(\theta_{i}\right)-a\right|+\left|\varphi_{i, \sigma(i)}^{\prime}\left(x_{0, \sigma(i)}\right)-a\right|\right) 1_{\mathcal{I}_{\varphi}}(i)<\frac{\varepsilon}{2} . \tag{16}
\end{align*}
$$

Conversely, $\forall i \in\left(I \backslash I_{\hat{i}}\right) \cap L, \forall y=\left(y_{j}: j \in J\right) \in U$, we have $\bar{\varphi}_{i}^{(L, N)}(y)=$ $\varphi_{i}(y)$; moreover, from point 3 of Proposition 2.24 and from point 1, $\varphi_{i}^{(I, m)}$ is C^{1} in $\left(x_{0}\right)_{J_{m}}$ and so $\varphi_{i}^{(I, m)}$ is C^{1} in a neighbourhood $M=$ $\prod_{j \in J_{m}} M_{j} \in \tau_{\|\cdot\|_{J_{m}}}\left(U^{(m)}\right)$ of $\left(x_{0}\right)_{J_{m}}$ such that M_{j} is an open interval,
$\forall j \in J_{m}$, and $M \subset \prod_{j \in J_{m}} D_{j} ;$ then, from the Taylor theorem, $\forall x \in$ $\left(M \times \prod_{j \in J \backslash J_{m}} D_{j}\right) \backslash\left\{x_{0}\right\}$, there exists $\xi_{J_{m}} \in\left(M \backslash\left\{\left(x_{0}\right)_{J_{m}}\right\}\right)$ such that

$$
\varphi_{i}^{(I, m)}\left(x_{J_{m}}\right)-\varphi_{i}^{(I, m)}\left(\left(x_{0}\right)_{J_{m}}\right)=J_{\varphi_{i}^{(I, m)}}\left(\xi_{J_{m}}\right)\left(x_{J_{m}}-\left(x_{0}\right)_{J_{m}}\right),
$$

and so

$$
\begin{align*}
& \frac{\left|\bar{\varphi}_{i}^{(L, N)}(x)-\bar{\varphi}_{i}^{(L, N)}\left(x_{0}\right)-J_{\bar{\varphi}_{i}^{(L, N)}}\left(x_{0}\right)\left(x-x_{0}\right)\right|}{\left\|x-x_{0}\right\|_{J}} \\
= & \frac{\left|\varphi_{i}(x)-\varphi_{i}\left(x_{0}\right)-J_{\varphi_{i}}\left(x_{0}\right)\left(x-x_{0}\right)\right|}{\left\|x-x_{0}\right\|_{J}} \\
\leq & \frac{\left.\mid \varphi_{i}^{(I, m)}\left(x_{J_{m}}\right)-\varphi_{i}^{(I, m)}\left(\left(x_{0}\right)_{J_{m}}\right)-J_{\varphi_{i}(I, m)}\left(\left(x_{0}\right)_{J_{m}}\right)\left(x_{J_{m}}-\left(x_{0}\right)_{J_{m}}\right)\right) \mid}{\left\|x-x_{0}\right\|_{J}} \\
& +\frac{\left|\varphi_{i, \sigma(i)}\left(x_{\sigma(i)}\right)-\varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right)-\varphi_{i, \sigma(i)}^{\prime}\left(x_{0, \sigma(i)}\right)\left(x_{\sigma(i)}-x_{0, \sigma(i)}\right)\right|}{\left\|x-x_{0}\right\|_{J}} \\
\leq & \frac{\left\|J_{\varphi_{i}^{(I, m)}}\left(\xi_{J_{m}}\right)-J_{\varphi_{i}^{(I, m)}}\left(\left(x_{0}\right)_{\left.J_{m}\right)}\right)\right\|\left\|\left(x_{J_{m}}-\left(x_{0}\right)_{J_{m}}\right)\right\|_{J_{m}}}{\left\|x-x_{0}\right\|_{J}} \\
& +\frac{\left|\varphi_{i, \sigma(i)}^{\prime}\left(\theta_{i}\right)-\varphi_{i, \sigma(i)}^{\prime}\left(x_{0, \sigma(i)}\right)\right|\left|x_{\sigma(i)}-x_{0, \sigma(i)}\right|}{\left\|x-x_{0}\right\|_{J}} \\
\leq & \left\|J_{\varphi_{i}^{(I, m)}}\left(\xi_{J_{m}}\right)-J_{\varphi_{i}^{(I, m)}}\left(\left(x_{0}\right)_{\left.J_{m}\right)}\right)\right\|+\left|\varphi_{i, \sigma(i)}^{\prime}\left(\theta_{i}\right)-\varphi_{i, \sigma(i)}^{\prime}\left(x_{0, \sigma(i)}\right)\right| \\
\leq & \left\|J_{\varphi_{i}^{(I, m)}}\left(\xi_{J_{m}}\right)\right\|+\left\|J_{\varphi_{i}^{(I, m)}}\left(\left(x_{0}\right)_{J_{m}}\right)\right\| \\
& +\left(\left|\varphi_{i, \sigma(i)}^{\prime}\left(\theta_{i}\right)-a\right|+\left|\varphi_{i, \sigma(i)}^{\prime}\left(x_{0, \sigma(i)}\right)-a\right|\right) 1_{\mathcal{I}_{\varphi}}(i)<\varepsilon . \tag{17}
\end{align*}
$$

Then, from (15), (16) and (17), $\forall x \in\left(M \times \prod_{j \in J \backslash J_{m}} D_{j}\right) \backslash\left\{x_{0}\right\}$, we have

$$
\begin{equation*}
\frac{\left\|\bar{\varphi}^{(L, N)}(x)-\bar{\varphi}^{(L, N)}\left(x_{0}\right)-J_{\bar{\varphi}^{(L, N)}}\left(x_{0}\right)\left(x-x_{0}\right)\right\|_{I}}{\left\|x-x_{0}\right\|_{J}}<\varepsilon \tag{18}
\end{equation*}
$$

thus, $\bar{\varphi}^{(L, N)}$ is differentiable in x_{0}.
5. If φ is strongly C^{1} in x_{0} and (m, σ)-general, the function $\psi=\varphi-\bar{\varphi}^{(I, m)}$:
$U \subset E_{J} \longrightarrow E_{I}$ given by

$$
\psi_{i}(x)= \begin{cases}\sum_{j \in J \backslash J_{m}} \varphi_{i j}\left(x_{j}\right) & \forall i \in I_{m}, \forall x \in U \tag{19}\\ 0 & \forall i \in I \backslash I_{m}, \forall x \in U\end{cases}
$$

is strongly C^{1} in x_{0}, and so it is differentiable in x_{0} from Proposition 2.19, since $\left|I_{m}\right|<+\infty$; then, if φ is strongly (m, σ)-general, from point 4 $\bar{\varphi}^{(I, m)}$ is differentiable in x_{0}, and so this is true for $\varphi=\psi+\bar{\varphi}^{(I, m)}$ too, from Remark 2.6.

Proposition 2.29. Let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a function C^{1} and m-general; then, $\varphi:\left(U, \mathcal{B}^{(J)}(U)\right) \longrightarrow\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right)$ is measurable.

Proof. From point 1 of Proposition $2.28, \forall i \in I$ and $\forall n \in \mathbf{N}, n \geq m$, the function $\varphi^{(\{i\}, n)}: \pi_{J, J_{n}}(U) \longrightarrow \mathbf{R}$ is C^{1}; thus, $\forall C \in \tau$, we have $\left(\varphi^{(\{i\}, n)}\right)^{-1}(C) \in$ $\tau^{(n)}\left(\pi_{J, J_{n}}(U)\right) \subset \mathcal{B}^{(n)}\left(\pi_{J, J_{n}}(U)\right)$; then, since $\sigma(\tau)=\mathcal{B}, \forall C \in \mathcal{B}$, we obtain $\left(\varphi^{(\{i\}, n)}\right)^{-1}(C) \in \mathcal{B}^{(n)}\left(\pi_{J, J_{n}}(U)\right)$. Moreover, $\forall i \in I$, consider the function $\widehat{\varphi}^{(\{i\}, n)}: U \longrightarrow \mathbf{R}$ defined by

$$
\widehat{\varphi}^{(\{i\}, n)}(x)=\varphi^{(\{i\}, n)}\left(x_{J_{n}}\right), \forall x \in U
$$

$\forall C \in \mathcal{B}$, we have

$$
\left(\widehat{\varphi}^{(\{i\}, n)}\right)^{-1}(C)=\left(\varphi^{(\{i\}, n)}\right)^{-1}(C) \times \pi_{J, J \backslash J_{n}}(U) \in \mathcal{B}^{(J)}(U)
$$

and so $\widehat{\varphi}^{(\{i\}, n)}$ is $\left(\mathcal{B}^{(J)}(U), \mathcal{B}\right)$-measurable; then, since $\lim _{n \longrightarrow+\infty} \widehat{\varphi}^{(\{i\}, n)}=\varphi_{i}$, the function φ_{i} is $\left(\mathcal{B}^{(J)}(U), \mathcal{B}\right)$-measurable too. Furthermore, let

$$
\Sigma(I)=\left\{B=\prod_{i \in I} B_{i}: B_{i} \in \mathcal{B}, \forall i \in I\right\}
$$

$\forall B=\prod_{i \in I} B_{i} \in \Sigma(I)$, we have

$$
\varphi^{-1}(B)=\bigcap_{i \in I}\left(\varphi_{i}\right)^{-1}\left(B_{i}\right) \in \mathcal{B}^{(J)}(U)
$$

Finally, since $\sigma(\Sigma(I))=\mathcal{B}^{(I)}, \forall B \in \mathcal{B}^{(I)}$, we obtain $\varphi^{-1}(B) \in \mathcal{B}^{(J)}(U)$.

