Change of variables' formula for the integration of the measurable real functions over infinite-dimensional Banach spaces

Claudio Asci

Abstract

In this paper we study, for any subset I of \mathbf{N}^{*} and for any strictly positive integer k, the Banach space E_{I} of the bounded real sequences $\left\{x_{n}\right\}_{n \in I}$, and a measure over $\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right)$ that generalizes the k-dimensional Lebesgue one. Moreover, we recall the main results about the differentiation theory over E_{I}. The main result of our paper is a change of variables' formula for the integration of the measurable real functions on $\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right)$. This change of variables is defined by some functions over an open subset of E_{J}, with values on E_{I}, called (m, σ)-general, with properties that generalize the analogous ones of the finite-dimensional diffeomorphisms.

Keywords: Infinite-dimensional Banach spaces, infinite-dimensional differentiation theory, (m, σ)-general functions, change of variables' formula.
MS Classification 2010: 28A35, 28A15.

1. Introduction

In the mathematical literature, some articles introduced infinite-dimensional measures analogue of the Lebesgue one: see for example the pioneering paper of Jessen [10], that one of Léandre [13], in the context of the noncommutative geometry, that one of Tsilevich et al. [19], which studies a family of σ-finite measures in the space of distributions, that one of Baker [7], which defines a measure on $\mathbf{R}^{\mathbf{N}^{*}}$ that is not σ-finite, that one of Henstock et al. [9], and that one of Tepper et al. [15]. However, the results obtained do not include an infinite-dimensional change of variables' formula for the integration of the measurable real functions, analogous to that which applies in the finite-dimensional case. For example, in the paper of Accardi et al. [1], the authors describe the transformations of generalized measures on locally convex spaces under smooth
transformations of these spaces, but these measures have no connection with the Lebesgue one. The problem that arises is essentially the following. Consider the integration formula with respect to an image measure, that is

$$
\int_{E} f d(\varphi(\mu))=\int_{S} f(\varphi) d \mu
$$

where (S, Σ, μ) and (E, \mathcal{E}) are a measure space and a measurable space, respectively, $\varphi:(S, \Sigma) \longrightarrow(E, \mathcal{E})$ and $f:(E, \mathcal{E}) \longrightarrow(\mathbf{R}, \mathcal{B})$ are measurable functions. In the particular case in which E and S are open sets, suitably constructed, of two infinite-dimensional measurable spaces Ω_{1} and Ω_{2}, respectively, on which we can define two families \mathcal{M}_{1} and \mathcal{M}_{2} of measures analogue of the Lebesgue one, and φ has properties that generalize the analogous ones of the standard finite-dimensional diffeomorphisms, we expect existence of two measure λ_{1} in \mathcal{M}_{1} and λ_{2} in \mathcal{M}_{2} such that $\varphi(\mu)=\lambda_{1}$, while μ has density |det $J_{\varphi} \mid$ (properly defined) with respect to λ_{2}.

In order to achieve this result, in the articles [4], [5] and [6], for any subset I of \mathbf{N}^{*}, we define the Banach space $E_{I} \subset \mathbf{R}^{I}$ of the bounded real sequences $\left\{x_{n}\right\}_{n \in I}$, the σ-algebra \mathcal{B}_{I} given by the restriction to E_{I} of $\mathcal{B}^{(I)}$ (defined as the product indexed by I of the same Borel σ-algebra \mathcal{B} on \mathbf{R}), and a class of functions over an open subset of E_{J}, with values on E_{I}, called (m, σ)-general, with properties similar to those of the finite-dimensional diffeomorphisms. Moreover, for any strictly positive integer k, we introduce over the measurable space $\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right)$ a family of infinite-dimensional measures $\lambda_{N, a, v}^{(k, I)}$, dependent on appropriate parameters N, a, v, that in the case $I=\{1, \ldots, k\}$ coincide with the k-dimensional Lebesgue measure on \mathbf{R}^{k}. More precisely, in the paper [4], we define some particular linear functions over E_{J}, with values on E_{I}, called (m, σ)-standard, while in the article [5] we present some results about the differentiation theory over E_{I}, and we remove the assumption of linearity for the (m, σ)-standard functions. In the last two papers, we provide a change of variables' formula for the integration of the measurable real functions on $\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right)$; this change of variables is defined by some particular (m, σ)-standard functions. In the paper [6], we introduce a class of functions, called (m, σ)-general, that generalizes the set of the (m, σ)-standard functions given in [5]. The main result is the definition of the determinant of a linear (m, σ)-general function, as the limit of a sequence of the determinants of some standard matrices.

In this paper, we prove that the change of variables' formula given by the standard finite-dimensional theory and in the papers [4] and [5] can be extended by using the (m, σ)-general functions. In Section 2, we recall the construction of the infinite-dimensional Banach space E_{I}, with its σ-algebra \mathcal{B}_{I} and its topologies τ_{I} and $\tau_{\|\cdot\|_{I}}$; moreover, we expose the main results about the differentiation theory over this space. In Section 3, we recall some properties of the (m, σ)-general functions defined in [6], and we expose some additional results
about these functions. In Section 4, we present the main theorem of our paper, that is a change of variables' formula for the integration of the measurable real functions on $\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right)$; this change of variables is defined by the bijective, C^{1} and (m, σ)-general functions, with further properties (Theorem 4.5). In Section 5, we expose some ideas for further study in the probability theory.

2. Differentiation theory over infinite-dimensional Banach spaces

Let $I \neq \emptyset$ be a set and let $k \in \mathbf{N}^{*}$; indicate by τ, by $\tau^{(k)}$, by $\tau^{(I)}$, by \mathcal{B}, by $\mathcal{B}^{(k)}$, by $\mathcal{B}^{(I)}$, by Leb, and by $L e b^{(k)}$, respectively, the euclidean topology on \mathbf{R}, the euclidean topology on \mathbf{R}^{k}, the topology $\bigotimes_{i \in I} \tau$, the Borel σ-algebra on \mathbf{R}, the Borel σ-algebra on \mathbf{R}^{k}, the σ-algebra $\bigotimes_{i \in I} \mathcal{B}$, the Lebesgue measure on \mathbf{R}, and the Lebesgue measure on \mathbf{R}^{k}. Moreover, for any set $A \subset \mathbf{R}$, indicate by $\mathcal{B}(A)$ the σ-algebra induced by \mathcal{B} on A, and by $\tau(A)$ the topology induced by τ on A; analogously, for any set $A \subset \mathbf{R}^{I}$, define the σ-algebra $\mathcal{B}^{(I)}(A)$ and the topology $\tau^{(I)}(A)$. Finally, if $S=\prod_{i \in I} S_{i}$ is a Cartesian product, for any $\left(x_{i}: i \in I\right) \in S$ and for any $\emptyset \neq H \subset I$, define $x_{H}=\left(x_{i}: i \in H\right) \in \prod_{i \in H} S_{i}$, and define the projection $\pi_{I, H}$ on $\prod_{i \in H} S_{i}$ as the function $\pi_{I, H}: S \longrightarrow \prod_{i \in H} S_{i}$ given by $\pi_{I, H}\left(x_{I}\right)=x_{H}$.

Theorem 2.1. Let $I \neq \emptyset$ be a set and, for any $i \in I$, let $\left(S_{i}, \Sigma_{i}, \mu_{i}\right)$ be a measure space such that μ_{i} is finite. Moreover, suppose that, for some countable set $J \subset I, \mu_{i}$ is a probability measure for any $i \in I \backslash J$ and $\prod_{j \in J} \mu_{j}\left(S_{j}\right) \in \mathbf{R}^{+}$. Then, over the measurable space $\left(\prod_{i \in I} S_{i}, \bigotimes_{i \in I} \Sigma_{i}\right)$, there is a unique finite measure μ, indicated by $\bigotimes_{i \in I} \mu_{i}$, such that, for any $H \subset I$ such that $|H|<+\infty$ and for any $A=\prod_{h \in H} A_{h} \times \prod_{i \in I \backslash H} S_{i} \in \bigotimes_{i \in I} \Sigma_{i}$, where $A_{h} \in \Sigma_{h} \forall h \in H$, we have $\mu(A)=$ $\prod_{h \in H} \mu_{h}\left(A_{h}\right) \prod_{j \in J \backslash H} \mu_{j}\left(S_{j}\right)$. In particular, if I is countable, then $\mu(A)=\prod_{i \in I} \mu_{i}\left(A_{i}\right)$ for any $A=\prod_{i \in I} A_{i} \in \bigotimes_{i \in I} \Sigma_{i}$.

Proof. See the proof of Corollary 4 in Asci [4].

Henceforth, we will suppose that I, J are sets such that $\emptyset \neq I, J \subset \mathbf{N}^{*}$; moreover, for any $k \in \mathbf{N}^{*}$, we will indicate by I_{k} the set of the first k elements of I (with the natural order and with the convention $I_{k}=I$ if $|I|<k$); furthermore, for any $i \in I$, set $|i|_{I}=|I \cap(0, i]|$. Analogously, define J_{k} and $|j|_{J}$, for any $k \in \mathbf{N}^{*}$ and for any $j \in J$.

The following theorem generalizes a result proved in Rao [14] (Theorem 3, page 349), and can be considered a generalization of the Tonelli's theorem, in the integration of a function over an infinite-dimensional measure space. The integral of the function is the limit of a sequence of integrals of the same function, with respect to a finite subset of variables.

Theorem 2.2. Let $\left(S_{i}, \Sigma_{i}, \mu_{i}\right)$ be a measure space such that μ_{i} is finite, for any $i \in I$, and $\prod_{i \in I} \mu_{i}\left(S_{i}\right) \in[0,+\infty)$; moreover, let $(S, \Sigma, \mu)=\left(\prod_{i \in I} S_{i}, \bigotimes_{i \in I} \Sigma_{i}, \bigotimes_{i \in I} \mu_{i}\right)$, let $f \in L^{1}(S, \Sigma, \mu)$ and, for any $H \subset I$ such that $0<|H|<+\infty$, let the measurable function $f_{H^{c}}:(S, \Sigma) \longrightarrow(\mathbf{R}, \mathcal{B})$ defined by

$$
f_{H^{c}}(x)=\int_{S_{H}} f\left(\cdot, x_{H^{c}}\right) d \mu_{H}
$$

where $\left(S_{H}, \Sigma_{H}, \mu_{H}\right)$ is the measure space $\left(\prod_{i \in H} S_{i}, \bigotimes_{i \in H} \Sigma_{i}, \bigotimes_{i \in H} \mu_{i}\right)$. Then, there exists $D \in \Sigma$ such that $\mu(D)=0$ and such that, for any $x \in D^{c}$, one has $\lim _{n \rightarrow+\infty} f_{I_{n}^{c}}(x)=\int_{S} f d \mu$.

Proof. See the proof of Corollary 3 in Asci [5].
Definition 2.3. For any set $I \neq \emptyset$, define the function $\|\cdot\|_{I}: \mathbf{R}^{I} \longrightarrow[0,+\infty]$ by

$$
\|x\|_{I}=\sup _{i \in I}\left|x_{i}\right|, \forall x=\left(x_{i}: i \in I\right) \in \mathbf{R}^{I},
$$

and define the vector space

$$
E_{I}=\left\{x \in \mathbf{R}^{I}:\|x\|_{I}<+\infty\right\}
$$

Moreover, indicate by \mathcal{B}_{I} the σ-algebra $\mathcal{B}^{(I)}\left(E_{I}\right)$, by τ_{I} the topology $\tau^{(I)}\left(E_{I}\right)$, and by $\tau_{\|\cdot\|_{I}}$ the topology induced on E_{I} by the distance $d_{I}: E_{I} \times E_{I} \longrightarrow[0,+\infty)$ defined by $d_{I}(x, y)=\|x-y\|_{I}$, for any $x, y \in E_{I}$; furthermore, for any set
$A \subset E_{I}$, indicate by $\tau_{\|\cdot\|_{I}}(A)$ the topology induced on A by $\tau_{\|\cdot\|_{I}}$. Finally, for any $x_{0} \in E_{I}$ and for any $\delta \in \mathbf{R}^{+}$, indicate by $B_{I}\left(x_{0}, \delta\right)$ the set $\left\{x \in E_{I}\right.$: $\left.\left\|x-x_{0}\right\|_{I}<\delta\right\}$.

Proposition 2.4. Let H, I be sets such that $\emptyset \neq H \subsetneq I$, and let $A \subset E_{H}$, $B \subset E_{I \backslash H} ;$ then:

1. E_{I} is a Banach space, with the norm $\|\cdot\|_{I}$.
2. $\tau_{\|\cdot\|_{I}}(A \times B)$ is the product of the topologies $\tau_{\|\cdot\|_{H}}(A)$ and $\tau_{\|\cdot\|_{I \backslash H}}(B)$.
3. Let $A=\left(\prod_{i \in I} A_{i}\right) \cap E_{I} \neq \emptyset$, where $A_{i} \in \tau$, for any $i \in I$; then, one has $A \in \tau_{\|\cdot\|_{I}}$ if and only if there exists $h \in I$ such that $A_{i}=\mathbf{R}$, for any $i \in I \backslash I_{h}$.
4. One has $\tau_{I} \subset \tau_{\|\cdot\|_{I}}$; moreover, if $|I|=+\infty$, then $\tau_{I} \subsetneq \tau_{\|\cdot\|_{I}}$.

Proof. 1. See, for example, the proof of Remark 2 in [4].
2. Indicate by $\tau_{\|\cdot\|_{H}}(A) \otimes \tau_{\|\cdot\|_{I \backslash H}}(B)$ the product of the topologies $\tau_{\|\cdot\|_{H}}(A)$ and $\tau_{\|\cdot\|_{I \backslash H}}(B) ; \forall D \in \tau_{\|\cdot\|_{H}}(A)$, let $D^{\prime} \in \tau_{\|\cdot\|_{H}}$ such that $D=D^{\prime} \cap A$; then, $\forall x=\left(x_{H}, x_{I \backslash H}\right) \in D^{\prime} \times E_{I \backslash H}$, there exists $\delta \in \mathbf{R}^{+}$such that $x_{H} \in B_{H}\left(x_{H}, \delta\right) \subset D^{\prime}, x_{I \backslash H} \in B_{I \backslash H}\left(x_{I \backslash H}, \delta\right) \subset E_{I \backslash H}$, and so $x \in$ $B_{I}(x, \delta) \subset D^{\prime} \times E_{I \backslash H}$; then, we have $D^{\prime} \times E_{I \backslash H} \in \tau_{\|\cdot\|_{I}}$, from which $D \times$ $B=\left(D^{\prime} \times E_{I \backslash H}\right) \cap(A \times B) \in \tau_{\|\cdot\|_{I}}(A \times B)$; analogously, $\forall E \in \tau_{\|\cdot\|_{I \backslash H}}(B)$, we have $A \times E \in \tau_{\|\cdot\|_{I}}(A \times B)$, and so $D \times E=(D \times B) \cap(A \times E) \in$ $\tau_{\|\cdot\|_{I}}(A \times B)$; then, we obtain $\tau_{\|\cdot\|_{H}}(A) \otimes \tau_{\|\cdot\|_{I \backslash H}}(B) \subset \tau_{\|\cdot\|_{I}}(A \times B)$.
Conversely, $\forall x=\left(x_{H}, x_{I \backslash H}\right) \in E_{I}, \forall \delta \in \mathbf{R}^{+}$, we have $B_{I}(x, \delta) \cap(A \times$ $B)=\left(B_{H}\left(x_{H}, \delta\right) \cap A\right) \times\left(B_{I \backslash H}\left(x_{I \backslash H}, \delta\right) \cap B\right) \in \tau_{\|\cdot\|_{H}}(A) \otimes \tau_{\|\cdot\|_{I \backslash H}}(B)$, from which $\tau_{\|\cdot\|_{I}}(A \times B) \subset \tau_{\|\cdot\|_{H}}(A) \otimes \tau_{\|\cdot\|_{I \backslash H}}(B)$.
3. We can suppose $|I|=+\infty$. If there exists $h \in I$ such that $A_{i}=\mathbf{R}$, for any $i \in I \backslash I_{h}$, then $A=\left(\prod_{i \in I_{h}} A_{i}\right) \times E_{I \backslash I_{h}}$; thus, since $\prod_{i \in I_{h}} A_{i} \in \tau_{\|\cdot\|_{I_{h}}}$, $E_{I \backslash I_{h}} \in \tau_{\|\cdot\|_{I \backslash I_{h}}}$, from point 2 we have $A \in \tau_{\|\cdot\|_{I}}$.
Conversely, suppose that there exists $J \subset I$ such that $|J|=+\infty$ and such that $A_{j} \neq \mathbf{R}, \forall j \in J$; then, since $A \neq \emptyset$, there exists $x \in A$ such that $d_{I}\left(x, E_{I} \backslash A\right)=0$, and so $A \notin \tau_{\|\cdot\|_{I}}$.
4. Let

$$
\begin{aligned}
\mathcal{E}=\left\{A=\left(\prod_{i \in I} A_{i}\right) \cap E_{I}: A_{i}\right. & \in \tau, \forall i \in I \\
& \left.A_{i}=\mathbf{R}, \forall i \in I \backslash I_{h}, \text { for some } h \in I\right\} ;
\end{aligned}
$$

as we observed in the proof of point 3 , we have $\mathcal{E} \subset \tau_{\|\cdot\|_{I}}$; moreover, by definition of τ_{I}, we have $\tau_{I}=\tau(\mathcal{E}) \subset \tau_{\|\cdot\|_{I}}$; furthermore, if $|I|=+\infty$, $\forall x \in E_{I}, \forall \delta \in \mathbf{R}^{+}$, we have $B_{I}(x, \delta) \in \tau_{\|\cdot\|_{I}}, B_{I}(x, \delta) \notin \tau_{I}$, and so $\tau_{I} \subsetneq \tau_{\|\cdot\|_{I}}$.

Proposition 2.5. Let H, I be sets such that $\emptyset \neq H \subset I$, and let $\bar{\pi}_{I, H}: E_{I} \longrightarrow$ E_{H} be the function given by $\bar{\pi}_{I, H}(x)=\pi_{I, H}(x)$, for any $x \in E_{I}$; then:

1. $\bar{\pi}_{I, H}:\left(E_{I}, \tau_{\|\cdot\|_{I}}\right) \longrightarrow\left(E_{H}, \tau_{\|\cdot\|_{H}}\right)$ is continuous and open.
2. $\bar{\pi}_{I, H}:\left(E_{I}, \tau_{I}\right) \longrightarrow\left(E_{H}, \tau_{H}\right)$ is continuous and open.
3. $\bar{\pi}_{I, H}:\left(E_{I}, \mathcal{B}_{I}\right) \longrightarrow\left(E_{H}, \mathcal{B}_{H}\right)$ is measurable.

Proof. Points 1 and 2 are proved, for example, in Proposition 6 in [5]; moreover, the proof of point 3 is analogous to the proof of the continuity of the function $\bar{\pi}_{I, H}:\left(E_{I}, \tau_{I}\right) \longrightarrow\left(E_{H}, \tau_{H}\right)$.

Remark 2.6: Let H, I, J be sets such that $\emptyset \neq H \varsubsetneqq J$, let $U=U_{1} \times U_{2} \in \tau_{\|\cdot\|_{J}}$, where $U_{1} \in \tau_{\|\cdot\|_{H}}, U_{2} \in \tau_{\|\cdot\|_{J \backslash H}}$, let $\psi: U_{1} \subset E_{H} \longrightarrow E_{I}$ be a function and let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be the function given by $\varphi(x)=\psi\left(x_{H}\right)$, for any $x=\left(x_{H}, x_{J \backslash H}\right) \in U$; then:

1. ψ is $\left(\tau_{\|\cdot\|_{H}}\left(U_{1}\right), \tau_{\|\cdot\|_{I}}\right)$-continuous if and only if φ is $\left(\tau_{\|\cdot\|_{J}}(U), \tau_{\|\cdot\|_{I}}\right)$ continuous.
2. ψ is $\left(\tau^{(H)}\left(U_{1}\right), \tau_{I}\right)$-continuous if and only if φ is $\left(\tau^{(J)}(U), \tau_{I}\right)$-continuous.
3. If ψ is $\left(\mathcal{B}^{(H)}\left(U_{1}\right), \mathcal{B}_{I}\right)$-measurable, then φ is $\left(\mathcal{B}^{(J)}(U), \mathcal{B}_{I}\right)$-measurable.

Proof. $\forall A \subset E_{I}$, we have

$$
\varphi^{-1}(A)=\left(\bar{\pi}_{J, H}^{-1} \circ \psi^{-1}\right)(A), \psi^{-1}(A)=\left(\bar{\pi}_{J, H} \circ \varphi^{-1}\right)(A) ;
$$

then, from Proposition 2.5, we obtain the statement.

