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ABSTRACT. In this paper we study, for any subset I of N* and for
any strictly positive integer k, the Banach space Ej of the bounded
real sequences {xn}, ., and a measure over (RI7 B(I)) that generalizes
the k-dimensional Lebesgue one. Moreover, we recall the main results
about the differentiation theory over Ey. The main result of our paper
is a change of variables’ formula for the integration of the measurable
real functions on (RI,B(I)). This change of variables is defined by
some functions over an open subset of Ej, with values on Er, called
(m, o)-general, with properties that generalize the analogous ones of the
finite-dimensional diffeomorphisms.
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1. Introduction

In the mathematical literature, some articles introduced infinite-dimensional
measures analogue of the Lebesgue one: see for example the pioneering paper
of Jessen [10], that one of Léandre [13], in the context of the noncommutative
geometry, that one of Tsilevich et al. [19], which studies a family of o-finite
measures in the space of distributions, that one of Baker [7], which defines
a measure on RN that is not o-finite, that one of Henstock et al. [9], and
that one of Tepper et al. [15]. However, the results obtained do not include an
infinite-dimensional change of variables’ formula for the integration of the mea-
surable real functions, analogous to that which applies in the finite-dimensional
case. For example, in the paper of Accardi et al. [1], the authors describe the
transformations of generalized measures on locally convex spaces under smooth



62 CLAUDIO ASCI

transformations of these spaces, but these measures have no connection with
the Lebesgue one. The problem that arises is essentially the following. Consider
the integration formula with respect to an image measure, that is

[tawn = [ rdn.
E S

where (S, %, ) and (E,E) are a measure space and a measurable space, respec-
tively, p : (S,2) — (E,€) and f : (E,£) — (R, B) are measurable functions.
In the particular case in which E and S are open sets, suitably constructed, of
two infinite-dimensional measurable spaces 21 and ()5, respectively, on which
we can define two families M; and My of measures analogue of the Lebesgue
one, and ¢ has properties that generalize the analogous ones of the standard
finite-dimensional diffeomorphisms, we expect existence of two measure Ay in
M and Ay in My such that ¢ (1) = A1, while p has density |det J,| (properly
defined) with respect to As.

In order to achieve this result, in the articles [4], [5] and [6], for any subset
I of N*, we define the Banach space E; C R’ of the bounded real sequences
{%n}, > the o-algebra By given by the restriction to Ey of B (defined as the
product indexed by I of the same Borel o-algebra B on R), and a class of func-
tions over an open subset of F;, with values on Ej, called (m, o)-general, with
properties similar to those of the finite-dimensional diffeomorphisms. More-
over, for any strictly positive integer k, we introduce over the measurable space
(RI ,BU )) a family of infinite-dimensional measures )\S\],C’i)v, dependent on ap-
propriate parameters N, a, v, that in the case I = {1,,k:} coincide with
the k-dimensional Lebesgue measure on R¥. More precisely, in the paper [4],
we define some particular linear functions over F;, with values on Ej, called
(m, o)-standard, while in the article [5] we present some results about the dif-
ferentiation theory over E;, and we remove the assumption of linearity for the
(m, o)-standard functions. In the last two papers, we provide a change of vari-
ables’ formula for the integration of the measurable real functions on (RI ,BY ));
this change of variables is defined by some particular (m, o)-standard functions.
In the paper [6], we introduce a class of functions, called (m,o)-general, that
generalizes the set of the (m,o)-standard functions given in [5]. The main re-
sult is the definition of the determinant of a linear (m, o)-general function, as
the limit of a sequence of the determinants of some standard matrices.

In this paper, we prove that the change of variables’ formula given by the
standard finite-dimensional theory and in the papers [4] and [5] can be extended
by using the (m,o)-general functions. In Section 2, we recall the construction
of the infinite-dimensional Banach space FEj, with its o-algebra B; and its
topologies 77 and 7. ; moreover, we expose the main results about the differ-
entiation theory over this space. In Section 3, we recall some properties of the
(m, o)-general functions defined in [6], and we expose some additional results
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about these functions. In Section 4, we present the main theorem of our paper,
that is a change of variables’ formula for the integration of the measurable real
functions on (RI ,BU )); this change of variables is defined by the bijective,
C! and (m,o)-general functions, with further properties (Theorem 4.5). In
Section 5, we expose some ideas for further study in the probability theory.

2. Differentiation theory over infinite-dimensional Banach
spaces

Let I # () be a set and let k& € N*; indicate by 7, by 7, by 70, by B,
by B, by BUY), by Leb, and by Leb®), respectively, the euclidean topology
on R, the euclidean topology on R”, the topology ®T, the Borel g-algebra
iel
on R, the Borel o-algebra on RF, the o-algebra ®B, the Lebesgue measure
iel
on R, and the Lebesgue measure on R*. Moreover, for any set A C R, indicate
by B(A) the o-algebra induced by B on A, and by 7(A) the topology induced
by 7 on A; analogously, for any set A C R!, define the o-algebra BU)(A) and

the topology 7(I)(A). Finally, if S = ]._.[Si is a Cartesian product, for any

iel

(x;:i1€I)e S and forany ) # H C I, define xy = (x; : 1 € H) € HS“ and
i€H

define the projection 77 i on HSi as the function 7y g : S — HSi given
ieH icH

by 7T[’H (33‘[) =XH.

THEOREM 2.1. Let I # () be a set and, for anyi € I, let (S;, 3, u;) be a measure
space such that w; is finite. Moreover, suppose that, for some countable set
J C I, p; is a probability measure for any i € I\J and Huj(Sj) € R*. Then,
jed
over the measurable space (HSi, ®Zi) , there is a unique finite measure L,
iel il
indicated by ®/,Li, such that, for any H C I such that |H| < +o0o and for any
iel
A= HAh X H S; € ®Ei, where Ay, € X Yh € H, we have u(A) =
heH ieI\H i€l

H pn(Ap) H i (S5). In particular, if I is countable, then p(A) = H,Ui(Ai)
heH JEINH iel

for any A = HAi € ®Zi.

i€l i€l
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Proof. See the proof of Corollary 4 in Asci [4]. O

Henceforth, we will suppose that I,.J are sets such that () % I,J C N¥*;
moreover, for any k£ € N*, we will indicate by Ij the set of the first k elements
of I (with the natural order and with the convention I, = I if |I| < k);

furthermore, for any i € I, set |i|, = |[I N (0,]|. Analogously, define Jj and
7], for any k € N* and for any j € J.

The following theorem generalizes a result proved in Rao [14] (Theorem 3,
page 349), and can be considered a generalization of the Tonelli’s theorem,
in the integration of a function over an infinite-dimensional measure space.
The integral of the function is the limit of a sequence of integrals of the same
function, with respect to a finite subset of variables.

THEOREM 2.2. Let (S;,%;, i) be a measure space such that p; is finite, for any

iel, and []1i(S;) € [0,+00); moreover, let (S, %, u)= HS“®E“®M1 ,

el el iel i€l
let f € LY(S,%,u) and, for any H C I such that 0 < |H| < +oo, let the
measurable function fge : (9,%2) — (R, B) defined by

fre(x /f ,Tpe)dp,

where (Su,Xm, 1E) is the measure space (HS“ ®Zi, ®ul> . Then, there
i€cH i€H  icH

exists D € E such that (D) = 0 and such that, for any x € D¢, one has

Jm fre(z ffdﬂ

Proof. See the proof of Corollary 3 in Asci [5]. O

DEFINITION 2.3. For any set I # (), define the function ||HI CRI — [0, +-00]
by
|| ; = supla;|, Vo = (z;:i € 1) € R,
iel

and define the vector space
Er={zcR': lz]|; < +oo}.
Moreover, indicate by By the o-algebra B(I)(EI), by 71 the topology T(I)(E[),

and by 7)., the topology induced on Ey by the distance d; : Er x Ef — [0, 4+00)
defined by di(x,y) = ||z —yl|;, for any x,y € Ep; furthermore, for any set
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A C Ey, indicate by 7., (A) the topology induced on A by 7). . Finally, for
any xo € Er and for any § € RY, indicate by Bi(xg,d) the set {xr € Ej :
[z = zoll; < 6}

PROPOSITION 2.4. Let H,I be sets such that ) # H C I, and let A C Fg,
B C Epg; then:

1.

2.

4.

Er is a Banach space, with the norm ||-||;.

7.1, (A x B) is the product of the topologies 7y, (A) and TH.”I\H(B),

Let A = (HAl> NEr # 0, where A; € T, for any i € I; then, one has
iel

A € 7)., if and only if there exists h € I such that A; = R, for any

1€ I\[h.

One has 1 C 7)., ; moreover, if |I| = +oo, then 1 C 7)., -

Proof. 1. See, for example, the proof of Remark 2 in [4].

2.

Indicate by 7. . (4) @ Tl (B) the product of the topologies 7)., (A4)
and T”.”I\H(B); VD e TH.”H(A), let D' € Tl such that D = D' N A;
then, Vo = (xH,mI\H) e D x Ep m, there exists ¢ € R™ such that
TH € BH (I’H,(;) C D,7 ZL'I\H € BI\H (I’]\H,(S) C EI\H, and so xr €
By (x,0) C D' x Ep\; then, we have D' x Ep\ g € 7|-|,» from which D x
B= (D/ X E]\H)Q(AXB) S T”.HI(AXB); analogously, VE € T”'”I\H(B)’
we have A x B € 7 (A x B),andso D x £ = (Dx B)N(Ax E) €
TH'HI(A X B); then, we obtain TH.HH(A) ®T”'HI\H(B) C TH.HI(A x B).

