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Abstract. In this paper we study, for any subset I of N∗ and for
any strictly positive integer k, the Banach space EI of the bounded
real sequences {xn}n∈I , and a measure over
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)
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the k-dimensional Lebesgue one. Moreover, we recall the main results
about the differentiation theory over EI . The main result of our paper
is a change of variables’ formula for the integration of the measurable
real functions on
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. This change of variables is defined by

some functions over an open subset of EJ , with values on EI , called
(m,σ)-general, with properties that generalize the analogous ones of the
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1. Introduction

In the mathematical literature, some articles introduced infinite-dimensional
measures analogue of the Lebesgue one: see for example the pioneering paper
of Jessen [10], that one of Léandre [13], in the context of the noncommutative
geometry, that one of Tsilevich et al. [19], which studies a family of σ-finite
measures in the space of distributions, that one of Baker [7], which defines
a measure on RN∗

that is not σ-finite, that one of Henstock et al. [9], and
that one of Tepper et al. [15]. However, the results obtained do not include an
infinite-dimensional change of variables’ formula for the integration of the mea-
surable real functions, analogous to that which applies in the finite-dimensional
case. For example, in the paper of Accardi et al. [1], the authors describe the
transformations of generalized measures on locally convex spaces under smooth
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transformations of these spaces, but these measures have no connection with
the Lebesgue one. The problem that arises is essentially the following. Consider
the integration formula with respect to an image measure, that is∫

E

fd (ϕ (µ)) =
∫
S

f(ϕ)dµ,

where (S,Σ, µ) and (E, E) are a measure space and a measurable space, respec-
tively, ϕ : (S,Σ) −→ (E, E) and f : (E, E) −→ (R,B) are measurable functions.
In the particular case in which E and S are open sets, suitably constructed, of
two infinite-dimensional measurable spaces Ω1 and Ω2, respectively, on which
we can define two families M1 and M2 of measures analogue of the Lebesgue
one, and ϕ has properties that generalize the analogous ones of the standard
finite-dimensional diffeomorphisms, we expect existence of two measure λ1 in
M1 and λ2 in M2 such that ϕ (µ) = λ1, while µ has density |det Jϕ| (properly
defined) with respect to λ2.

In order to achieve this result, in the articles [4], [5] and [6], for any subset
I of N∗, we define the Banach space EI ⊂ RI of the bounded real sequences
{xn}n∈I , the σ-algebra BI given by the restriction to EI of B(I) (defined as the
product indexed by I of the same Borel σ-algebra B on R), and a class of func-
tions over an open subset of EJ , with values on EI , called (m,σ)-general, with
properties similar to those of the finite-dimensional diffeomorphisms. More-
over, for any strictly positive integer k, we introduce over the measurable space(
RI ,B(I)

)
a family of infinite-dimensional measures λ(k,I)

N,a,v, dependent on ap-
propriate parameters N , a, v, that in the case I = {1, ..., k} coincide with
the k-dimensional Lebesgue measure on Rk. More precisely, in the paper [4],
we define some particular linear functions over EJ , with values on EI , called
(m,σ)-standard, while in the article [5] we present some results about the dif-
ferentiation theory over EI , and we remove the assumption of linearity for the
(m,σ)-standard functions. In the last two papers, we provide a change of vari-
ables’ formula for the integration of the measurable real functions on

(
RI ,B(I)

)
;

this change of variables is defined by some particular (m,σ)-standard functions.
In the paper [6], we introduce a class of functions, called (m,σ)-general, that
generalizes the set of the (m,σ)-standard functions given in [5]. The main re-
sult is the definition of the determinant of a linear (m,σ)-general function, as
the limit of a sequence of the determinants of some standard matrices.

In this paper, we prove that the change of variables’ formula given by the
standard finite-dimensional theory and in the papers [4] and [5] can be extended
by using the (m,σ)-general functions. In Section 2, we recall the construction
of the infinite-dimensional Banach space EI , with its σ-algebra BI and its
topologies τI and τ‖·‖I

; moreover, we expose the main results about the differ-
entiation theory over this space. In Section 3, we recall some properties of the
(m,σ)-general functions defined in [6], and we expose some additional results
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about these functions. In Section 4, we present the main theorem of our paper,
that is a change of variables’ formula for the integration of the measurable real
functions on

(
RI ,B(I)

)
; this change of variables is defined by the bijective,

C1 and (m,σ)-general functions, with further properties (Theorem 4.5). In
Section 5, we expose some ideas for further study in the probability theory.

2. Differentiation theory over infinite-dimensional Banach
spaces

Let I 6= ∅ be a set and let k ∈ N∗; indicate by τ , by τ (k), by τ (I), by B,
by B(k), by B(I), by Leb, and by Leb(k), respectively, the euclidean topology
on R, the euclidean topology on Rk, the topology

⊗
i∈I

τ , the Borel σ-algebra

on R, the Borel σ-algebra on Rk, the σ-algebra
⊗
i∈I

B, the Lebesgue measure

on R, and the Lebesgue measure on Rk. Moreover, for any set A ⊂ R, indicate
by B(A) the σ-algebra induced by B on A, and by τ(A) the topology induced
by τ on A; analogously, for any set A ⊂ RI , define the σ-algebra B(I)(A) and
the topology τ (I)(A). Finally, if S =

∏
i∈I

Si is a Cartesian product, for any

(xi : i ∈ I) ∈ S and for any ∅ 6= H ⊂ I, define xH = (xi : i ∈ H) ∈
∏
i∈H

Si, and

define the projection πI,H on
∏
i∈H

Si as the function πI,H : S −→
∏
i∈H

Si given

by πI,H (xI) = xH .

Theorem 2.1. Let I 6= ∅ be a set and, for any i ∈ I, let (Si,Σi, µi) be a measure
space such that µi is finite. Moreover, suppose that, for some countable set
J ⊂ I, µi is a probability measure for any i ∈ I\J and

∏
j∈J

µj(Sj) ∈ R+. Then,

over the measurable space

(∏
i∈I

Si,
⊗
i∈I

Σi

)
, there is a unique finite measure µ,

indicated by
⊗
i∈I

µi, such that, for any H ⊂ I such that |H| < +∞ and for any

A =
∏
h∈H

Ah ×
∏

i∈I\H

Si ∈
⊗
i∈I

Σi, where Ah ∈ Σh ∀h ∈ H, we have µ(A) =∏
h∈H

µh(Ah)
∏

j∈J\H

µj(Sj). In particular, if I is countable, then µ(A) =
∏
i∈I

µi(Ai)

for any A =
∏
i∈I

Ai ∈
⊗
i∈I

Σi.
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Proof. See the proof of Corollary 4 in Asci [4].

Henceforth, we will suppose that I, J are sets such that ∅ 6= I, J ⊂ N∗;
moreover, for any k ∈ N∗, we will indicate by Ik the set of the first k elements
of I (with the natural order and with the convention Ik = I if |I| < k);
furthermore, for any i ∈ I, set |i|I = |I ∩ (0, i]|. Analogously, define Jk and
|j|J , for any k ∈ N∗ and for any j ∈ J .

The following theorem generalizes a result proved in Rao [14] (Theorem 3,
page 349), and can be considered a generalization of the Tonelli’s theorem,
in the integration of a function over an infinite-dimensional measure space.
The integral of the function is the limit of a sequence of integrals of the same
function, with respect to a finite subset of variables.

Theorem 2.2. Let (Si,Σi, µi) be a measure space such that µi is finite, for any

i∈I, and
∏
i∈I

µi(Si) ∈ [0,+∞); moreover, let (S,Σ, µ)=

(∏
i∈I

Si,
⊗
i∈I

Σi,
⊗
i∈I

µi

)
,

let f ∈ L1 (S,Σ, µ) and, for any H ⊂ I such that 0 < |H| < +∞, let the
measurable function fHc : (S,Σ) −→ (R,B) defined by

fHc(x) =
∫
SH

f(·, xHc)dµH ,

where (SH ,ΣH , µH) is the measure space

(∏
i∈H

Si,
⊗
i∈H

Σi,
⊗
i∈H

µi

)
. Then, there

exists D ∈ Σ such that µ(D) = 0 and such that, for any x ∈ Dc, one has
lim

n→+∞
fIc

n
(x) =

∫
S

fdµ.

Proof. See the proof of Corollary 3 in Asci [5].

Definition 2.3. For any set I 6= ∅, define the function ‖·‖I : RI −→ [0,+∞]
by

‖x‖I = sup
i∈I

|xi|, ∀x = (xi : i ∈ I) ∈ RI ,

and define the vector space

EI = {x ∈ RI : ‖x‖I < +∞}.

Moreover, indicate by BI the σ-algebra B(I)(EI), by τI the topology τ (I)(EI),
and by τ‖·‖I

the topology induced on EI by the distance dI : EI×EI −→ [0,+∞)
defined by dI(x, y) = ‖x− y‖I , for any x, y ∈ EI ; furthermore, for any set
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A ⊂ EI , indicate by τ‖·‖I
(A) the topology induced on A by τ‖·‖I

. Finally, for
any x0 ∈ EI and for any δ ∈ R+, indicate by BI(x0, δ) the set {x ∈ EI :
‖x− x0‖I < δ}.

Proposition 2.4. Let H, I be sets such that ∅ 6= H ( I, and let A ⊂ EH ,
B ⊂ EI\H ; then:

1. EI is a Banach space, with the norm ‖·‖I .

2. τ‖·‖I
(A×B) is the product of the topologies τ‖·‖H

(A) and τ‖·‖I\H
(B).

3. Let A =

(∏
i∈I

Ai

)
∩ EI 6= ∅, where Ai ∈ τ , for any i ∈ I; then, one has

A ∈ τ‖·‖I
if and only if there exists h ∈ I such that Ai = R, for any

i ∈ I\Ih.

4. One has τI ⊂ τ‖·‖I
; moreover, if |I| = +∞, then τI ( τ‖·‖I

.

Proof. 1. See, for example, the proof of Remark 2 in [4].

2. Indicate by τ‖·‖H
(A)

⊗
τ‖·‖I\H

(B) the product of the topologies τ‖·‖H
(A)

and τ‖·‖I\H
(B); ∀D ∈ τ‖·‖H

(A), let D′ ∈ τ‖·‖H
such that D = D′ ∩ A;

then, ∀x =
(
xH , xI\H

)
∈ D′ × EI\H , there exists δ ∈ R+ such that

xH ∈ BH (xH , δ) ⊂ D′, xI\H ∈ BI\H
(
xI\H , δ

)
⊂ EI\H , and so x ∈

BI (x, δ) ⊂ D′×EI\H ; then, we have D′×EI\H ∈ τ‖·‖I
, from which D×

B =
(
D′ × EI\H

)
∩(A×B) ∈ τ‖·‖I

(A×B); analogously, ∀E ∈ τ‖·‖I\H
(B),

we have A × E ∈ τ‖·‖I
(A × B), and so D × E = (D ×B) ∩ (A × E) ∈

τ‖·‖I
(A×B); then, we obtain τ‖·‖H

(A)
⊗
τ‖·‖I\H

(B) ⊂ τ‖·‖I
(A×B).

Conversely, ∀x =
(
xH , xI\H

)
∈ EI , ∀ δ ∈ R+, we have BI(x, δ) ∩ (A ×

B) = (BH(xH , δ) ∩A) ×
(
BI\H(xI\H , δ) ∩B

)
∈ τ‖·‖H

(A)
⊗
τ‖·‖I\H

(B),
from which τ‖·‖I

(A×B) ⊂ τ‖·‖H
(A)

⊗
τ‖·‖I\H

(B).

3. We can suppose |I| = +∞. If there exists h ∈ I such that Ai = R, for

any i ∈ I\Ih, then A =

(∏
i∈Ih

Ai

)
× EI\Ih

; thus, since
∏
i∈Ih

Ai ∈ τ‖·‖Ih
,

EI\Ih
∈ τ‖·‖I\Ih

, from point 2 we have A ∈ τ‖·‖I
.

Conversely, suppose that there exists J ⊂ I such that |J | = +∞ and such
that Aj 6= R, ∀ j ∈ J ; then, since A 6= ∅, there exists x ∈ A such that
dI (x,EI\A) = 0, and so A /∈ τ‖·‖I

.



66 CLAUDIO ASCI

4. Let

E =

{
A =

(∏
i∈I

Ai

)
∩ EI : Ai ∈ τ , ∀ i ∈ I,

Ai = R, ∀ i ∈ I\Ih, for some h ∈ I

}
;

as we observed in the proof of point 3, we have E ⊂ τ‖·‖I
; moreover, by

definition of τI , we have τI = τ(E) ⊂ τ‖·‖I
; furthermore, if |I| = +∞,

∀x ∈ EI , ∀ δ ∈ R+, we have BI(x, δ) ∈ τ‖·‖I
, BI(x, δ) /∈ τI , and so

τI ( τ‖·‖I
.

Proposition 2.5. Let H, I be sets such that ∅ 6= H ⊂ I, and let πI,H : EI −→
EH be the function given by πI,H (x) = πI,H (x), for any x ∈ EI ; then:

1. πI,H :
(
EI , τ‖·‖I

)
−→

(
EH , τ‖·‖H

)
is continuous and open.

2. πI,H : (EI , τI) −→ (EH , τH) is continuous and open.

3. πI,H : (EI ,BI) −→ (EH ,BH) is measurable.

Proof. Points 1 and 2 are proved, for example, in Proposition 6 in [5]; moreover,
the proof of point 3 is analogous to the proof of the continuity of the function
πI,H : (EI , τI) −→ (EH , τH).

Remark 2.6: Let H, I, J be sets such that ∅ 6= H  J , let U = U1×U2 ∈ τ‖·‖J
,

where U1 ∈ τ‖·‖H
, U2 ∈ τ‖·‖J\H

, let ψ : U1 ⊂ EH −→ EI be a function and
let ϕ : U ⊂ EJ −→ EI be the function given by ϕ (x) = ψ (xH), for any
x =

(
xH , xJ\H

)
∈ U ; then:

1. ψ is
(
τ‖·‖H

(U1), τ‖·‖I

)
-continuous if and only if ϕ is

(
τ‖·‖J

(U), τ‖·‖I

)
-

continuous.

