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Abstract. Combining computational models of argumentation with
probability theory has recently gained increasing attention, in particular
with respect to abstract argumentation frameworks. Approaches follow-
ing this idea can be categorised into the constellations and the epistemic
approach. While the former considers probability functions on the sub-
graphs of abstract argumentation frameworks, the latter uses probability
theory to represent degrees of belief in arguments, given a fixed frame-
work. In this paper, we investigate the case where probability functions
are given on the extensions of abstract argumentation frameworks. This
generalises classical semantics in a straightforward fashion and we show
that our approach also complies with many postulates for epistemic prob-
abilistic argumentation.

1 Introduction

Computational models of argumentation are non-monotonic reasoning for-
malisms that focus on the role of arguments, i.e., defeasible reasons supporting a 
certain claim, and their relationships. In this context, the well-known formalism 
of abstract argumentation frameworks [11] abstracts from the inner structure of 
arguments and only models conflict between them, thus representing argumen-
tation scenarios as directed graphs where arguments are vertices and an attack 
of one argument on another is modelled by a directed edge. Still, this approach is 
quite expressive, subsumes many other approaches to non-monotonic reasoning, 
and provides an active research field. Many research topics have been spawned 
around these frameworks including, among others, semantical issues [3], exten-
sions on support [10], algorithms [9], and systems [30].

In their original form, abstract argumentation frameworks are a qualitative 
approach to non-monotonic reasoning as their semantics is set-based (it amounts 
to identifying sets of collectively acceptable arguments, called extensions) and  
inferences consist of statements regarding the acceptance status of arguments, 
which can be binary (an argument is simply “accepted” or “rejected”) or three-
valued (where a third option “undecided” is also possible). In recent years, many
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approaches have been developed that incorporate some quantitative aspects into
abstract argumentation frameworks. These can be categorised into two families.
In the first family, the syntactic representation of argumentation frameworks is
extended with quantities, in order to incorporate more information explicitly.
For example, in [25] arguments and attacks can be annotated with probabilities
that model user-supplied information about the likelihood that these objects
actually appear in the argumentation framework. This approach is also called
the constellations approach to probabilistic argumentation [19]. The main aim
of these works is then to generalise classical semantics and other notions to the
extended approach. See also [12,32] for some other examples from this family
based on weights and fuzzy logic, respectively. The other family is about bringing
quantities into the semantics of vanilla argumentation frameworks themselves.
Here, the syntactic representation is not extended and the aim is to derive quan-
titative information which is implicit in the topology of the graph. Concrete
approaches within this family are, e.g., numerical ranking functions [1,7,18,27]
and the equational approach [16,17]. The epistemic approach to probabilistic
argumentation [5,21,22,28] considers the use of probability functions to capture
the degrees of belief of an agent in (sets of) arguments (see [21] for a discussion).
In this sense the epistemic approach shares some properties with both the fami-
lies introduced above: on the one hand, the probability values are user-supplied,
since they represent the belief of some agent, on the other hand, they can be put
in relationship with the semantics of vanilla argumentation frameworks, since it
is reasonable to assume that the beliefs of an agent take into account (and/or
are constrained by) the topology of the graph.

In this paper, we contribute to the research trend on probabilistic argumen-
tation by considering a further option, which consists in adding a probabilistic
layer on top of classical semantics of abstract argumentation frameworks, i.e., we
consider probability functions on extensions. This investigation is motivated by
the fact that given an argumentation framework, capturing the attacks existing
between arguments, each extension prescribed by an argumentation semantics
can be regarded as an alternative answer to the question: “which arguments are
able to survive the conflict together?”. Thus the set of extensions can be regarded
as a set of alternative reasonable options, each satisfying the “survival criterion”
encoded by the argumentation semantics, which however does not provide any
indication on which extension to select, in case the agents needs to finally choose
one of them. This is required in particular in the case of practical reasoning
where arguments concern reasons about what to do and alternative extensions
may be put in correspondence with different available courses of action. In this
context probabilities on extensions may encode additional information, external
to the argumentation process, about which option is more likely to be selected
by an agent. For instance suppose that in the context of some reasoning activity
involving a health problem, two extensions emerge as reasonable, say one corre-
sponding to undergoing surgery and the other to assuming a drug for a long time.
The final choice is uncertain and is in the hands of the patient, whose (possibly
non-rational) attitude towards the two options can be modeled by a probability
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assignment on the two extensions, e.g. you may assign a higher probability to the
second extension if you know that the patient is particularly worried about the
scars caused by surgery. These probability values could be acquired for instance
using an approach to probabilistic user modeling, as proposed in [20].

Besides modelling the attitudes of a single agent, probabilities on extensions
may be used to model collective attitudes too. Consider the case where two or
more politicians argue about their government programmes and assume that
their different positions are acceptable from an argumentative point of view.
Then a probability assignment on the extensions corresponding to the positions
of the candidates may reflect the outcomes of an opinion poll among the voters
(note that the use of votes in the context of argumentation frameworks to support
an initial numerical assessment, though not of probabilistic nature, has been
considered in [14,24]).

