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Abstract. In this paper, we introduce some functions, called (m,σ)-
general, that generalize the (m,σ)-standard functions and are defined in
the infinite-dimensional Banach space EI of the bounded real sequences
{xn}n∈I , for some subset I of N∗. Moreover, we recall the main results
about the differentiation theory over EI , and we expose some properties
of the (m,σ)-general functions. Finally, we study the linear (m,σ)-
general functions, by introducing a theory that generalizes the standard
theory of the m×m matrices.
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1. Introduction

In this paper, we generalize the results of the articles [3] and [4], where, for
any subset I of N∗, we define the Banach space EI ⊂ RI of the bounded real
sequences {xn}n∈I , the σ-algebra BI given by the restriction to EI of B(I) (de-
fined as the product indexed by I of the same Borel σ-algebra B on R), and a
class of functions over an open subset of EI , with values on EI , called (m,σ)-
standard. The properties of these functions generalize the analogous ones of
the standard finite-dimensional diffeomorphisms; moreover, these functions are
introduced in order to provide a change of variables’ formula for the integra-
tion of the measurable real functions on

(
RI ,B(I)

)
. For any strictly positive

integer k, this integration is obtained by using an infinite-dimensional measure

λ
(k,I)
N,a,v, over the measurable space

(
RI ,B(I)

)
, that in the case I = {1, ..., k}

coincides with the k-dimensional Lebesgue measure on Rk.

In the mathematical literature, some articles introduced infinite-dimen-
sional measures analogue of the Lebesgue one (see for example the paper of
Léandre [8], in the context of the noncommutative geometry, that one of Tsile-
vich et al. [10], which studies a family of σ-finite measures on R+, and that
one of Baker [5], which defines a measure on RN∗ that is not σ-finite).
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In the paper [3], we define the linear (m,σ)-standard functions. The motiva-
tion of this paper follows from the natural extension to the infinite-dimensional
case of the results of the article [2], where we estimate the rate of convergence
of some Markov chains in [0, p)k to a uniform random vector. In order to
consider the analogue random elements in [0, p)N

∗
, it is necessary to overcome

some difficulties: for example, the lack of a change of variables formula for
the integration in the subsets of RN∗ . A related problem is studied in the
paper of Accardi et al [1], where the authors describe the transformations of
generalized measures on locally convex spaces under smooth transformations of
these spaces. In the paper [4], we expose a differentiation theory for the func-
tions over an open subset of EI , and in particular we define the functions C1

and the diffeomorphisms; moreover, we remove the assumption of linearity for
the (m,σ)-standard functions, and we present a change of variables’ formula
for the integration of the measurable real functions on

(
RI ,B(I)

)
; this change

of variables is defined by the (m,σ)-standard diffeomorphisms, with further
properties. This result agrees with the analogous finite-dimensional result.

In this paper, we introduce a class of functions, called (m,σ)-general, that
generalizes the set of the (m,σ)-standard functions given in [4]. In Section 2,
we recall the main results about the differentiation theory over the infinite-
dimensional Banach space EI . Moreover, we expose some properties of the
(m,σ)-general functions. In Section 3, we study the linear (m,σ)-general func-
tions and we expose a theory that generalizes the standard theory of the m×m
matrices and the results about the linear (m,σ)-standard functions, given in [3].
The main result is the definition of the determinant of a linear (m,σ)-general
function, as the limit of a sequence of the determinants of some standard ma-
trices (Theorem 3.6 and Definition 3.7). Moreover, we study some properties
of this determinant, and we provide an example (Example 3.19). In Section 4,
we expose some ideas for further study in the probability theory.

2. Theory of the (m,σ)-general functions

Let I 6= ∅ be a set and let k ∈ N∗; indicate by τ , by τ (k), by τ (I), by B,
by B(k), by B(I), and by Leb, respectively, the euclidean topology on R, the

euclidean topology on Rk, the topology
⊗
i∈I

τ , the Borel σ-algebra on R, the

Borel σ-algebra on Rk, the σ-algebra
⊗
i∈I
B, and the Lebesgue measure on R.

Moreover, for any setA ⊂ R, indicate by B(A) the σ-algebra induced by B onA,
and by τ(A) the topology induced by τ on A; analogously, for any set A ⊂ RI ,

define the σ-algebra B(I)(A) and the topology τ (I)(A). Finally, if S =
∏
i∈I
Si is

a Cartesian product, for any (xi : i ∈ I) ∈ S and for any ∅ 6= H ⊂ I, define
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xH = (xi : i ∈ H) ∈
∏
i∈H

Si, and define the projection πI,H on
∏
i∈H

Si as the

function πI,H : S −→
∏
i∈H

Si given by πI,H (xI) = xH .

Henceforth, we will suppose that I, J are sets such that ∅ 6= I, J ⊂ N∗;
moreover, for any k ∈ N∗, we will indicate by Ik the set of the first k elements
of I (with the natural order and with the convention Ik = I if |I| < k);

furthermore, for any i ∈ I, set |i| = |I ∩ (0, i]|. Analogously, define Jk and |j|,
for any k ∈ N∗ and for any j ∈ J .

Definition 2.1. For any set I 6= ∅, define the function ‖·‖I : RI −→ [0,+∞]
by

‖x‖I = sup
i∈I
|xi|, ∀x = (xi : i ∈ I) ∈ RI ,

and define the vector space

EI = {x ∈ RI : ‖x‖I < +∞}.

Moreover, indicate by BI the σ-algebra B(I)(EI), by τI the topology τ (I)(EI),
and by τ‖·‖I the topology induced on EI by the the distance d : EI × EI −→
[0,+∞) defined by d(x, y) = ‖x− y‖I , ∀x, y ∈ EI ; furthermore, for any set
A ⊂ EI , indicate by τ‖·‖I (A) the topology induced by τ‖·‖I on A. Finally,
for any x0 ∈ EI and for any δ > 0, indicate by B(x0, δ) the set {x ∈ EI :
‖x− x0‖I < δ}.

Remark 2.2: For any A ⊂ EI , one has τ (I)(A) ⊂ τ‖·‖I (A); moreover, EI is a
Banach space, with the norm ‖·‖I .

Proof. The proof that τ (I)(A) ⊂ τ‖·‖I (A), ∀A ⊂ EI , follows from the defini-

tions of τ (I) and τ‖·‖I ; moreover, the proof that EI is a Banach space can be
found, for example, in [3] (Remark 2).

The following concept generalizes the definition 6 in [3] (see also the theory
in the Lang’s book [7] and that in the Weidmann’s book [11]).

Definition 2.3. Let A = (aij)i∈I,j∈J be a real matrix I × J (eventually infi-

nite); then, define the linear function A = (aij)i∈I,j∈J : EJ −→ RI , and write
x −→ Ax, in the following manner:

(Ax)i =
∑
j∈J

aijxj, ∀x ∈ EJ , ∀ i ∈ I, (1)

on condition that, for any i ∈ I, the sum in (1) converges to a real number. In
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particular, if |I| = |J |, indicate by II,J =
(
δij
)
i∈I,j∈J the real matrix defined

by

δij =

{
1 if |i| = |j|
0 otherwise

,

and call δij generalized Kronecker symbol. Moreover, indicate by A(L,N) the
real matrix (aij)i∈L,j∈N , for any L ⊂ I, for any N ⊂ J , and indicate by
tA = (bji)j∈J,i∈I : EI −→ RJ the linear function defined by bji = aij, for any

j ∈ J and for any i ∈ I. Furthermore, if I = J and A = tA , we say that A

is a symmetric function. Finally, if B = (bjk)j∈J,k∈K is a real matrix J ×K,

define the I ×K real matrix AB = ((AB)ik)
i∈I,k∈K by

(AB)ik =
∑
j∈J

aijbjk, (2)

on condition that, for any i ∈ I and for any k ∈ K, the sum in (2) converges
to a real number.

Proposition 2.4. Let A = (aij)i∈I,j∈J be a real matrix I × J ; then:

1. The linear function A = (aij)i∈I,j∈J : EJ −→ RI given by (1) is defined

if and only if, for any i ∈ I,
∑
j∈J
|aij | < +∞.

2. One has A(EJ) ⊂ EI if and only if A is continuous and if and only if

sup
i∈I

∑
j∈J
|aij | < +∞; moreover, ‖A‖ = sup

i∈I

∑
j∈J
|aij |.

3. If B = (bjk)j∈J,k∈K : EK −→ EJ is a linear function, then the linear

function A ◦B : EK −→ RI is defined by the real matrix AB.

Proof. The proofs of points 1 and 2 are analogous to the proof of Proposition 7
in [3]. Moreover, the proof of point 3 is analogous to that one true in the
particular case |I|, |J | , |K| < +∞ (see, e.g., the Lang’s book [7]).

The following definitions and results (from Definition 2.5 to Proposition
2.19) can be found in [4] and generalize the differentiation theory in the finite
case (see, e.g., the Lang’s book [6]).

Definition 2.5. Let U ∈ τ‖·‖J ; a function ϕ : U ⊂ EJ −→ EI is called
differentiable in x0 ∈ U if there exists a linear and continuous function A :
EJ −→ EI defined by a real matrix A = (aij)i∈I,j∈J , and one has

lim
h→0

‖ϕ(x0 + h)− ϕ(x0)−Ah‖I
‖h‖J

= 0. (3)
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If ϕ is differentiable in x0 for any x0 ∈ U , ϕ is called differentiable in U . The
function A is called differential of the function ϕ in x0, and it is indicated by
the symbol dϕ(x0).

Remark 2.6: Let U ∈ τ‖·‖J and let ϕ,ψ : U ⊂ EJ −→ EI be differentiable
functions in x0 ∈ U ; then, for any α, β ∈ R, the function αϕ+ βψ is differen-
tiable in x0, and d(αϕ+ βψ)(x0) = αdϕ(x0) + βdψ(x0).

Remark 2.7: A linear and continuous function A = (aij)i∈I,j∈J : EJ −→ EI ,
defined by

(Ax)i =
∑
j∈J

aijxj , ∀x ∈ EJ , ∀ i ∈ I,

is differentiable and dϕ(x0) = A, for any x0 ∈ EJ .

Remark 2.8: Let U ∈ τ‖·‖J and let ϕ : U ⊂ EJ −→ EI be a function dif-
ferentiable in x0 ∈ U ; then, for any i ∈ I, the component ϕi : U −→ R
is differentiable in x0, and dϕi(x0) is the matrix Ai given by the i-th row of
A = dϕ(x0). Moreover, if |I| < +∞ and ϕi : U ⊂ EJ −→ R is differentiable in
x0, for any i ∈ I, then ϕ : U ⊂ EJ −→ EI is differentiable in x0.

Remark 2.9: Let U ∈ τ‖·‖J and let ϕ : U ⊂ EJ −→ EI be a function differen-
tiable in x0 ∈ U ; then, ϕ is continuous in x0.