2. ψ is
(
τ (H)(U1), τI

)
-continuous if and only if ϕ is

(
τ (J)(U), τI

)
-continuous.

3. If ψ is
(
B(H)(U1),BI

)
-measurable, then ϕ is

(
B(J)(U),BI

)
-measurable.

Proof. ∀A ⊂ EI , we have

ϕ−1(A) =
(
π−1

J,H ◦ ψ−1
)

(A), ψ−1(A) =
(
πJ,H ◦ ϕ−1

)
(A);

then, from Proposition 2.5, we obtain the statement.
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Definition 2.7. Let U ∈ τ‖·‖J
, let x0 ∈ U , let l ∈ EI and let ϕ : U ⊂ EJ −→

EI be a function; we say that lim
x→x0

ϕ(x) = l if, for any ε ∈ R+, there exists

a neighbourhood N ∈ τ‖·‖J
(U) of x0 such that, for any x ∈ N\{x0}, one has

‖ϕ(x)− l‖I < ε.

Definition 2.8. Let U ∈ τ‖·‖J
and let ϕ : U ⊂ EJ −→ EI be a function; we

say that ϕ is continuous in x0 ∈ U if lim
x→x0

ϕ(x) = ϕ(x0), and we say that ϕ is

continuous in U if, for any x ∈ U , ϕ is continuous in x.

Remark 2.9: Let U ∈ τ‖·‖J
, let V ∈ τ‖·‖I

and let ϕ : U ⊂ EJ −→ V ⊂ EI be
a function; then, ϕ :

(
U, τ‖·‖J

(U)
)
−→

(
V, τ‖·‖I

(V )
)

is continuous if and only if
ϕ is continuous in U .

Definition 2.10. Let U ∈ τ‖·‖J
, let V ∈ τ‖·‖I

and let ϕ : U ⊂ EJ −→ V ⊂
EI be a function; we say that ϕ is a homeomorphism if ϕ is bijective and
the functions ϕ :

(
U, τ‖·‖J

(U)
)
−→

(
V, τ‖·‖I

(V )
)

and ϕ−1 :
(
V, τ‖·‖I

(V )
)
−→(

U, τ‖·‖J
(U)
)

are continuous.

Definition 2.11. Let U ∈ τ‖·‖J
, let A ⊂ U , let ϕ : U ⊂ EJ −→ EI be a

functions and let {ϕn}n∈N be a sequence of functions such that ϕn : U −→ EI ,
for any n ∈ N; we say that:

1. The sequence {ϕn}n∈N converges to ϕ over A if, for any ε ∈ R+ and for
any x ∈ A, there exists n0 ∈ N such that, for any n ∈ N, n ≥ n0, one
has ‖ϕn(x)− ϕ(x)‖I < ε.

2. The sequence {ϕn}n∈N converges uniformly to ϕ over A if, for any ε ∈
R+, there exists n0 ∈ N such that, for any n ∈ N, n ≥ n0, and for any
x ∈ A, one has ‖ϕn(x)− ϕ(x)‖I < ε.

The following concept generalizes Definition 6 in [4] (see also the theory in
the Lang’s book [12] and that in the Weidmann’s book [20]).

Definition 2.12. Let A = (aij)i∈I,j∈J be a real matrix I × J (eventually infi-
nite); then, define the linear function A = (aij)i∈I,j∈J : EJ −→ RI , and write
x −→ Ax, in the following manner:

(Ax)i =
∑
j∈J

aijxj, ∀x ∈ EJ , ∀ i ∈ I, (1)

on condition that, for any i ∈ I, the sum in (1) converges to a real number. In
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particular, if |I| = |J |, indicate by II,J =
(
δij

)
i∈I,j∈J

the real matrix defined
by

δij =
{

1 if |i|I = |j|J
0 otherwise ,

and call δij generalized Kronecker symbol. Moreover, indicate by A(L,N) the
real matrix (aij)i∈L,j∈N , for any ∅ 6= L ⊂ I, for any ∅ 6= N ⊂ J , and indicate
by tA = (bji)j∈J,i∈I : EI −→ RJ the linear function defined by bji = aij, for
any j ∈ J and for any i ∈ I. Furthermore, if I = J and A = tA , we say that A

is a symmetric function. Finally, if B = (bjk)j∈J,k∈K is a real matrix J ×K,
define the I ×K real matrix AB = ((AB)ik)i∈I,k∈K by

(AB)ik =
∑
j∈J

aijbjk, (2)

on condition that, for any i ∈ I and for any k ∈ K, the sum in (2) converges
to a real number.

Proposition 2.13. Let A = (aij)i∈I,j∈J be a real matrix I × J ; then:

1. The linear function A = (aij)i∈I,j∈J : EJ −→ RI given by (1) is defined

if and only if, for any i ∈ I,
∑
j∈J

|aij | < +∞.

2. One has sup
i∈I

∑
j∈J

|aij | < +∞ if and only if A(EJ) ⊂ EI and A is continu-

ous; moreover, if A(EJ) ⊂ EI , then ‖A‖ = sup
i∈I

∑
j∈J

|aij |.

3. If B = (bjk)j∈J,k∈K : EK −→ EJ is a linear function, then the linear
function A ◦B : EK −→ RI is defined by the real matrix AB.

4. If A(EJ) ⊂ EI , then, for any ∅ 6= L ⊂ I, for any ∅ 6= N ⊂ J , one has
A(L,N)(EN ) ⊂ EL.

Proof. The proofs of points 1 and 2 are analogous to the proof of Proposition 7
in [4]. Moreover, the proof of point 3 is analogous to that one true in the
particular case |I|, |J | , |K| < +∞ (see, e.g., the Lang’s book [12]). Finally,
suppose that A(EJ) ⊂ EI ; let ∅ 6= L ⊂ I, let ∅ 6= N ⊂ J , let x = (xn : n ∈ N) ∈
EN and let y = (yj : j ∈ J) ∈ EJ such that yj = xj , ∀ j ∈ N , and yj = 0,



INFINITE-DIMENSIONAL CHANGE OF VARIABLES’ FORMULA 69

∀ j ∈ J\N ; we have

sup
i∈L

∣∣∣(A(L,N)x
)

i

∣∣∣ = sup
i∈L

∣∣∣∣∣∣
∑
j∈N

aij(xj)

∣∣∣∣∣∣ = sup
i∈L

∣∣∣∣∣∣
∑
j∈J

aij(yj)

∣∣∣∣∣∣
≤ sup

i∈I

∣∣∣∣∣∣
∑
j∈J

aij(yj)

∣∣∣∣∣∣ = sup
i∈I

|(Ay)i| < +∞ ⇒ A(L,N)x ∈ EL;

then, point 4 follows.

The following definitions (from Definition 2.14 to Definition 2.18) can be
found in [5] and generalize the differentiation theory in the finite case (see, e.g.,
the Lang’s book [11]).

Definition 2.14. Let U ∈ τ‖·‖J
; a function ϕ : U ⊂ EJ −→ EI is called

differentiable in x0 ∈ U if there exists a linear and continuous function A :
EJ −→ EI defined by a real matrix A = (aij)i∈I,j∈J , and one has

lim
h→0

‖ϕ(x0 + h)− ϕ(x0)−Ah‖I

‖h‖J

= 0. (3)

If ϕ is differentiable in x0 for any x0 ∈ U , ϕ is called differentiable in U . The
function A is called differential of the function ϕ in x0, and it is indicated by
the symbol dϕ(x0).

Definition 2.15. Let U ∈ τ‖·‖J
, let v ∈ EJ such that ‖v‖J = 1 and let a func-

tion ϕ : U ⊂ EJ −→ RI ; for any i ∈ I, the function ϕi is called differentiable
in x0 ∈ U in the direction v if there exists the limit

lim
t→0

ϕi(x0 + tv)− ϕi(x0)
t

.

This limit is indicated by ∂ϕi

∂v (x0), and it is called derivative of ϕi in x0 in the
direction v. If, for some j ∈ J , one has v = ej, where (ej)k = δjk, for any k ∈
J , indicate ∂ϕi

∂v (x0) by ∂ϕi

∂xj
(x0), and call it partial derivative of ϕi in x0, with

respect to xj. Moreover, if there exists the linear function defined by the matrix

Jϕ(x0) =
(
(Jϕ(x0))ij

)
i∈I,j∈J

: EJ −→ RI , where (Jϕ(x0))ij = ∂ϕi

∂xj
(x0), for

any i ∈ I, j ∈ J , then Jϕ(x0) is called Jacobian matrix of the function ϕ in x0.
Finally, if, for any x ∈ U , there exists Jϕ(x), then the function x −→ Jϕ(x) is
indicated by Jϕ.
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Definition 2.16. Let U ∈ τ‖·‖J
, let i, j ∈ J and let ϕ : U ⊂ EJ −→ R be a

function differentiable in x0 ∈ U with respect to xi, such that the function ∂ϕ
∂xi

is differentiable in x0 with respect to xj. Indicate ∂
∂xj

(
∂ϕ
∂xi

)
(x0) by ∂2ϕ

∂xj∂xi
(x0)

and call it second partial derivative of ϕ in x0 with respect to xi and xj. If
i = j, it is indicated by ∂2ϕ

∂x2
i
(x0). Analogously, for any k ∈ N∗ and for any

j1, ..., jk ∈ J , define ∂kϕ
∂xjk

...∂xj1
(x0) and call it k-th partial derivative of ϕ in x0

with respect to xj1 , ...xjk
.

Definition 2.17. Let U ∈ τ‖·‖J
and let k ∈ N∗; a function ϕ : U ⊂ EJ −→ RI

is called Ck in x0 ∈ U if, in a neighbourhood V ∈ τ‖·‖J
(U) of x0, for any

i ∈ I and for any j1, ..., jk ∈ J , there exists the function defined by x −→
∂kϕi

∂xjk
...∂xj1

(x), and this function is continuous in x0; ϕ is called Ck in U if, for

any x0 ∈ U , ϕ is Ck in x0.

Definition 2.18. Let U ∈ τ‖·‖J
and let V ∈ τ‖·‖I

; a function ϕ : U ⊂ EJ −→
V ⊂ EI is called diffeomorphism if ϕ is bijective and C1 in U , and the function
ϕ−1 : V ⊂ EI −→ U ⊂ EJ is C1 in V .

3. Theory of the (m, σ)-general functions

The following definition introduces a class of functions, called m-general, that
generalize the linear functions (aij)i∈I,j∈J : EJ −→ EI (see the next Re-
mark 3.15). For example, the equation corresponding to a 1-general function
is obtained by formula 1, by substituting the functions xj −→ aijxj for some
functions ϕij .

Definition 3.1. Let m ∈ N∗ and let ∅ 6= U =

U (m) ×
∏

j∈J\Jm

Aj

 ∩ EJ ∈

τ‖·‖J
, where U (m) ∈ τ (m), Aj ∈ τ , for any j ∈ J\Jm. A function ϕ : U ⊂

EJ −→ EI is called m-general if, for any i ∈ I and for any j ∈ J\Jm, there
exist some functions ϕ(I,m)

i : U (m) −→ R and ϕij : Aj −→ R such that

ϕi(x) = ϕ
(I,m)
i (xJm

) +
∑

j∈J\Jm

ϕij(xj), ∀x ∈ U.

Moreover, for any ∅ 6= L ⊂ I and for any Jm ⊂ N ⊂ J , indicate by ϕ(L,N) the
function ϕ(L,N) : πJ,N (U) −→ RL defined by

ϕ
(L,N)
i (xN ) = ϕ

(I,m)
i (xJm) +

∑
j∈N\Jm

ϕij(xj), ∀xN ∈ πJ,N (U), ∀ i ∈ L. (4)
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Furthermore, for any ∅ 6= L ⊂ I and for any ∅ 6= N ⊂ J\Jm, indicate by
ϕ(L,N) the function ϕ(L,N) : πJ,N (U) −→ RL given by

ϕ
(L,N)
i (xN ) =

∑
j∈N

ϕij(xj), ∀xN ∈ πJ,N (U), ∀ i ∈ L. (5)

In particular, suppose that m = 1; then, let j ∈ J such that {j} = J1

and indicate U (1) by Aj and ϕ
(I,1)
i by ϕij, for any i ∈ I; moreover, for any

∅ 6= L ⊂ I and for any ∅ 6= N ⊂ J , indicate by ϕ(L,N) the function ϕ(L,N) :
πJ,N (U) −→ RL defined by formula (5).

Furthermore, for any l, n ∈ N∗, indicate ϕ(Il,N) by ϕ(l,N), ϕ(L,Jn) by ϕ(L,n),
and ϕ(Il,Jn) by ϕ(l,n).

The following definition introduces a class of m-general functions ϕ : U ⊂
EJ −→ EI , called (m,σ)-general, that will be used to provide a change of
variables’ formula for the integration of the measurable real functions over(
RI ,B(I)

)
. In fact, the properties of some (m,σ)-general functions generalize

the analogous ones of the standard finite-dimensional diffeomorphisms. In par-
ticular, if A is a linear (m,σ)-general function, we can define the determinant
of A (see the next Theorem 3.18 and Definition 3.19): a concept without sense,
if A is an arbitrary matrix I × J .

Definition 3.2. Let m ∈ N∗, let ∅ 6= U =

U (m) ×
∏

j∈J\Jm

Aj

 ∩ EJ ∈ τ‖·‖J
,

where U (m) ∈ τ (m), Aj ∈ τ , for any j ∈ J\Jm, and let σ : I\Im −→ J\Jm be
an increasing function; a function ϕ : U ⊂ EJ −→ EI m-general and such that
|J | = |I| is called (m,σ)-general if:

1. ∀ i ∈ I\Im, ∀ j ∈ J\ (Jm ∪ {σ(i)}), ∀ t ∈ Aj, one has ϕij(t) = 0; more-
over

ϕ(I\Im,J\Jm)
(
πJ,J\Jm

(U)
)
⊂ EI\Im

.