Probability assignments on extensions provide then the basis for further infer-
ential activities, for instance an argument can in general be included in differ-
ent extensions and it is interesting to consider the probability that a specific
argument (or sets of arguments) is selected. In the political example, different
candidates, say all candidates, may share the argument that “we should cut
taxes since this will promote economical growth”, then the probability that this
argument is accepted and that tax cuts are in the next government programme
is 1, independently of the individual probabilities assigned to the various exten-
sions/candidates (provided that you trust that politicians keep faith with their
promises).

Altogether, the general idea is to provide a contribution to the investigation
of integrated uncertain reasoning models encompassing both qualitative (in our
case, based on abstract argumentation) and quantitative (in our case, proba-
bilistic) evaluation aspects.

To provide a formal basis to this kind of modelling and reasoning activities, in
this paper we investigate probability functions on extensions, and in particular,

1. we introduce our approach to probability functions over extensions and we
draw some relationships with the maximum entropy principle and with impre-
cise probabilities (Sect. 3);

2. we investigate the properties of this extension, in particular wrt. rationality
postulates usually considered for the epistemic approach (Sect. 4);

3. we investigate some computational issues of the approach (Sect. 5).

Necessary preliminaries are introduced in Sect. 2 and we conclude with a sum-
mary in Sect. 6.

2 Preliminaries

Abstract argumentation frameworks [11] take a very simple view on argumenta-
tion as they abstract away any detail about the internal structure of an argu-
ment, its origin and nature and so on. Abstract argumentation frameworks only
capture the conflicts between arguments by means of a binary attack relation.

3



Probabilities on Extensions in Abstract Argumentation

Definition 1. An abstract argumentation framework AF is a tuple AF =
(Arg,→) where Arg is a set of arguments and → is a relation →⊆ Arg × Arg.

For the sake of simplicity, in this paper we assume that the set Arg is finite.
For two arguments A,B ∈ Arg the relation A → B means that argument A
attacks argument B. We abbreviate AttAF(A) = {B | B → A}. Abstract argu-
mentation frameworks can be concisely represented by directed graphs, where
arguments are represented as nodes and edges model the attack relation.

Example 1. Consider the abstract argumentation framework AF1 = (Arg1,→1)
depicted in Fig. 1. Here it is Arg1 = {A1,A2,A3,A4,A5} and →1= {(A1,A2),
(A2,A1), (A2,A3), (A3,A4), (A4,A5), (A5,A4), (A3,A5)}.

A1 A2 A3

A4

A5

Fig. 1. The argumentation framework AF1 from Example 1

An argumentation semantics is a formal criterion to determine the conflict
outcomes. Two main approaches to semantics definition are available in the lit-
erature, namely the extension-based approach [11] and the labeling-based app-
roach [33]. In this paper we focus on the extension-based approach, the reader
is referred to [3] for a review and an analysis of the correspondence between the
two approaches. An extension E of an argumentation framework AF = (Arg,→)
is a set of arguments E ⊆ Arg that corresponds to a coherent and tenable view in
the argumentation process underlying AF. Intuively an extension is a set of argu-
ments which are “collectively acceptable” or “can survive the conflict together”.

In the literature [3,8,11] a wide variety of different types of semantics has
been proposed. The definition of a semantics typically builds on some basic prop-
erties that an extension should satisfy: arguably, conflict-freeness and admissi-
bility are among the most important extension properties.

Definition 2. An extension E ⊆ Arg is conflict-free if for all A,B ∈ E it is not
the case that A → B. An extension E ⊆ Arg defends an argument A ∈ Arg if for
all C ∈ Arg, if C → A then there is B ∈ E with B → C. An extension E ⊆ Arg
is admissible if it is conflict-free and defends all its elements.

We abbreviate by cf(AF) the set of conflict-free extensions, by mcf(AF) the max-
imal (wrt. set inclusion) conflict-free extensions, and by adm(AF) the set of
admissible extensions. Dung’s traditional semantics are defined by imposing fur-
ther constraints.

Definition 3. Let AF = (Arg,→) be an abstract argumentation framework and
E an admissible extension.
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– E is complete if for all A ∈ Arg, if E defends A then A ∈ E.
– E is grounded if and only if E is minimal among complete extensions.
– E is preferred if and only if E is maximal among complete extensions.
– E is stable if and only if E is complete and attacks all other arguments.

All statements on minimality/maximality are meant to be with respect to set
inclusion.

We denote by comp(AF), ground(AF), pref(AF), and st(AF) the sets of com-
plete, grounded, preferred, and stable extensions of AF, respectively. Note that
a grounded extension is uniquely determined and always exists [11], so we also
abbreviate by GE(AF) the unique grounded extension of AF, i.e., ground(AF) =
{GE(AF)}. Furthermore, we have the following relationships, cf. [3].