Definition 2.7. Let $U \in \tau_{\|\cdot\|_{J}}$, let $x_{0} \in U$, let $l \in E_{I}$ and let $\varphi: U \subset E_{J} \longrightarrow$ E_{I} be a function; we say that $\lim _{x \rightarrow x_{0}} \varphi(x)=l$ if, for any $\varepsilon \in \mathbf{R}^{+}$, there exists a neighbourhood $N \in \tau_{\|\cdot\|_{J}}(U)$ of x_{0} such that, for any $x \in N \backslash\left\{x_{0}\right\}$, one has $\|\varphi(x)-l\|_{I}<\varepsilon$.

Definition 2.8. Let $U \in \tau_{\|\cdot\|_{J}}$ and let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a function; we say that φ is continuous in $x_{0} \in U$ if $\lim _{x \rightarrow x_{0}} \varphi(x)=\varphi\left(x_{0}\right)$, and we say that φ is continuous in U if, for any $x \in U, \varphi$ is continuous in x.

Remark 2.9: Let $U \in \tau_{\|\cdot\|_{J}}$, let $V \in \tau_{\|\cdot\|_{I}}$ and let $\varphi: U \subset E_{J} \longrightarrow V \subset E_{I}$ be a function; then, $\varphi:\left(U, \tau_{\|\cdot\|_{J}}(U)\right) \longrightarrow\left(V, \tau_{\|\cdot\|_{I}}(V)\right)$ is continuous if and only if φ is continuous in U.

Definition 2.10. Let $U \in \tau_{\|\cdot\|_{J}}$, let $V \in \tau_{\|\cdot\|_{I}}$ and let $\varphi: U \subset E_{J} \longrightarrow V \subset$ E_{I} be a function; we say that φ is a homeomorphism if φ is bijective and the functions $\varphi:\left(U, \tau_{\|\cdot\|_{J}}(U)\right) \longrightarrow\left(V, \tau_{\|\cdot\|_{I}}(V)\right)$ and $\varphi^{-1}:\left(V, \tau_{\|\cdot\|_{I}}(V)\right) \longrightarrow$ $\left(U, \tau_{\|\cdot\|_{J}}(U)\right)$ are continuous.

Definition 2.11. Let $U \in \tau_{\|\cdot\|_{J}}$, let $A \subset U$, let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a functions and let $\left\{\varphi_{n}\right\}_{n \in \mathbf{N}}$ be a sequence of functions such that $\varphi_{n}: U \longrightarrow E_{I}$, for any $n \in \mathbf{N}$; we say that:

1. The sequence $\left\{\varphi_{n}\right\}_{n \in \mathbf{N}}$ converges to φ over A if, for any $\varepsilon \in \mathbf{R}^{+}$and for any $x \in A$, there exists $n_{0} \in \mathbf{N}$ such that, for any $n \in \mathbf{N}, n \geq n_{0}$, one has $\left\|\varphi_{n}(x)-\varphi(x)\right\|_{I}<\varepsilon$.
2. The sequence $\left\{\varphi_{n}\right\}_{n \in \mathbf{N}}$ converges uniformly to φ over A if, for any $\varepsilon \in$ \mathbf{R}^{+}, there exists $n_{0} \in \mathbf{N}$ such that, for any $n \in \mathbf{N}, n \geq n_{0}$, and for any $x \in A$, one has $\left\|\varphi_{n}(x)-\varphi(x)\right\|_{I}<\varepsilon$.

The following concept generalizes Definition 6 in [4] (see also the theory in the Lang's book [12] and that in the Weidmann's book [20]).

Definition 2.12. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}$ be a real matrix $I \times J$ (eventually infinite); then, define the linear function $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow \mathbf{R}^{I}$, and write $x \longrightarrow A x$, in the following manner:

$$
\begin{equation*}
(A x)_{i}=\sum_{j \in J} a_{i j} x_{j}, \forall x \in E_{J}, \forall i \in I \tag{1}
\end{equation*}
$$

on condition that, for any $i \in I$, the sum in (1) converges to a real number. In
particular, if $|I|=|J|$, indicate by $\mathbf{I}_{I, J}=\left(\bar{\delta}_{i j}\right)_{i \in I, j \in J}$ the real matrix defined by

$$
\bar{\delta}_{i j}= \begin{cases}1 & \text { if }|i|_{I}=|j|_{J} \\ 0 & \text { otherwise }\end{cases}
$$

and call $\bar{\delta}_{i j}$ generalized Kronecker symbol. Moreover, indicate by $A^{(L, N)}$ the real matrix $\left(a_{i j}\right)_{i \in L, j \in N}$, for any $\emptyset \neq L \subset I$, for any $\emptyset \neq N \subset J$, and indicate $b y{ }^{t} A=\left(b_{j i}\right)_{j \in J, i \in I}: E_{I} \longrightarrow \mathbf{R}^{J}$ the linear function defined by $b_{j i}=a_{i j}$, for any $j \in J$ and for any $i \in I$. Furthermore, if $I=J$ and $A={ }^{t} A$, we say that A is a symmetric function. Finally, if $B=\left(b_{j k}\right)_{j \in J, k \in K}$ is a real matrix $J \times K$, define the $I \times K$ real matrix $A B=\left((A B)_{i k}\right)_{i \in I, k \in K}$ by

$$
\begin{equation*}
(A B)_{i k}=\sum_{j \in J} a_{i j} b_{j k} \tag{2}
\end{equation*}
$$

on condition that, for any $i \in I$ and for any $k \in K$, the sum in (2) converges to a real number.

Proposition 2.13. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}$ be a real matrix $I \times J$; then:

1. The linear function $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow \mathbf{R}^{I}$ given by (1) is defined if and only if, for any $i \in I, \sum_{j \in J}\left|a_{i j}\right|<+\infty$.
2. One has $\sup _{i \in I} \sum_{j \in J}\left|a_{i j}\right|<+\infty$ if and only if $A\left(E_{J}\right) \subset E_{I}$ and A is continuous; moreover, if $A\left(E_{J}\right) \subset E_{I}$, then $\|A\|=\sup _{i \in I} \sum_{j \in J}\left|a_{i j}\right|$.
3. If $B=\left(b_{j k}\right)_{j \in J, k \in K}: E_{K} \longrightarrow E_{J}$ is a linear function, then the linear function $A \circ B: E_{K} \longrightarrow \mathbf{R}^{I}$ is defined by the real matrix $A B$.
4. If $A\left(E_{J}\right) \subset E_{I}$, then, for any $\emptyset \neq L \subset I$, for any $\emptyset \neq N \subset J$, one has $A^{(L, N)}\left(E_{N}\right) \subset E_{L}$.

Proof. The proofs of points 1 and 2 are analogous to the proof of Proposition 7 in [4]. Moreover, the proof of point 3 is analogous to that one true in the particular case $|I|,|J|,|K|<+\infty$ (see, e.g., the Lang's book [12]). Finally, suppose that $A\left(E_{J}\right) \subset E_{I} ;$ let $\emptyset \neq L \subset I$, let $\emptyset \neq N \subset J$, let $x=\left(x_{n}: n \in N\right) \in$ E_{N} and let $y=\left(y_{j}: j \in J\right) \in E_{J}$ such that $y_{j}=x_{j}, \forall j \in N$, and $y_{j}=0$,
$\forall j \in J \backslash N$; we have

$$
\begin{aligned}
\sup _{i \in L}\left|\left(A^{(L, N)} x\right)_{i}\right|=\sup _{i \in L}\left|\sum_{j \in N} a_{i j}\left(x_{j}\right)\right|=\sup _{i \in L}\left|\sum_{j \in J} a_{i j}\left(y_{j}\right)\right| \\
\leq \sup _{i \in I}\left|\sum_{j \in J} a_{i j}\left(y_{j}\right)\right|=\sup _{i \in I}\left|(A y)_{i}\right|<+\infty \quad \Rightarrow \quad A^{(L, N)} x \in E_{L}
\end{aligned}
$$

then, point 4 follows.
The following definitions (from Definition 2.14 to Definition 2.18) can be found in [5] and generalize the differentiation theory in the finite case (see, e.g., the Lang's book [11]).

Definition 2.14. Let $U \in \tau_{\|\cdot\|_{J}}$; a function $\varphi: U \subset E_{J} \longrightarrow E_{I}$ is called differentiable in $x_{0} \in U$ if there exists a linear and continuous function A : $E_{J} \longrightarrow E_{I}$ defined by a real matrix $A=\left(a_{i j}\right)_{i \in I, j \in J}$, and one has

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\left\|\varphi\left(x_{0}+h\right)-\varphi\left(x_{0}\right)-A h\right\|_{I}}{\|h\|_{J}}=0 . \tag{3}
\end{equation*}
$$

If φ is differentiable in x_{0} for any $x_{0} \in U, \varphi$ is called differentiable in U. The function A is called differential of the function φ in x_{0}, and it is indicated by the symbol $d \varphi\left(x_{0}\right)$.

Definition 2.15. Let $U \in \tau_{\|\cdot\|_{J}}$, let $v \in E_{J}$ such that $\|v\|_{J}=1$ and let a function $\varphi: U \subset E_{J} \longrightarrow \mathbf{R}^{I}$; for any $i \in I$, the function φ_{i} is called differentiable in $x_{0} \in U$ in the direction v if there exists the limit

$$
\lim _{t \rightarrow 0} \frac{\varphi_{i}\left(x_{0}+t v\right)-\varphi_{i}\left(x_{0}\right)}{t} .
$$

This limit is indicated by $\frac{\partial \varphi_{i}}{\partial v}\left(x_{0}\right)$, and it is called derivative of φ_{i} in x_{0} in the direction v. If, for some $j \in J$, one has $v=e_{j}$, where $\left(e_{j}\right)_{k}=\delta_{j k}$, for any $k \in$ J, indicate $\frac{\partial \varphi_{i}}{\partial v}\left(x_{0}\right)$ by $\frac{\partial \varphi_{i}}{\partial x_{j}}\left(x_{0}\right)$, and call it partial derivative of φ_{i} in x_{0}, with respect to x_{j}. Moreover, if there exists the linear function defined by the matrix $J_{\varphi}\left(x_{0}\right)=\left(\left(J_{\varphi}\left(x_{0}\right)\right)_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow \mathbf{R}^{I}$, where $\left(J_{\varphi}\left(x_{0}\right)\right)_{i j}=\frac{\partial \varphi_{i}}{\partial x_{j}}\left(x_{0}\right)$, for any $i \in I, j \in J$, then $J_{\varphi}\left(x_{0}\right)$ is called Jacobian matrix of the function φ in x_{0}. Finally, if, for any $x \in U$, there exists $J_{\varphi}(x)$, then the function $x \longrightarrow J_{\varphi}(x)$ is indicated by J_{φ}.

Definition 2.16. Let $U \in \tau_{\|\cdot\|_{J}}$, let $i, j \in J$ and let $\varphi: U \subset E_{J} \longrightarrow \mathbf{R}$ be a function differentiable in $x_{0} \in U$ with respect to x_{i}, such that the function $\frac{\partial \varphi}{\partial x_{i}}$ is differentiable in x_{0} with respect to x_{j}. Indicate $\frac{\partial}{\partial x_{j}}\left(\frac{\partial \varphi}{\partial x_{i}}\right)\left(x_{0}\right)$ by $\frac{\partial^{2} \varphi}{\partial x_{j} \partial x_{i}}\left(x_{0}\right)$ and call it second partial derivative of φ in x_{0} with respect to x_{i} and x_{j}. If $i=j$, it is indicated by $\frac{\partial^{2} \varphi}{\partial x_{i}^{2}}\left(x_{0}\right)$. Analogously, for any $k \in \mathbf{N}^{*}$ and for any $j_{1}, \ldots, j_{k} \in J$, define $\frac{\partial^{k} \varphi}{\partial x_{j_{k}} \ldots \partial x_{j_{1}}}\left(x_{0}\right)$ and call it k-th partial derivative of φ in x_{0} with respect to $x_{j_{1}}, \ldots x_{j_{k}}$.

Definition 2.17. Let $U \in \tau_{\|\cdot\|_{J}}$ and let $k \in \mathbf{N}^{*} ;$ a function $\varphi: U \subset E_{J} \longrightarrow \mathbf{R}^{I}$ is called C^{k} in $x_{0} \in U$ if, in a neighbourhood $V \in \tau_{\|\cdot\|_{J}}(U)$ of x_{0}, for any $i \in I$ and for any $j_{1}, \ldots, j_{k} \in J$, there exists the function defined by $x \longrightarrow$ $\frac{\partial^{k} \varphi_{i}}{\partial x_{j_{k}} \ldots \partial x_{j_{1}}}(x)$, and this function is continuous in $x_{0} ; \varphi$ is called C^{k} in U if, for any $x_{0} \in U, \varphi$ is C^{k} in x_{0}.

Definition 2.18. Let $U \in \tau_{\|\cdot\|_{J}}$ and let $V \in \tau_{\|\cdot\|_{I}}$; a function $\varphi: U \subset E_{J} \longrightarrow$ $V \subset E_{I}$ is called diffeomorphism if φ is bijective and C^{1} in U, and the function $\varphi^{-1}: V \subset E_{I} \longrightarrow U \subset E_{J}$ is C^{1} in V.

3. Theory of the (m, σ)-general functions

The following definition introduces a class of functions, called m-general, that generalize the linear functions $\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ (see the next Remark 3.15). For example, the equation corresponding to a 1 -general function is obtained by formula 1 , by substituting the functions $x_{j} \longrightarrow a_{i j} x_{j}$ for some functions $\varphi_{i j}$.

Definition 3.1. Let $m \in \mathbf{N}^{*}$ and let $\emptyset \neq U=\left(U^{(m)} \times \prod_{j \in J \backslash J_{m}} A_{j}\right) \cap E_{J} \in$ $\tau_{\|\cdot\|_{J}}$, where $U^{(m)} \in \tau^{(m)}, A_{j} \in \tau$, for any $j \in J \backslash J_{m}$. A function $\varphi: U \subset$ $E_{J} \longrightarrow E_{I}$ is called m-general if, for any $i \in I$ and for any $j \in J \backslash J_{m}$, there exist some functions $\varphi_{i}^{(I, m)}: U^{(m)} \longrightarrow \mathbf{R}$ and $\varphi_{i j}: A_{j} \longrightarrow \mathbf{R}$ such that

$$
\varphi_{i}(x)=\varphi_{i}^{(I, m)}\left(x_{J_{m}}\right)+\sum_{j \in J \backslash J_{m}} \varphi_{i j}\left(x_{j}\right), \forall x \in U
$$

Moreover, for any $\emptyset \neq L \subset I$ and for any $J_{m} \subset N \subset J$, indicate by $\varphi^{(L, N)}$ the function $\varphi^{(L, N)}: \pi_{J, N}(U) \longrightarrow \mathbf{R}^{L}$ defined by

$$
\begin{equation*}
\varphi_{i}^{(L, N)}\left(x_{N}\right)=\varphi_{i}^{(I, m)}\left(x_{J_{m}}\right)+\sum_{j \in N \backslash J_{m}} \varphi_{i j}\left(x_{j}\right), \forall x_{N} \in \pi_{J, N}(U), \forall i \in L \tag{4}
\end{equation*}
$$

Furthermore, for any $\emptyset \neq L \subset I$ and for any $\emptyset \neq N \subset J \backslash J_{m}$, indicate by $\varphi^{(L, N)}$ the function $\varphi^{(L, N)}: \pi_{J, N}(U) \longrightarrow \mathbf{R}^{L}$ given by

$$
\begin{equation*}
\varphi_{i}^{(L, N)}\left(x_{N}\right)=\sum_{j \in N} \varphi_{i j}\left(x_{j}\right), \forall x_{N} \in \pi_{J, N}(U), \forall i \in L \tag{5}
\end{equation*}
$$

In particular, suppose that $m=1$; then, let $j \in J$ such that $\{j\}=J_{1}$ and indicate $U^{(1)}$ by A_{j} and $\varphi_{i}^{(I, 1)}$ by $\varphi_{i j}$, for any $i \in I$; moreover, for any $\emptyset \neq L \subset I$ and for any $\emptyset \neq N \subset J$, indicate by $\varphi^{(L, N)}$ the function $\varphi^{(L, N)}$: $\pi_{J, N}(U) \longrightarrow \mathbf{R}^{L}$ defined by formula (5).

Furthermore, for anyl, $n \in \mathbf{N}^{*}$, indicate $\varphi^{\left(I_{l}, N\right)}$ by $\varphi^{(l, N)}, \varphi^{\left(L, J_{n}\right)}$ by $\varphi^{(L, n)}$, and $\varphi^{\left(I_{l}, J_{n}\right)}$ by $\varphi^{(l, n)}$.

The following definition introduces a class of m-general functions $\varphi: U \subset$ $E_{J} \longrightarrow E_{I}$, called (m, σ)-general, that will be used to provide a change of variables' formula for the integration of the measurable real functions over $\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right)$. In fact, the properties of some (m, σ)-general functions generalize the analogous ones of the standard finite-dimensional diffeomorphisms. In particular, if A is a linear (m, σ)-general function, we can define the determinant of A (see the next Theorem 3.18 and Definition 3.19): a concept without sense, if A is an arbitrary matrix $I \times J$.

Definition 3.2. Let $m \in \mathbf{N}^{*}$, let $\emptyset \neq U=\left(U^{(m)} \times \prod_{j \in J \backslash J_{m}} A_{j}\right) \cap E_{J} \in \tau_{\|\cdot\|_{J}}$, where $U^{(m)} \in \tau^{(m)}, A_{j} \in \tau$, for any $j \in J \backslash J_{m}$, and let $\sigma: I \backslash I_{m} \longrightarrow J \backslash J_{m}$ be an increasing function; a function $\varphi: U \subset E_{J} \longrightarrow E_{I}$ m-general and such that $|J|=|I|$ is called (m, σ)-general if:

1. $\forall i \in I \backslash I_{m}, \forall j \in J \backslash\left(J_{m} \cup\{\sigma(i)\}\right), \forall t \in A_{j}$, one has $\varphi_{i j}(t)=0$; moreover

$$
\varphi^{\left(I \backslash I_{m}, J \backslash J_{m}\right)}\left(\pi_{J, J \backslash J_{m}}(U)\right) \subset E_{I \backslash I_{m}}
$$

2. $\forall i \in I \backslash I_{m}, \forall x \in U$, there exists $J_{\varphi_{i}}(x): E_{J} \longrightarrow \mathbf{R}$; moreover, $\forall x_{J_{m}} \in$ $U^{(m)}$, one has $\sum_{i \in I \backslash I_{m}}\left\|J_{\varphi_{i}^{(I, m)}}\left(x_{J_{m}}\right)\right\|<+\infty$.
3. $\forall i \in I \backslash I_{m}$, the function $\varphi_{i, \sigma(i)}: A_{\sigma(i)} \longrightarrow \mathbf{R}$ is constant or injective; moreover, $\forall x_{\sigma\left(I \backslash I_{m}\right)} \in \prod_{j \in \sigma\left(I \backslash I_{m}\right)} A_{j}$, one has $\sup _{i \in I \backslash I_{m}}\left|\varphi_{i, \sigma(i)}^{\prime}\left(x_{\sigma(i)}\right)\right|<+\infty$ and $\inf _{i \in \mathcal{I}_{\varphi}}\left|\varphi_{i, \sigma(i)}^{\prime}\left(x_{\sigma(i)}\right)\right|>0$, where $\mathcal{I}_{\varphi}=\left\{i \in I \backslash I_{m}: \varphi_{i, \sigma(i)}\right.$ is injective $\}$.
4. If, for some $h \in \mathbf{N}, h \geq m$, one has $|\sigma(i)|_{J \backslash J_{m}}=|i|_{I \backslash I_{m}}, \forall i \in I \backslash I_{h}$, then, $\forall x_{\sigma\left(I \backslash I_{m}\right)} \in \prod_{j \in \sigma\left(I \backslash I_{m}\right)} A_{j}$, there exists $\prod_{i \in \mathcal{I}_{\varphi}} \varphi_{i, \sigma(i)}^{\prime}\left(x_{\sigma(i)}\right) \in \mathbf{R}^{*}$.

Moreover, set

$$
\mathcal{A}=\mathcal{A}(\varphi)=\left\{h \in \mathbf{N}, h \geq m:|\sigma(i)|_{J \backslash J_{m}}=|i|_{I \backslash I_{m}}, \forall i \in I \backslash I_{h}\right\} .
$$

If the sequence $\left\{J_{\varphi_{i}^{(I, m)}}\left(x_{J_{m}}\right)\right\}_{i \in I \backslash I_{m}}$ converges uniformly on $U^{(m)}$ to the matrix ($0 \ldots 0$) and there exists $a \in \mathbf{R}$ such that, for any $\varepsilon>0$, there exists $i_{0} \in \mathbf{N}, i_{0} \geq m$, such that, for any $i \in \mathcal{I}_{\varphi} \cap\left(I \backslash I_{i_{0}}\right)$ and for any $t \in A_{\sigma(i)}$, one has $\left|\varphi_{i, \sigma(i)}^{\prime}(t)-a\right|<\varepsilon$, then φ is called strongly (m, σ)-general.

