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ABSTRACT. In this paper, we introduce some functions, called (m,o)-
general, that generalize the (m, o)-standard functions and are defined in
the infinite-dimensional Banach space Ey of the bounded real sequences
{Zn},er, for some subset I of N*. Moreover, we recall the main results
about the differentiation theory over Er, and we expose some properties
of the (m,o)-general functions. Finally, we study the linear (m,o)-
general functions, by introducing a theory that generalizes the standard
theory of the m X m matrices.
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1. Introduction

In this paper, we generalize the results of the articles [3] and [4], where, for
any subset I of N*, we define the Banach space E; C R’ of the bounded real
sequences {x,}, ., the o-algebra By given by the restriction to E of B (de-
fined as the product indexed by I of the same Borel o-algebra B on R), and a
class of functions over an open subset of E, with values on Ej, called (m,o)-
standard. The properties of these functions generalize the analogous ones of
the standard finite-dimensional diffeomorphisms; moreover, these functions are
introduced in order to provide a change of variables’ formula for the integra-
tion of the measurable real functions on (RI ,BU )). For any strictly positive
integer k, this integration is obtained by using an infinite-dimensional measure
)\%c’,;’)v’ over the measurable space (RI,B(I)), that in the case I = {1,...,k}
coincides with the k-dimensional Lebesgue measure on RF.

In the mathematical literature, some articles introduced infinite-dimen-
sional measures analogue of the Lebesgue one (see for example the paper of
Léandre [8], in the context of the noncommutative geometry, that one of Tsile-
vich et al. [10], which studies a family of o-finite measures on R™, and that
one of Baker [5], which defines a measure on RN that is not o-finite).
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In the paper [3], we define the linear (m, o)-standard functions. The motiva-
tion of this paper follows from the natural extension to the infinite-dimensional
case of the results of the article [2], where we estimate the rate of convergence
of some Markov chains in [0,p)* to a uniform random vector. In order to
consider the analogue random elements in [0, p)N*, it is necessary to overcome
some difficulties: for example, the lack of a change of variables formula for
the integration in the subsets of RN". A related problem is studied in the
paper of Accardi et al [1], where the authors describe the transformations of
generalized measures on locally convex spaces under smooth transformations of
these spaces. In the paper [4], we expose a differentiation theory for the func-
tions over an open subset of Er, and in particular we define the functions C!
and the diffeomorphisms; moreover, we remove the assumption of linearity for
the (m,o)-standard functions, and we present a change of variables’ formula
for the integration of the measurable real functions on (RI ,.BUY )); this change
of variables is defined by the (m,o)-standard diffeomorphisms, with further
properties. This result agrees with the analogous finite-dimensional result.

In this paper, we introduce a class of functions, called (m, o)-general, that
generalizes the set of the (m,o)-standard functions given in [4]. In Section 2,
we recall the main results about the differentiation theory over the infinite-
dimensional Banach space E;. Moreover, we expose some properties of the
(m, o)-general functions. In Section 3, we study the linear (m, o)-general func-
tions and we expose a theory that generalizes the standard theory of the m xm
matrices and the results about the linear (m, o)-standard functions, given in [3].
The main result is the definition of the determinant of a linear (m, o)-general
function, as the limit of a sequence of the determinants of some standard ma-
trices (Theorem 3.6 and Definition 3.7). Moreover, we study some properties
of this determinant, and we provide an example (Example 3.19). In Section 4,
we expose some ideas for further study in the probability theory.

2. Theory of the (m,o)-general functions

Let I # 0 be a set and let k& € N*; indicate by 7, by 7*) by 7(I), by B,
by B®) by BU) and by Leb, respectively, the euclidean topology on R, the
euclidean topology on R, the topology ®T, the Borel o-algebra on R, the
iel
Borel o-algebra on R”, the o-algebra ®B, and the Lebesgue measure on R.
iel
Moreover, for any set A C R, indicate by B(A) the o-algebra induced by B on A,
and by 7(A) the topology induced by 7 on A; analogously, for any set A C R/,
define the o-algebra BUY)(A) and the topology 7(I)(A). Finally, if S = HSi is
iel
a Cartesian product, for any (z;:7€ I) € S and for any §) # H C I, define
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zy = (x; 1€ H) € H‘Si7 and define the projection 7y gy on HSZ- as the
ieH icH
function 7y g : S — HSi given by 7y g (1) = zg.
ieH
Henceforth, we will suppose that I,.J are sets such that § # I,J C N*;
moreover, for any k € N*, we will indicate by I} the set of the first k elements
of I (with the natural order and with the convention I, = I if |I| < k);

furthermore, for any ¢ € I, set |i| = |1 N (0,4]|. Analogously, define Jj and |4,
for any kK € N* and for any j € J.

DEFINITION 2.1. For any set I # (), define the function |-||; : RT — [0, +o0]

by
lz||; = sup|z;|, Vo = (z;: i € I) € R,
el

and define the vector space
Er={zeR':|z|; < +oo}.

Moreover, indicate by By the o-algebra BY) (Ey), by 11 the topology 7 (Ey),
and by 7)., the topology induced on Ey by the the distance d : Ey X Ef —
[0,400) defined by d(z,y) = ||z —yll;, Yz,y € Er; furthermore, for any set
A C Ey, indicate by 7., (A) the topology induced by 7., on A. Finally,
for any o € Er and for any 6 > 0, indicate by B(xo,0) the set {x € Er :
Iz~ aoll, < 3}

REMARK 2.2: For any A C Ey, one has 70 (A) C 7)., (A); moreover, Ey is a
Banach space, with the norm ||||;.

Proof. The proof that (1) (A) c 7.1, (A4), VA C Ey, follows from the defini-

tions of 70 and 7|.||,; moreover, the proof that E; is a Banach space can be
found, for example, in [3] (Remark 2). O

The following concept generalizes the definition 6 in [3] (see also the theory
in the Lang’s book [7] and that in the Weidmann’s book [11]).

DEFINITION 2.3. Let A = (a;j) be a real matriz I x J (eventually infi-

i€l jed
nite); then, define the linear function A = (a;;) - E; — R, and write

. . i€l jed
x —> Ax, in the following manner:

(Az); = aijz;, Vo€ By, Viel, (1)
jed

on condition that, for any i € I, the sum in (1) converges to a real number. In
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particular, if |I| = |J|, indicate by Ir ; = (Eij) the real matriz defined

by

iel,jed

51,]:{ L if fil = 1]

0 otherwise

and call &j generalized Kronecker symbol. Moreover, indicate by AN) the
real matriz (aij)ieL,jeN7 for any L C I, for any N C J, and indicate by
A = (bji)jeJ,ieI : E; — RY the linear function defined by bj; = a;j, for any
j € J and for any i € I. Furthermore, if I = J and A = A, we say that A
s a symmetric function. Finally, if B = (bjk)jeJ,keK s a real matrix J X K,
define the I x K real matriz AB = ((AB);1.);cr vex 0¥

(AB);, = > aijbji, (2)

jeJ
on condition that, for any i € I and for any k € K, the sum in (2) converges
to a real number.

PROPOSITION 2.4. Let A = (a;;) be a real matriz I x J; then:

icl,jet
1. The linear function A = (aij);c; et By — R given by (1) is defined

if and only if, for anyi € I, Z la;j| < +o0.
jeJ

2. One has A(Ej) C Er if and only if A is continuous and if and only if

supz la;j| < +o00; moreover, || Al = supz lagj].

i€liey ieliey

3. If B = (bj’f)jeJkeK : Ex — Ej is a linear function, then the linear
function Ao B : Ex — R is defined by the real matriz AB.

Proof. The proofs of points 1 and 2 are analogous to the proof of Proposition 7
in [3]. Moreover, the proof of point 3 is analogous to that one true in the
particular case |I|,|J]|, | K| < +oo (see, e.g., the Lang’s book [7]). O

The following definitions and results (from Definition 2.5 to Proposition
2.19) can be found in [4] and generalize the differentiation theory in the finite
case (see, e.g., the Lang’s book [6]).

DEFINITION 2.5. Let U € 7),; @ function ¢ : U C Ey — Ey is called
differentiable in xo € U if there exists a linear and continuous function A :

E; — Ey defined by a real matriz A = (aij);c; ;e 7, and one has

hnl”@($o4-h)—'¢($0)—*Ah”1
h—0 1Al ,

—0. (3)
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If  is differentiable in xq for any xg € U, ¢ is called differentiable in U. The
function A is called differential of the function ¢ in xg, and it is indicated by
the symbol dy(xg).