Definition 2.10. Let U ∈ τ‖·‖J , let v ∈ EJ such that ‖v‖J = 1 and let a func-

tion ϕ : U ⊂ EJ −→ RI ; for any i ∈ I, the function ϕi is called differentiable
in x0 ∈ U in the direction v if there exists the limit

lim
t→0

ϕi(x0 + tv)− ϕi(x0)

t
.

This limit is indicated by ∂ϕi

∂v (x0), and it is called derivative of ϕi in x0 in the
direction v. If, for some j ∈ J , one has v = ej, where (ej)k = δjk, for any k ∈
J , indicate ∂ϕi

∂v (x0) by ∂ϕi

∂xj
(x0), and call it partial derivative of ϕi in x0, with

respect to xj. Moreover, if there exists the linear function defined by the matrix

Jϕ(x0) =
(

(Jϕ(x0))ij

)
i∈I,j∈J

: EJ −→ RI , where (Jϕ(x0))ij = ∂ϕi

∂xj
(x0), for

any i ∈ I, j ∈ J , then Jϕ(x0) is called Jacobian matrix of the function ϕ in x0.

Remark 2.11: Let U ∈ τ‖·‖J and suppose that a function ϕ : U ⊂ EJ −→ EI
is differentiable in x0 ∈ U ; then, for any v ∈ EJ such that ‖v‖J = 1 and for any
i ∈ I, the function ϕi : U ⊂ EJ −→ R is differentiable in x0 in the direction v,
and one has

∂ϕi
∂v

(x0) = dϕi(x0)v.
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Corollary 2.12. Let U ∈ τ‖·‖J and let ϕ : U ⊂ EJ −→ EI be a function

differentiable in x0 ∈ U ; then, there exists the function Jϕ(x0) : EJ −→ RI ,
and it is continuous; moreover, for any h ∈ EJ , one has dϕ(x0)(h) = Jϕ(x0)h.

Theorem 2.13. Let U ∈ τ‖·‖J , let ϕ : U ⊂ EJ −→ EI be a function differen-
tiable in x0 ∈ U , let V ∈ τ‖·‖I such that V ⊃ ϕ(U), and let ψ : V ⊂ EI −→ EH
a function differentiable in y0 = ϕ(x0). Then, the function ψ◦ϕ is differentiable
in x0, and one has d(ψ ◦ ϕ)(x0) = dψ(y0) ◦ dϕ(x0).

Definition 2.14. Let U ∈ τ‖·‖J , let i, j ∈ J and let ϕ : U ⊂ EJ −→ R be a

function differentiable in x0 ∈ U with respect to xi, such that the function ∂ϕ
∂xi

is differentiable in x0 with respect to xj. Indicate ∂
∂xj

(
∂ϕ
∂xi

)
(x0) by ∂2ϕ

∂xj∂xi
(x0)

and call it second partial derivative of ϕ in x0 with respect to xi and xj. If

i = j, it is indicated by ∂2ϕ
∂x2

i
(x0). Analogously, for any k ∈ N∗ and for any

j1, ..., jk ∈ J , define ∂kϕ
∂xjk

...∂xj1
(x0) and call it k-th partial derivative of ϕ in x0

with respect to xj1 , ...xjk .

Definition 2.15. Let U ∈ τ‖·‖J and let k ∈ N∗; a function ϕ : U ⊂ EJ −→ EI
is called Ck in x0 ∈ U if, in a neighbourhood V ∈ τ‖·‖J (U) of x0, for any
i ∈ I and for any j1, ..., jk ∈ J , there exists the function defined by x −→

∂kϕi

∂xjk
...∂xj1

(x), and this function is continuous in x0; ϕ is called Ck in U if,

for any x0 ∈ U , ϕ is Ck in x0. Moreover, ϕ is called strongly C1 in x0 ∈ U
if, in a neighbourhood V ∈ τ‖·‖J (U) of x0, there exists the function defined by
x −→ Jϕ(x), this function is continuous in x0, and one has ‖Jϕ(x0)‖ < +∞.
Finally, ϕ is called strongly C1 in U if, for any x0 ∈ U , ϕ is strongly C1 in x0.

Definition 2.16. Let U ∈ τ‖·‖J and let V ∈ τ‖·‖I ; a function ϕ : U ⊂ EJ −→
V ⊂ EI is called diffeomorphism if ϕ is bijective and C1 in U , and the function
ϕ−1 : V ⊂ EI −→ U ⊂ EJ is C1 in V .

Remark 2.17: Let U ∈ τ‖·‖J and let ϕ : U ⊂ EJ −→ EI be a function C1 in

x0 ∈ U , where |I| < +∞, |J | < +∞, then ϕ is strongly C1 in x0.

Theorem 2.18. Let U ∈ τ‖·‖J , let ϕ : U ⊂ EJ −→ R be a function Ck in
x0 ∈ U , let i1, ..., ik ∈ J , and let j1, ..., jk ∈ J be a permutation of i1, ..., ik.
Then, one has

∂kϕ

∂xi1 ...∂xik
(x0) =

∂kϕ

∂xj1 ...∂xjk
(x0).
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Proposition 2.19. Let U =

∏
j∈J

Aj

 ∩ EJ ∈ τ‖·‖J , where Aj ∈ τ , for any

j ∈ J , and let ϕ : U ⊂ EJ −→ EI be a function C1 in x0 ∈ U , such that

ϕi(x) =
∑
j∈J

ϕij(xj), ∀x = (xj : j ∈ J) ∈ U , ∀ i ∈ I, (4)

where ϕij : Aj −→ R, for any i ∈ I and for any j ∈ J ; moreover, suppose
that, in a neighbourhood V ∈ τ‖·‖J (U) of x0, there exists the function defined
by x −→ Jϕ(x) and one has sup

x∈V
‖Jϕ(x)‖ < +∞. Then, ϕ is continuous in x0;

in particular, if ϕ is strongly C1 in x0 and |I| < +∞, ϕ is differentiable in x0.

Definition 2.20. Let m ∈ N∗ and let U =

U (m) ×
∏

j∈J\Jm

Aj

∩EJ ∈ τ‖·‖J ,

where U (m) ∈ τ (m), Aj ∈ τ , for any j ∈ J\Jm. A function ϕ : U ⊂ EJ −→ EI
is called m-general if, for any i ∈ I and for any j ∈ J\Jm, there exist some

functions ϕ
(I,m)
i : U (m) −→ R and ϕij : Aj −→ R such that

ϕi(x) = ϕ
(I,m)
i (xJm) +

∑
j∈J\Jm

ϕij(xj), ∀x ∈ U.

Moreover, for any ∅ 6= L ⊂ I and for any Jm ⊂ N ⊂ J , indicate by ϕ(L,N) the
function ϕ(L,N) : πJ,N (U) −→ RL defined by

ϕ
(L,N)
i (xN ) = ϕ

(I,m)
i (xJm) +

∑
j∈N\Jm

ϕij(xj), ∀xN ∈ πJ,N (U), ∀ i ∈ L. (5)

Furthermore, for any ∅ 6= L ⊂ I and for any ∅ 6= N ⊂ J\Jm, indicate by
ϕ(L,N) the function ϕ(L,N) : πJ,N (U) −→ RL given by

ϕ
(L,N)
i (xN ) =

∑
j∈N

ϕij(xj), ∀xN ∈ πJ,N (U), ∀ i ∈ L. (6)

In particular, suppose that m = 1; then, let j ∈ J such that {j} = J1
and indicate U (1) by Aj and ϕ

(I,1)
i by ϕij, for any i ∈ I; moreover, for any

∅ 6= L ⊂ I and for any ∅ 6= N ⊂ J , indicate by ϕ(L,N) the function ϕ(L,N) :
πJ,N (U) −→ RL defined by formula (6).

Furthermore, for any l, n ∈ N∗, indicate ϕ(Il,N) by ϕ(l,N), ϕ(L,Jn) by ϕ(L,n),
and ϕ(Il,Jn) by ϕ(l,n).



8 CLAUDIO ASCI

Definition 2.21. Let m ∈ N∗, let U =

U (m) ×
∏

j∈J\Jm

Aj

 ∩ EJ ∈ τ‖·‖J ,

where U (m) ∈ τ (m), Aj ∈ τ , for any j ∈ J\Jm, and let σ : I\Im −→ J\Jm be
an increasing function; a function ϕ : U ⊂ EJ −→ EI m-general and such that
|J | = |I| is called (m,σ)-general if:

1. ∀ i ∈ I\Im, ∀ j ∈ J\ (Jm ∪ {σ(i)}), ∀ t ∈ Aj, one has ϕij(t) = 0; more-
over

ϕ(I\Im,J\Jm)
(
πJ,J\Jm(U)

)
⊂ EI\Im .

2. ∀ i ∈ I\Im, ∀x ∈ U , there exists Jϕi
(x) : EJ −→ R; moreover, ∀xJm ∈

U (m), one has
∑

i∈I\Im

∥∥∥Jϕ(I,m)
i

(xJm)
∥∥∥ < +∞.

3. ∀ i ∈ I\Im, the function ϕi,σ(i) : Aσ(i) −→ R is constant or injective;

moreover, ∀xσ(I\Im) ∈
∏

j∈σ(I\Im)

Aj, one has sup
i∈I\Im

∣∣∣ϕ′i,σ(i) (xσ(i))∣∣∣ < +∞

and inf
i∈Iϕ

∣∣∣ϕ′i,σ(i) (xσ(i))∣∣∣ > 0, where Iϕ = {i ∈ I\Im : ϕi,σ(i) is injective}.

4. If, for some h ∈ N, h ≥ m, one has |σ(i)| = |i| , ∀ i ∈ I\Ih, then,

∀xσ(I\Im) ∈
∏

j∈σ(I\Im)

Aj, there exists
∏
i∈Iϕ

ϕ′i,σ(i)
(
xσ(i)

)
∈ R∗.

Moreover, set

A = A(ϕ) = {h ∈ N, h ≥ m : |σ(i)| = |i| , ∀ i ∈ I\Ih} .

If the sequence
{
J
ϕ

(I,m)
i

(xJm)
}
i∈I\Im

converges uniformly on U (m) to the

matrix (0 . . . 0) and there exists a ∈ R such that, for any ε > 0, there exists
i0 ∈ N, i0 ≥ m, such that, for any i ∈ Iϕ ∩ (I\Ii0) and for any t ∈ Aσ(i), one

has
∣∣∣ϕ′i,σ(i) (t)− a

∣∣∣ < ε, then ϕ is called strongly (m,σ)-general.

Furthermore, for any Im ⊂ L ⊂ I and for any Jm ⊂ N ⊂ J , define the
function ϕ(L,N) : U ⊂ EJ −→ RI in the following manner:

ϕ
(L,N)
i (x) =

 ϕ
(L,N)
i (xN ) ∀ i ∈ Im, ∀x ∈ U

ϕi(x) ∀ i ∈ L\Im, ∀x ∈ U
ϕi,σ(i)(xσ(i)) ∀ i ∈ I\L, ∀x ∈ U

.