3. Linear (m, σ)-general functions

Definition 3.1. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function; $\forall i \in I \backslash I_{m}$, set $\lambda_{i}=\lambda_{i}(A)=a_{i, \sigma(i)}$.

Remark 3.2: For any $m \in \mathbf{N}^{*}$, a linear function $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ is m-general; moreover, if $|J|=|I|$ and $\sigma: I \backslash I_{m} \longrightarrow J \backslash J_{m}$ is an increasing function, A is (m, σ)-general if and only if:

1. $\forall i \in I \backslash I_{m}, \forall j \in J \backslash\left(J_{m} \cup\{\sigma(i)\}\right)$, one has $a_{i j}=0$.
2. $\forall j \in J_{m}, \sum_{i \in I \backslash I_{m}}\left|a_{i j}\right|<+\infty$; moreover, one has $\sup _{i \in I \backslash I_{m}}\left|\lambda_{i}\right|<+\infty$ and $\inf _{i \in I \backslash I_{m}: \lambda_{i} \neq 0}\left|\lambda_{i}\right|>0$.
3. If $\mathcal{A} \neq \emptyset$, there exists $\prod_{i \in I \backslash I_{m}: \lambda_{i} \neq 0} \lambda_{i} \in \mathbf{R}^{*}$.

Furthermore, A is strongly (m, σ)-general if and only if A is (m, σ)-general and there exists $a \in \mathbf{R}$ such that the sequence $\left\{\lambda_{i}\right\}_{i \in I \backslash I_{m}: \lambda_{i} \neq 0}$ converges to a.

Finally, A is (m, σ)-standard if and only if A is (m, σ)-general and $a_{i j}=0$, for any $i \in I \backslash I_{m}$, for any $j \in J_{m}$.

Corollary 3.3. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear function; then, $A:\left(E_{J}, \mathcal{B}_{J}\right) \longrightarrow\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right)$ is measurable.
Proof. The statement follows from Remark 3.2 and Proposition 2.29.

Proposition 3.4. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function. Then:

1. A is continuous.
2. Let $\mathcal{C}=\left\{h \in \mathbf{N}, h \geq m:\left.\sigma\right|_{I \backslash I_{h}}\right.$ is injective $\}$; if $\mathcal{C} \neq \emptyset$, by setting $\widetilde{m}=$ $\min \mathcal{C}$, let $i_{\widetilde{m}} \in I$ such that $\left|i_{\widetilde{m}}\right|=\widetilde{m}$ and let

$$
\widetilde{\widetilde{m}}=\left\{\begin{array}{ll}
\min \left\{\widetilde{m},\left|\sigma\left(i_{\widetilde{m}}\right)\right|\right\} & \text { if } \widetilde{m}>m \tag{20}\\
m & \text { if } \widetilde{m}=m
\end{array} ;\right.
$$

then, for any $n \in \mathbf{N}, n \geq \widetilde{\widetilde{m}}$, the linear function ${ }^{t} A: E_{I} \longrightarrow \mathbf{R}^{J}$ is (n, τ)-general, where $\tau: J \backslash J_{n} \longrightarrow I \backslash I_{n}$ is the increasing function defined by

$$
\begin{equation*}
\tau(j)=\min \left\{\sigma^{-1}(k): k \geq j, k \in \sigma\left(I \backslash I_{n}\right)\right\}, \forall j \in J \backslash J_{n} . \tag{21}
\end{equation*}
$$

Proof.

1. Since $A\left(E_{J}\right) \subset E_{I}$, the statement follows from Proposition 2.4.
2. We have

$$
\begin{align*}
& \sup _{j \in J} \sum_{i \in I}\left|\left({ }^{t} A\right)_{j i}\right|=\sup _{j \in J} \sum_{i \in I}\left|a_{i j}\right| \\
&=\sup \left\{\sup _{j \in J_{m}} \sum_{i \in I}\left|a_{i j}\right|, \sup _{j \in J_{\widetilde{m}} \backslash J_{m}} \sum_{i \in I}\left|a_{i j}\right|, \sup _{j \in J \backslash J_{\widetilde{m}}} \sum_{i \in I}\left|a_{i j}\right|\right\} . \tag{22}
\end{align*}
$$

Moreover, from point 2 of Remark 3.2, we have $\sup _{j \in J_{m}} \sum_{i \in I}\left|a_{i j}\right|<+\infty$; furthermore, by definition of \widetilde{m} and $\widetilde{\widetilde{m}}, \forall j \in J_{\widetilde{m}} \backslash J_{m}$, we have $\sum_{i \in I}\left|a_{i j}\right|=$ $\sum_{i \in I_{\widetilde{m}+1}}\left|a_{i j}\right|<+\infty$; finally, observe that

$$
\begin{array}{r}
\sup _{j \in J \backslash J_{\widetilde{\widetilde{m}}}} \sum_{i \in I}\left|a_{i j}\right| \leq \sum_{i \in I}\left(\sup _{j \in J \backslash J_{\widetilde{m}}}\left|a_{i j}\right|\right) \\
=\sum_{i \in I_{\widetilde{\widetilde{m}}}}\left(\sup _{j \in J \backslash J_{\widetilde{m}}}\left|a_{i j}\right|\right)+\sum_{i \in I \backslash I_{\widetilde{m}}}\left(\sup _{j \in J \backslash J_{\widetilde{m}}}\left|a_{i j}\right|\right) \\
\leq \sum_{i \in I_{\widetilde{m}}}\left(\sup _{j \in J \backslash J \widetilde{\widetilde{m}}}\left|a_{i j}\right|\right)+\sup _{i \in I \backslash I_{m}}\left|\lambda_{i}\right| . \tag{23}
\end{array}
$$

From Proposition 2.4, $\forall i \in I_{\widetilde{\widetilde{m}}}$, we have $\sup _{j \in J \backslash J_{\widetilde{\widetilde{m}}}}\left|a_{i j}\right| \leq \sum_{j \in J \backslash J_{\widetilde{\widetilde{m}}}}\left|a_{i j}\right|<$ $+\infty$; moreover, we have $\sup _{i \in I \backslash I_{m}}\left|\lambda_{i}\right|<+\infty$; then, from (23), we obtain $\sup _{j \in J \backslash J \widetilde{\widetilde{m}}} \sum_{i \in I}\left|a_{i j}\right|<+\infty$, from which $\sup _{j \in J} \sum_{i \in I}\left|\left({ }^{t} A\right)_{j i}\right|<+\infty$, from formula (22), and so ${ }^{t} A\left(E_{I}\right) \subset E_{J}$ from Proposition 2.4. Finally, from Remark $3.2, \forall n \in \mathbf{N}, n \geq \widetilde{m}$, the function ${ }^{t} A: E_{I} \longrightarrow E_{J}$ is (n, τ)-general, where $\tau: J \backslash J_{n} \longrightarrow I \backslash I_{n}$ is the increasing function defined by

$$
\tau(j)=\min \left\{\sigma^{-1}(k): k \geq j, k \in \sigma\left(I \backslash I_{n}\right)\right\}, \forall j \in J \backslash J_{n} .
$$

Henceforth, we will suppose that $|I|=+\infty$.

Definition 3.5. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function; indicate by $N(A) \in\{0,1, \ldots, m\}$ the number of zero columns of the matrix $A^{\left(I \backslash I_{m}, J_{m}\right)}$.