REMARK 2.6: Let U € 7, and let ¢,¢) : U C E; — Ey be differentiable
functions in z¢ € U; then, for any «, 8 € R, the function ayp + [ is differen-
tiable in zg, and d(agp + Bv)(x0) = adp(xg) + Bd(xo).

REMARK 2.7: A linear and continuous function A = (a;;)
defined by

ierjes - Er— Er,
(Az), = Zaz’jzj, Vee By, Viel,
JjeJ
is differentiable and dp(z¢) = A, for any = € Ej.

REMARK 2.8: Let U € T, and let ¢ : U C Fy — Ej be a function dif-
ferentiable in xg € U; then, for any ¢ € I, the component ¢; : U — R
is differentiable in xg, and dp;(xg) is the matrix A; given by the i-th row of
A = dp(xg). Moreover, if |I| < +o00 and ¢; : U C E; — R is differentiable in
xg, for any i € I, then ¢ : U C E; — FEj is differentiable in z.

REMARK 2.9: Let U € T, and let ¢ : U C E; — Ej be a function differen-
tiable in ¢ € U; then, ¢ is continuous in zg.

DEFINITION 2.10. Let U € 7y, let v € Ey such that |[v]| ; = 1 and let a func-
tion ¢ : U C E; — RI; for any i € I, the function @; is called differentiable
in xo € U in the direction v if there exists the limit

lim wi(xo + tv) — %’(1‘0).
t—0 t

This limit is indicated by %‘ff (z0), and it is called derivative of p; in xg in the

direction v. If, for some j € J, one has v = e;, where (e;)r = d;i, for any k €

J, indicate %ﬁi (x0) by gfj (x0), and call it partial derivative of @; in xo, with

respect to x;. Moreover, if there exists the linear function defined by the matrix
To(wo) = ((Jplao))y) ¢ By — RY, where (Jy(wo)),; = 32(o), for
1) ierjeg J g

anyi € I, j € J, then J,(x0) is called Jacobian matriz of the function ¢ in .

REMARK 2.11: Let U € 7|, and suppose that a function ¢ : U C E; — Ej
is differentiable in 2 € U; then, for any v € E; such that ||v[|; = 1 and for any
i € I, the function ¢; : U C E; — R is differentiable in z( in the direction v,

and one has 9
af; (z0) = dyi(zo)v.
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COROLLARY 2.12. Let U € T, and let ¢ : U C Fy — Er be a function

differentiable in xo € U; then, there exists the function J,(zo) : E; — R,
and it is continuous; moreover, for any h € Ey, one has dp(zo)(h) = J,(xo)h.

THEOREM 2.13. Let U € 7 ,, let ¢ : U C Ey — Ey be a function differen-
tiable in xo € U, let V € 7)., such that V' D o(U), and lett: V C Ef — Eg
a function differentiable in yo = p(xo). Then, the function Yoy is differentiable
in xg, and one has d(1p o p)(xg) = d(yo) o dp(xq).

DEFINITION 2.14. Let U € 7y, leti,j € J and let ¢ : U C E; — R be a

function differentiable in xy € U with respect to x;, such that the function g—i

is differentiable in xo with respect to x;. Indicate % (%) (x0) by %(Jco)
J i 9%

and call it second partial derivative of ¢ in xo with respect to x; and x;. If
i = j, it is indicated by g%f(xo), Analogously, for any k € N* and for any

J1y--y Jr € J, define %(mo) and call it k-th partial derivative of ¢ in xg
Tk J1

with respect to xj,,...z;, .

DEFINITION 2.15. Let U € 7|, and let k € N*; a function ¢ : U C E; — Ej

is called C* in xy € U if, in a neighbourhood V & TH.”J(U) of xg, for any
1€ k[ and for any ji,....,jr € J, there exists the function defined by v —
for any xg € U, ¢ is C* in xq. Moreover, ¢ is called strongly C* in xy € U
if, in a neighbourhood V &€ T”.”J(U) of xg, there exists the function defined by
x —> Jy(z), this function is continuous in xg, and one has ||J,(zo)| < +o00.

Finally, o is called strongly C* in U if, for any xo € U, ¢ is strongly C in .

x), and this function is continuous in xo; ¢ is called C* in U i
7 ) <P )

DEFINITION 2.16. Let U € 7, and let V € 7, ; a function p : U C E; —

V' C Ej is called diffeomorphism if ¢ is bijective and C* in U, and the function
o ' VCE —UCE;isC'inV.

REMARK 2.17: Let U € T, and let ¢ : U C EF;y — FE; be a function C'in
xo € U, where |I| < +00, |J| < +0o0, then ¢ is strongly C! in .

THEOREM 2.18. Let U € 11, » let ¢ : U C E; — R be a function C* in
xg € U, let iy,....1x € J, and let j1,...,jk € J be a permutation of iy, ..., .
Then, one has

o

81‘,‘1 -~-8-Tik

k
(z0) = 87@(%).

aa:jl 8x]k
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PROPOSITION 2.19. Let U = HA]» NEj €).,, where A; € 7, for any

jed
j€J, and let ¢ : U C E; — Ep be a function C' in xo € U, such that
goi(x):z%j(xj),v:v:(:cj:jGJ)GU,ViGL (4)

jeJ

where @;; + Aj — R, for any i € I and for any j € J; moreover, suppose

that, in a neighbourhood V € T“.HJ(U) of xg, there exists the function defined

by v — J,(x) and one has sup || J,(x)|| < +oo. Then, ¢ is continuous in xo;
zeV

in particular, if o is strongly C* in xo and |I| < +o0, ¢ is differentiable in zg.

DEFINITION 2.20. Let m € N* and let U = | U™ x H Aj|NE; € T, »
JEINTm

where U™ ¢ (M) Aj e, for any j € J\Jm. A function ¢ : U C E; — Ej

is called m-general if, for any i € I and for any j € J\Jn,, there exist some

functions tpgl’m) U™ — R and ¢;; : Aj — R such that

i) = o (@s,) + Y wiley), Yo eU.
GEI\Tm

Moreover, for any O # L C I and for any J,, C N C J, indicate by "N the
function @BN) 7y N (U) — RE defined by
P @) = oM @)+ Y euleg), Yan € min(U), Vi€ L (5)
JEN\Im

Furthermore, for any © # L C I and for any 0 # N C J\Jnm, indicate by
O N the function BNy N (U) — RE given by

o (an) =3 pii(a;), Yoy € man(U), Vi€ L. (6)
JEN

In particular, suppose that m = 1; then, let j € J such that {j} = Ji
and indicate UV by A; and ‘PEI’U by ij, for any ¢ € I; moreover, for any
0 4L C I and for any O # N C J, indicate by o=N) the function o(=N)
7N (U) — RE defined by formula (6).

Furthermore, for anyl,n € N*, indicate ¢
and @I by o).

(I;,N) L,J, (L,n)
’

by M) ) by o
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DEFINITION 2.21. Let m € N*, let U = Um) x H A; | NEy € Tl »
FEINTm

where UM ¢ 7(m), A; e, for any j € J\Jm, and let o : I\I,, — J\Jp, be

an increasing function; a function ¢ : U C E; — E; m-general and such that

|J| = |I] is called (m,o)-general if:

1. Vi€ I\I,, Vj€ J\(JnU{c(i)}), YVt € Aj, one has p;;(t) = 0; more-
over
SD(I\IWWI\Jm) (WJ,J\J,,L(U)) c EI\I

m*®

2. VieI\L,, Ve € U, there exists J,,(z) : E; — R; moreover, Yz, €
U(m), one has Z HJ(pEI,m) (x]m)H < 4o00.
i€IN\I
8. Vi € I\, the function ¢; i) @ Asiiy — R is constant or injective;

moreover, ¥ Zo(\1,,) € H Aj, one has sup
jea(I\In) I

Pi o (i) (Ia(i))’ < +0o0

and inf

inf >0, where L, = {i € I\I,,, : ¢; o3y is injective}.
1€y,

@i oty (To(i)

4. If, for some h € N, h > m, one has |o(i)| = |i|, Vi € I\I}, then,
VZo(\1,,) € H A;, there exists H gog,g(i) (z,(1)) € R".
j€a(I\In) i€Z,
Moreover, set

A=A@)={heN, h>m:|o()| = |i|,Vie I\I}.

If the sequence {Jw(z,m) (me)} \ converges uniformly on U™ to the
i i€\l

matriz (0 ... 0) and there exists a € R such that, for any € > 0, there exists
io € N, ip > m, such that, for any i € T, N (I\IL;,) and for any t € Ay, one
has gogﬁ(i) (t) — a’ < g, then @ is called strongly (m,o)-general.