Conversely, Vz = (xH,;EI\H) € Er,Vd € RT, we have By(x,d) N (A x
B) = (Bu(zm,0) N A) x (Bpu(enm, 0) N B) € 7, (A) @7y, (B),
from which THHI(A X B) C T”HH(A) ®TH'”I\H (B)

We can suppose |I| = +oo. If there exists h € I such that A; = R, for

any i € I\I}, then A = (HA1> X Epr,; thus, since HA,» €T,
h

€1y icly
Eng, € Tl g, from point 2 we have A € 7.
: h

Conversely, suppose that there exists J C I such that |J| = +00 and such
that A; # R, Vj € J; then, since A # (), there exists € A such that
dr (l‘,E]\A) = 0, and so A ¢ URrE
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4. Let

5—{A—<HAi>mE,;AieT,weI,

i€l

A; =R, Vi e I\, for somehel};

as we observed in the proof of point 3, we have £ C 7||.||,; moreover, by

definition of 77, we have 7; = 7(€) C 7. ,; furthermore, if [I| = +oo,
Vo € Er, Vo € RY, we have By(x,0) € 7, Br(z,0) ¢ 77, and so
TS T,

O

PROPOSITION 2.5. Let H, I be sets such that § # H C I, and let TrH B —
Epy be the function given by T g (x) = w1 m (x), for any x € Ey; then:

1. Trm: (E[,TH.HI) — (EH,T”.”H) 18 continuous and open.
2. Tru: (Er,71) — (Em,TH) is continuous and open.
3. Trm: (Er,Br) — (Ew,Bm) is measurable.

Proof. Points 1 and 2 are proved, for example, in Proposition 6 in [5]; moreover,
the proof of point 3 is analogous to the proof of the continuity of the function
ﬁI7H:(E],T])*>(EH,TH). O

REMARK 2.6: Let H,I,J besetssuchthat ) £ H G J,let U =U; xU, € T,
where U; € T\l U, € Tl let ¢ : Uy C Eg — FEr be a function and

let ¢ : U C E; — E be the function given by ¢ (z) = ¢ (zg), for any
T = (acH,xJ\H) € U; then:

1. v is (TH,”H(Ul),TH‘HI)—continuous if and only if ¢ is (TH.HJ(U),TH.”I)—
continuous.

2. v is (r#)(U1), 71)-continuous if and only if ¢ is (7(/)(U), 77)-continuous.
3. If ¢ is (B(H)(Ul), BI)—measurable, then ¢ is (B(J)(U),BI)-measurable.
Proof. VA C Ef, we have
o1 (A) = (Fok 0w ™) (A), 97 (A) = (T 097" (A)

then, from Proposition 2.5, we obtain the statement. O
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DEFINITION 2.7. Let U € T, » let xg e U, letl € Er andlet ¢ : U C By —

E; be a function; we say that lim @(x) =1 if, for any € € RY, there exists
r—TQ

a neighbourhood N € 7. (U) of zo such that, for any x € N\{zo}, one has

lo(z) =1, <e.

DEFINITION 2.8. Let U € Ul and let ¢ : U C Ej — FE5 be a function; we
say that ¢ is continuous in xg € U if lim p(x) = ¢(xg), and we say that ¢ is
r—Xo

continuous in U if, for any x € U, ¢ is continuous in x.

REMARK 2.9: Let U € TN, let V e T, and let p: U C By — V C Ej be
a function; then, ¢ : (U, TH_”J(U)) — (V, Ul (V)) is continuous if and only if
 is continuous in U.

DEFINITION 2.10. Let U € 1, » let Ver., andlet p: U C E; — V C
E; be a function; we say that ¢ is a homeomorphism if ¢ is bijective and
the functions ¢ : (U, 7., (U)) — (V,7y,(V)) and =1 = (V7 (V) —
(U, TH.”J(U)) are continuous.

DEFINITION 2.11. Let U € 7, let A C U, let ¢ : U C E; — Ef be a
functions and let {pn}, . be a sequence of functions such that ¢, : U — Ef,
for any n € N; we say that:

1. The sequence {¢n},cn converges to ¢ over A if, for any € € R* and for
any x € A, there exists ng € N such that, for any n € N, n > ng, one

has [len(z) = p(2)]; <e.

2. The sequence {on}, N converges uniformly to o over A if, for any ¢ €
R, there exists ng € N such that, for any n € N, n > ng, and for any
xz € A, one has ||on(x) — p(z)||; <e.

The following concept generalizes Definition 6 in [4] (see also the theory in
the Lang’s book [12] and that in the Weidmann’s book [20]).

DEFINITION 2.12. Let A = (asj);c; jo; be a real matriz I x J (eventually infi-
nite); then, define the linear function A = (a;;)

x — Ax, in the following manner:

ieljer E; — R!, and write

(A‘T)izzaijxj7verj,vi€I7 (1)
JjeJ

on condition that, for any i € 1, the sum in (1) converges to a real number. In
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particular, if |I| = |J|, indicate by Ir ; = (Eij) the real matriz defined

by

iel,jed

0 otherwise ’

5, :{ L if il = |l

and call §;; generalized Kronecker symbol. Moreover, indicate by AEN) the
real matriz (aij);cp, jen- for any 0#£LCI, forany® # N C J, and indicate
by tA = (bji)jeJ,ieI : Er — R the linear function defined by bj; = ai;, for
any j € J and for any i € I. Furthermore, if I = J and A = tA, we say that A
is a symmetric function. Finally, if B = (bjk)jeJ,keK is a real matriz JJ x K,
define the I x K real matriz AB = ((AB) ;1) icr vex 0V

(AB)y, = > aijbsp, (2)

jeJ

on condition that, for any i € I and for any k € K, the sum in (2) converges
to a real number.

PROPOSITION 2.13. Let A = (a;;) be a real matriz I x J; then:

iel,jeJ

1. The linear function A = (aij);c; iey: By — R' given by (1) is defined

if and only if, for any i € I, Z la;;] < +o0.
JjeJ

2. One has supz laij| < +oo if and only if A(Ey) C Er and A is continu-

i€l 5oy
ous; moreover, if A(Ey) C Ep, then ||A| = supz lai;].
i€y
3. Af B = (bjr)jesnex * Ex — Ey is a linear function, then the linear

function Ao B : Ex — R is defined by the real matriz AB.

4. If A(Ej) C Ej, then, for any O # L C I, for any 0 # N C J, one has
ALNNEN) C By.

Proof. The proofs of points 1 and 2 are analogous to the proof of Proposition 7
in [4]. Moreover, the proof of point 3 is analogous to that one true in the
particular case |I],|J|,|K| < +oo (see, e.g., the Lang’s book [12]). Finally,
suppose that A(E;) C Er;let@ £ L C I, let@# N C J,letx=(z,:neEN)E
En and let y = (y;:j € J) € Ej such that y; = z;, Vj € N, and y; = 0,
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Vj € J\N; we have

sup (A(L’N)9€>, =sup | Y _ai;(x;)| =sup > _ai;(y;)
ieL ? i€L jEN €L ied

<sup Zaij(yj) =sup|(Ay)i| < 400 = ALNgec By
i€l |57 i€l

then, point 4 follows. O

The following definitions (from Definition 2.14 to Definition 2.18) can be
found in [5] and generalize the differentiation theory in the finite case (see, e.g.,
the Lang’s book [11]).

DEFINITION 2.14. Let U € 7). ,; a function ¢ : U C E; — Ej is called
differentiable in xo € U if there exists a linear and continuous function A :
Ej; — Ej defined by a real matriz A = (aij)iel s and one has
lim p(xo + h) — p(x0) — Ah|;
h=0 121l

~0. (3)

If v is differentiable in xq for any xg € U, ¢ is called differentiable in U. The
function A is called differential of the function ¢ in xg, and it is indicated by
the symbol dy(xg).

DEFINITION 2.15. Let U € 7, let v € Ej such that ||v||; =1 and let a func-
tion ¢ : U C E; — RI; for any i € I, the function ; is called differentiable
in xg € U in the direction v if there exists the limit

lim wi(xo + tv) — %(%).
t—0 t

This limit is indicated by %fj (z0), and it is called derivative of p; in xo in the
direction v. If, for some j € J, one has v = e;, where (e;)r = d;i, for any k €
J, indicate %‘f}i( 0) by gfj (x0), and call it partial derivative of @; in xq, with
respect to xj. Moreover, if there exists the linear function defined by the matriz
Jo(x0) = ((Jw(xo))ij)‘ ~ : E; — R!, where (Jo(20));; = g“;’f (z0), for
iel,jeJ J
anyi €1, j € J, then Jy(x0) is called Jacobian matriz of the function ¢ in .
Finally, if, for any x € U, there exists J,(x), then the function v — J,(x) is
indicated by J,.
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DEFINITION 2.16. Let U € 7., let i,j € J and let ¢ : U C E; — R be a

function differentiable in xg € U with respect to x;, such that the function %

is differentiable in xo with respect to x;. Indicate % (%) (zo) by %(xo)
J i 50T,

and call it second partial derivative of ¢ in xo with respect to x; and ;. If

1 = j, it is indicated by g%f(a:o). Analogously, for any k € N* and for any
1y Jk € J, define %(wo) and call it k-th partial derivative of v in xg
G O%5q

with respect to xj, ,...x;, .

DEFINITION 2.17. Let U € 7)., and let k € N*; a function p : U C E; — R/
is called C* in xy € U if, in a neighbourhood V € TH.HJ(U) of xg, for any

i € I and for any j1,...,Jk € J, there exists the function defined by x —
ak%
Bwjk...aiﬂjl
any o € U, ¢ is C* in xy.

(x), and this function is continuous in xo;  is called C* in U if, for

DEFINITION 2.18. Let U € 7., and let V € 7 ,; a function ¢ : U C E; —

V C Ej is called diffeomorphism if ¢ is bijective and C' in U, and the function
o1 VCcE —UCE;isClinV.

3. Theory of the (m,o)-general functions

The following definition introduces a class of functions, called m-general, that
generalize the linear functions (a;),. rjes - Bro— Ep (see the next Re-
mark 3.15). For example, the equation corresponding to a 1-general function
is obtained by formula 1, by substituting the functions z; — a;;z; for some
functions ¢;;.