Finally, for any l, n ∈ N, l, n ≥ m, indicate ϕ(Il,N) by ϕ(l,N), ϕ(L,Jn) by
ϕ(L,n), ϕ(Il,Jn) by ϕ(l,n), and ϕ(m,m) by ϕ.
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Definition 2.22. A function ϕ : U ⊂ EJ −→ EI (m,σ)-general is called
(m,σ)-standard (or (m,σ) of the first type) if, for any i ∈ I\Im and for any

xJm ∈ U (m), one has ϕ
(I,m)
i (xJm) = 0. Moreover, a function ϕ : U ⊂ EJ −→

EI (m,σ)-standard and strongly (m,σ)-general is called strongly (m,σ)-stand-
ard (see also Definition 28 in [4]).

Remark 2.23: Let ϕ : U ⊂ EJ −→ EI be a m-general function; then:

1. Let ∅ 6= L ⊂ I and let Jm ⊂ N ⊂ J such that ϕ(L,N) (πJ,N (U)) ⊂ EL;
then, for any n ∈ N, n ≥ m, the function ϕ(L,N) : πJ,N (U) −→ EL is
n-general.

2. Let ∅ 6= L ⊂ I and let ∅ 6= N ⊂ J\Jm such that ϕ(L,N) (πJ,N (U)) ⊂ EL;
then, for any n ∈ N∗, the function ϕ(L,N) (πJ,N (U)) −→ EL is n-general.

3. If m = 1, let ∅ 6= L ⊂ I and let ∅ 6= N ⊂ J such that ϕ(L,N) (πJ,N (U)) ⊂
EL; then, for any n ∈ N∗, the function ϕ(L,N) : πJ,N (U) −→ EL is
n-general.

Proof. The proof follows from the definition of ϕ(L,N).

Proposition 2.24. Let ϕ : U ⊂ EJ −→ EI be a (m,σ)-general function; then:

1. σ is bijective if and only if |σ(i)| = |i|, ∀ i ∈ I\Im.

2.
∏

j∈J\Jm

Aj ⊂ EJ\Jm if and only if there exist a ∈ R+ and m0 ∈ N,

m0 ≥ m, such that, for any j ∈ J\Jm0
, one has Aj ⊂ (−a, a).

3. Let Im ⊂ L ⊂ I and let Jm ⊂ N ⊂ J ; then, one has ϕ(L,N) (πJ,N (U)) ⊂
EL and ϕ(L,N)(U) ⊂ EI ; moreover, the function ϕ(L,N) : U ⊂ EJ −→ EI
is (m,σ)-general.

4. For any x ∈ U , there exists the function Jϕ(I\Im,J)(x) : EJ −→ EI\Im ,
and it is continuous.

5. If, for any j ∈ J\Jm and for any t ∈ Aj, one has
∑

i∈I\Im

∣∣ϕ′i,j (t)
∣∣ < +∞,

then, for any n ∈ N, n ≥ m, ϕ is (n, ξ)-general, where the increasing
function ξ : I\In −→ J\Jn is defined by:

ξ(i) =

{
σ(i) if σ(i) ∈ J\Jn
min (J\Jn) if σ(i) /∈ J\Jn

, ∀ i ∈ I\In. (7)
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6. Suppose that σ is injective; moreover, for any Im ⊂ L ⊂ I such that
|L| < +∞ and for any Jm ⊂ N ⊂ J , let m̂ = |maxL| ∈ N\{0, ...m− 1};
then, for any n ∈ N, n ≥ m̂, the function ϕ(L,N) is

(
n, σ|I\In

)
-standard.

Proof.

1. The proof follows from the fact that σ is increasing.

2. The proof follows from the definition of EJ\Jm .

3. ∀x ∈ πJ,N (U), let y ∈ U such that yN = x; then, ∀ i ∈ L\Im, we have

ϕ
(L,m)
i (xJm) = ϕi(y)− ϕi,σ(i)

(
yσ(i)

)
, and so

sup
i∈L\Im

∣∣∣ϕ(L,m)
i (xJm)

∣∣∣ ≤ sup
i∈L\Im

|ϕi(y)|+ sup
i∈L\Im

∣∣ϕi,σ(i) (yσ(i))∣∣ < +∞;

then, we obtain

sup
i∈L\Im

∣∣∣ϕ(L,N)
i (x)

∣∣∣ ≤ sup
i∈L\Im

∣∣∣ϕ(L,m)
i (xJm)

∣∣∣+ sup
i∈L\Im

∣∣ϕi,σ(i) (yσ(i))∣∣ < +∞,

from which ϕ(L,N) (πJ,N (U)) ⊂ EL. Moreover, ∀ z ∈ U , ∀ i ∈ I\Im, we
have ∣∣∣ϕ(L,N)

i (z)
∣∣∣ ≤ ∣∣∣ϕ(I,m)

i (zJm)
∣∣∣+
∣∣ϕi,σ(i) (zσ(i))∣∣ ,

and so sup
i∈I\Im

∣∣∣ϕ(L,N)
i (z)

∣∣∣ < +∞; then, ϕ(L,N)(U) ⊂ EI . Finally, from

the definition of ϕ(L,N), the function ϕ(L,N) : U ⊂ EJ −→ EI is (m,σ)-

general.

4. ∀x ∈ U , ∀ i ∈ I\Im, we have

‖Jϕi
(x)‖ =

∥∥∥Jϕ(I,m)
i

(xJm)
∥∥∥+

∣∣∣ϕ′i,σ(i) (xσ(i))∣∣∣ ;
furthermore, since

∑
i∈I\Im

∥∥∥Jϕ(I,m)
i

(xJm)
∥∥∥ < +∞, we have

sup
i∈I\Im

∥∥∥Jϕ(I,m)
i

(xJm)
∥∥∥ < +∞,

and so

sup
i∈I\Im

‖Jϕi
(x)‖

≤ sup
i∈I\Im

∥∥∥Jϕ(I,m)
i

(xJm)
∥∥∥+ sup

i∈I\Im

∣∣∣ϕ′i,σ(i) (xσ(i))∣∣∣ < +∞;

then, from Proposition 2.4, there exists the function Jϕ(I\Im,J)(x) :EJ −→
EI\Im , and it is continuous.
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5. ∀n ∈ N, n ≥ m, and ∀xJn ∈ πJ,Jn(U), we have

∑
i∈I\In

∥∥∥Jϕ(I,n)
i

(xJn)
∥∥∥

=
∑
i∈I\In

∥∥∥Jϕ(I,m)
i

(xJm)
∥∥∥+

∑
j∈Jn\Jm

 ∑
i∈I\In

∣∣ϕ′i,j (xj)
∣∣ < +∞;

then, by Definition 2.21 and by definition of ξ, ϕ is (n, ξ)-general.

6. From points 3 and 5 and since σ is injective, ∀n ∈ N, n ≥ m̂, ϕ(L,N)

is
(
n, σ|I\In

)
-general; moreover, since σ is increasing, ∀ i ∈ I\In and

∀xJn ∈ πJ,Jn(U), we have ϕ
(I,n)
i (xJn) = 0; then, we have the statement.

Remark 2.25: Let ϕ : U ⊂ EJ −→ EI be a (m,σ)-general function such that

U (m) =
∏
j∈Jm

Aj , where Aj ∈ τ , for any j ∈ Jm, and

ϕ
(I,m)
i (xJm) =

∑
j∈Jm

ϕij(xj), ∀xJm ∈ U (m), ∀ i ∈ I,

where ϕij : Aj −→ R, for any i ∈ I and for any j ∈ Jm; moreover, suppose
that, for any j ∈ Jm, for any t ∈ Aj , one has sup

i∈I\Im
|ϕi,j (t)| < +∞, and, for

any j ∈ J\Jm, for any t ∈ Aj , one has
∑

i∈I\Im

∣∣ϕ′i,j (t)
∣∣ < +∞; furthermore, let

∅ 6= L ⊂ I and let ∅ 6= N ⊂ J such that |I\L| = |J\N | < +∞. Then, for any
n ∈ N, n ≥ m, the function ϕ(L,N) : πJ,N (U) −→ RL is (n, ρ)-general, where
the function ρ : L\Ln −→ N\Nn is defined by

ρ(i) =

{
σ(i) if σ(i) ∈ N\Nn
min {j > σ(i) : j ∈ N\Nn} if σ(i) /∈ N\Nn

, ∀ i ∈ L\Ln.

Proof. We have |L| = |N |; moreover, ∀n ∈ N, n ≥ m, ∀ i ∈ L\Ln and ∀x ∈
πJ,N (U), let y ∈ U such that yN = x; we have

|ϕi (x)| ≤
∑

j∈N∩Jm

|ϕi,j (xj)|+
∣∣ϕi,σ(i) (yσ(i))∣∣

⇒ ‖ϕ (x)‖L\Ln
≤

∑
j∈N∩Jm

sup
i∈L\In

|ϕi,j (xj)|+ sup
i∈L\In

∣∣ϕi,σ(i) (yσ(i))∣∣ < +∞,
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from which ϕ (πJ,N (U)) ⊂ EL. Analogously, ∀n ∈ N, n ≥ m, and ∀xNn
∈

πJ,Nn
(U), we have

∑
i∈L\Ln

∥∥∥Jϕ(L,Nn)
i

(xNn)
∥∥∥

=
∑

i∈L\Ln

∥∥∥Jϕ(L,Nn∩Jm)
i

(xNm∩Jm)
∥∥∥+

∑
j∈Nn\Jm

 ∑
i∈L\Ln

∣∣ϕ′i,j (xj)
∣∣ < +∞;

then, by definition of ρ, ϕ(L,N) is (n, ρ)-general.

Proposition 2.26. Let ϕ : U ⊂ EJ −→ EI be a (m,σ)-general function such
that there exists m0 ∈ N, m0 ≥ m, such that, for any j ∈ J\Jm0 , Aj is
bounded; moreover, suppose that σ (I\Im)∩(J\Jm0

) 6= ∅ and, for any i ∈ I\Im,

ϕ
(I,m)
i is bounded; then, there exists m1 ∈ N, m1 ≥ m, such that, for any

i ∈ I\Im1
, ϕi is bounded. In particular, if |I| = +∞, ϕ is not surjective.

Proof. Let j0 = min (σ (I\Im) ∩ (J\Jm0
)), let i0 = min

(
σ−1 (j0)

)
∈ I, let m̂ =

|i0| − 1 and let H =
{
i ∈ I\Im̂ : ϕi,σ(i) is not bounded

}
; we have |H| < +∞;

indeed, ∀ i ∈ H, the set Aσ(i) is bounded, and so there exists ti ∈ Aσ(i) such that∣∣∣ϕ′i,σ(i)(ti)∣∣∣ > |i|; then, ∀xσ(I\Im) ∈
∏

j∈σ(I\Im)

Aj such that
(
xσ(i) : i ∈ H

)
=

(ti : i ∈ H), by supposing by contradiction |H| = +∞, we would obtain

sup
i∈I\Im

∣∣∣ϕ′i,σ(i) (xσ(i))∣∣∣ ≥ sup
i∈H

∣∣∣ϕ′i,σ(i) (xσ(i))∣∣∣ = sup
i∈H

∣∣∣ϕ′i,σ(i) (ti)
∣∣∣ = +∞

(a contradiction). Then, there exists m1 ∈ N, m1 ≥ m, such that, ∀ i ∈ I\Im1 ,
ϕi,σ(i) is bounded, and so ϕi is bounded. In particular, ∀ i ∈ I\Im1 , ϕi is not
surjective; then, if |I| = +∞, ϕ is not surjective.