Proposition 1. Let AF = (Arg,→) be an abstract argumentation framework.
Then

1. st(AF) ⊆ mcf(AF) ⊆ cf(AF),
2. st(AF) ⊆ pref(AF) ⊆ comp(AF) ⊆ adm(AF) ⊆ cf(AF), and
3. ground(AF) ⊆ comp(AF).

Besides the above mentioned four traditional semantics, a variety of further
proposals have been considered in the literature such as CF2 semantics [2],
which is not based on the admissibility property. However, in this paper we
focus on complete, grounded, preferred, and stable semantics.

Example 2. We continue Example 1. There, the sets E1, . . . , E6 given via

E1 = ∅ E2 = {A1} E3 = {A2}
E4 = {A1,A3} E5 = {A2,A4} E6 = {A2,A5}

are admissible. Furthermore, E1, E3, . . . , E6 are complete, E1 is grounded, and
E4, E5, E6 are both preferred and stable.

As shown by the above example, in general argumentation semantics are
multi-extension or multiple-status i.e. they may prescribe more than one exten-
sion for a given argumentation framework. When a semantics prescribes exactly
one extension for every argumentation framework it is called single-extension
or single-status. Among the semantics considered in this paper, only grounded
semantics is single-status.

The possible existence of multiple extensions gives rise to different notions of
the justification status of an argument. Given a semantics S, an argument A is
credulously justified if there is an S-extension E such that A ∈ E; A is skeptically
justified if for all S-extensions E it holds that A ∈ E. Note that, unless the set of
extensions is empty, being skeptically justified implies being credulously justified
and that the two notions coincide for single-extension semantics.

Example 3. We continue Example 2. Here, no argument is skeptically justified
wrt. grounded, complete, preferred, and stable semantics. Furthermore, no argu-
ment is credulously justified wrt. grounded semantics and all arguments are
credulously justified wrt. the other semantics.
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3 Probabilities on Extensions

Let AF = (Arg,→) be fixed. As in the epistemic approach to probabilistic argu-
mentation [5,21,22,28], we consider probability functions on sets of arguments,
namely functions P : 2Arg → [0, 1] with

∑

E⊆Arg

P (E) = 1

The idea being that P (E) indicates the probability that the extension E is
selected as the final outcome of the semantics evaluation of AF. We denote as
PAF the set of all such probability functions. For P1, P2 ∈ PAF we define P1 = P2

iff P1(E) = P2(E) for all E ⊆ Arg.
Central to our approach is the following definition.

Definition 4. We say that P ∈ PAF is semantically based on a set E ⊆ 2Arg, if
P (E) = 0 for all E /∈ E.

We denote as PE
AF ⊆ PAF the set of all probability functions that are seman-

tically based on E . For example, Pmcf(AF)
AF is the set of all probability functions

that are semantically based on the maximal conflict-free subsets of AF. Note that
in many cases one can assume that the set E is known a priori, e.g. the set of
extensions prescribed by a given semantics for a given argumentation framework
can be computed using one of the available implemented systems for abstract
argumentation [9,29,30]. In this case one can of course easily ensure that a prob-
ability function is semantically based on E by construction. The issue of studying
computational procedures for indirectly enforcing that a probability function is
semantically based on a set E and for transforming an arbitrary probability
function into the “closest” one which is semantically based on a given set E are
interesting issues of future work.

Example 4. We continue Example 3 and consider the probability functions
P1, . . . , P7 defined in Table 1. All these functions are semantically based on the
admissible sets of AF0, i.e., P1, . . . , P7 ∈ Padm(AF1)

AF1
. Furthermore, we have

– P4, . . . , P7 ∈ Pcomp(AF1)
AF1

,

– P4, P5, P6 ∈ Pst(AF1)
AF1

= Ppref(AF1)
AF1

, and

– P7 ∈ Pground(AF1)
AF1

.

A first observation is that we obtain the same hierarchy of the probabilistic
versions of semantics as in Proposition 1.

Proposition 2. If E ⊆ E ′ then PE
AF ⊆ PE′

AF. In particular

1. Pst(AF)
AF ⊆ Pmcf(AF)

AF ⊆ Pcf(AF)
AF ,

2. Pst(AF)
AF ⊆ Ppref(AF)

AF ⊆ Pcomp(AF)
AF ⊆ Padm(AF)

AF ⊆ Pcf(AF)
AF , and

3. Pground(AF)
AF ⊆ Pcomp(AF)

AF .
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Table 1. Definition of probability functions from Example 4; Pi(E) = 0 for all remain-
ing E /∈ {E1, . . . , E6} for i = 1, . . . , 7

E1 = ∅ E2 = {A1} E3 = {A2} E4 = {A1,A3} E5 = {A2,A4} E6 = {A2,A5}
P1 0.2 0.1 0.3 0.2 0.1 0.1

P2 0 0.3 0.2 0.3 0.1 0.1

P3 0 0.2 0.2 0.2 0.2 0.2

P4 0 0 0 0.3 0.1 0.6

P5 0 0 0 1/3 1/3 1/3

P6 0 0 0 0.5 0.5 0.0

P7 1 0 0 0 0 0

Proof. This follows directly from Definition 4 and Proposition 1. ��
Furthermore, as in the classical case we have that probabilistic reasoning wrt.

grounded semantics is uniquely defined.