DEFINITION 3.1. Let m € N* and let ) # U = | U™ x H Aj|nE;€e
j€NIm
|||, where um g 7m), Aj e, forany j € J\Jn. A function ¢ : U C
E; — Ej is called m-general if, for any i € I and for any j € J\J,,, there
El’m) UM — R and wij + Aj — R such that
oi(x) = "™ (xy) + Z vij(zj), Vo e U.
JEINTm

exist some functions ¢

Moreover, for any 0 # L C I and for any J,, C N C J, indicate by "N the
function oFN) 7N (U) — R defined by

@EL’N)(JjN) = (pEI’m)(x‘]m) + Z (pij(ﬂl‘j), Vry € 7TJ7N(U), Vi e L. (4)
JEN\Im
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Furthermore, for any O # L C I and for any O # N C J\J,,, indicate by
o N the function o)y N (U) — RE given by

SDEL’N)(‘IN): thij(l‘j),Vl'NEﬂ'J,N(U); Vie L. (5)
JEN

In particular, suppose that m = 1; then, let j € J such that {j} = J;
and indicate UM by A; and gogj’l) by @ij, for any i € I; moreover, for any
0 4 L C I and for any O # N C J, indicate by o&N) the function oBN)
7y n(U) — RE defined by formula (5).

Furthermore, for anyl,n € N*, indicate ™) by (BN o
and @U7n) by pn)

L,J,) (L,n)

by '),

The following definition introduces a class of m-general functions ¢ : U C
E; — Ej, called (m,o)-general, that will be used to provide a change of
variables’ formula for the integration of the measurable real functions over
(R!,BW). In fact, the properties of some (m,o)-general functions generalize
the analogous ones of the standard finite-dimensional diffeomorphisms. In par-
ticular, if A is a linear (m, o)-general function, we can define the determinant
of A (see the next Theorem 3.18 and Definition 3.19): a concept without sense,
if A is an arbitrary matrix I x J.

DEFINITION 3.2. Let m € N*, let 0 £ U = Um) x H A | NE;e T,
JEIN\Tm

where U™ € 1M A € 7, for any j € J\Jpm, and let o : I\I,,, — J\J,,, be

an increasing function; a function ¢ : U C E; — E m-general and such that

|J| = |I] is called (m,o)-general if:

1.VieI\I,,Vje J\(JoU{co(i)}), Vt € A;, one has p;;(t) = 0; more-
over
p NN (511, (U)) € B

m*

2. VieI\IL,, Yo € U, there exists J,,(x) : E;y — R; moreover, Vx;,, €
U™ one has Z H']saﬁl’m) (me)H < Fo0.
i€\,
8. Vi € I\, the function @; i) : Asiiy — R is constant or injective;
P o (i) (Ia(i))’ < +0o0

moreover, ¥ Zo(\1,,) € H Aj, one has sup
jea(I\I) I

and inf >0, where L, = {i € I\IL,,, : ¢; o3y 15 injective}.

€Ly,

w;,a(i) (o))
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4. 1If, for some h € N, h > m, one has |o(i)| 5\ ; = lilpg, Vi € I\Ip,

then, ¥V ro(n\1,,) € H A;, there exists H gpg)a(i) (a:[,(i)) e R*.
j€o(I\Im) €L,

Moreover, set

A= A(g) = {heN, h=m:|oG)| ., = lilng, Vi€ V).

If the sequence {Jw(z‘m) (me)} i converges uniformly on U™ to the
i i€

m

matriz (0 ... 0) and there exists a € R such that, for any € > 0, there exists
iop € N, ig > m, such that, for any i € T, N (I\I;,) and for any t € A,q, one

has | ¢! o (i) (t) — a‘ < e, then @ is called strongly (m,c)-general.
Furthermore, for any I, C L C I and for any J,, C N C J, define the

function ¢(L’N) :U C E; — R in the following manner:
LN @EL’N)(xN) Viel,, YeeU
7M@) =4 pil) Vi€ I\, Vo €U

Gio@)(Tow) YieI\L,VzeU

Finally, for anyl,n € N, I,n > m, indicate E(I”N) by @“N), E(L’J") by

pthm, gl by 5 and 2™ by .

DEFINITION 3.3. A function ¢ : U C E; — Er (m,0)-general is called (m, o)-

standard (or (m, o) of the first type) if, for any i € I\I,, and for any x;, €

U™ one has gogl’m) (xg,) = 0. Moreover, a function ¢ : U C E; — Ej

(m, o)-standard and strongly (m,oc)-general is called strongly (m,o)-standard
(see also Definition 28 in [5]).

REMARK 3.4: Let ¢ : U C E; — Ej be a (m, o)-general function; then:

1. o is injective if and only if, for any i1,is € I'\I,, such that i1 < is, one
has o(i1) < o (i2).

2. o is bijective if and only if, for any i € I\, one has |o(i)| 5\ ;= lilp;,.-
3. There exists mg € N, mg > m, such that A; = R, for any j € J\Jp,.

Proof. The statement follows from Definition 3.2 and point 3 of Proposition 2.4.
O
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ProprosITION 3.5. LetI,, CLC I, letJ,, CN CJandletp:U C By — Ej
be a (m,o)-general function; then, one has N)(U) C E;, and the function
N .U c E; — Eyis (m, o)-general. Moreover, suppose that, for any
Jj € I\Jm, foranyt € A;, one has ‘ga’i’j (t)| < 400, then, for anyn € N,
i€\,
n >m, 35N is (n, 7)-general, where the function T : I\I,, — J\J,, is defined
by
N -4 () if o(i) € J\Jn )
7(i) = { min (J\J,) i o(i) ¢ J\J, 70 E I\ (6)

Proof. Since I, CLC I and J,, CN C J, Vi€ I\I,,, Vo € U, we have

(pl(f[’m) (Z'Jm)’ + |<Pi7o(i) (l'a(i))| ’

PV @) <

and so sup ‘@EL’N)(JC)‘ < +oo; then, »M(U) ¢ E;. Moreover, from
€N I

the definition of a»N) the function g : U ¢ E; — Ej is (m,0)-
general. Furthermore, suppose that, for any j € J\J,,, for any ¢t € A;, one has

o ()] <+oo;VneN, n>m,and Vz,; €y (U), we have
2,3 n sdn
i€N\I

>
= 3 [+ X X Ieh @l ] < too

i€I\I,
i€I\I, JE€EIn\Im \P€I\I,

‘J(w(L,N))(.I,Jm(l‘Jn)HS Z HJ(‘DEI,J")(I'JH)
! i€I\I,

then, %) is (n,7)-general, where the function 7 : I\I, — J\J, is defined
by formula (6). O

PROPOSITION 3.6. Let § # L C I, let ) # N C J such that J,, C N or
N C J\Jpm, and let ¢ : U C E; — Eg be a (m,c)-general function; then:

1. For any x € U, there exists the function J .~ (z) 1 EN — R if and
only if, for any i € LN 1, and for any j € N, there exists the partial
derivative gij (x), and for any i € LN I, one has Z gf] (x)‘ < 400;

jEN
moreover, in this case one has Jyw.n (z) (En) C Er, and Jyw.n () is
continuous.

2. For any x € U, there exists the function J,uim.n(z) : By — Eng,,,
and it is continuous.
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8. Suppose that I,, C L and J,, C N, and let x € U; then, there exists
the function J¢(L,N)(a:) : E; — R! if and only if, for any i € I,, and

Opi
azj

for any 7 € N, there exists the partial derivative
i € I, one has Z

JEN
J5w.m (z) (Ey) C Ep, and J5w.m (z) is continuous and (m,o)-general.

(), and for any

gi; (x)‘ < +00; moreover, in this case one has

Proof. 1. From Definition 3.2, Vi € LN (I\I,,) and Vj € N, there exists

. . . BapEL’N) dp;
the partial derivative o (x) = iy (z), and one has

Z i (x)

N 8xj

)|+

S HJAP(.I*m) (xt]m (‘0;7‘7(“ (xa'(z))‘ < +OO7

Vie LN(I\Iy); (7)

then, from Proposition 2.13, there exists the function J, .~ () : Ey —
R’ if and only if, Vi € L NI, and Vj € N, there exists the partial

(L,N)

derivative a%zj (z) = g“"; (z), and Vi € LN I, one has Z ‘8501 ‘ <
JEN

—+o00.

Furthermore, since HJ omy (T, H < 400, we have
ISTAV S

sup “J(p(],'m) (x1,) ‘ < 400,

i€LN(I\I )

and so formula (7) implies

9pi
sup 3 (x)
i€LN(IN\Im) sy | 9%

< w4 sip el (00)]| < +oo

T ieLn(I\Im) i€LN(I\Im)

thus, if there exists the function J¢<L,N)( x), we obtain supz
ZEL]EN
+00; then, from Proposition 2.13, we have J, .~ (z) (Ex) C EfL, and

Jp.m (z) is continuous.

81
52t ()] <

2. The statement follows from point 1.
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3. By Definition 3.2, Vi € I\I,,, and V j € J, there exists the partial deriva-

. o)
tive =7 (), and one has
o) i
D" @ <2 |5 @
el 0% e 10

< H J@(I,r,,L> (CL‘Jm) ‘ +

Photiy (o) < +00, Vi € I\ (8)

then, from Proposition 2.13, there exists the function J5e,m) (): Ey —

R/ if and only if, Vi € I,, and Vj € J,there exists the partial derivative

A—(L,N)

d«pézj (z), and Vi € I,, one has Z
jeJ

happens if and only if, Vi € I,, and Vj € N, there exists the partial

derivative gf] (x), and Vi € I, one has Z ’gi; (x)
JEN

87£L,N)
P (@)

< 4o00; thus, this

< +00.

Moreover, from formula (8), we have

%(L,N)
a.%'j

()

sup
’LGI\ImjeJ

< sup [T men)|+ s o (@n)] < +oo:

1€\, 1€\ Ly,

then, if there exists the function Jz.v) (z), we obtain

o)
sup L ()| < +o0;
i€l oy O

thus, from Proposition 2.13, we have Jz.v (z) (Ey) C Er, and J,v) (7)
is continuous; furthermore, by Definition 3.2, J5x,~ () is (m, o)-general.