Theorem 3.6. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function; then, the sequence $\left\{\operatorname{det} A^{(n, n)}\right\}_{n \geq m}$ converges to a real number. Moreover, if $\mathcal{A} \neq \emptyset$, by setting $\bar{m}=\min \mathcal{A}$, we have

$$
\begin{align*}
\lim _{n \longrightarrow+\infty} \operatorname{det} A^{(n, n)}=\sum_{p \in I \backslash I_{\bar{m}}}\left(\prod_{q \in I \backslash I_{|p|}} \lambda_{q}\right) & \sum_{j \in J_{m}} a_{p, j}\left(\operatorname{cof} A^{(|p|,|p|)}\right)_{p, j} \\
& +\operatorname{det} A^{(\bar{m}, \bar{m})}\left(\prod_{q \in I \backslash I_{\bar{m}}} \lambda_{q}\right) . \tag{24}
\end{align*}
$$

Conversely, if $\mathcal{A}=\emptyset$, we have $\lim _{n \longrightarrow+\infty} \operatorname{det} A^{(n, n)}=0$.
Proof. $\forall l \in \mathbf{Z}$, set $\mathcal{D}_{l}=\mathcal{D}_{l}(A)=\left\{h \in \mathbf{N}, h \geq m:|\sigma(i)|=|i|+l, \forall i \in I \backslash I_{h}\right\}$; moreover, if $\mathcal{D}_{l} \neq \emptyset$, set $\bar{m}_{l}=\min \mathcal{D}_{l}$; furthermore, set $\mathcal{D}=\mathcal{D}(A)=\bigcup_{l \in \mathbf{Z}} \mathcal{D}_{l}$. If there exists $l \in \mathbf{N}$ such that $\mathcal{D}_{l} \neq \emptyset$, we will prove the statement by recursion on $N(A)=k \in\{0,1, \ldots, m\}$. Suppose that $N(A)=0$ and observe that, if $\mathcal{A} \neq \emptyset$, we have $\bar{m}_{0}=\bar{m}$, since $\mathcal{D}_{0}=\mathcal{A}$; then, $\forall n \in \mathbf{N}, n>\bar{m}_{l}$, we have

$$
\operatorname{det} A^{(n, n)}=\left\{\begin{array}{ll}
\operatorname{det} A^{(\bar{m}, \bar{m})}\left(\prod_{q \in I_{n} \backslash I_{\bar{m}}} \lambda_{q}\right) & \text { if } l=0 \\
0 & \text { if } l \in \mathbf{N}^{*}
\end{array},\right.
$$

from which

$$
\lim _{n \longrightarrow+\infty} \operatorname{det} A^{(n, n)}=\left\{\begin{array}{ll}
\operatorname{det} A^{(\bar{m}, \bar{m})}\left(\prod_{q \in I \backslash I_{\bar{m}}} \lambda_{q}\right) \in \mathbf{R} & \text { if } l=0 \\
0 & \text { if } l \in \mathbf{N}^{*}
\end{array} ;\right.
$$

then, since we have $a_{p, j}=0, \forall p \in I \backslash I_{\bar{m}}, \forall j \in J_{m}$, the statement is true. Suppose that the statement is true for $N(A)=k$, where $0 \leq k \leq m-1$, and suppose that $N(A)=k+1 ; \forall n \in \mathbf{N}, n>\bar{m}_{l}$, let $i_{n} \in I$ such that $\left|i_{n}\right|=n$; we have

$$
\begin{equation*}
\operatorname{det} A^{(n, n)}=\sum_{j \in J_{n}} a_{i_{n}, j}\left(\operatorname{cof} A^{(n, n)}\right)_{i_{n}, j} \tag{25}
\end{equation*}
$$

moreover, let $\left\{j_{1}, \ldots, j_{k+1}\right\} \subset J_{m}$ such that $a_{i_{n}, j}=0, \forall j \in J_{m} \backslash\left\{j_{1}, \ldots, j_{k+1}\right\}$.

If $l=0$, from (25), we have

$$
\operatorname{det} A^{(n, n)}=\sum_{h=1}^{k+1} a_{i_{n}, j_{h}}\left(\operatorname{cof} A^{(n, n)}\right)_{i_{n}, j_{h}}+\lambda_{i_{n}} \operatorname{det} A^{(n-1, n-1)} ;
$$

then, by induction on n, we obtain

$$
\begin{equation*}
\operatorname{det} A^{(n, n)}=a_{n}+\operatorname{det} A^{(\bar{m}, \bar{m})}\left(\prod_{q \in I_{n} \backslash I_{\bar{m}}} \lambda_{q}\right), \forall n>\bar{m}, \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{n}=\sum_{p \in I_{n} \backslash I_{\bar{m}}}\left(\prod_{q \in I_{n} \backslash I_{|p|}} \lambda_{q}\right) \sum_{h=1}^{k+1} a_{p, j_{h}}\left(\operatorname{cof} A^{(|p|,|p|)}\right)_{p, j_{h}} . \tag{27}
\end{equation*}
$$

Moreover, $\forall h=1, \ldots, k+1, \forall p \in I \backslash I_{\bar{m}}$, we have

$$
\begin{equation*}
\left|\left(\operatorname{cof} A^{(|p|,|p|)}\right)_{p, j_{h}}\right|=\left|\operatorname{det} A^{\left(I_{|p|-1}, I_{|p|} \backslash\left\{j_{h}\right\}\right)}\right|=\left|\operatorname{det} B_{j_{h}, p}^{(|p|-1,|p|-1)}\right| \tag{28}
\end{equation*}
$$

where $B_{j_{h}, p}: E_{J} \longrightarrow E_{I}$ is the linear function obtained by exchanging the $\left|j_{h}\right|$-th column of A for the $|p|$-th column of A; furthermore

$$
\begin{align*}
\left|\operatorname{det} B_{j_{h}, p}^{(|p|-1,|p|-1)}\right|= & \left|\sum_{i \in I_{m}} a_{i, p}\left(\operatorname{cof} B_{j_{h}, p}^{(|p|-1,|p|-1)}\right)_{i, j_{h}}\right| \\
& \leq \sum_{i \in I_{m}}\left|a_{i, p}\right|\left|\operatorname{det}\left(A^{\left(I \backslash\{i\}, J \backslash\left\{j_{h}\right\}\right)}\right)^{(|p|-2,|p|-2)}\right| . \tag{29}
\end{align*}
$$

Observe that, $\forall i \in I_{m}, A^{\left(I \backslash\{i\}, J \backslash\left\{j_{h}\right\}\right)}: E_{J \backslash\left\{j_{h}\right\}} \longrightarrow E_{I \backslash\{i\}}$ is a linear $(m-1, \sigma)$ general function such that $\mathcal{D}_{0}\left(A^{\left(I \backslash\{i\}, J \backslash\left\{j_{h}\right\}\right)}\right) \neq \emptyset, N\left(A^{\left(I \backslash\{i\}, J \backslash\left\{j_{h}\right\}\right)}\right)=k$; then, from the recursive assumption, there exists

$$
\lim _{|p| \longrightarrow+\infty} \operatorname{det}\left(A^{\left(I \backslash\{i\}, J \backslash\left\{j_{h}\right\}\right)}\right)^{(|p|-2,|p|-2)} \in \mathbf{R},
$$

and so

$$
\lim _{|p| \longrightarrow+\infty} \sum_{i \in I_{m}}\left|a_{i, p}\right|\left|\operatorname{det}\left(A^{\left(I \backslash\{i\}, J \backslash\left\{j_{h}\right\}\right)}\right)^{(|p|-2,|p|-2)}\right|=0, \forall h=1, \ldots, k+1 ;
$$

consequently, from (28) and (29), there exists $b \in \mathbf{R}^{+}$such that

$$
\begin{equation*}
\sup \left\{\left|\left(\operatorname{cof} A^{(|p|,|p|)}\right)_{p, j_{h}}\right|: h \in\{1, \ldots, k+1\}, p \in I \backslash I_{\bar{m}}\right\} \leq b . \tag{30}
\end{equation*}
$$

Moreover, since $\prod_{q \in I \backslash I_{m}: \lambda_{q} \neq 0} \lambda_{q} \in \mathbf{R}^{*}$, we have $\prod_{q \in I \backslash I_{m}} \bar{\lambda}_{q} \equiv c \in \mathbf{R}^{+}$, where

$$
\bar{\lambda}_{q}=\left\{\begin{array}{ll}
1 & \text { if } \lambda_{q}=0 \\
\frac{1}{\left|\lambda_{q}\right|} & \text { if } 0<\left|\lambda_{q}\right|<1 \\
\left|\lambda_{q}\right| & \text { if }\left|\lambda_{q}\right| \geq 1
\end{array},\right.
$$

and so

$$
\begin{equation*}
\left|\prod_{q \in H} \lambda_{q}\right| \leq c, \forall H \subset I \backslash I_{\bar{m}} \tag{31}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\lim _{n \longrightarrow+\infty} \operatorname{det} A^{(\bar{m}, \bar{m})}\left(\prod_{q \in I_{n} \backslash I_{\bar{m}}} \lambda_{q}\right)=\operatorname{det} A^{(\bar{m}, \bar{m})}\left(\prod_{q \in I \backslash I_{\bar{m}}} \lambda_{q}\right) \in \mathbf{R} \tag{32}
\end{equation*}
$$

moreover, set

$$
\begin{equation*}
a=\sum_{p \in I \backslash I_{\bar{m}}}\left(\prod_{q \in I \backslash I_{|p|}} \lambda_{q}\right) \sum_{h=1}^{k+1} a_{p, j_{h}}\left(\operatorname{cof} A^{(|p|,|p|)}\right)_{p, j_{h}} \tag{33}
\end{equation*}
$$

then, $\forall n>\bar{m}$, we have

$$
\begin{align*}
& a-a_{n}=\sum_{p \in I \backslash I_{n}}\left(\prod_{q \in I \backslash I_{|p|}} \lambda_{q}\right) \sum_{h=1}^{k+1} a_{p, j_{h}}\left(\operatorname{cof} A^{(|p|,|p|)}\right)_{p, j_{h}} \\
& +\sum_{p \in I_{n} \backslash I_{m}}\left(\prod_{q \in I_{n} \backslash I_{|p|}} \lambda_{q}\right)\left(\left(\prod_{r \in I \backslash I_{n}} \lambda_{r}\right)-1\right) \sum_{h=1}^{k+1} a_{p, j_{h}}\left(\operatorname{cof} A^{(|p|,|p|)}\right)_{p, j_{h}} . \tag{34}
\end{align*}
$$