Proposition 2.27. Let ϕ : U ⊂ EJ −→ EI be a (m,σ)-general function such
that ϕij(xj) = 0, for any i ∈ Im, for any j ∈ J\Jm and for any xj ∈ Aj; then:

1. If the functions ϕi,σ(i), for any i ∈ I\Im, and ϕ(m,m) are injective, and
σ is surjective, then ϕ is injective.

2. If the functions ϕi,σ(i), for any i ∈ I\Im, and ϕ(m,m) are surjective, and
σ is injective, then ϕ is surjective.

Proof.
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1. Let x, y ∈ U be such that ϕ(x) = ϕ(y); we have ϕ(m,m) (xJm) =
(ϕ(x))Im = (ϕ(y))Im = ϕ(m,m) (yJm); then, if ϕ(m,m) is injective, we
have xJm = yJm ; moreover, ∀ i ∈ I\Im:

ϕ({i},m) (xJm) + ϕi,σ(i)(xσ(i))

= ϕi(x) = ϕi(y) = ϕ({i},m) (yJm) + ϕi,σ(i)(yσ(i)),

from which ϕi,σ(i)(xσ(i)) = ϕi,σ(i)(yσ(i)); then, if ϕi,σ(i) is injective, we
have xσ(i) = yσ(i); finally, if σ is surjective, we obtain xJ\Jm = yJ\Jm ,
and so x = y; then, ϕ is injective.

2. Let y ∈ EI ; moreover, if the functions ϕi,σ(i), for any i ∈ I\Im, and

ϕ(m,m) are surjective, and σ is injective, define x ∈ U (m) ×
∏

j∈J\Jm

Aj in

the following manner:

xJm =
(
ϕ(m,m)

)−1
(yIm) ∈ U (m),

xj = ϕ−1σ−1(j),j(zi) ∈ Aj , ∀ j ∈ σ (I\Im) ,

xj = 0, ∀ j ∈ J\σ (I\Im) ,

where
zi = yi − ϕ(I,m)

i (xJm) ,∀ i ∈ I\Im. (8)

Let x0 = (x0,j : j ∈ J) ∈ U ; ∀ i ∈ I\Im, we have∣∣xσ(i)∣∣ =
∣∣∣ϕ−1i,σ(i)(zi)− x0,σ(i) + x0,σ(i)

∣∣∣
≤
∣∣∣ϕ−1i,σ(i)(zi)− ϕ−1i,σ(i)(ϕi,σ(i)(x0,σ(i)))∣∣∣+

∣∣x0,σ(i)∣∣ ; (9)

moreover, the function ϕ−1i,σ(i) : R −→ Aσ(i) is derivable, and(
ϕ−1i,σ(i)

)′
(t) =

1

ϕ′i,σ(i)(ϕ
−1
i,σ(i)(t))

∈ R∗, ∀ i ∈ I\Im, ∀ t ∈ R; (10)

then, the Lagrange theorem implies that, for some

ξi ∈
(
min{zi, ϕi,σ(i)(x0,σ(i))},max{zi, ϕi,σ(i)(x0,σ(i)}

)
,

we have∣∣∣ϕ−1i,σ(i)(zi)− ϕ−1i,σ(i)(ϕi,σ(i)(x0,σ(i)))∣∣∣
=

∣∣∣∣(ϕ−1i,σ(i))′ (ξi)∣∣∣∣ ∣∣zi − ϕi,σ(i)(x0,σ(i))∣∣ ;
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thus, from (9) and (10), we obtain

∣∣xσ(i)∣∣ ≤ ∣∣zi − ϕi,σ(i)(x0,σ(i))∣∣∣∣∣ϕ′i,σ(i)(ϕ−1i,σ(i)(ξi))∣∣∣ +
∣∣x0,σ(i)∣∣ . (11)

Furthermore, from point 3 of Proposition 2.24, we have ϕ(I,m)(U (m)) ⊂
EI , and so, from (8), we have

‖z‖I\Im ≤ ‖y‖I\Im + sup
i∈I\Im

∣∣∣ϕ(I,m)
i (xJm)

∣∣∣ < +∞, (12)

and analogously

ϕi,σ(i)(x0,σ(i)) = ϕi (x0)− ϕ(I,m)
i

(
(x0)Jm

)
, ∀ i ∈ I\Im

=⇒ sup
i∈I\Im

∣∣ϕi,σ(i)(x0,σ(i))∣∣
≤ ‖ϕ(x0)‖I\Im + sup

i∈I\Im

∣∣∣ϕ(I,m)
i

(
(x0)Jm

)∣∣∣ < +∞. (13)

Moreover, we have inf
i∈Iϕ

∣∣∣ϕ′i,σ(i)(ϕ−1i,σ(i)(ξi)∣∣∣ > 0; furthermore, since, ∀ i ∈

I\Im, ϕi,σ(i) is surjective, then ϕi,σ(i) is injective too, and so Iϕ = I\Im;

then, there exists c ∈ R+ such that sup
i∈I\Im

∣∣∣ϕ′i,σ(i)(ϕ−1i,σ(i)(ξi))∣∣∣−1 ≤ c, and

so formulas (11), (12) and (13) imply

sup
i∈I\Im

∣∣xσ(i)∣∣ ≤ c
(
‖z‖I\Im + sup

i∈I\Im

∣∣ϕi,σ(i)(x0,σ(i))∣∣
)

+ ‖x0‖J < +∞;

then, we have x ∈ EJ , from which x ∈ U . Finally, it is easy to prove that
ϕ(x) = y, and so ϕ is surjective.

Proposition 2.28. Let m ∈ N∗, let ∅ 6= L ⊂ I, let Jm ⊂ N ⊂ J and let
ϕ : U ⊂ EJ −→ EI be a function m-general and C1 in x0 = (x0,j : j ∈ J) ∈ U ;
then:

1. If ϕ(L,N) (πJ,N (U)) ⊂ EL, then the function ϕ(L,N) : πJ,N (U) −→ EL is
C1 in (x0,j : j ∈ N).

2. If ϕ is (m,σ)-general and Im ⊂ L, then the function ϕ(L,N) : U ⊂ EJ −→
EI is C1 in x0.
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3. If ϕ is (m,σ)-general, Im ⊂ L and |N | < +∞, then there exists the
function Jϕ(L,N)(x0) : EJ −→ EI , and it is continuous.

4. If ϕ is strongly (m,σ)-general, Im ⊂ L and |N | < +∞, then ϕ(L,N) is
differentiable in x0.

5. If ϕ is strongly C1 in x0 and strongly (m,σ)-general, then ϕ is differen-
tiable in x0.

Proof.

1. By assumption, there exists a neighbourhood V =
∏
j∈J

Vj ∈ τ‖·‖J (U) of

x0 such that, ∀ i ∈ I, ∀ j ∈ J , there exists the function x −→ ∂ϕi(x)
∂xj

on

V , and this function is continuous in x0; then, ∀x ∈
∏
j∈N

Vj , let x = (xj :

j ∈ J) ∈ V such that (xj : j ∈ N) = x; since ϕ is a m-general function,
∀ i ∈ L, ∀ j ∈ N , we have

∂ϕ
(L,N)
i (x)

∂xj
=
∂ϕi(x)

∂xj
,

from which ϕ(L,N) is C1 in (x0,j : j ∈ N).

2. Let V ∈ τ‖·‖J (U) be the neighbourhood of x0 defined in the proof of point
1; if ϕ is (m,σ)-general and Im ⊂ L, ∀x ∈ V , we have

∂ϕ
(L,N)
i (x)

∂xj
=

{
∂ϕi(x)
∂xj

if (i, j) /∈ (Im × (J\N)) ∪ ((I\L)× Jm)

0 if (i, j) ∈ (Im × (J\N)) ∪ ((I\L)× Jm)
,

and so ϕ(L,N) is C1 in x0.

3. If ϕ is C1 in x0 and (m,σ)-general, Im ⊂ L and |N | < +∞, then,

from point 2, ∀ i ∈ Im, the function ϕ
(L,N)
i : U ⊂ EJ −→ R is C1

in x0 and depends only on a finite number of variables; then, we have∥∥∥Jϕ(L,N)
i

(x0)
∥∥∥ < +∞; moreover, ∀ i ∈ I\Im, we have∥∥∥Jϕ(L,N)

i
(x0)

∥∥∥ ≤ ‖Jϕi
(x0)‖ ;

then, from point 4 of Proposition 2.24:

sup
i∈I\Im

∥∥∥Jϕ(L,N)
i

(x0)
∥∥∥ ≤ sup

i∈I\Im
‖Jϕi

(x0)‖ < +∞;

then, from Proposition 2.4, there exists the function Jϕ(L,N)(x0) : EJ −→
EI , and it is continuous.
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4. If ϕ is strongly (m,σ)-general, there exists a ∈ R such that, ∀ ε > 0,

there exists î ∈ N, î ≥ m, such that∥∥∥Jϕ(I,m)
i

(xJm)
∥∥∥ < ε

4
, ∀ i ∈ I\Îi, ∀xJm ∈ U

(m);∣∣∣ϕ′i,σ(i) (t)− a
∣∣∣ < ε

4
, ∀ i ∈ Iϕ ∩ I\Îi, ∀ t ∈ Aσ(i). (14)

Moreover, if Im ⊂ L and |N | < +∞, ∀ i ∈ I, the function ϕ
(L,N)
i : U ⊂

EJ −→ R is C1 in x0 and depends only on a finite number of variables;

then, ϕ
(L,N)
i is differentiable in x0, and so there exists a neighbourhood

D =
∏
j∈J

Dj ∈ τ‖·‖J (U) of x0, where Dj is an open interval, ∀ j ∈ J , such

that, ∀x = (xj : j ∈ J) ∈ D\{x0}, we have

sup
i∈Iî

∣∣∣ϕ(L,N)
i (x)− ϕ(L,N)

i (x0)− J
ϕ

(L,N)
i

(x0)(x− x0)
∣∣∣

‖x− x0‖J
< ε. (15)

Observe that, ∀ i ∈
(
I\Îi

)
\L, ∀ y=(yj : j ∈ J) ∈ U , we have ϕ

(L,N)
i (y) =

ϕi,σ(i)(yσ(i)); moreover, ϕi,σ(i) is derivable in Aσ(i) and so, from the La-
grange theorem, ∀x ∈ D\{x0}, there exists θi ∈ (min{x0,σ(i), xσ(i)},
max{x0,σ(i), xσ(i)}) such that

ϕi,σ(i)
(
xσ(i)

)
− ϕi,σ(i)

(
x0,σ(i)

)
= ϕ′i,σ(i) (θi)

(
xσ(i) − x0,σ(i)