Furthermore, for any I, C L C I and for any J,, C N C J, define the

function Q(L’N) :U Cc E; — RI in the following manner:
L "M (ay) Vi€l Yo eU
i )(x) =19 ¢i(z) Vi€ I\I,, Ve €U

©io(i)(To@)) VieI\L, Yz eU

Finally, for any l,n € N, I,n > m, indicate @UhN) by @U’N), E(L’J") by

g, el by ), and ) by B
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DEFINITION 2.22. A function ¢ : U C E;j — Er (m,o)-general is called
(m, o)-standard (or (m,o) of the first type) if, for any i € I\I,, and for any

xy € U™, one has ¢

m

(I,m)

%

(x1,) =0. Moreover, a function ¢ : U C Ej —

E; (m,o)-standard and strongly (m,o)-general is called strongly (m,o)-stand-
ard (see also Definition 28 in [4]).

REMARK 2.23: Let ¢ : U C E; — Ej be a m-general function; then:

1.

Let ) # L C I and let J,, C N C J such that =N (1, 5(U)) C Ep;
then, for any n € N, n > m, the function ¢&N) : myn(U) — Ep is
n-general.

Let  # L C I and let ) # N C J\J,, such that "™ (7, ny(U)) C Ep;
then, for any n € N*, the function &N (7 N (U)) — E is n-general.

Ifm=1,let 0 # L CIandlet ) # N C J such that p=N) (77 5(U)) C

Ep; then, for any n € N*, the function ") : 7, n(U) — Ff is
n-general.
Proof. The proof follows from the definition of o(&N), O

PROPOSITION 2.24. Let o : U C Ey — Ep be a (m, 0)-general function; then:

1.

2.

o is bijective if and only if |o(3)| = |i|, Vi € I\I .

H Aj C Ejy, if and only if there exist a € R* and mg € N,
FEI\Im
mg > m, such that, for any j € J\Jy,,, one has A; C (—a,a).

Let I, C L C I and let J,, C N C J; then, one has &™) (1, 5(U)) C
Er and E(L’N)(U) C Ey; moreover, the function E(L’N) :UCEj— Ey
is (m, o)-general.

. For any x € U, there exists the function J,a\r,m.0(v) 1 E; — Eng,,,

and it is continuous.

If, for any j € J\Jy, and for any t € A;, one has > }4,0’1-’]- (t)’ < 400,
i€\I
then, for any n € N, n > m, ¢ is (n,&)-general, where the increasing

function £ : I\I,, — J\J,, is defined by:

h=1 o0 ifo(i) € N .
£(i) = { min (J\Jn) if o (i) ¢ J\Jn ,VieI\I,. (7)
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6. Suppose that o is injective; moreover, for any I, C L C I such that
|L| < +00 and for any J, C N C J, let m = |max L| € N\{0,...m — 1};

then, for anyn € N, n > m, the function =N is (n, 0’|I\1n> -standard.
Proof.
1. The proof follows from the fact that o is increasing.
2. The proof follows from the definition of Ej\ ;..

3. Vo € myn(U), let y € U such that yy = z; then, Vi € L\, we have
(L,m) = 0:(y) — ;s s ‘ d
0" (2,) = 0i(y) = Piol) (o)), and so
L,
sup ‘<P£ ™ (fEJm)‘ < sup i)+ sup |90 (Yon))| < 400
i€L\ I, €L\, 1€L\ Ly,
then, we obtain

(L,N) (L,m)

Sup - 1@; (l’)‘ < sup |y (,,,)|+ sup |<pi,a(i) (ya(i))| < +00,
i€L\ I, i€L\I i€L\ I,
from which (=N (77 x(U)) C Er. Moreover, Vz € U, Vi € I\I,,, we
have LN "

@(‘ ’ )(2)‘ < %( ’m)(ZJm)‘ + |@i06) (20)) |
and so sup @(.L’N)(z)‘ < +o0; then, &N)(U) ¢ E;. Finally, from
i€l\Im

the definition of Z*™) the function ™) : U ¢ E; — E; is (m, 0)-
general.

4. Vx e U, Vie I\I,, we have

1o @l = |t (@1, +

)

(p;,a(i) (xo(i))

furthermore, since Y HJ¢<1,M) (me)H < 400, we have
i€\l :

sup HJ (1,m) (me)H < +o0,
i€\Ly, I 7

and so

sup ||, (2)||
i€INIm

< sup HJwgnw(me)H + sup Wﬁ,g(i) (%(i))‘ < +0o0;

i€\, i€\I,

then, from Proposition 2.4, there exists the function J, 1. ():E; —
Enr,,, and it is continuous.
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5. ¥neN,n>m,and Vz;, € my s, (U), we have

Z HJ@EI,H) (Q;‘Jn)

i€INI,

= Z H'Jcpgl‘m)(x‘]m)‘—"_ Z Z ’gpg,j (x])| < 400;

i€I\I, JE€EIn\Tm \FE€I\I,

then, by Definition 2.21 and by definition of £, ¢ is (n, £)-general.

6. From points 3 and 5 and since o is injective, Vn € N, n > m, ¢(L’N)

is (n, 0|I\In>—general; moreover, since o is increasing, Vi € I\, and
(In)

Vay, €my, (U), we have ¢; "/ (x,,) = 0; then, we have the statement.

O

REMARK 2.25: Let ¢ : U C Ey — Ep be a (m,0)-general function such that
Ulm = H Aj, where A; € 7, for any j € J,,, and
J€JIm
oM@, = Y i), Y, € U™, Viel,

jeJ’VrL

where ¢;; : A; — R, for any ¢ € I and for any j € J,,; moreover, suppose
that, for any j € J,,, for any ¢t € A;, one has sup |y, ; (t)] < +oo, and, for
i€\ I
any j € J\Jp,, for any t € A;, one has ) ’npg,j (t)‘ < +oo; furthermore, let
i€NI,,
) #LCIandlet®# N C Jsuch that [I\L| = |J\N| < +oc. Then, for any
n € N, n > m, the function ") : 7; x(U) — R is (n, p)-general, where
the function p : L\L,, — N\N,, is defined by

y={ ol if o(i) € N\N, .
Pli) = { min{j >o(i):j€ N\Nn} if (i) ¢ N\N,, ’ Vie L\L,.

Proof. We have |L| = |N|; moreover, Yn € N, n > m, Vi € L\L,, and Vz €
myn(U), let y € U such that yn = z; we have

loi (@) < Y0 i @)+ |eio) o)

FENNIm
= ||<P(x)HL\Ln < Z sup i j (x5)] + sup |<Pz‘,a(z‘) (ya(i))| < +00,
i€I\I, i€INI,

JENNIm
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from which ¢ (m;n(U)) C Er. Analogously, Vn € N, n > m, and Vay, €
s, (U), we have

= Z HJ@EL,N"QJ"L)(.TN,mﬁjm) + Z Z "/’;,j (xj)‘ < 4003

1€L\L, JENn\Jm \i€EL\Ln,

> [ pman)

i€L\L,

then, by definition of p, &) is (n, p)-general. O

PROPOSITION 2.26. Let o : U C Ej — E; be a (m,o)-general function such
that there exists mg € N, mo > m, such that, for any j € J\Jm,, A4, is
bounded; moreover, suppose that o (I\I;,) N (J\Jm,) # O and, for any i € I\I,,
@EI’m) is bounded; then, there exists mi1 € N, my > m, such that, for any
i € I\L,, @; is bounded. In particular, if |I| = +o0, ¢ is not surjective.