Proposition 3. |Pground(AF)
AF | = 1.

Proof. As every AF has a unique grounded extension E, any P semantically
based on grounded semantics must have P (E) = 1 and P (E′) = 0 for all other
sets E′. Therefore, P is uniquely determined. ��

Given a probability function P ∈ PAF representing uncertainty about which
extension is selected, an agent may be focused on a single argument or, more
generally on a set of arguments, and be interested in the probability that this
argument or sets of arguments is included in the selected extension E. In other
words the probability P can be extended to the events of the kind (F ⊆ E)
where F is a generic set of arguments and E is the selected extension. For a
set of arguments F , this extended probability will be denoted as P⊆(E) and is
derived from P as follows

P⊆(F ) =
∑

E∈2Arg,F⊆E

P (E) (1)

For individual arguments A ∈ Arg we introduce a special notation

P∈(A) � P⊆({A}) =
∑

E∈2Arg,A∈E

P (E) (2)

Example 5. Continuing Example 4, we have, e.g.

P∈
2 (A2) = P2(E3) + P2(E5) + P2(E6) = 0.4

P∈
4 (A5) = P4(E6) = 0.6

The following propositions report some basic observations.
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Proposition 4. For P ∈ Pcf(AF)
AF , P∈(A) = 0 for all self-attacking arguments A.

Proof. If A is self-attacking then A is not member of any conflict-free set E of
AF. Therefore P∈(A) =

∑
A∈E∈cf(AF) P (E) = 0. ��

Proposition 5. For P ∈ Pcomp(AF)
AF , P⊆(GE(AF)) = 1 and P∈(A) = 1 for

every argument A ∈ GE(AF).

Proof. The statement follows from the fact that the grounded extension of AF is
included in every complete extension of AF. ��

While some basic results, as shown above, hold for every probability function
P , provided that P is semantically based on a given set of extensions, more
specific properties of the beliefs of an agent may depend on the actual probability
function P adopted by the agent within PE

AF. In case an agent has no information
or criteria to adopt a specific P , the well-known maximum entropy principle
[23,26] states that the uniform probability assignment is adopted. In our case, the
assignment of uniform nonzero probability values is restricted to the prescribed
set of extensions.

Definition 5. Let P ∈ PAF. We say that P is semantically uniform on E ⊆ 2Arg,
if P ∈ PE

AF and for all E,E′ ∈ E we have P (E) = P (E′).

Of course semantically uniform probability functions are uniquely deter-
mined, given AF and E and the value of P∈(A) for each argument A is easily
characterised.

Proposition 6. Let E ⊆ 2Arg.

1. If P, P ′ ∈ PE
AF are semantically uniform on E, then P = P ′, i.e. ∀E ∈ E

P (E) = P ′(E).
2. If P ∈ PE

AF is semantically uniform on E, then for all A ∈ Arg

P∈(A) =
|{E ∈ E | A ∈ E}|

|E|
Proof. This follows directly from Definition 5. ��

Also we are interested to characterise the case where the set of possible
extensions is restricted (e.g. from admissible extensions to complete extensions)
while still applying the maximum entropy principle.

Definition 6. P ∈ PAF is a semantically uniform restriction of P ′ ∈ PAF, if P
is semantically uniform on E, P ′ is semantically uniform on E ′, and E ⊆ E ′.

Example 6. We continue Example 4. While both P2 and P3 are semantically
based on E = {E2, . . . , E6}, only P3 is semantically uniform wrt. E . Furthermore,
P4, P5, P6 are semantically based on the stable/preferred extensions and P5 is
also semantically uniform on those. P5 is also a semantically uniform restriction
of P3 and P6 is a semantically uniform restriction of P5.
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The maximum entropy principle offers a simple criterion to select one repre-
sentative element in the (usually uncountably large) set of probability functions
that are semantically based on some set of extensions. By construction, the infor-
mation content of this representative element is rather weak: in particular, as to
individual arguments, it boils down to counting how often an argument appears
in extensions, cf. item 2 of Proposition 6.

In general, given a set of probability functions, their lower envelope [31] can
be regarded as another synthetic representative of the set itself.

Definition 7. Given a set of probability functions P on a set E the lower enve-
lope P of P is defined for each E ∈ E as P (E) = infP∈P P (E).

The lower envelope of a set of probabilities has interesting formal properties
since it belongs to the family of imprecise probabilities and in particular is a
coherent lower probability [31] (see Theorem 1 below). In words, P (E) identifies
the minimum degree of belief in E given the set P. The function P can therefore
be regarded as a sort of cautious representation of the information content of P.
Specialising this notion to our context we get the following definition.