2. ∀ i ∈ I\Im, ∀x ∈ U , there exists Jϕi
(x) : EJ −→ R; moreover, ∀xJm

∈
U (m), one has

∑
i∈I\Im

∥∥∥Jϕ
(I,m)
i

(xJm
)
∥∥∥ < +∞.

3. ∀ i ∈ I\Im, the function ϕi,σ(i) : Aσ(i) −→ R is constant or injective;

moreover, ∀xσ(I\Im) ∈
∏

j∈σ(I\Im)

Aj, one has sup
i∈I\Im

∣∣∣ϕ′i,σ(i)

(
xσ(i)

)∣∣∣ < +∞

and inf
i∈Iϕ

∣∣∣ϕ′i,σ(i)

(
xσ(i)

)∣∣∣ > 0, where Iϕ = {i ∈ I\Im : ϕi,σ(i) is injective}.
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4. If, for some h ∈ N, h ≥ m, one has |σ(i)|J\Jm
= |i|I\Im

, ∀ i ∈ I\Ih,

then, ∀xσ(I\Im) ∈
∏

j∈σ(I\Im)

Aj, there exists
∏

i∈Iϕ

ϕ′i,σ(i)

(
xσ(i)

)
∈ R∗.

Moreover, set

A = A(ϕ) =
{
h ∈ N, h ≥ m : |σ(i)|J\Jm

= |i|I\Im
, ∀ i ∈ I\Ih

}
.

If the sequence
{
J

ϕ
(I,m)
i

(xJm
)
}

i∈I\Im

converges uniformly on U (m) to the

matrix (0 . . . 0) and there exists a ∈ R such that, for any ε > 0, there exists
i0 ∈ N, i0 ≥ m, such that, for any i ∈ Iϕ ∩ (I\Ii0) and for any t ∈ Aσ(i), one

has
∣∣∣ϕ′i,σ(i) (t)− a

∣∣∣ < ε, then ϕ is called strongly (m,σ)-general.
Furthermore, for any Im ⊂ L ⊂ I and for any Jm ⊂ N ⊂ J , define the

function ϕ(L,N) : U ⊂ EJ −→ RI in the following manner:

ϕ
(L,N)
i (x) =

 ϕ
(L,N)
i (xN ) ∀ i ∈ Im, ∀x ∈ U

ϕi(x) ∀ i ∈ L\Im, ∀x ∈ U
ϕi,σ(i)(xσ(i)) ∀ i ∈ I\L, ∀x ∈ U

.

Finally, for any l, n ∈ N, l, n ≥ m, indicate ϕ(Il,N) by ϕ(l,N), ϕ(L,Jn) by
ϕ(L,n), ϕ(Il,Jn) by ϕ(l,n), and ϕ(m,m) by ϕ.

Definition 3.3. A function ϕ : U ⊂ EJ −→ EI (m,σ)-general is called (m,σ)-
standard (or (m,σ) of the first type) if, for any i ∈ I\Im and for any xJm

∈
U (m), one has ϕ(I,m)

i (xJm) = 0. Moreover, a function ϕ : U ⊂ EJ −→ EI

(m,σ)-standard and strongly (m,σ)-general is called strongly (m,σ)-standard
(see also Definition 28 in [5]).

Remark 3.4: Let ϕ : U ⊂ EJ −→ EI be a (m,σ)-general function; then:

1. σ is injective if and only if, for any i1, i2 ∈ I\Im such that i1 < i2, one
has σ(i1) < σ (i2).

2. σ is bijective if and only if, for any i ∈ I\Im, one has |σ(i)|J\Jm
= |i|I\Im

.

3. There exists m0 ∈ N, m0 ≥ m, such that Aj = R, for any j ∈ J\Jm0 .

Proof. The statement follows from Definition 3.2 and point 3 of Proposition 2.4.
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Proposition 3.5. Let Im ⊂ L ⊂ I, let Jm ⊂ N ⊂ J and let ϕ : U ⊂ EJ −→ EI

be a (m,σ)-general function; then, one has ϕ(L,N)(U) ⊂ EI , and the function
ϕ(L,N) : U ⊂ EJ −→ EI is (m,σ)-general. Moreover, suppose that, for any
j ∈ J\Jm, for any t ∈ Aj, one has

∑
i∈I\Im

∣∣ϕ′i,j (t)
∣∣ < +∞; then, for any n ∈ N,

n ≥ m, ϕ(L,N) is (n, τ)-general, where the function τ : I\In −→ J\Jn is defined
by

τ(i) =
{
σ(i) if σ(i) ∈ J\Jn

min (J\Jn) if σ(i) /∈ J\Jn
, ∀ i ∈ I\In. (6)

Proof. Since Im ⊂ L ⊂ I and Jm ⊂ N ⊂ J , ∀ i ∈ I\Im, ∀x ∈ U , we have∣∣∣ϕ(L,N)
i (x)

∣∣∣ ≤ ∣∣∣ϕ(I,m)
i (xJm)

∣∣∣+ ∣∣ϕi,σ(i)

(
xσ(i)

)∣∣ ,
and so sup

i∈I\Im

∣∣∣ϕ(L,N)
i (x)

∣∣∣ < +∞; then, ϕ(L,N)(U) ⊂ EI . Moreover, from

the definition of ϕ(L,N), the function ϕ(L,N) : U ⊂ EJ −→ EI is (m,σ)-
general. Furthermore, suppose that, for any j ∈ J\Jm, for any t ∈ Aj , one has∑
i∈I\Im

∣∣ϕ′i,j (t)
∣∣ < +∞; ∀n ∈ N, n ≥ m, and ∀xJn

∈ πJ,Jn
(U), we have

∑
i∈I\In

∥∥∥∥J(ϕ(L,N))(I,Jn)

i

(xJn
)
∥∥∥∥ ≤ ∑

i∈I\In

∥∥∥Jϕ
(I,Jn)
i

(xJn
)
∥∥∥

=
∑

i∈I\In

∥∥∥Jϕ
(I,m)
i

(xJm
)
∥∥∥+

∑
j∈Jn\Jm

 ∑
i∈I\In

∣∣ϕ′i,j (xj)
∣∣ < +∞;

then, ϕ(L,N) is (n, τ)-general, where the function τ : I\In −→ J\Jn is defined
by formula (6).

Proposition 3.6. Let ∅ 6= L ⊂ I, let ∅ 6= N ⊂ J such that Jm ⊂ N or
N ⊂ J\Jm, and let ϕ : U ⊂ EJ −→ EI be a (m,σ)-general function; then:

1. For any x ∈ U , there exists the function Jϕ(L,N)(x) : EN −→ RL if and
only if, for any i ∈ L ∩ Im and for any j ∈ N , there exists the partial
derivative ∂ϕi

∂xj
(x), and for any i ∈ L ∩ Im one has

∑
j∈N

∣∣∣∂ϕi

∂xj
(x)
∣∣∣ < +∞;

moreover, in this case one has Jϕ(L,N)(x) (EN ) ⊂ EL, and Jϕ(L,N)(x) is
continuous.

2. For any x ∈ U , there exists the function Jϕ(I\Im,J)(x) : EJ −→ EI\Im
,

and it is continuous.



74 CLAUDIO ASCI

3. Suppose that Im ⊂ L and Jm ⊂ N , and let x ∈ U ; then, there exists
the function Jϕ(L,N)(x) : EJ −→ RI if and only if, for any i ∈ Im and
for any j ∈ N , there exists the partial derivative ∂ϕi

∂xj
(x), and for any

i ∈ Im one has
∑
j∈N

∣∣∣∂ϕi

∂xj
(x)
∣∣∣ < +∞; moreover, in this case one has

Jϕ(L,N)(x) (EJ) ⊂ EI , and Jϕ(L,N)(x) is continuous and (m,σ)-general.

Proof. 1. From Definition 3.2, ∀ i ∈ L ∩ (I\Im) and ∀ j ∈ N , there exists

the partial derivative ∂ϕ
(L,N)
i

∂xj
(x) = ∂ϕi

∂xj
(x), and one has

∑
j∈N

∣∣∣∣∂ϕi

∂xj
(x)
∣∣∣∣ ≤ ∥∥∥Jϕ

(I,m)
i

(xJm)
∥∥∥+

∣∣∣ϕ′i,σ(i)

(
xσ(i)

)∣∣∣ < +∞,

∀ i ∈ L ∩ (I\Im) ; (7)

then, from Proposition 2.13, there exists the function Jϕ(L,N)(x) : EN −→
RL if and only if, ∀ i ∈ L ∩ Im and ∀ j ∈ N ,there exists the partial

derivative ∂ϕ
(L,N)
i

∂xj
(x) = ∂ϕi

∂xj
(x), and ∀ i ∈ L∩ Im one has

∑
j∈N

∣∣∣∂ϕi

∂xj
(x)
∣∣∣ <

+∞.

Furthermore, since
∑

i∈I\Im

∥∥∥Jϕ
(I,m)
i

(xJm
)
∥∥∥ < +∞, we have

sup
i∈L∩(I\Im)

∥∥∥Jϕ
(I,m)
i

(xJm
)
∥∥∥ < +∞,

and so formula (7) implies

sup
i∈L∩(I\Im)

∑
j∈N

∣∣∣∣∂ϕi

∂xj
(x)
∣∣∣∣

≤ sup
i∈L∩(I\Im)

∥∥∥Jϕ
(I,m)
i

(xJm
)
∥∥∥+ sup

i∈L∩(I\Im)

∣∣∣ϕ′i,σ(i)

(
xσ(i)

)∣∣∣ < +∞;

thus, if there exists the function Jϕ(L,N)(x), we obtain sup
i∈L

∑
j∈N

∣∣∣∂ϕi

∂xj
(x)
∣∣∣ <

+∞; then, from Proposition 2.13, we have Jϕ(L,N)(x) (EN ) ⊂ EL, and
Jϕ(L,N)(x) is continuous.

2. The statement follows from point 1.
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3. By Definition 3.2, ∀ i ∈ I\Im and ∀ j ∈ J , there exists the partial deriva-

tive ∂ϕ
(L,N)
i

∂xj
(x), and one has

∑
j∈J

∣∣∣∣∣∂ϕ(L,N)
i

∂xj
(x)

∣∣∣∣∣ ≤∑
j∈J

∣∣∣∣∂ϕi

∂xj
(x)
∣∣∣∣

≤
∥∥∥Jϕ

(I,m)
i

(xJm
)
∥∥∥+

∣∣∣ϕ′i,σ(i)

(
xσ(i)

)∣∣∣ < +∞, ∀ i ∈ I\Im; (8)

then, from Proposition 2.13, there exists the function Jϕ(L,N)(x) : EJ −→
RI if and only if, ∀ i ∈ Im and ∀ j ∈ J ,there exists the partial derivative
∂ϕ

(L,N)
i

∂xj
(x), and ∀ i ∈ Im one has

∑
j∈J

∣∣∣∣∂ϕ
(L,N)
i

∂xj
(x)
∣∣∣∣ < +∞; thus, this

happens if and only if, ∀ i ∈ Im and ∀ j ∈ N ,there exists the partial

derivative ∂ϕi

∂xj
(x), and ∀ i ∈ Im one has

∑
j∈N

∣∣∣∂ϕi

∂xj
(x)
∣∣∣ < +∞.

Moreover, from formula (8), we have

sup
i∈I\Im

∑
j∈J

∣∣∣∣∣∂ϕ(L,N)
i

∂xj
(x)

∣∣∣∣∣
≤ sup

i∈I\Im

∥∥∥Jϕ
(I,m)
i

(xJm)
∥∥∥+ sup

i∈I\Im

∣∣∣ϕ′i,σ(i)

(
xσ(i)

)∣∣∣ < +∞;

then, if there exists the function Jϕ(L,N)(x), we obtain

sup
i∈I

∑
j∈J

∣∣∣∣∣∂ϕ(L,N)
i

∂xj
(x)

∣∣∣∣∣ < +∞;

thus, from Proposition 2.13, we have Jϕ(L,N)(x) (EJ) ⊂ EI , and Jϕ(L,N)(x)
is continuous; furthermore, by Definition 3.2, Jϕ(L,N)(x) is (m,σ)-general.

Proposition 3.7. Let ϕ : U ⊂ EJ −→ EI be a (m,σ)-standard function; then:

1. Suppose that ϕ is injective, πI,H(ϕ(U)) ∈ τ (H), for any H ⊂ I\Im such
that 0 < |H| ≤ 2, the function ϕi : U −→ R is C1, for any i ∈ Im, and
det Jϕ(m,m)(x) 6= 0, for any x ∈ U (m); then the functions ϕi,σ(i), for any
i ∈ I\Im, and ϕ(m,m) are injective, and σ is bijective.

2. Suppose that ϕ is bijective, the function ϕi : U −→ R is C1, for any
i ∈ Im, and det Jϕ(m,m)(x) 6= 0, for any x ∈ U (m); then the functions
ϕi,σ(i), for any i ∈ I\Im, ϕ(m,m) and σ are bijective.
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3. Suppose that ϕij(xj) = 0, for any i ∈ Im, for any j ∈ J\Jm, for any
xj ∈ Aj, ϕ is injective, and πI,H(ϕ(U)) ∈ τ (H), for any H ⊂ I\Im such
that 0 < |H| ≤ 2; then the functions ϕi,σ(i), for any i ∈ I\Im, and ϕ(m,m)

are injective, and σ is bijective.

4. Suppose that ϕij(xj) = 0, for any i ∈ Im, for any j ∈ J\Jm, for any
xj ∈ Aj, and ϕ is bijective; then the functions ϕi,σ(i), for any i ∈ I\Im,
ϕ(m,m) and σ are bijective.

5. If the functions ϕi,σ(i), for any i ∈ I\Im, and ϕ(m,m) are injective, and
σ is bijective, then ϕ is injective.

6. If the functions ϕi,σ(i), for any i ∈ I\Im, ϕ(m,m) and σ are bijective, then
ϕ is bijective.

Proof. The statement follows from Proposition 31, Proposition 32 and Re-
mark 33 in [5].