O

PROPOSITION 3.7. Let p : U C Ej — Ep be a (m,0)-standard function; then:

1. Suppose that ¢ is injective, w1 g (p(U)) € T, for any H C I\I,, such
that 0 < |H| < 2, the function ¢; : U — R is C*, for any i € I,,,, and
det J,om.m) (x) # 0, for any x € U™ then the functions ©ioi), for any
i € I\I,,, and (™™ are injective, and o is bijective.

2. Suppose that ¢ is bijective, the function p; : U — R is C', for any
i € L, and det J,onm (x) # 0, for any x € U™ then the functions
Vi o(i), for any i € I\Ip, oM™ and o are bijective.
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3. Suppose that p;;(x;) = 0, for any i € I, for any j € J\Jm, for any
x; € Aj, ¢ is injective, and 71,1 (p(U)) € TH) | for any H C I\I,, such
that 0 < |H| < 2; then the functions ©; 5(;), for any i € I\L,, and p(mm)
are injective, and o is bijective.

4. Suppose that ¢;j(z;) = 0, for any i € Ly, for any j € J\Jp, for any
r; € Aj, and ¢ is bijective; then the functions @; .., for any i € I\I,,
oM™ and o are bijective.

5. If the functions @; 5@y, for any i € I\I,,, and ©(m™) qre injective, and
o s bijective, then @ is injective.

6. If the functions ©; 5(;y, for any i € I\I,, o) and o are bijective, then
@ 1is bijective.

Proof. The statement follows from Proposition 31, Proposition 32 and Re-
mark 33 in [5]. O

COROLLARY 3.8. Let ¢ : U C E; — Ey be a (m,o0)-general function; then:

1. If % is injective and 77z (B(U)) € 7, for any H C I\I,, such that
0 < |H| <2, then the functions ¢; ,(;), for any i € I\I,, and @(mm) are
injective, and o is bijective.

2. If P is bijective, then the functions ¢; ,(;), for any i € I\I,,, (™™ and
o are bijective.

Proof. Observe that © is (m,o)-standard, and @;;(z;) = 0, for any i € I,,, for
any j € J\Jy, for any x; € Aj;; then, from points 3 and 4 of Proposition 3.7,
we obtain the statements 1 and 2. O

PROPOSITION 3.9. Let m € N*, let ) # L C I, let ® # N C J such that
Jmn C N or N C J\Jnm, and let ¢ : U C E;j — E; be a function m-
general and such that, for any i € L and for any j € N\Jn, the functions
cpgl’m) : (U(m)78(m) (U(m))) — (R, B) and g;j : (A;,B(A;)) — (R, B) are
measurable; then:

1. The function
G BN (i (U), BN (g0 (U))) — (RE, BE))

is measurable; in particular, suppose that, for any i € I and for any j €
I\ T, <p(1’m) and ;; are measurable functions; then, ¢:(U, B (U)) —

%

(E1,Br) is measurable.
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2. If ¢ is (m,o0)-general, I, C L and J,, C N, then the function 3N
(U,BY)N(U)) — (Er, Br) is measurable.

Proof. 1. Vie Land VM C N such that J,, C M or M C J\J;,, consider
the function MN) 15 v (U) — R defined by

, ({i},M) if M £ 0
MNP (wpr) if M # .
P (x)—{ 0 M0 Ve emynU);

observe that, Vn € N, n > m, we have

@(i,NﬂJn,N)(x) _ @(i,NﬂJm,N)(x) + Z @(i,{j},N) (1‘)7
FJENN(In\Jm)
VzemynU); (9)

moreover, from Remark 2.6, the functions G(N0/m:-N) and G@-{7hN)|
Vi€ NN (J\Jp), are (BN (7 5 (U)), B)-measurable; thus, from for-
mula (9), NN s (BN (7 5 (U)), B)-measurable; then, since

: ~(1 s _ L,N

lim 90( NNJn,N) _ so§ )’

n—-s—4oo

cpz(»L’N) is (B™)(;n(U)), B)-measurable too. Furthermore, let

Z(L):{B:HBZ»:BZ»GB,WGL};
i€L
VB = [[B; € (L), we have

i€L

(#2) B = () (o) (B € B (V)

i€L

Finally, since o (X(L)) = B, VB € B, we obtain (cp(L’N))il (B) €
B(N)(WJ,N(U))a and so <P(L’N) : (WJ,N(U)aB(N)(WJ,N(U))) - (RL,B(L))
is measurable. In particular, suppose that, Vi € I and Vj € J\J,,
the functions gol(l’m) and ¢;; are measurable; then, ¢ : (U, BY)(U)) —
(RI,B(”) is measurable; thus, since ¢(U) C Ej, we obtain that ¢ is

(BY)(U), Br)-measurable.

2. If ¢ is (m,o)-general, I,,, C L and J,,, C N, from Proposition 3.5, the
function p“N) . U ¢ E; — E; is (m,o)-general, and so m-general.
Moreover, we have

AN @) = e @)+ Y wi(ag), Ve e U Viel,

JEINIm
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(Im) { o™ ifie L

10 ifieI\L ’

) { pij Af (i,5) € (Im X (N\Jm)) U (I\In) X (J\Jm))
K 0 if (4,5) € Ly x (J\N) ’

furthermore, Vi € I, Vj € J\Jp, ¥ (U™ B (Um)) —
(R, B) and ¢;; : (A4;,B(4,)) — (R, B) are measurable functions, and so,
from point 1, N« (U, BY)(U)) — (RI,B(I)) is measurable; finally,
since pL"M)(U) C Er, we obtain that 5™ is (B)(U), By )-measurable.

O

PROPOSITION 3.10. Let ¢ : U C Ej — Ef be a (m,o0)-general function such
that o is bijective and wr pg, 0@ : (U, TH.”J(U)) — (EI\ImvTH-HI\I 18 con-

tinuous; then, for anyn € N, n >m, o™ . (7, (U), 7 (15, (U))) —
(R™, 7)) is continuous if and only if ™™ : (U, 7)1, () — (Er,7,) is
continuous.

Proof. Let n € N, n > m, and suppose that (™™ is continuous; moreover, let
B =B x By € Tl where By, € T("), By € Tl g, since o is bijective, we
have

(@(n,n))fl B — (<p<n,n))*1 (B2) xmrn, ((7rns, 07) ™ (B)

moreover, since ga(”’") and TI,1\I,, OP are continuous, and R"™"x By € Tl
we have

(6m) 7 (B1) € 7)1, (U)),

(71,1, O@)_l (B2) = (mn1,.0\1, © (71,11, 0@))_1 (B2)
= (7T1J\Im o@)il (Rn_m X Bg) S TH.HJ(U),

-1 .
and s0 Ty 1\ s, ((WLI\In 0 P) (Bg)) € Ty (75, (U)), from Proposi-
tion 2.5; then, we obtain (5("’”))_1 (B) € 7.,(U); finally, from Proposi-

tion 2.4, VB € T, We have (@mm))il (B) € TH,”J(U), and so a(n’n) is
continuous.
Conversely, suppose that E( is continuous; VB € 7™, we have B x

—(n,;n)) 1 n.n)) —1
Enr, €7,, andso (™) " (Bx Eny,) € 7, (U); then, (™) (B) =
-1
Tra () (B x Eny,)) € 70 (0, (U)). o

n,n)
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PROPOSITION 3.11. Let m € N*, let § # L C I, let 0 # N C J such that
Jm C N or N C J\Jp, and let ¢ : U C E; — Ej be a function m-general
and C* in xg = (xo;: j € J) € U; then:

1. The function o"N) 2 75 n(U) — RE is Ct in (w0 : j € N).

2. If ¢ is (m,o0)-general, I, C L and J,, C N, then the function g

UcCE; — E;is Clin xy.

Proof. See the proof of Proposition 2.28 in [6]. O

PROPOSITION 3.12. Let ¢ : U C E; — Ef be a (m,o)-general function such
that @ : U — @(U) is a homeomorphism. Then, the functions (™™ :
Um — plm.m) (U(m)) and @; o)+ Ai — Qi0(i)(Ai), for anyi € I\I,,, are
homeomorphisms, and o is bijective.

Proof. From Proposition 37 in [5], the statement is true if ¢ is (m, o)-standard;
moreover, observe that @ is (m,o)-standard, 3 = (@), ™™ = (g)™™
Pio(i) = Pio(i)s Vi € I\Iy; then, the statement is true if ¢ is (m, o)-general

too. ]

)

PROPOSITION 3.13. Let ¢ : U C E; — E; be a (m,o)-general function.
Then, @ : U — B(U) is a diffeomorphism if and only if the functions o(™™) :
Um — plmm) (U(m)) and @; 5y * Ai — Qi o) (As), for any i € I\Ip,, are
diffeomorphisms, and o is bijective.

Proof. From Proposition 38 in [5], the statement is true if o is (m, o)-standard;
then, as we observed in the proof of Proposition 3.12, the statement is true if
@ is (m, o)-general too. O

DEFINITION 3.14. Let A = (aij),cs jey @ B — Er be a linear (m, 0)-general
Junction; Vi € I\I,,, set \; = X\i(A) = a; 5(3)-

REMARK 3.15: For any m € N*, a linear function A = (ai;j);c; ;e ; : Es — Er
is m-general; moreover, if |J| = |I| and o : I\I,, — J\J,, is an increasing
function, A is (m, o)-general if and only if:

1. Vie I\, Vj € J\(JnU{o(i)}), one has a;; = 0.

2.Vj € Jn, Z la;j| < +o00; moreover, one has sup |)\;| < 400 and
i€IN\Im €N

i€\ I A A0
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3. If A # (), there exists H A € R
PE€EI\ I A #0

Furthermore, A is strongly (m,o)-general if and only if A is (m, o)-general
and there exists a € R such that the sequence {)\i}iel\lmz)\ﬁéo converges to a.

Finally, A is (m,o)-standard if and only if A is (m, o)-general and a;; = 0,
for any i € I\I,,, for any j € J,,.