Definition 8. Given a set of probability functions P ⊆ PAF we define1

– P (E) = infP∈P P (E) for every E ∈ 2Arg

– P⊆(E) = infP∈P P⊆(E) for every E ∈ 2Arg

– P∈(A) = infP∈P P∈(A) for every A ∈ Arg

It is worth noting that each coherent lower probability P function has a
conjugate upper probability P which for each E is defined by the following
conjugacy relation

P (E) = 1 − P (¬E) (3)

Thus for instance the upper probability that a given extension E is selected
is equal to 1 minus the lower probability that E is not selected. Given the set
of probability functions P of which P is the lower envelope, P can be equiv-
alently characterized as the upper envelope of P, replacing inf with sup and
making other obvious adjustments in Definitions 7 and 8. In this sense, dually
with respecty to P , the function P can be regarded as a sort of optimistic rep-
resentation of the information content of P.

In general, for an event E, the interval [P (E), P (E)] gives an account of the
distance between a cautious and an optimistic reading of the set P with respect to
E. In particular if P (E) = P (E), the set P provides a precise information about
the probability of E, while at the other extreme, if P (E) = 0 and P (E) = 1, the
set P provides no information at all about the probability of E.

1 Note that the definitional relation for P ⊆(E) in (1) does not carry over to P ⊆(E),
i.e. in general it does not hold that P ⊆(E) =

∑
E′∈2Arg,E⊆E′ P (E′). An analogous

consideration applies to P ∈(A).
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The reader is referred to [31] for an extensive treatment of these concepts. In
particular in [31] the values P (E) and P (E) were given a behavioral interpreta-
tion in an idealized betting scheme on E.

To make this notion clearer, we recall that this interpretation is rooted in
de Finetti’s subjective probability theory [15], of which the theory of imprecise
probabilities introduced in [31] is a generalisation.

In de Finetti’s approach a (precise) probability assessment is a function P :
E → R, where E is an arbitrary (finite or infinite) set of events and R is the set
of real numbers. For each event E ∈ E , P (E) is the “fair” price of a (unitary)
bet on E, i.e. P (E) is the amount of money that an agent is ready to pay to
an opponent in order to receive the sum of 1 if E turns out to be true and 0
otherwise, and, indifferently, the sum that the agent is ready to receive from an
opponent as a payment for the commitment to pay the sum of 1 if E turns out
to be true and 0 otherwise. More formally, P (E) is the price, according to the
agent, of the indicator of E, denoted as I(E), namely the random number which
takes value 1 if E is true, and value 0 if E is false. It is assumed that the agent
is indifferently ready to buy or sell I(E) at price P (E). In the case of buying,
the random gain of the agent is I(E)−P (E), while it is P (E)− I(E) in the case
of selling. A not necessarily unitary bet is characterized by a real coefficient (or
stake) s ∈ R, so that the gain of the agent is given by s(I(E)−P (E)). A positive
(negative) value of s corresponds to a buying (selling) choice by the agent.

According to the betting interpretation, a probability assessment has to sat-
isfy some conditions ensuring that the bet makes sense for both participants.
In particular, de Finetti has established a property of coherence, called dF-
coherence in the sequel.

Definition 9. Given an arbitrary set of events E, P : E → R is a dF-coherent
probability if and only if ∀n ∈ N+, ∀s1, . . . , sn ∈ R, ∀E1, . . . En ∈ E, it holds that

max

[
n∑

i=1

si(I(Ei) − P (Ei))

]
≥ 0 (4)

where N+ is the set of positive integer numbers.

Intuitively dF-coherence states that for any finite combination of bets, the
maximum value of the random gain of the agent is non-negative, hence the agent
avoids a sure loss. It is well-known that dF-coherence implies several fundamental
properties2 of probability assessments, including in particular the fact that 0 ≤
P (E) ≤ 1 for every event E and the following self-conjugacy relation:

P (E) = 1 − P (¬E). (5)

Considering the same betting context, imprecise probabilities [31] can be
introduced by lifting the assumption that the agent has a precise price estima-
tion, used indifferently for buying or selling event indicators. Rather (as typical
2 In fact, on finite algebras of events the notions of dF-coherent probabilities, finitely

additive probabilities and σ-additive probabilities coincide.
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in real markets) the agent considers, for each event E, two different prices, one
for buying and one for selling I(E), denoted respectively as P (E) and P (E).
Clearly, P (E) ≤ P (E). Moreover, the agent is of course ready to buy also at
any price lesser than P (E), which hence represents the supremum buying price
for I(E). Similarly, P (E) is the infimum selling price for I(E). Given that, for
any event E, I(¬E) = 1 − I(E), it turns out that buying an event is equiva-
lent to selling its complement and vice versa. Hence, in the context of imprecise
probabilities, the following conjugacy relation replaces condition (5):

P (E) = 1 − P (¬E) (6)

In virtue of the conjugacy relation, one can focus on lower or upper proba-
bilities only.