Corollary 3.8. Let ϕ : U ⊂ EJ −→ EI be a (m,σ)-general function; then:

1. If ϕ is injective and πI,H(ϕ(U)) ∈ τ (H), for any H ⊂ I\Im such that
0 < |H| ≤ 2, then the functions ϕi,σ(i), for any i ∈ I\Im, and ϕ(m,m) are
injective, and σ is bijective.

2. If ϕ is bijective, then the functions ϕi,σ(i), for any i ∈ I\Im, ϕ(m,m) and
σ are bijective.

Proof. Observe that ϕ is (m,σ)-standard, and ϕij(xj) = 0, for any i ∈ Im, for
any j ∈ J\Jm, for any xj ∈ Aj ; then, from points 3 and 4 of Proposition 3.7,
we obtain the statements 1 and 2.

Proposition 3.9. Let m ∈ N∗, let ∅ 6= L ⊂ I, let ∅ 6= N ⊂ J such that
Jm ⊂ N or N ⊂ J\Jm, and let ϕ : U ⊂ EJ −→ EI be a function m-
general and such that, for any i ∈ L and for any j ∈ N\Jm, the functions
ϕ

(I,m)
i :

(
U (m),B(m)

(
U (m)

))
−→ (R,B) and ϕij : (Aj ,B(Aj)) −→ (R,B) are

measurable; then:

1. The function

ϕ(L,N) : (πJ,N (U),B(N)(πJ,N (U))) −→
(
RL,B(L)

)
is measurable; in particular, suppose that, for any i ∈ I and for any j ∈
J\Jm, ϕ(I,m)

i and ϕij are measurable functions; then, ϕ : (U,B(J)(U)) −→
(EI ,BI) is measurable.
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2. If ϕ is (m,σ)-general, Im ⊂ L and Jm ⊂ N , then the function ϕ(L,N) :
(U,B(J)(U)) −→ (EI ,BI) is measurable.

Proof. 1. ∀ i ∈ L and ∀M ⊂ N such that Jm ⊂M or M ⊂ J\Jm, consider
the function ϕ̂(i,M,N) : πJ,N (U) −→ R defined by

ϕ̂(i,M,N)(x) =
{
ϕ({i},M)(xM ) if M 6= ∅
0 if M = ∅ , ∀x ∈ πJ,N (U);

observe that, ∀n ∈ N, n ≥ m, we have

ϕ̂(i,N∩Jn,N)(x) = ϕ̂(i,N∩Jm,N)(x) +
∑

j∈N∩(Jn\Jm)

ϕ̂(i,{j},N)(x),

∀x ∈ πJ,N (U); (9)

moreover, from Remark 2.6, the functions ϕ̂(i,N∩Jm,N) and ϕ̂(i,{j},N),
∀ j ∈ N ∩ (Jn\Jm), are

(
B(N)(πJ,N (U)),B

)
-measurable; thus, from for-

mula (9), ϕ̂(i,N∩Jn,N) is
(
B(N)(πJ,N (U)),B

)
-measurable; then, since

lim
n−→+∞

ϕ̂(i,N∩Jn,N) = ϕ
(L,N)
i ,

ϕ
(L,N)
i is

(
B(N)(πJ,N (U)),B

)
-measurable too. Furthermore, let

Σ(L) =

{
B =

∏
i∈L

Bi : Bi ∈ B, ∀ i ∈ L

}
;

∀B =
∏
i∈L

Bi ∈ Σ(L), we have

(
ϕ(L,N)

)−1

(B) =
⋂
i∈L

(
ϕ

(L,N)
i

)−1

(Bi) ∈ B(N)(πJ,N (U)).

Finally, since σ (Σ(L)) = B(L), ∀B ∈ B(L), we obtain
(
ϕ(L,N)

)−1
(B) ∈

B(N)(πJ,N (U)), and so ϕ(L,N) : (πJ,N (U),B(N)(πJ,N (U))) −→
(
RL,B(L)

)
is measurable. In particular, suppose that, ∀ i ∈ I and ∀ j ∈ J\Jm,
the functions ϕ(I,m)

i and ϕij are measurable; then, ϕ : (U,B(J)(U)) −→(
RI ,B(I)

)
is measurable; thus, since ϕ(U) ⊂ EI , we obtain that ϕ is(

B(J)(U),BI

)
-measurable.

2. If ϕ is (m,σ)-general, Im ⊂ L and Jm ⊂ N , from Proposition 3.5, the
function ϕ(L,N) : U ⊂ EJ −→ EI is (m,σ)-general, and so m-general.
Moreover, we have

ϕ
(L,N)
i (x) = ψ

(I,m)
i (xJm

) +
∑

j∈J\Jm

ψij(xj), ∀x ∈ U , ∀ i ∈ I,
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where

ψ
(I,m)
i =

{
ϕ

(I,m)
i if i ∈ L

0 if i ∈ I\L
,

ψij =
{
ϕij if (i, j) ∈ (Im × (N\Jm)) ∪ ((I\Im)× (J\Jm))
0 if (i, j) ∈ Im × (J\N) ;

furthermore, ∀ i ∈ I, ∀ j ∈ J\Jm, ψ(I,m)
i :

(
U (m),B(m)

(
U (m)

))
−→

(R,B) and ψij : (Aj ,B(Aj)) −→ (R,B) are measurable functions, and so,
from point 1, ϕ(L,N) : (U,B(J)(U)) −→

(
RI ,B(I)

)
is measurable; finally,

since ϕ(L,N)(U) ⊂ EI , we obtain that ϕ(L,N) is
(
B(J)(U),BI

)
-measurable.

Proposition 3.10. Let ϕ : U ⊂ EJ −→ EI be a (m,σ)-general function such
that σ is bijective and πI,I\Im

◦ ϕ :
(
U, τ‖·‖J

(U)) −→ (EI\Im
, τ‖·‖I\Im

)
is con-

tinuous; then, for any n ∈ N, n ≥ m, ϕ(n,n) : (πJ,Jn (U) , τ (n)(πJ,Jn (U))) −→
(Rn, τ (n)) is continuous if and only if ϕ(n,n) : (U, τ‖·‖J

(U)) −→ (EI , τ‖·‖I
) is

continuous.

Proof. Let n ∈ N, n ≥ m, and suppose that ϕ(n,n) is continuous; moreover, let
B = B1 × B2 ∈ τ‖·‖I

, where B1 ∈ τ (n), B2 ∈ τ‖·‖I\In
; since σ is bijective, we

have (
ϕ(n,n)

)−1

(B) =
(
ϕ(n,n)

)−1

(B1)× πJ,J\Jn

((
πI,I\In

◦ ϕ
)−1 (B2)

)
;

moreover, since ϕ(n,n) and πI,I\Im
◦ϕ are continuous, and Rn−m×B2 ∈ τ‖·‖I\Im

,
we have (

ϕ(n,n)
)−1

(B1) ∈ τ (n)(πJ,Jn
(U)),

(
πI,I\In

◦ ϕ
)−1 (B2) =

(
πI\Im,I\In

◦
(
πI,I\Im

◦ ϕ
))−1 (B2)

=
(
πI,I\Im

◦ ϕ
)−1 (

Rn−m ×B2

)
∈ τ‖·‖J

(U),

and so πJ,J\Jn

((
πI,I\In

◦ ϕ
)−1 (B2)

)
∈ τ‖·‖J\Jn

(
πJ,J\Jn

(U)
)
, from Proposi-

tion 2.5; then, we obtain
(
ϕ(n,n)

)−1
(B) ∈ τ‖·‖J

(U); finally, from Proposi-

tion 2.4, ∀B ∈ τ‖·‖I
, we have

(
ϕ(n,n)

)−1
(B) ∈ τ‖·‖J

(U), and so ϕ(n,n) is
continuous.

Conversely, suppose that ϕ(n,n) is continuous; ∀B ∈ τ (n), we have B ×
EI\In

∈ τ‖·‖I
, and so

(
ϕ(n,n)

)−1
(B×EI\In

) ∈ τ‖·‖J
(U); then,

(
ϕ(n,n)

)−1
(B) =

πJ,Jn

((
ϕ(n,n)

)−1
(B × EI\In

)
)
∈ τ (n)(πJ,Jn

(U)).
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Proposition 3.11. Let m ∈ N∗, let ∅ 6= L ⊂ I, let ∅ 6= N ⊂ J such that
Jm ⊂ N or N ⊂ J\Jm, and let ϕ : U ⊂ EJ −→ EI be a function m-general
and C1 in x0 = (x0,j : j ∈ J) ∈ U ; then:

1. The function ϕ(L,N) : πJ,N (U) −→ RL is C1 in (x0,j : j ∈ N).

2. If ϕ is (m,σ)-general, Im ⊂ L and Jm ⊂ N , then the function ϕ(L,N) :
U ⊂ EJ −→ EI is C1 in x0.

Proof. See the proof of Proposition 2.28 in [6].

Proposition 3.12. Let ϕ : U ⊂ EJ −→ EI be a (m,σ)-general function such
that ϕ : U −→ ϕ(U) is a homeomorphism. Then, the functions ϕ(m,m) :
U (m) −→ ϕ(m,m)

(
U (m)

)
and ϕi,σ(i) : Ai −→ ϕi,σ(i)(Ai), for any i ∈ I\Im, are

homeomorphisms, and σ is bijective.

Proof. From Proposition 37 in [5], the statement is true if ϕ is (m,σ)-standard;
moreover, observe that ϕ is (m,σ)-standard, ϕ = (ϕ), ϕ(m,m) = (ϕ)(m,m),
ϕi,σ(i) = ϕi,σ(i), ∀ i ∈ I\Im; then, the statement is true if ϕ is (m,σ)-general
too.

Proposition 3.13. Let ϕ : U ⊂ EJ −→ EI be a (m,σ)-general function.
Then, ϕ : U −→ ϕ(U) is a diffeomorphism if and only if the functions ϕ(m,m) :
U (m) −→ ϕ(m,m)

(
U (m)

)
and ϕi,σ(i) : Ai −→ ϕi,σ(i)(Ai), for any i ∈ I\Im, are

diffeomorphisms, and σ is bijective.

Proof. From Proposition 38 in [5], the statement is true if ϕ is (m,σ)-standard;
then, as we observed in the proof of Proposition 3.12, the statement is true if
ϕ is (m,σ)-general too.

Definition 3.14. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general
function; ∀ i ∈ I\Im, set λi = λi(A) = ai,σ(i).

Remark 3.15: For anym ∈ N∗, a linear function A = (aij)i∈I,j∈J : EJ −→ EI

is m-general; moreover, if |J | = |I| and σ : I\Im −→ J\Jm is an increasing
function, A is (m,σ)-general if and only if:

1. ∀ i ∈ I\Im, ∀ j ∈ J\ (Jm ∪ {σ(i)}), one has aij = 0.

2. ∀ j ∈ Jm,
∑

i∈I\Im

|aij | < +∞; moreover, one has sup
i∈I\Im

|λi| < +∞ and

inf
i∈I\Im:λi 6=0

|λi| > 0.
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3. If A 6= ∅, there exists
∏

i∈I\Im:λi 6=0

λi ∈ R∗.

Furthermore, A is strongly (m,σ)-general if and only if A is (m,σ)-general
and there exists a ∈ R such that the sequence {λi}i∈I\Im:λi 6=0 converges to a.

Finally, A is (m,σ)-standard if and only if A is (m,σ)-general and aij = 0,
for any i ∈ I\Im, for any j ∈ Jm.

Corollary 3.16. Let m ∈ N∗, let ∅ 6= L ⊂ I, let ∅ 6= N ⊂ J and let
A = (aij)i∈I,j∈J : EJ −→ EI be a linear function; then:

1. The function A(L,N) : (EN ,BN ) −→ (EL,BL) is measurable; in particu-
lar, A : (EJ ,BJ) −→ (EI ,BI) is measurable.

2. If A is (m,σ)-general, Im ⊂ L and Jm ⊂ N , then the function A
(L,N)

:
(EJ ,BJ) −→ (EI ,BI) is measurable.

Proof. 1. From Proposition 2.13, we have A(L,N) (EN ) ⊂ EL; furthermore,
from Remark 3.15, A is 1-general; moreover, we have J1 ⊂ N or N ⊂
J\J1; then, from Proposition 3.9, A(L,N) : (EN ,BN ) −→

(
RL,B(L)

)
is

measurable, and so A(L,N) : (EN ,BN ) −→ (EL,BL) is measurable; in
particular, A : (EJ ,BJ) −→ (EI ,BI) is measurable.

2. The statement follows from Proposition 3.9.

Henceforth, we will suppose that |I| = +∞. The following definitions and
results (from Proposition 3.17 to Proposition 3.21) can be found in [6] and
generalize the standard theory of the m×m matrices.

Proposition 3.17. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general
function; then, A is continuous.

Theorem 3.18. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general
function; then, the sequence

{
detA(n,n)

}
n≥m

converges to a real number. More-

over, if A 6= ∅, by setting m = minA, we have

lim
n−→+∞

detA(n,n) =
∑

p∈I\Im

 ∏
q∈I\I|p|

λq

 ∑
j∈Jm

ap,j

(
cofA(|p|,|p|)

)
p,j

+ detA(m,m)

 ∏
q∈I\Im

λq

 . (10)
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Conversely, if A = ∅, we have lim
n−→+∞

detA(n,n) = 0.

Definition 3.19. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general
function; define the determinant of A, and call it detA, the real number

detA = lim
n−→+∞

detA(n,n).

Corollary 3.20. Let A = (aij)i∈I,j∈J : EJ −→ EI be a linear (m,σ)-general
function such that aij = 0, ∀ i ∈ Im, ∀ j ∈ J\Jm, or A is (m,σ)-standard.
Then, if σ is bijective, we have

detA = detA(m,m)
∏

i∈I\Im

λi.

Conversely, if σ is not bijective, we have detA = 0. In particular, if A = II,J ,
we have detA = 1.

Proposition 3.21. Let ϕ : U ⊂ EJ −→ EI be a (m,σ)-general function and let
x0 = (x0,j : j ∈ J) ∈ U such that there exists the function Jϕ (x0) : EJ −→ EI ;
then, Jϕ (x0) is (m,σ)-general; moreover, for any n ∈ N, n ≥ m, there exists
the linear (m,σ)-general function Jϕ(n,n) (x0) : EJ −→ EI , and one has

det Jϕ (x0) = lim
n→+∞

det Jϕ(n,n) (x0) .