Furthermore, for any $I_{m} \subset L \subset I$ and for any $J_{m} \subset N \subset J$, define the function $\bar{\varphi}^{(L, N)}: U \subset E_{J} \longrightarrow \mathbf{R}^{I}$ in the following manner:

$$
\bar{\varphi}_{i}^{(L, N)}(x)=\left\{\begin{array}{ll}
\varphi_{i}^{(L, N)}\left(x_{N}\right) & \forall i \in I_{m}, \forall x \in U \\
\varphi_{i}(x) & \forall i \in L \backslash I_{m}, \forall x \in U \\
\varphi_{i, \sigma(i)}\left(x_{\sigma(i)}\right) & \forall i \in I \backslash L, \forall x \in U
\end{array} .\right.
$$

Finally, for anyl, $n \in \mathbf{N}, l, n \geq m$, indicate $\bar{\varphi}^{\left(I_{l}, N\right)}$ by $\bar{\varphi}^{(l, N)}$, $\bar{\varphi}^{\left(L, J_{n}\right)}$ by $\bar{\varphi}^{(L, n)}, \bar{\varphi}^{\left(I_{l}, J_{n}\right)}$ by $\bar{\varphi}^{(l, n)}$, and $\bar{\varphi}^{(m, m)}$ by $\bar{\varphi}$.

Definition 3.3. A function $\varphi: U \subset E_{J} \longrightarrow E_{I}(m, \sigma)$-general is called (m, σ) standard (or (m, σ) of the first type) if, for any $i \in I \backslash I_{m}$ and for any $x_{J_{m}} \in$ $U^{(m)}$, one has $\varphi_{i}^{(I, m)}\left(x_{J_{m}}\right)=0$. Moreover, a function $\varphi: U \subset E_{J} \longrightarrow E_{I}$ (m, σ)-standard and strongly (m, σ)-general is called strongly (m, σ)-standard (see also Definition 28 in [5]).

REmARK 3.4: Let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a (m, σ)-general function; then:

1. σ is injective if and only if, for any $i_{1}, i_{2} \in I \backslash I_{m}$ such that $i_{1}<i_{2}$, one has $\sigma\left(i_{1}\right)<\sigma\left(i_{2}\right)$.
2. σ is bijective if and only if, for any $i \in I \backslash I_{m}$, one has $|\sigma(i)|_{J \backslash J_{m}}=|i|_{I \backslash I_{m}}$.
3. There exists $m_{0} \in \mathbf{N}, m_{0} \geq m$, such that $A_{j}=\mathbf{R}$, for any $j \in J \backslash J_{m_{0}}$.

Proof. The statement follows from Definition 3.2 and point 3 of Proposition 2.4.

Proposition 3.5. Let $I_{m} \subset L \subset I$, let $J_{m} \subset N \subset J$ and let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a (m, σ)-general function; then, one has $\bar{\varphi}^{(L, N)}(U) \subset E_{I}$, and the function $\bar{\varphi}^{(L, N)}: U \subset E_{J} \longrightarrow E_{I}$ is (m, σ)-general. Moreover, suppose that, for any $j \in J \backslash J_{m}$, for any $t \in A_{j}$, one has $\sum_{i \in I \backslash I_{m}}\left|\varphi_{i, j}^{\prime}(t)\right|<+\infty$; then, for any $n \in \mathbf{N}$, $n \geq m, \bar{\varphi}^{(L, N)}$ is (n, τ)-general, where the function $\tau: I \backslash I_{n} \longrightarrow J \backslash J_{n}$ is defined by

$$
\tau(i)=\left\{\begin{array}{ll}
\sigma(i) & \text { if } \sigma(i) \in J \backslash J_{n} \tag{6}\\
\min \left(J \backslash J_{n}\right) & \text { if } \sigma(i) \notin J \backslash J_{n}
\end{array}, \forall i \in I \backslash I_{n} .\right.
$$

Proof. Since $I_{m} \subset L \subset I$ and $J_{m} \subset N \subset J, \forall i \in I \backslash I_{m}, \forall x \in U$, we have

$$
\left|\bar{\varphi}_{i}^{(L, N)}(x)\right| \leq\left|\varphi_{i}^{(I, m)}\left(x_{J_{m}}\right)\right|+\left|\varphi_{i, \sigma(i)}\left(x_{\sigma(i)}\right)\right|
$$

and so $\sup _{i \in I \backslash I_{m}}\left|\bar{\varphi}_{i}^{(L, N)}(x)\right|<+\infty$; then, $\bar{\varphi}^{(L, N)}(U) \subset E_{I}$. Moreover, from the definition of $\bar{\varphi}^{(L, N)}$, the function $\bar{\varphi}^{(L, N)}: U \subset E_{J} \longrightarrow E_{I}$ is (m, σ) general. Furthermore, suppose that, for any $j \in J \backslash J_{m}$, for any $t \in A_{j}$, one has $\sum_{i \in I \backslash I_{m}}\left|\varphi_{i, j}^{\prime}(t)\right|<+\infty ; \forall n \in \mathbf{N}, n \geq m$, and $\forall x_{J_{n}} \in \pi_{J, J_{n}}(U)$, we have

$$
\begin{aligned}
\sum_{i \in I \backslash I_{n}}\left\|J_{\left(\bar{\varphi}^{(L, N)}\right)_{i}^{\left(I, J_{n}\right)}}\left(x_{J_{n}}\right)\right\| & \leq \sum_{i \in I \backslash I_{n}}\left\|J_{\varphi_{i}^{\left(I, J_{n}\right)}}\left(x_{J_{n}}\right)\right\| \\
& =\sum_{i \in I \backslash I_{n}}\left\|J_{\varphi_{i}^{(I, m)}}\left(x_{J_{m}}\right)\right\|+\sum_{j \in J_{n} \backslash J_{m}}\left(\sum_{i \in I \backslash I_{n}}\left|\varphi_{i, j}^{\prime}\left(x_{j}\right)\right|\right)<+\infty
\end{aligned}
$$

then, $\bar{\varphi}^{(L, N)}$ is (n, τ)-general, where the function $\tau: I \backslash I_{n} \longrightarrow J \backslash J_{n}$ is defined by formula (6).

Proposition 3.6. Let $\emptyset \neq L \subset I$, let $\emptyset \neq N \subset J$ such that $J_{m} \subset N$ or $N \subset J \backslash J_{m}$, and let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a (m, σ)-general function; then:

1. For any $x \in U$, there exists the function $J_{\varphi^{(L, N)}}(x): E_{N} \longrightarrow \mathbf{R}^{L}$ if and only if, for any $i \in L \cap I_{m}$ and for any $j \in N$, there exists the partial derivative $\frac{\partial \varphi_{i}}{\partial x_{j}}(x)$, and for any $i \in L \cap I_{m}$ one has $\sum_{j \in N}\left|\frac{\partial \varphi_{i}}{\partial x_{j}}(x)\right|<+\infty$; moreover, in this case one has $J_{\varphi^{(L, N)}}(x)\left(E_{N}\right) \subset E_{L}$, and $J_{\varphi^{(L, N)}}(x)$ is continuous.
2. For any $x \in U$, there exists the function $J_{\varphi_{\left(I \backslash I_{m}, J\right)}}(x): E_{J} \longrightarrow E_{I \backslash I_{m}}$, and it is continuous.
3. Suppose that $I_{m} \subset L$ and $J_{m} \subset N$, and let $x \in U$; then, there exists the function $J_{\bar{\varphi}^{(L, N)}}(x): E_{J} \longrightarrow \mathbf{R}^{I}$ if and only if, for any $i \in I_{m}$ and for any $j \in N$, there exists the partial derivative $\frac{\partial \varphi_{i}}{\partial x_{j}}(x)$, and for any $i \in I_{m}$ one has $\sum_{j \in N}\left|\frac{\partial \varphi_{i}}{\partial x_{j}}(x)\right|<+\infty$; moreover, in this case one has $J_{\bar{\varphi}(L, N)}(x)\left(E_{J}\right) \subset E_{I}$, and $J_{\bar{\varphi}(L, N)}(x)$ is continuous and (m, σ)-general.

Proof. 1. From Definition 3.2, $\forall i \in L \cap\left(I \backslash I_{m}\right)$ and $\forall j \in N$, there exists the partial derivative $\frac{\partial \varphi_{i}^{(L, N)}}{\partial x_{j}}(x)=\frac{\partial \varphi_{i}}{\partial x_{j}}(x)$, and one has

$$
\begin{align*}
\sum_{j \in N}\left|\frac{\partial \varphi_{i}}{\partial x_{j}}(x)\right| \leq\left\|J_{\varphi_{i}^{(I, m)}}\left(x_{J_{m}}\right)\right\|+\left|\varphi_{i, \sigma(i)}^{\prime}\left(x_{\sigma(i)}\right)\right| & <+\infty \\
\forall & \forall i \in L \cap\left(I \backslash I_{m}\right) ; \tag{7}
\end{align*}
$$

then, from Proposition 2.13, there exists the function $J_{\varphi^{(L, N)}}(x): E_{N} \longrightarrow$ \mathbf{R}^{L} if and only if, $\forall i \in L \cap I_{m}$ and $\forall j \in N$,there exists the partial derivative $\frac{\partial \varphi_{i}^{(L, N)}}{\partial x_{j}}(x)=\frac{\partial \varphi_{i}}{\partial x_{j}}(x)$, and $\forall i \in L \cap I_{m}$ one has $\sum_{j \in N}\left|\frac{\partial \varphi_{i}}{\partial x_{j}}(x)\right|<$ $+\infty$.
Furthermore, since $\sum_{i \in I \backslash I_{m}}\left\|J_{\varphi_{i}^{(I, m)}}\left(x_{J_{m}}\right)\right\|<+\infty$, we have

$$
\sup _{i \in L \cap\left(I \backslash I_{m}\right)}\left\|J_{\varphi_{i}^{(I, m)}}\left(x_{J_{m}}\right)\right\|<+\infty
$$

and so formula (7) implies

$$
\begin{aligned}
& \sup _{i \in L \cap\left(I \backslash I_{m}\right)} \sum_{j \in N}\left|\frac{\partial \varphi_{i}}{\partial x_{j}}(x)\right| \\
& \quad \leq \sup _{i \in L \cap\left(I \backslash I_{m}\right)}\left\|J_{\varphi_{i}^{(I, m)}}\left(x_{J_{m}}\right)\right\|+\sup _{i \in L \cap\left(I \backslash I_{m}\right)}\left|\varphi_{i, \sigma(i)}^{\prime}\left(x_{\sigma(i)}\right)\right|<+\infty ;
\end{aligned}
$$

thus, if there exists the function $J_{\varphi^{(L, N)}}(x)$, we obtain $\sup _{i \in L} \sum_{j \in N}\left|\frac{\partial \varphi_{i}}{\partial x_{j}}(x)\right|<$ $+\infty$; then, from Proposition 2.13, we have $J_{\varphi(L, N)}(x)\left(E_{N}\right) \subset E_{L}$, and $J_{\varphi(L, N)}(x)$ is continuous.
2. The statement follows from point 1 .
3. By Definition 3.2, $\forall i \in I \backslash I_{m}$ and $\forall j \in J$, there exists the partial derivative $\frac{\partial \bar{\varphi}_{i}^{(L, N)}}{\partial x_{j}}(x)$, and one has

$$
\begin{align*}
& \sum_{j \in J}\left|\frac{\partial \bar{\varphi}_{i}^{(L, N)}}{\partial x_{j}}(x)\right| \leq \sum_{j \in J}\left|\frac{\partial \varphi_{i}}{\partial x_{j}}(x)\right| \\
& \leq\left\|J_{\varphi_{i}^{(I, m)}}\left(x_{J_{m}}\right)\right\|+\left|\varphi_{i, \sigma(i)}^{\prime}\left(x_{\sigma(i)}\right)\right|<+\infty, \forall i \in I \backslash I_{m} \tag{8}
\end{align*}
$$

then, from Proposition 2.13, there exists the function $J_{\bar{\varphi}^{(L, N)}}(x): E_{J} \longrightarrow$ \mathbf{R}^{I} if and only if, $\forall i \in I_{m}$ and $\forall j \in J$,there exists the partial derivative $\frac{\partial \bar{\varphi}_{i}^{(L, N)}}{\partial x_{j}}(x)$, and $\forall i \in I_{m}$ one has $\sum_{j \in J}\left|\frac{\partial \bar{\varphi}_{i}^{(L, N)}}{\partial x_{j}}(x)\right|<+\infty$; thus, this happens if and only if, $\forall i \in I_{m}$ and $\forall j \in N$, there exists the partial derivative $\frac{\partial \varphi_{i}}{\partial x_{j}}(x)$, and $\forall i \in I_{m}$ one has $\sum_{j \in N}\left|\frac{\partial \varphi_{i}}{\partial x_{j}}(x)\right|<+\infty$.
Moreover, from formula (8), we have

$$
\begin{aligned}
\sup _{i \in I \backslash I_{m}} \sum_{j \in J} \mid & \left|\frac{\partial \bar{\varphi}_{i}^{(L, N)}}{\partial x_{j}}(x)\right| \\
& \leq \sup _{i \in I \backslash I_{m}}\left\|J_{\varphi_{i}^{(I, m)}}\left(x_{J_{m}}\right)\right\|+\sup _{i \in I \backslash I_{m}}\left|\varphi_{i, \sigma(i)}^{\prime}\left(x_{\sigma(i)}\right)\right|<+\infty
\end{aligned}
$$

then, if there exists the function $J_{\bar{\varphi}(L, N)}(x)$, we obtain

$$
\sup _{i \in I} \sum_{j \in J}\left|\frac{\partial \bar{\varphi}_{i}^{(L, N)}}{\partial x_{j}}(x)\right|<+\infty
$$

thus, from Proposition 2.13, we have $J_{\bar{\varphi}^{(L, N)}}(x)\left(E_{J}\right) \subset E_{I}$, and $J_{\bar{\varphi}^{(L, N)}}(x)$ is continuous; furthermore, by Definition 3.2, $J_{\bar{\varphi}^{(L, N)}}(x)$ is (m, σ)-general.

Proposition 3.7. Let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a (m, σ)-standard function; then:

1. Suppose that φ is injective, $\pi_{I, H}(\varphi(U)) \in \tau^{(H)}$, for any $H \subset I \backslash I_{m}$ such that $0<|H| \leq 2$, the function $\varphi_{i}: U \longrightarrow \mathbf{R}$ is C^{1}, for any $i \in I_{m}$, and $\operatorname{det} J_{\varphi_{(m, m)}}(\mathbf{x}) \neq 0$, for any $\mathbf{x} \in U^{(m)}$; then the functions $\varphi_{i, \sigma(i)}$, for any $i \in I \backslash I_{m}$, and $\varphi^{(m, m)}$ are injective, and σ is bijective.
2. Suppose that φ is bijective, the function $\varphi_{i}: U \longrightarrow \mathbf{R}$ is C^{1}, for any $i \in I_{m}$, and $\operatorname{det} J_{\varphi^{(m, m)}}(\mathbf{x}) \neq 0$, for any $\mathbf{x} \in U^{(m)}$; then the functions $\varphi_{i, \sigma(i)}$, for any $i \in I \backslash I_{m}, \varphi^{(m, m)}$ and σ are bijective.
3. Suppose that $\varphi_{i j}\left(x_{j}\right)=0$, for any $i \in I_{m}$, for any $j \in J \backslash J_{m}$, for any $x_{j} \in A_{j}, \varphi$ is injective, and $\pi_{I, H}(\varphi(U)) \in \tau^{(H)}$, for any $H \subset I \backslash I_{m}$ such that $0<|H| \leq 2$; then the functions $\varphi_{i, \sigma(i)}$, for any $i \in I \backslash I_{m}$, and $\varphi^{(m, m)}$ are injective, and σ is bijective.
4. Suppose that $\varphi_{i j}\left(x_{j}\right)=0$, for any $i \in I_{m}$, for any $j \in J \backslash J_{m}$, for any $x_{j} \in A_{j}$, and φ is bijective; then the functions $\varphi_{i, \sigma(i)}$, for any $i \in I \backslash I_{m}$, $\varphi^{(m, m)}$ and σ are bijective.
5. If the functions $\varphi_{i, \sigma(i)}$, for any $i \in I \backslash I_{m}$, and $\varphi^{(m, m)}$ are injective, and σ is bijective, then φ is injective.
6. If the functions $\varphi_{i, \sigma(i)}$, for any $i \in I \backslash I_{m}, \varphi^{(m, m)}$ and σ are bijective, then φ is bijective.

Proof. The statement follows from Proposition 31, Proposition 32 and Remark 33 in [5].

Corollary 3.8. Let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a (m, σ)-general function; then:

1. If $\bar{\varphi}$ is injective and $\pi_{I, H}(\bar{\varphi}(U)) \in \tau^{(H)}$, for any $H \subset I \backslash I_{m}$ such that $0<|H| \leq 2$, then the functions $\varphi_{i, \sigma(i)}$, for any $i \in I \backslash I_{m}$, and $\varphi^{(m, m)}$ are injective, and σ is bijective.
2. If $\bar{\varphi}$ is bijective, then the functions $\varphi_{i, \sigma(i)}$, for any $i \in I \backslash I_{m}, \varphi^{(m, m)}$ and σ are bijective.

Proof. Observe that $\bar{\varphi}$ is (m, σ)-standard, and $\bar{\varphi}_{i j}\left(x_{j}\right)=0$, for any $i \in I_{m}$, for any $j \in J \backslash J_{m}$, for any $x_{j} \in A_{j}$; then, from points 3 and 4 of Proposition 3.7, we obtain the statements 1 and 2 .

Proposition 3.9. Let $m \in \mathbf{N}^{*}$, let $\emptyset \neq L \subset I$, let $\emptyset \neq N \subset J$ such that $J_{m} \subset N$ or $N \subset J \backslash J_{m}$, and let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a function mgeneral and such that, for any $i \in L$ and for any $j \in N \backslash J_{m}$, the functions $\varphi_{i}^{(I, m)}:\left(U^{(m)}, \mathcal{B}^{(m)}\left(U^{(m)}\right)\right) \longrightarrow(\mathbf{R}, \mathcal{B})$ and $\varphi_{i j}:\left(A_{j}, \mathcal{B}\left(A_{j}\right)\right) \longrightarrow(\mathbf{R}, \mathcal{B})$ are measurable; then:

1. The function

$$
\varphi^{(L, N)}:\left(\pi_{J, N}(U), \mathcal{B}^{(N)}\left(\pi_{J, N}(U)\right)\right) \longrightarrow\left(\mathbf{R}^{L}, \mathcal{B}^{(L)}\right)
$$

is measurable; in particular, suppose that, for any $i \in I$ and for any $j \in$ $J \backslash J_{m}, \varphi_{i}^{(I, m)}$ and $\varphi_{i j}$ are measurable functions; then, $\varphi:\left(U, \mathcal{B}^{(J)}(U)\right) \longrightarrow$ $\left(E_{I}, \mathcal{B}_{I}\right)$ is measurable.
2. If φ is (m, σ)-general, $I_{m} \subset L$ and $J_{m} \subset N$, then the function $\bar{\varphi}^{(L, N)}$: $\left(U, \mathcal{B}^{(J)}(U)\right) \longrightarrow\left(E_{I}, \mathcal{B}_{I}\right)$ is measurable.