Definition 10 provides the notion of coherence for lower probabilities [31].

Definition 10. Given an arbitrary set of events E, P : E → R is a coherent
lower probability if and only if ∀n ∈ N = N+ ∪ {0}, and for all real and non-
negative s0, . . . , sn, ∀E0, . . . En ∈ E, it holds that

max

[[
n∑

i=1

si(I(Ei) − P (Ei))

]
− s0(I(E0) − P (E0))

]
≥ 0 (7)

The coherence condition requires that the maximum of the gain of the agent
is non negative for every (including the empty) combination of buying bets with
at most one selling bet of a single (arbitrarily selected) event E0. In a sense
Definition 10 allows the agent to use its supremum buying price for any buying
transaction but also forces the agent to use the same price for (at most one)
selling transaction. Intuitively, this ensures that the assessment P by the agent
is not too unfair.

As already mentioned, the lower envelope theorem, one of the main results
of the theory of imprecise probabilities developed in [31], provides a nice char-
acterization of coherent lower probabilities by relating them to sets of precise
probabilities.

Theorem 1 [31]. Given a set E, P is a coherent lower probability on E if and
only if there is a set P of (precise) dF-coherent probabilities on E such that
P (E) = infP∈P P (E) for every E ∈ E.

In words, a lower probability P is coherent if and only if it can be obtained
as the lower envelope of a set (P) of dF-coherent precise probabilities (P ). This
result provides both a constructive procedure for coherent lower probabilities
and a motivation for their existence: when a set of different probability assess-
ments is given, coherent lower probabilities arise by aggregating them in the
least committed way.

Example 7. With reference to Table 1, let P = {P1, . . . , P6}, P be its lower
envelope and P its conjugate upper envelope. We have P (E1) = P (E2) =
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P (E3) = P (E6) = 0; P (E4) = 0.2; P (E5) = 0.1 and P (E1) = 0.2;
P (E2) = P (E3) = 0.3; P (E4) = P (E5) = 0.5; P (E6) = 0.6. Also, for
instance, P∈(A2) = infP∈P{P (E3) + P (E5) + P (E6)} = 0.4 and dually
P

∈
(A2) = supP∈P{P (E3)+P (E5)+P (E6)} = 0.7. We have also P∈(A1) = 0.3;

P
∈
(A1) = 0.6; P∈(A3) = 0.2; P

∈
(A3) = 0.5; P∈(A4) = 0.1; P

∈
(A4) = 0.5;

P∈(A5) = 0; P
∈
(A5) = 0.6.

When the set P coincides with the set PE
AF of all probability functions that

are semantically based on E , then for each argument A the possible values of
P (A) and P (A) are limited, so that the provided information is either extremely
precise (both values are either 0 or 1) or completely vague (P (A) = 0 and
P (A) = 1).

Proposition 7. Given the set of probability functions PE
AF for some set of exten-

sions E, let P be its lower envelope and P its conjugate upper envelope. For each
argument A ∈ Arg it holds that:

– P∈(A) = 1 iff ∀E ∈ E A ∈ E; P∈(A) = 0 otherwise;
– P

∈
(A) = 1 iff ∃E ∈ E : A ∈ E; P

∈
(A) = 0 otherwise.

Proof. If ∀E ∈ E A ∈ E then ∀P ∈ PE
AF it holds P∈(A) = 1 from which

P∈(A) = P
∈
(A) = 1. Otherwise if ∃E ∈ E : A /∈ E then the probability

function given by P (E) = 1 and P (E′) = 0 for every E′ 
= E belongs to PE
AF

from which P∈(A) = 0 and P∈(A) = 0. Analogously, if ∃E ∈ E : A ∈ E the
probability function given by P (E) = 1 and P (E′) = 0 for every E′ 
= E belongs
to PE

AF from which P∈(A) = 1 and P
∈
(A) = 1. Otherwise �E ∈ E : A ∈ E and

then ∀P ∈ PE
AF it holds P∈(A) = 0 from which P

∈
(A) = 0.

In general, the lower (or upper) envelope and the upper envelope of a set of
precise probabilities are not precise probabilities themselves. However in some
special cases some interesting correspondences between lower (or upper) values
and precise probability assignments can be obtained. This is in particular the
case when considering the set PE

AF of all probability functions that are semanti-
cally based on E : it can be seen that for each argument A the lower probability
value P∈(A) induced by the lower envelope of PE

AF coincides with the precise
probability value P∈(A) induced by the precise probability P ∈ PAF which gives
probability 1 to the intersection of the elements of E .

Proposition 8. Given the set of probability functions PE
AF for some set of exten-

sions E, let P be its lower envelope and let P ∈ PAF be defined as P (
⋂

E∈E E) = 1,
P (E′) = 0 for every E′ 
= ⋂

E∈E E. For each argument A ∈ Arg it holds that
P∈(A) = P∈(A).