Proposition 3.22. Let m ∈ N∗, let n ∈ N, n ≥ m, and let ϕ : U ⊂ EJ −→ EI

be a function m-general such that, for any i ∈ In, for any j1 ∈ Jm and for any

j2 ∈ Jn\Jm, there exist the functions ∂ϕ
(I,m)
i

∂xj1
:
(
U (m),B(m)

(
U (m)

))
−→ (R,B)

and ∂ϕij2
∂xj2

: (Aj2 ,B(Aj2)) −→ (R,B), and they are measurable; then:

1. The function det Jϕ(n,n) :
(
πJ,Jn

(U),B(n)(πJ,Jn
(U))

)
−→ (R,B) is mea-

surable.

2. Suppose that ϕ is (m,σ)-general and, for any i ∈ I\Im, the function

ϕ′i,σ(i) : (Aσ(i),B(Aσ(i))) −→ (R,B)

is measurable; then, for any x ∈ U , there exists the function Jϕ(n,n)(x) :
EJ −→ EI , and it is (m,σ)-general; moreover, the function det Jϕ(n,n) :(
U,B(J)(U)

)
−→ (R,B) is measurable.
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3. Suppose that ϕ is (m,σ)-general and, for any x ∈ U , there exists the
function Jϕ (x) : EJ −→ EI ; moreover, suppose that, for any i ∈ I, for
any j1 ∈ Jm and for any j2 ∈ J\Jm, the functions

∂ϕ
(I,m)
i

∂xj1

:
(
U (m),B(m)

(
U (m)

))
−→ (R,B)

and ∂ϕij2
∂xj2

: (Aj2 ,B(Aj2)) −→ (R,B) are measurable; then the function

det Jϕ :
(
U,B(J)(U)

)
−→ (R,B) is measurable.

Proof. 1. From Remark 2.6, ∀ i ∈ In, ∀ j ∈ Jn, the function

∂ϕ
(I,n)
i

∂xj
:
(
πJ,Jn

(U),B(n)(πJ,Jn
(U))

)
−→ (R,B)

is measurable; moreover, we have

(
Jϕ(n,n)(x)

)
ij

=
∂ϕ

(I,n)
i

∂xj
(x), ∀x ∈ πJ,Jn

(U);

then, by definition of determinant, the function

det Jϕ(n,n) :
(
πJ,Jn

(U),B(n)(πJ,Jn
(U))

)
−→ (R,B)

is measurable too.

2. If ϕ is (m,σ)-general, from Proposition 3.5, ϕ(n,n) is (m,σ)-general too;
then, from Proposition 2.13, ∀x ∈ U , there exists the function Jϕ(n,n)(x) :
EJ −→ EI , and it is (m,σ)-general, from Remark 3.15.

If A (ϕ) = ∅, ∀x ∈ U , we have A
(
Jϕ(n,n)(x)

)
= ∅, and so det Jϕ(n,n)(x) =

0; then, the function det Jϕ(n,n) :
(
U,B(J)(U)

)
−→ (R,B) is measurable.

Conversely, if A (ϕ) 6= ∅, set m = minA (ϕ), m̂ = max{n,m}; observe
that ϕ(n,n) is (m̂, ρ)-standard, where the bijective increasing function
ρ : I\Im̂ −→ J\Jm̂ is defined by ρ(i) = σ(i), ∀ i ∈ I\Im̂; thus, ∀x ∈ U ,
Jϕ(n,n)(x) is (m̂, ρ)-standard too, and so Corollary 3.20 implies

det Jϕ(n,n)(x) = det
(
Jϕ(n,n)

)(m̂,m̂) (xJm̂
)
∏

i∈I\Im̂

ϕ′i,σ(i)

(
xσ(i)

)
, ∀x ∈ U .

(11)

If m̂ > n, we have det
(
Jϕ(n,n)

)(m̂,m̂) (xJm̂
) = 0, and so det Jϕ(n,n)(x) =

0, ∀x ∈ U ; then, det Jϕ(n,n) :
(
U,B(J)(U)

)
−→ (R,B) is measurable.

Finally, if m̂ = n, from formula (11), we have

det Jϕ(n,n)(x) = det Jϕ(n,n) (xJn
)
∏

i∈I\In

ϕ′i,σ(i)

(
xσ(i)

)
, ∀x ∈ U ;
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moreover, from point 1, the function

det Jϕ(n,n) :
(
πJ,Jn

(U),B(n)(πJ,Jn
(U))

)
−→ (R,B)

is measurable, and so it is
(
B(J)(U),B

)
-measurable, from Remark 2.6;

analogously, ∀ i ∈ I\In, ϕ′i,σ(i) :
(
U,B(J)(U)

)
−→ (R,B) is measurable;

then, ∀h ∈ N, h ≥ n, the function fh :
(
U,B(J)(U)

)
−→ (R,B) defined

by
fh(x) = det Jϕ(n,n) (xJn)

∏
i∈Ih\In

ϕ′i,σ(i)

(
xσ(i)

)
, ∀x ∈ U ,

is measurable; furthermore, we have det Jϕ(n,n)(x) = lim
h→+∞

fh(x), ∀x ∈

U , and so det Jϕ(n,n) :
(
U,B(J)(U)

)
−→ (R,B) is measurable too.

3. By assumption and from point 2, ∀n ∈ N, n ≥ m, there exists the func-
tion det Jϕ(n,n) :

(
U,B(J)(U)

)
−→ (R,B), and it is measurable; more-

over, from Proposition 3.21, we have det Jϕ (x) = lim
n→+∞

det Jϕ(n,n) (x),

∀x ∈ U , and so det Jϕ :
(
U,B(J)(U)

)
−→ (R,B) is measurable.

Proposition 3.23. Let m ∈ N∗, let n ∈ N, n ≥ m, and let ϕ : U ⊂ EJ −→ EI

be a function m-general such that ϕ(n,n) is C1; then, the function det Jϕ(n,n) :(
πJ,Jn

(U), τ (n)(πJ,Jn
(U))

)
−→ (R, τ) is continuous.

Proof. Since ϕ(n,n) is C1, ∀ i ∈ In, ∀ j ∈ Jn, the function

∂ϕ
(n,n)
i

∂xj
:
(
πJ,Jn

(U), τ (n)(πJ,Jn
(U))

)
−→ (R, τ)

is continuous; then, by definition of determinant, the function det Jϕ(n,n) :(
πJ,Jn

(U), τ (n)(πJ,Jn
(U))

)
−→ (R, τ) is continuous too.

4. Change of variables’ formula

Definition 4.1. Let k ∈ N∗, let M,N ∈ R+, let a = (ai : i ∈ I) ∈ [0,+∞)I

such that
∏

i∈I:ai 6=0

ai ∈ R+, and let v = (vi : i ∈ I) ∈ EI ; define the following

sets in BI :

E
(k,I)
N,a,v = Rk ×

∏
i∈I\Ik

[
vi −

N

2
ai, vi +

N

2
ai

]
;

E
(k,I)
M,N,a,v =

∏
h∈Ik

[vh −M,vh +M ]×
∏

i∈I\Ik

[
vi −

N

2
ai, vi +

N

2
ai

]
.
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Moreover, define the σ-finite measure λ(k,I)
N,a,v over

(
RI ,B(I)

)
in the following

manner:

λ
(k,I)
N,a,v = Leb(k) ⊗

 ⊗
i∈I\Ik

1
N
Leb

(
· ∩
[
vi −

N

2
ai, vi +

N

2
ai

]) .

Lemma 4.2. Let k ∈ N∗, let N ∈ R+, let a = (ai : i ∈ I) ∈ [0,+∞)I such
that

∏
i∈I:ai 6=0

ai ∈ R+, and let v = (vi : i ∈ I) ∈ EI ; then, for any measurable

function f :
(
RI ,B(I)

)
−→ (R,B) such that f+ (or f−) is λ(k,I)

N,a,v-integrable,
one has ∫

RI

fdλ
(k,I)
N,a,v =

∫
E

(k,I)
N,a,v

fdλ
(k,I)
N,a,v.

Proof. See the proof of Lemma 46 in [5].

Proposition 4.3. Let ϕ : U ⊂ EJ −→ EI be a (m,σ)-general function such
that the function ϕ is bijective, and suppose that there exists ε=(εi : i ∈ I\Im) ∈
[0,+∞)I\Im such that

∣∣∣ϕ(I,m)
i (xJm)

∣∣∣ ≤ εi, for any i ∈ I\Im, for any xJm ∈

U (m), and such that
∏

i∈I\Im

(1 + 2εi) ∈ R+; moreover, let N ∈ [1,+∞), let

a = (ai : i ∈ I) ∈ [0,+∞)I such that
∏

i∈I:ai 6=0

ai ∈ R+, and let v ∈ EI ; then:

1. There exist b = (bj : j ∈ J) ∈ [0,+∞)J and z ∈ EJ such that
∏

j∈J:bj 6=0

bj ∈

R+ and such that, for any l, n, k ∈ N, l, n, k ≥ m, one has

ϕ−1
(
E

(k,I)
N,a,v

)
⊂ E

(k,J)
N,b,z,(

ϕ(l,n)
)−1 (

E
(k,I)
N,a,v

)
⊂ E

(k,J)
N,b,z.

In particular, if ϕ is (m,σ)-standard, the statement is true for any N ∈
R+, and one has

ϕ−1
(
E

(k,I)
N,a,v

)
=
(
ϕ(l,n)

)−1 (
E

(k,I)
N,a,v

)
= E

(k,J)
N,b,z,

ϕ−1

( ◦

E
(k,I)
N,a,v

)
=
(
ϕ(l,n)

)−1
( ◦

E
(k,I)
N,a,v

)
=

◦

E
(k,J)
N,b,z.
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2. Suppose that the function ϕij is continuous, for any i ∈ Im, for any
j ∈ J\Jm, and the function ϕ(m,m) :

(
U (m), τ (m)(U (m))) −→ (Rm, τ (m)

)
is open; then, for any M ∈ R+, there exists O ∈ R+ such that, for any
l, n, k ∈ N, l, n, k ≥ m, one has

ϕ−1
(
E

(k,I)
M,N,a,v

)
⊂ E

(k,J)
O,N,b,z,(

ϕ(l,n)
)−1 (

E
(k,I)
M,N,a,v

)
⊂ E

(k,J)
O,N,b,z.

In particular, if ϕ is (m,σ)-standard, the statement is true for any N ∈ R+.

Proof. 1. Since ϕ is bijective, from Corollary 3.8, the functions ϕi,σ(i), ∀ i ∈
I\Im, and σ are bijective.

Let N ∈ [1,+∞), let a = (ai : i ∈ I) ∈ [0,+∞)I such that
∏

i∈I:ai 6=0

ai ∈

R+, let v ∈ EI , and let a = (ai : i ∈ I\Im) ∈ [0,+∞)I\Im , where

ai =
{

max{1, ai} if εi > 0
ai if εi = 0 , ∀ i ∈ I\Im;

define b = (bj : j ∈ J) ∈ [0,+∞)J and z = (zj : j ∈ J) ∈ [0,+∞)J such
that bj = zj = 1, ∀ j ∈ Jm; moreover, ∀ i ∈ I\Im, set

bσ(i) =

∣∣∣ϕ−1
i,σ(i)

(
vi + N

2 ai (1 + 2εi)
)
− ϕ−1

i,σ(i)

(
vi − N

2 ai (1 + 2εi)
)∣∣∣

N
,

zσ(i) =
ϕ−1

i,σ(i)

(
vi − N

2 ai (1 + 2εi)
)

+ ϕ−1
i,σ(i)

(
vi + N

2 ai (1 + 2εi)
)

2
. (12)

Observe that, ∀ i ∈ I\Im, we have bσ(i) 6= 0 if and only if ai 6= 0; then,
since σ (I\Im) = J\Jm, we have∏

j∈J:bj 6=0

bj =
∏

j∈J\Jm:bj 6=0

bj =
∏

i∈I\Im:ai 6=0

bσ(i)

=

 ∏
i∈I\Im:ai 6=0

∣∣∣ϕ−1
i,σ(i)

(
vi+ N

2 ai (1+2εi)
)
−ϕ−1

i,σ(i)

(
vi−N

2 ai (1+2εi)
)∣∣∣

Nai (1 + 2εi)


·

 ∏
i∈I\Im:ai 6=0

ai

 ∏
i∈I\Im:ai 6=0

(1 + 2εi)

 . (13)
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Moreover, ∀ i ∈ I\Im the function ϕ−1
i,σ(i) is derivable on R; then, if ai 6= 0,

the Lagrange theorem implies that, for some ξi ∈ (vi− N
2 ai (1 + 2εi) , vi +

N
2 ai (1 + 2εi)), we have∣∣∣ϕ−1

i,σ(i)

(
vi + N

2 ai (1 + 2εi)
)
− ϕ−1

i,σ(i)

(
vi − N

2 ai (1 + 2εi)
)∣∣∣

Nai (1 + 2εi)

=
∣∣∣∣(ϕ−1

i,σ(i)

)′
(ξi)
∣∣∣∣ = 1∣∣∣ϕ′i,σ(i)(ϕ

−1
i,σ(i)(ξi))

∣∣∣ ; (14)

furthermore, ∀ i ∈ I\Im, ϕi,σ(i) is injective, and so Iϕ = I\Im; then∏
i∈I\Im:ai 6=0

∣∣∣ϕ′i,σ(i)(ϕ
−1
i,σ(i)(ξi))

∣∣∣ = ∏
i∈Iϕ:ai 6=0

∣∣∣ϕ′i,σ(i)(ϕ
−1
i,σ(i)(ξi))

∣∣∣ ∈ R+,

(15)
from Definition 3.2. Moreover, we have

∏
i∈I\Im:ai 6=0

ai =

 ∏
i∈I\Im:ai>1,εi>0

ai

 ∏
i∈I\Im:ai 6=0,εi=0

ai

 ∈ R+,

∏
i∈I\Im:ai 6=0

(1 + 2εi) ∈ R+;

then, from formulas (13), (14) and (15), we obtain
∏

j∈J:bj 6=0

bj ∈ R+.