Proof. 1. $\forall i \in L$ and $\forall M \subset N$ such that $J_{m} \subset M$ or $M \subset J \backslash J_{m}$, consider the function $\widehat{\varphi}^{(i, M, N)}: \pi_{J, N}(U) \longrightarrow \mathbf{R}$ defined by

$$
\widehat{\varphi}^{(i, M, N)}(x)=\left\{\begin{array}{ll}
\varphi^{(\{i\}, M)}\left(x_{M}\right) & \text { if } M \neq \emptyset \\
0 & \text { if } M=\emptyset
\end{array}, \forall x \in \pi_{J, N}(U)\right.
$$

observe that, $\forall n \in \mathbf{N}, n \geq m$, we have

$$
\begin{align*}
& \widehat{\varphi}^{\left(i, N \cap J_{n}, N\right)}(x)=\widehat{\varphi}^{\left(i, N \cap J_{m}, N\right)}(x)+\sum_{j \in N \cap\left(J_{n} \backslash J_{m}\right)} \widehat{\varphi}^{(i,\{j\}, N)}(x), \\
& \forall x \in \pi_{J, N}(U) ; \tag{9}
\end{align*}
$$

moreover, from Remark 2.6, the functions $\widehat{\varphi}^{\left(i, N \cap J_{m}, N\right)}$ and $\widehat{\varphi}^{(i,\{j\}, N)}$, $\forall j \in N \cap\left(J_{n} \backslash J_{m}\right)$, are $\left(\mathcal{B}^{(N)}\left(\pi_{J, N}(U)\right), \mathcal{B}\right)$-measurable; thus, from formula (9), $\widehat{\varphi}^{\left(i, N \cap J_{n}, N\right)}$ is $\left(\mathcal{B}^{(N)}\left(\pi_{J, N}(U)\right), \mathcal{B}\right)$-measurable; then, since

$$
\lim _{n \longrightarrow+\infty} \widehat{\varphi}^{\left(i, N \cap J_{n}, N\right)}=\varphi_{i}^{(L, N)},
$$

$\varphi_{i}^{(L, N)}$ is $\left(\mathcal{B}^{(N)}\left(\pi_{J, N}(U)\right), \mathcal{B}\right)$-measurable too. Furthermore, let

$$
\Sigma(L)=\left\{B=\prod_{i \in L} B_{i}: B_{i} \in \mathcal{B}, \forall i \in L\right\}
$$

$\forall B=\prod_{i \in L} B_{i} \in \Sigma(L)$, we have

$$
\left(\varphi^{(L, N)}\right)^{-1}(B)=\bigcap_{i \in L}\left(\varphi_{i}^{(L, N)}\right)^{-1}\left(B_{i}\right) \in \mathcal{B}^{(N)}\left(\pi_{J, N}(U)\right)
$$

Finally, since $\sigma(\Sigma(L))=\mathcal{B}^{(L)}, \forall B \in \mathcal{B}^{(L)}$, we obtain $\left(\varphi^{(L, N)}\right)^{-1}(B) \in$ $\mathcal{B}^{(N)}\left(\pi_{J, N}(U)\right)$, and so $\varphi^{(L, N)}:\left(\pi_{J, N}(U), \mathcal{B}^{(N)}\left(\pi_{J, N}(U)\right)\right) \longrightarrow\left(\mathbf{R}^{L}, \mathcal{B}^{(L)}\right)$ is measurable. In particular, suppose that, $\forall i \in I$ and $\forall j \in J \backslash J_{m}$, the functions $\varphi_{i}^{(I, m)}$ and $\varphi_{i j}$ are measurable; then, $\varphi:\left(U, \mathcal{B}^{(J)}(U)\right) \longrightarrow$ $\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right)$ is measurable; thus, since $\varphi(U) \subset E_{I}$, we obtain that φ is $\left(\mathcal{B}^{(J)}(U), \mathcal{B}_{I}\right)$-measurable.
2. If φ is (m, σ)-general, $I_{m} \subset L$ and $J_{m} \subset N$, from Proposition 3.5, the function $\bar{\varphi}^{(L, N)}: U \subset E_{J} \longrightarrow E_{I}$ is (m, σ)-general, and so m-general. Moreover, we have

$$
\bar{\varphi}_{i}^{(L, N)}(x)=\psi_{i}^{(I, m)}\left(x_{J_{m}}\right)+\sum_{j \in J \backslash J_{m}} \psi_{i j}\left(x_{j}\right), \forall x \in U, \forall i \in I,
$$

where

$$
\begin{aligned}
& \psi_{i}^{(I, m)}= \begin{cases}\varphi_{i}^{(I, m)} & \text { if } i \in L \\
0 & \text { if } i \in I \backslash L\end{cases} \\
& \psi_{i j}= \begin{cases}\varphi_{i j} & \text { if }(i, j) \in\left(I_{m} \times\left(N \backslash J_{m}\right)\right) \cup\left(\left(I \backslash I_{m}\right) \times\left(J \backslash J_{m}\right)\right) \\
0 & \text { if }(i, j) \in I_{m} \times(J \backslash N)\end{cases}
\end{aligned}
$$

furthermore, $\forall i \in I, \forall j \in J \backslash J_{m}, \psi_{i}^{(I, m)}:\left(U^{(m)}, \mathcal{B}^{(m)}\left(U^{(m)}\right)\right) \longrightarrow$
$(\mathbf{R}, \mathcal{B})$ and $\psi_{i j}:\left(A_{j}, \mathcal{B}\left(A_{j}\right)\right) \longrightarrow(\mathbf{R}, \mathcal{B})$ are measurable functions, and so, from point $1, \bar{\varphi}^{(L, N)}:\left(U, \mathcal{B}^{(J)}(U)\right) \longrightarrow\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right)$ is measurable; finally, since $\bar{\varphi}^{(L, N)}(U) \subset E_{I}$, we obtain that $\bar{\varphi}^{(L, N)}$ is $\left(\mathcal{B}^{(J)}(U), \mathcal{B}_{I}\right)$-measurable.

Proposition 3.10. Let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a (m, σ)-general function such that σ is bijective and $\pi_{I, I \backslash I_{m}} \circ \bar{\varphi}:\left(U, \tau_{\|\cdot\|_{J}}(U)\right) \longrightarrow\left(E_{I \backslash I_{m}}, \tau_{\|\cdot\|_{I \backslash I_{m}}}\right)$ is continuous; then, for any $n \in \mathbf{N}, n \geq m, \varphi^{(n, n)}:\left(\pi_{J, J_{n}}(U), \tau^{(n)}\left(\pi_{J, J_{n}}(U)\right)\right) \longrightarrow$ $\left(\mathbf{R}^{n}, \tau^{(n)}\right)$ is continuous if and only if $\bar{\varphi}^{(n, n)}:\left(U, \tau_{\|\cdot\|_{J}}(U)\right) \longrightarrow\left(E_{I}, \tau_{\|\cdot\|_{I}}\right)$ is continuous

Proof. Let $n \in \mathbf{N}, n \geq m$, and suppose that $\varphi^{(n, n)}$ is continuous; moreover, let $B=B_{1} \times B_{2} \in \tau_{\|\cdot\|_{I}}$, where $B_{1} \in \tau^{(n)}, B_{2} \in \tau_{\|\cdot\|_{I \backslash I_{n}}}$; since σ is bijective, we have

$$
\left(\bar{\varphi}^{(n, n)}\right)^{-1}(B)=\left(\varphi^{(n, n)}\right)^{-1}\left(B_{1}\right) \times \pi_{J, J \backslash J_{n}}\left(\left(\pi_{I, I \backslash I_{n}} \circ \bar{\varphi}\right)^{-1}\left(B_{2}\right)\right) ;
$$

moreover, since $\varphi^{(n, n)}$ and $\pi_{I, I \backslash I_{m}} \circ \bar{\varphi}$ are continuous, and $\mathbf{R}^{n-m} \times B_{2} \in \tau_{\|\cdot\|_{I \backslash I_{m}}}$, we have

$$
\left(\varphi^{(n, n)}\right)^{-1}\left(B_{1}\right) \in \tau^{(n)}\left(\pi_{J, J_{n}}(U)\right)
$$

$$
\begin{aligned}
&\left(\pi_{I, I \backslash I_{n}} \circ \bar{\varphi}\right)^{-1}\left(B_{2}\right)=\left(\pi_{I \backslash I_{m}, I \backslash I_{n}} \circ\left(\pi_{I, I \backslash I_{m}} \circ \bar{\varphi}\right)\right)^{-1}\left(B_{2}\right) \\
&=\left(\pi_{I, I \backslash I_{m}} \circ \bar{\varphi}\right)^{-1}\left(\mathbf{R}^{n-m} \times B_{2}\right) \in \tau_{\|\cdot\|_{J}}(U),
\end{aligned}
$$

and so $\pi_{J, J \backslash J_{n}}\left(\left(\pi_{I, I \backslash I_{n}} \circ \bar{\varphi}\right)^{-1}\left(B_{2}\right)\right) \in \tau_{\|\cdot\|_{J \backslash J_{n}}}\left(\pi_{J, J \backslash J_{n}}(U)\right)$, from Proposition 2.5; then, we obtain $\left(\bar{\varphi}^{(n, n)}\right)^{-1}(B) \in \tau_{\|\cdot\|_{J}}(U)$; finally, from Proposition 2.4, $\forall B \in \tau_{\|\cdot\|_{I}}$, we have $\left(\bar{\varphi}^{(n, n)}\right)^{-1}(B) \in \tau_{\|\cdot\|_{J}}(U)$, and so $\bar{\varphi}^{(n, n)}$ is continuous.

Conversely, suppose that $\bar{\varphi}^{(n, n)}$ is continuous; $\forall B \in \tau^{(n)}$, we have $B \times$ $E_{I \backslash I_{n}} \in \tau_{\|\cdot\|_{I}}$, and so $\left(\bar{\varphi}^{(n, n)}\right)^{-1}\left(B \times E_{I \backslash I_{n}}\right) \in \tau_{\|\cdot\|_{J}}(U)$; then, $\left(\varphi^{(n, n)}\right)^{-1}(B)=$ $\pi_{J, J_{n}}\left(\left(\bar{\varphi}^{(n, n)}\right)^{-1}\left(B \times E_{I \backslash I_{n}}\right)\right) \in \tau^{(n)}\left(\pi_{J, J_{n}}(U)\right)$.

Proposition 3.11. Let $m \in \mathbf{N}^{*}$, let $\emptyset \neq L \subset I$, let $\emptyset \neq N \subset J$ such that $J_{m} \subset N$ or $N \subset J \backslash J_{m}$, and let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a function m-general and C^{1} in $x_{0}=\left(x_{0, j}: j \in J\right) \in U$; then:

1. The function $\varphi^{(L, N)}: \pi_{J, N}(U) \longrightarrow \mathbf{R}^{L}$ is C^{1} in $\left(x_{0, j}: j \in N\right)$.
2. If φ is (m, σ)-general, $I_{m} \subset L$ and $J_{m} \subset N$, then the function $\bar{\varphi}^{(L, N)}$: $U \subset E_{J} \longrightarrow E_{I}$ is C^{1} in x_{0}.

Proof. See the proof of Proposition 2.28 in [6].

Proposition 3.12. Let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a (m, σ)-general function such that $\bar{\varphi}: U \longrightarrow \bar{\varphi}(U)$ is a homeomorphism. Then, the functions $\varphi^{(m, m)}$: $U^{(m)} \longrightarrow \varphi^{(m, m)}\left(U^{(m)}\right)$ and $\varphi_{i, \sigma(i)}: A_{i} \longrightarrow \varphi_{i, \sigma(i)}\left(A_{i}\right)$, for any $i \in I \backslash I_{m}$, are homeomorphisms, and σ is bijective.

Proof. From Proposition 37 in [5], the statement is true if φ is (m, σ)-standard; moreover, observe that $\bar{\varphi}$ is (m, σ)-standard, $\bar{\varphi}=\overline{(\bar{\varphi})}, \varphi^{(m, m)}=(\bar{\varphi})^{(m, m)}$, $\varphi_{i, \sigma(i)}=\bar{\varphi}_{i, \sigma(i)}, \forall i \in I \backslash I_{m}$; then, the statement is true if φ is (m, σ)-general too.

Proposition 3.13. Let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a (m, σ)-general function. Then, $\bar{\varphi}: U \longrightarrow \bar{\varphi}(U)$ is a diffeomorphism if and only if the functions $\varphi^{(m, m)}$: $U^{(m)} \longrightarrow \varphi^{(m, m)}\left(U^{(m)}\right)$ and $\varphi_{i, \sigma(i)}: A_{i} \longrightarrow \varphi_{i, \sigma(i)}\left(A_{i}\right)$, for any $i \in I \backslash I_{m}$, are diffeomorphisms, and σ is bijective.

Proof. From Proposition 38 in [5], the statement is true if φ is (m, σ)-standard; then, as we observed in the proof of Proposition 3.12, the statement is true if φ is (m, σ)-general too.

Definition 3.14. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function; $\forall i \in I \backslash I_{m}$, set $\lambda_{i}=\lambda_{i}(A)=a_{i, \sigma(i)}$.

Remark 3.15: For any $m \in \mathbf{N}^{*}$, a linear function $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ is m-general; moreover, if $|J|=|I|$ and $\sigma: I \backslash I_{m} \longrightarrow J \backslash J_{m}$ is an increasing function, A is (m, σ)-general if and only if:

1. $\forall i \in I \backslash I_{m}, \forall j \in J \backslash\left(J_{m} \cup\{\sigma(i)\}\right)$, one has $a_{i j}=0$.
2. $\forall j \in J_{m}, \sum_{i \in I \backslash I_{m}}\left|a_{i j}\right|<+\infty$; moreover, one has $\sup _{i \in I \backslash I_{m}}\left|\lambda_{i}\right|<+\infty$ and $\inf _{i \in I \backslash I_{m}: \lambda_{i} \neq 0}\left|\lambda_{i}\right|>0$.
3. If $\mathcal{A} \neq \emptyset$, there exists $\prod_{i \in I \backslash I_{m}: \lambda_{i} \neq 0} \lambda_{i} \in \mathbf{R}^{*}$.

Furthermore, A is strongly (m, σ)-general if and only if A is (m, σ)-general and there exists $a \in \mathbf{R}$ such that the sequence $\left\{\lambda_{i}\right\}_{i \in I \backslash I_{m}: \lambda_{i} \neq 0}$ converges to a.

Finally, A is (m, σ)-standard if and only if A is (m, σ)-general and $a_{i j}=0$, for any $i \in I \backslash I_{m}$, for any $j \in J_{m}$.

Corollary 3.16. Let $m \in \mathbf{N}^{*}$, let $\emptyset \neq L \subset I$, let $\emptyset \neq N \subset J$ and let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear function; then:

1. The function $A^{(L, N)}:\left(E_{N}, \mathcal{B}_{N}\right) \longrightarrow\left(E_{L}, \mathcal{B}_{L}\right)$ is measurable; in particular, $A:\left(E_{J}, \mathcal{B}_{J}\right) \longrightarrow\left(E_{I}, \mathcal{B}_{I}\right)$ is measurable.
2. If A is (m, σ)-general, $I_{m} \subset L$ and $J_{m} \subset N$, then the function $\bar{A}^{(L, N)}$: $\left(E_{J}, \mathcal{B}_{J}\right) \longrightarrow\left(E_{I}, \mathcal{B}_{I}\right)$ is measurable.

Proof. 1. From Proposition 2.13, we have $A^{(L, N)}\left(E_{N}\right) \subset E_{L}$; furthermore, from Remark 3.15, A is 1-general; moreover, we have $J_{1} \subset N$ or $N \subset$ $J \backslash J_{1}$; then, from Proposition 3.9, $A^{(L, N)}:\left(E_{N}, \mathcal{B}_{N}\right) \longrightarrow\left(\mathbf{R}^{L}, \mathcal{B}^{(L)}\right)$ is measurable, and so $A^{(L, N)}:\left(E_{N}, \mathcal{B}_{N}\right) \longrightarrow\left(E_{L}, \mathcal{B}_{L}\right)$ is measurable; in particular, $A:\left(E_{J}, \mathcal{B}_{J}\right) \longrightarrow\left(E_{I}, \mathcal{B}_{I}\right)$ is measurable.
2. The statement follows from Proposition 3.9.

Henceforth, we will suppose that $|I|=+\infty$. The following definitions and results (from Proposition 3.17 to Proposition 3.21) can be found in [6] and generalize the standard theory of the $m \times m$ matrices.

Proposition 3.17. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function; then, A is continuous.

Theorem 3.18. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function; then, the sequence $\left\{\operatorname{det} A^{(n, n)}\right\}_{n \geq m}$ converges to a real number. Moreover, if $\mathcal{A} \neq \emptyset$, by setting $\bar{m}=\min \mathcal{A}$, we have

$$
\begin{align*}
\lim _{n \longrightarrow+\infty} \operatorname{det} A^{(n, n)}=\sum_{p \in I \backslash I_{\bar{m}}}\left(\prod_{q \in I \backslash I_{|p|}} \lambda_{q}\right) & \sum_{j \in J_{m}} a_{p, j}\left(\operatorname{cof} A^{(|p|,|p|)}\right)_{p, j} \\
& +\operatorname{det} A^{(\bar{m}, \bar{m})}\left(\prod_{q \in I \backslash I_{\bar{m}}} \lambda_{q}\right) . \tag{10}
\end{align*}
$$

Conversely, if $\mathcal{A}=\emptyset$, we have $\lim _{n \longrightarrow+\infty} \operatorname{det} A^{(n, n)}=0$.
Definition 3.19. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function; define the determinant of A, and call it $\operatorname{det} A$, the real number

$$
\operatorname{det} A=\lim _{n \longrightarrow+\infty} \operatorname{det} A^{(n, n)}
$$

Corollary 3.20. Let $A=\left(a_{i j}\right)_{i \in I, j \in J}: E_{J} \longrightarrow E_{I}$ be a linear (m, σ)-general function such that $a_{i j}=0, \forall i \in I_{m}, \forall j \in J \backslash J_{m}$, or A is (m, σ)-standard. Then, if σ is bijective, we have

$$
\operatorname{det} A=\operatorname{det} A^{(m, m)} \prod_{i \in I \backslash I_{m}} \lambda_{i} .
$$

Conversely, if σ is not bijective, we have $\operatorname{det} A=0$. In particular, if $A=\mathbf{I}_{I, J}$, we have $\operatorname{det} A=1$.

Proposition 3.21. Let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a (m, σ)-general function and let $x_{0}=\left(x_{0, j}: j \in J\right) \in U$ such that there exists the function $J_{\varphi}\left(x_{0}\right): E_{J} \longrightarrow E_{I}$; then, $J_{\varphi}\left(x_{0}\right)$ is (m, σ)-general; moreover, for any $n \in \mathbf{N}, n \geq m$, there exists the linear (m, σ)-general function $J_{\bar{\varphi}^{(n, n)}}\left(x_{0}\right): E_{J} \longrightarrow E_{I}$, and one has

$$
\operatorname{det} J_{\varphi}\left(x_{0}\right)=\lim _{n \rightarrow+\infty} \operatorname{det} J_{\bar{\varphi}^{(n, n)}}\left(x_{0}\right)
$$

Proposition 3.22. Let $m \in \mathbf{N}^{*}$, let $n \in \mathbf{N}$, $n \geq m$, and let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a function m-general such that, for any $i \in I_{n}$, for any $j_{1} \in J_{m}$ and for any $j_{2} \in J_{n} \backslash J_{m}$, there exist the functions $\frac{\partial \varphi_{i}^{(1, m)}}{\partial x_{j_{1}}}:\left(U^{(m)}, \mathcal{B}^{(m)}\left(U^{(m)}\right)\right) \longrightarrow(\mathbf{R}, \mathcal{B})$ and $\frac{\partial \varphi_{i j_{2}}}{\partial x_{j_{2}}}:\left(A_{j_{2}}, \mathcal{B}\left(A_{j_{2}}\right)\right) \longrightarrow(\mathbf{R}, \mathcal{B})$, and they are measurable; then:

1. The function $\operatorname{det} J_{\varphi^{(n, n)}}:\left(\pi_{J, J_{n}}(U), \mathcal{B}^{(n)}\left(\pi_{J, J_{n}}(U)\right)\right) \longrightarrow(\mathbf{R}, \mathcal{B})$ is measurable.
2. Suppose that φ is (m, σ)-general and, for any $i \in I \backslash I_{m}$, the function

$$
\varphi_{i, \sigma(i)}^{\prime}:\left(A_{\sigma(i)}, \mathcal{B}\left(A_{\sigma(i)}\right)\right) \longrightarrow(\mathbf{R}, \mathcal{B})
$$

is measurable; then, for any $x \in U$, there exists the function $J_{\bar{\varphi}^{(n, n)}}(x)$: $E_{J} \longrightarrow E_{I}$, and it is (m, σ)-general; moreover, the function $\operatorname{det} J_{\bar{\varphi}^{(n, n)}}$: $\left(U, \mathcal{B}^{(J)}(U)\right) \longrightarrow(\mathbf{R}, \mathcal{B})$ is measurable.
3. Suppose that φ is (m, σ)-general and, for any $x \in U$, there exists the function $J_{\varphi}(x): E_{J} \longrightarrow E_{I}$; moreover, suppose that, for any $i \in I$, for any $j_{1} \in J_{m}$ and for any $j_{2} \in J \backslash J_{m}$, the functions

$$
\frac{\partial \varphi_{i}^{(I, m)}}{\partial x_{j_{1}}}:\left(U^{(m)}, \mathcal{B}^{(m)}\left(U^{(m)}\right)\right) \longrightarrow(\mathbf{R}, \mathcal{B})
$$

and $\frac{\partial \varphi_{i j_{2}}}{\partial x_{j_{2}}}:\left(A_{j_{2}}, \mathcal{B}\left(A_{j_{2}}\right)\right) \longrightarrow(\mathbf{R}, \mathcal{B})$ are measurable; then the function $\operatorname{det} J_{\varphi}:\left(U, \mathcal{B}^{(J)}(U)\right) \longrightarrow(\mathbf{R}, \mathcal{B})$ is measurable.
Proof. 1. From Remark 2.6, $\forall i \in I_{n}, \forall j \in J_{n}$, the function

$$
\frac{\partial \varphi_{i}^{(I, n)}}{\partial x_{j}}:\left(\pi_{J, J_{n}}(U), \mathcal{B}^{(n)}\left(\pi_{J, J_{n}}(U)\right)\right) \longrightarrow(\mathbf{R}, \mathcal{B})
$$

is measurable; moreover, we have

$$
\left(J_{\varphi^{(n, n)}}(x)\right)_{i j}=\frac{\partial \varphi_{i}^{(I, n)}}{\partial x_{j}}(x), \forall x \in \pi_{J, J_{n}}(U)
$$

then, by definition of determinant, the function

$$
\operatorname{det} J_{\varphi^{(n, n)}}:\left(\pi_{J, J_{n}}(U), \mathcal{B}^{(n)}\left(\pi_{J, J_{n}}(U)\right)\right) \longrightarrow(\mathbf{R}, \mathcal{B})
$$

is measurable too.
2. If φ is (m, σ)-general, from Proposition 3.5, $\bar{\varphi}^{(n, n)}$ is (m, σ)-general too; then, from Proposition 2.13, $\forall x \in U$, there exists the function $J_{\bar{\varphi}^{(n, n)}}(x)$: $E_{J} \longrightarrow E_{I}$, and it is (m, σ)-general, from Remark 3.15.
If $\mathcal{A}(\varphi)=\emptyset, \forall x \in U$, we have $\mathcal{A}\left(J_{\bar{\varphi}^{(n, n)}}(x)\right)=\emptyset$, and so $\operatorname{det} J_{\bar{\varphi}^{(n, n)}}(x)=$ 0 ; then, the function $\operatorname{det} J_{\bar{\varphi}^{(n, n)}}:\left(U, \mathcal{B}^{(J)}(U)\right) \longrightarrow(\mathbf{R}, \mathcal{B})$ is measurable. Conversely, if $\mathcal{A}(\varphi) \neq \emptyset$, set $\bar{m}=\min \mathcal{A}(\varphi), \widehat{m}=\max \{n, \bar{m}\}$; observe that $\bar{\varphi}^{(n, n)}$ is (\widehat{m}, ρ)-standard, where the bijective increasing function $\rho: I \backslash I_{\widehat{m}} \longrightarrow J \backslash J_{\widehat{m}}$ is defined by $\rho(i)=\sigma(i), \forall i \in I \backslash I_{\widehat{m}}$; thus, $\forall x \in U$, $J_{\bar{\varphi}^{(n, n)}}(x)$ is (\widehat{m}, ρ)-standard too, and so Corollary 3.20 implies

$$
\begin{equation*}
\operatorname{det} J_{\bar{\varphi}^{(n, n)}}(x)=\operatorname{det}\left(J_{\bar{\varphi}^{(n, n)}}\right)^{(\widehat{m}, \widehat{m})}\left(x_{J_{\widehat{m}}}\right) \prod_{i \in I \backslash I_{\widehat{m}}} \varphi_{i, \sigma(i)}^{\prime}\left(x_{\sigma(i)}\right), \forall x \in U \tag{11}
\end{equation*}
$$