If there exists $n_{0} \in \mathbf{N}, n_{0} \geq \bar{m}$, such that $\lambda_{q} \neq 0 \forall q \in I \backslash I_{n_{0}}$, we have $\prod_{q \in I \backslash I_{n_{0}}} \lambda_{q} \in \mathbf{R}^{*}$; then $\forall \varepsilon \in \mathbf{R}^{+}$, there exists $n_{1} \in \mathbf{N}, n_{1} \geq n_{0}$, such that, $\forall n \in \mathbf{N}, n>n_{1}$, we have $\left|\left(\prod_{r \in I \backslash I_{n}} \lambda_{r}\right)-1\right|<\varepsilon$; thus, from formulas (34),
(30) and (31), we obtain

$$
\begin{equation*}
\left|a-a_{n}\right| \leq b c \sum_{p \in I \backslash I_{n}} \sum_{h=1}^{k+1}\left|a_{p, j_{h}}\right|+b c \varepsilon \sum_{p \in I_{n} \backslash I_{\bar{m}} h=1} \sum_{p, j_{h}}^{k+1}\left|a_{p}\right|, \forall n>n_{1} . \tag{35}
\end{equation*}
$$

Finally, there exists $d \in \mathbf{R}^{+}$such that $\sum_{p \in I \backslash I_{m} h=1} \sum_{p, j_{h}}^{k+1} \mid \leq d$, and so there exists $n_{2} \in \mathbf{N}, n_{2} \geq n_{1}$, such that, $\forall n \in \mathbf{N}, n \geq n_{2}$, we have $\sum_{p \in I \backslash I_{n}} \sum_{h=1}^{k+1}\left|a_{p, j_{h}}\right|<\varepsilon ;$ then, from formula (35), we obtain

$$
\left|a-a_{n}\right| \leq b c \varepsilon+b c d \varepsilon=b c(1+d) \varepsilon, \forall n \geq n_{2}
$$

Then, from (26) and (32), we have

$$
\begin{aligned}
& n \xrightarrow{\lim _{\longrightarrow} \operatorname{det} A^{(n, n)}} \\
& =\sum_{p \in I \backslash I_{\bar{m}}}\left(\prod_{q \in I \backslash I_{|p|}} \lambda_{q}\right) \sum_{h=1}^{k+1} a_{p, j_{h}}\left(\operatorname{cof} A^{(|p|,|p|)}\right)_{p, j_{h}}+\operatorname{det} A^{(\bar{m}, \bar{m})}\left(\prod_{q \in I \backslash I_{\bar{m}}} \lambda_{q}\right) \\
& =\sum_{p \in I \backslash I_{\bar{m}}}\left(\prod_{q \in I \backslash I_{|p|}} \lambda_{q}\right) \sum_{j \in J_{m}} a_{p, j}\left(\operatorname{cof} A^{(|p|,|p|)}\right)_{p, j}+\operatorname{det} A^{(\bar{m}, \bar{m})}\left(\prod_{q \in I \backslash I_{\bar{m}}} \lambda_{q}\right) \in \mathbf{R} .
\end{aligned}
$$

Moreover, suppose that σ is bijective and there exists a subsequence $\left\{\lambda_{q_{t}}\right\}_{t \in \mathbf{N}}$ $\subset\left\{\lambda_{q}\right\}_{q \in I \backslash I_{m}: \lambda_{q}=0}$; then, from formulas (27) and (33), $\forall t \in \mathbf{N}, \forall n \geq\left|q_{t}\right|$, we obtain

$$
\begin{align*}
a-a_{n}= & \sum_{p \in I \backslash I_{n}}\left(\prod_{q \in I \backslash I_{|p|}} \lambda_{q}\right) \sum_{h=1}^{k+1} a_{p, j_{h}}\left(\operatorname{cof} A^{(|p|,|p|)}\right)_{p, j_{h}} \\
& -\sum_{p \in I_{n} \backslash I_{\bar{m}}}\left(\prod_{q \in I_{n} \backslash I_{|p|}} \lambda_{q}\right) \sum_{h=1}^{k+1} a_{p, j_{h}}\left(\operatorname{cof} A^{(|p|,|p|)}\right)_{p, j_{h}} \\
= & -\sum_{p \in I_{n} \backslash I_{\mid q t} \mid-1}\left(\prod_{q \in I_{n} \backslash I_{|p|}} \lambda_{q}\right) \sum_{h=1}^{k+1} a_{p, j_{h}}\left(\operatorname{cof} A^{(|p|,|p|)}\right)_{p, j_{h}} . \tag{36}
\end{align*}
$$

Thus, from formulas (30), (31) and (36):

$$
\begin{equation*}
\left|a-a_{n}\right| \leq b c \sum_{p \in I_{n} \backslash I_{\left|q_{t}\right|-1}} \sum_{h=1}^{k+1}\left|a_{p, j_{h}}\right|, \forall t \in \mathbf{N}, \forall n \geq\left|q_{t}\right| \tag{37}
\end{equation*}
$$

Finally, $\forall \varepsilon \in \mathbf{R}^{+}$, there exists $t \in \mathbf{N}$ such that $\sum_{p \in I_{n} \backslash I_{\left|q_{t}\right|-1}} \sum_{h=1}^{k+1}\left|a_{p, j_{h}}\right|<\varepsilon$, $\forall n \geq\left|q_{t}\right|$; then, from (37), we obtain

$$
\left|a-a_{n}\right| \leq b c \varepsilon, \forall n \geq\left|q_{t}\right| .
$$

Thus, from (26) and (32), we have formula (24).
Moreover, if $l \in \mathbf{N}^{*}$, from (25) we have

$$
\begin{equation*}
\operatorname{det} A^{(n, n)}=\sum_{h=1}^{k+1} a_{i_{n}, j_{h}}\left(\operatorname{cof} A^{(n, n)}\right)_{i_{n}, j_{h}}, \forall n>\bar{m}_{l} \tag{38}
\end{equation*}
$$

moreover, $\forall h=1, \ldots, k+1$, we have

$$
\begin{equation*}
\left|\left(\operatorname{cof} A^{(n, n)}\right)_{i_{n}, j_{h}}\right|=\left|\operatorname{det} A^{\left(I_{n-1}, I_{n} \backslash\left\{j_{h}\right\}\right)}\right|=\left|\operatorname{det}\left(A^{\left(I, J \backslash\left\{j_{h}\right\}\right)}\right)^{(n-1, n-1)}\right| \tag{39}
\end{equation*}
$$

Observe that $A^{\left(I, J \backslash\left\{j_{h}\right\}\right)}: E_{J \backslash\left\{j_{h}\right\}} \longrightarrow E_{I}$ is a linear (m, τ)-general function, where $\tau: I \backslash I_{m} \longrightarrow J \backslash J_{m+1}$ is the function defined by $\tau(i)=\sigma(i), \forall i \in I \backslash I_{m}$; moreover, $\mathcal{D}_{l-1}\left(A^{\left(I, J \backslash\left\{j_{h}\right\}\right)}\right) \neq \emptyset, l-1 \in \mathbf{N}, N\left(A^{\left(I, J \backslash\left\{j_{h}\right\}\right)}\right)=k$; then, from the recursive assumption, there exists $\lim _{n \longrightarrow+\infty} \operatorname{det}\left(A^{\left(I, J \backslash\left\{j_{h}\right\}\right)}\right)^{(n-1, n-1)} \in \mathbf{R}$, and so

$$
\lim _{n \longrightarrow+\infty}\left|a_{i_{n}, j_{h}}\right|\left|\operatorname{det}\left(A^{\left(I, J \backslash\left\{j_{h}\right\}\right)}\right)^{(n-1, n-1)}\right|=0, \forall h=1, \ldots, k+1
$$

consequently, from (38) and (39), we obtain $\lim _{n \longrightarrow+\infty} \operatorname{det} A^{(n, n)}=0$.
Furthermore, suppose that there exists $l \in \mathbf{Z}^{-}$such that $\mathcal{D}_{l} \neq \emptyset$; since the function $\left.\sigma\right|_{I \backslash I_{\bar{m}_{l}}}$ is injective, from Proposition 3.4, the linear function ${ }^{t} A$: $E_{I} \longrightarrow E_{J}$ is $\left(\bar{m}_{l}, \tau\right)$-general, where $\tau: J \backslash J_{\bar{m}_{l}} \longrightarrow I \backslash I_{\bar{m}_{l}}$ is the increasing function defined by $\tau(j)=\sigma^{-1}(j), \forall j \in J \backslash J_{\bar{m}_{l}}$; moreover, we have $\mathcal{D}_{-l}\left({ }^{t} A\right) \neq$ $\emptyset,-l \in \mathbf{N}^{*}$; then, from the previous arguments, we obtain

$$
\lim _{n \longrightarrow+\infty} \operatorname{det} A^{(n, n)}=\lim _{n \longrightarrow+\infty}{ }^{t} A^{(n, n)}=0 .
$$

Finally, if $\mathcal{D}=\emptyset$, we have

$$
\mid\left\{i \in I \backslash I_{m}: \sigma(i)=\sigma(h), \text { fore some } h \in I \backslash I_{m}, h<i\right\} \mid=+\infty
$$

or $\left|\left(J \backslash J_{m}\right) \backslash \sigma\left(I \backslash I_{m}\right)\right|=+\infty$; then, the rows or the columns of the matrix $A^{(n, n)}$ are linearly dependent, for n sufficiently large, and so we have $\operatorname{det} A^{(n, n)}=0$, from which $\lim _{n \longrightarrow+\infty} \operatorname{det} A^{(n, n)}=0$.