Proof. By definition, P∈(A) = 1 if A ∈ ⋂
E∈E E, P∈(A) = 0 otherwise. From

Proposition 7 we have P∈(A) = 1 if A ∈ ⋂
E∈E E, P∈(A) = 0 otherwise, which

proves the statement.

12
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A corollary of Proposition 8 concerns the set Pcomp(AF)
AF of probabilities seman-

tically based on complete extensions. It follows from the fact that the grounded
extension is the least complete extension and coincides with the intersection of
all complete extensions and provides a nice counterpart of Proposition 5.

Corollary 1. Given the set of probability functions Pcomp(AF)
AF , let P be its lower

envelope and let P be the unique member of Pground(AF)
AF . For each argument

A ∈ Arg it holds that P∈(A) = P∈(A).

In general, similar considerations could be applied to strict subsets of PAF

(e.g. satisfying some constraints induced by the beliefs of the considered agent(s))
in order to identify some representative and/or to analyse their information
contents. This line of development is left to future work.

4 Comparison to Epistemic Probabilistic Argumentation

In this section we analyze our approach to semantically based probabilities with
respect to some general properties considered in the literature for the epistemic
approach [5,21,22,28].

First, unattacked arguments play a special role as they are, in a sense, unques-
tioned. The Foundation postulate from [21] requires that the probability of
unattacked arguments is 1. In our context this is guaranteed if a probability
function is based on a semantic notion at least as strong as completeness.

Proposition 9. If P ∈ Pcomp(AF)
AF then P∈(A) = 1 for all unattacked

arguments A.

Proof. If A is not attacked in AF then A ∈ E for every complete extension E of
AF. Then P∈(A) =

∑
E∈comp(AF) P (E) = 1. ��

Furthermore, a central postulate in the above-mentioned approaches is
Coherence, which states that the sum of the probabilities of two conflicting
arguments must be at most one. In our context, conflict freeness is enough to
guarantee this property.

Proposition 10. If P ∈ Pcf(AF)
AF then for every A,B ∈ Arg with A → B,

P∈(B) ≤ 1 − P∈(A).

Proof. Let A,B ∈ Arg with A → B. Then for every E ∈ cf(AF) it cannot be the
case that both A ∈ E and B ∈ E. Therefore

P∈(A) + P∈(B) =
∑

A∈E⊆Arg

P (E) +
∑

B∈E⊆Arg

P (E)

=
∑

A∈E∈cf(AF)

P (E) +
∑

B∈E∈cf(AF)

P (E)

≤
∑

E∈cf(AF)

P (E) = 1

��
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The Rationality postulate [19] states that if an argument has a probability
greater than 0.5 then any conflicting argument should have a probability lesser
than 0.5. Since this property is implied by Coherence, we directly obtain the
satisfaction of the Rationality postulate too.

Corollary 2. If P ∈ Pcf(AF)
AF then for every A,B ∈ Arg with A → B, if P∈(A) >

0.5 then P∈(B) ≤ 0.5.

The postulate Optimism has been used [28] to establish a certain correspon-
dence to traditional semantics. It states that the sum of the probability of an
argument and the probabilities of its attackers should be at least 1. In our context
this holds under stable semantics.

Proposition 11. If P ∈ Pst(AF)
AF then for every E ∈ st(AF), A ∈ E, P∈(A) ≥

1 − ∑
B→A P∈(B).

Proof. We have that P∈(A) = 1−∑
A/∈E P (E). By definition every stable exten-

sion S attacks all arguments not included in S. Then in particular every stable
extension not including A includes an attacker of A from which it follows that∑

B→A P∈(B) ≥ ∑
A/∈E P (E) from which P∈(A) ≥ 1 − ∑

B→A P∈(B).

Moreover two extreme cases have been considered in [21], namely maximal
(respectively, minimal) epistemic probabilities where the probability of every
argument is 1 (respectively 0). In our context they can be put in direct cor-
respondence with special topological cases. Assuming probabilities which are
semantically based on conflict-free sets, a maximal probability can be obtained
only for argumentation frameworks with an empty attack relation.

Proposition 12. If P ∈ Pcf(AF)
AF then P∈(A) = 1 for every argument A ∈ Arg

only if →= ∅.
Proof. From the fact that P∈(A) = 1 for every argument A ∈ Arg it follows
that it must be the case that P (Arg) = 1 and P (E) = 0 for every E such that
E � Arg. For such a probability P to belong to Pcf(AF)

AF it must be the case that
Arg is conflict-free, i.e. →= ∅.

By the way when →= ∅, the whole set of arguments Arg is the unique exten-
sion prescribed by all semantics considered in this paper but the conflict-free
and the admissible semantics. Thus the maximal probability is also the unique
probability compatible with those semantics when no attacks are present.

Conversely, it is clear thar a minimal probability is achieved only when the
empty set has probability 1.