If $\widehat{m}>n$, we have $\operatorname{det}\left(J_{\bar{\varphi}^{(n, n)}}\right)^{(\widehat{m}, \widehat{m})}\left(x_{J_{\widehat{m}}}\right)=0$, and so $\operatorname{det} J_{\bar{\varphi}^{(n, n)}}(x)=$ $0, \forall x \in U$; then, $\operatorname{det} J_{\bar{\varphi}^{(n, n)}}:\left(U, \mathcal{B}^{(J)}(U)\right) \longrightarrow(\mathbf{R}, \mathcal{B})$ is measurable. Finally, if $\widehat{m}=n$, from formula (11), we have

$$
\operatorname{det} J_{\bar{\varphi}^{(n, n)}}(x)=\operatorname{det} J_{\varphi^{(n, n)}}\left(x_{J_{n}}\right) \prod_{i \in I \backslash I_{n}} \varphi_{i, \sigma(i)}^{\prime}\left(x_{\sigma(i)}\right), \forall x \in U ;
$$

moreover, from point 1 , the function

$$
\operatorname{det} J_{\varphi^{(n, n)}}:\left(\pi_{J, J_{n}}(U), \mathcal{B}^{(n)}\left(\pi_{J, J_{n}}(U)\right)\right) \longrightarrow(\mathbf{R}, \mathcal{B})
$$

is measurable, and so it is $\left(\mathcal{B}^{(J)}(U), \mathcal{B}\right)$-measurable, from Remark 2.6; analogously, $\forall i \in I \backslash I_{n}, \varphi_{i, \sigma(i)}^{\prime}:\left(U, \mathcal{B}^{(J)}(U)\right) \longrightarrow(\mathbf{R}, \mathcal{B})$ is measurable; then, $\forall h \in \mathbf{N}, h \geq n$, the function $f_{h}:\left(U, \mathcal{B}^{(J)}(U)\right) \longrightarrow(\mathbf{R}, \mathcal{B})$ defined by

$$
f_{h}(x)=\operatorname{det} J_{\varphi^{(n, n)}}\left(x_{J_{n}}\right) \prod_{i \in I_{h} \backslash I_{n}} \varphi_{i, \sigma(i)}^{\prime}\left(x_{\sigma(i)}\right), \forall x \in U,
$$

is measurable; furthermore, we have $\operatorname{det} J_{\bar{\varphi}^{(n, n)}}(x)=\lim _{h \rightarrow+\infty} f_{h}(x), \forall x \in$ U, and so $\operatorname{det} J_{\bar{\varphi}^{(n, n)}}:\left(U, \mathcal{B}^{(J)}(U)\right) \longrightarrow(\mathbf{R}, \mathcal{B})$ is measurable too.
3. By assumption and from point $2, \forall n \in \mathbf{N}, n \geq m$, there exists the function $\operatorname{det} J_{\bar{\varphi}^{(n, n)}}:\left(U, \mathcal{B}^{(J)}(U)\right) \longrightarrow(\mathbf{R}, \mathcal{B})$, and it is measurable; moreover, from Proposition 3.21, we have $\operatorname{det} J_{\varphi}(x)=\lim _{n \rightarrow+\infty} \operatorname{det} J_{\bar{\varphi}^{(n, n)}}(x)$, $\forall x \in U$, and so $\operatorname{det} J_{\varphi}:\left(U, \mathcal{B}^{(J)}(U)\right) \longrightarrow(\mathbf{R}, \mathcal{B})$ is measurable.

Proposition 3.23. Let $m \in \mathbf{N}^{*}$, let $n \in \mathbf{N}$, $n \geq m$, and let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a function m-general such that $\varphi^{(n, n)}$ is C^{1}; then, the function $\operatorname{det} J_{\varphi^{(n, n)}}$: $\left(\pi_{J, J_{n}}(U), \tau^{(n)}\left(\pi_{J, J_{n}}(U)\right)\right) \longrightarrow(\mathbf{R}, \tau)$ is continuous.
Proof. Since $\varphi^{(n, n)}$ is $C^{1}, \forall i \in I_{n}, \forall j \in J_{n}$, the function

$$
\frac{\partial \varphi_{i}^{(n, n)}}{\partial x_{j}}:\left(\pi_{J, J_{n}}(U), \tau^{(n)}\left(\pi_{J, J_{n}}(U)\right)\right) \longrightarrow(\mathbf{R}, \tau)
$$

is continuous; then, by definition of determinant, the function $\operatorname{det} J_{\varphi^{(n, n)}}$: $\left(\pi_{J, J_{n}}(U), \tau^{(n)}\left(\pi_{J, J_{n}}(U)\right)\right) \longrightarrow(\mathbf{R}, \tau)$ is continuous too.

4. Change of variables' formula

Definition 4.1. Let $k \in \mathbf{N}^{*}$, let $M, N \in \mathbf{R}^{+}$, let $a=\left(a_{i}: i \in I\right) \in[0,+\infty)^{I}$ such that $\prod_{i \in I: a_{i} \neq 0} a_{i} \in \mathbf{R}^{+}$, and let $v=\left(v_{i}: i \in I\right) \in E_{I}$; define the following sets in \mathcal{B}_{I} :

$$
\begin{aligned}
E_{N, a, v}^{(k, I)} & =\mathbf{R}^{k} \times \prod_{i \in I \backslash I_{k}}\left[v_{i}-\frac{N}{2} a_{i}, v_{i}+\frac{N}{2} a_{i}\right] ; \\
E_{M, N, a, v}^{(k, I)} & =\prod_{h \in I_{k}}\left[v_{h}-M, v_{h}+M\right] \times \prod_{i \in I \backslash I_{k}}\left[v_{i}-\frac{N}{2} a_{i}, v_{i}+\frac{N}{2} a_{i}\right] .
\end{aligned}
$$

Moreover, define the σ-finite measure $\lambda_{N, a, v}^{(k, I)}$ over $\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right)$ in the following manner:

$$
\lambda_{N, a, v}^{(k, I)}=L e b^{(k)} \otimes\left(\bigotimes_{i \in I \backslash I_{k}} \frac{1}{N} \operatorname{Leb}\left(\cdot \cap\left[v_{i}-\frac{N}{2} a_{i}, v_{i}+\frac{N}{2} a_{i}\right]\right)\right)
$$

Lemma 4.2. Let $k \in \mathbf{N}^{*}$, let $N \in \mathbf{R}^{+}$, let $a=\left(a_{i}: i \in I\right) \in[0,+\infty)^{I}$ such that $\prod_{i \in I: a_{i} \neq 0} a_{i} \in \mathbf{R}^{+}$, and let $v=\left(v_{i}: i \in I\right) \in E_{I}$; then, for any measurable function $f:\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right) \longrightarrow(\mathbf{R}, \mathcal{B})$ such that $f^{+}\left(\right.$or $\left.f^{-}\right)$is $\lambda_{N, a, v}^{(k, I)}$-integrable, one has

$$
\int_{\mathbf{R}^{I}} f d \lambda_{N, a, v}^{(k, I)}=\int_{E_{N, a, v}^{(k, I)}} f d \lambda_{N, a, v}^{(k, I)} .
$$

Proof. See the proof of Lemma 46 in [5].
Proposition 4.3. Let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a (m, σ)-general function such that the function $\bar{\varphi}$ is bijective, and suppose that there exists $\varepsilon=\left(\varepsilon_{i}: i \in I \backslash I_{m}\right) \in$ $[0,+\infty)^{I \backslash I_{m}}$ such that $\left|\varphi_{i}^{(I, m)}\left(x_{J_{m}}\right)\right| \leq \varepsilon_{i}$, for any $i \in I \backslash I_{m}$, for any $x_{J_{m}} \in$ $U^{(m)}$, and such that $\prod_{i \in I \backslash I_{m}}\left(1+2 \varepsilon_{i}\right) \in \mathbf{R}^{+}$; moreover, let $N \in[1,+\infty)$, let $a=\left(a_{i}: i \in I\right) \in[0,+\infty)^{I}$ such that $\prod_{i \in I: a_{i} \neq 0} a_{i} \in \mathbf{R}^{+}$, and let $v \in E_{I}$; then:

1. There exist $b=\left(b_{j}: j \in J\right) \in[0,+\infty)^{J}$ and $z \in E_{J}$ such that $\prod_{j \in J: b_{j} \neq 0} b_{j} \in$ \mathbf{R}^{+}and such that, for any $l, n, k \in \mathbf{N}, l, n, k \geq m$, one has

$$
\begin{gathered}
\varphi^{-1}\left(E_{N, a, v}^{(k, I)}\right) \subset E_{N, b, z}^{(k, J)} \\
\left(\bar{\varphi}^{(l, n)}\right)^{-1}\left(E_{N, a, v}^{(k, I)}\right) \subset E_{N, b, z}^{(k, J)} .
\end{gathered}
$$

In particular, if φ is (m, σ)-standard, the statement is true for any $N \in$ \mathbf{R}^{+}, and one has

$$
\begin{aligned}
\varphi^{-1}\left(E_{N, a, v}^{(k, I)}\right) & =\left(\bar{\varphi}^{(l, n)}\right)^{-1}\left(E_{N, a, v}^{(k, I)}\right)=E_{N, b, z}^{(k, J)} \\
\varphi^{-1}\left(E_{N, a, v}^{(k, I)}\right) & =\left(\bar{\varphi}^{(l, n)}\right)^{-1}\left(E_{N, a, v}^{(\stackrel{\circ}{k}, I)}\right)=E_{N, b, z}^{(k, J)}
\end{aligned}
$$

2. Suppose that the function $\varphi_{i j}$ is continuous, for any $i \in I_{m}$, for any $j \in J \backslash J_{m}$, and the function $\varphi^{(m, m)}:\left(U^{(m)}, \tau^{(m)}\left(U^{(m)}\right)\right) \longrightarrow\left(\mathbf{R}^{m}, \tau^{(m)}\right)$ is open; then, for any $M \in \mathbf{R}^{+}$, there exists $O \in \mathbf{R}^{+}$such that, for any $l, n, k \in \mathbf{N}, l, n, k \geq m$, one has

$$
\begin{gathered}
\varphi^{-1}\left(E_{M, N, a, v}^{(k, I)}\right) \subset E_{O, N, b, z}^{(k, J)} \\
\left(\bar{\varphi}^{(l, n)}\right)^{-1}\left(E_{M, N, a, v}^{(k, I)}\right) \subset E_{O, N, b, z}^{(k, J)}
\end{gathered}
$$

In particular, if φ is (m, σ)-standard, the statement is true for any $N \in \mathbf{R}^{+}$.
Proof. 1. Since $\bar{\varphi}$ is bijective, from Corollary 3.8, the functions $\varphi_{i, \sigma(i)}, \forall i \in$ $I \backslash I_{m}$, and σ are bijective.
Let $N \in[1,+\infty)$, let $a=\left(a_{i}: i \in I\right) \in[0,+\infty)^{I}$ such that $\prod_{i \in I: a_{i} \neq 0} a_{i} \in$ \mathbf{R}^{+}, let $v \in E_{I}$, and let $\bar{a}=\left(\bar{a}_{i}: i \in I \backslash I_{m}\right) \in[0,+\infty)^{I \backslash I_{m}}$, where

$$
\bar{a}_{i}=\left\{\begin{array}{ll}
\max \left\{1, a_{i}\right\} & \text { if } \varepsilon_{i}>0 \\
a_{i} & \text { if } \varepsilon_{i}=0
\end{array}, \forall i \in I \backslash I_{m}\right.
$$

define $b=\left(b_{j}: j \in J\right) \in[0,+\infty)^{J}$ and $z=\left(z_{j}: j \in J\right) \in[0,+\infty)^{J}$ such that $b_{j}=z_{j}=1, \forall j \in J_{m}$; moreover, $\forall i \in I \backslash I_{m}$, set

$$
\begin{gather*}
b_{\sigma(i)}=\frac{\left|\varphi_{i, \sigma(i)}^{-1}\left(v_{i}+\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right)-\varphi_{i, \sigma(i)}^{-1}\left(v_{i}-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right)\right|}{N}, \\
z_{\sigma(i)}=\frac{\varphi_{i, \sigma(i)}^{-1}\left(v_{i}-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right)+\varphi_{i, \sigma(i)}^{-1}\left(v_{i}+\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right)}{2} \tag{12}
\end{gather*}
$$

Observe that, $\forall i \in I \backslash I_{m}$, we have $b_{\sigma(i)} \neq 0$ if and only if $\bar{a}_{i} \neq 0$; then, since $\sigma\left(I \backslash I_{m}\right)=J \backslash J_{m}$, we have

$$
\begin{align*}
& \quad \prod_{j \in J: b_{j} \neq 0} b_{j}=\prod_{j \in J \backslash J_{m}: b_{j} \neq 0} b_{j}=\prod_{i \in I \backslash I_{m}: \bar{a}_{i} \neq 0} b_{\sigma(i)} \\
& =\left(\prod_{i \in I \backslash I_{m}: \bar{a}_{i} \neq 0} \frac{\left|\varphi_{i, \sigma(i)}^{-1}\left(v_{i}+\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right)-\varphi_{i, \sigma(i)}^{-1}\left(v_{i}-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right)\right|}{N \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)}\right) \\
& \cdot\left(\prod_{i \in I \backslash I_{m}: \bar{a}_{i} \neq 0} \bar{a}_{i}\right)\left(\prod_{i \in I \backslash I_{m}: \bar{a}_{i} \neq 0}\left(1+2 \varepsilon_{i}\right)\right) \cdot \tag{13}
\end{align*}
$$

Moreover, $\forall i \in I \backslash I_{m}$ the function $\varphi_{i, \sigma(i)}^{-1}$ is derivable on \mathbf{R}; then, if $\bar{a}_{i} \neq 0$, the Lagrange theorem implies that, for some $\xi_{i} \in\left(v_{i}-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right), v_{i}+\right.$ $\left.\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right)$, we have

$$
\begin{array}{r}
\frac{\left|\varphi_{i, \sigma(i)}^{-1}\left(v_{i}+\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right)-\varphi_{i, \sigma(i)}^{-1}\left(v_{i}-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right)\right|}{N \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)} \\
=\left|\left(\varphi_{i, \sigma(i)}^{-1}\right)^{\prime}\left(\xi_{i}\right)\right|=\frac{1}{\left|\varphi_{i, \sigma(i)}^{\prime}\left(\varphi_{i, \sigma(i)}^{-1}\left(\xi_{i}\right)\right)\right|} \tag{14}
\end{array}
$$

furthermore, $\forall i \in I \backslash I_{m}, \varphi_{i, \sigma(i)}$ is injective, and so $\mathcal{I}_{\varphi}=I \backslash I_{m}$; then

$$
\begin{equation*}
\prod_{i \in I \backslash I_{m}: \bar{a}_{i} \neq 0}\left|\varphi_{i, \sigma(i)}^{\prime}\left(\varphi_{i, \sigma(i)}^{-1}\left(\xi_{i}\right)\right)\right|=\prod_{i \in \mathcal{I}_{\varphi}: \bar{a}_{i} \neq 0}\left|\varphi_{i, \sigma(i)}^{\prime}\left(\varphi_{i, \sigma(i)}^{-1}\left(\xi_{i}\right)\right)\right| \in \mathbf{R}^{+} \tag{15}
\end{equation*}
$$

from Definition 3.2. Moreover, we have

$$
\begin{gathered}
\prod_{i \in I \backslash I_{m}: \bar{a}_{i} \neq 0} \bar{a}_{i}=\left(\prod_{i \in I \backslash I_{m}: a_{i}>1, \varepsilon_{i}>0} a_{i}\right)\left(\prod_{i \in I \backslash I_{m}: a_{i} \neq 0, \varepsilon_{i}=0} a_{i}\right) \in \mathbf{R}^{+} \\
\prod_{i \in I \backslash I_{m}: \bar{a}_{i} \neq 0}\left(1+2 \varepsilon_{i}\right) \in \mathbf{R}^{+}
\end{gathered}
$$

then, from formulas (13), (14) and (15), we obtain $\prod_{j \in J: b_{j} \neq 0} b_{j} \in \mathbf{R}^{+}$.
Moreover, let $x_{0}=\left(x_{0, j}: j \in J\right) \in U ; \forall i \in I \backslash I_{m}$, we have

$$
\begin{align*}
& \left|\varphi_{i, \sigma(i)}^{-1}\left(v_{i}-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right)\right| \\
& \quad=\left|\varphi_{i, \sigma(i)}^{-1}\left(v_{i}-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right)-x_{0, \sigma(i)}+x_{0, \sigma(i)}\right| \\
& \leq\left|\varphi_{i, \sigma(i)}^{-1}\left(v_{i}-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right)-\varphi_{i, \sigma(i)}^{-1}\left(\varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right)\right)\right|+\left|x_{0, \sigma(i)}\right| \tag{16}
\end{align*}
$$

furthermore, from the Lagrange theorem, there exists $\zeta_{i} \in\left(\rho_{i}, \tau_{i}\right)$, where

$$
\begin{aligned}
& \rho_{i}=\min \left\{v_{i}-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right), \varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right)\right\}, \\
& \tau_{i}=\max \left\{v_{i}-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right), \varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right)\right\},
\end{aligned}
$$

such that

$$
\begin{aligned}
\left\lvert\, \varphi_{i, \sigma(i)}^{-1}\left(v_{i}-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right)\right. & -\varphi_{i, \sigma(i)}^{-1}\left(\varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right)\right) \mid \\
=\left|\left(\varphi_{i, \sigma(i)}^{-1}\right)^{\prime}\left(\zeta_{i}\right)\right| \mid v_{i} & \left.-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)-\varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right) \right\rvert\, \\
& =\frac{\left|v_{i}-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)-\varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right)\right|}{\left|\varphi_{i, \sigma(i)}^{\prime}\left(\varphi_{i, \sigma(i)}^{-1}\left(\zeta_{i}\right)\right)\right|}
\end{aligned}
$$

thus, from (16), we obtain

$$
\begin{align*}
\mid \varphi_{i, \sigma(i)}^{-1}\left(v_{i}-\right. & \left.\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right) \mid \\
& \leq \frac{\left|v_{i}-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)-\varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right)\right|}{\left|\varphi_{i, \sigma(i)}^{\prime}\left(\varphi_{i, \sigma(i)}^{-1}\left(\zeta_{i}\right)\right)\right|}+\left|x_{0, \sigma(i)}\right| . \tag{17}
\end{align*}
$$

We have $\sup _{i \in I \backslash I_{m}}\left|v_{i}-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right| \leq\|v\|_{I}+\frac{N}{2}\|\bar{a}\|_{I}\left(1+2\|\varepsilon\|_{I}\right)<+\infty ;$ moreover, from Definition 3.2, we have

$$
\begin{gathered}
\sup _{i \in I \backslash I_{m}}\left|\varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right)\right|=\sup _{i \in I \backslash I_{m}}\left|\varphi_{i}^{\left(I \backslash I_{m}, J \backslash J_{m}\right)}\left(\left(x_{0}\right)_{J \backslash J_{m}}\right)\right|<+\infty, \\
\inf _{i \in I \backslash I_{m}} \mid \varphi_{i, \sigma(i)}^{\prime}\left(\varphi _ { i , \sigma (i) } ^ { - 1 } (\zeta _ { i }) | = \operatorname { i n f } _ { i \in \mathcal { I } _ { \varphi } } | \varphi _ { i , \sigma (i) } ^ { \prime } \left(\varphi_{i, \sigma(i)}^{-1}\left(\zeta_{i}\right) \mid>0\right.\right.
\end{gathered}
$$

then, there exists $c \in \mathbf{R}^{+}$such that $\sup _{i \in I \backslash I_{m}}\left|\varphi_{i, \sigma(i)}^{\prime}\left(\varphi_{i, \sigma(i)}^{-1}\left(\zeta_{i}\right)\right)\right|^{-1} \leq c$, and so formula (17) implies

$$
\begin{aligned}
& \sup _{i \in I \backslash I_{m}}\left|\varphi_{i, \sigma(i)}^{-1}\left(v_{i}-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right)\right| \\
& \leq c\left(\sup _{i \in I \backslash I_{m}}\left|v_{i}-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right|+\sup _{i \in I \backslash I_{m}}\left|\varphi_{i, \sigma(i)}\left(x_{0, \sigma(i)}\right)\right|\right) \\
& +\left\|x_{0}\right\|_{J}<+\infty .
\end{aligned}
$$

Analogously, we have

$$
\sup _{i \in I \backslash I_{m}}\left|\varphi_{i, \sigma(i)}^{-1}\left(v_{i}+\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right)\right|<+\infty
$$

then, from formula (12), we obtain that $\sup _{i \in I \backslash I_{m}}\left|z_{\sigma(i)}\right|<+\infty$, and so $z \in E_{J}$.