)
,

from which∣∣∣ϕ(L,N)
i (x)− ϕ(L,N)

i (x0)− J
ϕ

(L,N)
i

(x0)(x− x0)
∣∣∣

‖x− x0‖J

=

∣∣∣ϕi,σ(i) (xσ(i))− ϕi,σ(i) (x0,σ(i))−ϕ′i,σ(i) (x0,σ(i)) (xσ(i)−x0,σ(i))∣∣∣
‖x− x0‖J

=

∣∣∣ϕ′i,σ(i) (θi)− ϕ′i,σ(i)
(
x0,σ(i)

)∣∣∣ ∣∣xσ(i) − x0,σ(i)∣∣
‖x− x0‖J

≤
(∣∣∣ϕ′i,σ(i) (θi)− a

∣∣∣+
∣∣∣ϕ′i,σ(i) (x0,σ(i))− a∣∣∣) 1Iϕ(i) <

ε

2
. (16)

Conversely, ∀ i ∈
(
I\Îi

)
∩ L, ∀ y = (yj : j ∈ J) ∈ U , we have ϕ

(L,N)
i (y) =

ϕi(y); moreover, from point 3 of Proposition 2.24 and from point 1,

ϕ
(I,m)
i is C1 in (x0)

Jm
and so ϕ

(I,m)
i is C1 in a neighbourhood M =∏

j∈Jm

Mj ∈ τ‖·‖Jm
(U (m)) of (x0)

Jm
such that Mj is an open interval,
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∀ j ∈ Jm, and M ⊂
∏
j∈Jm

Dj ; then, from the Taylor theorem, ∀x ∈M × ∏
j∈J\Jm

Dj

 \{x0}, there exists ξJm ∈ (M\{(x0)Jm}) such that

ϕ
(I,m)
i (xJm)− ϕ(I,m)

i ((x0)Jm) = J
ϕ

(I,m)
i

(ξJm) (xJm − (x0)Jm) ,

and so∣∣∣ϕ(L,N)
i (x)− ϕ(L,N)

i (x0)− J
ϕ

(L,N)
i

(x0)(x− x0)
∣∣∣

‖x− x0‖J

=
|ϕi(x)− ϕi(x0)− Jϕi

(x0)(x− x0)|
‖x− x0‖J

≤

∣∣∣ϕ(I,m)
i (xJm)−ϕ(I,m)

i ((x0)Jm)−J
ϕ

(I,m)
i

((x0)Jm)(xJm−(x0)Jm))
∣∣∣

‖x− x0‖J

+

∣∣∣ϕi,σ(i)(xσ(i))−ϕi,σ(i)(x0,σ(i))−ϕ′i,σ(i)(x0,σ(i))(xσ(i) − x0,σ(i))∣∣∣
‖x−x0‖J

≤

∥∥∥Jϕ(I,m)
i

(ξJm)− J
ϕ

(I,m)
i

((x0)Jm)
∥∥∥ ‖(xJm − (x0)Jm)‖Jm

‖x− x0‖J

+

∣∣∣ϕ′i,σ(i) (θi)− ϕ′i,σ(i)
(
x0,σ(i)

)∣∣∣ ∣∣xσ(i) − x0,σ(i)∣∣
‖x− x0‖J

≤
∥∥∥Jϕ(I,m)

i
(ξJm)−J

ϕ
(I,m)
i

((x0)Jm)
∥∥∥+

∣∣∣ϕ′i,σ(i) (θi)−ϕ′i,σ(i)
(
x0,σ(i)

)∣∣∣
≤
∥∥∥Jϕ(I,m)

i
(ξJm)

∥∥∥+
∥∥∥Jϕ(I,m)

i
((x0)Jm)

∥∥∥
+
(∣∣∣ϕ′i,σ(i) (θi)− a

∣∣∣+
∣∣∣ϕ′i,σ(i) (x0,σ(i))− a∣∣∣) 1Iϕ(i) < ε. (17)

Then, from (15), (16) and (17), ∀x ∈

M × ∏
j∈J\Jm

Dj

 \{x0}, we have

∥∥ϕ(L,N)(x)− ϕ(L,N)(x0)− Jϕ(L,N)(x0)(x− x0)
∥∥
I

‖x− x0‖J
< ε; (18)

thus, ϕ(L,N) is differentiable in x0.

5. If ϕ is strongly C1 in x0 and (m,σ)-general, the function ψ = ϕ−ϕ(I,m) :
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U ⊂ EJ −→ EI given by

ψi(x) =


∑

j∈J\Jm

ϕij(xj) ∀ i ∈ Im, ∀x ∈ U

0 ∀ i ∈ I\Im, ∀x ∈ U
(19)

is strongly C1 in x0, and so it is differentiable in x0 from Proposition
2.19, since |Im| < +∞; then, if ϕ is strongly (m,σ)-general, from point 4
ϕ(I,m) is differentiable in x0, and so this is true for ϕ = ψ + ϕ(I,m) too,
from Remark 2.6.

Proposition 2.29. Let ϕ : U ⊂ EJ −→ EI be a function C1 and m-general;
then, ϕ : (U,B(J)(U)) −→

(
RI ,B(I)

)
is measurable.

Proof. From point 1 of Proposition 2.28, ∀ i ∈ I and ∀n ∈ N, n ≥ m, the func-

tion ϕ({i},n) : πJ,Jn(U) −→ R is C1; thus, ∀C ∈ τ , we have
(
ϕ({i},n))−1 (C) ∈

τ (n)(πJ,Jn(U)) ⊂ B(n)(πJ,Jn(U)); then, since σ(τ) = B, ∀C ∈ B, we obtain(
ϕ({i},n))−1 (C) ∈ B(n)(πJ,Jn(U)). Moreover, ∀ i ∈ I, consider the function

ϕ̂({i},n) : U −→ R defined by

ϕ̂({i},n)(x) = ϕ({i},n)(xJn), ∀x ∈ U ;

∀C ∈ B, we have(
ϕ̂({i},n)

)−1
(C) =

(
ϕ({i},n)

)−1
(C)× πJ,J\Jn(U) ∈ B(J)(U),

and so ϕ̂({i},n) is
(
B(J)(U),B

)
-measurable; then, since lim

n−→+∞
ϕ̂({i},n) = ϕi,

the function ϕi is
(
B(J)(U),B

)
-measurable too. Furthermore, let

Σ(I) =

{
B =

∏
i∈I
Bi : Bi ∈ B, ∀ i ∈ I

}
;

∀B =
∏
i∈I
Bi ∈ Σ(I), we have

ϕ−1(B) =
⋂
i∈I

(ϕi)
−1

(Bi) ∈ B(J)(U).

Finally, since σ (Σ(I)) = B(I), ∀B ∈ B(I), we obtain ϕ−1(B) ∈ B(J)(U).
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3. Linear (m,σ)-general functions

Definition 3.1. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general

function; ∀ i ∈ I\Im, set λi = λi(A) = ai,σ(i).

Remark 3.2: For any m ∈ N∗, a linear function A = (aij)i∈I,j∈J : EJ −→ EI
is m-general; moreover, if |J | = |I| and σ : I\Im −→ J\Jm is an increasing
function, A is (m,σ)-general if and only if:

1. ∀ i ∈ I\Im, ∀ j ∈ J\ (Jm ∪ {σ(i)}), one has aij = 0.

2. ∀ j ∈ Jm,
∑

i∈I\Im

|aij | < +∞; moreover, one has sup
i∈I\Im

|λi| < +∞ and

inf
i∈I\Im:λi 6=0

|λi| > 0.

3. If A 6= ∅, there exists
∏

i∈I\Im:λi 6=0

λi ∈ R∗.

Furthermore, A is strongly (m,σ)-general if and only if A is (m,σ)-general
and there exists a ∈ R such that the sequence {λi}i∈I\Im:λi 6=0 converges to a.

Finally, A is (m,σ)-standard if and only if A is (m,σ)-general and aij = 0,
for any i ∈ I\Im, for any j ∈ Jm.

Corollary 3.3. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear function; then,

A : (EJ ,BJ) −→
(
RI ,B(I)

)
is measurable.

Proof. The statement follows from Remark 3.2 and Proposition 2.29.

Proposition 3.4. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general
function. Then:

1. A is continuous.

2. Let C =
{
h ∈ N, h ≥ m : σ|I\Ih is injective

}
; if C 6= ∅, by setting m̃ =

min C, let im̃ ∈ I such that |im̃| = m̃ and let

˜̃m =

{
min{m̃, |σ (im̃)|} if m̃ > m
m if m̃ = m

; (20)

then, for any n ∈ N, n ≥ ˜̃m, the linear function tA : EI −→ RJ is
(n, τ)-general, where τ : J\Jn −→ I\In is the increasing function defined
by

τ(j) = min
{
σ−1(k) : k ≥ j, k ∈ σ (I\In)

}
, ∀ j ∈ J\Jn. (21)
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Proof.

1. Since A (EJ) ⊂ EI , the statement follows from Proposition 2.4.

2. We have

sup
j∈J

∑
i∈I

∣∣∣(tA)
ji

∣∣∣ = sup
j∈J

∑
i∈I
|aij |

= sup

{
sup
j∈Jm

∑
i∈I
|aij | , sup

j∈J˜̃m\Jm
∑
i∈I
|aij | , sup

j∈J\J˜̃m
∑
i∈I
|aij |

}
. (22)

Moreover, from point 2 of Remark 3.2, we have sup
j∈Jm

∑
i∈I
|aij | < +∞;

furthermore, by definition of m̃ and ˜̃m, ∀ j ∈ J ˜̃m\Jm, we have
∑
i∈I
|aij | =∑

i∈Im̃+1

|aij | < +∞; finally, observe that

sup
j∈J\J˜̃m

∑
i∈I
|aij | ≤

∑
i∈I

(
sup

j∈J\J˜̃m
|aij |

)

=
∑
i∈I˜̃m

(
sup

j∈J\J˜̃m
|aij |

)
+

∑
i∈I\I˜̃m

(
sup

j∈J\J˜̃m
|aij |

)

≤
∑
i∈I˜̃m

(
sup

j∈J\J˜̃m
|aij |

)
+ sup
i∈I\Im

|λi| . (23)

From Proposition 2.4, ∀ i ∈ I ˜̃m, we have sup
j∈J\J˜̃m

|aij | ≤
∑

j∈J\J˜̃m
|aij | <

+∞; moreover, we have sup
i∈I\Im

|λi| < +∞; then, from (23), we obtain

sup
j∈J\J˜̃m

∑
i∈I
|aij | < +∞, from which sup

j∈J

∑
i∈I

∣∣∣(tA)ji

∣∣∣ < +∞, from formula

(22), and so tA(EI) ⊂ EJ from Proposition 2.4. Finally, from Remark

3.2, ∀n ∈ N, n ≥ ˜̃m, the function tA : EI −→ EJ is (n, τ)-general, where
τ : J\Jn −→ I\In is the increasing function defined by

τ(j) = min
{
σ−1(k) : k ≥ j, k ∈ σ (I\In)

}
, ∀ j ∈ J\Jn.