COROLLARY 3.16. Let m € N* let 0 # L C I, let 0 # N C J and let

A= (aij)iteeJ : E; — Ey be a linear function; then:

1. The function AN (Ex, By) — (Er,Bz) is measurable; in particu-
lar, A: (E;,B;) — (Er,Br) is measurable.

2. If Ais (m,o)-general, I, C L and J,, C N, then the function Z(L’N) :
(Ej,B;) — (E5,B) is measurable.

Proof. 1. From Proposition 2.13, we have A&N) (Ey) C Er; furthermore,
from Remark 3.15, A is 1-general; moreover, we have J; C N or N C
J\Ji; then, from Proposition 3.9, AN) . (Ey, By) — (RL,B(L)) is
measurable, and so AN ¢ (Eyx,By) — (Ep,Br) is measurable; in
particular, A : (E;,By) — (Er, Br) is measurable.

2. The statement follows from Proposition 3.9.

O

Henceforth, we will suppose that |I| = +00. The following definitions and
results (from Proposition 3.17 to Proposition 3.21) can be found in [6] and
generalize the standard theory of the m x m matrices.

PROPOSITION 3.17. Let A = (a;;)
function; then, A is continuous.

ierjer E; — Ej be a linear (m, 0)-general

THEOREM 3.18. Let A = (aij);cr ey

function; then, the sequence {det A("’")}n>m converges to a real number. More-

: E; — Ey be a linear (m,o0)-general

over, if A# 0, by setting M = min A, we have

nlnioodetA(n)n): Z H >\q Za’p’j (COfA(‘p‘)lpl)) .

. p.J
pEI\Im \q€I\I|p JE€JIm

+det AT T A |- (10)
g€\ I
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Conversely, if A= 0, we have lim det A" = 0.

n—--+oo

DEFINITION 3.19. Let A = (aij);cs jey @ Es — Er be a linear (m, 0)-general
function; define the determinant of A, and call it det A, the real number

det A= lim det A™™),

n—- 00

COROLLARY 3.20. Let A = (aij);cr jes : By — Er be a linear (m, o)-general
function such that a;; = 0, Yi € Ly, Yj € J\Jp, or A is (m,o)-standard.
Then, if o is bijective, we have

det A = det A(™™) H A
i€I\I,,

Conversely, if o is not bijective, we have det A = 0. In particular, if A =1; ,
we have det A = 1.

PROPOSITION 3.21. Let p : U C Ey — Ey be a (m, c)-general function and let
xo = (20,5 : j € J) € U such that there exists the function J, (x¢) : E; — Ey;
then, J, (xo) is (m, o)-general; moreover, for any n € N, n > m, there exists
the linear (m, o)-general function Js,n (o) : Ey — Er, and one has

det J,, (x0) = nEI-Poo det Jn.m (20) -

PROPOSITION 3.22. Letm € N*, letn € N, n > m, andlet p: U C By — Ej
be a function m-general such that, for any i € I, for any j1 € J,, and for any

(Tm)
Jo € Jn\Jm, there exist the functions &g;j (UM, B (UM)) — (R, B)
ey

and %ii@ 1 (4;,,B(4;,)) — (R, B), and they are measurable; then:

1. The function det J . : (75,5, (U),B™ (7.4, (U))) — (R,B) is mea-
surable.

2. Suppose that ¢ is (m,o)-general and, for any i € I\I,,, the function
@;,a(i) : (Ao(i)VB(Aa(i))) - (Ra B)

is measurable; then, for any x € U, there exists the function Jemn () :
E; — Ey, and it is (m,o0)-general; moreover, the function det Jgnm)

(U,B(J)(U)) — (R, B) is measurable.
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3. Suppose that ¢ is (m,o)-general and, for any x € U, there exists the

function J, (z) : E; — Ep; moreover, suppose that, for any i € I, for
any j1 € Jm and for any jo € J\Jpm, the functions

o™ (v, 80 (Ut™)) — (R, B)

6l‘j1

and 8%’2 1 (4),,B(4,,)) — (R, B) are measurable; then the function
det J, (U,B )(U)) — (R, B) is measurable.

Proof. 1. From Remark 2.6, Vi € I,,, Vj € J,, the function

8()01_[,71 ' n)
5o (70, (0. B (0, (U))) — (R.B)

is measurable; moreover, we have
8(‘051,n)
(Jptnm) (m))” = o, (x), Ve emnyy, (U);

then, by definition of determinant, the function

det J i : (my{,ﬂ,(U), B<n>(7rJ,,]n(U))) . (R,B)

is measurable too.

. If ¢ is (m,0)-general, from Proposition 3.5, (™™ is (m, o)-general too;

then, from Proposition 2.13, Vz € U, there exists the function J5n.m) (x):
Ej; — Ey, and it is (m, 0)-general, from Remark 3.15.

If A(p) =0,Vz € U, we have A (J. ) (@ )) =0, and so det Jonm () =
0; then, the function det Jowm.n : (U, B)(U)) — (R, B) is measurable.
Conversely, if A(p) # 0, set m = min A (¢), m = max{n,m}; observe
that ™™ is (, p)-standard, where the bijective increasing function
p: I\I, — J\J5, is defined by p(i) = 0(i), Vi € I\Is; thus, Vz € U,

J5nm) (%) is (M, p)-standard too, and so Corollary 3.20 implies

det JE(n,n) (JZ) = det (Jg(n,n))(m’m) :ITJA H ng (i) ( T (i )) Ve elU.
i€\ 15
(11)
(M, m)
If m > n, we have det ( 5, m) (xs.) =0, and so det J5nm) () =
0, Vo € U; then, det Jzmn) : ( B(J) ) (R, B) is measurable.
Finally, if m = n, from formula (1 ) we have

det J5nm) (z) = det Jpmm (T (zg H ©; U(Z) 0(1 , Ve e U,
ZEI\In
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moreover, from point 1, the function
det Ty + (71,0, (U), B (70,0, (U))) — (R, B)

is measurable, and so it is (B(J)(U),B)—measurable, from Remark 2.6;
analogously, Vi € T\I,, wg’g(i) : (U, B(‘])(U)) — (R, B) is measurable;
then, Vh € N, h > n, the function f, : (U,BY)(U)) — (R, B) defined
by
fh(ac) = det J@(n,n) (I'Jn) H Spli,cr(i) (xa'(z)) , Ve e U,
iGIh\Iﬂ,

is measurable; furthermore, we have det Jw.n () = hhT fulx), Vo €
—T 00
U, and so det Jcnm) (U,BD(U)) — (R, B) is measurable too.

3. By assumption and from point 2, Vn € N, n > m, there exists the func-
tion det Jnn) : (U, B(J)(U)) — (R, B), and it is measurable; more-
over, from Proposition 3.21, we have det J, () = ngrf-loo det Jenm (),
Vz € U, and so det J,, : (U, BY)(U)) — (R, B) is measurable.

O

PROPOSITION 3.23. Letm € N*, letn € N, n >m, andlet p: U C By — Ej
be a function m-general such that ™™ is C'; then, the function det Jpnm)

(T.]’Jn ), 7" 7y 5, (U))) — (R, 7) is continuous.
Proof. Since (™™ is C', Vi € I,,,Vj € J,, the function

8@(n,7z)
o (70, (U), 7 (00, (U)) — (R,7)
L
is continuous; then, by definition of determinant, the function det J,m.n :
(7,0, (U), 7™ (7.5, (U))) — (R, 7) is continuous too. O

4. Change of variables’ formula

DEFINITION 4.1. Let k € N*, let M, N € R*, let a = (a; : i € I) € [0, +00)!
such that H a; € RY, and let v = (v; i € I) € Ey; define the following

i€l:a;#0
sets in By:
N N
E](\fa])v =RFx [] [vi - S+ Qaz} ;

ieI\Iy,

N N
E](\/];:A{\z,a,v - H [Uh - M’ Vp + M] X H |:U7l - 50,V +

a;| .
) 2 2"
hely, i€I\I,
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Moreover, define the o-finite measure )\g\lfi)v over (RI,B(I)) in the following
manner:

1 N N
)\g\lfi)v = Leb™™ @ ® NLeb ( N [vi — Ui + 2ai])
i€I\Iy,

LEMMA 4.2. Let k € N*, let N € R, let a = (a; :i € I) € [0,4+00)! such

that H a; € RY, and let v = (v; : i € I) € Ey; then, for any measurable
i€l:a; 70

function f: (RY,BY)) — (R, B) such that f+ (or f~) is /\S\];”i?v—integmble,

one has
/ far(D, = / faryh .
RI! E%C"I),
Proof. See the proof of Lemma 46 in [5]. O

PROPOSITION 4.3. Let ¢ : U C E; — Ej be a (m,o)-general function such
that the function @ is bijective, and suppose that there exists e=(g;:i € I\I,,) €

[0, +00)\m such that @EI’m) (IJm)’ < g, for any i € I\I,, for any x;,, €

U™ and such that H (1 4+ 2¢;) € RT; moreover, let N € [1,+00), let
i€\ I

a=(a;:i€I)e[0,4+00)! such that H a; € RY, and let v € Ey; then:

i€l:a;7#0
1. There existb= (b; : j € J) € [0,400)’ and z € E; such that H b; €

jEJ:bj;éO
R* and such that, for any l,n,k € N, I,n,k > m, one has

— k,I k,J
¥ ! (E1(V7a7)1)> C E](V,b,i’

1
—(l,n kI k,J
(<P(l’ )) (EJ(Va)v) - El(\fb;

In particular, if ¢ is (m,o)-standard, the statement is true for any N €
R™T, and one has

_ kI a7t kI k,J
o (BED) = () (BED,) = B,

_ o —am) ! o ko
o (E<>) _ (7)) (D) = )
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2. Suppose that the function ¢;; is continuous, for any i € Ip,, for any
j € I\, and the function ™™« (U™ rm)(@ym)) — (R™, (™)
is open; then, for any M € RY, there exists O € RT such that, for any
Il,n,k €N, l,n, k> m, one has

_ (k,I k,J)
¥ ! (EM,I\;,a,v> - E(O,N,ZLZ’

-1
_, (kD) )
(50( n)) (EM,N,a,v) c EO,N,b,z'
In particular, if ¢ is (m, o)-standard, the statement is true for any N € R™.