Moreover, let $k \in \mathbf{N}, k \geq m$, and let $x=\left(x_{j}: j \in J\right) \in \varphi^{-1}\left(E_{N, a, v}^{(k, I)}\right)$; $\forall i \in I \backslash I_{k}$, we have

$$
\begin{aligned}
& \varphi_{i}^{(I, m)}\left(x_{J_{m}}\right)+\varphi_{i, \sigma(i)}\left(x_{\sigma(i)}\right)=\varphi_{i}(x) \in\left[v_{i}-\frac{N}{2} a_{i}, v_{i}+\frac{N}{2} a_{i}\right] \\
& \Rightarrow \varphi_{i, \sigma(i)}\left(x_{\sigma(i)}\right) \in {\left[v_{i}-\frac{N}{2} a_{i}-\varphi_{i}^{(I, m)}\left(x_{J_{m}}\right), v_{i}+\frac{N}{2} a_{i}-\varphi_{i}^{(I, m)}\left(x_{J_{m}}\right)\right] } \\
& \subset\left[v_{i}-\frac{N}{2} \bar{a}_{i}-\varepsilon_{i}, v_{i}+\frac{N}{2} \bar{a}_{i}+\varepsilon_{i}\right]
\end{aligned}
$$

moreover, since $N \geq 1$, we have $\frac{N}{2} \bar{a}_{i}+\varepsilon_{i} \leq \frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)$, and so $x_{\sigma(i)} \in$ [α_{i}, β_{i}], where
$\alpha_{i}=\min \left\{\varphi_{i, \sigma(i)}^{-1}\left(v_{i}-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right), \varphi_{i, \sigma(i)}^{-1}\left(v_{i}+\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right)\right\}$,
$\beta_{i}=\max \left\{\varphi_{i, \sigma(i)}^{-1}\left(v_{i}-\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right), \varphi_{i, \sigma(i)}^{-1}\left(v_{i}+\frac{N}{2} \bar{a}_{i}\left(1+2 \varepsilon_{i}\right)\right)\right\} ;$
thus, formula (12) implies

$$
\begin{equation*}
x_{\sigma(i)} \in\left[z_{\sigma(i)}-\frac{N}{2} b_{\sigma(i)}, z_{\sigma(i)}+\frac{N}{2} b_{\sigma(i)}\right] ; \tag{18}
\end{equation*}
$$

finally, since $\sigma\left(I \backslash I_{k}\right)=J \backslash J_{k}$, we obtain $\varphi^{-1}\left(E_{N, a, v}^{(k, I)}\right) \subset E_{N, b, z}^{(k, J)}$.
Furthermore, let $l, n \in \mathbf{N}, l, n \geq m$, and let

$$
x=\left(x_{j}: j \in J\right) \in\left(\bar{\varphi}^{(l, n)}\right)^{-1}\left(E_{N, a, v}^{(k, I)}\right)
$$

$\forall i \in I_{l} \backslash I_{k}$, since $\varphi_{i}(x)=\bar{\varphi}_{i}^{(l, n)}(x)$, by repeating the previous arguments, we have formula (18); conversely, $\forall i \in I \backslash I_{l}$, we have

$$
\varphi_{i, \sigma(i)}\left(x_{\sigma(i)}\right)=\varphi_{i}(x) \in\left[v_{i}-\frac{N}{2} a_{i}, v_{i}+\frac{N}{2} a_{i}\right]
$$

and so $x_{\sigma(i)} \in\left[\gamma_{i}, \delta_{i}\right]$, where

$$
\begin{align*}
& \gamma_{i}=\min \left\{\varphi_{i, \sigma(i)}^{-1}\left(v_{i}-\frac{N}{2} a_{i}\right), \varphi_{i, \sigma(i)}^{-1}\left(v_{i}+\frac{N}{2} a_{i}\right)\right\}, \\
& \delta_{i}=\max \left\{\varphi_{i, \sigma(i)}^{-1}\left(v_{i}-\frac{N}{2} a_{i}\right), \varphi_{i, \sigma(i)}^{-1}\left(v_{i}+\frac{N}{2} a_{i}\right)\right\} ; \tag{19}
\end{align*}
$$

then, since $\left[\gamma_{i}, \delta_{i}\right] \subset\left[\alpha_{i}, \beta_{i}\right]$, we obtain formula (18) again; thus, we have $\left(\bar{\varphi}^{(l, n)}\right)^{-1}\left(E_{N, a, v}^{(k, I)}\right) \subset E_{N, b, z}^{(k, J)}$.
In particular, if φ is (m, σ)-standard, $\forall i \in I \backslash I_{m}$, we have $\varepsilon_{i}=0$, and so $\bar{a}_{i}=a_{i}$; then, $\forall N \in \mathbf{R}^{+}$, we have

$$
\begin{align*}
\varphi_{i, \sigma(i)}^{-1}\left(\left[v_{i}-\frac{N}{2} a_{i}, v_{i}+\frac{N}{2} a_{i}\right]\right) & =\left[\gamma_{i}, \delta_{i}\right] \\
= & {\left[z_{\sigma(i)}-\frac{N}{2} b_{\sigma(i)}, z_{\sigma(i)}+\frac{N}{2} b_{\sigma(i)}\right] } \tag{20}
\end{align*}
$$

thus, $\forall k \in \mathbf{N}, k \geq m$, we obtain $\varphi^{-1}\left(E_{N, a, v}^{(k, I)}\right)=E_{N, b, z}^{(k, J)}, \varphi^{-1}\binom{\stackrel{\circ}{(k, I)}}{N, a, v}=$ $\stackrel{\stackrel{\circ}{(k, J)}}{E_{N, b, z}}$; analogously, $\forall l, n \in \mathbf{N}, l, n \geq m$, from formula (20), we have $\left(\bar{\varphi}^{(l, n)}\right)^{-1}\left(E_{N, a, v}^{(k, I)}\right)=E_{N, b, z}^{(k, J)},\left(\bar{\varphi}^{(l, n)}\right)^{-1}\binom{\stackrel{\circ}{(k, I)}}{E_{N, a, v}}=E_{N, b, z}^{(k, J)}$.
2. Suppose that the function $\varphi_{i j}$ is continuous, $\forall i \in I_{m}, \forall j \in J \backslash J_{m}$, and the function $\varphi^{(m, m)}:\left(U^{(m)}, \tau^{(m)}\left(U^{(m)}\right)\right) \longrightarrow\left(\mathbf{R}^{m}, \tau^{(m)}\right)$ is open; since $\bar{\varphi}$ is bijective, from Corollary 3.8, $\varphi^{(m, m)}$ is bijective too; moreover, $\forall M \in$ \mathbf{R}^{+}, consider the set

$$
\bar{E}_{M, N, a, v}^{(I)}=\prod_{i \in I}\left[v_{i}-\frac{\bar{N}}{2} \overline{\bar{a}}_{i}, v_{i}+\frac{\bar{N}}{2} \overline{\bar{a}}_{i}\right]
$$

where $\bar{N}=\max \{2 M, N\} \in[1,+\infty), \overline{\bar{a}}_{i}=\max \left\{1, a_{i}\right\}, \forall i \in I$. We have $\bar{E}_{M, N, a, v}^{(I)} \subset E_{\bar{N}, \bar{a}, v}^{(m, I)}$, where $\overline{\bar{a}}=\left(\overline{\bar{a}}_{i}: i \in I\right) \in[1,+\infty)^{I}$; moreover, we have

$$
\prod_{i \in I \backslash I_{m}: \overline{\bar{a}}_{i} \neq 0} \overline{\bar{a}}_{i}=\prod_{i \in I \backslash I_{m}: a_{i}>1} a_{i} \in \mathbf{R}^{+}
$$

then, from point 1 , there exist $\bar{b}=\left(\bar{b}_{j}: j \in J\right) \in[0,+\infty)^{J}$ and $\bar{z} \in E_{J}$ such that $\prod_{j \in J: \bar{b}_{j} \neq 0} \bar{b}_{j} \in \mathbf{R}^{+}$and such that

$$
\varphi^{-1}\left(\bar{E}_{M, N, a, v}^{(I)}\right) \subset \varphi^{-1}\left(E_{\bar{N}, \bar{a}, v}^{(m, I)}\right) \subset E_{\bar{N}, \bar{b}, \bar{z}}^{(m, J)}
$$

then, $\forall x=\left(x_{j}: j \in J\right) \in \varphi^{-1}\left(\bar{E}_{M, N, a, v}^{(I)}\right)$, we have $\left\|x_{J \backslash J_{m}}\right\|_{J \backslash J_{m}} \leq$ $\|\bar{z}\|_{J \backslash J_{m}}+\frac{\bar{N}}{2}\|\bar{b}\|_{J \backslash J_{m}} \equiv O_{1} \in \mathbf{R}^{+}$. Moreover, $\forall i \in I_{m}$, we have

$$
\varphi_{i}(x)=\varphi_{i}^{(m, m)}\left(x_{J_{m}}\right)+\sum_{j \in J \backslash J_{m}} \varphi_{i j}\left(x_{j}\right),
$$

and so

$$
\begin{equation*}
x_{J_{m}}=\left(\varphi^{(m, m)}\right)^{-1} w_{I_{m}} \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{i}=\varphi_{i}(x)-\sum_{j \in J \backslash J_{m}} \varphi_{i j}\left(x_{j}\right), \forall i \in I_{m} ; \tag{22}
\end{equation*}
$$

furthermore, $\forall i \in I \backslash I_{m}$, we have

$$
\begin{aligned}
& \varphi_{i}^{(I, m)}\left(x_{J_{m}}\right)+\varphi_{i, \sigma(i)}\left(x_{\sigma(i)}\right)=\varphi_{i}(x) \in\left[v_{i}-\frac{\bar{N}}{2} \overline{\bar{a}}_{i}, v_{i}+\frac{\bar{N}}{2} \overline{\bar{a}}_{i}\right] \\
& \Rightarrow \varphi_{i, \sigma(i)}\left(x_{\sigma(i)}\right) \in {\left[v_{i}-\frac{\bar{N}}{2} \overline{\bar{a}}_{i}-\varphi_{i}^{(I, m)}\left(x_{J_{m}}\right), v_{i}+\frac{\bar{N}}{2} \overline{\bar{a}}_{i}-\varphi_{i}^{(I, m)}\left(x_{J_{m}}\right)\right] } \\
& \subset\left[v_{i}-\frac{\bar{N}}{2} \overline{\bar{a}}_{i}-\varepsilon_{i}, v_{i}+\frac{\bar{N}}{2} \overline{\bar{a}}_{i}+\varepsilon_{i}\right]
\end{aligned}
$$

and so

$$
\begin{equation*}
x_{\sigma(i)} \in\left[\bar{\alpha}_{i}, \bar{\beta}_{i}\right] \subset A_{\sigma(i)}, \tag{23}
\end{equation*}
$$

where

$$
\begin{aligned}
& \bar{\alpha}_{i}=\min \left\{\varphi_{i, \sigma(i)}^{-1}\left(v_{i}-\frac{\bar{N}}{2} \overline{\bar{a}}_{i}-\varepsilon_{i}\right), \varphi_{i, \sigma(i)}^{-1}\left(v_{i}+\frac{\bar{N}}{2} \overline{\bar{a}}_{i}+\varepsilon_{i}\right)\right\}, \\
& \bar{\beta}_{i}=\max \left\{\varphi_{i, \sigma(i)}^{-1}\left(v_{i}-\frac{\bar{N}}{2} \overline{\bar{a}}_{i}-\varepsilon_{i}\right), \varphi_{i, \sigma(i)}^{-1}\left(v_{i}+\frac{\bar{N}}{2} \overline{\bar{a}}_{i}+\varepsilon_{i}\right)\right\}
\end{aligned}
$$

then, since $\forall i \in I_{m}, \forall j \in J \backslash J_{m}$, the function $\varphi_{i j}$ is continuous, there exists $O_{2}=O_{2}(\varphi, M, N, a, v) \in \mathbf{R}^{+}$such that

$$
\sup _{i \in I_{m}} \sum_{j \in J \backslash J_{m}}\left|\varphi_{i j}\left(x_{j}\right)\right| \leq O_{2},
$$

and so $\left\|w_{I_{m}}\right\|_{I_{m}} \leq\|v\|_{I_{m}}+\frac{\bar{N}}{2}\|\overline{\bar{a}}\|_{I_{m}}+O_{2} \equiv O_{3} \in \mathbf{R}^{+}$, from (22); then, since the function $\left(\varphi^{(m, m)}\right)^{-1}$ is continuous, from (21), we have $\left\|x_{J_{m}}\right\|_{J_{m}} \leq O_{4}$, for some $O_{4}=O_{4}(\varphi, M, N, a, v) \in \mathbf{R}^{+}$such that

$$
\left(\varphi^{(m, m)}\right)^{-1}\left(\left[-O_{3}, O_{3}\right]^{m}\right) \subset\left[-O_{4}, O_{4}\right]^{m}
$$

and so $\|x\|_{J} \leq \max \left\{O_{1}, O_{4}\right\}$. Thus, if b, z are the sequences defined by point 1, we have

$$
\begin{align*}
\varphi^{-1}\left(\bar{E}_{M, N, a, v}^{(I)}\right) \subset \prod_{j \in J}\left[-\max \left\{O_{1}, O_{4}\right\},\right. & \left.\max \left\{O_{1}, O_{4}\right\}\right] \\
& \subset \prod_{j \in J}\left[z_{j}-O, z_{j}+O\right] \tag{24}
\end{align*}
$$

where $O \equiv \max \left\{O_{1}, O_{4}\right\}+\|z\|_{J} \in \mathbf{R}^{+}$; moreover, $\forall k \in \mathbf{N}, k \geq m$, we have $E_{M, N, a, v}^{(k, I)} \subset E_{N, a, v}^{(k, I)} \cap \bar{E}_{M, N, a, v}^{(I)}$; then, from formula (24), we obtain

$$
\begin{aligned}
\varphi^{-1}\left(E_{M, N, a, v}^{(k, I)}\right) \subset \varphi^{-1}\left(E_{N, a, v}^{(k, I)}\right) & \cap \varphi^{-1}\left(\bar{E}_{M, N, a, v}^{(I)}\right) \\
& \subset E_{N, b, z}^{(k, J)} \cap \prod_{j \in J}\left[z_{j}-O, z_{j}+O\right] \subset E_{O, N, b, z}^{(k, J)}
\end{aligned}
$$

Furthermore, let $l, n \in \mathbf{N}, l, n \geq m$; from point 1 , we have

$$
\left(\bar{\varphi}^{(l, n)}\right)^{-1}\left(\bar{E}_{M, N, a, v}^{(I)}\right) \subset\left(\bar{\varphi}^{(l, n)}\right)^{-1}\left(E_{\bar{N}, \bar{a}, v}^{(m, I)}\right) \subset E_{\bar{N}, \bar{b}, \bar{z}}^{(m, J)} ;
$$

then, $\forall x=\left(x_{j}: j \in J\right) \in\left(\bar{\varphi}^{(l, n)}\right)^{-1}\left(\bar{E}_{M, N, a, v}^{(I)}\right)$, we have $\left\|x_{J \backslash J_{m}}\right\|_{J \backslash J_{m}} \leq$ O_{1}. Moreover, $\forall i \in I_{m}$, we have

$$
\bar{\varphi}_{i}^{(l, n)}(x)=\varphi_{i}^{(m, m)}\left(x_{J_{m}}\right)+\sum_{j \in J_{n} \backslash J_{m}} \varphi_{i j}\left(x_{j}\right),
$$

and so

$$
\begin{equation*}
x_{J_{m}}=\left(\varphi^{(m, m)}\right)^{-1} \bar{w}_{I_{m}} \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{w}_{i}=\bar{\varphi}_{i}^{(l, n)}(x)-\sum_{j \in J_{n} \backslash J_{m}} \varphi_{i j}\left(x_{j}\right), \forall i \in I_{m} \tag{26}
\end{equation*}
$$

furthermore, $\forall i \in I_{l} \backslash I_{m}$, since $\varphi_{i}(x)=\bar{\varphi}_{i}^{(l, n)}(x)$, we have formula (23).
Finally, $\forall i \in I \backslash I_{l}$, we have

$$
\begin{aligned}
\varphi_{i, \sigma(i)}\left(x_{\sigma(i)}\right)=\bar{\varphi}_{i}^{(l, n)}(x) \in\left[v_{i}-\frac{\bar{N}}{2} \overline{\bar{a}}_{i}, v_{i}+\frac{\bar{N}}{2} \overline{\bar{a}}_{i}\right] & \\
& \Rightarrow x_{\sigma(i)} \in\left[\bar{\gamma}_{i}, \bar{\delta}_{i}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \bar{\gamma}_{i}=\min \left\{\varphi_{i, \sigma(i)}^{-1}\left(v_{i}-\frac{\bar{N}}{2} \overline{\bar{a}}_{i}\right), \varphi_{i, \sigma(i)}^{-1}\left(v_{i}+\frac{\bar{N}}{2} \overline{\bar{a}}_{i}\right)\right\} \\
& \bar{\delta}_{i}=\max \left\{\varphi_{i, \sigma(i)}^{-1}\left(v_{i}-\frac{\bar{N}}{2} \overline{\bar{a}}_{i}\right), \varphi_{i, \sigma(i)}^{-1}\left(v_{i}+\frac{\bar{N}}{2} \overline{\bar{a}}_{i}\right)\right\}
\end{aligned}
$$

then, since $\left[\bar{\gamma}_{i}, \bar{\delta}_{i}\right] \subset\left[\bar{\alpha}_{i}, \bar{\beta}_{i}\right]$, we obtain formula (23) again, from which

$$
\sup _{i \in I_{m}} \sum_{j \in J_{n} \backslash J_{m}}\left|\varphi_{i j}\left(x_{j}\right)\right| \leq \sup _{i \in I_{m}} \sum_{j \in J \backslash J_{m}}\left|\varphi_{i j}\left(x_{j}\right)\right| \leq O_{2}
$$

and so $\left\|\bar{w}_{I_{m}}\right\|_{I_{m}} \leq O_{3}$, from (26).
Then, since the function $\left(\varphi^{(m, m)}\right)^{-1}$ is continuous, from (25), we have $\left\|x_{J_{m}}\right\|_{J_{m}} \leq O_{4}$, and so $\|x\|_{J} \leq \max \left\{O_{1}, O_{4}\right\}$. Thus, we have

$$
\begin{align*}
&\left(\bar{\varphi}^{(l, n)}\right)^{-1}\left(\bar{E}_{M, N, a, v}^{(I)}\right) \subset \prod_{j \in J}\left[-\max \left\{O_{1}, O_{4}\right\}, \max \left\{O_{1}, O_{4}\right\}\right] \\
& \subset \prod_{j \in J}\left[z_{j}-O, z_{j}+O\right] \tag{27}
\end{align*}
$$

finally, $\forall k \in \mathbf{N}, k \geq m$, from point 1 and formula (27), we obtain

$$
\begin{aligned}
&\left(\bar{\varphi}^{(l, n)}\right)^{-1}\left(E_{M, N, a, v}^{(k, I)}\right) \subset\left(\bar{\varphi}^{(l, n)}\right)^{-1}\left(E_{N, a, v}^{(k, I)}\right) \cap\left(\bar{\varphi}^{(l, n)}\right)^{-1}\left(\bar{E}_{M, N, a, v}^{(I)}\right) \\
& \subset E_{N, b, z}^{(k, J)} \cap \prod_{j \in J}\left[z_{j}-O, z_{j}+O\right] \subset E_{O, N, b, z}^{(k, J)}
\end{aligned}
$$

In particular, if φ is (m, σ)-standard, $\forall N \in \mathbf{R}^{+}, \forall l, n, k \in \mathbf{N}, l, n, k \geq m$, from point 1, we have

$$
\varphi^{-1}\left(E_{N, a, v}^{(k, I)}\right)=\left(\bar{\varphi}^{(l, n)}\right)^{-1}\left(E_{N, a, v}^{(k, I)}\right)=E_{N, b, z}^{(k, J)}
$$

moreover, we have formulas (24) and (27) again, from which

$$
\begin{gathered}
\varphi^{-1}\left(E_{M, N, a, v}^{(k, I)}\right) \subset E_{O, N, b, z}^{(k, J)}, \\
\left(\bar{\varphi}^{(l, n)}\right)^{-1}\left(E_{M, N, a, v}^{(k, I)}\right) \subset E_{O, N, b, z}^{(k, J)}
\end{gathered}
$$

Proposition 4.4. Let (S, Σ) be a measurable space, let \mathcal{I} be a π-system on S, and let μ_{1} and μ_{2} be two measures on (S, Σ), σ - finite on \mathcal{I}; if $\sigma(\mathcal{I})=\Sigma$ and μ_{1} and μ_{2} coincide on \mathcal{I}, then μ_{1} and μ_{2} coincide on Σ.