Definition 3.7. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function; define the determinant of A, and call it $\operatorname{det} A$, the real number

$$
\operatorname{det} A=\lim _{n \longrightarrow+\infty} \operatorname{det} A^{(n, n)} .
$$

Corollary 3.8. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function such that $a_{i j}=0, \forall i \in I_{m}, \forall j \in J \backslash J_{m}$, or A is (m, σ)-standard. Then, if σ is bijective, we have

$$
\operatorname{det} A=\operatorname{det} A^{(m, m)} \prod_{i \in I \backslash I_{m}} \lambda_{i} .
$$

Conversely, if σ is not bijective, we have $\operatorname{det} A=0$. In particular, if $A=\mathbf{I}_{I, J}$, we have $\operatorname{det} A=1$.

Proof. If σ is bijective, $\forall i \in I \backslash I_{m}$, we have $|\sigma(i)|=|i|$; then, $\forall n \in \mathbf{N}, n \geq m$, we have

$$
\operatorname{det} A^{(n, n)}=\operatorname{det} A^{(m, m)} \prod_{i \in I_{n} \backslash I_{m}} \lambda_{i}
$$

from which

$$
\operatorname{det} A=\lim _{n \longrightarrow+\infty} \operatorname{det} A^{(n, n)}=\operatorname{det} A^{(m, m)} \prod_{i \in I \backslash I_{m}} \lambda_{i} .
$$

Moreover, suppose that $\mathcal{A} \neq \emptyset$ but σ is not bijective, and set $\bar{m}=\min \mathcal{A}$; by definition of \bar{m}, we have $\bar{m}>m$ and the matrix $A^{(\bar{m}, \bar{m})}$ is not invertible; then, $\forall n \in \mathbf{N}, n \geq \bar{m}$, we obtain

$$
\operatorname{det} A^{(n, n)}=\operatorname{det} A^{(\bar{m}, \bar{m})} \prod_{p \in I_{n} \backslash I_{\bar{m}}} \lambda_{p}=0,
$$

and so $\operatorname{det} A=\lim _{n \longrightarrow+\infty} \operatorname{det} A^{(n, n)}=0$. Finally, if $\mathcal{A}=\emptyset$, from Theorem 3.6 we have $\operatorname{det} A=0$ again. In particular, if $A=\mathbf{I}_{I, J}$, then A is $(1, \sigma)$-standard, where $A^{(1,1)}=(1), \lambda_{i}=1, \forall i \in I \backslash I_{1}$, and σ is bijective; then, $\operatorname{det} A=1$.

Proposition 3.9. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function such that $a_{i j}=0, \forall i \in I_{m}, \forall j \in J \backslash J_{m}$, or A is (m, σ)-standard; then:

1. One has $\operatorname{det} A \neq 0$ if and only if $A^{(m, m)}$ is invertible, $\lambda_{i} \neq 0$, for any $i \in I \backslash I_{m}$, and σ is bijective.
2. If $a_{i j}=0, \forall i \in I_{m}, \forall j \in J \backslash J_{m}$, and $\operatorname{det} A \neq 0$, then A is bijective.
3. If A is (m, σ)-standard, then one has $\operatorname{det} A \neq 0$ if and only if A is bijective.

Proof.

1. If σ is bijective, from Corollary 3.8, we have

$$
\operatorname{det} A=\operatorname{det} A^{(m, m)} \prod_{i \in I \backslash I_{m}} \lambda_{i}
$$

Moreover, if $A^{(m, m)}$ is invertible and $\lambda_{i} \neq 0, \forall i \in I \backslash I_{m}$, we have $\operatorname{det} A^{(m, m)} \neq 0, \prod_{i \in I \backslash I_{m}} \lambda_{i}=\prod_{i \in I \backslash I_{m}: \lambda_{i} \neq 0} \lambda_{i} \in \mathbf{R}^{*}$, and so $\operatorname{det} A \neq 0$.
Conversely, if $\operatorname{det} A \neq 0$, from Corollary $3.8, \sigma$ is bijective, and so

$$
\operatorname{det} A^{(m, m)} \prod_{i \in I \backslash I_{m}} \lambda_{i}=\operatorname{det} A \neq 0
$$

then, $A^{(m, m)}$ is invertible and $\lambda_{i} \neq 0, \forall i \in I \backslash I_{m}$.
2. If $a_{i j}=0, \forall i \in I_{m}, \forall j \in J \backslash J_{m}$, and $\operatorname{det} A \neq 0$, from point 1 and Proposition 2.27, we obtain that A is bijective.
3. The statement follows from Proposition 10 and Remark 14 in [3].

Proposition 3.10. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function such that $\left\{h \in \mathbf{N}, h \geq m:\left.\sigma\right|_{I \backslash I_{h}}\right.$ is injective $\} \neq \emptyset$; then, $\operatorname{det} A=$ $\operatorname{det}{ }^{t} A$.
Proof. Since $\left\{h \in \mathbf{N}, h \geq m:\left.\sigma\right|_{I \backslash I_{h}}\right.$ is injective $\} \neq \emptyset$, from Proposition 3.4, the function ${ }^{t} A: E_{I} \longrightarrow E_{J}$ is $(\widetilde{\widetilde{m}}, \tau)$-general, where $\widetilde{\widetilde{m}} \in \mathbf{N}^{*}$ is defined by formula (20), and the function $\tau: J \backslash J_{\widetilde{\tilde{m}}} \longrightarrow I \backslash I_{\widetilde{\widetilde{m}}}$ is given by

$$
\tau(j)=\min \left\{\sigma^{-1}(k): k \geq j, k \in \sigma\left(I \backslash I_{\widetilde{\widetilde{m}}}\right)\right\}, \forall j \in J \backslash J_{\widetilde{\tilde{m}}} .
$$

Then, we have

$$
\begin{aligned}
\operatorname{det} A= & \lim _{n \longrightarrow+\infty}
\end{aligned} \operatorname{det} A^{(n, n)} .
$$

Proposition 3.11. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function such that $\sum_{i \in I \backslash I_{m}}\left|a_{i, j}\right|<+\infty$, for any $j \in J \backslash J_{m}$; moreover, let $s, t \in$ $\mathbf{N}^{*}, s<t$, let $p=\max \{t, m\}$ and let $i_{t} \in I$ such that $\left|i_{t}\right|=t$; then:

1. If there exist $u=\left(u_{j}: j \in J\right) \in E_{J}, v=\left(v_{j}: j \in J\right) \in E_{J}, c_{1}, c_{2} \in \mathbf{R}$ such that $\sum_{j \in J}\left|u_{j}\right|<+\infty, \sum_{j \in J}\left|v_{j}\right|<+\infty, a_{i_{t}, j}=c_{1} u_{j}+c_{2} v_{j}$, for any $j \in J$, by indicating by $U=\left(u_{i j}\right)_{i \in I, j \in J}$ and $V=\left(v_{i j}\right)_{i \in I, j \in J}$ the linear functions obtained by substituting the t-th row of A for u and v, respectively, then U and V are (p, ξ)-general, where the increasing function $\xi: I \backslash I_{p} \longrightarrow J \backslash J_{p}$ is defined by

$$
\xi(i)=\left\{\begin{array}{ll}
\sigma(i) & \text { if } \sigma(i) \in J \backslash J_{p} \tag{40}\\
\min \left(J \backslash J_{p}\right) & \text { if } \sigma(i) \notin J \backslash J_{p}
\end{array}, \forall i \in I \backslash I_{p} ;\right.
$$

moreover, one has $\operatorname{det} A=c_{1} \operatorname{det} U+c_{2} \operatorname{det} V$.
2. If $B=\left(b_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ is the linear function obtained by exchanging the s-th row of A for the t-th row of A, then B is (p, ξ)-general and one has $\operatorname{det} B=-\operatorname{det} A$.
3. If $C=\left(c_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ is the linear function obtained by substituting the t-th row of A for the s-th row of A, or the s-th one for the t-th one, then C is (p, ξ)-general and one has $\operatorname{det} C=0$.
Proof.