Proof. 1. Since P is bijective, from Corollary 3.8, the functions ¢; 5;), Vi €
I\I,,, and o are bijective.

Let N € [1,+00), let a = (a; :i € I) € [0,+00)! such that H a; €
i€l:a;7#0
Rt let v € By, and let @ = (@; : i € I\I,;,) € [0, 400)!\I where
_ | max{l,a;} ife; >0 ) )
al—{ai if e =0 ,Vie I\Ly;

define b = (b; : j € J) € [0,+00)” and 2z = (zj : j € J) € [0,+00)” such
that b; = z; =1, Vj € Jy; moreover, Vi € I\I,,, set

(,07_7;(1) (’Uz' + %Ei (1 + 281)) — (p;;(z) (Ui — %Ei (1 + 262))‘
bo(i) = N :
i (00 = 5T (1+280)) + 97 ) (0 + 5@ (14 25))
Zo(i) = — 5 : . (12)

Observe that, Vi € I\I,, we have b,(;y # 0 if and only if @; # 0; then,
since o (I\I,) = J\Jpm, we have

IT = 1II &= 1II b
JEJ:b;7#0 JEI\JIm:b;7#0 1€I\I,,:a@; #0

B H (p;al(z) (1)7;4-%&7; (1+2€1)) —@71(i) (’Ui— %ai (1“!‘251))‘

i,0
1€I\ I :a; 0

Nai (1 + 262)

II = IT «+20)). (13

i€I\I @3 70 P€IN\ L :@; A0
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Moreover, Vi € I\I,, the function go;;(i) is derivable on R; then, if a; # 0,
the Lagrange theorem implies that, for some &; € (v; — %Ei (14+2;),v+
8a; (14 2¢;)), we have

prt (v + 5 (14220) — 7k (0 — Y (14 22)]

1,0

Na; (14 2¢;)
= ’ (@Z;(i)y (&)

= ! ;o (14)

902,0(1‘) (90;;(1‘) (fz))

furthermore, Vi € I\I,,, ©i,0(s) 18 injective, and so Z, = I\I,,; then

H wé,(,(i)(w;i(i)(éi))’ = H

1€\ I :a@; #0 1€ZL,:a; 70

<P;,U(i)(¢;;(i)(§i))‘ cRT,

(15)
from Definition 3.2. Moreover, we have

Moe-( T «ff I «fer
I€I\T 1 @; £0 $€N\In:a;>1,6,>0 €I\ Im:a;7£0,8,=0
H (14 2¢;) € RT;
iEI\ImZEisdéO

then, from formulas (13), (14) and (15), we obtain  [] b, € R*.
jeJ:b;£0
Moreover, let zg = (zo; : j € J) € U; Vi € I\I,,,, we have

)

(16)

furthermore, from the Lagrange theorem, there exists ¢; € (p;, 7;), where

. N_
pi = min{v; — o G (14 2e5) , 0i,0) (To,0)) }»

N _
7; = max{v; — - G (14 2¢4) , 0i,00) (T0,0(3)) }
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such that

_ N_
ity (Vi — 5 @i (1+2¢0)) — ¢, o) (Pio() (xO,U(i)))‘

:‘( o) @[]

N_
Vi — 5 (1+2¢) — %,a(i)(mo,a(z‘))’

‘vi _ %ai (14 2¢;)— ‘Pi,a(i)(mO,U(i))’ .
902,0(1‘)(90;;(1‘)(@))’

thus, from (16), we obtain

N
w;;(i) (vi - ?Ei (1+ Qei)) ‘
Vi — %Ei (1—’_28%) P, J()(‘TOJZ) ‘
N ()]
We have sup |v; — Ja; (1+2¢;)] < |lvll; + 5 llall; X+ 2ell;) < +oo;

i€I\I
moreover, from Definition 3.2, we have

IN

+ |Z0,00)| -

sup [ o) (Z0,0(s))| = sup ’@EI\I”“J\J’") ((xo)‘,\‘,m)‘ < 400,
i€I\I,, i€I\Im,
. / —1 _
AR [P0 (Piaw ()] = 0 [0 (015 (G0)] > 0

then, there exists ¢ € R such that sup

-1
i ‘P;a(i)(W;;(i)(Q))‘ < ¢, and
1€l \Im

so formula (17) implies
sup

_ N_
P; ;(i) <'Ui - Eai (1 + 251‘)) ‘
i€I\I,, ’
<c sup
iel\I,,

Analogously, we have

N_
Vi~ 5 G (14 2¢;)

+ sup ‘Soi,a(i)(xo,a(i))‘>
i€I\I,

+ [|zo| ; <Ho0.

sup
i€\,

1 N_
P o) \ Vi T 5 i (14 2¢;) || < +o0;

then, from formula (12), we obtain that sup |z,(;| < +oo, and so
ZGI\IWL
z€ k.
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Moreover, let k € N, k > m, and let © = (z;:j€ J) € ¢! (EX;;L),
Vi € I\Ij, we have
I,m N N
%(' ) (ﬂfjm) + Pio(i) (xcr(i)) = %(33) S |:U7,' - 5%7%‘ + 5(11‘
N I N I,
= %‘,a(i)(xa(i)) € [Ui - Eai - SOE ) (r,,),vi+ Eai - 901(- ™ (SUJm)]

N_ N_
C vifgaifei,viJr?aiJrsi ;

moreover, since N > 1, we have %Ei +e; < %Ei (14 2¢;), and so To() €
[avi, B;], where

[\

N N
a; = min {‘Pi,;(i) (vi ——a; (1+ 252»)) 7‘9;,;(1‘) (Ui + 561- (1+ 251)) } )
N N
_ -1 A _ —1 A _ )
B; = max {gow(i) (vZ 5 di (1+ 2@)) P o) (vZ + = (1+ 252)> } ;
thus, formula (12) implies

N N
To(i) € [Zg(i) - Eba(i)aza(i) +5 ba(i):| ; (18)

finally, since o (I\I}) = J\Ji, we obtain ¢! (E](\l,cal)v) C Ej(\fli

Furthermore, let [,n € N, [,n > m, and let
, )\ (kD)
z=(z;:j€J)€ (gp ’ ) (EN:am) :

Vi € I\I, since @;(z) = ¢§l’n)(a:), by repeating the previous arguments,
we have formula (18); conversely, Vi € I\I;, we have

N N
i) (To@)) = wi(z) € |v; — 5 @i Vi T 5 ai

and s0 T, (;) € [7Vi, 0], where

. —1 N -1 N
Vi =M P ooy | Vi 5%‘ Piegy | Vi T Eai )
_ N _ N
d; = max {<pi7;(i) (vi — 2%) ,goiﬁgl(i) (Ui + 2ai> } ; (19)
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then, since [y;, d;] C [au, 3;], we obtain formula (18) again; thus, we have
(1L koI k,J

@) (B € BSL.

In particular, if ¢ is (m,o)-standard, Vi € I\I,,, we have ¢; = 0, and so

@; = a;; then, VN € R, we have

_ N N
%,;(i) ([Uz 5 s Vi + 2%‘D = [7i, 03]

N N
= [Zo(i) - Eba(i)vza(i) t3 ba(v’,):| ;o (20)

thus, Yk € N, k > m, we obtain ¢! (E](\];“‘;)v) = E](\],Cb‘];7 o1 (E](\’;;)v> =

EI(\]bei, analogously, VI,n € N, [,n > m, from formula (20), we have
) L kI kJ)  (—(ln)y L ey ko
() (e = i, (00 () - e

2. Suppose that the function ¢;; is continuous, Vi € I, Vj € J\J,,, and
the function (™™ . (U™ r(m)(Um)) — (R™, 70™)) is open; since
is bijective, from Corollary 3.8, ("™ is bijective too; moreover, ¥V M €
RT, consider the set

—(I N_ N_
EgW),N.,a,v = H |:’Ui - 561‘,1)1' + 2ai:| ,
i€l

where N = max{2M, N} € [1,+o0), a@; = max{1,a;}, Vi € I. We have

F%N’a’v c BYD where @ = (@i :i € 1) € [1,+00)!; moreover, we have

N,a,’
I a- Il wer:
i€I\ I :a; #0 i€\l a;>1

then, from point 1, there exist b = (b; : j € J) € [0,+00)” and Z € E;
such that H b; € R and such that
JEJ:b;#0

_1 (=) _ m,I m,J
@ ! (EM,N,a,v> - ® ! (E(Nﬁ,z))> C E(NEE);
then, Vo = (z;:j€J) € ¢! (Eg\fl),N,a,v) we have HxJ\JmHJ\Jm <
Izl 5\ g, +§ ||5HJ\J = 0, € R*. Moreover, Vi € I,,,, we have

pi(r) =" @)+ D wilay),
JEI\Im
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and so
—1
xJnL = (gp(m’m)) wIm,? (21)
where
w; = @i(l‘) — Z Yij (l‘]) R Vie Im; (22)
FEI\Tm

furthermore, Vi € I\I,,, we have

2

(I,m)

Pi (vg,,)+ Pi,o(i) (Ia(i)) = gi(z) € [Ui — = a;,v; +

N_ N_
2

W: I,m W: 1
= Yio(i)(Toi) € [Ui - %(' ) (r7,,),vi+ 50~ 90§ ) («TJm)]

C N +W: +
Vi = @i — &, Vi T 0 il
g i g MiTe
and so

To(i) € [0, 8] C Asgi), (23)

where

_ N_ -1 N_
Qi =min g @, oy (Vi — Eai —E&i | Pieu (Vi T 5% + & ,

— N_ N _
— -1 ) ) ) -1 ) . . .
B; = max {apiﬂ(i) (v, 5 a; €l> s i (i) (vz + 5 a; + Ez) } ;

then, since Vi € I,,, Vj € J\Jy, the function ¢;; is continuous, there
exists Oz = O3 (p, M, N,a,v) € R such that

sup Y i (25)] < Oa,

€lm i N\ T

and so |lwy, |, < |vll, + % HEHIW + 0, = O3 € R, from (22);

then, since the function (gp(m”"))_l is continuous, from (21), we have
2,115, < Ou, for some Oy = O4 (p, M, N,a,v) € R* such that