Henceforth, we will suppose that |I| = +∞.
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Definition 3.5. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general

function; indicate by N(A) ∈ {0, 1, ...,m} the number of zero columns of the
matrix A(I\Im,Jm).

Theorem 3.6. Let A = (aij)i∈I,j∈J : EJ−→EI be a linear (m,σ)-general func-

tion; then, the sequence
{

detA(n,n)
}
n≥m converges to a real number. Moreover,

if A 6= ∅, by setting m = minA, we have

lim
n−→+∞

detA(n,n) =
∑

p∈I\Im

 ∏
q∈I\I|p|

λq

 ∑
j∈Jm

ap,j

(
cofA(|p|,|p|)

)
p,j

+ detA(m,m)

 ∏
q∈I\Im

λq

 . (24)

Conversely, if A = ∅, we have lim
n−→+∞

detA(n,n) = 0.

Proof. ∀ l ∈ Z, set Dl = Dl(A) = {h ∈ N, h ≥ m : |σ(i)| = |i|+ l, ∀ i ∈ I\Ih};
moreover, if Dl 6= ∅, set ml = minDl; furthermore, set D = D(A) =

⋃
l∈Z
Dl. If

there exists l ∈ N such that Dl 6= ∅, we will prove the statement by recursion
on N(A) = k ∈ {0, 1, ...,m}. Suppose that N(A) = 0 and observe that, if
A 6= ∅, we have m0 = m, since D0 = A; then, ∀n ∈ N, n > ml, we have

detA(n,n) =

 detA(m,m)

 ∏
q∈In\Im

λq

 if l = 0

0 if l ∈ N∗

,

from which

lim
n−→+∞

detA(n,n) =

 detA(m,m)

 ∏
q∈I\Im

λq

 ∈ R if l = 0

0 if l ∈ N∗

;

then, since we have ap,j = 0, ∀ p ∈ I\Im, ∀ j ∈ Jm, the statement is true.
Suppose that the statement is true for N(A) = k, where 0 ≤ k ≤ m − 1, and
suppose that N(A) = k+ 1; ∀n ∈ N, n > ml, let in ∈ I such that |in| = n; we
have

detA(n,n) =
∑
j∈Jn

ain,j

(
cofA(n,n)

)
in,j

; (25)

moreover, let {j1, ..., jk+1} ⊂ Jm such that ain,j = 0, ∀ j ∈ Jm\ {j1, ..., jk+1}.
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If l = 0, from (25), we have

detA(n,n) =

k+1∑
h=1

ain,jh

(
cofA(n,n)

)
in,jh

+ λin detA(n−1,n−1);

then, by induction on n, we obtain

detA(n,n) = an + detA(m,m)

 ∏
q∈In\Im

λq

 , ∀n > m, (26)

where

an =
∑

p∈In\Im

 ∏
q∈In\I|p|

λq

 k+1∑
h=1

ap,jh

(
cofA(|p|,|p|)

)
p,jh

. (27)

Moreover, ∀h = 1, ..., k + 1, ∀ p ∈ I\Im, we have∣∣∣∣(cofA(|p|,|p|)
)
p,jh

∣∣∣∣ =
∣∣∣detA(I|p|−1,I|p|\{jh})

∣∣∣ =
∣∣∣detB

(|p|−1,|p|−1)
jh,p

∣∣∣ , (28)

where Bjh,p : EJ −→ EI is the linear function obtained by exchanging the
|jh|-th column of A for the |p|-th column of A; furthermore

∣∣∣detB
(|p|−1,|p|−1)
jh,p

∣∣∣ =

∣∣∣∣∣∑
i∈Im

ai,p

(
cofB

(|p|−1,|p|−1)
jh,p

)
i,jh

∣∣∣∣∣
≤
∑
i∈Im

|ai,p|
∣∣∣∣det

(
A(I\{i},J\{jh})

)(|p|−2,|p|−2)∣∣∣∣ . (29)

Observe that, ∀ i ∈ Im, A(I\{i},J\{jh}) : EJ\{jh} −→ EI\{i} is a linear (m−1, σ)-

general function such that D0

(
A(I\{i},J\{jh})

)
6= ∅, N

(
A(I\{i},J\{jh})

)
= k;

then, from the recursive assumption, there exists

lim
|p|−→+∞

det
(
A(I\{i},J\{jh})

)(|p|−2,|p|−2)
∈ R,

and so

lim
|p|−→+∞

∑
i∈Im

|ai,p|
∣∣∣∣det

(
A(I\{i},J\{jh})

)(|p|−2,|p|−2)∣∣∣∣ = 0, ∀h = 1, ..., k + 1;

consequently, from (28) and (29), there exists b ∈ R+ such that

sup

{∣∣∣∣(cofA(|p|,|p|)
)
p,jh

∣∣∣∣ : h ∈ {1, ..., k + 1}, p ∈ I\Im
}
≤ b. (30)
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Moreover, since
∏

q∈I\Im:λq 6=0

λq ∈ R∗, we have
∏

q∈I\Im

λq ≡ c ∈ R+, where

λq =


1 if λq = 0
1
|λq| if 0 < |λq| < 1

|λq| if |λq| ≥ 1

,

and so ∣∣∣∣∣∣
∏
q∈H

λq

∣∣∣∣∣∣ ≤ c, ∀H ⊂ I\Im. (31)

Observe that

lim
n−→+∞

detA(m,m)

 ∏
q∈In\Im

λq

 = detA(m,m)

 ∏
q∈I\Im

λq

 ∈ R; (32)

moreover, set

a =
∑

p∈I\Im

 ∏
q∈I\I|p|

λq

 k+1∑
h=1

ap,jh

(
cofA(|p|,|p|)

)
p,jh

; (33)

then, ∀n > m, we have

a− an =
∑

p∈I\In

 ∏
q∈I\I|p|

λq

 k+1∑
h=1

ap,jh

(
cofA(|p|,|p|)

)
p,jh

+
∑

p∈In\Im

 ∏
q∈In\I|p|

λq

 ∏
r∈I\In

λr

−1

 k+1∑
h=1

ap,jh

(
cofA(|p|,|p|)

)
p,jh

. (34)

If there exists n0 ∈ N, n0 ≥ m, such that λq 6= 0 ∀ q ∈ I\In0
, we have∏

q∈I\In0

λq ∈ R∗; then ∀ ε ∈ R+, there exists n1 ∈ N, n1 ≥ n0, such that,

∀n ∈ N, n > n1, we have

∣∣∣∣∣∣
 ∏
r∈I\In

λr

− 1

∣∣∣∣∣∣ < ε; thus, from formulas (34),

(30) and (31), we obtain

|a− an| ≤ bc
∑

p∈I\In

k+1∑
h=1

|ap,jh |+ bcε
∑

p∈In\Im

k+1∑
h=1

|ap,jh | , ∀n > n1. (35)
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Finally, there exists d ∈ R+ such that
∑

p∈I\Im

k+1∑
h=1

|ap,jh | ≤ d, and so there exists

n2 ∈ N, n2 ≥ n1, such that, ∀n ∈ N, n ≥ n2, we have
∑

p∈I\In

k+1∑
h=1

|ap,jh | < ε;

then, from formula (35), we obtain

|a− an| ≤ bcε+ bcdε = bc (1 + d) ε, ∀n ≥ n2.

Then, from (26) and (32), we have

lim
n−→+∞

detA(n,n)

=
∑

p∈I\Im

 ∏
q∈I\I|p|

λq

 k+1∑
h=1

ap,jh

(
cofA(|p|,|p|)

)
p,jh

+ detA(m,m)

 ∏
q∈I\Im

λq


=
∑

p∈I\Im

 ∏
q∈I\I|p|

λq

∑
j∈Jm

ap,j

(
cofA(|p|,|p|)

)
p,j

+ detA(m,m)

 ∏
q∈I\Im

λq

∈ R.

Moreover, suppose that σ is bijective and there exists a subsequence {λqt}t∈N
⊂ {λq}q∈I\Im:λq=0; then, from formulas (27) and (33), ∀ t ∈ N, ∀n≥ |qt|, we

obtain

a− an =
∑

p∈I\In

 ∏
q∈I\I|p|

λq

 k+1∑
h=1

ap,jh

(
cofA(|p|,|p|)

)
p,jh

−
∑

p∈In\Im

 ∏
q∈In\I|p|

λq

 k+1∑
h=1

ap,jh

(
cofA(|p|,|p|)

)
p,jh

= −
∑

p∈In\I|qt|−1

 ∏
q∈In\I|p|

λq

 k+1∑
h=1

ap,jh

(
cofA(|p|,|p|)

)
p,jh

. (36)

Thus, from formulas (30), (31) and (36):

|a− an| ≤ bc
∑

p∈In\I|qt|−1

k+1∑
h=1

|ap,jh | , ∀ t ∈ N, ∀n ≥ |qt| . (37)

Finally, ∀ ε ∈ R+, there exists t ∈ N such that
∑

p∈In\I|qt|−1

k+1∑
h=1

|ap,jh | < ε,

∀n ≥ |qt|; then, from (37), we obtain

|a− an| ≤ bcε, ∀n ≥ |qt| .
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Thus, from (26) and (32), we have formula (24).
Moreover, if l ∈ N∗, from (25) we have

detA(n,n) =

k+1∑
h=1

ain,jh

(
cofA(n,n)

)
in,jh

, ∀n > ml; (38)

moreover, ∀h = 1, ..., k + 1, we have∣∣∣∣(cofA(n,n)
)
in,jh

∣∣∣∣ =
∣∣∣detA(In−1,In\{jh})

∣∣∣ =

∣∣∣∣det
(
A(I,J\{jh})

)(n−1,n−1)∣∣∣∣ .
(39)

Observe that A(I,J\{jh}) : EJ\{jh} −→ EI is a linear (m, τ)-general function,
where τ : I\Im −→ J\Jm+1 is the function defined by τ(i) = σ(i), ∀ i ∈ I\Im;
moreover, Dl−1

(
A(I,J\{jh})

)
6= ∅, l − 1 ∈ N, N

(
A(I,J\{jh})

)
= k; then, from

the recursive assumption, there exists lim
n−→+∞

det
(
A(I,J\{jh})

)(n−1,n−1) ∈ R,

and so

lim
n−→+∞

|ain,jh |
∣∣∣∣det

(
A(I,J\{jh})

)(n−1,n−1)∣∣∣∣ = 0, ∀h = 1, ..., k + 1;

consequently, from (38) and (39), we obtain lim
n−→+∞

detA(n,n) = 0.

Furthermore, suppose that there exists l ∈ Z− such that Dl 6= ∅; since
the function σ|I\Iml

is injective, from Proposition 3.4, the linear function tA :

EI −→ EJ is (ml, τ)-general, where τ : J\Jml
−→ I\Iml

is the increasing
function defined by τ(j) = σ−1(j), ∀ j ∈ J\Jml

; moreover, we have D−l (tA) 6=
∅, −l ∈ N∗; then, from the previous arguments, we obtain

lim
n−→+∞

detA(n,n) = lim
n−→+∞

tA(n,n) = 0.