1. Since $\sum_{i \in I \backslash I_{m}}\left|a_{i, j}\right|<+\infty, \forall j \in J \backslash J_{m}$, we have $\sum_{i \in I \backslash I_{m}}\left|u_{i j}\right|<+\infty$, $\sum_{i \in I \backslash I_{m}}\left|v_{i j}\right|<+\infty, \forall j \in J \backslash J_{m}$; then, from point 5 of Proposition 2.24, the functions U and V are (p, ξ)-general. Moreover, $\forall n \in \mathbf{N}^{*}$, we have $\operatorname{det} A^{(n, n)}=c_{1} \operatorname{det} U^{(n, n)}+c_{2} \operatorname{det} V^{(n, n)}$, from which

$$
\begin{array}{r}
\operatorname{det} A=\lim _{n \longrightarrow+\infty} \operatorname{det} A^{(n, n)}=\lim _{n \longrightarrow+\infty}\left(c_{1} \operatorname{det} U^{(n, n)}+c_{2} \operatorname{det} V^{(n, n)}\right) \\
=c_{1} \operatorname{det} U+c_{2} \operatorname{det} V .
\end{array}
$$

2. By proceeding as in the proof of point 1 , we can prove that B is (p, ξ) general; moreover, $\forall n \in \mathbf{N}, n \geq p, B^{(n, n)}$ is the matrix obtained by exchanging the s-th row of $A^{(n, n)}$ for the t-th row of $A^{(n, n)}$; then, one has $\operatorname{det} B^{(n, n)}=-\operatorname{det} A^{(n, n)}$, from which

$$
\operatorname{det} B=\lim _{n \longrightarrow+\infty} \operatorname{det} B^{(n, n)}=-\lim _{n \longrightarrow+\infty} \operatorname{det} A^{(n, n)}=-\operatorname{det} A .
$$

3. By proceeding as in the proof of point 1 , we can prove that C is (p, ξ) general; moreover, since the s-th row of C and the t-th row of C are equals, by exchanging these rows among themselves we obtain again the matrix C; then, from point 2 , we have $\operatorname{det} C=-\operatorname{det} C$, from which $\operatorname{det} C=0$.

Proposition 3.12. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function such that $\sum_{i \in I \backslash I_{m}}\left|a_{i, j}\right|<+\infty$, for any $j \in J \backslash J_{m}$; moreover, let $s, t \in$ $\mathbf{N}^{*}, s<t$, let $p=\max \{t, m\}$, let $j_{t} \in J$ such that $\left|j_{t}\right|=t$, and let the function $\xi: I \backslash I_{p} \longrightarrow J \backslash J_{p}$ defined by (40); then:

1. If there exist $u=\left(u_{i}: i \in I\right) \in E_{I}, v=\left(v_{i}: i \in I\right) \in E_{I}, c_{1}, c_{2} \in \mathbf{R}$ such that $\sum_{i \in I}\left|u_{i}\right|<+\infty, \sum_{i \in I}\left|v_{i}\right|<+\infty, a_{i, j_{t}}=c_{1} u_{i}+c_{2} v_{i}$, for any $i \in I$, by indicating by $U=\left(u_{i j}\right)_{i \in I, j \in J}$ and $V=\left(v_{i j}\right)_{i \in I, j \in J}$ the linear functions obtained by substituting the t-th column of A for u and v, respectively, then U and V are (p, ξ)-general and one has $\operatorname{det} A=c_{1} \operatorname{det} U+c_{2} \operatorname{det} V$.
2. If $B=\left(b_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ is the linear function obtained by exchanging the s-th column of A for the t-th column of A, then B is (p, ξ)-general and one has $\operatorname{det} B=-\operatorname{det} A$.
3. If $C=\left(c_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ is the linear function obtained by substituting the t-th column of A for the s-th column of A, or the s-th one for the t-th one, then C is (p, ξ)-general and one has $\operatorname{det} C=0$.

Proof. The proof is analogous to that one of Proposition 3.11.

Proposition 3.13. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function such that $\sum_{i \in I \backslash I_{m}}\left|a_{i, j}\right|<+\infty$, for any $j \in J \backslash J_{m}$. If the dimension of the vector space generated by the rows or the columns of A is finite, then $\operatorname{det} A=0$.

Proof. Suppose that the dimension of the vector space generated by the rows of A is finite; then, there exist n rows $v^{(1)}, \ldots, v^{(n)}$ of A, where $v^{(k)}=\left(v_{j}^{(k)}: j \in J\right)$, $\forall k \in\{1, \ldots, n\}$, such that, if $v=\left(v_{j}: j \in J\right)$ is as row of A, there exist $c_{1}, \ldots, c_{n} \in$ \mathbf{R} such that $v=c_{1} v^{(1)}+\ldots+c_{n} v^{(n)}$. From Proposition 3.11, by indicating by $V_{k}, \forall k \in\{1, \ldots, n\}$, the linear function obtained by substituting the row v of A for $v^{(k)}$, by recursion we have $\operatorname{det} A=c_{1} \operatorname{det} V_{1}+\ldots+c_{n} \operatorname{det} V_{n}$; moreover, V_{k} has two rows equals to $v^{(k)}$, and so $\operatorname{det} V_{k}=0, \forall k \in\{1, \ldots, n\}$; then, $\operatorname{det} A=0$. Analogously, if the dimension of the vector space generated by the columns of A is finite, from Proposition 3.12 we obtain $\operatorname{det} A=0$.

Remark 3.14: Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function such that $\sum_{i \in I \backslash I_{m}}\left|a_{i, j}\right|<+\infty$, for any $j \in J \backslash J_{m}$. Then, for any $n \in \mathbf{N}, n \geq m$, for any $\emptyset \neq L \subset I$ and for any $\emptyset \neq N \subset J$ such that $|I \backslash L|=|J \backslash N|<+\infty$, the linear function $A^{(L, N)}: E_{N} \longrightarrow E_{L}$ is (n, ρ)-general, where the function $\rho: L \backslash L_{n} \longrightarrow N \backslash N_{n}$ is defined by

$$
\rho(i)=\left\{\begin{array}{ll}
\sigma(i) & \text { if } \sigma(i) \in N \backslash N_{n} \\
\min \left\{j>\sigma(i): j \in N \backslash N_{n}\right\} & \text { if } \sigma(i) \notin N \backslash N_{n}
\end{array}, \forall i \in L \backslash L_{n} .\right.
$$

Proof. The proof follows from Remark 2.25.

Definition 3.15. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function such that $\sum_{i \in I \backslash I_{m}}\left|a_{i, j}\right|<+\infty$, for any $j \in J \backslash J_{m}$; define the $I \times J$ matrix cof A by

$$
(\operatorname{cof} A)_{i j}=(-1)^{|i|+|j|} \operatorname{det}\left(A^{(I \backslash\{i\}, J \backslash\{j\})}\right), \forall i \in I, \forall j \in J .
$$

Proposition 3.16. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function such that $\sum_{i \in I \backslash I_{m}}\left|a_{i, j}\right|<+\infty$, for any $j \in J \backslash J_{m}$; moreover, suppose that $a_{i j}=0, \forall i \in I_{m}, \forall j \in J \backslash J_{m}$, or A is (m, σ)-standard; then, one has:

$$
\begin{align*}
\operatorname{det} A & =\sum_{t \in J} a_{i t}(\operatorname{cof} A)_{i t}, \forall i \in I \tag{41}\\
\operatorname{det} A & =\sum_{s \in I} a_{s j}(\operatorname{cof} A)_{s j}, \forall j \in J \tag{42}
\end{align*}
$$

Proof. Suppose that $\mathcal{A} \neq \emptyset$ and set $\bar{m}=\min \mathcal{A} ; \forall i \in I, \forall j \in J$ and $\forall n \in \mathbf{N}$, $n \geq \max \{|i|,|j|, \bar{m}\}$, we have

$$
\begin{equation*}
\operatorname{det} A=\operatorname{det} A^{(n, n)} \prod_{p \in I \backslash I_{n}} \lambda_{p}, \tag{43}
\end{equation*}
$$

from which

$$
\operatorname{det} A=\sum_{t \in J_{n}} a_{i t}\left(\operatorname{cof} A^{(n, n)}\right)_{i t} \prod_{p \in I \backslash I_{n}} \lambda_{p}=\sum_{t \in J_{n}} a_{i t}(\operatorname{cof} A)_{i t} \text {; }
$$

then

$$
\operatorname{det} A=\lim _{n \longrightarrow+\infty} \sum_{t \in J_{n}} a_{i t}(\operatorname{cof} A)_{i t}=\sum_{t \in J} a_{i t}(\operatorname{cof} A)_{i t} .
$$

Analogously, from formula (43), we have

$$
\operatorname{det} A=\sum_{s \in I_{n}} a_{s j}\left(\operatorname{cof} A^{(n, n)}\right)_{s j} \prod_{p \in I \backslash I_{n}} \lambda_{p}=\sum_{s \in I_{n}} a_{s j}(\operatorname{cof} A)_{s j},
$$

and so

$$
\operatorname{det} A=\sum_{s \in I} a_{s j}(\operatorname{cof} A)_{s j} .
$$

Conversely, if $\mathcal{A}=\emptyset, \forall s \in I, \forall t \in J$, we have $\mathcal{A}\left(A^{(I \backslash\{s\}, J \backslash\{t\})}\right)=\emptyset ;$ then, from Theorem 3.6, we obtain $\operatorname{det} A=\operatorname{det}\left(A^{(I \backslash\{s\}, I \backslash\{t\})}\right)=0$, and so $(\operatorname{cof} A)_{s t}=0$; then:

$$
\begin{aligned}
\operatorname{det} A=0 & =\sum_{t \in J} a_{i t}(\operatorname{cof} A)_{i t}, \forall i \in I \\
\operatorname{det} A=0 & =\sum_{s \in I} a_{s j}(\operatorname{cof} A)_{s j}, \forall j \in J
\end{aligned}
$$