Proof. Let jo = min (o (I\I;,) N (J\Jim,)), let ig = min (7 (jo)) € I, let i =

lio] — 1 and let H = {i € I\I : ¢; »() is not bounded }; we have |H| < +o0;

indeed, Vi € H, the set A, (;) is bounded, and so there exists ¢; € A,(;) such that

<p;70_(i)(ti) > |i]; then, Ya,(n\1,,) € H A; such that (xa(i) (1€ ’H) =
j€o(I\Ln)

(t; - i € H), by supposing by contradiction |H| = +o0o0, we would obtain

sup
S I\Im

o) (T/a(i))‘ > sup |95 ;) (%(i))‘ = sup |g; 5 (ti)| = +o0

ieH ieH
(a contradiction). Then, there exists my € N, m; > m, such that, Vi € I\I,,,,
©i,0(i) is bounded, and so ¢; is bounded. In particular, Vi € I\I,,,, ¢; is not

surjective; then, if |I| = 400, ¢ is not surjective. O

PROPOSITION 2.27. Let ¢ : U C Ey — E be a (m,o)-general function such
that @;j(x;) =0, for any i € L, for any j € J\J,, and for any x; € A;; then:

1. If the functions @; 5@y, for any i € I\I,,, and o™ are injective, and
o is surjective, then p is injective.

2. If the functions @; 4, for any i € I\I,,, and oM™ are surjective, and
o is injective, then ¢ is surjective.

Proof.
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1. Let 2, y € U be such that p(z) = ¢(y); we have (™™ (z; ) =

(@), = (), = ™™ (ys,); then, if (™™ is injective, we
have x;, =y, ; moreover, Vi € I\I,:
w({z}’m) (me) + Pi,o(i) (xo(i))
= ¢i(2) = ¢i(y) = U™ (1) + i o) Yo(i))s
from which @; ;i) (To(i)) = ©i0() Yo()); then, if @; . is injective, we

have x,(;) = Yo(;); finally, if o is surjective, we obtain zj\ ;. = Yy J,.»
and so xz = y; then, ¢ is injective.
. Let y € Er; moreover, if the functions ¢; 5(;y, for any i € I\I,,, and

©mm) are surjective, and o is injective, define z € U™ x H Ajin

FENTm
the following manner:
~1
., = (w(’"’m)) (yr,) € U™,

v =0, ), (5) €A Vi€ o (I\y),

xzj=0,Yje JJ\o(I\In),
where

Zi =Yi — <,01(-I’m) (g,,),Vi€ I\Iny. (8)

Let g = (z0,; : j € J) € U; Vi € I\I,,,, we have

‘xo(i)| = %T;(i) (2i) = %0,0(i) + T0,0()

< |Pioiy (%) = Ciaiiy (Piot (IO,a(i)))‘ + [Zoom|; (9)

moreover, the function %‘_;(i) :R — A, ;) is derivable, and

/ 1
(%im) (t)=———5——€R" Vie\I,,VteR;  (10)

¥io(i) (@;;(i) (t)
then, the Lagrange theorem implies that, for some

& € (min{zi, 95 0.() (T0,0(:)) } max{zi, 0;,0 (1) (To,0(i) })
we have

@;;(i)(zi) - ‘P;;(i)(<ﬂi,a(i)(x0,o(i)))'

(90;,;(1'))/ (&)

2 = Pio(i) (To.0()| 5
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thus, from (9) and (10), we obtain

|Zi — Pi,o(4) (xO,a(i))|
@;,a(i) (%—,clr(i) (&) ’

|Zo)| < + |Z0.0()| - (11)

Furthermore, from point 3 of Proposition 2.24, we have go(I’m)(U(m)) C
E;, and so, from (8), we have

e ()

HZHI\I,,L < ”yHI\Im + sup < o0, (12)
i€\

and analogously

1, .
i) (Z0,0() = i (@0) — "™ ((w0) ;. )+ Vi € I\

= sup |¢i,a(i)($0,a(i))’
i€I\Ip,

A ((@0),,)] < o0, (13)

< le(@o)ling, + sup
[ISTAN

m

Moreover, we have inf
i€Z,

<p;7a(i)(<p;;(i) (&)| > 0; furthermore, since, Vi €
INIm, @i,0(:) is surjective, then ¢; ,(;y is injective too, and so Z, = I'\I,;,;

1
then, there exists ¢ € R' such that sup < ¢, and
i€\l

so formulas (11), (12) and (13) imply

RN N )]

sup |z, < e <|Z||1\1m + sup @i o0 (xO,a(i))‘> + [|zol| ; < +oc;
i€I\Ip, i€I\I,

then, we have x € E, from which x € U. Finally, it is easy to prove that
p(z) =y, and so ¢ is surjective.

O

PROPOSITION 2.28. Let m € N*, let ) # L C I, let J,, C N C J and let
¢ :U C Ey — Ep be a function m-general and C' in zg = (xo;:5€J)eU;
then:

1. If N (15 n(U)) C By, then the function oN) : 7wy n(U) — Ef is
Clin (.’Eo’j 1 € N)

2. If ¢ is (m, 0)-general and I, C L, then the function 3N . U ¢ E; —
E; is Ct in xg.
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3. If ¢ is (m,0)-general, I, C L and |N| < 400, then there exists the
function J¢<L,N>(x0) : By — Ey, and it is continuous.

4. If @ is strongly (m,o)-general, I, C L and |[N| < +oo, then gN) is
differentiable in xg.

5. If ¢ is strongly Ct in x¢ and strongly (m,o)-general, then ¢ is differen-
tiable in xg.

Proof.

1. By assumption, there exists a neighbourhood V = HV] € 7., (U) of
jeJ

xg such that, Vi € I, Vj € J, there exists the function x — %T@ on
et}
V, and this function is continuous in xg; then, Vx € H Vi, let T = (7, :

JjEN
j € J) € Vsuch that (Z; : j € N) = a; since ¢ is a m-general function,
Vie L,Vj € N, we have

0o (@) 0pi(T)

65(}]‘ 8xj ’

from which ("N is C* in (20 : j € N).

2. Let Ve, (U) be the neighbourhood of z( defined in the proof of point
1; if ¢ is (m, o)-general and I,, C L, Vx € V, we have

o7 "M (@) _ { 2et®) if (i,5) ¢ (I % (J\N)) U (I\L) X Jom)
O0x; 0 if (4,5) € (Im X (J\N)) U ((I\L) x J,,)

)

and so M) is C1 in .

3. If ¢ is C! in x¢ and (m,o)-general, I,, C L and |N| < +oo, then,

from point 2, Vi € I,,,, the function @(L’N) :U C E;j — Ris C!

in o and depends only on a finite number of variables; then, we have

‘Ja(_L,N) (:170)H < +00; moreover, Vi € I\I,,, we have

|0 @) | < 1ol
then, from point 4 of Proposition 2.24:

sup [ L (@o)|| € sup (1, (o)l < +oo;
i€\, ’ i€I\Im

then, from Proposition 2.4, there exists the function Jw v (7o) : By —
Ey, and it is continuous.
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4. If ¢ is strongly (m,o)-general, there exists a € R such that, Ve > 0,

2
1

there exists ¢ € N, ¢ > m, such that

H‘Jga(.l'm) (z1,) ‘ < %, Vie I\I?, Vay € U(m);

iy (1) = a‘ < %7 VieT,NI\E, Vi€ Ay, (14)
Moreover, if I,,, C L and |N| < 400, Vi € I, the function @EL’N) U C
E; — R is C' in x¢ and depends only on a finite number of variables;

then, @EL’N) is differentiable in zy, and so there exists a neighbourhood

D= HDj S T”.”J(U) of xg, where Dj; is an open interval, Vj € J, such
jeJ
that, Vo = (z; : j € J) € D\{zo}, we have

¢§L7N)(x) _ @ELN)(Q;O) — JE(L,N) (xO)(x - 'TO)
. ‘ <e.  (15)
iel; |z — ol

Observe that, Vi € (I\E)\L, Vy=(y; : j € J) € U, we have 2 LN () =
©i.0()(Yo(i)); MOTEOVET, ©; 5(;) is derivable in A, ;) and so, from the La-
grange theorem, Vo € D\{zo}, there exists 0; € (min{zg (), To()}

max{Zo (i), Zo(;) }) such that
Pio(i) (To(i)) = Pioti) (To.06) = Phow) 03) (To() = To.ow)) »

from which

AP () = BN (@) = T (w0) (& — o)

[ — ol ;

Pio(i) (To) = Pio) (T0,0)) = Ph (i) (Z0,00)) (%@)—ﬂ?o,a(i))(

[l = ol ;

@ oty 0) = @ o0i) (xo,au))’ |Zo (i) = Zo,0()|
|z — oll ;

. e
Cio() (03) — a’ + (P00 (Z0,06) — a‘) 17, (i) < > (16)

<

Conversely, Vi € (IN\E)NL,Vy = (y; : j € J) € U, we have EEL’N) (y) =
i (y); moreover, from point 3 of Proposition 2.24 and from point 1,
wgl’m) is C' in (x0), and so gaz(-l’m) is C' in a neighbourhood M =

H Mj € 7, (U™ of (z0), such that M; is an open interval,
J€JIm
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Vj € Jm, and M C H Dj; then, from the Taylor theorem, Va €

JeJTTl

M x H D; | \{zo}, there exists 7, € (M\{(x0),, }) such that
FE€INTm

o (@) = o™ (@0)a,) = Ty (€5,) (@0, = (@0)1,,).