Finally, if D = ∅, we have

|{i ∈ I\Im : σ(i) = σ(h), fore some h ∈ I\Im, h < i}| = +∞

or |(J\Jm) \σ(I\Im)| = +∞; then, the rows or the columns of the matrix A(n,n)

are linearly dependent, for n sufficiently large, and so we have detA(n,n) = 0,
from which lim

n−→+∞
detA(n,n) = 0.

Definition 3.7. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general
function; define the determinant of A, and call it detA, the real number

detA = lim
n−→+∞

detA(n,n).
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Corollary 3.8. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general

function such that aij = 0, ∀ i ∈ Im, ∀ j ∈ J\Jm, or A is (m,σ)-standard.
Then, if σ is bijective, we have

detA = detA(m,m)
∏

i∈I\Im

λi.

Conversely, if σ is not bijective, we have detA = 0. In particular, if A = II,J ,
we have detA = 1.

Proof. If σ is bijective, ∀ i ∈ I\Im, we have |σ(i)| = |i|; then, ∀n ∈ N, n ≥ m,
we have

detA(n,n) = detA(m,m)
∏

i∈In\Im

λi,

from which

detA = lim
n−→+∞

detA(n,n) = detA(m,m)
∏

i∈I\Im

λi.

Moreover, suppose that A 6= ∅ but σ is not bijective, and set m = minA; by
definition of m, we have m > m and the matrix A(m,m) is not invertible; then,
∀n ∈ N, n ≥ m, we obtain

detA(n,n) = detA(m,m)
∏

p∈In\Im

λp = 0,

and so detA = lim
n−→+∞

detA(n,n) = 0. Finally, if A = ∅, from Theorem 3.6

we have detA = 0 again. In particular, if A = II,J , then A is (1, σ)-standard,
where A(1,1) = (1), λi = 1, ∀ i ∈ I\I1, and σ is bijective; then, detA = 1.

Proposition 3.9. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general

function such that aij = 0, ∀ i ∈ Im, ∀ j ∈ J\Jm, or A is (m,σ)-standard;
then:

1. One has detA 6= 0 if and only if A(m,m) is invertible, λi 6= 0, for any
i ∈ I\Im, and σ is bijective.

2. If aij = 0, ∀ i ∈ Im, ∀ j ∈ J\Jm, and detA 6= 0, then A is bijective.

3. If A is (m,σ)-standard, then one has detA 6= 0 if and only if A is bijec-
tive.

Proof.
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1. If σ is bijective, from Corollary 3.8, we have

detA = detA(m,m)
∏

i∈I\Im

λi.

Moreover, if A(m,m) is invertible and λi 6= 0, ∀ i ∈ I\Im, we have

detA(m,m) 6= 0,
∏

i∈I\Im

λi =
∏

i∈I\Im:λi 6=0

λi ∈ R∗, and so detA 6= 0.

Conversely, if detA 6= 0, from Corollary 3.8, σ is bijective, and so

detA(m,m)
∏

i∈I\Im

λi = detA 6= 0;

then, A(m,m) is invertible and λi 6= 0, ∀ i ∈ I\Im.

2. If aij = 0, ∀ i ∈ Im, ∀ j ∈ J\Jm, and detA 6= 0, from point 1 and
Proposition 2.27, we obtain that A is bijective.

3. The statement follows from Proposition 10 and Remark 14 in [3].

Proposition 3.10. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general

function such that
{
h ∈ N, h ≥ m : σ|I\Ih is injective

}
6= ∅; then, detA =

det tA.

Proof. Since
{
h ∈ N, h ≥ m : σ|I\Ih is injective

}
6= ∅, from Proposition 3.4,

the function tA : EI −→ EJ is
( ˜̃m, τ)-general, where ˜̃m ∈ N∗ is defined by

formula (20), and the function τ : J\J ˜̃m −→ I\I ˜̃m is given by

τ(j) = min
{
σ−1(k) : k ≥ j, k ∈ σ

(
I\I ˜̃m) } , ∀ j ∈ J\J ˜̃m.

Then, we have

detA = lim
n−→+∞

detA(n,n)

= lim
n−→+∞

det t
(
A(n,n)

)
= lim
n−→+∞

det
(
tA
)(n,n)

= det tA.

Proposition 3.11. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general

function such that
∑

i∈I\Im
|ai,j | < +∞, for any j ∈ J\Jm; moreover, let s, t ∈

N∗, s < t, let p = max{t,m} and let it ∈ I such that |it| = t; then:
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1. If there exist u = (uj : j ∈ J) ∈ EJ , v = (vj : j ∈ J) ∈ EJ , c1, c2 ∈ R

such that
∑
j∈J
|uj | < +∞,

∑
j∈J
|vj | < +∞, ait,j = c1uj + c2vj, for any

j ∈ J , by indicating by U = (uij)i∈I,j∈J and V = (vij)i∈I,j∈J the linear
functions obtained by substituting the t-th row of A for u and v, respec-
tively, then U and V are (p, ξ)-general, where the increasing function
ξ : I\Ip −→ J\Jp is defined by

ξ(i) =

{
σ(i) if σ(i) ∈ J\Jp
min (J\Jp) if σ(i) /∈ J\Jp

, ∀ i ∈ I\Ip; (40)

moreover, one has detA = c1 detU + c2 detV .

2. If B = (bij)i∈I,j∈J : EJ −→ EI is the linear function obtained by ex-

changing the s-th row of A for the t-th row of A, then B is (p, ξ)-general
and one has detB = −detA.

3. If C = (cij)i∈I,j∈J : EJ −→ EI is the linear function obtained by substi-
tuting the t-th row of A for the s-th row of A, or the s-th one for the t-th
one, then C is (p, ξ)-general and one has detC = 0.

Proof.

1. Since
∑

i∈I\Im
|ai,j | < +∞, ∀ j ∈ J\Jm, we have

∑
i∈I\Im

|uij | < +∞,∑
i∈I\Im

|vij | < +∞, ∀ j ∈ J\Jm; then, from point 5 of Proposition 2.24,

the functions U and V are (p, ξ)-general. Moreover, ∀n ∈ N∗, we have
detA(n,n) = c1 detU (n,n) + c2 detV (n,n), from which

detA = lim
n−→+∞

detA(n,n) = lim
n−→+∞

(
c1 detU (n,n) + c2 detV (n,n)

)
= c1 detU + c2 detV.

2. By proceeding as in the proof of point 1, we can prove that B is (p, ξ)-
general; moreover, ∀n ∈ N, n ≥ p, B(n,n) is the matrix obtained by
exchanging the s-th row of A(n,n) for the t-th row of A(n,n); then, one
has detB(n,n) = −detA(n,n), from which

detB = lim
n−→+∞

detB(n,n) = − lim
n−→+∞

detA(n,n) = − detA.

3. By proceeding as in the proof of point 1, we can prove that C is (p, ξ)-
general; moreover, since the s-th row of C and the t-th row of C are
equals, by exchanging these rows among themselves we obtain again the
matrix C; then, from point 2, we have detC = −detC, from which
detC = 0.
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Proposition 3.12. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general

function such that
∑

i∈I\Im
|ai,j | < +∞, for any j ∈ J\Jm; moreover, let s, t ∈

N∗, s < t, let p = max{t,m}, let jt ∈ J such that |jt| = t, and let the function
ξ : I\Ip −→ J\Jp defined by (40); then:

1. If there exist u = (ui : i ∈ I) ∈ EI , v = (vi : i ∈ I) ∈ EI , c1, c2 ∈ R such

that
∑
i∈I
|ui| < +∞,

∑
i∈I
|vi| < +∞, ai,jt = c1ui + c2vi, for any i ∈ I, by

indicating by U = (uij)i∈I,j∈J and V = (vij)i∈I,j∈J the linear functions
obtained by substituting the t-th column of A for u and v, respectively,
then U and V are (p, ξ)-general and one has detA = c1 detU + c2 detV .

2. If B = (bij)i∈I,j∈J : EJ −→ EI is the linear function obtained by exchang-

ing the s-th column of A for the t-th column of A, then B is (p, ξ)-general
and one has detB = −detA.

3. If C = (cij)i∈I,j∈J : EJ −→ EI is the linear function obtained by substi-
tuting the t-th column of A for the s-th column of A, or the s-th one for
the t-th one, then C is (p, ξ)-general and one has detC = 0.

Proof. The proof is analogous to that one of Proposition 3.11.

Proposition 3.13. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general

function such that
∑

i∈I\Im
|ai,j | < +∞, for any j ∈ J\Jm. If the dimension

of the vector space generated by the rows or the columns of A is finite, then
detA = 0.

Proof. Suppose that the dimension of the vector space generated by the rows of

A is finite; then, there exist n rows v(1),...,v(n) of A, where v(k) =
(
v
(k)
j : j ∈ J

)
,

∀ k ∈ {1, ..., n}, such that, if v = (vj : j ∈ J) is as row of A, there exist c1,...,cn ∈
R such that v = c1v

(1) + ...+ cnv
(n). From Proposition 3.11, by indicating by

Vk, ∀ k ∈ {1, ..., n}, the linear function obtained by substituting the row v of A
for v(k), by recursion we have detA = c1 detV1 + ... + cn detVn; moreover, Vk
has two rows equals to v(k), and so detVk = 0, ∀ k ∈ {1, ..., n}; then, detA = 0.
Analogously, if the dimension of the vector space generated by the columns of
A is finite, from Proposition 3.12 we obtain detA = 0.
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Remark 3.14: Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general

function such that
∑

i∈I\Im
|ai,j | < +∞, for any j ∈ J\Jm. Then, for any

n ∈ N, n ≥ m, for any ∅ 6= L ⊂ I and for any ∅ 6= N ⊂ J such that
|I\L| = |J\N | < +∞, the linear function A(L,N) : EN −→ EL is (n, ρ)-general,
where the function ρ : L\Ln −→ N\Nn is defined by

ρ(i) =

{
σ(i) if σ(i) ∈ N\Nn
min {j > σ(i) : j ∈ N\Nn} if σ(i) /∈ N\Nn

, ∀ i ∈ L\Ln.

Proof. The proof follows from Remark 2.25.

Definition 3.15. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general

function such that
∑

i∈I\Im
|ai,j | < +∞, for any j ∈ J\Jm; define the I × J

matrix cofA by

(cofA)ij = (−1)|i|+|j| det
(
A(I\{i},J\{j})

)
, ∀ i ∈ I, ∀ j ∈ J .