Moreover, let x0 = (x0,j : j ∈ J) ∈ U ; ∀ i ∈ I\Im, we have∣∣∣∣ϕ−1
i,σ(i)

(
vi −

N

2
ai (1 + 2εi)

)∣∣∣∣
=
∣∣∣∣ϕ−1

i,σ(i)

(
vi −

N

2
ai (1 + 2εi)

)
− x0,σ(i) + x0,σ(i)

∣∣∣∣
≤
∣∣∣∣ϕ−1

i,σ(i)(vi −
N

2
ai (1 + 2εi))− ϕ−1

i,σ(i)(ϕi,σ(i)(x0,σ(i)))
∣∣∣∣+ ∣∣x0,σ(i)

∣∣ ;
(16)

furthermore, from the Lagrange theorem, there exists ζi ∈ (ρi, τi), where

ρi = min{vi −
N

2
ai (1 + 2εi) , ϕi,σ(i)(x0,σ(i))},

τi = max{vi −
N

2
ai (1 + 2εi) , ϕi,σ(i)(x0,σ(i))},
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such that∣∣∣∣ϕ−1
i,σ(i)(vi −

N

2
ai (1 + 2εi))− ϕ−1

i,σ(i)(ϕi,σ(i)(x0,σ(i)))
∣∣∣∣

=
∣∣∣∣(ϕ−1

i,σ(i)

)′
(ζi)
∣∣∣∣ ∣∣∣∣vi −

N

2
ai (1 + 2εi)− ϕi,σ(i)(x0,σ(i))

∣∣∣∣
=

∣∣vi − N
2 ai (1 + 2εi)− ϕi,σ(i)(x0,σ(i))

∣∣∣∣∣ϕ′i,σ(i)(ϕ
−1
i,σ(i)(ζi))

∣∣∣ ;

thus, from (16), we obtain∣∣∣∣ϕ−1
i,σ(i)

(
vi −

N

2
ai (1 + 2εi)

)∣∣∣∣
≤
∣∣vi − N

2 ai (1 + 2εi)− ϕi,σ(i)(x0,σ(i))
∣∣∣∣∣ϕ′i,σ(i)(ϕ

−1
i,σ(i)(ζi))

∣∣∣ +
∣∣x0,σ(i)

∣∣ . (17)

We have sup
i∈I\Im

∣∣vi − N
2 ai (1 + 2εi)

∣∣ ≤ ‖v‖I + N
2 ‖a‖I (1 + 2 ‖ε‖I) < +∞;

moreover, from Definition 3.2, we have

sup
i∈I\Im

∣∣ϕi,σ(i)(x0,σ(i))
∣∣ = sup

i∈I\Im

∣∣∣ϕ(I\Im,J\Jm)
i

(
(x0)J\Jm

)∣∣∣ < +∞,

inf
i∈I\Im

∣∣∣ϕ′i,σ(i)(ϕ
−1
i,σ(i)(ζi)

∣∣∣ = inf
i∈Iϕ

∣∣∣ϕ′i,σ(i)(ϕ
−1
i,σ(i)(ζi)

∣∣∣ > 0;

then, there exists c ∈ R+ such that sup
i∈I\Im

∣∣∣ϕ′i,σ(i)(ϕ
−1
i,σ(i)(ζi))

∣∣∣−1

≤ c, and

so formula (17) implies

sup
i∈I\Im

∣∣∣∣ϕ−1
i,σ(i)

(
vi −

N

2
ai (1 + 2εi)

)∣∣∣∣
≤ c

(
sup

i∈I\Im

∣∣∣∣vi −
N

2
ai (1 + 2εi)

∣∣∣∣+ sup
i∈I\Im

∣∣ϕi,σ(i)(x0,σ(i))
∣∣)

+ ‖x0‖J <+∞.

Analogously, we have

sup
i∈I\Im

∣∣∣∣ϕ−1
i,σ(i)

(
vi +

N

2
ai (1 + 2εi)

)∣∣∣∣ < +∞;

then, from formula (12), we obtain that sup
i∈I\Im

∣∣zσ(i)

∣∣ < +∞, and so

z ∈ EJ .
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Moreover, let k ∈ N, k ≥ m, and let x = (xj : j ∈ J) ∈ ϕ−1
(
E

(k,I)
N,a,v

)
;

∀ i ∈ I\Ik, we have

ϕ
(I,m)
i (xJm

) + ϕi,σ(i)(xσ(i)) = ϕi(x) ∈
[
vi −

N

2
ai, vi +

N

2
ai

]
⇒ ϕi,σ(i)(xσ(i)) ∈

[
vi −

N

2
ai − ϕ

(I,m)
i (xJm

) , vi +
N

2
ai − ϕ

(I,m)
i (xJm

)
]

⊂
[
vi −

N

2
ai − εi, vi +

N

2
ai + εi

]
;

moreover, since N ≥ 1, we have N
2 ai + εi ≤ N

2 ai (1 + 2εi), and so xσ(i) ∈
[αi, βi], where

αi = min
{
ϕ−1

i,σ(i)

(
vi −

N

2
ai (1 + 2εi)

)
, ϕ−1

i,σ(i)

(
vi +

N

2
ai (1 + 2εi)

)}
,

βi = max
{
ϕ−1

i,σ(i)

(
vi −

N

2
ai (1 + 2εi)

)
, ϕ−1

i,σ(i)

(
vi +

N

2
ai (1 + 2εi)

)}
;

thus, formula (12) implies

xσ(i) ∈
[
zσ(i) −

N

2
bσ(i), zσ(i) +

N

2
bσ(i)

]
; (18)

finally, since σ (I\Ik) = J\Jk, we obtain ϕ−1
(
E

(k,I)
N,a,v

)
⊂ E

(k,J)
N,b,z.

Furthermore, let l, n ∈ N, l, n ≥ m, and let

x = (xj : j ∈ J) ∈
(
ϕ(l,n)

)−1 (
E

(k,I)
N,a,v

)
;

∀ i ∈ Il\Ik, since ϕi(x) = ϕ
(l,n)
i (x), by repeating the previous arguments,

we have formula (18); conversely, ∀ i ∈ I\Il, we have

ϕi,σ(i)(xσ(i)) = ϕi(x) ∈
[
vi −

N

2
ai, vi +

N

2
ai

]
,

and so xσ(i) ∈ [γi, δi], where

γi = min
{
ϕ−1

i,σ(i)

(
vi −

N

2
ai

)
, ϕ−1

i,σ(i)

(
vi +

N

2
ai

)}
,

δi = max
{
ϕ−1

i,σ(i)

(
vi −

N

2
ai

)
, ϕ−1

i,σ(i)

(
vi +

N

2
ai

)}
; (19)
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then, since [γi, δi] ⊂ [αi, βi], we obtain formula (18) again; thus, we have(
ϕ(l,n)

)−1
(
E

(k,I)
N,a,v

)
⊂ E

(k,J)
N,b,z.

In particular, if ϕ is (m,σ)-standard, ∀ i ∈ I\Im, we have εi = 0, and so
ai = ai; then, ∀N ∈ R+, we have

ϕ−1
i,σ(i)

([
vi −

N

2
ai, vi +

N

2
ai

])
= [γi, δi]

=
[
zσ(i) −

N

2
bσ(i), zσ(i) +

N

2
bσ(i)

]
; (20)

thus, ∀ k ∈ N, k ≥ m, we obtain ϕ−1
(
E

(k,I)
N,a,v

)
= E

(k,J)
N,b,z, ϕ

−1

( ◦

E
(k,I)
N,a,v

)
=

◦

E
(k,J)
N,b,z; analogously, ∀ l, n ∈ N, l, n ≥ m, from formula (20), we have(
ϕ(l,n)

)−1
(
E

(k,I)
N,a,v

)
= E

(k,J)
N,b,z,

(
ϕ(l,n)

)−1

( ◦

E
(k,I)
N,a,v

)
=

◦

E
(k,J)
N,b,z.

2. Suppose that the function ϕij is continuous, ∀ i ∈ Im, ∀ j ∈ J\Jm, and
the function ϕ(m,m) :

(
U (m), τ (m)(U (m))) −→ (Rm, τ (m)

)
is open; since ϕ

is bijective, from Corollary 3.8, ϕ(m,m) is bijective too; moreover, ∀M ∈
R+, consider the set

E
(I)

M,N,a,v =
∏
i∈I

[
vi −

N

2
ai, vi +

N

2
ai

]
,

where N = max{2M,N} ∈ [1,+∞), ai = max{1, ai}, ∀ i ∈ I. We have
E

(I)

M,N,a,v ⊂ E
(m,I)

N,a,v
, where a =

(
ai : i ∈ I

)
∈ [1,+∞)I ; moreover, we have∏

i∈I\Im:ai 6=0

ai =
∏

i∈I\Im:ai>1

ai ∈ R+;

then, from point 1, there exist b =
(
bj : j ∈ J

)
∈ [0,+∞)J and z ∈ EJ

such that
∏

j∈J:bj 6=0

bj ∈ R+ and such that

ϕ−1
(
E

(I)

M,N,a,v

)
⊂ ϕ−1

(
E

(m,I)

N,a,v

)
⊂ E

(m,J)

N,b,z
;

then, ∀x = (xj : j ∈ J) ∈ ϕ−1
(
E

(I)

M,N,a,v

)
, we have

∥∥xJ\Jm

∥∥
J\Jm

≤

‖z‖J\Jm
+ N

2

∥∥b∥∥
J\Jm

≡ O1 ∈ R+. Moreover, ∀ i ∈ Im, we have

ϕi(x) = ϕ
(m,m)
i (xJm

) +
∑

j∈J\Jm

ϕij(xj),
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and so
xJm =

(
ϕ(m,m)

)−1

wIm , (21)

where
wi = ϕi(x)−

∑
j∈J\Jm

ϕij (xj) , ∀ i ∈ Im; (22)

furthermore, ∀ i ∈ I\Im, we have

ϕ
(I,m)
i (xJm

) + ϕi,σ(i)(xσ(i)) = ϕi(x) ∈
[
vi −

N

2
ai, vi +

N

2
ai

]
⇒ ϕi,σ(i)(xσ(i)) ∈

[
vi −

N

2
ai − ϕ

(I,m)
i (xJm

) , vi +
N

2
ai − ϕ

(I,m)
i (xJm

)
]

⊂
[
vi −

N

2
ai − εi, vi +

N

2
ai + εi

]
,

and so
xσ(i) ∈

[
αi, βi

]
⊂ Aσ(i), (23)

where

αi = min
{
ϕ−1

i,σ(i)

(
vi −

N

2
ai − εi

)
, ϕ−1

i,σ(i)

(
vi +

N

2
ai + εi

)}
,

βi = max
{
ϕ−1

i,σ(i)

(
vi −

N

2
ai − εi

)
, ϕ−1

i,σ(i)

(
vi +

N

2
ai + εi

)}
;

then, since ∀ i ∈ Im, ∀ j ∈ J\Jm, the function ϕij is continuous, there
exists O2 = O2 (ϕ,M,N, a, v) ∈ R+ such that

sup
i∈Im

∑
j∈J\Jm

|ϕij (xj)| ≤ O2,

and so ‖wIm
‖Im

≤ ‖v‖Im
+ N

2

∥∥a∥∥
Im

+ O2 ≡ O3 ∈ R+, from (22);

then, since the function
(
ϕ(m,m)

)−1
is continuous, from (21), we have

‖xJm‖Jm
≤ O4, for some O4 = O4 (ϕ,M,N, a, v) ∈ R+ such that(

ϕ(m,m)
)−1

([−O3, O3]
m) ⊂ [−O4, O4]

m
,

and so ‖x‖J ≤ max {O1, O4}. Thus, if b, z are the sequences defined by
point 1, we have

ϕ−1
(
E

(I)

M,N,a,v

)
⊂
∏
j∈J

[−max {O1, O4} ,max {O1, O4}]

⊂
∏
j∈J

[zj −O, zj +O] , (24)



INFINITE-DIMENSIONAL CHANGE OF VARIABLES’ FORMULA 91

where O ≡ max {O1, O4} + ‖z‖J ∈ R+; moreover, ∀ k ∈ N, k ≥ m, we

have E(k,I)
M,N,a,v ⊂ E

(k,I)
N,a,v ∩ E

(I)

M,N,a,v; then, from formula (24), we obtain

ϕ−1
(
E

(k,I)
M,N,a,v

)
⊂ ϕ−1

(
E

(k,I)
N,a,v

)
∩ ϕ−1

(
E

(I)

M,N,a,v

)
⊂ E

(k,J)
N,b,z ∩

∏
j∈J

[zj −O, zj +O] ⊂ E
(k,J)
O,N,b,z.

Furthermore, let l, n ∈ N, l, n ≥ m; from point 1, we have(
ϕ(l,n)

)−1 (
E

(I)

M,N,a,v

)
⊂
(
ϕ(l,n)

)−1 (
E

(m,I)

N,a,v

)
⊂ E

(m,J)

N,b,z
;

then, ∀x = (xj :j ∈ J) ∈
(
ϕ(l,n)

)−1
(
E

(I)

M,N,a,v

)
, we have

∥∥xJ\Jm

∥∥
J\Jm

≤
O1. Moreover, ∀ i ∈ Im, we have

ϕ
(l,n)
i (x) = ϕ

(m,m)
i (xJm

) +
∑

j∈Jn\Jm

ϕij(xj),

and so
xJm

=
(
ϕ(m,m)

)−1

wIm , (25)

where
wi = ϕ

(l,n)
i (x)−

∑
j∈Jn\Jm

ϕij (xj) , ∀ i ∈ Im; (26)

furthermore, ∀ i ∈ Il\Im, since ϕi(x) = ϕ
(l,n)
i (x), we have formula (23).