Corollary 3.17. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function such that $\sum_{i \in I \backslash I_{m}}\left|a_{i, j}\right|<+\infty$, for any $j \in J \backslash J_{m}$; moreover, suppose that $a_{i j}=0, \forall i \in I_{m}, \forall j \in J \backslash J_{m}$, or A is (m, σ)-standard; then:

1. One has

$$
\begin{equation*}
A^{t}(\operatorname{cof} A)=(\operatorname{det} A) \mathbf{I}_{I, I} \tag{44}
\end{equation*}
$$

moreover, if A is bijective, the linear functions $A^{-1}: E_{I} \longrightarrow E_{J}$ and ${ }^{t}(\operatorname{cof} A): E_{I} \longrightarrow E_{J}$ are continuous.
2. If A is bijective, then one has $\operatorname{det} A \neq 0$ if and only if $\operatorname{cof} A \neq 0$; moreover, in this case

$$
\begin{equation*}
A^{-1}=\frac{1}{\operatorname{det} A}^{t}(\operatorname{cof} A) \tag{45}
\end{equation*}
$$

3. If A is (m, σ)-standard and bijective, then A^{-1} is $\left(m, \sigma^{-1}\right)$-standard.

Proof.

1. From formula (41), we have

$$
\sum_{t \in J} a_{i t}(\operatorname{cof} A)_{i t}=\operatorname{det} A, \forall i \in I
$$

Moreover, we have

$$
\begin{equation*}
\sum_{t \in J} a_{i t}(\operatorname{cof} A)_{j t}=0, \forall i, j \in I, i \neq j \tag{46}
\end{equation*}
$$

in fact, from formula (41) and Proposition 3.11, the left side of (46) is equal to $\operatorname{det} C$, where C is the (p, ξ)-general function obtained by substituting the j-th row of A for the i-th row of $A, p=\max \{|i|,|j|, m\}$, and the increasing function $\xi: I \backslash I_{p} \longrightarrow J \backslash J_{p}$ is defined by (40); then, from Proposition 3.11, we have $\operatorname{det} C=0$. This implies that

$$
\sum_{t \in J} a_{i t}(\operatorname{cof} A)_{j t}=(\operatorname{det} A) \delta_{i j}, \forall i, j \in I
$$

where $\delta_{i j}$ is the Kronecker symbol, and so formula (44) follows, since the functions $\delta_{i j}$ and $\bar{\delta}_{i j}$ coincide on $I \times I$. Moreover, suppose that A is bijective; since A is continuous from Proposition 3.4, then the linear function $A^{-1}: E_{I} \longrightarrow E_{J}$ is continuous (see, e.g., the theory in Weidmann's book [11]); furthermore, from formula (44), we have

$$
{ }^{t}(\operatorname{cof} A)=(\operatorname{det} A) A^{-1}
$$

and so the linear function ${ }^{t}(\operatorname{cof} A): E_{I} \longrightarrow E_{J}$ is continuous too.
2. If A is bijective, from formula (44) we have $\operatorname{det} A=0$ if and only if $\operatorname{cof} A=0$, and so $\operatorname{det} A \neq 0$ if and only if $\operatorname{cof} A \neq 0$; moreover, in this case, from formula (44) we obtain formula (45).
3. If A is (m, σ)-standard and bijective, from Proposition 3.9, we have $\operatorname{det} A \neq 0, \lambda_{i} \neq 0, \forall i \in I \backslash I_{m}$, and σ is bijective; moreover, $\forall y \in E_{I}$, we have $A\left(A^{-1} y\right)=y$, from which

$$
\begin{equation*}
\left(A^{-1} y\right)_{i}=\frac{y_{i}}{\lambda_{i}}, \forall i \in I \backslash I_{m} \tag{47}
\end{equation*}
$$

furthermore, we have $\left\{i \in I \backslash I_{m}:\left(\lambda_{i}\right)^{-1} \neq 0\right\}=I \backslash I_{m}$, from which

$$
\prod_{i \in I \backslash I_{m}:\left(\lambda_{i}\right)^{-1} \neq 0}\left(\lambda_{i}\right)^{-1}=\left(\prod_{i \in I \backslash I_{m}} \lambda_{i}\right)^{-1}=\left(\prod_{i \in I \backslash I_{m}: \lambda_{i} \neq 0} \lambda_{i}\right)^{-1} \in \mathbf{R}^{*}
$$

then, we obtain $\sup _{i \in I \backslash I_{m}}\left|\left(\lambda_{i}\right)^{-1}\right|<+\infty$ and $\inf _{i \in I \backslash I_{m}:\left(\lambda_{i}\right)^{-1} \neq 0}\left|\left(\lambda_{i}\right)^{-1}\right|>0$. Finally, from formula (47) and since the linear function $A^{-1}: E_{I} \longrightarrow E_{J}$ is given by formula (45), then A^{-1} is $\left(m, \sigma^{-1}\right)$-standard, with $\lambda_{i}\left(A^{-1}\right)=$ $\left(\lambda_{i}\right)^{-1}, \forall i \in I \backslash I_{m}$.

Proposition 3.18. Let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a (m, σ)-general function and let $x_{0}=\left(x_{0, j}: j \in J\right) \in U$ such that there exists the function $J_{\varphi}\left(x_{0}\right): E_{J} \longrightarrow E_{I}$; then, $J_{\varphi}\left(x_{0}\right)$ is a linear (m, σ)-general function; moreover, for any $n \in \mathbf{N}$, $n \geq m$, there exists the linear (m, σ)-general function $J_{\bar{\varphi}^{(n, n)}}\left(x_{0}\right): E_{J} \longrightarrow E_{I}$, and one has

$$
\operatorname{det} J_{\varphi}\left(x_{0}\right)=\lim _{n \rightarrow+\infty} \operatorname{det} J_{\bar{\varphi}^{(n, n)}}\left(x_{0}\right)
$$

Proof. Since φ is (m, σ)-general, from Remark 3.2, the linear function $J_{\varphi}\left(x_{0}\right)$ is (m, σ)-general; moreover, $\forall n \in \mathbf{N}, n \geq m$, from Proposition 2.4, there exists the linear function $J_{\bar{\varphi}^{(n, n)}}\left(x_{0}\right): E_{J} \longrightarrow E_{I}$, and it is (m, σ)-general, from Remark 3.2; furthermore, we have $\mathcal{A}\left(J_{\varphi}\left(x_{0}\right)\right)=\mathcal{A}\left(J_{\bar{\varphi}^{(n, n)}}\left(x_{0}\right)\right)$.

If $\mathcal{A}\left(J_{\varphi}\left(x_{0}\right)\right) \neq \emptyset$, set $\bar{m}=\min \mathcal{A}\left(J_{\varphi}\left(x_{0}\right)\right) ; \forall n \geq \bar{m}$, we have

$$
\begin{equation*}
\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\left(x_{0}\right)=\operatorname{det} J_{\varphi^{(n, n)}}\left(x_{0, j}: j \in J_{n}\right) \prod_{i \in I \backslash I_{n}} \varphi_{i, \sigma(i)}^{\prime}\left(x_{0, \sigma(i)}\right) ; \tag{48}
\end{equation*}
$$

if $\left|\left(I \backslash I_{m}\right) \backslash \mathcal{I}_{\varphi}\right|<+\infty$, set $i_{0}=\max \left(\left(I \backslash I_{m}\right) \backslash \mathcal{I}_{\varphi}\right)$ and $\widehat{m}=\max \left\{\bar{m},\left|i_{0}\right|\right\}$; since $\prod_{i \in I \backslash I_{\widehat{m}}} \varphi_{i, \sigma(i)}^{\prime}\left(x_{0, \sigma(i)}\right) \in \mathbf{R}^{*}$, we have $\lim _{n \rightarrow+\infty_{i \in I \backslash I_{n}}} \varphi_{i, \sigma(i)}^{\prime}\left(x_{0, \sigma(i)}\right)=1$; then, from (48) and Theorem 3.6, we obtain

$$
\lim _{n \rightarrow+\infty} \operatorname{det} J_{\bar{\varphi}^{(n, n)}}\left(x_{0}\right)=\lim _{n \rightarrow+\infty} \operatorname{det} J_{\varphi^{(n, n)}}\left(x_{0, j}: j \in J_{n}\right)=\operatorname{det} J_{\varphi}\left(x_{0}\right)
$$

conversely, suppose that $\left|\left(I \backslash I_{m}\right) \backslash \mathcal{I}_{\varphi}\right|=+\infty$; for n sufficiently large, we have $\operatorname{det} J_{\varphi^{(n, n)}}\left(x_{0, j}: j \in J_{n}\right)=0$, from which

$$
\begin{aligned}
& \operatorname{det} J_{\varphi}\left(x_{0}\right)= \lim _{n \rightarrow+\infty} \operatorname{det} J_{\varphi^{(n, n)}}\left(x_{0, j}: j \in J_{n}\right)=0 \\
&= \lim _{n \rightarrow+\infty} \operatorname{det} J_{\varphi^{(n, n)}}\left(x_{0, j}: j \in J_{n}\right) \prod_{i \in I \backslash I_{n}} \\
& \varphi_{i, \sigma(i)}^{\prime}\left(x_{0, \sigma(i)}\right) \\
&=\lim _{n \rightarrow+\infty} \operatorname{det} J_{\bar{\varphi}^{(n, n)}}\left(x_{0}\right)
\end{aligned}
$$