(@(m’m)) - ([-03,05]™) C [~04,04]™,

and so ||z|| ; < max{O1,04}. Thus, if b, z are the sequences defined by
point 1, we have

ol (Egj)N) c [] I~ max {01, 04} ,max {01, 04}]

jeJ
c[]lzi—-0,2+0], (24)

jeJ
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where O = max{01,04} + ||z||; € RT; moreover, Vk € N, k > m, we
have ESD c EED A B

Noaw VENM N,q0; then, from formula (24), we obtain

_ kI _ kI —1 (&)
¥ ' (EI(M,]\;JL,?)) Ceyp ! (EI(\/',a,)v) N ¥ ! (EM,N,a,v>
- EJ(\};Cle N H [2j — 0,2+ 0] C E(Oli};l]?b,z'
JjeJ

Furthermore, let I,n € N, [,n > m; from point 1, we have

(20) " (Biwan) € (0 (B0 € B30,

N,a,v

N,bz’

then, Vo = (z;:j € J) € (E(lvn))_l (ES\?’N%U), we have ||z, N =
O;. Moreover, Vi € I,,, we have
—(l,n m,m
7 @) = " )+ Y e,
JE€ETN\Tm
and so
-1
21, = (™), (25)
where l
T=7 " @)~ Y i), Vi€ In; (26)
J€In\Jm
furthermore, Vi € I}\1,,, since ¢;(z) = Egl’n) (x), we have formula (23).
Finally, Vi € I\I;, we have
_q, N_ N_
%‘,o(i)(iﬂo(i)) = SOE n)(x) € |:Ui — =0,V + 2%}
= T € 74,01
where

_ N N_ 1 N_
Vi = MNP, 5y | Vi T gai ' Pio(i) \ Vi + Eai )
- N N_ _ N_
d; = max {@i;(i) (vi - 2ai> v%‘,;(i) (vi + ai) } ;
then, since [Wi,gi] C [ai,ﬁi}, we obtain formula (23) again, from which

sup > i (@) < sup D i (x5)] < O
e S\ Wl e N
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and so |[wy,,[|; < Oz, from (26).

Then, since the function ((p(m’m))_l is continuous, from (25), we have
lz7,1l;, <O and so |[z]|; < max{O1,04}. Thus, we have

(E(lm)) -1 (Eg\f[),N,a,v> - H [ max {O1,04},max {01, 04}]
jeJ

c ]z -0,z +0]; (27)

jed
finally, Vk € N, k > m, from point 1 and formula (27), we obtain
a7t % —am) ! kI —am\ "t /=)
(‘p(l’ )) (EJ(\LJ\;,a,v) - (cp(l’ )) (E](V,a,)v)m<50(l’ )) (EM,N,a,v)

c By N [[lz-0.2+0lc B3,
JjEJ

In particular, if ¢ is (m, o)-standard, VN € RT, VI, n,k € N, l,n, k > m,
from point 1, we have

_ % _ -1 kI k,J
oo (END) = (207) (Vi) = BN
moreover, we have formulas (24) and (27) again, from which
_ kI k,J
P ! (EM,]\;,a,v) - E((),N,)b,z’

_ -1 kI k,J
<(p(l,n)) (E](\/[,]\;7a7v) - E((D,N,)b,z'

O

PROPOSITION 4.4. Let (S,X) be a measurable space, let T be a m-system on S,
and let py and pz be two measures on (S,X), o- finite on Z; if 0(Z) = X and
w1 and po coincide on I, then py and us coincide on 3.

Proof. See, for example, Theorem 10.3 in Billingsley [8]. O

Now, we can prove the main result of our paper, that improves Theorem 47

in [5], and generalizes the change of variables’ formula for the integration of
a measurable function on R™ with values in R (see, for example, the Lang’s
book [11]).
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THEOREM 4.5. (Change of variables’ formula). Let ¢ : U C E; — Ej be a
bijective, continuous and (m,o)-general function, such that TI,I\I,, © P 15 con-

tinuous and such that, for any n € N, n > m, the function ™™ : U — E;
is a diffeomorphism; moreover, suppose that there exists € = (g;:1 € I\I,,) €

(R"’)I\Im such that gpgl’m) (xjm)‘ <&, for anyi € I\I,,, for any x; € U™,

and such that H (1 + 2¢;) € RT; furthermore, suppose that the sequence
i€\ I,

{(a(mn))_l} . converges uniformly to o~

sets of Ey, and the sequence {det Ja(n,n>}n>m converges uniformly over the

closed and bounded subsets of U; finally, let N € [1,400), leta = (a;:i € I) €

[0, +00)! such that H a; € RY, let v € Er, and let b € [0,4+0)’ and

i€l:a;7#0
z € Ej defined by Proposition 4.3. Then, for any k € N, k > m, for any

L over the closed and bounded sub-

B e B (E](\],CQI)U> and for any measurable function f : (RI,B(I)) — (R, B)

such that f+ (or f~) is Agl\;”i?v—integrable, one has

Ay

=

/ FaAd), = / f() lim_|det T
B

»~1(B)

In particular, assume that, for any x € U, there exists the function J,(z) :
E; — Ej; then, one has

/ faAED, = / £(o) [det T | A7),
B

¢~ 1(B)

Proof. The previous assumptions imply that ¥ is bijective, ¢;; is continuous,

Vi € Iy, Vj € J\Jp, and oM™ (UM 7m(um)) — R™, 7M) is

open; thus, VM € RT, VN € [1,+00), Va = (a; : i € I) € [0,4+00)! such that
H a; € RT, and Vv € E7, let O € RT and let b, z be the sequences

i1€1:a;7#0

defined by Proposition 4.3. Then, Vn,k € N, n > k > m, VB = HBi S

iel
BW (E](\;II\ELW) and Vi € I\I,, we have B; € B ([vz — %ai,vi + %ai]); more-

over, since (E(”’"))_l (B) C E](\]fb‘];, we have

_ N N
@i’;(i)(Bi) €B ([Za(i) - Ebo’(i% Zo(i) + 2%@)]) ;
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from which

1
/ D = / d|Leb e | @ 7Leb
B

HB g€\ B([Uq*%aq,vq+%aq])
pel
: () 1
= Nn—k d| Leb\™ ® ® NLeb
1_‘[ By H B a€I\In B([qugaqv”qu%aq])
pEIn : g€INI, !

1

= ok / dLeb™ - / il & ;]Lebg([v ool (28)
Pgﬂ B, qell_\lln B, q€IN\I, 2 2
Moreover, we have
1 1
’ qgleianLEbB([“q_gaq’%‘"g%]) B / ’ q§7»NLebB(Bq)
AL et

(by Theorem 2.1)

1
= 1l d 18) —Leb
pﬂnﬁ{loo _/ eI N €
q P n
B,
qellzl\lnq

= lim / 11
pteo q€Ip\In
-1
H quﬂv(q)(BQ)

q€Ip\In

/

Pq,0(q)

® %Leb

qeI\I,

B(eg o) (Ba))

(since, Vq € Ip\I, ©q,0(q) is a diffeomorphism, by Proposition 3.13)

1
/
/ s Crow] 1| @ Fleb

1 qel\I,
I eibw B0
q€I\Ip

B(e, & (Ba))
(by Theorem 2.2)

1
= [ [ew]d| @ e

7. gqeI\I, a€\I,
H L‘Oq,o(Q)(B‘I)

qEI\In

B([20(a)= F o (@) Zo @)+ Fbo(a)])

Moreover, from Proposition 3.13, ¢(™™) is a diffeomorphism, and so formula
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(28) implies

1

’ (o)™ ( 11 2,)

pEIn
/ qeI\I,

-1
(‘aq,o'(q>(Bq)
In

dLeb™

1
A

4€\I, B([2o(0) = % bo ()17 () + F bo(0)])

geI\

1
= ank / | det J@(n,n) Id Leb(")

(@) ~N(B)

® ® %Leb

qe]\ln

B([20(a) = ¥ bo(a)s20 () + X bo(0)))

= / | det Josinm |d | Leb®

(@rm) " (B)

2 & %Leb

qEI\I}

B([20(a) = % bo(a) 2o ()t B bo(a)])
-1
(since <¢("’")) (B) C E;ﬁ,ﬁ)
_ / | det s [dAE). (29)
(@)~ (B)

Consider the measures p; and pg on ¥ = BU) (E](\fff\;av> defined by

pn(B) = [,
B

pi2(B) = / | det Joyinm [dAN 7
(Bm) " (B)
from (29), p1 and po coincide on the set

Z{BEE:BHR:}%

iel
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moreover, we have pq (E](f[f\;aO = Lo (EJ(\];]I\;(I v) < 400, Eg\f”{?a » €71, and
so p1 and po are o- finite on Z. Then, since 7 is a 7-system on E](\flf\;av such

that 0(Z) = %, from Proposition 4.4, ¥V B € BY) (E](V];]I\;al}), we have

/ Ayl = / | det Joycnm [dAN T (30)
B (@)~ (B)

Moreover, since E](\;]I\;av is closed and bounded, the sequence { (E("’”)) 71}

n>k
(k1) »

1 3 . . . .
over By, 5 furthermore, since ¢ is continuous,

converges uniformly to ¢~
ot (E](\ZQ(LJ is closed; then, there exist m € N, m > k, and 6 € RT such

that, i > 7, (0) " (E{,,) € ¢ (BR..,) + Bs(0,8) € U, from
which

(Fe) @ U En) (si)

h>k

n

(0 6) " (2. ) U (B0.) + 509).
Vn > k;

then, from Proposition 4.3, Vn > k, we have
—(n,n) -t (k,J)
(Sﬁ ' ) (B) C ES5Nb.