Proposition 3.16. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general

function such that
∑

i∈I\Im
|ai,j | < +∞, for any j ∈ J\Jm; moreover, suppose

that aij = 0, ∀ i ∈ Im, ∀ j ∈ J\Jm, or A is (m,σ)-standard; then, one has:

detA =
∑
t∈J

ait(cofA)it, ∀ i ∈ I; (41)

detA =
∑
s∈I

asj(cofA)sj, ∀ j ∈ J. (42)

Proof. Suppose that A 6= ∅ and set m = minA; ∀ i ∈ I, ∀ j ∈ J and ∀n ∈ N,
n ≥ max{|i|, |j|,m}, we have

detA = detA(n,n)
∏

p∈I\In

λp, (43)

from which

detA =
∑
t∈Jn

ait(cofA
(n,n))it

∏
p∈I\In

λp =
∑
t∈Jn

ait(cofA)it;

then
detA = lim

n−→+∞

∑
t∈Jn

ait(cofA)it =
∑
t∈J

ait(cofA)it.
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Analogously, from formula (43), we have

detA =
∑
s∈In

asj(cofA
(n,n))sj

∏
p∈I\In

λp =
∑
s∈In

asj(cofA)sj ,

and so
detA =

∑
s∈I

asj(cofA)sj .

Conversely, if A = ∅, ∀ s ∈ I, ∀ t ∈ J , we have A
(
A(I\{s},J\{t})) = ∅;

then, from Theorem 3.6, we obtain detA = det
(
A(I\{s},I\{t})) = 0, and so

(cofA)st = 0; then:

detA = 0 =
∑
t∈J

ait(cofA)it, ∀ i ∈ I;

detA = 0 =
∑
s∈I

asj(cofA)sj , ∀ j ∈ J .

Corollary 3.17. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general

function such that
∑

i∈I\Im
|ai,j | < +∞, for any j ∈ J\Jm; moreover, suppose

that aij = 0, ∀ i ∈ Im, ∀ j ∈ J\Jm, or A is (m,σ)-standard; then:

1. One has
A t (cofA) = (detA)II,I ; (44)

moreover, if A is bijective, the linear functions A−1 : EI −→ EJ and
t (cofA) : EI −→ EJ are continuous.

2. If A is bijective, then one has detA 6= 0 if and only if cofA 6= 0; moreover,
in this case

A−1 =
1

detA
t (cofA) . (45)

3. If A is (m,σ)-standard and bijective, then A−1 is
(
m,σ−1

)
-standard.

Proof.

1. From formula (41), we have∑
t∈J

ait(cofA)it = detA, ∀ i ∈ I.
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Moreover, we have∑
t∈J

ait(cofA)jt = 0, ∀ i, j ∈ I, i 6= j; (46)

in fact, from formula (41) and Proposition 3.11, the left side of (46) is
equal to detC, where C is the (p, ξ)-general function obtained by substi-
tuting the j-th row of A for the i-th row of A, p = max{|i| , |j| ,m}, and
the increasing function ξ : I\Ip −→ J\Jp is defined by (40); then, from
Proposition 3.11, we have detC = 0. This implies that∑

t∈J
ait(cofA)jt = (detA)δij , ∀ i, j ∈ I,

where δij is the Kronecker symbol, and so formula (44) follows, since the
functions δij and δij coincide on I×I. Moreover, suppose that A is bijec-
tive; since A is continuous from Proposition 3.4, then the linear function
A−1 : EI −→ EJ is continuous (see, e.g., the theory in Weidmann’s book
[11]); furthermore, from formula (44), we have

t (cofA) = (detA)A−1,

and so the linear function t (cofA) : EI −→ EJ is continuous too.

2. If A is bijective, from formula (44) we have detA = 0 if and only if
cofA = 0, and so detA 6= 0 if and only if cofA 6= 0; moreover, in this
case, from formula (44) we obtain formula (45).

3. If A is (m,σ)-standard and bijective, from Proposition 3.9, we have
detA 6= 0, λi 6= 0, ∀ i ∈ I\Im, and σ is bijective; moreover, ∀ y ∈ EI , we
have A

(
A−1y

)
= y, from which(

A−1y
)
i

=
yi
λi

, ∀ i ∈ I\Im; (47)

furthermore, we have
{
i ∈ I\Im : (λi)

−1 6= 0
}

= I\Im, from which

∏
i∈I\Im:(λi)

−1 6=0

(λi)
−1

=

 ∏
i∈I\Im

λi

−1 =

 ∏
i∈I\Im:λi 6=0

λi

−1 ∈ R∗;

then, we obtain sup
i∈I\Im

∣∣∣(λi)−1∣∣∣ < +∞ and inf
i∈I\Im:(λi)

−1 6=0

∣∣∣(λi)−1∣∣∣ > 0.

Finally, from formula (47) and since the linear function A−1 : EI −→ EJ
is given by formula (45), then A−1 is

(
m,σ−1

)
-standard, with λi

(
A−1

)
=

(λi)
−1

, ∀ i ∈ I\Im.
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Proposition 3.18. Let ϕ : U ⊂ EJ −→ EI be a (m,σ)-general function and let
x0 = (x0,j : j ∈ J) ∈ U such that there exists the function Jϕ (x0) : EJ −→ EI ;
then, Jϕ (x0) is a linear (m,σ)-general function; moreover, for any n ∈ N,
n ≥ m, there exists the linear (m,σ)-general function Jϕ(n,n) (x0) : EJ −→ EI ,
and one has

det Jϕ (x0) = lim
n→+∞

det Jϕ(n,n) (x0) .

Proof. Since ϕ is (m,σ)-general, from Remark 3.2, the linear function Jϕ (x0)
is (m,σ)-general; moreover, ∀n ∈ N, n ≥ m, from Proposition 2.4, there exists
the linear function Jϕ(n,n) (x0) : EJ −→ EI , and it is (m,σ)-general, from

Remark 3.2; furthermore, we have A (Jϕ (x0)) = A
(
Jϕ(n,n) (x0)

)
.

If A (Jϕ (x0)) 6= ∅, set m = minA (Jϕ (x0)); ∀n ≥ m, we have

det Jϕ(n,n) (x0) = detJϕ(n,n) (x0,j : j ∈ Jn)
∏

i∈I\In

ϕ′i,σ(i)
(
x0,σ(i)

)
; (48)

if |(I\Im) \Iϕ| < +∞, set i0 = max ((I\Im) \Iϕ) and m̂ = max{m, |i0|}; since∏
i∈I\Im̂

ϕ′i,σ(i)
(
x0,σ(i)

)
∈ R∗, we have lim

n→+∞

∏
i∈I\In

ϕ′i,σ(i)
(
x0,σ(i)

)
= 1; then, from

(48) and Theorem 3.6, we obtain

lim
n→+∞

det Jϕ(n,n) (x0) = lim
n→+∞

det Jϕ(n,n) (x0,j : j ∈ Jn) = detJϕ (x0) ;

conversely, suppose that |(I\Im) \Iϕ| = +∞; for n sufficiently large, we have
det Jϕ(n,n) (x0,j : j ∈ Jn) = 0, from which

det Jϕ (x0) = lim
n→+∞

det Jϕ(n,n) (x0,j : j ∈ Jn) = 0

= lim
n→+∞

det Jϕ(n,n) (x0,j : j ∈ Jn)
∏

i∈I\In

ϕ′i,σ(i)
(
x0,σ(i)

)
= lim
n→+∞

det Jϕ(n,n) (x0) .

Moreover, if A (Jϕ (x0)) = ∅, ∀n ∈ N, n ≥ m, we have A
(
Jϕ(n,n) (x0)

)
= ∅,

and so

det Jϕ (x0) = 0 = lim
n→+∞

det Jϕ(n,n) (x0) .
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Example 3.19: Consider the linear function A = (aij)i,j∈N∗ : EN∗ −→ EN∗

given by

(Ax)i =


∑
j∈N∗

2−jxj if i = 1

x1 +
∑
j∈N∗

2−jxj if i = 2

2−ix1 + 22
−i

if i ∈ N∗\{1, 2}

, ∀x = (xj : j ∈ N∗) ∈ EN∗ .

Then, A is a strongly (m,σ)-general function, where I = J = N∗, m = 2,
Im = Jm = {1, 2}, σ is the function given by σ(i) = i, ∀ i ∈ N∗\{1, 2}, and

A = N∗\{1} 6= ∅; moreover, we have λi = 22
−i

, ∀ i ∈ N∗\{1, 2}.
In order to calculate detA, observe that A({2},N∗) = u + v, where u =

A({1},N∗) ∈ EN∗ , and v = (vj : j ∈ N∗) ∈ EN∗ , where vj = δj1, ∀ j ∈
N∗. Then, from Proposition 3.11, we have detA = detU + detV , where
U = (uij)i,j∈N∗ and V = (vij)i,j∈N∗ are the linear functions obtained by
substituting the second row of A by u and v, respectively; moreover, since
U ({1},N∗) = U ({2},N∗), we have detU = 0, from which

detA = detV = lim
n−→+∞

detV (n,n). (49)

Finally, ∀n ∈ N∗\{1, 2}, we have

detV (n,n) = (−1)n+12−n detV (n−1,{2,...,n}) + 22
−n

detV (n−1,n−1)

= 22
−n

detV (n−1,n−1), (50)

since the second row of V (n−1,{2,...,n}) is zero, and so detV (n−1,{2,...,n}) = 0.
Then, by recursion, from (50) we obtain

detV (n,n) = detV (2,2)
n∏
j=3

22
−n

,

and so formula (49) implies

detA = lim
n−→+∞

detV (2,2)
n∏
j=3

22
−n

= detV (2,2)2

+∞∑
j=3

2−n

= −1

4
4
√

2.

4. Problems for further study

A natural extension of this paper and of the paper [4] is the generalization
of the change of variables’ formula for the integration of the measurable real
functions on

(
RI ,B(I)

)
, by substituting the (m,σ)-standard functions for the

(m,σ)-general functions.
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Moreover, a natural application of this paper, in the probabilistic frame-
work, is the development of the theory of the infinite-dimensional continuous
random elements, defined in the paper [3]. In particular, we can prove the for-
mula of the density of such random elements composed with the (m,σ)-general
functions, with further properties. Consequently, it is possible to introduce
many random elements that generalize the well known continuous random vec-
tors in Rm (for example, the Beta random elements in EI defined by the
(m,σ)-general matrices), and to develop some theoretical results and some ap-
plications in the statistical inference. It is possible also to define a convolution
between the laws of two independent and infinite-dimensional continuous ran-
dom elements, as in the finite case.

Furthermore, we can generalize the paper [2] by considering the recursion
{Xn}n∈N on [0, p)N

∗
defined by

Xn+1 = AXn +Bn (mod p),

where X0 = x0 ∈ EI , A is a bijective, linear, integer and (m,σ)-general func-
tion, p ∈ R+, and {Bn}n∈N is a sequence of independent and identically dis-
tributed random elements on EI . Our target is to prove that, with some as-
sumptions on the law of Bn, the sequence {Xn}n∈N converges with geometric

rate to a random element with law
⊗
i∈N∗

(
1
pLeb

∣∣∣
B([0,p))

)
. Moreover, we wish

to quantify the rate of convergence in terms of A, p, m, and the law of Bn.
Finally, in the statistical mechanics, it is possible to describe the systems of

smooth hard particles, by using the Boltzmann equation or the more general
Master kinetic equation, described for example in the paper [9]. In order to
study the evolution of these systems, we can consider the model of countable
particles, such that their joint infinite-dimensional density can be determined
by composing a particular random element with a (m,σ)-general function.
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