Moreover, if $\mathcal{A}\left(J_{\varphi}\left(x_{0}\right)\right)=\emptyset, \forall n \in \mathbf{N}, n \geq m$, we have $\mathcal{A}\left(J_{\bar{\varphi}^{(n, n)}}\left(x_{0}\right)\right)=\emptyset$, and so

$$
\operatorname{det} J_{\varphi}\left(x_{0}\right)=0=\lim _{n \rightarrow+\infty} \operatorname{det} J_{\bar{\varphi}^{(n, n)}}\left(x_{0}\right)
$$

Example 3.19: Consider the linear function $A=\left(a_{i j}\right)_{i, j \in \mathbf{N}^{*}}: E_{\mathbf{N}^{*}} \longrightarrow E_{\mathbf{N}^{*}}$ given by

$$
(A x)_{i}=\left\{\begin{array}{ll}
\sum_{j \in \mathbf{N}^{*}} 2^{-j} x_{j} & \text { if } i=1 \\
x_{1}+\sum_{j \in \mathbf{N}^{*}} 2^{-j} x_{j} & \text { if } i=2 \\
2^{-i} x_{1}+2^{2^{-i}} & \text { if } i \in \mathbf{N}^{*} \backslash\{1,2\}
\end{array} \quad, \forall x=\left(x_{j}: j \in \mathbf{N}^{*}\right) \in E_{\mathbf{N}^{*}}\right.
$$

Then, A is a strongly (m, σ)-general function, where $I=J=\mathbf{N}^{*}, m=2$, $I_{m}=J_{m}=\{1,2\}, \sigma$ is the function given by $\sigma(i)=i, \forall i \in \mathbf{N}^{*} \backslash\{1,2\}$, and $\mathcal{A}=\mathbf{N}^{*} \backslash\{1\} \neq \emptyset$; moreover, we have $\lambda_{i}=2^{2^{-i}}, \forall i \in \mathbf{N}^{*} \backslash\{1,2\}$.

In order to calculate $\operatorname{det} A$, observe that $A^{\left(\{2\}, \mathbf{N}^{*}\right)}=u+v$, where $u=$ $A^{\left(\{1\}, \mathbf{N}^{*}\right)} \in E_{\mathbf{N}^{*}}$, and $v=\left(v_{j}: j \in \mathbf{N}^{*}\right) \in E_{\mathbf{N}^{*}}$, where $v_{j}=\delta_{j 1}, \forall j \in$ \mathbf{N}^{*}. Then, from Proposition 3.11, we have $\operatorname{det} A=\operatorname{det} U+\operatorname{det} V$, where $U=\left(u_{i j}\right)_{i, j \in \mathbf{N}^{*}}$ and $V=\left(v_{i j}\right)_{i, j \in \mathbf{N}^{*}}$ are the linear functions obtained by substituting the second row of A by u and v, respectively; moreover, since $U^{\left(\{1\}, \mathbf{N}^{*}\right)}=U^{\left(\{2\}, \mathbf{N}^{*}\right)}$, we have $\operatorname{det} U=0$, from which

$$
\begin{equation*}
\operatorname{det} A=\operatorname{det} V=\lim _{n \longrightarrow+\infty} \operatorname{det} V^{(n, n)} \tag{49}
\end{equation*}
$$

Finally, $\forall n \in \mathbf{N}^{*} \backslash\{1,2\}$, we have

$$
\begin{align*}
\operatorname{det} V^{(n, n)} & =(-1)^{n+1} 2^{-n} \operatorname{det} V^{(n-1,\{2, \ldots, n\})}+2^{2^{-n}} \operatorname{det} V^{(n-1, n-1)} \\
& =2^{2^{-n}} \operatorname{det} V^{(n-1, n-1)} \tag{50}
\end{align*}
$$

since the second row of $V^{(n-1,\{2, \ldots, n\})}$ is zero, and so $\operatorname{det} V^{(n-1,\{2, \ldots, n\})}=0$. Then, by recursion, from (50) we obtain

$$
\operatorname{det} V^{(n, n)}=\operatorname{det} V^{(2,2)} \prod_{j=3}^{n} 2^{2^{-n}}
$$

and so formula (49) implies

$$
\operatorname{det} A=\lim _{n \longrightarrow+\infty} \operatorname{det} V^{(2,2)} \prod_{j=3}^{n} 2^{2^{-n}}=\operatorname{det} V^{(2,2)} 2^{\sum_{j=3}^{+\infty} 2^{-n}}=-\frac{1}{4} \sqrt[4]{2}
$$

4. Problems for further study

A natural extension of this paper and of the paper [4] is the generalization of the change of variables' formula for the integration of the measurable real functions on $\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right)$, by substituting the (m, σ)-standard functions for the (m, σ)-general functions.

Moreover, a natural application of this paper, in the probabilistic framework, is the development of the theory of the infinite-dimensional continuous random elements, defined in the paper [3]. In particular, we can prove the formula of the density of such random elements composed with the (m, σ)-general functions, with further properties. Consequently, it is possible to introduce many random elements that generalize the well known continuous random vectors in \mathbf{R}^{m} (for example, the Beta random elements in E_{I} defined by the (m, σ)-general matrices), and to develop some theoretical results and some applications in the statistical inference. It is possible also to define a convolution between the laws of two independent and infinite-dimensional continuous random elements, as in the finite case.

Furthermore, we can generalize the paper [2] by considering the recursion $\left\{X_{n}\right\}_{n \in \mathbf{N}}$ on $[0, p)^{\mathbf{N}^{*}}$ defined by

$$
X_{n+1}=A X_{n}+B_{n}(\bmod p)
$$

where $X_{0}=x_{0} \in E_{I}, A$ is a bijective, linear, integer and (m, σ)-general function, $p \in \mathbf{R}^{+}$, and $\left\{B_{n}\right\}_{n \in \mathbf{N}}$ is a sequence of independent and identically distributed random elements on E_{I}. Our target is to prove that, with some assumptions on the law of B_{n}, the sequence $\left\{X_{n}\right\}_{n \in \mathbf{N}}$ converges with geometric rate to a random element with law $\bigotimes_{i \in \mathbf{N}^{*}}\left(\left.\frac{1}{p} L e b\right|_{\mathcal{B}([0, p))}\right)$. Moreover, we wish to quantify the rate of convergence in terms of A, p, m, and the law of B_{n}.

Finally, in the statistical mechanics, it is possible to describe the systems of smooth hard particles, by using the Boltzmann equation or the more general Master kinetic equation, described for example in the paper [9]. In order to study the evolution of these systems, we can consider the model of countable particles, such that their joint infinite-dimensional density can be determined by composing a particular random element with a (m, σ)-general function.

References

[1] L. Accardi, O. G. Smolyanov, and M. O. Smolyanova, Change of variable formulas for infinite-dimensional distributions, Mathematical notes 60 (1996), 212-215.
[2] C. Asci, Convergence in total variation of an affine random recursion in $[0, p)^{k}$ to a uniform random vector, Markov Processes and Related Fields 19 (2013), 125-140.
[3] C. Asci, Integration over an infinite-dimensional Banach space and probabilistic applications, International Journal of Analysis. doi: org/10.1155/2014/404186 (2014).
[4] C. Asci, Differentiation theory over infinite-dimensional Banach spaces, Journal of Mathematics. doi: org/10.1155/2016/2619087 (2016).
[5] R. Baker, Lebesgue measure" on \mathbf{R}^{∞}, Proc. Amer. Math. Soc. 113 (1991), 1023-1029.
[6] S. Lang, Analysis II, Addison-Wesley, Reading, Massachusetts, 1969.
[7] S. Lang, Linear algebra, Springer, New York, 1987.
[8] R. LÉANDRE, Lebesgue measure in infinite dimension as an infinite-dimensional distribution, Journal of Mathematical Sciences 159 (2009), 833-836.
[9] M. Tessarotto, C. Cremaschini, C. Asci, A. Soranzo, and G. Tironi, Global validity of the Master kinetic equation for hard-sphere systems, Eur. Phys. J. Plus. doi: org/10.1140/epjp/i2015-15169-2 130 (2015).
[10] N. Tsilevich, A. Vershic, and M. Yor, An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the Gamma process, Journal of Functional Analysis 185 (2001), 274-296.
[11] J. Weidmann, Linear operators in Hilbert spaces, Springer, New York, 1980.

Author's address:
Claudio Asci
Dipartimento di Matematica e Geoscienze
Università degli Studi di Trieste
Via Valerio 12/1
34127 Trieste, Italy
E-mail: casci@units.it