N <<U (¢(h,h)>—1 (EE\%\;M)> U (sfl (E](V’f,jf\;w)> +3}(W>>

h=k
k,1,0,0
=EBNeY) cu, (31)

and so
/ 1D, = / 15(@™™)| det Lo [dAET). (32)
Ef5 R e BNt

Moreover, V h € {k,...,i}, ™" is continuous, since from Proposition 3.13 it is
a diffeomorphism; then, since 77 r\7, 0% is continuous, from Proposition 3.10,

7" is continuous too, and so formula (31) implies that Ej(\fulvfl? is a closed
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subset of U; furthermore, we have E](\f[ ]I\,“fl? - E(O N)b , and so E](\f[ f\,i? is
bounded.
From formula (32), if ¢ : (RI,B(I)) — ([0, +0), B([0,400))) is a simple

function such that ¢(z) =0, Vz ¢ Eg;:ﬁmw we have
[ et = [ e et lad).

(k,I) (k,I,0,8)
EMNaw By Nflv

Then, if I : (R!,BM) — ([0, +00), B ([0, +00))) is a measurable function
such that I(z) = 0, V& ¢ EMAEG > and {1}, . s a sequence of increasing
positive simple functions over (RI ,B(I)) such that hm z/Jz =1, ¥;(x) = 0,

V¢ E]\f[ ]I\; av VEEN, from Beppo Levi theorem we have

/ Ay = lim / AL,

(k,I) (k,I)
EyiNaw E\iNa0

~ lim / B@)| et T [N

(K, Iv:(s)
E M,N,a,v

- / 1™ det Jnm [dAY ), (33)

(k,I,9,5)
BN

from which

/ AED = lim / L™ det Jyomm[dAGL. (34)

n—-—4oo

(k,T) (k,I,p,5)
EriNa,v BN v

In particular, formula (34) is true if { : R — [0, +00) is (B®, B ([0, +00)))-
measurable, (7). 7 ([0, +00)))-continuous and such that I (Rf) € [0,1], {(z) =

0,Va ¢ E](\f[ f\; - In this case, let {f,,}, -, be the sequence of the measurable
functions -

NAZN) T,0,0
fo: (BSENG2 B (ENG)) ) — (10,+20), B ([0, +00)
given by
Fal@) = 1@™™) (@)| det Jyonm (2)], Yo € BSGREY) Wi > k;

(k,I,sa )+

since v

is closed and bounded, the sequence {det J5nm) }nz , converges

umformly over E](V’;f\,“;i), then, there exists n € N, n > k, such that, Vx €
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E](\f[fvi?, Vn > 7, we have |det J;mm ()| < |det J5@ . ()] + 1; thus, since
l (RI) C [0,1], Vn > k, we have |f,| <|det J¢<n,n)| < g, where
kT .0 kT .0
g (ESGNEBY (BGG)) — (10,400), B ([0, +00))
is the measurable function defined by

g(x) = > |det Jum ()] + | det Jyem ()] +1, Vo € ESyad). (35)
h=k

Moreover, ¥V h € {k,...,n}, we have

| det J@(h,h) ()] = | det J<p(h,h,) (zg,)

I

i€I\Ip

kT,
@;,o(i)(xg(i))‘ ,Va e ng,wa); (36)

furthermore, from Proposition 3.23 and Proposition 3.13, Vh € {k,...,n},
Vi € I\Ip, the functions det mem and gp’i (i) are continuous; then, since the
sets s g, (EJ(\;]IV“;?) and 7 (5 (i)} (ng[fvfl?) are closed and bounded, from

. (k7I7 76).
formulas (35) and (36), there exists § € R such that g(z) < 8,Vx € Ey/y7");

thus, by definition of EJ(\];’JI\}’;’?, we have

k,J k,J k0,8 k,J k,J
/ gd/\g\f,b,)z < ﬂAg\r,b,i (EJ(\/INiv)) < 5/\§v,b,)z (E(O,N,)b,z)

:ﬁHLeb([zp—O,zp+O]) H &Leb([zq—gbq,zq—kg]bq])

pEJK qg€J\Jk

=820)" ] bq < +oo.
q€J\Jx

Moreover, since  lim &; =0, we have lim 5(”’")

= ¢, and so
i€l i—+o0 n—- oo

lim fo(z) = U(p(2)) lim_|det Jym ()|, Yo € EY N0

n—-—4o00 n——+oo

then, from the dominated convergence theorem, we obtain

n—-—+oo

lim / 1@™™)| det oo |dNY

(k,I,¢,8)
EriNa v

= / () Tim |det Jyom |dAS; s

n—-+4oo

(k,I,0,8)
ENiNa v
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consequently, from (34), we have

/ aA§D = / () lim_|det Jonm ). (37)
B3N a0 A

Let B = [[B; € BW (E{Y,,), where B; = (ai, ), Vi € I, and let ; =
el
5%, Vi € I; moreover, Vh € N*, Vt € [0, 1], consider the set

td; td;
Ah,t = H (az + ?7ﬁl - h) )

icl

and consider the function I, : R — [0, +00) defined by

1 ifxeAn,
lh(x) = t ifx e 8Ah7t
0 ifzeR\A,

Observe that, Vh € N*, [;, : R — [0, +0c0) is a function such that I, (RI) C

0,1], In(z) =0,V gD ; moreover, Vtq,ts € |0,400) such that t; < to,
M,N,a,v

we have

0 ift; >1
(s te)) = § Ay ift, <1<ty ,
Ap i \Apye, ift1 <t <1

R! ifto > 1
-1 _ 2 )
(0, 2)) —{ RA\A,,, i<l

thus, I, is (B, B([0,+00)))-measurable and (7(!), 7 ([0, +00)))-continuous.

Then, since {l,},.n~ is an increasing positive sequence such that . lim I =
— 400
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1, from Beppo Levi theorem and (37), we have

/m;;;,}: / 1pdAyD = lim / dASD,
B

h—+00
kI koI
B R 2
. . k,J)
= lim () lim |det o |dAS
o h(‘P)nH+OO| 723 )| N,b,z
k,I,0,6
E1<\4,Nf1,v)
— ; (k,J)
_ / 1p(¢) T _[det oo | A7)
(k,I,0,8
E]\l,Nfl,U)

= / lim |det Joom [ dAYT L. (38)

n—-+4oo
»~1(B)

Moreover, Proposition 4.4 implies that the previous formula (38) is true VB €

B E](é][\zav> . Consider the measures p and v on (E](\lfal)v7 B (EI(\];’I) ))

,a,'U

defined by
u(B) = [NiD,,
B

v(B) = / lim |det J5(n.m) | d/\g\];:bJ,)zv

n—-+4oo
¢~ 1(B)

and set B, = BNEX) vieN* vB e BD E}ﬁjﬁl). Since B; C Byy1,

¢ N (B) C ¢ (Biy1), U Bi=Band U ¢ N(Bi) = ¢ '(B), from the
lEN* leEN~
continuity property of u and v and (38), we have

/ AN = lim gD,
B By

— lim / nli)rfoo‘det J@(nm)‘d)‘g\]/c:l;],)z

l—s 400
o H(B)

n—-+4oo
®~1(B)

= / lim |det Jonm | AR L. (39)
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Then, let B € BU) (E%‘af)) and let g : (R, BD) — ([0, +0), B([0,+00)))

be a measurable function; Vz ¢ E](\’,CGI)U, we have (glg)(z) = 0; thus, by

proceeding as in the proof of formula (33), formula (39) implies

Ay

/ g\l = / 1pgdAy, = / (1p9) (@)ngrfoo‘det Jostnn)
B R/ RJ

().

- / g(so)nglfoo|deu¢<n,">
e~ 1(B)
Then, for any measurable function f : (RI7B(I)) . (R, B) such that f* (or

f7)is )\g\lf,’i) integrable, we have

,U

/fdA%,7i?zz = /f+d>\§\ll'€:(f,)v - /fﬁd}\%?,’i,)v

B B B
_ / [ () T [det Ty | aA{)
o(B)

= [ £, Jm et T | )

¢~ 1(B)

dAE@;{ ). (40)

= / flp) Tim |det Joo.m
»~1(B)

In particular, assume that, Vo € U, there exists the function J,(z) : E; —
Ey; from Proposition 3.21, we have

lim |det Jnm (2)] =

n—-+4oo

nEr-&I-loo det Jtn.m ()| = |det J,(2)|, Vo € U,

and so formula (40) implies

[roxh = [ s e ax).

B »~1(B)

5. Problems for further study

A natural application of this paper, in the probabilistic framework, is the de-
velopment of the theory of the infinite-dimensional continuous random vari-
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ables, defined in the paper [4]. In particular, we can prove the formula of the
density of such random variables composed with the (m,o)-general functions,
with further properties. Consequently, it is possible to introduce many random
variables that generalize the well known continuous random vectors in R™ (for
example, the Beta random variables in E; defined by the (m,o)-general ma-
trices), and to develop some theoretical results and some applications in the
statistical inference. Moreover, we can define a convolution between the laws
of two independent and infinite-dimensional continuous random variables, as
in the finite case.

Furthermore, in the statistical mechanics, it is possible to describe the sys-
tems of smooth hard particles, by using the Boltzmann equation (see, for ex-
ample, the paper [18]), or the more general Master kinetic equation, described
in the papers [17] and [16]. In order to study the evolution of these systems,
we can consider the model of countable particles, such that their joint infinite-
dimensional density can be determined by composing a particular random vari-
able with a (m, o)-general function.

Finally, we can generalize the papers [2] and [3] (where we estimate the rate
of convergence of some Markov chains on [0, p)* to a uniform random vector)
by considering the recursion {X,},cn on [0,p)N defined by

Xn+1 = AX,, + B, (mod p),

where Xy = x¢ € EJ, A is a bijective, linear, integer and (m, o)-general func-
tion, p € R, and {Bn},en is a sequence of independent and identically dis-
tributed random variables with values on E;. As noted above, it is possible
to determine the density of the random variable AX,,, for any n € N*; conse-
quently, we expect to prove that, with some assumptions on the law of B,,, the
sequence { X, }, . converges with geometric rate to a random variable with law

® (1Leb’ ), that is the uniform random variable on [0, p)N". More-
N~ P B([0,p))

over, we wish to quantify the rate of convergence in terms of A, p, m, and the
law of B,,.
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