Proof. See, for example, Theorem 10.3 in Billingsley [8].
Now, we can prove the main result of our paper, that improves Theorem 47 in [5], and generalizes the change of variables' formula for the integration of a measurable function on \mathbf{R}^{m} with values in \mathbf{R} (see, for example, the Lang's book [11]).

Theorem 4.5. (Change of variables' formula). Let $\varphi: U \subset E_{J} \longrightarrow E_{I}$ be a bijective, continuous and (m, σ)-general function, such that $\pi_{I, I \backslash I_{m}} \circ \bar{\varphi}$ is continuous and such that, for any $n \in \mathbf{N}, n \geq m$, the function $\bar{\varphi}^{(n, n)}: U \longrightarrow E_{I}$ is a diffeomorphism; moreover, suppose that there exists $\varepsilon=\left(\varepsilon_{i}: i \in I \backslash I_{m}\right) \in$ $\left(\mathbf{R}^{+}\right)^{I \backslash I_{m}}$ such that $\left|\varphi_{i}^{(I, m)}\left(x_{J_{m}}\right)\right| \leq \varepsilon_{i}$, for any $i \in I \backslash I_{m}$, for any $x_{J_{m}} \in U^{(m)}$, and such that $\prod_{i \in I \backslash I_{m}}\left(1+2 \varepsilon_{i}\right) \in \mathbf{R}^{+}$; furthermore, suppose that the sequence $\left\{\left(\bar{\varphi}^{(n, n)}\right)^{-1}\right\}_{n \geq m}$ converges uniformly to φ^{-1} over the closed and bounded subsets of E_{I}, and the sequence $\left\{\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right\}_{n \geq m}$ converges uniformly over the closed and bounded subsets of U; finally, let $\bar{N} \in[1,+\infty)$, let $a=\left(a_{i}: i \in I\right) \in$ $[0,+\infty)^{I}$ such that $\prod_{i \in I: a_{i} \neq 0} a_{i} \in \mathbf{R}^{+}$, let $v \in E_{I}$, and let $b \in[0,+\infty)^{J}$ and $z \in E_{J}$ defined by Proposition 4.3. Then, for any $k \in \mathbf{N}, k \geq m$, for any $B \in \mathcal{B}^{(I)}\binom{\stackrel{\circ}{(k, I)}}{E_{N, a, v}}$ and for any measurable function $f:\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right) \longrightarrow(\mathbf{R}, \mathcal{B})$ such that $f^{+}\left(\right.$or $\left.f^{-}\right)$is $\lambda_{N, a, v}^{(k, I)}$-integrable, one has

$$
\int_{B} f d \lambda_{N, a, v}^{(k, I)}=\int_{\varphi^{-1}(B)} f(\varphi) \lim _{n \rightarrow+\infty}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)}
$$

In particular, assume that, for any $x \in U$, there exists the function $J_{\varphi}(x)$: $E_{J} \longrightarrow E_{I}$; then, one has

$$
\int_{B} f d \lambda_{N, a, v}^{(k, I)}=\int_{\varphi^{-1}(B)} f(\varphi)\left|\operatorname{det} J_{\varphi}\right| d \lambda_{N, b, z}^{(k, J)}
$$

Proof. The previous assumptions imply that $\bar{\varphi}$ is bijective, $\varphi_{i j}$ is continuous, $\forall i \in I_{m}, \forall j \in J \backslash J_{m}$, and $\varphi^{(m, m)}:\left(U^{(m)}, \tau^{(m)}\left(U^{(m)}\right)\right) \longrightarrow\left(\mathbf{R}^{m}, \tau^{(m)}\right)$ is open; thus, $\forall M \in \mathbf{R}^{+}, \forall N \in[1,+\infty), \forall a=\left(a_{i}: i \in I\right) \in[0,+\infty)^{I}$ such that $\prod_{i \in I: a_{i} \neq 0} a_{i} \in \mathbf{R}^{+}$, and $\forall v \in E_{I}$, let $O \in \mathbf{R}^{+}$and let b, z be the sequences defined by Proposition 4.3. Then, $\forall n, k \in \mathbf{N}, n \geq k \geq m, \forall B=\prod_{i \in I} B_{i} \in$ $\mathcal{B}^{(I)}\left(E_{M, N, a, v}^{(k, I)}\right)$ and $\forall i \in I \backslash I_{n}$, we have $B_{i} \in \mathcal{B}\left(\left[v_{i}-\frac{N}{2} a_{i}, v_{i}+\frac{N}{2} a_{i}\right]\right) ;$ moreover, since $\left(\bar{\varphi}^{(n, n)}\right)^{-1}(B) \subset E_{N, b, z}^{(k, J)}$, we have

$$
\varphi_{i, \sigma(i)}^{-1}\left(B_{i}\right) \in \mathcal{B}\left(\left[z_{\sigma(i)}-\frac{N}{2} b_{\sigma(i)}, z_{\sigma(i)}+\frac{N}{2} b_{\sigma(i)}\right]\right)
$$

from which

$$
\begin{align*}
& \int_{B} d \lambda_{N, a, v}^{(k, I)}=\int_{\prod_{p \in I} B_{p}} d\left(L e b^{(k)} \otimes\left(\left.\bigotimes_{q \in I \backslash I_{k}} \frac{1}{N} L e b\right|_{\mathcal{B}\left(\left[v_{q}-\frac{N}{2} a_{q}, v_{q}+\frac{N}{2} a_{q}\right]\right)}\right)\right) \\
& =\frac{1}{N^{n-k}} \int_{\prod_{p \in I_{n}}}^{B_{p} \times} \prod_{q \in I \backslash I_{n}} B_{q} d\left(L e b^{(n)} \otimes\left(\left.\bigotimes_{q \in I \backslash I_{n}} \frac{1}{N} L e b\right|_{\mathcal{B}\left(\left[v_{q}-\frac{N}{2} a_{q}, v_{q}+\frac{N}{2} a_{q}\right]\right)}\right)\right) \\
& =\frac{1}{N^{n-k}} \int_{\prod_{p \in I_{n}} B_{p}} d L e b^{(n)} \cdot \int_{\prod_{q \in I \backslash I_{n}} B_{q}} d\left(\left.\bigotimes_{q \in I \backslash I_{n}} \frac{1}{N} L e b\right|_{\mathcal{B}\left(\left[v_{q}-\frac{N}{2} a_{q}, v_{q}+\frac{N}{2} a_{q}\right]\right)}\right) . \tag{28}
\end{align*}
$$

Moreover, we have

$$
\begin{aligned}
& \int_{q \in I \backslash I_{n}} B_{q} d\left(\left.\bigotimes_{q \in I \backslash I_{n}} \frac{1}{N} L e b\right|_{\mathcal{B}\left(\left[v_{q}-\frac{N}{2} a_{q}, v_{q}+\frac{N}{2} a_{q}\right]\right)}\right)=\int_{q \in I \backslash I_{n}} d\left(\left.\bigotimes_{q \in I \backslash I_{n}} \frac{1}{N} L e b\right|_{\mathcal{B}\left(B_{q}\right)}\right) \\
& =\lim _{p \rightarrow+\infty} \int_{\prod_{q \in I_{p} \backslash I_{n}} B_{q}} d\left(\left.\bigotimes_{q \in I_{p} \backslash I_{n}} \frac{1}{N} L e b\right|_{\mathcal{B}\left(B_{q}\right)}\right) \\
& =\lim _{p \rightarrow+\infty} \int_{\substack{ \\
\prod_{p} \backslash I_{n}}} \prod_{q, \sigma(q)}\left|B_{q} \varphi_{q, I_{p} \backslash I_{n}}^{\prime-1}\right| \varphi_{q, \sigma(q)}^{\prime} \left\lvert\, \cdot d\left(\left.\bigotimes_{q \in I_{p} \backslash I_{n}} \frac{1}{N} L e b\right|_{\mathcal{B}\left(\varphi_{q, \sigma(q)}^{-1}\left(B_{q}\right)\right)}\right)\right.
\end{aligned}
$$

(since, $\forall q \in I_{p} \backslash I_{n}, \varphi_{q, \sigma(q)}$ is a diffeomorphism, by Proposition 3.13)

$$
=\int_{\prod_{q \in I \backslash I_{n}}} \prod_{q \in I \backslash I_{n}}\left|\varphi_{q, \sigma(q)}^{\prime}\right| \cdot d\left(\left.\bigotimes_{q \in I \backslash I_{n}} \frac{1}{N} L e b\right|_{\mathcal{B}\left(\varphi_{q, \sigma(q)}^{-1}\left(B_{q}\right)\right)}\right)
$$

(by Theorem 2.2)

$$
=\int_{\prod_{q \in I \backslash I_{n}} \varphi_{q, \sigma(q)}^{-1}\left(B_{q}\right)} \prod_{q \in I \backslash I_{n}}\left|\varphi_{q, \sigma(q)}^{\prime}\right| \cdot d\left(\left.\bigotimes_{q \in I \backslash I_{n}} \frac{1}{N} \operatorname{Leb}\right|_{\mathcal{B}\left(\left[z_{\sigma(q)}-\frac{N}{2} b_{\sigma(q)}, z_{\sigma(q)}+\frac{N}{2} b_{\sigma(q)}\right]\right)}\right) .
$$

Moreover, from Proposition 3.13, $\varphi^{(n, n)}$ is a diffeomorphism, and so formula
(28) implies

$$
\begin{align*}
& \int_{B} d \lambda_{N, a, v}^{(k, I)}=\frac{1}{N^{n-k}} \iint_{\left(\varphi^{(n, n)}\right)^{-1}\left(\prod_{p \in I_{n}} B_{p}\right)}\left|\operatorname{det} J_{\varphi^{(n, n)}}\right| d L e b^{(n)} \\
& \cdot \int_{q \in I \backslash I_{n}} \prod_{q, \sigma(q)}^{-1}\left(B_{q)}\right) \prod_{q \in I \backslash I_{n}}\left|\varphi_{q, \sigma(q)}^{\prime}\right| \cdot d\left(\left.\bigotimes_{q \in I \backslash I_{n}} \frac{1}{N} L e b\right|_{\mathcal{B}\left(\left[z_{\sigma(q)}-\frac{N}{2} b_{\sigma(q)}, z_{\sigma(q)}+\frac{N}{2} b_{\sigma(q)}\right]\right)}\right) \\
& =\frac{1}{N^{n-k}} \int_{\left(\bar{\varphi}^{(n, n)}\right)^{-1}(B)}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d\left(L e b^{(n)}\right. \\
& \left.\otimes\left(\left.\bigotimes_{q \in I \backslash I_{n}} \frac{1}{N} L e b\right|_{\mathcal{B}\left(\left[z_{\sigma(q)}-\frac{N}{2} b_{\sigma(q)}, z_{\sigma(q)}+\frac{N}{2} b_{\sigma(q)}\right]\right)}\right)\right) \\
& =\int_{\left(\bar{\varphi}^{(n, n)}\right)^{-1}(B)}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d\left(L e b^{(k)}\right. \\
& \left.\otimes\left(\left.\bigotimes_{q \in I \backslash I_{k}} \frac{1}{N} L e b\right|_{\mathcal{B}\left(\left[z_{\sigma(q)}-\frac{N}{2} b_{\sigma(q)}, z_{\sigma(q)}+\frac{N}{2} b_{\sigma(q)}\right]\right)}\right)\right) \\
& \left(\text { since }\left(\bar{\varphi}^{(n, n)}\right)^{-1}(B) \subset E_{N, b, z}^{(k, J)}\right) \\
& =\int_{\left(\bar{\varphi}^{(n, n)}\right)^{-1}(B)}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)} . \tag{29}
\end{align*}
$$

Consider the measures μ_{1} and μ_{2} on $\Sigma \equiv \mathcal{B}^{(I)}\left(E_{M, N, a, v}^{(k, I)}\right)$ defined by

$$
\begin{gathered}
\mu_{1}(B)=\int_{B} d \lambda_{N, a, v}^{(k, I)}, \\
\mu_{2}(B)=\int_{\left(\bar{\varphi}^{(n, n)}\right)^{-1}(B)}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)} ;
\end{gathered}
$$

from (29), μ_{1} and μ_{2} coincide on the set

$$
\mathcal{I}=\left\{B \in \Sigma: B=\prod_{i \in I} B_{i}\right\}
$$

moreover, we have $\mu_{1}\left(E_{M, N, a, v}^{(k, I)}\right)=\mu_{2}\left(E_{M, N, a, v}^{(k, I)}\right)<+\infty, E_{M, N, a, v}^{(k, I)} \in \mathcal{I}$, and so μ_{1} and μ_{2} are σ - finite on \mathcal{I}. Then, since \mathcal{I} is a π-system on $E_{M, N, a, v}^{(k, I)}$ such that $\sigma(\mathcal{I})=\Sigma$, from Proposition $4.4, \forall B \in \mathcal{B}^{(I)}\left(E_{M, N, a, v}^{(k, I)}\right)$, we have

$$
\begin{equation*}
\int_{B} d \lambda_{N, a, v}^{(k, I)}=\int_{\left(\bar{\varphi}^{(n, n)}\right)^{-1}(B)}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)} . \tag{30}
\end{equation*}
$$

Moreover, since $E_{M, N, a, v}^{(k, I)}$ is closed and bounded, the sequence $\left\{\left(\bar{\varphi}^{(n, n)}\right)^{-1}\right\}_{n \geq k}$ converges uniformly to φ^{-1} over $E_{M, N, a, v}^{(k, I)}$; furthermore, since φ is continuous, $\varphi^{-1}\left(E_{M, N, a, v}^{(k, I)}\right)$ is closed; then, there exist $\bar{n} \in \mathbf{N}, \bar{n} \geq k$, and $\delta \in \mathbf{R}^{+}$such that, $\forall i>\bar{n},\left(\bar{\varphi}^{(i, i)}\right)^{-1}\left(E_{M, N, a, v}^{(k, I)}\right) \subset \varphi^{-1}\left(E_{M, N, a, v}^{(k, I)}\right)+\overline{B_{J}(0, \delta)} \subset U$, from which

$$
\begin{aligned}
& \left(\bar{\varphi}^{(n, n)}\right)^{-1}(B) \subset \bigcup_{h \geq k}\left(\bar{\varphi}^{(h, h)}\right)^{-1}\left(E_{M, N, a, v}^{(k, I)}\right) \\
& \quad \subset\left(\bigcup_{h=k}^{\bar{n}}\left(\bar{\varphi}^{(h, h)}\right)^{-1}\left(E_{M, N, a, v}^{(k, I)}\right)\right) \bigcup\left(\varphi^{-1}\left(E_{M, N, a, v}^{(k, I)}\right)+\overline{B_{J}(0, \delta)}\right)
\end{aligned}
$$

$$
\forall n \geq k
$$

then, from Proposition 4.3, $\forall n \geq k$, we have

$$
\begin{align*}
& \left(\bar{\varphi}^{(n, n)}\right)^{-1}(B) \subset E_{O, N, b, z}^{(k, J)} \\
& \qquad\left(\left(\bigcup_{h=k}^{\bar{n}}\left(\bar{\varphi}^{(h, h)}\right)^{-1}\left(E_{M, N, a, v}^{(k, I)}\right)\right) \bigcup\left(\varphi^{-1}\left(E_{M, N, a, v}^{(k, I)}\right)+\overline{B_{J}(0, \delta)}\right)\right) \\
& \tag{31}\\
& \quad \equiv E_{M, N, a, v}^{(k, I, \varphi, \delta)} \subset U
\end{align*}
$$

and so

$$
\int_{\substack{(k, I) \tag{32}\\
E_{M, N, a, v}^{(2)}}} 1_{B} d \lambda_{N, a, v}^{(k, I)}=\int_{\substack{\left(\begin{array}{c}
(k, I, \varphi, \delta) \\
M, N, a, v
\end{array}\right.}} 1_{B}\left(\bar{\varphi}^{(n, n)}\right)\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)} .
$$

Moreover, $\forall h \in\{k, \ldots, \bar{n}\}, \varphi^{(h, h)}$ is continuous, since from Proposition 3.13 it is a diffeomorphism; then, since $\pi_{I, I \backslash I_{m}} \circ \bar{\varphi}$ is continuous, from Proposition 3.10, $\bar{\varphi}^{(h, h)}$ is continuous too, and so formula (31) implies that $E_{M, N, a, v}^{(k, I, \varphi, \delta)}$ is a closed
subset of U; furthermore, we have $E_{M, N, a, v}^{(k, I, \varphi, \delta)} \subset E_{O, N, b, z}^{(k, J)}$, and so $E_{M, N, a, v}^{(k, I, \varphi, \delta)}$ is bounded.