Proposition 13. For P ∈ PAF then P∈(A) = 0 for every argument A ∈ Arg if
and only if P (∅) = 1 and P (E) = 0 for every E such that ∅ � E ⊆ Arg.

Then, the minimal probability can be semantically based only if the empty
set belongs to the set of extensions. In particular, the following proposition is
directly derived from basic properties of the grounded and complete semantics
(and is related with Proposition 5).

14
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Proposition 14. Let P∅ ∈ PAF be defined as P∅(∅) = 1 and P∅(E) = 0 for
every E such that ∅ 
= E ⊆ Arg. P∅ ∈ Pcomp(AF)

AF iff GE(AF) = ∅ iff ∀A ∈ Arg
∃B ∈ Arg : B → A.

Proof. P∅ ∈ Pcomp(AF)
AF holds if and only if the empty set is a complete extension,

which in turn holds if and only if GE(AF) = ∅, given that the grounded extension
GE(AF) is the minimal complete extension. By well-known properties of the
grounded semantics [11] GE(AF) = ∅ holds if and only if every argument has at
least an attacker (since every unattacked argument belongs to GE(AF)).

5 Computational Issues

We now discuss some computational issues of our approach, in particular, we
make some straightforward comments on computational complexity.

Our approach is about probabilistic reasoning [26] with abstract argumen-
tation frameworks. In general, bringing quantities into a qualitative reasoning
problem also adds computational complexity. When reasoning with infinite sets
such as PE

AF several properties of this set ensure that this can be done effectively.
The next result shows that the set PE

AFis well-behaved wrt. important properties.

Proposition 15. For every E ⊆ 2Arg, PE
AF is a connected, closed, and convex

set.

Proof. Let P1, P2 ∈ PE
AF, δ ∈ (0, 1), and define the δ-convex combination P3 ∈

PAF of P1 and P2 via

P3(E) = δP1(E) + (1 − δ)P2(E)

for all E ⊆ 2Arg. Then for E′ /∈ E we have

P3(E′) = δP1(E′) + (1 − δ)P2(E′) = 0

and therefore P3 ∈ PE
AF showing that PE

AF is convex. Every convex set is also
connected.

To show closure, let P1, P2, . . . be a sequence of probability functions in PE
AF

such that limi→∞ Pi(E) exists for all E ⊆ 2Arg and define P ∈ PAF via

P (E) = lim
i→∞

Pi(E)

Note that it is straightforward to see that indeed P ∈ PAF. Then for E′ /∈ E we
have

P (E′) = lim
i→∞

Pi(E′) = lim
i→∞

0 = 0

and therefore P ∈ PE
AF showing that PE

AF is closed. ��
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Note that due to the above result pertaining the closure of sets PE
AF, we

can substitute “infimum” by “minimum” in Definition 8. Due to connected-
ness and convexity, minima and maxima can be effectively computed by convex
optimisation techniques3. We are currently investigating how to exploit this for
algorithmic issues.

Regarding computational complexity, the following result immediately follows
from well-known complexity results for abstract argumentation, see e.g. [13].

Proposition 16. Let AF be an abstract argumentation framework and P ∈ PE
AF

semantically uniform.

1. Deciding whether P (A) > 0 for some A ∈ Arg is
(a) NP-complete for E = comp(AF),
(b) NP-complete for E = pref(AF),
(c) NP-complete for E = st(AF), and
(d) in P for E = ground(AF).

2. Deciding whether P (A) = 1 for some A ∈ Arg is
(a) in P for E = comp(AF),
(b) ΠP

2 -complete for E = pref(AF),
(c) coNP-complete for E = st(AF), and
(d) in P for E = ground(AF).

Proof. Observe that P (A) > 0 is equivalent to asking whether A is credulously
inferred. Correspondingly, P (A) = 1 is equivalent to asking whether A is skep-
tically inferred. For the complexity of these problems see e.g. [13]. ��

6 Summary

We proposed a novel perspective to combine probability theory with abstract
argumentation. In our approach, we combine classical extension-based semantics
with quantitative uncertainty by considering probability functions on extensions
and analysing some relevant reasoning tasks. We did some preliminary inves-
tigation and showed that our proposal faithfully generalises classical semantics
and is compatible with some postulates considered in the epistemic approach
to probabilistic argumentation. Some relationships with imprecise probability
theory were also pointed out and finally, we made some observations regarding
computational complexity.

The work reported in this paper is preliminary and a deeper investigation
of the proposed formalism and of its potential applications is called for. In par-
ticular, the development of algorithmic approaches for using our framework is
part of ongoing work. Finally, concerning the issue of where do the probability
values come from, we suggest that an interesting direction of investigation is
learning or estimating the probabilities of extensions or of arguments from the
past choices of an agent or of a community of agents (e.g. an electoral body) in
similar decision contexts.
3 The size of the optimization problem depends of course on the size of the set E which

might be large in some cases. The reader may refer to [4,6] for studies on the size of
the set of extensions prescribed by a given semantics.
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