Finally, ∀ i ∈ I\Il, we have

ϕi,σ(i)(xσ(i)) = ϕ
(l,n)
i (x) ∈

[
vi −

N

2
ai, vi +

N

2
ai

]
⇒ xσ(i) ∈

[
γi, δi

]
,

where

γi = min
{
ϕ−1

i,σ(i)

(
vi −

N

2
ai

)
, ϕ−1

i,σ(i)

(
vi +

N

2
ai

)}
,

δi = max
{
ϕ−1

i,σ(i)

(
vi −

N

2
ai

)
, ϕ−1

i,σ(i)

(
vi +

N

2
ai

)}
;

then, since
[
γi, δi

]
⊂
[
αi, βi

]
, we obtain formula (23) again, from which

sup
i∈Im

∑
j∈Jn\Jm

|ϕij (xj)| ≤ sup
i∈Im

∑
j∈J\Jm

|ϕij (xj)| ≤ O2,
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and so ‖wIm
‖Im

≤ O3, from (26).

Then, since the function
(
ϕ(m,m)

)−1
is continuous, from (25), we have

‖xJm
‖Jm

≤ O4, and so ‖x‖J ≤ max {O1, O4}. Thus, we have

(
ϕ(l,n)

)−1 (
E

(I)

M,N,a,v

)
⊂
∏
j∈J

[−max {O1, O4} ,max {O1, O4}]

⊂
∏
j∈J

[zj −O, zj +O] ; (27)

finally, ∀ k ∈ N, k ≥ m, from point 1 and formula (27), we obtain

(
ϕ(l,n)

)−1 (
E

(k,I)
M,N,a,v

)
⊂
(
ϕ(l,n)

)−1 (
E

(k,I)
N,a,v

)
∩
(
ϕ(l,n)

)−1 (
E

(I)

M,N,a,v

)
⊂ E

(k,J)
N,b,z ∩

∏
j∈J

[zj −O, zj +O] ⊂ E
(k,J)
O,N,b,z.

In particular, if ϕ is (m,σ)-standard, ∀N ∈ R+, ∀ l, n, k ∈ N, l, n, k ≥ m,
from point 1, we have

ϕ−1
(
E

(k,I)
N,a,v

)
=
(
ϕ(l,n)

)−1 (
E

(k,I)
N,a,v

)
= E

(k,J)
N,b,z;

moreover, we have formulas (24) and (27) again, from which

ϕ−1
(
E

(k,I)
M,N,a,v

)
⊂ E

(k,J)
O,N,b,z,(

ϕ(l,n)
)−1 (

E
(k,I)
M,N,a,v

)
⊂ E

(k,J)
O,N,b,z.

Proposition 4.4. Let (S,Σ) be a measurable space, let I be a π-system on S,
and let µ1 and µ2 be two measures on (S,Σ), σ- finite on I; if σ(I) = Σ and
µ1 and µ2 coincide on I, then µ1 and µ2 coincide on Σ.

Proof. See, for example, Theorem 10.3 in Billingsley [8].

Now, we can prove the main result of our paper, that improves Theorem 47
in [5], and generalizes the change of variables’ formula for the integration of
a measurable function on Rm with values in R (see, for example, the Lang’s
book [11]).
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Theorem 4.5. (Change of variables’ formula). Let ϕ : U ⊂ EJ −→ EI be a
bijective, continuous and (m,σ)-general function, such that πI,I\Im

◦ ϕ is con-
tinuous and such that, for any n ∈ N, n ≥ m, the function ϕ(n,n) : U −→ EI

is a diffeomorphism; moreover, suppose that there exists ε = (εi : i ∈ I\Im) ∈
(R+)I\Im such that

∣∣∣ϕ(I,m)
i (xJm

)
∣∣∣ ≤ εi, for any i ∈ I\Im, for any xJm

∈ U (m),

and such that
∏

i∈I\Im

(1 + 2εi) ∈ R+; furthermore, suppose that the sequence{(
ϕ(n,n)

)−1
}

n≥m
converges uniformly to ϕ−1 over the closed and bounded sub-

sets of EI , and the sequence
{
det Jϕ(n,n)

}
n≥m

converges uniformly over the
closed and bounded subsets of U ; finally, let N ∈ [1,+∞), let a = (ai : i ∈ I) ∈
[0,+∞)I such that

∏
i∈I:ai 6=0

ai ∈ R+, let v ∈ EI , and let b ∈ [0,+∞)J and

z ∈ EJ defined by Proposition 4.3. Then, for any k ∈ N, k ≥ m, for any

B ∈ B(I)

( ◦

E
(k,I)
N,a,v

)
and for any measurable function f :

(
RI ,B(I)

)
−→ (R,B)

such that f+ (or f−) is λ(k,I)
N,a,v-integrable, one has∫

B

fdλ
(k,I)
N,a,v =

∫
ϕ−1(B)

f(ϕ) lim
n→+∞

∣∣det Jϕ(n,n)

∣∣ dλ(k,J)
N,b,z.

In particular, assume that, for any x ∈ U , there exists the function Jϕ(x) :
EJ −→ EI ; then, one has∫

B

fdλ
(k,I)
N,a,v =

∫
ϕ−1(B)

f(ϕ) |det Jϕ| dλ(k,J)
N,b,z.

Proof. The previous assumptions imply that ϕ is bijective, ϕij is continuous,
∀ i ∈ Im, ∀ j ∈ J\Jm, and ϕ(m,m) :

(
U (m), τ (m)(U (m))) −→ (Rm, τ (m)

)
is

open; thus, ∀M ∈ R+, ∀N ∈ [1,+∞), ∀ a = (ai : i ∈ I) ∈ [0,+∞)I such that∏
i∈I:ai 6=0

ai ∈ R+, and ∀ v ∈ EI , let O ∈ R+ and let b, z be the sequences

defined by Proposition 4.3. Then, ∀n, k ∈ N, n ≥ k ≥ m, ∀B =
∏
i∈I

Bi ∈

B(I)
(
E

(k,I)
M,N,a,v

)
and ∀ i ∈ I\In, we have Bi ∈ B

([
vi − N

2 ai, vi + N
2 ai

])
; more-

over, since
(
ϕ(n,n)

)−1
(B) ⊂ E

(k,J)
N,b,z, we have

ϕ−1
i,σ(i)(Bi) ∈ B

([
zσ(i) −

N

2
bσ(i), zσ(i) +

N

2
bσ(i)

])
,
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from which∫
B

dλ
(k,I)
N,a,v =

∫
∏
p∈I

Bp

d

Leb(k) ⊗

 ⊗
q∈I\Ik

1
N
Leb

∣∣∣∣
B([vq−N

2 aq,vq+ N
2 aq])



=
1

Nn−k

∫
∏

p∈In

Bp×
∏

q∈I\In

Bq

d

Leb(n) ⊗

 ⊗
q∈I\In

1
N
Leb

∣∣∣∣
B([vq−N

2 aq,vq+ N
2 aq])



=
1

Nn−k

∫
∏

p∈In

Bp

dLeb(n) ·
∫
∏

q∈I\In

Bq

d

 ⊗
q∈I\In

1
N
Leb

∣∣∣∣
B([vq−N

2 aq,vq+ N
2 aq])

 . (28)

Moreover, we have∫
∏

q∈I\In

Bq

d

 ⊗
q∈I\In

1
N
Leb

∣∣∣∣
B([vq−N

2 aq,vq+ N
2 aq])

 =
∫
∏

q∈I\In

Bq

d

 ⊗
q∈I\In

1
N
Leb

∣∣∣∣
B(Bq)



= lim
p→+∞

∫
∏

q∈Ip\In

Bq

d

 ⊗
q∈Ip\In

1
N
Leb

∣∣∣∣
B(Bq)

 (by Theorem 2.1)

= lim
p→+∞

∫
∏

q∈Ip\In

ϕ−1
q,σ(q)(Bq)

∏
q∈Ip\In

∣∣∣ϕ′q,σ(q)

∣∣∣ · d
 ⊗

q∈Ip\In

1
N
Leb

∣∣∣∣
B(ϕ−1

q,σ(q)(Bq))


(since, ∀ q ∈ Ip\In, ϕq,σ(q) is a diffeomorphism, by Proposition 3.13)

=
∫

∏
q∈I\In

ϕ−1
q,σ(q)(Bq)

∏
q∈I\In

∣∣∣ϕ′q,σ(q)

∣∣∣ · d
 ⊗

q∈I\In

1
N
Leb

∣∣∣∣
B(ϕ−1

q,σ(q)(Bq))


(by Theorem 2.2)

=
∫

∏
q∈I\In

ϕ−1
q,σ(q)(Bq)

∏
q∈I\In

∣∣∣ϕ′q,σ(q)

∣∣∣· d
 ⊗

q∈I\In

1
N
Leb

∣∣∣∣
B([zσ(q)−N

2 bσ(q),zσ(q)+
N
2 bσ(q)])

.
Moreover, from Proposition 3.13, ϕ(n,n) is a diffeomorphism, and so formula
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(28) implies∫
B

dλ
(k,I)
N,a,v =

1
Nn−k

∫
(ϕ(n,n))−1

( ∏
p∈In

Bp

)|det Jϕ(n,n) |dLeb(n)

·
∫

∏
q∈I\In

ϕ−1
q,σ(q)(Bq)

∏
q∈I\In

∣∣∣ϕ′q,σ(q)

∣∣∣· d
 ⊗

q∈I\In

1
N
Leb

∣∣∣∣
B([zσ(q)−N

2 bσ(q),zσ(q)+
N
2 bσ(q)])



=
1

Nn−k

∫
(ϕ(n,n))−1

(B)

|det Jϕ(n,n) |d

Leb(n)

⊗

 ⊗
q∈I\In

1
N
Leb

∣∣∣∣
B([zσ(q)−N

2 bσ(q),zσ(q)+
N
2 bσ(q)])


=

∫
(ϕ(n,n))−1

(B)

|det Jϕ(n,n) |d

Leb(k)

⊗

 ⊗
q∈I\Ik

1
N
Leb

∣∣∣∣
B([zσ(q)−N

2 bσ(q),zσ(q)+
N
2 bσ(q)])


(

since
(
ϕ(n,n)

)−1

(B) ⊂ E
(k,J)
N,b,z

)
=

∫
(ϕ(n,n))−1

(B)

|det Jϕ(n,n) |dλ(k,J)
N,b,z. (29)

Consider the measures µ1 and µ2 on Σ ≡ B(I)
(
E

(k,I)
M,N,a,v

)
defined by

µ1(B) =
∫
B

dλ
(k,I)
N,a,v,

µ2(B) =
∫

(ϕ(n,n))−1
(B)

|det Jϕ(n,n) |dλ(k,J)
N,b,z;

from (29), µ1 and µ2 coincide on the set

I =

{
B ∈ Σ : B =

∏
i∈I

Bi

}
;
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moreover, we have µ1

(
E

(k,I)
M,N,a,v

)
= µ2

(
E

(k,I)
M,N,a,v

)
< +∞, E(k,I)

M,N,a,v ∈ I, and

so µ1 and µ2 are σ- finite on I. Then, since I is a π-system on E(k,I)
M,N,a,v such

that σ(I) = Σ, from Proposition 4.4, ∀B ∈ B(I)
(
E

(k,I)
M,N,a,v

)
, we have∫

B

dλ
(k,I)
N,a,v =

∫
(ϕ(n,n))−1

(B)

|det Jϕ(n,n) |dλ(k,J)
N,b,z. (30)

Moreover, since E(k,I)
M,N,a,v is closed and bounded, the sequence

{(
ϕ(n,n)

)−1
}

n≥k

converges uniformly to ϕ−1 over E(k,I)
M,N,a,v; furthermore, since ϕ is continuous,

ϕ−1
(
E

(k,I)
M,N,a,v

)
is closed; then, there exist n ∈ N, n ≥ k, and δ ∈ R+ such

that, ∀ i > n,
(
ϕ(i,i)

)−1
(
E

(k,I)
M,N,a,v

)
⊂ ϕ−1

(
E

(k,I)
M,N,a,v

)
+ BJ(0, δ) ⊂ U , from

which(
ϕ(n,n)

)−1

(B) ⊂
⋃
h≥k

(
ϕ(h,h)

)−1 (
E

(k,I)
M,N,a,v

)

⊂

(
n⋃

h=k

(
ϕ(h,h)

)−1 (
E

(k,I)
M,N,a,v

))⋃(
ϕ−1

(
E

(k,I)
M,N,a,v

)
+BJ(0, δ)

)
,

∀n ≥ k;

then, from Proposition 4.3, ∀n ≥ k, we have

(
ϕ(n,n)

)−1

(B) ⊂ E
(k,J)
O,N,b,z

∩

((
n⋃

h=k

(
ϕ(h,h)

)−1 (
E

(k,I)
M,N,a,v

))⋃(
ϕ−1

(
E

(k,I)
M,N,a,v

)
+BJ(0, δ)

))
≡ E

(k,I,ϕ,δ)
M,N,a,v ⊂ U, (31)

and so ∫
E

(k,I)
M,N,a,v

1Bdλ
(k,I)
N,a,v =

∫
E

(k,I,ϕ,δ)
M,N,a,v

1B(ϕ(n,n))|det Jϕ(n,n) |dλ(k,J)
N,b,z. (32)

Moreover, ∀h ∈ {k, ..., n}, ϕ(h,h) is continuous, since from Proposition 3.13 it is
a diffeomorphism; then, since πI,I\Im

◦ ϕ is continuous, from Proposition 3.10,
ϕ(h,h) is continuous too, and so formula (31) implies that E(k,I,ϕ,δ)

M,N,a,v is a closed
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subset of U ; furthermore, we have E(k,I,ϕ,δ)
M,N,a,v ⊂ E

(k,J)
O,N,b,z, and so E

(k,I,ϕ,δ)
M,N,a,v is

bounded.
From formula (32), if ψ :

(
RI ,B(I)

)
−→ ([0,+∞),B ([0,+∞))) is a simple

function such that ψ(x) = 0, ∀x /∈ E(k,I)
M,N,a,v, we have∫

E
(k,I)
M,N,a,v

ψdλ
(k,I)
N,a,v =

∫
E

(k,I,ϕ,δ)
M,N,a,v

ψ(ϕ(n,n))|det Jϕ(n,n) |dλ(k,J)
N,b,z.