From formula (32), if $\psi:\left(\mathbf{R}^{I}, \mathcal{B}^{(\mathbf{I})}\right) \longrightarrow([0,+\infty), \mathcal{B}([0,+\infty)))$ is a simple function such that $\psi(x)=0, \forall x \notin E_{M, N, a, v}^{(k, I)}$, we have

$$
\int_{\substack{(k, r) \\ E_{M, N, a, v}}} \psi d \lambda_{N, a, v}^{(k, I)}=\int_{\substack{(k, I, \varphi, \delta) \\ E_{M, N, a, v}^{(k, s)}}} \psi\left(\bar{\varphi}^{(n, n)}\right)\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)} .
$$

Then, if $l:\left(\mathbf{R}^{I}, \mathcal{B}^{(\mathbf{I})}\right) \longrightarrow([0,+\infty), \mathcal{B}([0,+\infty)))$ is a measurable function such that $l(x)=0, \forall x \notin E_{M, N, a, v}^{(k, I)}$, and $\left\{\psi_{i}\right\}_{i \in \mathbf{N}}$ is a sequence of increasing positive simple functions over $\left(\mathbf{R}^{I}, \mathcal{B}^{(\mathbf{I})}\right)$ such that $\lim _{i \longrightarrow+\infty} \psi_{i}=l, \psi_{i}(x)=0$, $\forall x \notin E_{M, N, a, v}^{(k, I)}, \forall i \in \mathbf{N}$, from Beppo Levi theorem we have

$$
\begin{align*}
\int_{E_{M, N, a, v}^{(k, I)}} l d \lambda_{N, a, v}^{(k, I)} & =\lim _{i \longrightarrow+\infty} \int_{E_{M, N, a, v}^{(k, I)}} \psi_{i} d \lambda_{N, a, v}^{(k, I)} \\
= & \lim _{i \longrightarrow+\infty} \int_{E_{M, N, a, v}^{(k, I, \varphi, \delta)}} \psi_{i}\left(\bar{\varphi}^{(n, n)}\right)\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)} \\
& =\int_{E_{M, N, a, v}^{(k, I, \varphi, \delta)}} l\left(\bar{\varphi}^{(n, n)}\right)\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)}, \tag{33}
\end{align*}
$$

from which

$$
\begin{equation*}
\int_{E_{M, N, a, v}^{(k, I)}} l d \lambda_{N, a, v}^{(k, I)}=\lim _{n \xrightarrow{(k, I)}} \int_{\substack{(k, I, \varphi, \delta) \\ E_{M, N, a, v}^{(k, s)}}} l\left(\bar{\varphi}^{(n, n)}\right)\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)} . \tag{34}
\end{equation*}
$$

In particular, formula (34) is true if $l: \mathbf{R}^{I} \longrightarrow[0,+\infty)$ is $\left(\mathcal{B}^{(\mathbf{I})}, \mathcal{B}([0,+\infty))\right)$ measurable, $\left(\tau^{(I)}, \tau([0,+\infty))\right)$-continuous and such that $l\left(\mathbf{R}^{I}\right) \subset[0,1], l(x)=$ $0, \forall x \notin E_{M, N, a, v}^{(k, I)}$. In this case, let $\left\{f_{n}\right\}_{n \geq k}$ be the sequence of the measurable functions

$$
f_{n}:\left(E_{M, N, a, v}^{(k, I, \varphi, \delta)}, \mathcal{B}^{(J)}\left(E_{M, N, a, v}^{(k, I, \varphi, \delta)}\right)\right) \longrightarrow([0,+\infty), \mathcal{B}([0,+\infty)))
$$

given by

$$
f_{n}(x)=l\left(\bar{\varphi}^{(n, n)}(x)\right)\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}(x)\right|, \forall x \in E_{M, N, a, v}^{(k, I,,, \delta)}, \forall n \geq k
$$

since $E_{M, N, a, v}^{(k, I, \varphi, \delta)}$ is closed and bounded, the sequence $\left\{\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right\}_{n \geq k}$ converges uniformly over $E_{M, N, a, v}^{(k, I, \varphi, \delta)}$; then, there exists $\widehat{n} \in \mathbf{N}, \widehat{n} \geq k$, such that, $\forall x \in$
$E_{M, N, a, v}^{(k, I, \varphi, \delta)}, \forall n>\widehat{n}$, we have $\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}(x)\right| \leq\left|\operatorname{det} J_{\bar{\varphi}_{(\hat{n}, \hat{n})}}(x)\right|+1$; thus, since $l\left(\mathbf{R}^{I}\right) \subset[0,1], \forall n \geq k$, we have $\left|f_{n}\right| \leq\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| \leq g$, where

$$
g:\left(E_{M, N, a, v}^{(k, I, \varphi, \delta)}, \mathcal{B}^{(J)}\left(E_{M, N, a, v}^{(k, I, \varphi, \delta)}\right)\right) \longrightarrow([0,+\infty), \mathcal{B}([0,+\infty)))
$$

is the measurable function defined by

$$
\begin{equation*}
g(x)=\sum_{h=k}^{\widehat{n}}\left|\operatorname{det} J_{\bar{\varphi}^{(h, h)}}(x)\right|+\left|\operatorname{det} J_{\bar{\varphi}^{(\hat{n}, \hat{n})}}(x)\right|+1, \forall x \in E_{M, N, a, v}^{(k, I, \varphi, \delta)} . \tag{35}
\end{equation*}
$$

Moreover, $\forall h \in\{k, \ldots, \widehat{n}\}$, we have

$$
\begin{equation*}
\left|\operatorname{det} J_{\bar{\varphi}^{(h, h)}}(x)\right|=\left|\operatorname{det} J_{\varphi^{(h, h)}}\left(x_{J_{h}}\right)\right| \prod_{i \in I \backslash I_{h}}\left|\varphi_{i, \sigma(i)}^{\prime}\left(x_{\sigma(i)}\right)\right|, \forall x \in E_{M, N, a, v}^{(k, I, \varphi, \delta)} \tag{36}
\end{equation*}
$$

furthermore, from Proposition 3.23 and Proposition 3.13, $\forall h \in\{k, \ldots, \widehat{n}\}$, $\forall i \in I \backslash I_{h}$, the functions $\operatorname{det} J_{\varphi^{(h, h)}}$ and $\varphi_{i, \sigma(i)}^{\prime}$ are continuous; then, since the sets $\pi_{J, J_{h}}\left(E_{M, N, a, v}^{(k, I, \varphi, \delta)}\right)$ and $\pi_{J,\{\sigma(i)\}}\left(E_{M, N, a, v}^{(k, I, \varphi, \delta)}\right)$ are closed and bounded, from formulas (35) and (36), there exists $\beta \in \mathbf{R}^{+}$such that $g(x) \leq \beta, \forall x \in E_{M, N, a, v}^{(k, I, \varphi, \delta)}$; thus, by definition of $E_{M, N, a, v}^{(k, I, \varphi, \delta)}$, we have

$$
\begin{aligned}
& \int_{E_{M, I, \varphi, \delta)}^{(k, i, v)}} g d \lambda_{N, b, z}^{(k, J)} \leq \beta \lambda_{N, b, z}^{(k, J)}\left(E_{M, N, a, v}^{(k, I, \varphi, \delta)}\right) \leq \beta \lambda_{N, b, z}^{(k, J)}\left(E_{O, N, b, z}^{(k, J)}\right) \\
&=\beta \prod_{p \in J_{k}} \operatorname{Leb}\left(\left[z_{p}-O, z_{p}+O\right]\right) \prod_{q \in J \backslash J_{k}} \frac{1}{N} \operatorname{Leb}({\left.\left[z_{q}-\frac{N}{2} b_{q}, z_{q}+\frac{N}{2} b_{q}\right]\right) } \\
&=\beta(2 O)^{k} \prod_{q \in J \backslash J_{k}} b_{q}<+\infty .
\end{aligned}
$$

Moreover, since $\lim _{i \in I, i \longrightarrow+\infty} \varepsilon_{i}=0$, we have $\lim _{n \longrightarrow+\infty} \bar{\varphi}^{(n, n)}=\varphi$, and so

$$
\lim _{n \longrightarrow+\infty} f_{n}(x)=l(\varphi(x)) \lim _{n \rightarrow+\infty}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}(x)\right|, \forall x \in E_{M, N, a, v}^{(k, I,,, \delta)}
$$

then, from the dominated convergence theorem, we obtain

$$
\begin{aligned}
& \lim _{n \longrightarrow+\infty} \int_{\substack{E_{M, I, \varphi, \delta)}^{(k, I, s, v}}} l\left(\bar{\varphi}^{(n, n)}\right)\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)} \\
&=\int_{\substack{(k, I, \varphi, \delta) \\
E_{M, N, a, v}^{(k, i, v}}} l(\varphi) \lim _{n \rightarrow+\infty}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)} ;
\end{aligned}
$$

consequently, from (34), we have

$$
\begin{equation*}
\int_{E_{M, N, L}^{(k, I)},} l d \lambda_{N, v}^{(k, I)}=\int_{\substack{(k, I, \varphi, v) \\ E_{M, N, a, v}^{(k, N)}}} l(\varphi) \lim _{n \rightarrow+\infty}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)} \tag{37}
\end{equation*}
$$

Let $B=\prod_{i \in I} B_{i} \in \mathcal{B}^{(I)}\left(E_{M, N, a, v}^{(k, I)}\right)$, where $B_{i}=\left(\alpha_{i}, \beta_{i}\right), \forall i \in I$, and let $\delta_{i}=$ $\frac{\beta_{i}-\alpha_{i}}{2}, \forall i \in I$; moreover, $\forall h \in \mathbf{N}^{*}, \forall t \in[0,1]$, consider the set

$$
A_{h, t}=\prod_{i \in I}\left(\alpha_{i}+\frac{t \delta_{i}}{h}, \beta_{i}-\frac{t \delta_{i}}{h}\right)
$$

and consider the function $l_{h}: \mathbf{R}^{I} \longrightarrow[0,+\infty)$ defined by

$$
l_{h}(x)= \begin{cases}1 & \text { if } x \in A_{h, 1}^{\circ} \\ t & \text { if } x \in \partial A_{h, t} \\ 0 & \text { if } x \in \mathbf{R}^{I} \backslash A_{h, 0}\end{cases}
$$

Observe that, $\forall h \in \mathbf{N}^{*}, l_{h}: \mathbf{R}^{I} \longrightarrow[0,+\infty)$ is a function such that $l_{h}\left(\mathbf{R}^{I}\right) \subset$ $[0,1], l_{h}(x)=0, \forall x \notin E_{M, N, a, v}^{(k, I)} ;$ moreover, $\forall t_{1}, t_{2} \in[0,+\infty)$ such that $t_{1}<t_{2}$, we have

$$
\begin{gathered}
l_{h}^{-1}\left(\left(t_{1}, t_{2}\right)\right)= \begin{cases}\emptyset & \text { if } t_{1} \geq 1 \\
A_{h, t_{1}}^{\circ} & \text { if } t_{1}<1<t_{2} \\
A_{h, t_{1}}^{\circ} \backslash \overline{A_{h, t_{2}}} & \text { if } t_{1}<t_{2} \leq 1\end{cases} \\
l_{h}^{-1}\left(\left[0, t_{2}\right)\right)
\end{gathered} \begin{aligned}
& = \begin{cases}\mathbf{R}^{I} & \text { if } t_{2}>1 \\
\mathbf{R}^{I} \backslash \overline{A_{h, t_{2}}} & \text { if } t_{2} \leq 1\end{cases}
\end{aligned}
$$

thus, l_{h} is $\left(\mathcal{B}^{(I)}, \mathcal{B}([0,+\infty))\right)$-measurable and $\left(\tau^{(I)}, \tau([0,+\infty))\right)$-continuous. Then, since $\left\{l_{h}\right\}_{h \in \mathbf{N}^{*}}$ is an increasing positive sequence such that $\lim _{h \longrightarrow+\infty} l_{h}=$
1_{B}, from Beppo Levi theorem and (37), we have

$$
\begin{align*}
& \int_{B} d \lambda_{N, a, v}^{(k, I)}=\int_{\substack{(k, I) \\
E_{M, N, a, v}}} 1_{B} d \lambda_{N, a, v}^{(k, I)}=\lim _{h \longrightarrow+\infty} \int_{\substack{(k, I) \\
E_{M, N, a, v}}} l_{h} d \lambda_{N, a, v}^{(k, I)} \\
& =\lim _{h \longrightarrow+\infty} \int_{\substack{(k, I, \varphi, \delta) \\
E_{M, N, a, v}^{(2)}}} l_{h}(\varphi) \lim _{n \rightarrow+\infty}\left|\operatorname{det} J_{\bar{\varphi}(n, n)}\right| d \lambda_{N, b, z}^{(k, J)} \\
& =\int_{\substack{(,, i, \varphi, \delta) \\
E_{M, N, a, v}^{(k, y}}} 1_{B}(\varphi) \lim _{n \rightarrow+\infty}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)} \\
& =\int_{\varphi^{-1}(B)} \lim _{n \rightarrow+\infty}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)} . \tag{38}
\end{align*}
$$

Moreover, Proposition 4.4 implies that the previous formula (38) is true $\forall B \in$ $\mathcal{B}^{(I)}\binom{\stackrel{\circ}{(k, I)}}{M, N, a, v}$. Consider the measures μ and v on $\left(E_{N, a, v}^{(k, I)}, \mathcal{B}^{(I)}\left(E_{N, a, v}^{(k, I)}\right)\right)$ defined by

$$
\begin{gathered}
\mu(B)=\int_{B} d \lambda_{N, a, v}^{(k, I)}, \\
v(B)=\int_{\varphi^{-1}(B)} \lim _{n \rightarrow+\infty}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)},
\end{gathered}
$$

and set $B_{l}=B \cap E_{l, N, a, v}^{\left.(k,)^{\prime}\right)}, \forall l \in \mathbf{N}^{*}, \forall B \in \mathcal{B}^{(I)}\binom{\stackrel{\circ}{(k, I)}}{N, a, v}$. Since $B_{l} \subset B_{l+1}$, $\varphi^{-1}\left(B_{l}\right) \subset \varphi^{-1}\left(B_{l+1}\right), \bigcup_{l \in \mathbf{N}^{*}} B_{l}=B$ and $\bigcup_{l \in \mathbf{N}^{*}} \varphi^{-1}\left(B_{l}\right)=\varphi^{-1}(B)$, from the continuity property of μ and v and (38), we have

$$
\begin{align*}
& \int_{B} d \lambda_{N, a, v}^{(k, I)}=\lim _{l \longrightarrow+\infty} \int_{B_{l}} d \lambda_{N, a, v}^{(k, I)} \\
&=\lim _{l \longrightarrow+\infty} \int_{\varphi^{-1}\left(B_{l}\right)} \\
& \lim _{n \rightarrow+\infty}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)} \tag{39}\\
&=\int_{\varphi^{-1}(B)} \lim _{n \rightarrow+\infty}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)}
\end{align*}
$$

Then, let $B \in \mathcal{B}^{(I)}\binom{\stackrel{\circ}{(k, I)}}{N, a, v}$ and let $g:\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right) \longrightarrow([0,+\infty), \mathcal{B}([0,+\infty)))$ be a measurable function; $\forall x \notin E_{N, a, v}^{(\stackrel{\circ}{k}, I)}$, we have $\left(g 1_{B}\right)(x)=0$; thus, by proceeding as in the proof of formula (33), formula (39) implies

$$
\begin{aligned}
\int_{B} g d \lambda_{N, a, v}^{(k, I)}=\int_{\mathbf{R}^{I}} 1_{B} g d \lambda_{N, a, v}^{(k, I)}=\int_{\mathbf{R}^{J}} & \left(1_{B} g\right)(\varphi) \lim _{n \rightarrow+\infty}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)} \\
& =\int_{\varphi^{-1}(B)} g(\varphi) \lim _{n \rightarrow+\infty}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)}
\end{aligned}
$$

Then, for any measurable function $f:\left(\mathbf{R}^{I}, \mathcal{B}^{(I)}\right) \longrightarrow(\mathbf{R}, \mathcal{B})$ such that f^{+}(or $\left.f^{-}\right)$is $\lambda_{N, a, v}^{(k, I)}$-integrable, we have

$$
\begin{align*}
\int_{B} f d \lambda_{N, a, v}^{(k, I)}= & \int_{B} f^{+} d \lambda_{N, a, v}^{(k, I)}-\int_{B} f^{-} d \lambda_{N, a, v}^{(k, I)} \\
= & \int_{\varphi^{-1}(B)} f^{+}(\varphi) \lim _{n \rightarrow+\infty}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)} \\
& -\int_{\varphi^{-1}(B)} f^{-}(\varphi) \lim _{n \rightarrow+\infty}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)} \\
& =\int_{\varphi^{-1}(B)} f(\varphi) \lim _{n \rightarrow+\infty}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}\right| d \lambda_{N, b, z}^{(k, J)} \tag{40}
\end{align*}
$$

In particular, assume that, $\forall x \in U$, there exists the function $J_{\varphi}(x): E_{J} \longrightarrow$ E_{I}; from Proposition 3.21, we have

$$
\lim _{n \rightarrow+\infty}\left|\operatorname{det} J_{\bar{\varphi}^{(n, n)}}(x)\right|=\left|\lim _{n \rightarrow+\infty} \operatorname{det} J_{\bar{\varphi}^{(n, n)}}(x)\right|=\left|\operatorname{det} J_{\varphi}(x)\right|, \forall x \in U
$$

and so formula (40) implies

$$
\int_{B} f d \lambda_{N, a, v}^{(k, I)}=\int_{\varphi^{-1}(B)} f(\varphi)\left|\operatorname{det} J_{\varphi}\right| d \lambda_{N, b, z}^{(k, J)} .
$$

5. Problems for further study

A natural application of this paper, in the probabilistic framework, is the development of the theory of the infinite-dimensional continuous random vari-
ables, defined in the paper [4]. In particular, we can prove the formula of the density of such random variables composed with the (m, σ)-general functions, with further properties. Consequently, it is possible to introduce many random variables that generalize the well known continuous random vectors in \mathbf{R}^{m} (for example, the Beta random variables in E_{I} defined by the (m, σ)-general matrices), and to develop some theoretical results and some applications in the statistical inference. Moreover, we can define a convolution between the laws of two independent and infinite-dimensional continuous random variables, as in the finite case.

Furthermore, in the statistical mechanics, it is possible to describe the systems of smooth hard particles, by using the Boltzmann equation (see, for example, the paper [18]), or the more general Master kinetic equation, described in the papers [17] and [16]. In order to study the evolution of these systems, we can consider the model of countable particles, such that their joint infinitedimensional density can be determined by composing a particular random variable with a (m, σ)-general function.

Finally, we can generalize the papers [2] and [3] (where we estimate the rate of convergence of some Markov chains on $[0, p)^{k}$ to a uniform random vector) by considering the recursion $\left\{X_{n}\right\}_{n \in \mathbf{N}}$ on $[0, p)^{\mathbf{N}^{*}}$ defined by

$$
X_{n+1}=A X_{n}+B_{n}(\bmod p),
$$

where $X_{0}=x_{0} \in E_{I}, A$ is a bijective, linear, integer and (m, σ)-general function, $p \in \mathbf{R}^{+}$, and $\left\{B_{n}\right\}_{n \in \mathbf{N}}$ is a sequence of independent and identically distributed random variables with values on E_{I}. As noted above, it is possible to determine the density of the random variable $A X_{n}$, for any $n \in \mathbf{N}^{*}$; consequently, we expect to prove that, with some assumptions on the law of B_{n}, the sequence $\left\{X_{n}\right\}_{n \in \mathbf{N}}$ converges with geometric rate to a random variable with law $\bigotimes_{i \in \mathbf{N}^{*}}\left(\left.\frac{1}{p} L e b\right|_{\mathcal{B}([0, p))}\right)$, that is the uniform random variable on $[0, p)^{\mathbf{N}^{*}}$. Moreover, we wish to quantify the rate of convergence in terms of A, p, m, and the law of B_{n}.

References

[1] L. Accardi, O. G. Smolyanov, and M. O. Smolyanova, Change of variable formulas for infinite-dimensional distributions, Math. Notes 60 (1996), 212-215.
[2] C. Asci, Generating uniform random vectors in \mathbf{Z}_{p}^{k} : the general case, J. Theoret. Probab. 22 (2009), 791-809.
[3] C. Asci, Convergence in total variation of an affine random recursion in $[0, p)^{k}$ to a uniform random vector, Markov Process. Related Fields 19 (2013), 125-140.
[4] C. Asci, Integration over an infinite-dimensional Banach space and probabilistic applications, Int. J. Anal., doi: org/10.1155/2014/404186 (2014).
[5] C. Asci, Differentiation theory over infinite-dimensional Banach spaces, J. Math., doi: org/10.1155/2016/2619087 (2016).
[6] C. Asci, Theory of the (m, σ)-general functions over infinite-dimensional $B a$ nach spaces, Rend. Istit. Mat. Univ. Trieste 50 (2018), 1-36
[7] R. Baker, "Lebesgue measure" on \mathbf{R}^{∞}, Proc. Amer. Math. Soc. 113 (1991), 1023-1029.
[8] P. Billingsley, Probability and measure, 3rd ed., Wiley-Interscience, New York, 1995.
[9] R. Henstock, P. Muldowney, and V. Skvortsov, A partitioning infinitedimensional spaces for generalized Riemann integration, Bull. Lond. Math. Soc. 38 (2006), no. 5, 795-803.
[10] B. Jessen, The theory of integration in a space of an infinite number of dimensions, Acta Math. 63 (1934), no. 1, 249-323.
[11] S. Lang, Analysis II, Addison-Wesley, Reading, Massachusetts, 1969.
[12] S. Lang, Linear algebra, Springer, New York, 1987.
[13] R. LÉandre, Lebesgue measure in infinite dimension as an infinite-dimensional distribution, J. Math. Sci. 159 (2009), 833-836.
[14] M. M. Rao, Measure theory and integration, Wiley-Interscience, New York, 1987.
[15] L. G. Tepper and W. Z. Woodford, Functional analysis and the Feynman operator calculus, Springer International Publishing, 2016.
[16] M. Tessarotto and C. Asci, Asymptotic orderings and approximations of the Master kinetic equation for large hard spheres systems, Phys. Lett. A 381 (2017), 1484-1489.
[17] M. Tessarotto, C. Cremaschini, C. Asci, A. Soranzo, and G. Tironi, Global validity of the Master kinetic equation for hard-sphere systems, Eur. Phys. J. Plus, doi: org/10.1140/epjp/i2015-15169-2, 130 (2015).
[18] M. Tessarotto, C. Cremaschini, M. Mond, C. Asci, A. Soranzo, and G. Tironi, On the Boltzmann-Grad limit for smooth hard-sphere systems, Found. Phys. 48 (2018), 271-294.
[19] N. Tsilevich, A. Vershic, and M. Yor, An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the Gamma process, J. Funct. Anal. 185 (2001), 274-296.
[20] J. Weidmann, Linear operators in Hilbert spaces, Springer, New York, 1980.

Author's address:
Claudio Asci
Dipartimento di Matematica e Geoscienze
Università degli Studi di Trieste
Via Valerio 12/1, 34127 Trieste, Italy
E-mail: casci@units.it