2

and so

2N @) -2 (w0) = S (w0) (@ — a0)

[ = ol ;
|0i(2) = pi@0) = Jo, (x0) (x — o)
[ = ol ,

[ ) = )~ (@00, 0~ (0003,

- [l = ol ;

io(i) (Tai)) = i) (T0,0() =% o (i) (To.0) (To(i) = T0,001)) ’

[l —=oll

+

HJWEI,M (&) = ((HJO)JW)H (@, — (x0)1)l 5,

Hx—l‘OHJ

<

@ oi) (03 = P, oty (B0.0) | |70 — 2000
|z — zoll,;

@g,a(i) (0:) —@;,a(i) (moya(i)) ‘

< H S (€1,) = am ((20) 1) ‘ +
Ty ((@0),)|

@;,a(i) (ﬂfo,o(i)) - GD 1z, (i) <e. (17)

<[ 0m €00]) +

+ ( Ci (i) (03) — a‘ +

Then, from (15), (16) and (17), Vo € | M x H D; | \{zo}, we have
FE€EINTm

[7" M (@) = 75N (@) — S (o) (@ — z0)

<¢g; (18)
[l = woll;

thus, a&N) is differentiable in z.

5. If ¢ is strongly C'! in ¢ and (m, o)-general, the function 1) = ¢ — g™
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U C E; — Ej given by

Z wij(z;) Vi€ lL,, Yo eU
Vi(z) = jeNIm (19)
0 Vie N, Vo eU

is strongly C! in zg, and so it is differentiable in zo from Proposition
2.19, since |I,,| < +o00; then, if ¢ is strongly (m, o)-general, from point 4
'™ is differentiable in z¢, and so this is true for ¢ = 1) + @™ too,
from Remark 2.6.

O

PROPOSITION 2.29. Let ¢ : U C Ey — E; be a function C' and m-general;
then, ¢ : (U,BY)(U)) — (RI,B(I)) is measurable.

Proof. From point 1 of Proposition 2.28, Vi € I and Vn € N, n > m, the func-
tion b 2 s ; (U) — R is CY; thus, VC € 7, we have ((p({i}’"))71 (@) e
7y 5. (U)) € B™ (.4, (U)); then, since o(r) = B, YO € B, we obtain
((,0({1'}’"))71 (C) € B™(mz.,(U)). Moreover, Vi € I, consider the function
gt . U — R defined by

U™ (z) = U (2 ) YV e U;

VC € B, we have

) -1 _ —1
(@({z},n)) (C) = (w({l}yn)> (C) x WJ,J\J,L(U) c B(J)(U),
B

n—-4oo

and so g s (B(J)(U)7 )—measurable; then, since lim @g{Hhn) = ¢
the function ¢; is (B)(U), B)-measurable too. Furthermore, let

Z(I):{B:HBi:BiEB,ViEI};

iel

VB = [[B; € £(I), we have
i€l

P 1(B) =) ()" (Bi) € BV ().

icl

Finally, since o (£(I)) = BY), VB € B, we obtain ¢~ (B) € BY)(U). O
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3. Linear (m,o)-general functions

DEFINITION 3.1. Let A = (asj);cq je; + E5 — Er be a linear (m, 0)-general
function; Vi € I\Ipy,, set Ay = Ai(A) = a; 5(i)-

REMARK 3.2: For any m € N*, a linear function A = (aij)iel jer E; — Er
is m-general; moreover, if |J| = |I| and o : I\I;, — J\J;, is an increasing
function, A is (m, o)-general if and only if:

1. Vie I\I,,,Vj e J\(JnU{o(i)}), one has a;; = 0.

2.Vj € Jn, Z la;j| < +o00; moreover, one has sup |)\;| < 400 and
i€IN\Im €N
$€1\In: X #0
3. If A # (), there exists H A € R
P€I\Im A #0

Furthermore, A is strongly (m,o)-general if and only if A is (m, o)-general
and there exists a € R such that the sequence {)\i}iel\lm:/\#o converges to a.

Finally, A is (m, o)-standard if and only if A is (m, o)-general and a;; = 0,
for any i € I\I,,, for any j € J,,.

COROLLARY 3.3. Let A = (aij)iteeJ : E; — Eg be a linear function; then,
A:(E;,B;) — (RI,B(D) is measurable.
Proof. The statement follows from Remark 3.2 and Proposition 2.29. O

PROPOSITION 3.4. Let A = (a;;)
function. Then:

icrjes P Bu — Er be a linear (m,o)-general

1. A is continuous.

2. Let C = {h eEN,h>m: 0|I\Ih 18 mjective}; if C # 0, by setting m =

minC, let iy € I such that |iz| = m and let

= _ { min{m, o (im)[} - of m>m (20)

m ifm=m
then, for any n € N, n > 7%, the linear function *A : E; — R7 is
(n,T)-general, where T : J\J, — I\, is the increasing function defined
by

7(j)=min{ o7 (k):k>j, ko (I\l,) },Vje J\J,. (21)
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Proof.

1. Since A(Ej) C Ej, the statement follows from Proposition 2.4.
2. We have

sup ‘
up)
= sup { sup Z \a”| sup Z laijl, Sup Z |a”} (22)
JEJ

maiel vaI m el

Moreover, from point 2 of Remark 3.2, we have sup Z la;;] < 4o0;

JE€Im i€l
furthermore, by definition of m and 77:1, Vj € J=\Jm, we have Z lai;| =
iel

Z la;j| < +o0; finally, observe that

’iEIm+1
sup Z la;;] < Z sup |a”|
J€INIZ T icl \JE
= Z sup |ai;| | + Z sup |ai;|
iel= \JE\I5 ient= \J€I\E

< Z ( sup |aij|>+ sup [Ail. (23)

el \Ue\J= i€I\Im
m

From Proposition 2.4, Vi € Iz, we have sup |a;| < > lag| <

JEINI= jENI=
+00; moreover, we have sup |\;| < 4o00; then, from (23), we obtain
i€I\Im,
sup Z la;j| < 400, from which supz ’(tA)jZ-
]EJ\JZ icl ]EJ

(22), and so 'A(Er) C E; from Proposmon 2.4. Finally, from Remark
3.2, Vn € N, n > m, the function *A : By — E is (n, 7)-general, where
7 : J\J, — I\, is the increasing function defined by

7(j)=min{ o7 (k) :k>j, keo(I\l,) },Vje€ J\Jn.

Henceforth, we will suppose that |I| = +o0
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DEFINITION 3.5. Let A = (aij);c; ey + £5 — Er be a linear (m, 0)-general

function; indicate by N(A) € {0,1,...,m} the number of zero columns of the
matriz AUNm:Im),

THEOREM 3.6. Let A = (aij);cr jc s : By — Er be alinear (m, 0)-general func-

tion; then, the sequence {det Alnm) }n>m converges to a real number. Moreover,
if A0, by setting ™ = min A, we have

ninioo det A" = Z H Ay Z ap.; <COfA(\p\,|p|))

pel\Imw \qe\I}| ) i€Jm Py
+det AL TT A |- (29)
g€\ I

Conversely, if A= 0, we have lim det A" = 0.
n—-+oo

Proof. V1 € Z, set D; = Di(A) ={heN, h>m:|o(i)| =|i|+ 1, Vi € I\I}};

moreover, if D; # 0, set m; = min Dy; furthermore, set D = D(A) = (JD;. If
l€Z

there exists [ € N such that D; # (), we will prove the statement by recursion

on N(A) = k € {0,1,...,m}. Suppose that N(A) = 0 and observe that, if
A # 0, we have my = m, since Dy = A; then, Vn € N, n > 7, we have

det A | T A if1=0
QEIn\IW

det A" =
if | € N*
from which
i dot A — J det Amm T A eRif1=0

n—>+4o00 g€\ I

0 if ] € N*

)

then, since we have a,; = 0, Vp € I\I, Vj € J,,, the statement is true.
Suppose that the statement is true for N(A) = k, where 0 < k < m — 1, and
suppose that N(A) = k+1; Vn € N, n > my, let i, € I such that |i,| = n; we
have

det AWM = ZainJ (cofA("’")> ; (25)