Then, if l :
(
RI ,B(I)

)
−→ ([0,+∞),B ([0,+∞))) is a measurable function

such that l(x) = 0, ∀x /∈ E
(k,I)
M,N,a,v, and {ψi}i∈N is a sequence of increasing

positive simple functions over
(
RI ,B(I)

)
such that lim

i−→+∞
ψi = l, ψi(x) = 0,

∀x /∈ E(k,I)
M,N,a,v, ∀ i ∈ N, from Beppo Levi theorem we have∫

E
(k,I)
M,N,a,v

ldλ
(k,I)
N,a,v = lim

i−→+∞

∫
E

(k,I)
M,N,a,v

ψidλ
(k,I)
N,a,v

= lim
i−→+∞

∫
E

(k,I,ϕ,δ)
M,N,a,v

ψi(ϕ(n,n))|det Jϕ(n,n) |dλ(k,J)
N,b,z

=
∫

E
(k,I,ϕ,δ)
M,N,a,v

l(ϕ(n,n))|det Jϕ(n,n) |dλ(k,J)
N,b,z, (33)

from which∫
E

(k,I)
M,N,a,v

ldλ
(k,I)
N,a,v = lim

n−→+∞

∫
E

(k,I,ϕ,δ)
M,N,a,v

l(ϕ(n,n))|det Jϕ(n,n) |dλ(k,J)
N,b,z. (34)

In particular, formula (34) is true if l : RI −→ [0,+∞) is
(
B(I),B ([0,+∞))

)
-

measurable,
(
τ (I), τ ([0,+∞))

)
-continuous and such that l

(
RI
)
⊂ [0, 1], l(x) =

0, ∀x /∈ E(k,I)
M,N,a,v. In this case, let {fn}n≥k be the sequence of the measurable

functions

fn :
(
E

(k,I,ϕ,δ)
M,N,a,v ,B

(J)
(
E

(k,I,ϕ,δ)
M,N,a,v

))
−→ ([0,+∞),B ([0,+∞)))

given by

fn(x) = l(ϕ(n,n)(x))|det Jϕ(n,n)(x)|, ∀x ∈ E(k,I,ϕ,δ)
M,N,a,v , ∀n ≥ k;

since E(k,I,ϕ,δ)
M,N,a,v is closed and bounded, the sequence

{
det Jϕ(n,n)

}
n≥k

converges

uniformly over E(k,I,ϕ,δ)
M,N,a,v ; then, there exists n̂ ∈ N, n̂ ≥ k, such that, ∀x ∈
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E
(k,I,ϕ,δ)
M,N,a,v , ∀n > n̂, we have |det Jϕ(n,n)(x)| ≤ |det Jϕ(n̂,n̂)(x)| + 1; thus, since

l
(
RI
)
⊂ [0, 1], ∀n ≥ k, we have |fn| ≤ |det Jϕ(n,n) | ≤ g, where

g :
(
E

(k,I,ϕ,δ)
M,N,a,v ,B

(J)
(
E

(k,I,ϕ,δ)
M,N,a,v

))
−→ ([0,+∞),B ([0,+∞)))

is the measurable function defined by

g(x) =
n̂∑

h=k

|det Jϕ(h,h)(x)|+ |det Jϕ(n̂,n̂)(x)|+ 1, ∀x ∈ E(k,I,ϕ,δ)
M,N,a,v . (35)

Moreover, ∀h ∈ {k, ..., n̂}, we have

|det Jϕ(h,h)(x)| = |det Jϕ(h,h)(xJh
)|
∏

i∈I\Ih

∣∣∣ϕ′i,σ(i)(xσ(i))
∣∣∣ , ∀x ∈ E(k,I,ϕ,δ)

M,N,a,v ; (36)

furthermore, from Proposition 3.23 and Proposition 3.13, ∀h ∈ {k, ..., n̂},
∀ i ∈ I\Ih, the functions det Jϕ(h,h) and ϕ′i,σ(i) are continuous; then, since the

sets πJ,Jh

(
E

(k,I,ϕ,δ)
M,N,a,v

)
and πJ,{σ(i)}

(
E

(k,I,ϕ,δ)
M,N,a,v

)
are closed and bounded, from

formulas (35) and (36), there exists β ∈ R+ such that g(x) ≤ β, ∀x ∈ E(k,I,ϕ,δ)
M,N,a,v ;

thus, by definition of E(k,I,ϕ,δ)
M,N,a,v , we have∫

E
(k,I,ϕ,δ)
M,N,a,v

gdλ
(k,J)
N,b,z ≤ βλ

(k,J)
N,b,z

(
E

(k,I,ϕ,δ)
M,N,a,v

)
≤ βλ

(k,J)
N,b,z

(
E

(k,J)
O,N,b,z

)

= β
∏

p∈Jk

Leb ([zp −O, zp +O])
∏

q∈J\Jk

1
N
Leb

([
zq −

N

2
bq, zq +

N

2
bq

])
= β (2O)k

∏
q∈J\Jk

bq < +∞.

Moreover, since lim
i∈I,i−→+∞

εi = 0, we have lim
n−→+∞

ϕ(n,n) = ϕ, and so

lim
n−→+∞

fn(x) = l(ϕ(x)) lim
n→+∞

∣∣det Jϕ(n,n)(x)
∣∣ ,∀x ∈ E(k,I,ϕ,δ)

M,N,a,v ;

then, from the dominated convergence theorem, we obtain

lim
n−→+∞

∫
E

(k,I,ϕ,δ)
M,N,a,v

l(ϕ(n,n))|det Jϕ(n,n) |dλ(k,J)
N,b,z

=
∫

E
(k,I,ϕ,δ)
M,N,a,v

l(ϕ) lim
n→+∞

∣∣det Jϕ(n,n)

∣∣ dλ(k,J)
N,b,z;
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consequently, from (34), we have

∫
E

(k,I)
M,N,a,v

ldλ
(k,I)
N,a,v =

∫
E

(k,I,ϕ,δ)
M,N,a,v

l(ϕ) lim
n→+∞

∣∣det Jϕ(n,n)

∣∣ dλ(k,J)
N,b,z. (37)

Let B =
∏
i∈I

Bi ∈ B(I)
(
E

(k,I)
M,N,a,v

)
, where Bi = (αi, βi), ∀ i ∈ I, and let δi =

βi−αi

2 , ∀ i ∈ I; moreover, ∀h ∈ N∗, ∀ t ∈ [0, 1], consider the set

Ah,t =
∏
i∈I

(
αi +

tδi
h
, βi −

tδi
h

)
,

and consider the function lh : RI −→ [0,+∞) defined by

lh(x) =


1 if x ∈

◦
Ah,1

t if x ∈ ∂Ah,t

0 if x ∈ RI\Ah,0

.

Observe that, ∀h ∈ N∗, lh : RI −→ [0,+∞) is a function such that lh
(
RI
)
⊂

[0, 1], lh(x) = 0, ∀x /∈ E(k,I)
M,N,a,v; moreover, ∀ t1, t2 ∈ [0,+∞) such that t1 < t2,

we have

l−1
h ((t1, t2)) =


∅ if t1 ≥ 1
◦

Ah,t1 if t1 < 1 < t2
◦

Ah,t1\Ah,t2 if t1 < t2 ≤ 1

,

l−1
h ([0, t2)) =

{
RI if t2 > 1
RI\Ah,t2 if t2 ≤ 1

;

thus, lh is
(
B(I),B ([0,+∞))

)
-measurable and

(
τ (I), τ ([0,+∞))

)
-continuous.

Then, since {lh}h∈N∗ is an increasing positive sequence such that lim
h−→+∞

lh =
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1B , from Beppo Levi theorem and (37), we have∫
B

dλ
(k,I)
N,a,v =

∫
E

(k,I)
M,N,a,v

1Bdλ
(k,I)
N,a,v = lim

h−→+∞

∫
E

(k,I)
M,N,a,v

lhdλ
(k,I)
N,a,v

= lim
h−→+∞

∫
E

(k,I,ϕ,δ)
M,N,a,v

lh(ϕ) lim
n→+∞

∣∣det Jϕ(n,n)

∣∣ dλ(k,J)
N,b,z

=
∫

E
(k,I,ϕ,δ)
M,N,a,v

1B(ϕ) lim
n→+∞

∣∣det Jϕ(n,n)

∣∣ dλ(k,J)
N,b,z

=
∫

ϕ−1(B)

lim
n→+∞

∣∣det Jϕ(n,n)

∣∣ dλ(k,J)
N,b,z. (38)

Moreover, Proposition 4.4 implies that the previous formula (38) is true ∀B ∈

B(I)

( ◦

E
(k,I)
M,N,a,v

)
. Consider the measures µ and υ on

( ◦

E
(k,I)
N,a,v,B(I)

( ◦

E
(k,I)
N,a,v

))
defined by

µ(B) =
∫
B

dλ
(k,I)
N,a,v,

υ(B) =
∫

ϕ−1(B)

lim
n→+∞

∣∣det Jϕ(n,n)

∣∣ dλ(k,J)
N,b,z,

and set Bl = B ∩
◦

E
(k,I)
l,N,a,v, ∀ l ∈ N∗, ∀B ∈ B(I)

( ◦

E
(k,I)
N,a,v

)
. Since Bl ⊂ Bl+1,

ϕ−1 (Bl) ⊂ ϕ−1 (Bl+1),
⋃

l∈N∗
Bl = B and

⋃
l∈N∗

ϕ−1(Bl) = ϕ−1(B), from the

continuity property of µ and υ and (38), we have∫
B

dλ
(k,I)
N,a,v = lim

l−→+∞

∫
Bl

dλ
(k,I)
N,a,v

= lim
l−→+∞

∫
ϕ−1(Bl)

lim
n→+∞

∣∣det Jϕ(n,n)

∣∣ dλ(k,J)
N,b,z

=
∫

ϕ−1(B)

lim
n→+∞

∣∣det Jϕ(n,n)

∣∣ dλ(k,J)
N,b,z. (39)
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Then, let B ∈ B(I)

( ◦

E
(k,I)
N,a,v

)
and let g :

(
RI ,B(I)

)
−→ ([0,+∞),B ([0,+∞)))

be a measurable function; ∀x /∈
◦

E
(k,I)
N,a,v, we have (g1B) (x) = 0; thus, by

proceeding as in the proof of formula (33), formula (39) implies∫
B

gdλ
(k,I)
N,a,v =

∫
RI

1Bgdλ
(k,I)
N,a,v =

∫
RJ

(1Bg) (ϕ) lim
n→+∞

∣∣det Jϕ(n,n)

∣∣ dλ(k,J)
N,b,z

=
∫

ϕ−1(B)

g(ϕ) lim
n→+∞

∣∣det Jϕ(n,n)

∣∣ dλ(k,J)
N,b,z.

Then, for any measurable function f :
(
RI ,B(I)

)
−→ (R,B) such that f+ (or

f−) is λ(k,I)
N,a,v-integrable, we have∫

B

fdλ
(k,I)
N,a,v =

∫
B

f+dλ
(k,I)
N,a,v −

∫
B

f−dλ
(k,I)
N,a,v

=
∫

ϕ−1(B)

f+(ϕ) lim
n→+∞

∣∣det Jϕ(n,n)

∣∣ dλ(k,J)
N,b,z

−
∫

ϕ−1(B)

f−(ϕ) lim
n→+∞

∣∣det Jϕ(n,n)

∣∣ dλ(k,J)
N,b,z

=
∫

ϕ−1(B)

f(ϕ) lim
n→+∞

∣∣det Jϕ(n,n)

∣∣ dλ(k,J)
N,b,z. (40)

In particular, assume that, ∀x ∈ U , there exists the function Jϕ(x) : EJ −→
EI ; from Proposition 3.21, we have

lim
n→+∞

∣∣det Jϕ(n,n)(x)
∣∣ = ∣∣∣∣ lim

n→+∞
det Jϕ(n,n)(x)

∣∣∣∣ = |det Jϕ(x)| , ∀x ∈ U,

and so formula (40) implies∫
B

fdλ
(k,I)
N,a,v =

∫
ϕ−1(B)

f(ϕ) |det Jϕ| dλ(k,J)
N,b,z.

5. Problems for further study

A natural application of this paper, in the probabilistic framework, is the de-
velopment of the theory of the infinite-dimensional continuous random vari-
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ables, defined in the paper [4]. In particular, we can prove the formula of the
density of such random variables composed with the (m,σ)-general functions,
with further properties. Consequently, it is possible to introduce many random
variables that generalize the well known continuous random vectors in Rm (for
example, the Beta random variables in EI defined by the (m,σ)-general ma-
trices), and to develop some theoretical results and some applications in the
statistical inference. Moreover, we can define a convolution between the laws
of two independent and infinite-dimensional continuous random variables, as
in the finite case.

Furthermore, in the statistical mechanics, it is possible to describe the sys-
tems of smooth hard particles, by using the Boltzmann equation (see, for ex-
ample, the paper [18]), or the more general Master kinetic equation, described
in the papers [17] and [16]. In order to study the evolution of these systems,
we can consider the model of countable particles, such that their joint infinite-
dimensional density can be determined by composing a particular random vari-
able with a (m,σ)-general function.

Finally, we can generalize the papers [2] and [3] (where we estimate the rate
of convergence of some Markov chains on [0, p)k to a uniform random vector)
by considering the recursion {Xn}n∈N on [0, p)N

∗
defined by

Xn+1 = AXn +Bn (mod p),

where X0 = x0 ∈ EI , A is a bijective, linear, integer and (m,σ)-general func-
tion, p ∈ R+, and {Bn}n∈N is a sequence of independent and identically dis-
tributed random variables with values on EI . As noted above, it is possible
to determine the density of the random variable AXn, for any n ∈ N∗; conse-
quently, we expect to prove that, with some assumptions on the law of Bn, the
sequence {Xn}n∈N converges with geometric rate to a random variable with law⊗
i∈N∗

(
1
pLeb

∣∣∣
B([0,p))

)
, that is the uniform random variable on [0, p)N

∗
. More-

over, we wish to quantify the rate of convergence in terms of A, p, m, and the
law of Bn.
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