Jedn nsJ

moreover, let {j1,..., jk41} C Jm such that a;, ; =0, V3 € I\ {j1, .-, Je41}-



22 CLAUDIO ASCI

If I =0, from (25), we have

k+1
det AT =3 a;, 5, (cof A™M) g, det ACTED;
h=1 InsJh
then, by induction on n, we obtain
det A = g, + det AT H Ag |,V >m, (26)
q€L,\ I
where
k+1
ap, = Z H Ag Zap’jh (cofA(|p|’|p|)) . (27)
PEL NI \a€L NI, ) h=1 pon
Moreover, Vh =1,....k + 1, Vp € I\ I, we have
j —1,|p|—1
(cofA(|p|’|p|)>pjh = ‘det A(Ilp‘—l’l‘m\{“})‘ = ‘det BJ(LP,L i )‘, (28)

where Bj, , : By — Ej is the linear function obtained by exchanging the
|7n]-th column of A for the |p|-th column of A; furthermore

(Ip|=1,|p|=1)
Z Gi.p (COfth,p >i,jh

1€1y,

= Z |ai pl

i€l

(Ipl=1,lpl=1)| _
‘det th,A,P ‘ -

det (A(I\{z'},il\{jh,}))(‘p‘_&‘p‘_m . (29)

Observe that, Vi € I,,, AU\ IR Engny — Enyiy is alinear (m—1,
general function such that Dy (AUMIHMID) £ ¢ N (ADERAGRD) =
then, from the recursive assumption, there exists

o)-
k;

(Ip|=2,|p|-2)

lim  det (AU\{i},J\{jh})) eR,
|p|—>+o00
and so
, . (Ip|=2,|p|-2)
lim a;p| |det (A(I\{Z}J\{Jh})) COVh =1,k
|P|*>+OO4Z | 710|

€L,

consequently, from (28) and (29), there exists b € R™ such that

Sup{ (cofalotis)

che {1,...,k+1}7p€I\Im} <b. (30)

Pyin
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Moreover, since H A¢ € R, we have H Xq =c € RT, where

qEIN\I 270 q€I\In
1 ifA, =0
N = Mlq' if0<|A\]<1 |
[Agl if [Ag] 21
and so
[[%|<eVHC N\ (31)
qeEH

Observe that

lim det A | T A | =detAT™ [ TT A ) €R; (32)

n—-+oo
g€l \Imw a€I\ I
moreover, set
k41
a= 3 | TT A | Yo (coratehih) (33)
pENIm \q€I\I|y h=1 Djn
then, Vn > m, we have
k41
a—a, = Z H Ag Zamh (COfA(\p\,\p\)) ‘
peI\I, \qe€I\I, h=1 D.in
k+1
+ Z H )\q H )\’r -1 Za’p’jh, (COfA(‘p"lpl)) . (34)
pEl \Imm \g€In\Ip| rel\I, el D.jn

If there exists ng € N, ng > m, such that A, # 0 Vq € I\I,,, we have
H A; € R*; then Ve € RT, there exists ny € N, ny > ng, such that,
q€I\Iy,

Vn € N, n > ny, we have H Ar | — 1| < g; thus, from formulas (34),

rel\I,
(30) and (31), we obtain

k+1 k+1

la — a,| < be Z Z|ap7jh\+bcs Z Z|ap7jh|,Vn>n1. (35)

pEI\I,h=1 pEIn\Imwh=1
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k+1
Finally, there exists d € R* such that Z Z lap.j,| < d, and so there exists
pEI\Fh=1
k1
ng € N, ny > nq, such that, Vn € N, n > ny, we have Z Z lap .| < €
peI\I,h=1
then, from formula (35), we obtain
|a — an| < bee + bede =be (1 +d)e, Vn > ng.
Then, from (26) and (32), we have
lim det A
n—-4oo
kt1
- Z H Ag Zam’h, (COfA(‘p"lpl)) 4 det AT H Ag
peNm \gel\), h=1 Podn g€\ L
= Z H Ag Z ap,j (cofA(‘p"lpl)) + det AT H Aq | €R.
PN \ g€\l J€Im P q€N\Im

Moreover, suppose that o is bijective and there exists a subsequence {Ag,}ren
C { A} gen ppn,—o; then, from formulas (27) and (33), V¢ € N, Vn > |q], we
obtain

k+1
a—ap = Z H Aq Zap’jh (cofA(lple)) .
peINL, \q€I\I}y h=1 Piin
k+1
- I ) > (COfA('p"‘p‘)> A
pEl \Imr \q€In\Ip h=1 Piin
k+1
=- ¥ I x> . (COfAupupD) L (36)
PEL NI gy -1 \aEL\I|p| h=1 P.jn
Thus, from formulas (30), (31) and (36):
k+1
la — an| < be Z Z|ap7jh‘,vt€N,VnZ g - (37)

PEIn g |—1h=1

k1
Finally, Ve € R*, there exists ¢ € N such that Z Z lap. i,
p€In\I|q,|—1h=1

< e,

V'n > |gl; then, from (37), we obtain

la — an| <bce, Vn > |q.
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Thus, from (26) and (32), we have formula (24).
Moreover, if | € N*, from (25) we have

k+1
det AT = 3y, 4, (cof A™M) - Vn (38)
h=1

insJh

moreover, Vh =1,...,k + 1, we have

(COfA(n,n)> _ ‘det A(In,l,ln\{jh})‘ _

in,Jh

det (AU,J\{jh}))("‘l’"‘”‘ _

(39)
Observe that AU\URY © Ej oy — Ey is a linear (m, 7)-general function,
where 7 : I\I,, — J\Jim1 is the function defined by 7(i) = o(i), Vi € I\In;
moreover, D;_4 (A(I’J\{jh})) #0,l-1e€N, N (A(I’J\{jh})) = k; then, from

the recursive assumption, there exists 1ini det (A(I’J\{jh}))(n_l’n_l) € R,
n—-4oo
and so
4 (n—1,n-1)
lim |a;, ;,||det (A(I’J\{Jh})) —0,Vh=1,. . k+1;
n—-+oo :

consequently, from (38) and (39), we obtain lim det A™™ =0,
n——+oo
Furthermore, suppose that there exists I € Z~ such that D; # 0; since
the function o] I\, is injective, from Proposition 3.4, the linear function *A :
Er — Ejis (y, 1)-general, where 7 : J\Jm, —> I\Im, is the increasing
function defined by 7(j) = 0=1(j), Vj € J\Jm,; moreover, we have D_; (*A) #
(), —1 € N*; then, from the previous arguments, we obtain

lim det A™™ = lim tA(™m) =,

n—->-+o0o n—>-+o0o
Finally, if D = (3, we have
{i € I\I,,, : 0(i) = o(h), fore some h € I\I,,,h < i}| = +o0

or |(J\Jm) \e(I\In)| = +00; then, the rows or the columns of the matrix A(™)
are linearly dependent, for n sufficiently large, and so we have det A" = 0,
from which lim det A™™) = 0. O

n——4oo
DEFINITION 3.7. Let A = (aij);c; o+ E7 — Er be a linear (m, 0)-general
Sfunction; define the determinant of A, and call it det A, the real number

det A= lim det A",

n—-+oo
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COROLLARY 3.8. Let A = (aij);cq iy By — Er be a linear (m,o)-general
function such that a;; = 0, Vi € Iy, Vj € J\Jpm, or A is (m,o)-standard.
Then, if o is bijective, we have

det A = det A(™™) H ;.
i€\l

Conversely, if o is not bijective, we have det A = 0. In particular, if A =1; 5,
we have det A = 1.

Proof. If o is bijective, Vi € I\I,,, we have |o(i)| = |i|; then, Vn € N, n > m,
we have
det A = det A TT N,
1€l \Im

from which

det A= lim det A™™ =det A JT M

n—-+oo
i€I\Ip,

Moreover, suppose that A # () but o is not bijective, and set ™ = min A; by
definition of 77, we have 77 > m and the matrix A ™) is not invertible; then,
Vn € N, n > m, we obtain

det A" = det AT T A, =0,
pEIn\IW

and so det A = lim det A" = 0. Finally, if A = 0, from Theorem 3.6

n—-4oo
we have det A = 0 again. In particular, if A =1; ;, then A is (1, 0)-standard,
where ALY = (1), \; =1, Vi € I\I1, and o is bijective; then, det A =1. O

PROPOSITION 3.9. Let A = (aij);c; ey s — Ep be a linear (m, 0)-general
function such that a;; = 0, Vi € Ly, Vj € J\Jm, or A is (m,o)-standard;
then:

1. One has det A # 0 if and only if A™™) is invertible, \; # 0, for any
i € I\I,,,, and o is bijective.

2. Ifa;; =0,Vi€ L, Vje J\Jn, and det A # 0, then A is bijective.

3. If A is (m,0)-standard, then one has det A # 0 if and only if A is bijec-
tive.

Proof.
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1. If o is bijective, from Corollary 3.8, we have

det A =det A TT A
i€I\I,,
Moreover, if A™™) is invertible and X\; # 0, Vi € I\I,,, we have
det Amm) £ (), H A = H A € R*, and so det A # 0.
i€N\Im 1€ I\ I : X £0
Conversely, if det A # 0, from Corollary 3.8, ¢ is bijective, and so

det AT T A = det A # 0
i€I\I,,
then, A(™™) is invertible and \; # 0, Vi € IN\I,,.
2. If a;; = 0, Vi € I,, Vj € J\Jy,, and det A # 0, from point 1 and
Proposition 2.27, we obtain that A is bijective.

3. The statement follows from Proposition 10 and Remark 14 in [3].
O

PROPOSITION 3.10. Let A = (a;;) : Ey — Ej be a linear (m, o)-general

iel,jeJ
function such that {h eEN,h>m: 0|I\Ih 18 injective} # (; then, det A =

det tA.
Proof. Since {h eN,h>m: 0|I\Ih is injective} # (), from Proposition 3.4,
the function *A : Ef — Ej is (%,T)—general, where m € N* is defined by
formula (20), and the function 7 : J\Jz — I\I= is given by

7(j)=min{ o' (k):k>j, keo(I\lz) },Vje J\J5.

Then, we have

det A= lim det A™™

n—-+oo

= dim det’(A™) = Tim det (") = det ‘A

n—-4oo n—> —+00

O

PROPOSITION 3.11. Let A = (aij);c; jc s+ £y — Er be a linear (m, 0)-general

function such that Y |a; ;| < 400, for any j € J\Jp; moreover, let s,t €
€N I

N*, s < t, let p=max{t,m} and let iy € I such that |i;| = t; then:
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1. If there exist u = (uj:j€J) € Ej,v=(vj:j€J) € Ej, c1,c2 € R

such that Z|u]| < 400, Z|Uj\ < 400, a;,; = cu; + cavj, for any
jeJ jeJ

Jj € J, by indicating by U = (uij);cq oy and V = (vij);c; 5, the linear

functions obtained by substituting the t-th row of A for u and v, respec-

tively, then U and V' are (p,§)-general, where the increasing function

&: NI, — J\J, is defined by

N ) if (i) € J\Jp _ .
£() = { min (J\J,) ifo(i) ¢ J\J, ’ Vie I\I; (40)
moreover, one has det A = ¢y detU + codet V.

ieljes E; — Ej is the linear function obtained by ex-
changing the s-th row of A for the t-th row of A, then B is (p,§)-general
and one has det B = — det A.

L IfC = (Cij)ieljeJ : By — Eg is the linear function obtained by substi-

tuting the t-th row of A for the s-th row of A, or the s-th one for the t-th
one, then C is (p,£)-general and one has det C = 0.

Proof.

1. Since Y lai;| < 400, Vj € J\Jm, we have Z lui;| < oo,

i€I\I,, ieI\I,,
Z [vij] < 400, Vj € J\Jp; then, from point 5 of Proposition 2.24,
i€\,
the functions U and V are (p,£)-general. Moreover, Vn € N*, we have
det A™™) = ¢ det U™ + ¢y det V™™ | from which

det A= lim det A™™ = lim (01 det U™™ + ¢y det V("’”))

n—>-4oo n—-4oo

=c1detU + codet V.

. By proceeding as in the proof of point 1, we can prove that B is (p,§)-

general; moreover, Vn € N, n > p, B™™ is the matrix obtained by
exchanging the s-th row of A™™ for the t-th row of A(™™): then, one
has det B = —det A™™) _ from which

det B= lim det B™™ = — lim det A™™ = —det A.

n——+oo n——+oo

. By proceeding as in the proof of point 1, we can prove that C is (p,§)-

general; moreover, since the s-th row of C and the ¢-th row of C are
equals, by exchanging these rows among themselves we obtain again the
matrix C; then, from point 2, we have det C = —detC, from which
det C' = 0.
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PROPOSITION 3.12. Let A = (aij);c; jc; * By — Er be alinear (m, 0)-general

function such that > la; ;| < +oo, for any j € J\Jy,; moreover, let s,t €
i€\,

N*, s < t, let p=max{t,m}, let j; € J such that |j;| = t, and let the function

& I\I, — J\J, defined by (40); then:

1. If there existu = (u; ;i € 1) € By, v= (v;: 1 €I) € Ey, ¢1,c2 € R such

that Z |u;| < 400, Z |vi| < 400, a;;, = cru; + cov;, for any i € I, by
icl il

indicating by U = (uij);c; jc; ond V = (vij);c; ;e ; the linear functions
obtained by substituting the t-th column of A for u and v, respectively,
then U and V are (p,§)-general and one has det A = ¢y det U + codet V.

2. If B = (bij);e; jes By — Ey is the linear function obtained by exchang-
ing the s-th column of A for the t-th column of A, then B is (p,£)-general
and one has det B = — det A.

3 1f C = (cij)ieq jes i By — Ep is the linear function obtained by substi-
tuting the t-th column of A for the s-th column of A, or the s-th one for
the t-th one, then C is (p,&)-general and one has det C = 0.

Proof. The proof is analogous to that one of Proposition 3.11. O

PROPOSITION 3.13. Let A = (aij);c; jc; * By — Er be alinear (m, 0)-general

function such that . la; | < 400, for any j € J\Jn. If the dimension
i€\ Im

of the vector space gemerated by the rows or the columns of A is finite, then

det A = 0.

Proof. Suppose that the dimension of the vector space generated by the rows of
A is finite; then, there exist n rows vV ...,v(™ of A, where v(*) = <v§k) 1j € J),
Vk e {1,...,n}, such that, ifv = (v; : j € J) is asrow of A, there exist ¢1,...,¢,, €
R such that v = c;v™ + ... + ¢,v™. From Proposition 3.11, by indicating by
Vi, Vk € {1,...,n}, the linear function obtained by substituting the row v of A
for v(k)7 by recursion we have det A = ¢y det V; + ... + ¢, det V,,; moreover, Vj
has two rows equals to v(¥), and so det V, = 0, V& € {1,...,n}; then, det A = 0.
Analogously, if the dimension of the vector space generated by the columns of
A is finite, from Proposition 3.12 we obtain det A = 0. O
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REMARK 3.14: Let A = (aij);c; ey + Es — Ep be a linear (m, 0)-general

function such that > la; ;| < +oo, for any j € J\Jn. Then, for any
i€I\Im

n € N,n>m, forany @ # L C I and for any ) # N C J such that

|I\L| = |J\N| < +o0, the linear function AZ»N) . Exy — Ey is (n, p)-general,

where the function p : L\L,, — N\N,, is defined by

N f oo(d) if o(i) € N\N, '
pli) = { min{j > o(i) : j € N\N,,} if o(i) ¢ N\N, , Vi € L\Ly.

Proof. The proof follows from Remark 2.25. O

DEFINITION 3.15. Let A = (aij),cs jey @ Es — Er be a linear (m, 0)-general

function such that Y |a;;| < +oo, for any j € J\Jn; define the I x J
€I
matriz cof A by

(cof A)i; = (—1)li1+l det (A(I\{i}"]\{j})) Viel,VjelJ.

PROPOSITION 3.16. Let A = (aij);c; ;e + £y — Er be alinear (m, 0)-general

function such that Y la; ;| < +oo, for any j € J\Jn; moreover, suppose
i€NI,,

that a;; =0, Vi € I,,, Vj € J\Jp, or A is (m,o)-standard; then, one has:

det A = Zait(cofA)it, Viel; (41)
teJ

det A = Zasj(cofA)sj, Vjeld (42)
sel

Proof. Suppose that A # () and set m = min A; Vi€ I,Vj € J and Vn € N,
n > max{|i|, |j|,m}, we have

det A =det A" TT A, (43)
peI\I,

from which

det A = Zait(cofA("’”))it H Ap = Zait(cofA)it;

teJn pelI\I, teJn,

then
det A = ngrgoo Z ait(cof A)ir = Zait(COfA)it-

teJn teJ
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Analogously, from formula (43), we have

det A = Zasj(cofA("’"))sj H Ap = Zasj(COfA)sjv

sel, pelI\I, sely,

and so
det A = Zasj(cofA)sj.
sel
Conversely, if A = 0, Vs € I, Vt € J, we have A (ANERAED) = ¢
then, from Theorem 3.6, we obtain det A = det (A(I\{s}’l\{t})) = 0, and so
(cof A)st = 0; then:

det A =0=" ai(cof A)ir, Vi€ I;
teJ

detA=0= Zasj(cofA)Sj, Vijed.
sel

O

COROLLARY 3.17. Let A = (aij);cr jc s+ By — Er be a linear (m, 0)-general

function such that > lai;| < +oo, for any j € J\Jpn; moreover, suppose
€N m
that a;j =0, Vi € Iy, Vj € J\Jm, or A is (m,0)-standard; then:

1. One has
At (cofA) = (det A p; (44)

moreover, if A is bijective, the linear functions A~ : E; — E; and
t(cofA) : Ef — Ej are continuous.

2. If A is bijective, then one has det A # 0 if and only if cof A # 0; moreover,
in this case )
A7 = ——"(cofA). 4
" (cofA) (45)

3. If A is (m, 0)-standard and bijective, then A= is (m,o~!)-standard.
Proof.

1. From formula (41), we have

Zait(cofA)it =detA,Viel.

teJ
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Moreover, we have

Y ai(cofA)je =0,Yi,j €1, i# j; (46)

tedJ

in fact, from formula (41) and Proposition 3.11, the left side of (46) is
equal to det C, where C' is the (p, &)-general function obtained by substi-
tuting the j-th row of A for the i-th row of A, p = max{|i|,|j|, m}, and
the increasing function & : I\I, — J\J, is defined by (40); then, from
Proposition 3.11, we have det C' = 0. This implies that

> ai(cofA)je = (det A)sj, Vi, j € 1,

teJ

where 0;; is the Kronecker symbol, and so formula (44) follows, since the
functions d;; and Sij coincide on I x I. Moreover, suppose that A is bijec-
tive; since A is continuous from Proposition 3.4, then the linear function
A=l E; — Ej is continuous (see, e.g., the theory in Weidmann’s book
[11]); furthermore, from formula (44), we have

t(cofA) = (det A)A™,

and so the linear function * (cofA) : E — E is continuous too.

. If A is bijective, from formula (44) we have det A = 0 if and only if

cofA =0, and so det A # 0 if and only if cof A # 0; moreover, in this
case, from formula (44) we obtain formula (45).

. If Ais (m,o)-standard and bijective, from Proposition 3.9, we have

det A #£ 0, A\; #0, Vi € I\I,,,, and o is bijective; moreover, Vy € Er, we
have A (A~'y) =y, from which

(A1y), = % Vie I\In; (47)

furthermore, we have {z € N\Ly: ()" # O} = I\I,,, from which

1 -1
I o= II x| = II »] er:
€I\ I (Ai)~ 10 i€\ I 1ET\ I : A 70
then, we obtain sup ’(Ai)_l‘ < 400 and inf ’(Ai)_ll > 0.

i€\In, i€IN\Im:(Ai) 71 #0
Finally, from formula (47) and since the linear function A=! : B — E;
is given by formula (45), then A™! is (m,o~!)-standard, with \; (A7) =
M)~ Vie I\,
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PROPOSITION 3.18. Let o : U C Ej — Ey be a (m, o)-general function and let
xo = (20,5 : j € J) € U such that there exists the function J, (xo) : E; — Ey;
then, J, (xo) is a linear (m,o)-general function; moreover, for any n € N,
n > m, there exists the linear (m, o)-general function Jzwm.n (xo) : By — B,
and one has

det J, (z0) = ngr—ir-loo det J5n.m) (zo) .

Proof. Since ¢ is (m, o)-general, from Remark 3.2, the linear function J, (zo)
is (m, o)-general; moreover, Vn € N, n > m, from Proposition 2.4, there exists
the linear function Jm.m) (zo) : E;j — Ejp, and it is (m,o)-general, from
Remark 3.2; furthermore, we have A (J, (20)) = A (J5m.n (x0)).

If A(J, (z0)) # 0, set T = min A (J, (x9)); Vn > %, we have

det J¢(1L,n) (:L‘o) = det Jcp('n,,n) (1‘07]‘ 1 j € Jn) H (p;,a(i) (330,0(1')) 3 (48)
i€\l

if [(I\In) \Zy| < +o00, set ig = max ((I\In,) \Z,) and m = max{m, |io|}; since
_ I gpg,a(i) (z0,0()) € R*, we have nll)l}»loo 11 @270(1.) (20,0(:)) = 1; then, from
i€\Im ieI\I,

(48) and Theorem 3.6, we obtain

lim det Jm.m (z0) = lim_det J,m.m (20,5 : j € Jn) = det J, (20) ;

n—-+o0o n—-+o0o

conversely, suppose that [(I\I,,) \Z,| = +o0; for n sufficiently large, we have
det J,nm (20,5 2 j € Jn) = 0, from which

det J, (xo) = nll}l}rloo det J ) (20,50 J € Jn) =0

= ngrfoo det J[P(n,n) (lL’oyj 1 j € Jn) 4 1;\[] ('0270(1') (1’070(1-))
1€ n

= lim det Ja(n,n) (z0) -

n—4oo

Moreover, if A (J, (z9)) =0, Yn € N, n > m, we have A (J¢<n,,n,) (z0)) =0,
and so
det JLP (Io) =0= lim det J@(n,n) (930) .

n—-+o0o
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EXAMPLE 3.19: Consider the linear function A = (a;;) : BN — BN+

1,JEN*
given by
S 27ig; ifi=1
JjEN* )
(Al‘)l: xr1 + Z 27J£L'j ifie=2 ,Vx:(ﬂfjJEN*)GEN*
JEN*

27igy +227  ifie N*\{1,2}

Then, A is a strongly (m, o)-general function, where I = J = N*, m = 2,
I, = Jn = {1,2}, o is the function given by o(i) = i, Vi € N*\{1,2}, and
A = N*\{1} # 0; moreover, we have \; = 22", Vi € N*\{1,2}.

In order to calculate det A, observe that AU2HN") = ¢ + ¢, where u =
AGENY ¢ Bye, and v = (vj :j € N*) € En+, where v; = 01, Vj €
N*. Then, from Proposition 3.11, we have det A = detU + detV, where
U = (uij); jen- and V' = (vij); jon- are the linear functions obtained by
substituting the second row of A by u and v, respectively; moreover, since
U{ENT) — gH2ENY) e have det U = 0, from which

det A=detV = lim det V™. (49)

n——+oo

Finally, Vn € N*\{1, 2}, we have

det V(n,n) — (_1)n+12—n det V(n—l,{Q,...,n}) + 22’" det V(n—l,n—l)
=2 " det VIt (50)

since the second row of V(?=1:A2:--n}) ig zero, and so det V(»—1:{2--n}) =
Then, by recursion, from (50) we obtain

det V™) = det VD 27",

j=3
and so formula (49) implies
n T
- 2.2) T o2 " (2.2)0 222 L,
det A= lim detV@2[[2? " =det V2= =—-V2.
n—>—+o0o 4

Jj=3

4. Problems for further study

A natural extension of this paper and of the paper [4] is the generalization
of the change of variables’ formula for the integration of the measurable real
functions on (RI .BU )), by substituting the (m, o)-standard functions for the
(m, o)-general functions.
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Moreover, a natural application of this paper, in the probabilistic frame-
work, is the development of the theory of the infinite-dimensional continuous
random elements, defined in the paper [3]. In particular, we can prove the for-
mula of the density of such random elements composed with the (m, o)-general
functions, with further properties. Consequently, it is possible to introduce
many random elements that generalize the well known continuous random vec-
tors in R™ (for example, the Beta random elements in F; defined by the
(m, o)-general matrices), and to develop some theoretical results and some ap-
plications in the statistical inference. It is possible also to define a convolution
between the laws of two independent and infinite-dimensional continuous ran-
dom elements, as in the finite case.

Furthermore, we can generalize the paper [2] by considering the recursion
{Xn}en on [0,p)N" defined by

Xn+1 =AX, + B, (mOd p)a

where Xy = g € Ey, A is a bijective, linear, integer and (m, o)-general func-
tion, p € R, and {Bn},en is a sequence of independent and identically dis-
tributed random elements on E;. Our target is to prove that, with some as-
sumptions on the law of B,,, the sequence {X,}, . converges with geometric

rate to a random element with law ® (;Leb

ieN*

to quantify the rate of convergence in terms of A, p, m, and the law of B,.
Finally, in the statistical mechanics, it is possible to describe the systems of
smooth hard particles, by using the Boltzmann equation or the more general
Master kinetic equation, described for example in the paper [9]. In order to
study the evolution of these systems, we can consider the model of countable
particles, such that their joint infinite-dimensional density can be determined

by composing a particular random element with a (m, o)-general function.

). Moreover, we wish
B([0,p))
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